WO2010106089A2 - Vorrichtung und verfahren zur erzeugung von dampf mit hohem wirkungsgrad - Google Patents

Vorrichtung und verfahren zur erzeugung von dampf mit hohem wirkungsgrad Download PDF

Info

Publication number
WO2010106089A2
WO2010106089A2 PCT/EP2010/053432 EP2010053432W WO2010106089A2 WO 2010106089 A2 WO2010106089 A2 WO 2010106089A2 EP 2010053432 W EP2010053432 W EP 2010053432W WO 2010106089 A2 WO2010106089 A2 WO 2010106089A2
Authority
WO
WIPO (PCT)
Prior art keywords
transfer medium
heat
heat transfer
generator
steam generator
Prior art date
Application number
PCT/EP2010/053432
Other languages
English (en)
French (fr)
Other versions
WO2010106089A3 (de
Inventor
Bernd Gromoll
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP2012500230A priority Critical patent/JP5420750B2/ja
Priority to CN2010800126090A priority patent/CN102362047A/zh
Priority to US13/138,700 priority patent/US20120012280A1/en
Priority to RU2011142317/06A priority patent/RU2529767C2/ru
Priority to EP10711188A priority patent/EP2409003A2/de
Publication of WO2010106089A2 publication Critical patent/WO2010106089A2/de
Publication of WO2010106089A3 publication Critical patent/WO2010106089A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the invention relates to the generation of steam in a steam generator by utilizing a steam generator upstream thermal generator.
  • waste heat In many industrial processes such as. In steel mills, cement works, in papermaking, etc. is at the end of the process in the form of waste heat, a heat source at a medium temperature level available, which can be used to operate a steam generator and thus lent Generate electricity.
  • the stored in the waste heat heat energy can be used, which would otherwise be lost, so that the effective efficiency of the entire industrial process can be increased.
  • a working medium is evaporated, which is subsequently supplied, for example, to a turbine coupled to an electric generator.
  • a heated heat transfer medium is supplied to the steam generator, the heat stored in the heat transfer medium being transferred to the working medium, which results in the evaporation of the working medium.
  • this heat transfer medium is heated using the waste heat.
  • an average temperature level of the heat transfer medium in the order of about 60 0 C to 200 0 C can be achieved. The efficiency in steam generation based on the waste heat of an industrial process is therefore comparatively poor.
  • a geothermal system in which the heat transfer medium is known to be pumped into a deep well to it with the help of geothermal energy heat. Again, the depth of the bore removable heat transfer medium is only at a medium temperature level.
  • the heat energy stored in the heat transfer medium can be used for generating steam as described above, but here too the efficiency of steam generation is comparatively poor.
  • the present invention therefore has as its object to improve the efficiency in the steam generation by utilizing heat of a heat transfer medium at medium temperature level.
  • thermal generator also referred to in the literature as a "heat transformer"
  • a thermal generator generally serves to generate heat at a high temperature level by supplying heat at a medium temperature level and dissipating heat at a low temperature level.
  • a thermal generator is supplied with a primary heat transfer medium at a medium temperature level.
  • this primary heat transfer medium may have been brought to an average temperature by utilizing a heat source such as the aforementioned waste heat pipe of an industrial plant or, as the geothermal plant.
  • the thermal generator or heat transformer then, inter alia, a secondary heat transfer medium can be removed, whose temperature is higher than that of the primary heat transfer medium.
  • the operation of the thermal generator is known, for example, from DE 35 21 195 A1 or DE 198 16 022 B4, is therefore not explained further here. With the thermal generator, it is thus possible to use the heat stored in the primary heat transfer medium to heat the secondary heat transfer medium. With the now comparatively hot secondary heat transfer medium can then be heated or vaporized in a steam generator, a working medium with relatively high efficiency.
  • heat energy is transferred from a heat transfer medium to the working medium in a heat exchanger of the steam generator for the purpose of evaporating a working medium of a steam generator, which is designed in particular as a heat recovery steam generator, Kalina steam generator or ORC steam generator ("Organic Rankine Cycle") in that according to the invention the temperature of the heat transfer medium in a thermal generator is increased before the heat transfer medium is supplied to the heat exchanger, a high efficiency of steam generation can be ensured.
  • Thermal energy is supplied to the thermal generator by means of a further heat transfer medium, wherein the temperature of the further heat transfer medium is increased in a waste or waste heat producing industrial plant by utilizing the residual or waste heat before the further heat transfer medium reaches the thermal generator. This ensures that the otherwise lost residual or waste heat of the industrial plant can be used to generate steam.
  • thermal energy is supplied to the thermal generator by means of a further heat transfer medium.
  • the temperature of the further heat transfer medium is increased in a geothermal plant by utilizing the geothermal heat before the further heat transfer medium supplied to the thermal generator so that geothermal heat can be used effectively to generate steam.
  • the temperature of the further heat transfer medium supplied to the thermal generator is in the two
  • Embodiments lower than the temperature of the heat transfer medium supplied to the heat exchanger of the steam generator.
  • Working medium in a heat exchanger of a steam generator which is designed in particular as a heat recovery steam generator, Kalina steam generator or as ORC steam generator is in the heat exchanger for the evaporation of the working fluid heat energy from a heat transfer medium to the
  • the apparatus further includes a thermal generator for increasing the temperature of the heat transfer medium.
  • Thermal energy can be supplied to the thermal generator with the aid of a further heat transfer medium.
  • the temperature of the further heat transfer medium can be increased in a residual or waste heat producing industrial plant by utilizing the residual or waste heat before the further heat transfer medium is supplied to the thermal generator. This ensures that the otherwise lost residual or waste heat of the industrial plant can be used to generate steam.
  • the temperature of the further heat transfer medium can be increased in a geothermal plant by utilizing the geothermal heat before the further heat transfer medium is supplied to the thermal generator, so that the geothermal heat can be effectively used to generate steam.
  • FIG. 1 waste heat utilization for steam generation according to the prior art
  • FIG. 2 shows a first example of an application of a thermal generator for the waste heat utilization of an industrial plant
  • Figure 3 shows a second application example of a thermal
  • FIG. 1 shows an already known possibility for utilizing the waste heat of an industrial plant 100, for example a steelworks, for the evaporation of a working medium A of a steam generator 200.
  • a heat exchanger 120 is installed, which is supplied by a Heat transfer medium W is flowed through.
  • the temperature of the heat transfer medium W is increased in the heat exchanger 120 from a temperature Tl (W) to a temperature T2 (W).
  • the heated heat transfer medium W passes, promoted by a pump 140, via a line 130 to a heat exchanger 220 of the steam generator 200.
  • the heat exchanger 220 is also traversed by the working fluid to be evaporated A.
  • a heat transfer from the heat transfer medium W takes place on the working fluid A, wherein the working fluid A is heated and evaporated, while the temperature of the heat transfer medium W decreases accordingly.
