WO2010103870A1 - 排気ガス浄化触媒、それを用いた排気ガス浄化装置、及び排気ガス浄化方法 - Google Patents

排気ガス浄化触媒、それを用いた排気ガス浄化装置、及び排気ガス浄化方法 Download PDF

Info

Publication number
WO2010103870A1
WO2010103870A1 PCT/JP2010/050954 JP2010050954W WO2010103870A1 WO 2010103870 A1 WO2010103870 A1 WO 2010103870A1 JP 2010050954 W JP2010050954 W JP 2010050954W WO 2010103870 A1 WO2010103870 A1 WO 2010103870A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
gas purification
catalyst
cerium
component
Prior art date
Application number
PCT/JP2010/050954
Other languages
English (en)
French (fr)
Inventor
明 小原
平澤 佳朗
貴志 山田
Original Assignee
第一稀元素化学工業株式会社
エヌ・イー ケムキャット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一稀元素化学工業株式会社, エヌ・イー ケムキャット株式会社 filed Critical 第一稀元素化学工業株式会社
Priority to US13/142,354 priority Critical patent/US20110274603A1/en
Priority to JP2011503745A priority patent/JPWO2010103870A1/ja
Priority to EP10750626.3A priority patent/EP2407238A4/en
Priority to CN2010800038278A priority patent/CN102264467B/zh
Publication of WO2010103870A1 publication Critical patent/WO2010103870A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/014Stoichiometric gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification catalyst, an exhaust gas purification apparatus using the same, and an exhaust gas purification method, and more specifically, carbon monoxide (CO), hydrocarbons (HC (HC) in exhaust gas discharged from a gasoline automobile
  • the present invention relates to an exhaust gas purification catalyst suitable as a three-way catalyst for efficiently purifying nitrogen oxides (NOx), an exhaust gas purification device using the same, and an exhaust gas purification method.
  • NOx nitrogen oxides
  • Various exhaust gas purification techniques have been proposed to purify these.
  • One of them is an exhaust gas purification technology in which a catalyst is installed in an exhaust gas flow path to purify harmful components in the exhaust gas.
  • Various types of catalysts have been used for catalytic devices for purifying exhaust gas emitted from internal combustion engines such as automobiles according to the purpose.
  • the main catalyst component is a platinum group metal, which is usually supported in a highly dispersed state on a high surface area refractory inorganic oxide such as activated alumina (see Patent Document 1).
  • Platinum (Pt), palladium (Pd) and rhodium (Rh) are known as platinum group metals as catalyst components and have been widely used as catalysts for exhaust gas purification in internal combustion engines such as automobiles.
  • TWC Three Way Catalyst
  • catalytic active species having excellent oxidation activity such as Pt and Pd and Rh having excellent NOx purification activity are often used in combination.
  • regulations on harmful substances contained in exhaust gas, particularly NOx have become increasingly strict. Therefore, it is necessary to efficiently use Rh excellent in NOx purification activity, but Rh has a small amount of output and is expensive, and the market price has also been rising in recent years.
  • the surface of the catalyst composition layer using Rh is separated from the catalyst composition layer using Pt and Pd so that Rh is placed at a position where it is easy to contact with the exhaust gas. It is considered to arrange on the side (see Patent Document 8). However, if a plurality of layers are formed as described above, the manufacturing cost of the exhaust gas purification catalyst will be high.
  • Pt, Pd and Rh are considered to be contained in one catalyst composition layer, a combination of a catalytically active species that exhibits oxidation activity such as Pt and Pd, and a catalytically active species that exhibits reduction activity such as Rh When used as one, one activity may inhibit the other activity, and sufficient purification performance may not be obtained.
  • oxygen storage and release components oxygen storage and release components
  • alkaline earth metals alkaline earth metals
  • zirconium oxides zirconium oxides
  • zeolites zeolites
  • OSC oxygen storage and release components
  • Cerium oxide occludes oxygen as CeO 2 when the oxygen concentration in the exhaust gas is high, and when the oxygen concentration is low, it becomes Ce 2 O 3 and releases oxygen.
  • the released oxygen is active oxygen, which promotes purification of HC and CO by being utilized for oxidation by Pt and Pd.
  • the OSC also functions to buffer changes in the oxygen concentration in the exhaust gas by absorbing and releasing oxygen. This function improves the exhaust gas purification performance of the TWC.
  • the TWC performs oxidation and reduction with one catalyst, and has a range of exhaust gas components suitable for purification in design. This range often depends on the air fuel ratio. Such a range is called window, and in many cases, exhaust gas burned near the theoretical air-fuel ratio is set in the window region.
  • Such OSC may be pure cerium oxide, but is used as a composite oxide with zirconium (see Patent Document 2).
  • the cerium-zirconium composite oxide is high in heat resistance, and has a high oxygen storage and release rate. The reason is that the crystal structure of the cerium-zirconium composite oxide is stable and works as an OSC up to the inside of the particles in order not to inhibit the function of the cerium oxide which is the main OSC component.
  • it is desirable that such an OSC generally has a high specific surface area.
  • a high specific surface area value means that the active surface is large, and it is said that it also exhibits high activity as OSC.
  • alkaline earth metals such as Ba component are also known as promoter components (see Patent Document 4).
  • the Ba component temporarily occludes NOx contained in the exhaust gas as Ba (NO 3 ) 2 and purifies the occluded NOx by reducing it to N 2 with a reducing component contained in the exhaust gas.
  • the Ba component temporarily absorbs the NOx thus generated.
  • the NOx absorbed in the Ba component is released from the Ba component when the concentration of NOx in the exhaust gas is low and the CO concentration is high.
  • one exhaust gas purification catalyst may be disposed in the exhaust gas flow channel, two or more exhaust gas purification catalysts may be disposed.
  • the surface area of the catalyst is increased, so the exhaust gas purification performance is improved.
  • simply arranging a plurality of catalysts may not provide desired purification performance. That is, the composition of the exhaust gas that has passed through the catalyst in the first stage differs from the composition of the exhaust gas immediately after being discharged from the engine, and the catalyst in the second stage uses the changed composition of the exhaust gas as the window region. It is because it needs to be designed.
  • the exhaust gas purification catalyst improves the purification activity of the exhaust gas when the temperature rises to a certain degree, so when the engine is started from the cold state, the exhaust gas purification catalyst can not exhibit sufficient purification ability until it warms up There is a case.
  • purifying exhaust gas from a car by such catalyst technology it is more harmful than before in a wide temperature range where exhaust gas warms up and the temperature of the catalyst rises from the start-up time when the engine is cold
  • the ability to purify the exhaust gas with high efficiency is required.
  • the regulation value for NOx in particular has become stricter, and the need for an exhaust gas purification catalyst having excellent NOx purification performance has also been increasing in TWC.
  • an active metal (A), a heat resistant inorganic oxide (B), and pyrochlore in a crystal structure on a honeycomb structure.
  • the catalyst composition layer containing cerium-zirconium composite oxide (C) containing the phase, and palladium and rhodium which are the active metals (A) are contained in the same catalyst composition layer and do not contain platinum.
  • the catalyst component for purifying hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) contained in the exhaust gas is formed on the honeycomb structure.
  • An exhaust gas purification catalyst is provided, which comprises the complex oxide (C) in the same catalyst composition layer, and the active metal (A) is palladium and rhodium and does not contain platinum.
  • an exhaust gas purification catalyst according to the first aspect, wherein the catalyst composition layer is only one layer.
  • the main crystal structure further contains a cubic and / or tetragonal cerium-containing oxide (C ′) as a catalyst component.
  • An exhaust gas purification catalyst characterized by the present invention is provided.
  • the cerium-zirconium composite oxide (C) is measured by an X-ray diffractometer (XRD) after the endurance test at 1050 ° C. and 1150 ° C.
  • An exhaust gas purification catalyst is provided, wherein peak waveforms in the vicinity of (2 ⁇ ) 29 ° substantially overlap. Furthermore, according to the fifth aspect of the present invention, in the first aspect, the content of the active metal (A) is 0.01 to 10 g / L for both palladium and rhodium per unit volume of the honeycomb structure.
  • An exhaust gas purification catalyst characterized in that the exhaust gas purification catalyst is provided.
  • the heat resistant inorganic oxide (B) is at least one selected from alumina, zirconia, silica, titania, silica-alumina or zeolite.
  • An exhaust gas purification catalyst is provided.
  • the heat resistant inorganic oxide (B) comprises an inorganic base material containing zirconia as a main component and an inorganic base material containing alumina as a main component.
  • An exhaust gas purification catalyst is provided, characterized in that the catalyst comprises: Further, according to the eighth invention of the present invention, in the first invention, the cerium-zirconium composite oxide (C) is formed by heating and melting the raw material mixture at a temperature above its melting point and then cooling it. An exhaust gas purification catalyst is provided, which is obtained by crushing an ingot and having a specific surface area of 20 m 2 / g or less when the average particle diameter is 1 to 100 ⁇ m. Further, according to the ninth invention of the present invention, in the first or the eighth invention, cerium and zirconium of the cerium-zirconium composite oxide (C) are CeO 2 / (ZrO 2 ) based on the molar ratio in oxide conversion.
  • the cerium-containing oxide (C ′) is obtained by heating and calcining the raw material mixture at a temperature lower than its melting point, followed by cooling and crushing.
  • An exhaust gas purification catalyst is provided, which has an average particle diameter of 1 to 100 ⁇ m and a specific surface area of 10 to 300 m 2 / g.
  • the content of the cerium-containing oxide (C ′) is 5 to 200 g / L per unit volume of the honeycomb structure.
  • An exhaust gas purification catalyst is provided.
  • the catalyst composition further includes a barium component, and the content is 1 to 30 g / L in terms of oxide.
  • An exhaust gas purification catalyst is provided.
  • the exhaust gas purification catalyst according to the first aspect wherein the honeycomb structure is a flow-through type carrier having a cell density of 10 to 1,500 cel / inch 2. Provided.
  • the exhaust gas purification catalyst is disposed in the flow path of the exhaust gas discharged from the internal combustion engine.
  • a gas purification device is provided.
  • the exhaust gas purification apparatus according to the fifteenth aspect, wherein the internal combustion engine is a gasoline engine.
  • the exhaust gas purification device is brought into contact with the exhaust gas discharged from the internal combustion engine to cause carbonization contained in the exhaust gas.
  • An exhaust gas purification method is provided, which comprises purifying hydrogen (HC), carbon monoxide (CO), and nitrogen oxides (NOx).
  • the exhaust gas purification catalyst of the present invention can purify HC, CO, and NOx which are harmful components in exhaust gas in an environment where the temperature of exhaust gas fluctuates from low temperature to high temperature, and particularly when used as TWC It can exhibit excellent purification performance. Further, by disposing the exhaust gas purification catalyst in the flow path of the exhaust gas discharged from the internal combustion engine, an exhaust gas purification device capable of efficiently purifying NOx in automobile exhaust gas can be easily manufactured. Moreover, it is possible to purify HC, CO, and NOx which are harmful components in the exhaust gas in an environment where the oxygen concentration and the HC concentration change.
  • FIG. 1 shows the results of measurement of the structural change before and after the heat endurance test of the cerium-zirconium composite oxide (C) by an X-ray diffraction apparatus (XRD) (A), and the cerium-zirconium composite oxide ( It is a chart which shows the result (B) in the case of C ').
  • FIG. 2 is a chart showing time-dependent changes in the amount of oxygen released from the cerium-zirconium composite oxide (C ') and (C).
  • FIG. 3 is a graph showing the amounts (1/10 amount) of the NMHC, THC, NOx and CO components in the “Cold Bag” of the exhaust gas purification device.
  • FIG. 4 is a graph showing the amounts (one-hundredth amount) of the NMHC, THC, NOx, and CO components in the “Hot Bag” of the exhaust gas purification device.
  • FIG. 5 shows the results of measurement (A) of the change in the structure before and after the heating endurance test using an X-ray diffraction apparatus (XRD) using a cerium-zirconium composite oxide (C) different from FIG. 1 is a chart showing the result (B) in the case of using a different cerium-zirconium composite oxide (C ′).
  • XRD X-ray diffraction apparatus
  • FIGS. 1 and 5 are charts showing the results (B) in the case of using a cerium-zirconium based composite oxide (C ') different from FIG.
  • the exhaust gas purification catalyst of the present invention comprises an active metal (A), a heat resistant inorganic oxide (B), and a cerium-zirconium composite oxide containing a pyrochlore phase in the crystal structure as catalyst components
  • the honeycomb structure type carrier is coated with the catalyst composition layer comprising C), and the active metal (A), palladium and rhodium, are in the same layer and do not contain platinum.
  • the catalyst composition layer can also contain a cerium-containing oxide (C ').
  • catalytically active metal (A) In the present invention, rhodium and palladium are used as catalytically active metals (hereinafter also referred to as active metal species or metal catalyst components). It is desirable that such a catalytically active metal be stable to heat and the atmosphere, and that its activity be high. Therefore, it is desirable that the catalytically active metal be supported on a heat-resistant inorganic oxide as a base material.
  • Rhodium is a component that improves NOx purification performance in TWC applications.
  • the content of the rhodium component is preferably 0.01 to 10 g / L per unit volume of the honeycomb structure type carrier, and more preferably 0.1 to 5 g / L.
  • the rhodium component has an action of promoting purification of NOx by hydrogen generated by a steam reforming reaction or a water gas shift reaction.
  • the water gas shift reaction generates hydrogen as shown in the following equation (3) by utilizing CO in exhaust gas, and is promoted at a relatively low temperature (Japanese Patent Laid-Open No. 2007-196146, paragraph 0008, etc.). CO + H 2 O ------- ⁇ CO 2 + H 2 ......... (3)
  • the content of the palladium component used in the present invention is preferably 0.01 to 10 g / L, and more preferably 0.5 to 10 g / L, per unit volume of the honeycomb structure type carrier. If it is less than 0.01 g / L, sufficient CO and HC purification performance may not be obtained, and if it is more than 10 g / L, the performance may not be improved in proportion to the amount used. In the present invention, it has been confirmed that the use of palladium as the catalytically active metal improves the NOx purification performance more than platinum. The reason is not clear, but it seems that palladium is likely to maintain higher catalytic activity than platinum in gasolines with low sulfurization, as it is.
  • the metal catalyst component used in the present invention is rhodium or palladium, but may contain other transition metals, rare earth metals and the like.
  • transition metals include iron, nickel, cobalt, zirconium, copper, etc., and rare earth metals such as lanthanum, praseodymium, neodymium, as well as noble metals such as gold, silver and the like. it can.
  • the base material is preferably a porous inorganic material having high heat resistance and a large specific surface area, for example, activated alumina such as ⁇ -alumina and ⁇ -alumina, zirconia, cerium-zirconium composite oxide, ceria, titanium oxide, Silica, various zeolites and the like can be used.
  • a rare earth such as lanthanum, cerium, barium, praseodymium, strontium, or an alkaline earth metal may be added to further improve the heat resistance.
  • a base material of the rhodium component it is preferable to contain a zirconia component from the viewpoint of promoting the steam reforming reaction, and in addition to pure zirconia, a composite oxide of zirconia and alumina can be used. Also in the case of the complex oxide, it is preferable to contain zirconia as a main component. Further, it is preferable as the base material of the palladium component is ⁇ -Al 2 O 3, or lanthanum-added ⁇ -Al 2 O 3 from one or more selected.
  • the ⁇ -alumina to which lanthanum is added is excellent in heat resistance, and can support high catalytic activity even at high temperatures when a platinum group metal such as palladium is supported (Japanese Patent Laid-Open No. 2004-290827).
  • ⁇ -alumina those having a specific surface area (according to BET method, hereinafter the same) of 30 m 2 / g or more, and further preferably 90 m 2 / g or more are preferable.
  • the specific surface area value of ⁇ -alumina is 30 m 2 / g or more, the noble metal can be stabilized in a highly dispersed state. Since the cerium-zirconium composite oxide (C) has excellent high temperature resistance, it is possible to obtain a catalyst composition excellent in high temperature stability by using it together with ⁇ -alumina to which lanthanum is added. It can.
  • Ce ⁇ Zr (C) The cerium-zirconium composite oxide, that is, Ce ⁇ Zr (C) is one including a pyrochlore phase in the crystal structure.
  • Ce ⁇ Zr (C) is a cerium-zirconium based composite oxide obtained by heating and melting a raw material mixture at a temperature above its melting point and then grinding it to form an ingot. desirable.
  • a cerium-zirconium composite oxide heated and melted at a temperature above the melting point is obtained as follows.
  • the element material of the raw material mixture to be used may be such that at least one of the elements melts when the element material is heated in the process of producing a composite oxide described below.