  • the cooled heat transfer medium W arrives at closing via a line 150 back to the heat exchanger 120 in the waste heat pipe 110 of the steel plant 100 to be heated there again.
  • the vaporized in the heat exchanger 220 of the boiler working fluid A is supplied via a line 230 of a turbine 240 and drives it.
  • the turbine 240 is finally connected to generate electricity with a generator 250, so that ultimately in a conventional manner by utilizing the waste heat of the steel plant 100 power can be generated.
  • the working fluid A expanded in the turbine 240 is typically conducted downstream of the turbine 240 via a line 260 to a cooler 270, in order subsequently to be conveyed back to the heat exchanger 220 with the aid of a pump 280.
  • FIG. 2 shows a first application of the approach according to the invention.
  • a heat exchanger 120 is present, in which the waste heat of the industrial plant 100 is used to a primary heat transfer medium Wl from a temperature Tl (Wl) to a higher temperature T2 (W1) to heat.
  • the heated primary heat transfer medium Wl passes by means of the pump 140 via a line 130 to an input 301 of a thermal generator 300th
  • the thermal generator 300 uses the heat stored in the waste heat stream of the industrial plant 100, which is at a relatively low temperature level Tl of about 60 0 C to 80 0 C, to the temperature of a secondary heat transfer medium W2 which is used in a process downstream of the thermal generator 300, for example a steam generator, in order to increase the temperature of a working medium A of the downstream process, in particular in order to evaporate the working medium A.
  • the primary heat transfer medium Wl passes through the thermal generator 300, where it takes place in the there Cools processes, and is finally removed at an output 302. From the outlet 302, the primary heat transfer medium Wl passes via the line 150 back to the heat exchanger 120 in the waste heat pipe 110 of the industrial plant 100 to be heated there again.
  • the secondary heat transfer medium W2 is supplied to the thermal generator 300 via an input 303.
  • the secondary heat transfer medium W2 is finally heated by utilizing the heat of the primary heat transfer medium Wl from a temperature Tl (W2) to a temperature T2 (W2).
  • the thus-heated secondary heat transfer medium W2 is now removed at the output 304 of the thermal generator 300 and fed by means of a pump 310 via a line 210 to the heat exchanger 220 of the steam generator 200.
  • the heat exchanger 220 as described in connection with FIG. 1, the evaporation of the working medium A of the steam generator 200 is effected, so that power can be generated in the sequence with the turbine 240 and the generator 250.
  • the secondary heat transfer medium W2 cools and is then returned via a line 290 to the input 303 of the thermal generator 300, where it is heated again.
  • thermal generator 300 Due to the use of the thermal generator 300, the efficiency of the steam or power generation is higher than in the system described in connection with Figure 1, known in the art.
  • the thermal generator is effectively connected between the waste heat pipe of the industrial plant and the steam generator and causes the heat transfer medium supplied to the steam generator to have a higher temperature.
  • an input 305 and an output 306 are indicated in FIG. 2, via which the thermal generator 300 can be supplied and removed with another medium.
  • a thermal generator is generally used to generate heat at a high temperature Temperature level by supplying heat at a medium temperature level and dissipating heat at a low temperature level.
  • the supplied via the input 305 and removable at the output 306 medium is used to dissipate heat at the low temperature level.
  • the primary heat transfer medium W 1 heat is supplied at an intermediate temperature level, and the secondary heat transfer medium W 2 dissipates heat at a high temperature level and transports it to the heat exchanger 220 of the steam generator 200.
  • FIG. 3 shows a second application of the approach according to the invention.
  • the primary heat transfer medium Wl which has hitherto been brought to an elevated temperature T2 (W1) with the aid of the waste heat of an industrial plant, is here heated in a geothermal plant 400.
  • geothermal energy uses the heat stored in the earth's crust.
  • a heat exchanger 410 is placed at a certain depth and is passed through by a primary heat transfer medium Wl, so that the elevated temperature prevailing there can be used to increase the temperature T (Wl) of the primary heat transfer medium Wl to a value T2 (W1).
  • the thus heated primary heat transfer medium Wl is conveyed according to the invention by means of a pump 420 via a line 430 to an input 301 of a thermal generator 300.
  • the thermal generator 300 is used to heat a secondary heat transfer medium W2 from a temperature Tl (W2) to a higher temperature T2 (W2) based on the heat stored in the primary heat transfer medium Wl.
  • the heated heat transfer medium W2 is then used analogously to the method described in connection with Figure 2 in a steam generator 200 for steam and power generation.
  • the invention has been described concretely in applications in an industrial plant and in a geothermal plant.
  • the industrial plant can be a plant in which a residual or waste heat is generated, ie, for example, a steelworks, a cement works, a paper manufacturer or the like. ches.
  • a waste heat of a power plant for the purpose described above:
  • the waste heat produced in power plants which is obtained, for example, in the flue gases after the combustion of the fuel and / or behind the turbine, contains large energy reserves, in particular in the form of residual heat ,
  • the residual heat can be used according to the invention to heat the above-described primary heat transfer medium, which is supplied to the thermal generator.
  • the secondary heat transfer medium can then be preheated, for example, the combustion air required for combustion in the power plant, to effect a more effective combustion.
  • the secondary heat transfer medium can be used to generate in a steam generator as described above power for equipment of the power plant, for example. Pumps.
  • the steam generator 200 shown in the figures may, for example, be a waste heat steam generator (AHDE or HRSG, a Kalina steam generator or an ORC steam generator) .
  • AHDE waste heat steam generator
  • HRSG Kalina steam generator
  • ORC steam generator ORC steam generator
  • T2 (W2) of the secondary heat transfer medium Due to the elevated temperature T2 (W2) of the secondary heat transfer medium, it is basically not impossible to use a steam generator that works with water as the working medium A.
  • Both the ORC and Kalina processes are suitable for steam generation by utilizing heat from a heat transfer medium at low or medium temperature levels.
  • the efficiency in the generation of steam is very much dependent on the temperature of the heat source or the heat transfer medium.
  • the Carnot efficiency increases three times when the temperature of the heat transfer medium from 60 ° C to 120 0 C is increased. An increase in the temperature to 200 ° C. results in the efficiency rising approximately to five times the value.
  • the inventive use of a thermal generator which is upstream of the steam generation and brings the heat transfer medium to a higher temperature, thus has a positive effect on the efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Die Erfindung betrifft die Erzeugung von Dampf aus einem Arbeitsmedium eines Dampferzeugers, der vorzugsweise als Abhitzedampferzeuger, Kalina-Dampferzeuger oder ORC-Dampferzeuger ausgebildet ist, unter Ausnutzung eines dem Dampferzeuger vorgeschalteten thermischen Generators. Zur Verdampfung des Arbeitsmediums nutzt der Dampferzeuger ein heißes Wärmeübertragungsmedium, das erfindungsgemäß bevor es dem Dampferzeuger zugeführt wird im thermischen Generator erhitzt wird, so dass ein erhöhter Wirkungsgrad der Dampferzeugung erreichbar ist. Als Wärmequelle für den thermischen Generator dient bspw. die Rest- oder Abwärme einer Industrieanlage oder eine die Erdwärme nutzende Geothermieanlage.