  • the cerium raw material and the zirconium raw material are preferably oxides.
  • the melting point of cerium oxide is 2200 ° C.
  • the melting point of zirconium oxide is 2720 ° C.
  • the oxide of the elemental material has a high melting point, when using cerium oxide or zirconium oxide as the elemental material, there is an influence of the melting point drop, so even if the heating temperature is lower than the melting point of the oxide In some cases, it is possible to obtain a molten state.
  • These raw materials may contain a small amount of cerium or zirconium nitrate, carbonate, sulfate, chloride or bromide.
  • a raw material compound other than such oxides is blended, melting may be promoted in the production process.
  • a third component such as a slight amount of flux may be blended.
  • the ratio When the ratio is 5/5, it is about 2200 ° C, and when the molar ratio is 9/1, it is about 2000 ° C.
  • materials other than the cerium element material and the zirconium element material are used as the third component together, it is possible to add an alkali, an alkaline earth, a rare earth component, a noble metal component or the like as long as the characteristics of the obtained OSC material are not impaired. it can.
  • a third component may be contained by being derived from the impurities in the cerium element material and the zirconium element material. However, it is needless to say that it is desirable to reduce or eliminate the amount if such a third component is a harmful regulation target.
  • the cerium raw material and the zirconium raw material are mixed at a predetermined ratio and charged into a melting apparatus.
  • the melting method is not particularly limited as long as at least one of the raw material mixtures is melted, and an arc method, a high frequency thermal plasma method, and the like are exemplified.
  • a general electromelting method that is, a melting method using an arc-type electric furnace can be preferably used. If it is a melting method using an arc-type electric furnace, it changes according to the mixing ratio of the cerium raw material and the zirconium raw material, but in order to promote initial energization when necessary to the mixed cerium raw material and zirconium raw material A predetermined amount of coke is added.
  • the average load power is set to 80 to 100 kW at a secondary voltage of 70 to 100 V, and heating is performed at a temperature of 2400 ° C. or more. It is desirable that the raw material mixture of the cerium-zirconium composite oxide be heated and melted for 0.5 to 3 hours. By keeping the raw material in a molten state for 0.5 hours or more, it can be uniformly melted.
  • the heating temperature may be 2000.degree. C. or higher, but is preferably 2600.degree.
  • the retention time in the molten state is preferably 1 to 2 hours.
  • the atmosphere at the time of melting is not particularly limited, and in addition to the atmosphere, the atmosphere is an inert gas such as nitrogen, argon, or helium.
  • the pressure is not particularly limited, and any of normal pressure, increased pressure, and reduced pressure may be used, but it can be usually performed under atmospheric pressure.
  • the electric furnace is covered with a carbon lid, and annealed for 20 to 30 hours to obtain an ingot.
  • the method for cooling the melt is not particularly limited, but usually it is taken out of the melting apparatus and allowed to cool in the air to 100 ° C. or less, preferably 50 ° C. or less. This makes it possible to obtain an ingot of cerium-zirconium based composite oxide in which the cerium raw material and the zirconium raw material become uniform.
  • the content ratio of cerium to zirconium of the cerium-zirconium composite oxide thus obtained is not particularly limited, but based on the molar ratio, [CeO 2 / ZrO 2 ] is 1/9 to 9/1, more preferably 2/3 to 3/2. With such a composition ratio, excellent oxygen storage and release performance and heat resistance can be obtained.
  • the molten ingot is then crushed.
  • the grinding of the ingot is not particularly limited, but it is desirable to grind so that the particle size of the cerium-zirconium based composite oxide is 3 mm or less.
  • the ingot can be crushed by a crusher such as a jaw crusher or a roll crusher. It is preferable to grind and classify the ingot into a powder of 1 mm or less in consideration of handling in the post-process.
  • the obtained powder is subjected to magnetic separation to separate impurities and the like, and then, if desired, it is put into an electric furnace or the like to remove suboxides in the melting step and distortion in crystals due to supercooling by oxidation baking. can do.
  • the conditions for the oxidation firing are not particularly limited as long as the ingot or the powder is oxidized, but the firing may be generally performed at 100 ° C. to 1000 ° C., preferably 600 ° C. to 800 ° C.
  • the baking time is not particularly limited, but may be 1 to 5 hours, preferably 1 to 3 hours.
  • the powder obtained by the above method can be further pulverized according to the use. With respect to the pulverization, although not particularly limited, it can be pulverized for 5 to 30 minutes with a pulverizer such as a planetary mill, a ball mill or a jet mill.
  • the mean particle size of the cerium-zirconium composite oxide is preferably 0.3 to 2.0 ⁇ m, and more preferably 0.5 to 1.5 ⁇ m by this pulverization. Although the detailed reason is unknown, it is considered that the fine pulverization increases the surface area of the complex oxide and enables large oxygen release in a low temperature range.
  • the measurement of the average particle size can be analyzed by a laser diffraction scattering apparatus or the like. In addition, when the average particle size is reduced in this range, as shown in Table 2, the crystallite size tends to be reduced.
  • This powder when the mean particle diameter of 1 ⁇ 100 [mu] m, a specific surface area of not more than 20 m 2 / g, preferably 10 m 2 / g or less, 5 m 2 / g or less is more preferable.
  • the content of such Ce ⁇ Zr (C) in the exhaust gas purification catalyst of the present invention is preferably 3 to 200 g / L, preferably 5 to 100 g / L, per unit volume of the honeycomb structure. It is more preferable that When the amount of Ce ⁇ Zr (C) is too large, the cross-sectional area of the through hole of the honeycomb structure decreases, the back pressure may increase, and the performance of the engine may be deteriorated. The performance of (C) may not be exhibited.
  • OSC is added to the composition of the exhaust gas purification catalyst mainly for the purpose of buffering such a change in the oxygen concentration in the exhaust gas, and oxygen is absorbed when the oxygen concentration in the exhaust gas is high. Increase the concentration of reducing components and promote the purification of NOx. Further, oxygen absorbed by the OSC is used to supply oxygen to the exhaust gas when the oxygen concentration in the exhaust gas is thin, and to oxidize CO and HC.
  • Ce ⁇ Zr (C ′) calcined at a temperature not higher than the melting temperature of the raw material mixture is used as OSC, and its crystal structure is cubic and / or tetragonal.
  • cerium-containing oxide (C ') As an OSC in the exhaust gas purification catalyst of the present invention, a cerium-containing oxide (C ′) is preferable.
  • Ce ⁇ Zr (C ′) is excellent in heat resistance at high temperatures, and as described in Japanese Examined Patent Publication No. 6-75675, a cerium salt and a zirconium salt are mixed as raw materials, and the temperature is 1000 ° C. or less, high. However, it can be obtained by firing at a temperature of 1300 ° C. under the condition that no melt is formed.
  • the respective raw materials may be mixed raw materials not by mixing but by coprecipitation method or the like.
  • XRD X-ray diffraction apparatus
  • the Ce ⁇ Zr (C ') is a specific surface area of 10 ⁇ 300m 2 / g, preferably 20 ⁇ 200m 2 / g, more preferably 30 ⁇ 100m 2 / g. Those having a specific surface area of less than 10 m 2 / g may not show sufficient activity, while those having a specific surface area of more than 300 m 2 / g are not preferable because their thermal stability is insufficient. In addition, even if the average particle size is reduced in this range, the crystallite size does not change much as shown in Table 2.
  • Ce-Zr (C ′) The reason why the crystallite size of "Ce-Zr (C ')" does not change so much depending on the degree of grinding is not clear, but "Ce-Zr (C')” is fired at a temperature lower than the melting point of the raw material mixture As it is obtained, it is thought that it may be derived from the fact that the crystals do not coarsen, and it is considered that such crystals may not be fragmented so much even if crushed.
  • the amount of Ce ⁇ Zr (C ′) used is preferably 5 to 200 g / L and preferably 10 to 100 g / L per unit volume of the honeycomb structure.
  • the exhaust gas purification catalyst of the present invention is used as a honeycomb structure type catalyst in which each of the above catalyst components is coated on the surface of a honeycomb structure.
  • the shape of the honeycomb structure is not particularly limited, and can be selected from known honeycomb structures (integral structure carriers).
  • materials of such an integral structure type carrier there are metals and ceramics. In the case of metal, stainless steel is generally used, but the shape thereof is generally honeycombed.
  • the materials of the ceramics include cordierite, mullite, alumina, magnesia, spinel, silicon carbide and the like, but they are made of cordierite in terms of good formability for producing a honeycomb and excellent heat resistance and mechanical strength. Is preferred.