Description

Beschreibung
Vorrichtung und Verfahren zur Erzeugung von Dampf mit hohem Wirkungsgrad
Die Erfindung betrifft die Erzeugung von Dampf in einem Dampferzeuger unter Ausnutzung eines dem Dampferzeuger vorgeschalteten thermischen Generators.
Bei vielen industriellen Prozessen wie bspw. in Stahlwerken, Zementwerken, bei der Papierherstellung etc. steht am Ende des Prozesses in Form der Abwärme eine Wärmequelle auf einem mittleren Temperaturniveau zur Verfügung, die genutzt werden kann, um einen Dampferzeuger zu betreiben und damit schließ- lieh Strom zu erzeugen. Vorteilhafterweise kann so die in der Abwärme gespeicherte Wärmeenergie genutzt werden, die ansonsten verloren gehen würde, so dass der effektive Wirkungsgrad des gesamten industriellen Prozesses gesteigert werden kann.
Im Dampferzeuger wird bekanntermaßen ein Arbeitsmedium verdampft, welches anschließend bspw. einer mit einem elektrischen Generator gekoppelten Turbine zugeführt wird. Zur Verdampfung des Arbeitsmediums wird dem Dampferzeuger ein erhitztes Wärmeübertragungsmedium zugeführt, wobei die im Wär- meübertragungsmedium gespeicherte Wärme an das Arbeitsmedium übertragen wird, was die Verdampfung des Arbeitsmediums zur Folge hat. Bei der Abwärmenutzung eines industriellen Prozesses wird dieses Wärmeübertragungsmedium unter Verwendung der Abwärme erhitzt. Typischerweise ist hierbei lediglich ein mittleres Temperaturniveau des Wärmeübertragungsmediums in einer Größenordnung von etwa 600C bis 2000C erreichbar. Der Wirkungsgrad bei der Dampferzeugung basierend auf der Abwärme eines industriellen Prozesses ist daher vergleichsweise schlecht .
Alternativ kann als Wärmequelle auch eine Geothermieanlage dienen, bei der das Wärmeübertragungsmedium bekanntermaßen in eine Tiefenbohrung gepumpt wird, um es mit Hilfe der Erdwärme aufzuheizen. Auch hier befindet sich das der Tiefenbohrung entnehmbare Wärmeübertragungsmedium nur auf einem mittleren Temperaturniveau. Die im Wärmeübertragungsmedium gespeicherte Wärmeenergie kann wie oben beschrieben zur Dampferzeugung ge- nutzt werden, jedoch ist auch hier der Wirkungsgrad der Dampferzeugung vergleichsweise schlecht.
Die vorliegende Erfindung setzt sich daher zum Ziel, den Wirkungsgrad bei der Dampferzeugung unter Ausnutzung von Wärme eines Wärmeübertragungsmediums auf mittlerem Temperaturniveau zu verbessern.
Diese Aufgabe wird durch die in den unabhängigen Ansprüchen angegebenen Erfindungen gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen.
Die Grundidee der erfindungsgemäßen Lösung der Aufgabe liegt in der Nutzung eines thermischen Generators, in der Literatur auch als „Wärmetransformator" bezeichnet, zur Erhöhung der Temperatur eines die Verdampfung eines Arbeitsmediums bewirkenden Wärmeübertragungsmediums. Ein thermischer Generator dient allgemein zur Erzeugung von Wärme auf einem hohen Temperaturniveaus durch Zufuhr von Wärme auf einem mittleren Temperaturniveau und Abführung von Wärme auf niedrigem Tempe- raturniveau.
Einem thermischen Generator wird ein primäres Wärmeübertragungsmedium auf einem mittleren Temperaturniveau zugeführt. Bspw. kann dieses primäre Wärmeübertragungsmedium unter Aus- nutzung einer Wärmequelle wie der erwähnten Abwärmeleitung einer Industrieanlage oder wie der Geothermieanlage auf eine mittlere Temperatur gebracht worden sein. Dem thermischen Generator bzw. Wärmetransformator ist dann u.a. ein sekundäres Wärmeübertragungsmedium entnehmbar, dessen Temperatur höher ist als diejenige des primären Wärmeübertragungsmediums. Die Funktionsweise des thermischen Generators ist bspw. aus DE 35 21 195 Al oder DE 198 16 022 B4 bekannt, wird daher an dieser Stelle nicht weiter erläutert. Mit dem thermischen Generator ist es somit möglich, die in dem primären Wärmeübertragungsmedium gespeicherte Wärme zu nutzen, um das sekundäre Wärmeübertragungsmedium zu erhitzen. Mit dem nunmehr vergleichsweise heißen sekundären Wärmeübertragungsmedium kann dann in einem Dampferzeuger ein Arbeitsmedium mit vergleichsweise hohem Wirkungsgrad erhitzt bzw. verdampft werden.
Beim erfindungsgemäßen Verfahren zur Dampferzeugung wird zur Verdampfung eines Arbeitsmediums eines Dampferzeugers, der insbesondere als Abhitzedampferzeuger, Kalina-Dampferzeuger oder ORC-Dampferzeuger („Organic Rankine Cycle") ausgebildet ist, in einem Wärmetauscher des Dampferzeugers Wärmeenergie von einem Wärmeübertragungsmedium auf das Arbeitsmedium übertragen. Dadurch, dass erfindungsgemäß die Temperatur des Wärmeübertragungsmediums in einem thermischen Generator erhöht wird, bevor das Wärmeübertragungsmedium dem Wärmetauscher zugeführt wird, kann ein hoher Wirkungsgrad der Dampferzeugung gewährleistet werden.
Dem thermischen Generator wird mit Hilfe eines weiteren Wärmeübertragungsmediums Wärmeenergie zugeführt, wobei die Temperatur des weiteren Wärmeübertragungsmediums in einer Rest- oder Abwärme produzierenden Industrieanlage unter Ausnutzung der Rest- oder Abwärme erhöht wird, bevor das weitere Wärmeübertragungsmedium zum thermischen Generator gelangt. Hierdurch wird erreicht, dass die ansonsten verloren gehende Rest- oder Abwärme der Industrieanlage zur Erzeugung von Dampf genutzt werden kann.
Auch in einer alternativen Ausführungsform wird dem thermischen Generator mit Hilfe eines weiteren Wärmeübertragungsmediums Wärmeenergie zugeführt. Die Temperatur des weiteren Wärmeübertragungsmediums wird in einer Geothermieanlage unter Ausnutzung der Erdwärme erhöht, bevor das weitere Wärmeübertragungsmedium dem thermischen Generator zugeführt wird, so dass Erdwärme effektiv genutzt werden kann, um Dampf zu erzeugen.
Die Temperatur des dem thermischen Generator zugeführten weiteren Wärmeübertragungsmediums ist in den beiden
Ausführungsformen niedriger als die Temperatur des dem Wärmetauscher des Dampferzeugers zugeführten Wärmeübertragungsmediums .
Eine erfindungsgemäße Vorrichtung zum Verdampfen eines
Arbeitsmediums in einem Wärmetauscher eines Dampferzeugers, der insbesondere als Abhitzedampferzeuger, Kalina- Dampferzeuger oder als ORC-Dampferzeuger ausgebildet ist, ist in dem Wärmetauscher zur Verdampfung des Arbeitsmediums Wärmeenergie von einem Wärmeübertragungsmedium auf das
Arbeitsmedium übertragbar. Die Vorrichtung weist darüber hinaus einen thermischen Generator zur Erhöhung der Temperatur des Wärmeübertragungsmediums auf.
Dem thermischen Generator ist mit Hilfe eines weiteren Wärmeübertragungsmediums Wärmeenergie zuführbar. Die Temperatur des weiteren Wärmeübertragungsmediums ist in einer Rest- oder Abwärme produzierenden Industrieanlage unter Ausnutzung der Rest- oder Abwärme erhöhbar, bevor das weitere Wärmeübertragungsmedium dem thermischen Generator zugeführt wird. Hierdurch wird erreicht, dass die ansonsten verloren gehende Rest- oder Abwärme der Industrieanlage zur Erzeugung von Dampf genutzt werden kann.
Auch in einer alternativen Ausführung ist dem thermischen
Generator mit Hilfe eines weiteren Wärmeübertragungsmediums Wärmeenergie zuführbar. Die Temperatur des weiteren Wärmeübertragungsmediums ist in einer Geothermieanlage unter Ausnutzung der Erdwärme erhöhbar, bevor das weitere Wärmeübertragungsmedium dem thermischen Generator zugeführt wird, so dass die Erdwärme effektiv zur Dampferzeugung genutzt werden kann. Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus dem im Folgenden beschriebenen Ausführungsbeispiel sowie anhand der Zeichnungen.
Dabei zeigt:
Figur 1 Abwärmenutzung zur Dampferzeugung nach dem Stand der Technik,
Figur 2 ein erstes Anwendungsbeispiel eines thermischen Ge- nerators zur Abwärmenutzung einer Industrieanlage,
Figur 3 ein zweites Anwendungsbeispiel eines thermischen
Generators zur Nutzung der in einer Geothermieanla- ge anfallenden Wärme.
In den Figuren sind identische bzw. einander entsprechende Bereiche, Bauteile, Bauteilgruppen oder Verfahrensschritte mit denselben Bezugsziffern gekennzeichnet. Die Flussrichtungen in Leitungen sind durch Pfeile gekennzeichnet.
Die Figur 1 zeigt eine bereits bekannte Möglichkeit zur Nutzung der Abwärme einer Industrieanlage 100, bspw. ein Stahlwerk, zur Verdampfung eines Arbeitsmediums A eines Dampferzeugers 200. In einer lediglich angedeuteten Abwärmeleitung 110 des Stahlwerkes 100 ist ein Wärmetauscher 120 instal- liert, der von einem Wärmeübertragungsmedium W durchströmt wird. Die Temperatur des Wärmeübertragungsmediums W wird im Wärmetauscher 120 von einer Temperatur Tl (W) auf eine Temperatur T2 (W) erhöht.
Das erhitzte Wärmeübertragungsmedium W gelangt, gefördert durch eine Pumpe 140, über eine Leitung 130 zu einem Wärmetauscher 220 des Dampferzeugers 200. Der Wärmetauscher 220 wird außerdem von dem zu verdampfenden Arbeitsmedium A durchströmt. Im Wärmetauscher 220 findet ein Wärmeübergang vom Wärmeübertragungsmedium W auf das Arbeitsmedium A statt, wobei das Arbeitsmedium A erhitzt und verdampft wird, während die Temperatur des Wärmeübertragungsmediums W entsprechend sinkt. Das abgekühlte Wärmeübertragungsmedium W gelangt an- schließend über eine Leitung 150 zurück zum Wärmetauscher 120 in der Abwärmeleitung 110 des Stahlwerks 100, um dort wiederum erhitzt zu werden.
Das im Wärmetauscher 220 des Dampferzeugers verdampfte Arbeitsmittel A wird über eine Leitung 230 einer Turbine 240 zugeführt und treibt diese an. Die Turbine 240 ist schließlich zur Stromerzeugung mit einem Generator 250 verbunden, so dass letztendlich in an sich bekannter Weise unter Ausnutzung der Abwärme des Stahlwerks 100 Strom erzeugt werden kann. Das in der Turbine 240 entspannte Arbeitmittel A wird typischerweise im Anschluss an die Turbine 240 über eine Leitung 260 zu einem Kühler 270 geleitet, um anschließend mit Hilfe einer Pumpe 280 wieder zum Wärmetauscher 220 gefördert zu werden.
Die Figur 2 zeigt eine erste Anwendung des erfindungsgemäßen Ansatzes. Auch hier wird davon ausgegangen, dass in einer Abwärmeleitung 110 einer Industrieanlage 100 ein Wärmetauscher 120 vorhanden ist, in dem die Abwärme der Industrieanlage 100 genutzt wird, um ein primäres Wärmeübertragungsmedium Wl von einer Temperatur Tl(Wl) auf eine höhere Temperatur T2(W1) zu erhitzen. Das erhitzte primäre Wärmeübertragungsmedium Wl gelangt mit Hilfe der Pumpe 140 über eine Leitung 130 zu einem Eingang 301 eines thermischen Generators 300.
Wie eingangs erwähnt ist es mit Hilfe des thermischen Generators 300 möglich, die im Abwärmestrom der Industrieanlage 100 gespeicherte Wärme, die auf einem relativ niedrigen Temperaturniveau Tl von etwa 600C bis 800C liegt, zu nutzen, um die Temperatur eines sekundären Wärmeübertragungsmediums W2 zu erhöhen, das in einem dem thermischen Generator 300 nachgeschalteten Prozess, bspw. eine Dampferzeugung, verwendet wird, um seinerseits die Temperatur eines Arbeitsmediums A des nachgeschalteten Prozesses zu erhöhen, insbesondere um das Arbeitsmedium A zu verdampfen.
Das primäre Wärmeübertragungsmedium Wl durchläuft den thermischen Generator 300, wobei es sich in den dort stattfindenden Prozessen abkühlt, und ist schließlich an einem Ausgang 302 entnehmbar. Vom Ausgang 302 gelangt das primäre Wärmeübertragungsmedium Wl über die Leitung 150 zurück zum Wärmetauscher 120 in der Abwärmeleitung 110 der Industrieanlage 100, um dort wiederum erhitzt zu werden.
Das sekundäre Wärmeübertragungsmedium W2 wird dem thermischen Generator 300 über einen Eingang 303 zugeführt. Im thermischen Generator wird das sekundäre Wärmeübertragungsmedium W2 letztlich durch Ausnutzung der Wärme des primären Wärmeübertragungsmediums Wl von einer Temperatur Tl (W2) auf eine Temperatur T2(W2) erhitzt. Das so erhitzte sekundäre Wärmeübertragungsmedium W2 wird nun am Ausgang 304 des thermischen Generators 300 entnommen und mit Hilfe einer Pumpe 310 über ei- ne Leitung 210 dem Wärmetauscher 220 des Dampferzeugers 200 zugeführt. Im Wärmetauscher 220 bewirkt es wie im Zusammenhang mit der Figur 1 beschrieben die Verdampfung des Arbeitsmediums A des Dampferzeugers 200, so dass in der Folge mit der Turbine 240 und dem Generator 250 Strom erzeugt werden kann. Dabei kühlt sich das sekundäre Wärmeübertragungsmedium W2 ab und wird anschließend über eine Leitung 290 wieder dem Eingang 303 des thermischen Generators 300 zugeführt, wo es wiederum erhitzt wird.