  • cordierite flow-through type carriers are preferred.
  • the external shape of the integral structure type carrier is arbitrary, and can be appropriately selected according to the structure of an exhaust system to which a catalyst such as a cylindrical type, a quadrangular prism type, a hexagonal prism type or the like having a perfect circular cross section or an elliptical cross section is applied.
  • a catalyst such as a cylindrical type, a quadrangular prism type, a hexagonal prism type or the like having a perfect circular cross section or an elliptical cross section is applied.
  • the number of holes in the opening of the integral structure type carrier the appropriate number of holes can be determined in consideration of the type of exhaust gas to be treated, gas flow rate, pressure loss, removal efficiency, etc. It is desirable to be about 10 to 1,500 pieces per square inch.
  • a honeycomb-shaped carrier such as a flow-through type carrier, the structural feature is represented by the cell density.
  • the honeycomb structure is preferably a flow-through type carrier having a cell density of 10 to 1,500 cel / inch 2 , and particularly 300 to 900 cel / inch 2 . If the cell density is 10 cel / inch 2 or more, the contact area between the exhaust gas necessary for purification and the catalyst can be secured, the exhaust gas purification performance excellent in structural strength is obtained, and the cell density is If it is 1500 cells / inch 2 or less, the contact area of the exhaust gas and the catalyst can be sufficiently secured without losing the pressure of the exhaust gas of the internal combustion engine, without deteriorating the performance of the internal combustion engine. In particular, in a TWC for a gasoline engine, a flow-through type carrier of 300 to 900 cel / inch 2 is preferable in terms of suppression of pressure loss.
  • one kind of catalyst composition layer is formed on a honeycomb structure. Be coated.
  • the catalyst composition layer of the exhaust gas purification catalyst of the present invention comprises an active metal (A), a heat resistant inorganic oxide (B), and a cerium-zirconium composite oxide (C) containing a pyrochlore phase in the crystal structure
  • the active metals (A) are palladium and rhodium and consist of a platinum free catalyst composition. That is, it contains a Pd component as an active metal species, a Rh component, a heat-resistant inorganic oxide as a dispersion medium or a base material of these, and Ce ⁇ Zr (C) as an OSC component.
  • the content of the rhodium component in the catalyst composition layer is 0.01 to 10 g / L in terms of metal per unit volume of the honeycomb structure type carrier, and preferably 0.1 to 5 g / L. Further, the content of Ce ⁇ Zr (C) is 3 to 200 g / L, and preferably 5 to 100 g / L, per unit volume of the honeycomb structure.
  • the main crystal structure is cubic crystal and / or tetragon It is preferable to contain crystalline cerium-containing oxide (C ').
  • the Pd component of the catalytic metal species which exhibits oxidation activity can be used in relatively large amounts since it is inexpensive compared to Rh and Pt. Therefore, the catalyst of the present invention can be made cheaper than the catalyst using Pt. However, Pd is poisoned by the sulfur component and the activity of the catalyst is likely to be reduced (Japanese Patent Laid-Open No. 2005-021793, paragraph 0005).
  • the exhaust gas purification catalyst of the present invention is preferably used as a TWC for purifying the exhaust gas from a gasoline engine.
  • a Pd component and a Rh component are used for the catalyst composition layer of the exhaust gas purification catalyst of the present invention.
  • a metal having an oxidation activity such as a Pd component and an Rh component having a reduction activity
  • their activities may be offset each other (Japanese Patent Application Laid-Open No. 11-169712, paragraph 0011).
  • Pd is also a metal that may cause alloying or sintering with Rh, and sintering may reduce the activity (Japanese Patent Laid-Open No. 2005-021793, paragraph 0005; Japanese Patent Laid-open No. 2002-326033, paragraph 0004). ).
  • the Pd component is not present in the same catalyst composition layer as the Rh component.
  • excellent exhaust gas purification performance can be exhibited even if the Pd component and the Rh component are contained in the same catalyst composition layer. Since a high performance exhaust gas purification catalyst can be obtained by forming a single catalyst composition layer in this manner, the cost for producing the catalyst can be reduced.
  • Ce ⁇ Zr (C ′) is preferably used.
  • the reason why the NOx purification performance is improved by containing Ce ⁇ Zr (C ′) in the catalyst composition layer more than the case of Ce ⁇ Zr (C) alone is not clear, but the difference between the above two OSCs Is considered to be affecting. That is, Ce ⁇ Zr (C ′) rapidly releases oxygen upon switching from a lean atmosphere to a rich atmosphere, and the amount of released oxygen is smaller than that of Ce ⁇ Zr (C). Conceivable.
  • the Ba component which is an alkaline earth metal component
  • the alkaline earth metal component is a NOx storage component, but it is known that the purification performance of NOx is reduced if the Rh component and the alkaline earth metal component are present in the same composition (Japanese Patent Laid-Open No. 2002-326033, Paragraph 0013). The reason why the NOx purification performance is lowered as described above is not clear, but the alkaline earth metal component has the NOx storage function, so it seems to be for the purpose of interfering with the NOx purification function by the Rh component.
  • the amount of the barium component is 0.1 to 50 g / L, preferably 1 to 30 g / L, per unit volume of the honeycomb structure in terms of oxide.
  • the barium component exerts an effect even in a small amount, but when the amount used is increased to become an equimolar number with Pd, it may not be expected to improve the effect commensurate with the amount used.
  • the catalyst composition used for the exhaust gas purification catalyst of the present invention is not particularly limited by the production method, and is prepared using a known method.
  • a salt solution of these nitrates, sulfates, carbonates, acetates and the like is prepared as a Pd component raw material of the catalyst metal component and a Rh component raw material. It mixes with the heat resistant inorganic oxide which makes these salt solutions a base material. The mixture is dried to remove the solvent, to obtain a heat-resistant inorganic oxide base material carrying a catalytic metal component.
  • a baking process may be added after drying of this mixture. It is desirable that the fired product that has passed the firing step be powdered by means such as grinding.
  • a noble metal when supported on ⁇ -alumina, zirconium oxide, etc., an aqueous solution of a metal salt such as dinitrodiammine palladium, palladium nitrate, palladium chloride, palladium chloride, rhodium (III) chloride, rhodium (III) nitrate, etc. Rhodium or the like can be mixed, dried and fired.
  • a metal salt such as dinitrodiammine palladium, palladium nitrate, palladium chloride, palladium chloride, rhodium (III) chloride, rhodium (III) nitrate, etc. Rhodium or the like can be mixed, dried and fired.
  • a medium such as water is mixed with each of the heat resistant inorganic oxide base materials supporting the catalytic metal component to form a noble metal slurry, and a medium such as cerium-zirconium composite oxide (C), if necessary, water A cerium-containing oxide (C '), a Ba component, and other catalyst component raw materials are added, and a catalyst composition slurry is obtained through a grinding and mixing process.
  • a medium such as water is mixed with each of the heat resistant inorganic oxide base materials supporting the catalytic metal component to form a noble metal slurry, and a medium such as cerium-zirconium composite oxide (C), if necessary, water A cerium-containing oxide (C '), a Ba component, and other catalyst component raw materials are added, and a catalyst composition slurry is obtained through a grinding and mixing process.
  • the Ba component is often present as barium oxide in a honeycomb structure type catalyst, but when preparing a catalyst composition slurry, it may be added in the form of other barium salts such as barium sulfate, barium carbonate, barium nitrate and the like It may be a composite oxide containing barium oxide, barium sulfate, barium carbonate and barium nitrate. Among these, when barium sulfate is used, the viscosity of the catalyst composition slurry may be reduced, and the coatability in the washcoat may be improved.
  • the honeycomb structure type support is in the form of a large number of through holes, and the slurry of high viscosity makes it difficult to coat the catalyst composition slurry in the through holes.
  • the decrease in the viscosity of the slurry due to the use of barium sulfate means that not only the Ba component but also a large amount of catalyst component can be easily added to the slurry, which facilitates the production of a highly active honeycomb structure catalyst.
  • the above-mentioned "other catalyst component” may be a catalyst component itself, or may be a catalyst component raw material to be a catalyst component in the subsequent calcination process.
  • a medium such as water, a dispersant, a pH adjuster, and the like may be blended.
  • an inorganic oxide for a binder and the like can be mixed in order to strengthen the coating on the honeycomb structure.