Aufgrund der Verwendung des thermischen Generators 300 ist der Wirkungsgrad der Dampf- bzw. Stromerzeugung höher als bei der im Zusammenhang mit der Figur 1 beschriebenen, im Stand der Technik bekannten Anlage. Der thermische Generator ist effektiv zwischen die Abwärmeleitung der Industrieanlage und den Dampferzeuger geschaltet und bewirkt, dass das dem Dampferzeuger zugeführte Wärmeübertragungsmedium eine höhere Temperatur aufweist.
Der Vollständigkeit halber sind in der Figur 2 noch ein Ein- gang 305 und ein Ausgang 306 angedeutet, über die dem thermischen Generator 300 ein weiteres Medium zu- und abgeführt werden kann. Wie einleitend erwähnt dient ein thermischer Generator allgemein zur Erzeugung von Wärme auf einem hohen Temperaturniveau durch Zufuhr von Wärme auf einem mittleren Temperaturniveau und Abführung von Wärme auf niedrigem Temperaturniveau. Das über den Eingang 305 zugeführte und am Ausgang 306 entnehmbare Medium dient zur Abführung von Wärme auf dem niedrigen Temperaturniveau. Mit Hilfe des primären Wärmeübertragungmediums Wl wird Wärme auf mittlerem Temperaturniveau zugeführt und das sekundäre Wärmeübertragungsmedium W2 führt Wärme auf hohem Temperaturniveau ab und transportiert diese zum Wärmetauscher 220 des Dampferzeugers 200.
Die Figur 3 zeigt eine zweite Anwendung des erfindungsgemäßen Ansatzes. Das primäre Wärmeübertragungsmedium Wl, das bisher mit Hilfe der Abwärme einer Industrieanlage auf eine erhöhte Temperatur T2(W1) gebracht wurde, wird hier in einer Geother- mieanlage 400 aufgeheizt. Bekanntermaßen nutzt die Geothermie die in der Erdkruste gespeicherte Wärme. Ein Wärmetauscher 410 ist in einer bestimmten Tiefe platziert und wird von einem primären Wärmeübertragungsmedium Wl durchströmt, so dass die dort vorherrschende erhöhte Temperatur genutzt werden kann, um die Temperatur T(Wl) des primären Wärmeübertragungsmediums Wl auf einen Wert T2(W1) zu erhöhen. Das so erwärmte primäre Wärmeübertragungsmedium Wl wird erfindungsgemäß mit Hilfe einer Pumpe 420 über eine Leitung 430 zu einem Eingang 301 eines thermischen Generators 300 gefördert. Wie oben be- schrieben wird der thermische Generator 300 genutzt, um basierend auf der im primären Wärmeübertragungsmedium Wl gespeicherten Wärme ein sekundäres Wärmeübertragungsmedium W2 von einer Temperatur Tl (W2) auf eine höhere Temperatur T2(W2) aufzuheizen. Das aufgeheizte Wärmeübertragungsmedium W2 wird anschließend analog zum im Zusammenhang mit der Figur 2 beschriebenen Verfahren in einem Dampferzeuger 200 zur Dampfund Stromerzeugung verwendet.
In den Figuren wurde die Erfindung konkret in Anwendungen in einer Industrieanlage und in einer Geothermieanlage beschrieben. Die Industrieanlage kann grundsätzlich eine Anlage sein, bei der eine Rest- oder Abwärme anfällt, d.h. bspw. ein Stahlwerk, ein Zementwerk, ein Papierhersteller oder ähnli- ches. Auch ist es denkbar, die Abwärme eines Kraftwerkes zum oben beschriebenen Zweck zu nutzen: Die in Kraftwerken produzierte Abwärme, die bspw. in den Rauchgasen nach der Verbrennung des Brennstoffes und/oder hinter der Turbine anfällt, beinhaltet große Energiereserven, insbesondere in Form von Restwärme. Die Restwärme kann erfindungsgemäß genutzt werden, das oben beschriebene primäre Wärmeübertragungsmedium zu erwärmen, das dem thermischen Generator zugeführt wird. Dieser wird verwendet, um das sekundäre Wärmeübertragungsmedium auf eine höhere Temperatur zu bringen. Mit dem sekundären Wärmeübertragungsmedium kann dann bspw. die im Kraftwerk zur Verbrennung benötigte Verbrennungsluft vorgewärmt werden, um eine effektivere Verbrennung zu bewirken. Auch kann das sekundäre Wärmeübertragungsmedium genutzt werden, um in einem Dampferzeuger wie oben beschrieben Strom für Gerätschaften des Kraftwerks, bspw. Pumpen, zu erzeugen.
Verallgemeinert können all diese Anlagen, d.h. Rest- oder Abwärme produzierende Industrieanlagen einschl. Kraftwerke, Ge- othermieanlagen etc., die sich zur Anwendung der Erfindung wie oben beschrieben eignen, unter dem Begriff „Wärmequelle" zusammengefasst werden. Es handelt sich hierbei also allgemein um Anlagen, die eine Wärmeenergie zur Verfügung stellen können, mit der das primäre Wärmeübertragungsmedium von der niedrigen Temperatur Tl(Wl) auf die höhere Temperatur T2(W1) aufzuheizen ist.
Der in den Figuren dargestellte Dampferzeuger 200 kann bspw. ein Abhitzdampferzeuger (AHDE bzw. HRSG, „heat recovery steam generator"), ein Kalina-Dampferzeuger oder eine ORC- Dampferzeuger sein. Allen diesen speziellen Dampferzeugern ist gemeinsam, dass das zu verdampfende Arbeitsmedium im Vergleich zu Wasser einen niedrigen Siedepunkt aufweist. Der sog. „Kalina-Prozess" beschreibt ein Verfahren zur Dampfer- zeugung bei niedrigem Temperaturniveau, wobei das zu verdampfende Arbeitsmedium nicht Wasser sondern ein Ammoniak-Wasser- Gemisch ist, welches bereits bei niedrigen Temperaturen verdampft. Ebenfalls bekannt ist der sog. „ORC-Prozess", bei dem als zu verdampfendes Arbeitsmittel eine organische Flüssigkeit mit niedriger Verdampfungstemperatur eingesetzt wird.
Aufgrund der erhöhten Temperatur T2(W2) des sekundären Wärme- Übertragungsmediums ist es aber grundsätzlich auch nicht ausgeschlossen, einen Dampferzeuger einzusetzen, der mit Wasser als Arbeitsmedium A arbeitet.
Der ORC- und der Kalina-Prozess sind zwar beide zur Dampfer- zeugung durch Ausnutzung von Wärme eines Wärmeübertragungsmediums auf niedrigem oder mittlerem Temperaturniveau geeignet. Der Wirkungsgrad bei der Dampferzeugung ist jedoch sehr stark abhängig von der Temperatur der Wärmequelle bzw. des Wärmeübertragungsmediums. Bspw. erhöht sich der Carnot- Wirkungsgrad auf das Dreifache, wenn die Temperatur des Wärmeübertragungsmediums von 60 °C auf 1200C erhöht wird. Eine Anhebung der Temperatur auf 2000C resultiert darin, dass der Wirkungsgrad etwa auf den fünffachen Wert steigt. Die erfindungsgemäße Nutzung eines thermischen Generators, der der Dampferzeugung vorgeschaltet ist und das Wärmeübertragungsmedium auf eine höhere Temperatur bringt, wirkt sich also positiv auf den Wirkungsgrad aus.

Claims

Patentansprüche
1. Verfahren zum Verdampfen eines Arbeitsmediums (A) eines Dampferzeugers (200), insbesondere eines Abhitzedampferzeugers, eines Kalina-Dampferzeugers oder eines ORC-Dampferzeugers, bei dem in einem Wärmetauscher (220) des Dampferzeugers (200) zur Verdampung des Arbeitsmediums (A) Wärmeenergie von einem Wärmeübertragungsmedium (W2) auf das Arbeitsmedium (A) übertragen wird, dadurch gekennzeichnet, dass die Temperatur (T (W2)) des Wärmeübertragungsmediums (W2) in einem thermischen Generator (300) erhöht wird, bevor das Wärmeübertragungsmedium (W2) dem Wärmetauscher (220) zugeführt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass dem thermischen Generator (300) mit einem weiteren Wärmeübertragungsmedium (Wl) Wärmeenergie zugeführt wird, wobei die Temperatur (T(Wl)) des weiteren Wärmeübertragungsmediums (Wl) in einer Rest- oder Abwärme produzierenden Industrieanlage (100) unter Ausnutzung der Rest- oder Abwärme erhöht wird, bevor das weitere Wärmeübertragungsmedium (Wl) dem thermischen Generator (300) zugeführt wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass dem thermischen Generator (300) mit einem weiteren Wärmeübertragungsmedium (Wl) Wärmeenergie zugeführt wird, wobei die Temperatur (T(Wl)) des weiteren Wärmeübertragungsmediums (Wl) in einer Geothermieanlage (400) unter Ausnutzung der Erdwärme erhöht wird, bevor das weitere Wärmeübertragungsmedium (Wl) dem thermischen Generator (300) zugeführt wird.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Temperatur (T2(W1)) des dem thermischen Generator (300) zugeführten weiteren Wärmeübertragungsmediums (Wl) niedriger ist als die Temperatur (T2(W2)) des dem Wärmetauscher (220) des Dampferzeugers (200) zugeführten Wärmeübertragungsmediums (W2) .
5. Vorrichtung zum Verdampfen eines Arbeitsmediums (A) in einem Wärmetauscher (220) eines Dampferzeugers (200), insbesondere eines Abhitzedampferzeugers, eines Kalina- Dampferzeugers oder eines ORC-Dampferzeugers, wobei in dem Wärmetauscher (220) zur Verdampfung des Arbeitsmediums (A) Wärmeenergie von einem Wärmeübertragungsmedium (W2) auf das Arbeitsmedium (A) übertragbar ist, dadurch gekennzeichnet, dass die Vorrichtung einen thermischer Generator (300) zur Erhöhung der Temperatur (T (W2)) des Wärmeübertragungsmediums (W2) aufweist.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass dem thermischen Generator (300) mit einem weiteren Wärmeübertragungsmedium (Wl) Wärmeenergie zuführbar ist, wobei die Temperatur (T(Wl)) des weiteren Wärmeübertragungsmediums (Wl) in einer Rest- oder Abwärme produzierenden Industrieanlage (100) unter Ausnutzung einer der Rest- oder Abwärme erhöhbar ist, bevor das weitere Wärmeübertragungsmedium (Wl) dem thermischen Generator (300) zugeführt wird.
7. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass dem thermischen Generator (300) mit einem weiteren Wärmeübertragungsmedium (Wl) Wärmeenergie zuführbar ist, wobei die Temperatur (T(Wl)) des weiteren Wärmeübertragungsmediums (Wl) in einer Geothermieanlage (400) unter Ausnutzung der Erdwärme erhöhbar ist, bevor das weitere Wärmeübertragungsmedium (Wl) dem thermischen Generator (300) zugeführt wird.
PCT/EP2010/053432 2009-03-20 2010-03-17 Vorrichtung und verfahren zur erzeugung von dampf mit hohem wirkungsgrad WO2010106089A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012500230A JP5420750B2 (ja) 2009-03-20 2010-03-17 高効率蒸気発生装置および方法
CN2010800126090A CN102362047A (zh) 2009-03-20 2010-03-17 以高效率产生蒸汽的装置和方法
US13/138,700 US20120012280A1 (en) 2009-03-20 2010-03-17 Device and method for generating steam with a high level of efficiency
RU2011142317/06A RU2529767C2 (ru) 2009-03-20 2010-03-17 Способ для генерации пара с высоким кпд
EP10711188A EP2409003A2 (de) 2009-03-20 2010-03-17 Vorrichtung und verfahren zur erzeugung von dampf mit hohem wirkungsgrad

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009014036.0 2009-03-20
DE102009014036A DE102009014036A1 (de) 2009-03-20 2009-03-20 Vorrichtung und Verfahren zur Erzeugung von Dampf mit hohem Wirkungsgrad

Publications (2)

Publication Number Publication Date
WO2010106089A2 true WO2010106089A2 (de) 2010-09-23
WO2010106089A3 WO2010106089A3 (de) 2011-08-25