  • the honeycomb structure-type catalyst used in the present invention can be produced by coating the catalyst composition slurry obtained by the above method on a honeycomb structure-type carrier at one time, and drying and calcining.
  • the coating method to the honeycomb structure type carrier is not particularly limited, but the wash coating method is preferable.
  • the drying temperature is preferably 100 to 300 ° C., and more preferably 100 to 200 ° C.
  • the firing temperature is preferably 300 to 1200 ° C., preferably 400 to 800 ° C., particularly preferably 400 to 600 ° C.
  • a heating means it can carry out by well-known heating means, such as an electric furnace and a gas furnace.
  • the catalyst composition layer of the present invention may be coated directly on the surface of the honeycomb structure in this manner, but the exhaust gas flow side above the catalyst composition layer and the lower side of the catalyst composition layer
  • a coating layer may be separately provided on the side of the honeycomb structure type carrier.
  • a coating layer provided separately a base coat layer for improving the adhesion between the catalyst composition layer and the honeycomb structure, a poisoning preventing layer of the catalyst composition layer, and the like can be mentioned.
  • the exhaust gas purification catalyst is disposed in an exhaust gas flow discharged from a gasoline engine for a vehicle.
  • the exhaust gas purification catalyst of the present invention contains the Pd component as the active species of the oxidation system and the Rh component as the active species of the reduction system, and therefore purifies HC, CO and NOx contained in the exhaust gas. Is preferably used as a TWC of
  • a Pd component having an oxidation function is used in the catalyst composition layer of the exhaust gas purification catalyst of the present invention.
  • the Pt component can maintain its activity more than the Pd component, so it is said that exhaust gas generated from fuel with high sulfur concentration can be purified.
  • the Pd component exhibits an activity superior in purification of CO, HC, and NOx compared to the Pt component, and the superiority of this Pd component is remarkable near the theoretical air fuel ratio (1989, published by The Catalysis Society, Catalyst, vol. 31, No. 8, p566-567).
  • it is excellent to use the catalyst of the present invention for an exhaust gas purification device of an internal combustion engine using gasoline circulating as sulfur free fuel. It is intended to exert an effect.
  • the automotive gasoline engine is operated with the fuel concentration of the air-fuel mixture repeating lean and rich.
  • the present exhaust gas purification catalyst exhibits a remarkable function and effect as an exhaust gas purification device by including the cerium-zirconium composite oxide (C) containing the pyrochlore phase in the crystal structure of the catalyst composition layer.
  • C cerium-zirconium composite oxide
  • the main crystal structure contains cubic and / or tetragonal cerium-containing oxide (C ′)
  • more excellent exhaust gas purification performance can be exhibited.
  • one exhaust gas purification catalyst may be used.
  • the present exhaust gas purification catalyst may be disposed either upstream or downstream of the exhaust gas flow channel.
  • the exhaust gas purification method of the present invention uses hydrocarbons (HC), carbon monoxide (CO), and the like by contacting exhaust gas discharged from an internal combustion engine using the above-mentioned exhaust gas purification device. It is a method of purifying nitrogen oxides (NOx).
  • HC hydrocarbons
  • CO carbon monoxide
  • NOx nitrogen oxides
  • HC, CO, and NOx are purified even with only one exhaust gas purification catalyst, and an exhaust gas purification catalyst different from the exhaust gas purification catalyst of the present invention is used in combination 2
  • an exhaust gas purification catalyst different from the exhaust gas purification catalyst of the present invention is used in combination 2
  • the same effect can be obtained.
  • Applicants have placed a catalyst containing cerium-zirconium composite oxide (C) containing pyrochlore phase in the crystal structure downstream of the exhaust gas stream and disposing a TWC containing a known OSC upstream.
  • a catalyst system that exhibits excellent exhaust gas purification performance has been proposed (the aforementioned Patent Document 7).
  • the present invention is not limited to such a method of use, and can also be used as an upstream catalyst. Even if the temperature of the exhaust gas is as low as room temperature or as high as 700 ° C., a catalytic function can be expected. Typically, it is usually 70 to 800 ° C., preferably at a temperature of 100 to 600 ° C. Although there is a certain difference in catalytic activity depending on the exhaust gas temperature, the catalytic function is exhibited in such a wide temperature range.
  • the present invention is not limited to the above-mentioned TWC, but is also applicable to NOx removal in diesel engine exhaust gas using HC as a reducing agent, that is, HC-SCR (Selective Catalytic Reduction: selective catalytic reduction), etc.
  • Applicable HC-SCR uses HC as a reductant to purify NOx in lean-burned exhaust gas, and HC used in this case is the air / fuel ratio of the fuel mixture air supplied to the combustion chamber To temporarily increase the HC concentration in the exhaust gas, or directly spray and supply fuel into the exhaust gas.
  • the present invention is preferably applied to a gasoline engine, but may be applied to a diesel engine, an LPG, an automobile internal combustion engine using fossil fuel or biodiesel fuel, a boiler, a gas turbine or the like.
  • cerium-zirconium composite oxide (C) and (C '), which are catalyst components, and a catalyst composition slurry containing the same were prepared by the following method.
  • Cerium-Zirconium Complex Oxide (C) Using a high purity zirconium oxide (purity 99.9%) as a raw material of Zr, and a high purity cerium oxide (purity 99.9%) as a raw material of Ce, the cerium-zirconium complex oxide according to the present invention according to the following procedure Powder was produced. First, in order to prepare 10 kg of powder, high purity zirconium oxide (4.2 kg) and high purity cerium oxide (5.8 kg) are separated and mixed, using an arc type electric furnace, secondary voltage 85 V, average load power Melting was performed at 2250 ° C. or more by applying 99.5 kW, energizing time 2 hours, and total electric energy 182 kWh.
  • the measurement of the average particle diameter was analyzed by the laser diffraction scattering apparatus (COULTER Co., LTD, LS230). This was confirmed by XRD to include the pyrochlore phase in the crystal structure. Moreover, the specific surface area was 1.3 m 2 / g.
  • Ce ⁇ Zr (C ′) a non-fusion type cerium-zirconium composite oxide with a particle diameter of 2.0 ⁇ m or less. This was confirmed by XRD to contain a single tetragonal crystal in the crystal structure. Moreover, the specific surface area was 74 m 2 / g.
  • Rh slurry The following raw materials were prepared to produce a Rh slurry. The mixing of the slurry was by grinding and mixing with a ball mill.
  • Raw material for Rh slurry -Rh nitrate aqueous solution (metal conversion: 7 wt%) ⁇ ZrO 2 (specific surface area: 60 m 2 / g)
  • Pd slurry The following raw materials were prepared to produce a Pd slurry. The mixing of the slurry was by grinding and mixing with a ball mill.
  • Raw material of Pd slurry -Pd nitrate aqueous solution (metal conversion: 20 wt%) ⁇ ⁇ -alumina (specific surface area: 220 m 2 / g)
  • Water Pd salt aqueous solution was impregnated into ⁇ -alumina to support Pd. After drying, this was calcined at 300 ° C. for 1 hour to obtain Pd-loaded ⁇ -alumina (hereinafter sometimes referred to as Pd-loaded ⁇ -alumina]).
  • Pt slurry The following raw materials were prepared to produce a Pt slurry. The mixing of the slurry was by grinding and mixing with a ball mill.
  • Raw material of Pt slurry -Nitrous acid diammine platinum (II) aqueous solution (metal conversion: 20 wt%) ⁇ ⁇ -alumina (specific surface area: 220 m 2 / g)
  • Water Pt salt aqueous solution was impregnated into ⁇ -alumina to support Pt. After drying, this was calcined at 300 ° C. for 1 hour to obtain Pt-supported ⁇ -alumina (hereinafter sometimes referred to as Pt-supported ⁇ -alumina (hereinafter sometimes referred to as Pt-supported ⁇ -alumina]).
  • Catalyst Composition Slurry 1 Pd, Rh, Ce ⁇ Zr (C), Ce ⁇ Zr (C ′)
  • the catalyst composition slurry 1 was manufactured by preparing each noble metal slurry thus obtained and the following raw materials such as the above Ce ⁇ Zr (C). The mixing of the slurry was by grinding and mixing with a ball mill.
  • Catalyst Composition Slurry 2 Pd, Rh, Ce ⁇ Zr (C)
  • a catalyst composition slurry 2 was produced in the same manner as the catalyst composition slurry 1 except that Ce ⁇ Zr (C ′) was replaced with Ce ⁇ Zr (C).
  • the mixing of the slurry was by grinding and mixing with a ball mill.