Family

ID=42628893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/053432 WO2010106089A2 (de) 2009-03-20 2010-03-17 Vorrichtung und verfahren zur erzeugung von dampf mit hohem wirkungsgrad

Country Status (7)

Country Link
US (1) US20120012280A1 (de)
EP (1) EP2409003A2 (de)
JP (1) JP5420750B2 (de)
CN (1) CN102362047A (de)
DE (1) DE102009014036A1 (de)
RU (1) RU2529767C2 (de)
WO (1) WO2010106089A2 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486330B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11578706B2 (en) 2021-04-02 2023-02-14 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11644014B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11959466B2 (en) 2021-04-02 2024-04-16 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009014845U1 (de) 2009-10-16 2010-10-14 Jelinek, Michael Schwerkrafttraktionstisch
JP6113687B2 (ja) * 2014-07-10 2017-04-12 株式会社育水舎アクアシステム 室外機システム
WO2016091969A1 (en) * 2014-12-09 2016-06-16 Energeotek Ab System for providing energy from a geothermal source
MX2017012114A (es) 2015-03-31 2018-02-15 Mitsubishi Hitachi Power Sys Caldera, planta para la generacion de vapor provista con la misma y metodo para operar la caldera.
IT201900023025A1 (it) * 2019-12-05 2021-06-05 Mario Ghiringhelli Apparecchiatura di recupero calore a ciclo rankine con fluidi organici per produrre energia elettrica su una macchina per la produzione di carta tissue
CN112413922B (zh) * 2020-11-18 2022-06-21 山东大学 一种充分利用中低品位工业余热的功冷联供***及方法
CN113755658B (zh) * 2020-12-31 2022-10-11 厦门大学 一种基于钢铁厂余热利用的二次储能体系

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3521195A1 (de) 1985-06-13 1986-12-18 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren und anordnung zur optimalen ausnutzung von abwaerme in einem abwaermetransformator
DE19816022A1 (de) 1998-04-09 1999-10-14 Deutsch Zentr Luft & Raumfahrt Abwärmerückgewinnungsanlage

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2945973A1 (de) * 1979-11-14 1981-05-21 Schneider, Christian, Dipl.-Ing., 8650 Kulmbach Vorrichtung zur waermewandlung
SU1035247A1 (ru) * 1981-07-22 1983-08-15 Государственный Научно-Исследовательский Энергетический Институт Им.Г.М.Кржижановского Геотермальна энергетическа установка
US4776169A (en) * 1988-02-03 1988-10-11 Coles Jr Otis C Geothermal energy recovery apparatus
US5526646A (en) * 1989-07-01 1996-06-18 Ormat Industries Ltd. Method of and apparatus for producing work from a source of high pressure, two phase geothermal fluid
FR2670570B1 (fr) * 1990-12-14 1994-03-18 Commissariat A Energie Atomique Fluide de travail pour pompes a chaleur a absorption fonctionnant a tres hautes temperatures.
NZ248730A (en) * 1992-10-02 1996-03-26 Ormat Ind Ltd High pressure geothermal power plant with primary steam turbine and at least one power plant module having low pressure turbine
DE19916684C2 (de) * 1999-04-14 2001-05-17 Joachim Schwieger Verfahren zur Wärmetransformation mittels eines Wirbelaggregats
CA2394202A1 (en) * 1999-12-17 2001-06-21 The Ohio State University Heat engine
DE10029732A1 (de) * 2000-06-23 2002-01-03 Andreas Schiller Dampfkraftanlage
RU2184255C2 (ru) * 2000-09-07 2002-06-27 Косарев Александр Владимирович Газотурбинная установка
US6347520B1 (en) * 2001-02-06 2002-02-19 General Electric Company Method for Kalina combined cycle power plant with district heating capability
US7124584B1 (en) * 2005-10-31 2006-10-24 General Electric Company System and method for heat recovery from geothermal source of heat
JP2008232534A (ja) * 2007-03-20 2008-10-02 Tokyo Electric Power Co Inc:The 蒸気生成システム及び蒸気生成方法
JP5157224B2 (ja) * 2007-04-05 2013-03-06 東京電力株式会社 蒸気生成システム
US8561405B2 (en) * 2007-06-29 2013-10-22 General Electric Company System and method for recovering waste heat
DE102008005978B4 (de) * 2008-01-24 2010-06-02 E-Power Gmbh Niedertemperaturkraftwerk und Verfahren zum Betreiben eines thermodynamischen Zyklus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3521195A1 (de) 1985-06-13 1986-12-18 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren und anordnung zur optimalen ausnutzung von abwaerme in einem abwaermetransformator
DE19816022A1 (de) 1998-04-09 1999-10-14 Deutsch Zentr Luft & Raumfahrt Abwärmerückgewinnungsanlage

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486330B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11542888B2 (en) 2021-04-02 2023-01-03 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11549402B2 (en) 2021-04-02 2023-01-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11572849B1 (en) 2021-04-02 2023-02-07 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11578706B2 (en) 2021-04-02 2023-02-14 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11598320B2 (en) 2021-04-02 2023-03-07 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11624355B2 (en) 2021-04-02 2023-04-11 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11644014B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11668209B2 (en) 2021-04-02 2023-06-06 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11680541B2 (en) 2021-04-02 2023-06-20 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11732697B2 (en) 2021-04-02 2023-08-22 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11761433B2 (en) 2021-04-02 2023-09-19 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11761353B2 (en) 2021-04-02 2023-09-19 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11773805B2 (en) 2021-04-02 2023-10-03 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11879409B2 (en) 2021-04-02 2024-01-23 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11905934B2 (en) 2021-04-02 2024-02-20 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11933279B2 (en) 2021-04-02 2024-03-19 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11933280B2 (en) 2021-04-02 2024-03-19 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11946459B2 (en) 2021-04-02 2024-04-02 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11959466B2 (en) 2021-04-02 2024-04-16 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11971019B2 (en) 2021-04-02 2024-04-30 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature

Also Published As

Publication number Publication date
JP5420750B2 (ja) 2014-02-19
JP2012520985A (ja) 2012-09-10
EP2409003A2 (de) 2012-01-25
RU2529767C2 (ru) 2014-09-27
US20120012280A1 (en) 2012-01-19
WO2010106089A3 (de) 2011-08-25
CN102362047A (zh) 2012-02-22
DE102009014036A1 (de) 2010-09-23
RU2011142317A (ru) 2013-04-27

Similar Documents

Publication Publication Date Title
WO2010106089A2 (de) Vorrichtung und verfahren zur erzeugung von dampf mit hohem wirkungsgrad
EP2347102B1 (de) Verfahren zum betreiben eines thermodynamischen kreislaufes sowie thermodynamischer kreislauf
DE69927925T2 (de) Abhitzewiedergewinnung in einem organischen Energiewandler mittels einem Zwischenflüssigkeitskreislauf
EP1771641B1 (de) Verfahren und vorrichtung zur übertragung von wärme von einer wärmequelle an einen thermodynamischen kreislauf mit einem arbeitsmittel mit zumindest zwei stoffen mit nicht-isothermer verdampfung und kondensation
EP2812542B1 (de) Energiespeicherkraftwerk und verfahren zum betreiben eines solchen kraftwerks
DE10335143B4 (de) Verfahren zur Erhöhung des Wirkungsgrades einer Gasturbinenanlage und dafür geeignete Gasturbinenanlage
EP3362739B1 (de) Erzeugung von prozessdampf mittels hochtemperaturwärmepumpe
WO2008067855A2 (de) Verfahren und vorrichtung zur erhöhung von leistung und wirkungsgrad eines orc-kraftwerkprozesses
DE102010027226A1 (de) Solarer Kraftwerksteil einer solarthermischen Kraftwerksanlage und solarthermische Kraftwerksanlage mit Sonnenkollektorflächen für Wärmeträgermedium und Arbeismedium
DE102010004457A1 (de) Verfahren und Vorrichtung zur Erzeugung technischer Arbeit
DE102012102368A1 (de) Kombikraftwerk
DE102013210430B4 (de) Energiespeichervorrichtung zur Vorwärmung von Speisewasser
DE102016112601A1 (de) Vorrichtung zur Energieerzeugung nach dem ORC-Prinzip, Geothermieanlage mit einer solchen Vorrichtung und Betriebsverfahren
EP2561276A2 (de) Rankine-prozess (rc) oder organischer rankine-prozess (orc) für die abwärmenachverstromung bei biomasseverbrennung, sowie entsprechende einrichtung
DE102004048932A1 (de) Kraftwerk mit erhöhter Wirtschaftlichkeit und Verfahren zur Erhöhung der Wirtschaftlichkeit eines Kraftwerkes
EP2122165B1 (de) Verfahren und eine vorrichtung zur dampferzeugung in dampfkraftwerken
DE4300192A1 (de) Verfahren zum Betrieb von mindestens zwei miteinander verknüpften Abhitzeprozessen und Dampferzeugungsanlage zur Durchführung des Verfahrens
EP2559867A1 (de) Verfahren zum Erzeugen von elektrischer Energie mittels eines Kombikraftwerkes sowie Kombikraftwerk zur Durchführung des Verfahrens
DE112014003454B4 (de) Vorheiz-System einer Kesselwasser-Zufuhr
EP2868873A1 (de) Thermische Kraftanlage mit Nutzung der Abwärme eines Generators
DE102010010614A1 (de) Verfahren und Vorrichtung zur Energieerzeugung in einer ORC-Anlage
DE202015103407U1 (de) Kraft-Wärme-Kopplungs-System
EP2159385A1 (de) Verfahren und Vorrichtung zum Betreiben eines Dampferzeugers
DE102014201116B3 (de) Vorrichtung und Verfahren für einen ORC-Kreisprozess
EP2927436A1 (de) Verfahren zum Betrieb eines Kraftwerks mit elektrischer Unterstützung sowie diesbezügliches Kraftwerk

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080012609.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010711188

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012500230

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13138700

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011142317

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10711188

Country of ref document: EP

Kind code of ref document: A2