  • Catalyst Composition Slurry 3 Pt, Rh, Ce ⁇ Zr (C), Ce ⁇ Zr (C ′)
  • a catalyst composition slurry 3 was obtained in the same manner as the catalyst composition slurry 1, except that Pd / [ ⁇ -alumina] was replaced by Pt / [ ⁇ -alumina].
  • Catalyst Composition Slurry 4 Pt, Rh, Ce ⁇ Zr (C) A catalyst composition in the same manner as the catalyst composition slurry 2 except that Ce ⁇ Zr (C ′) is replaced by Ce ⁇ Zr (C) and Pd / [ ⁇ -alumina] is replaced by Pt / [ ⁇ -alumina]. Slurry 4 was obtained.
  • Catalyst Composition Slurry 5 Pd, Rh, Ce ⁇ Zr (C ′)
  • a catalyst composition slurry 5 was obtained in the same manner as the catalyst composition slurry 1, except that Ce ⁇ Zr (C) was replaced with Ce ⁇ Zr (C ′).
  • Examples 1 and 2 (Comparative Examples 1, 2 and 3)
  • the catalyst composition slurry 2 or catalyst composition slurry 1 is laminated on the following honeycomb type structure by a washcoat method, dried and fired under the following conditions, and then heated under the following conditions to improve the durability of the present invention
  • a honeycomb structure type catalyst (Examples 1 and 2) was obtained.
  • honeycomb structure type catalysts for comparison (Comparative Examples 1, 2, 3) were obtained in the same manner using Catalyst Composition Slurry 4, Catalyst Composition Slurry 3 or Catalyst Composition Slurry 5.
  • the composition of the layer and the composition of each component in each honeycomb structure type catalyst are shown in Table 1.
  • the numbers in the parentheses in Table 1 represent the component amount "g / L" per unit volume of each catalyst component, and the amounts of Pd component, Rh component and Pt component are values in terms of metal.
  • Honeycomb structure -Material: Made of cordierite-Size: 118.4 ⁇ ⁇ 50 [mm] (volume: 550 cc) Cell density: 900 cel / inch 2 Cell wall thickness: 2.5 mil
  • Drying and firing conditions ⁇ Drying temperature: 150 ° C ⁇ Firing furnace: Gas furnace ⁇ Firing temperature: 500 ° C ⁇ Baking time: 2 hours
  • JC08 mode is more similar to the actual driving pattern compared to the conventional 10 ⁇ 15 mode, is a kind of actual "transient mode” like FTP mode in the United States, and acceleration and deceleration are not constant but slightly It is changing.
  • tests are performed both in a state where the engine has been warmed up (hot phase) and in a state where the engine is completely cold (cold phase). Among them, the exhaust gas collected in the cold phase is called “Cold Bag”, and the exhaust gas collected in the hot phase is called “Hot Bag”.
  • NMHC non methane hydrocarbon
  • the amount of NMHC (non methane hydrocarbon) component, the amount of NOx component, and the amount of CO component were measured.
  • NMHC is a generic term for hydrocarbons other than methane (aliphatic saturated hydrocarbons, unsaturated hydrocarbons, aromatic hydrocarbons), and is specified as an emission control substance in automobile exhaust gas as a causative substance of photochemical oxidant.
  • the obtained “Cold Bag” results are shown in FIG. 3, and the "Hot Bag” results are shown in FIG.
  • the numerical value on the vertical axis represents [g / km], and represents the amount of emissions per traveling distance.
  • Examples 3 and 4 (Comparative Examples 4 and 5) Prepare Ce ⁇ Zr (C) as described above, grind to an average particle size of 0.5 ⁇ m or 1.1 ⁇ m, and carry out a heat endurance test at 1050 ° C. and 1150 ° C., respectively.
  • the peak intensity was measured by XRD) and the crystallite size was deduced.
  • “Mulker AXS Co., Ltd., MXP21VAHF22 MDS-III” was used as an XRD apparatus.
  • the measurement of the crystallite size was calculated using the Scherrer equation from the peak unique to the cerium-zirconium composite oxide that appears around (2 ⁇ ) 29 °.
  • the XRD chart of Ce ⁇ Zr (C) having an average particle size of 0.5 ⁇ m is shown in FIG. 5 (A), and the Ce ⁇ Zr (C) XRD chart of an average particle size of 1.1 ⁇ m is shown in FIG. 6 (A).
  • Ce-Zr (C) has a stable and large crystal structure without any significant change in the shape of the XRD chart before and after the heating endurance test. Can be seen. Further, as is clear from Table 2, Ce—Zr (C) is largely changed by pulverization to change its crystallite size. The reason is not clear, but it is derived from the formation of a single coarse crystal in the step of melting Ce-Zr (C) at an extremely high temperature, and such coarse crystal is fragmented by being crushed, It is considered that the smaller the grain size, the smaller the crystallite size.
  • the catalyst composition slurry 1 is prepared in the same manner as in Example 2, laminated on a honeycomb structure by a washcoat method, dried and fired, By heating under the conditions, a honeycomb structure type catalyst (Examples 3 and 4) of the present invention was obtained. Thereafter, in order to compare the purification performance of the catalyst, the emissions of NMHC (non methane hydrocarbon), NOx, THC (total hydrocarbon), and CO contained in the exhaust gas after passing through each catalyst were measured. It was confirmed that the same tendency as in Example 2 was exhibited.
  • NMHC non methane hydrocarbon
  • NOx non methane hydrocarbon
  • THC total hydrocarbon
  • Ce ⁇ Zr (C ′) was prepared as described above.
  • the XRD chart of Ce ⁇ Zr (C ′) with an average particle size of 0.5 ⁇ m is shown in FIG. 5 (B)
  • the Ce ⁇ Zr (C ′) XRD chart with an average particle size of 1.1 ⁇ m is shown in FIG. 6 (B).
  • the crystallite sizes are summarized in Table 2.
  • the shape of the XRD chart was significantly different before and after the heat endurance test as shown in FIG. 5 (B) and FIG. 6 (B). As apparent from Table 2, the crystallite size after the heating endurance test is almost twice as large.
  • Ce-Zr (C ') it is understood that the crystallite size is not largely changed by the pulverization. This is because Ce-Zr (C ') is obtained by firing at a temperature lower than the melting point of the raw material mixture, so that the crystal is not coarsened, and such crystals are not fragmented so much even if crushed It is thought that it is not.
  • the catalyst composition slurry 3 is prepared using Ce ⁇ Zr (C ′) in the same manner as in Comparative Example 2, laminated on a honeycomb structure by a washcoat method, dried and fired, It heated on conditions and the honeycomb structure type catalyst (comparative examples 4 and 5) for comparison was obtained.
  • the exhaust gas purification catalyst of the present invention is effective as a three-way catalyst (TWC) for purifying hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx), and uses HC as a reducing agent.
  • TWC three-way catalyst
  • the present invention is also applicable to the NOx purification method (HC-SCR: selective catalytic reduction method) etc. in diesel engine exhaust gas.
  • HC-SCR selective catalytic reduction method
  • the present invention is preferably applied to a gasoline engine, but is also applicable to internal combustion engines for automobiles, such as diesel and LPG, fossil fuels and biodiesel fuels, boilers, gas turbines and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 ガソリン自動車から排出される排気ガス中の一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)を効率的に浄化する三元触媒として好適な排気ガス浄化触媒、それを用いた排気ガス浄化装置、及び排気ガス浄化方法を提供する。 排気ガス中に含まれる炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)を浄化する触媒成分が、ハニカム型構造体上に触媒組成物層として被覆されている排気ガス浄化触媒であって、前記触媒成分は、活性金属(A)、耐熱性無機酸化物(B)、及び結晶構造中にパイロクロア相を含むセリウム-ジルコニウム複合酸化物(C)を同一の触媒組成物層に含んでおり、かつ活性金属(A)が、パラジウム及びロジウムであり白金を含まないことを特徴とする排気ガス浄化触媒により提供する。

Description

排気ガス浄化触媒、それを用いた排気ガス浄化装置、及び排気ガス浄化方法
 本発明は、排気ガス浄化触媒、それを用いた排気ガス浄化装置、及び排気ガス浄化方法に関し、より詳しくは、ガソリン自動車から排出される排気ガス中の一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)を効率的に浄化する三元触媒として好適な排気ガス浄化触媒、それを用いた排気ガス浄化装置、及び排気ガス浄化方法に関する。
 自動車等の内燃機関や、ボイラーなどの燃焼機関から排出される排気ガス中には、炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)などの有害物質が含まれており、これらを浄化するための様々な排気ガス浄化技術が提案されている。その一つとして、触媒を排気ガス流路中に設置し、排気ガス中の有害成分を浄化する排気ガス浄化技術がある。
 自動車等の内燃機関から排出される排気ガスを浄化する触媒装置には、その目的に応じて様々な触媒が使用されてきた。この主要な触媒成分には白金族金属があり、通常、活性アルミナ等の高表面積の耐火性無機酸化物上に高分散状態で担持している(特許文献1参照)。
 触媒成分となる白金族金属には、白金(Pt)、パラジム(Pd)、ロジウム(Rh)が知られており、自動車等の内燃機関における排気ガス浄化用触媒として広く使用されてきた。前述の三元触媒(TWC:Three Way Catalyst)においては、Pt、Pdなど酸化活性に優れる触媒活性種と、NOxの浄化活性に優れるRhが組み合わせて使用されることが多い。近年、排気ガス中に含まれる有害物質、特にNOxに対する規制が厳しさを増している。そのため、NOxの浄化活性に優れるRhを効率的に使用する必要があるが、Rhは産出量も少なく、高価であり、近年市場価格も高騰している。そのため、触媒活性種としてのRhは、資源保護の観点、またコスト面から使用量を減らしたい。
 Rhの使用量を少なくするためには、Rhが排気ガスと接触し易い位置に配置するように、Pt、Pdを使用した触媒組成物層とは別に、Rhを使用した触媒組成物層を表層側に配置することが検討されている(特許文献8参照)。しかし、このように複数の層を構成すると排気ガス浄化触媒の製造コストが高くなってしまう。
 Pt、Pdと、Rhは一つの触媒組成物層に含ませることも考えられるが、Pt、Pdなど酸化活性を発揮する触媒活性種と、Rhのように還元活性を発揮する触媒活性種を組み合わせて使用すると、一方の活性が他方の活性を阻害する場合があり、充分な浄化性能が得られないことがあった。
 また、排気ガス浄化触媒では更なる浄化性能の向上を図るため、白金族金属の他、様々な助触媒成分が添加される。このような助触媒成分としては、酸素吸蔵放出成分(OSC:Oxygen Storage Component)、アルカリ土類金属、ジルコニウム酸化物、ゼオライト等が知られている。
 このうち、OSCは排気ガス中の酸素を吸蔵放出するものであり、酸化セリウムが知られている。酸化セリウムは、排気ガス中の酸素濃度が高い時にはCeOとして酸素を吸蔵し、酸素濃度の低い時にはCeになって酸素を放出する。放出された酸素は活性な酸素であり、PtやPdによる酸化作用に利用されることでHC、COの浄化を促進する。また、OSCは酸素の吸蔵放出により、排気ガス中の酸素濃度変化を緩衝する働きもする。この働きによりTWCでは排気ガスの浄化性能が向上する。
 TWCは、一つの触媒で酸化と還元を行うものであり、設計上、浄化に適した排気ガス成分の範囲がある。この範囲は空燃比に依存することが多い。このような範囲はウインドといわれ、多くの場合、理論空燃比の近傍で燃焼した排気ガスをウインド域に設定している。排気ガス中の酸素濃度の変化が緩衝されることで、このウインド域が長時間保たれて排気ガスの浄化が効率的に行なわれる。これは、特にRhによるNOxの浄化性能に影響すると言われている。
 このようなOSCとしては、純粋なセリウム酸化物でもよいが、ジルコニウムとの複合酸化物として使用されている(特許文献2参照)。セリウム-ジルコニウム複合酸化物は耐熱性が高く、酸素の吸蔵放出速度も速い。それはセリウム-ジルコニウム複合酸化物の結晶構造が安定で、主要なOSC成分であるセリウム酸化物の働きを阻害しないために粒子の内部までOSCとして働くためである。
 また、このようなOSCは、一般に比表面積値が高いことが望ましい。高比表面積値であることは活性な表面が大きな事を意味し、OSCとしても高い活性を発揮するといわれている。
 RhによるNOxの浄化では、スチームリフォーミング反応がRh成分で以下のように促進される。
  HC+HO ------→ COx+H2    ………(1)
  H+NOx ------→ N+HO    ………(2)
 そして、ジルコニウム酸化物をRh成分と共に用いるとスチームリフォーミング反応を促進する(特許文献3参照)。
 助触媒成分としては、このほかにBa成分などのアルカリ土類金属も知られている(特許文献4参照)。Ba成分は、排気ガス中に含まれるNOxをBa(NOとして一時的に吸蔵し、吸蔵したNOxを排気ガスに含まれる還元成分によりNに還元して浄化する。
 一般に、エンジンに供給される燃料が少ないとき、空気の量が多いとき、燃焼温度が高いときにNOxが多量に発生する。Ba成分は、このように発生するNOxを一時的に吸収する。
 Ba成分に吸収されたNOxは、排気ガス中のNOxの濃度が低くCO濃度が高くなったときにBa成分から放出される。これは、前述のBa(NOがCOと反応し、BaCOになるものであり化学平衡であるともいえる。Ba成分から放出されたNOxは、前述したようにRh成分表面で還元成分と反応して還元浄化される。
 このような助触媒成分は、2つ以上を併用することもでき、例えば、Ba成分と酸化セリウムを使用したTWCが知られている(特許文献5参照)。ところが、触媒材料の組み合わせによっては浄化性能が低下してしまうことがあり、例えば、Rh成分とBa成分が同一組成中に存在するとNOxの浄化性能が低下することが報告されている(特許文献6参照)。この理由は定かではないが、アルカリ土類金属成分がNOxを吸蔵する作用を有するために、Rh成分におけるNOxの浄化作用が妨害されること、Ba成分とRh成分が合金化するためと思われる。
 このように、触媒成分は様々な組み合わせがあり、触媒成分相互が相関作用による複雑な反応経路を経ることから、これらを総合的に検討して、最も浄化性能が発揮される触媒成分の組み合わせが模索されている。
 ところで、排気ガス浄化触媒は、排気ガス流路の中に1つ配置されれば良いが、2個以上配置される場合もある。これにより触媒の表面積が大きくなることから排気ガスの浄化性能が向上する。しかし、前述のとおりTWCのような排気ガス浄化触媒では設計上のウインド域があるから、単純に複数個の触媒を配置したのでは所望の浄化性能が得られない場合がある。それは、前段の触媒を通過した排気ガスの成分は、エンジンから排出された直後の排気ガスとはその組成を異にしており、後段の触媒はそのように変化した排気ガスの組成をウインド域として設計される必要があるためである。
 そのため、本出願人は、白金族金属と特定の酸素吸蔵放出成分(OSC)を触媒成分とする触媒を排気ガス流路に2個配置した触媒系を用いることで、所望の浄化性能が得られるようにしている(特許文献7参照)。
 一般に、排気ガス浄化触媒は、ある程度温度が上昇したときに排気ガスの浄化活性が向上するため、エンジンが冷え切った状態から始動した場合、排気ガス浄化触媒が温まるまで充分な浄化能力を発揮できない場合がある。このような触媒技術によって自動車からの排気ガスを浄化する場合は、エンジンが冷えた状態である始動時から、排気ガスが温まって触媒の温度が上昇するまでの広い温度域において、従来よりも有害成分を高効率で排気ガスが浄化できる性能が求められている。
 また、近年、特にNOxに対する規制値が厳しくなっており、TWCでもNOxの浄化性能に優れた排気ガス浄化触媒の必要性が高まっている。
特開平5-237390号公報 特公平06-75675号公報 再公表特許2000/027508号公報、14頁 特開2007-319768号公報、段落0003 特開平03-106446号公報 特開2002-326033号公報、段落0013 特開2008-68225号公報 特開2006-159159号公報、請求項3
 本発明の目的は、上記の問題点に鑑み、自動車の内燃機関から排出される排気ガスに対して優れた浄化能力を発揮する触媒、それを用いた排気ガス浄化装置、及び排気ガス浄化方法を提供することにある。
 本発明者等は、上記目的を達成するために鋭意研究した結果、ハニカム型構造体上に、触媒成分として、活性金属(A)、耐熱性無機酸化物(B)、及び結晶構造中にパイロクロア相を含むセリウム-ジルコニウム複合酸化物(C)を含む触媒組成物層を被覆し、前記活性金属(A)であるパラジウムとロジウムが同一の触媒組成物層に含まれ、白金を含まないようにすることで、低温時から高温時まで、排気ガス中のCO、HC、NOxの優れた浄化性能が発揮される事を確認して本発明を完成するに至った。
 すなわち、本発明の第1の発明によれば、排気ガス中に含まれる炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)を浄化する触媒成分が、ハニカム型構造体上に触媒組成物層として被覆されている排気ガス浄化触媒であって、前記触媒成分は、活性金属(A)、耐熱性無機酸化物(B)、及び結晶構造中にパイロクロア相を含むセリウム-ジルコニウム複合酸化物(C)を同一の触媒組成物層に含んでおり、かつ活性金属(A)が、パラジウム及びロジウムであり白金を含まないことを特徴とする排気ガス浄化触媒が提供される。
 また、本発明の第2の発明によれば、第1の発明において、前記触媒組成物層が、1層のみであることを特徴とする排気ガス浄化触媒が提供される。
 また、本発明の第3の発明によれば、第1の発明において、更に、触媒成分として、主要な結晶構造が立方晶及び/又は正方晶のセリウム含有酸化物(C’)を含むことを特徴とする排気ガス浄化触媒が提供される。
 また、本発明の第4の発明によれば、第1の発明において、セリウム-ジルコニウム複合酸化物(C)は、1050℃及び1150℃の耐久試験後に、X線回折装置(XRD)により測定すると、(2θ)29°付近におけるピーク波形が略重複することを特徴とする排気ガス浄化触媒が提供される。
 さらに、本発明の第5の発明によれば、第1の発明において、活性金属(A)の含有量が、ハニカム型構造体の単位体積あたり、パラジウム、ロジウムともに0.01~10g/Lであることを特徴とする排気ガス浄化触媒が提供される。
 また、本発明の第6の発明によれば、第1の発明において、耐熱性無機酸化物(B)が、アルミナ、ジルコニア、シリカ、チタニア、シリカ-アルミナ、又はゼオライトから選ばれる少なくとも一種であることを特徴とする排気ガス浄化触媒が提供される。
 また、本発明の第7の発明によれば、第6の発明において、耐熱性無機酸化物(B)が、ジルコニアを主成分とする無機母材と、アルミナを主成分とする無機母材を含むことを特徴とする排気ガス浄化触媒が提供される。
 また、本発明の第8の発明によれば、第1の発明において、セリウム-ジルコニウム系複合酸化物(C)が、原料混合物をその融点以上の温度で加熱熔融した後、冷却して形成されるインゴットを粉砕して得られ、平均粒径1~100μmの時、その比表面積が20m2/g以下であることを特徴とする排気ガス浄化触媒が提供される。
 また、本発明の第9の発明によれば、第1又は8の発明において、セリウム-ジルコニウム複合酸化物(C)のセリウムとジルコニウムが、酸化物換算のモル比基準で、CeO/(ZrO+CeO)=1/9~9/1の割合で含有されることを特徴とする排気ガス浄化触媒が提供される。
 また、本発明の第10の発明によれば、第1、4、8又は9のいずれかの発明において、セリウム-ジルコニウム系複合酸化物(C)の含有量が、ハニカム型構造体の単位体積あたり、3~200g/Lであることを特徴とする排気ガス浄化触媒が提供される。
 また、本発明の第11の発明によれば、第3の発明において、セリウム含有酸化物(C’)が、原料混合物をその融点未満の温度で加熱焼成した後、冷却、粉砕して得られ、平均粒径1~100μmの時、その比表面積値が10~300m/gであることを特徴とする排気ガス浄化触媒が提供される。
 さらに、本発明の第12の発明によれば、第3又は11の発明において、セリウム含有酸化物(C’)の含有量が、ハニカム型構造体の単位体積あたり、5~200g/Lであることを特徴とする排気ガス浄化触媒が提供される。
 一方、本発明の第13の発明によれば、第1の発明において、触媒組成物には、さらにバリウム成分が含まれ、その含有量が酸化物換算で1~30g/Lであることを特徴とする排気ガス浄化触媒が提供される。
 また、本発明の第14の発明によれば、第1の発明において、ハニカム型構造体が、セル密度10~1500cel/inchのフロースルー型担体であることを特徴とする排気ガス浄化触媒が提供される。
 一方、本発明の第15の発明によれば、第1~14のいずれかの発明に係り、前記排気ガス浄化触媒を、内燃機関から排出される排気ガスの流路中に配置してなる排気ガス浄化装置が提供される。
 また、本発明の第16の発明によれば、第15の発明において、内燃機関が、ガソリンエンジンであることを特徴とする排気ガス浄化装置が提供される。
 さらに、本発明の第17の発明によれば、第15又は16の発明に係り、前記排気ガス浄化装置に、内燃機関から排出される排気ガスを接触させることによって、排気ガス中に含まれる炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)を浄化することを特徴とする排気ガス浄化方法が提供される。
 本発明の排気ガス浄化触媒は、排気ガス温度が低温から高温まで変動する環境で、排気ガス中の有害成分であるHC、CO、NOxを浄化する事が可能であり、特にTWCとして用いた時に優れた浄化性能を発揮する事ができる。
 また、この排気ガス浄化触媒を内燃機関から排出される排気ガスの流路中に配置すれば、自動車排気ガス中のNOxを効率的に浄化できる排気ガス浄化装置を容易に作製することができる。また、酸素濃度、HC濃度が変動する環境で、排気ガス中の有害成分であるHC、CO、NOxを浄化する事が可能である。
図1は、セリウム-ジルコニウム系複合酸化物(C)の加熱耐久試験前後における構造の変化をX線回析装置(XRD)により測定した結果(A)、及び、セリウム-ジルコニウム系複合酸化物(C’)の場合の結果(B)を示すチャートである。 図2は、セリウム-ジルコニウム系複合酸化物(C’)、(C)から放出される酸素量の経時変化を示すチャートである。 図3は、排気ガス浄化装置の「Cold Bag」中におけるNMHC、THC、NOx、CO成分の量(1/10量)を測定したグラフである。 図4は、排気ガス浄化装置の「Hot Bag」中におけるNMHC、THC、NOx、CO成分の量(1/100量)を測定したグラフである。 図5は、図1とは異なるセリウム-ジルコニウム系複合酸化物(C)を用いて、加熱耐久試験前後における構造の変化をX線回析装置(XRD)により測定した結果(A)、及び図1とは異なるセリウム-ジルコニウム系複合酸化物(C’)を用いた場合の結果(B)を示すチャートである。 図6は、図1、5とは異なるセリウム-ジルコニウム系複合酸化物(C)を用いて、加熱耐久試験前後における構造の変化をX線回析装置(XRD)により測定した結果(A)、及び図1、5とは異なるセリウム-ジルコニウム系複合酸化物(C’)を用いた場合の結果(B)を示すチャートである。
 以下に、本発明の排気ガス浄化触媒、それを用いた排気ガス浄化装置、及び排気ガス浄化方法について、自動車用の排気ガス浄化触媒のうちTWCを中心に、図面を用いて詳細に説明する。
1.自動車用排気ガス浄化触媒
 本発明の排気ガス浄化触媒は、触媒成分として、活性金属(A)、耐熱性無機酸化物(B)、及び結晶構造中にパイロクロア相を含むセリウム-ジルコニウム複合酸化物(C)からなる触媒組成物層でハニカム構造型担体を被覆し、この活性金属(A)であるパラジウムとロジウムが同一層となり、白金を含まないようにしている。また、この触媒組成物層にはセリウム含有酸化物(C’)を含むことができる。
[触媒活性金属(A)]
 本発明では、触媒活性金属(以下、活性金属種あるいは金属触媒成分ともいう)としてロジウム、パラジウムが使用される。このような触媒活性金属は、熱や雰囲気に対して安定で、活性も高い事が望ましいから、母材となる耐熱性無機酸化物に担持されていることが望ましい。
 ロジウムは、TWC用途でNOxの浄化性能を向上させる成分である。ロジウム成分の含有量は、ハニカム構造型担体の単位体積あたり0.01~10g/Lが好ましく、0.1~5g/Lがより好ましい。ロジウム成分が少なすぎるとNOxの充分な浄化性能が得られず、多すぎると使用量に見合った性能の向上が見られない事がある。ロジウム成分は、水蒸気改質反応や、水性ガスシフト反応により生成した水素によってNOxの浄化を促進する作用がある。
 NOx浄化における水蒸気改質反応の働きは、以下の式(1)、(2)で示されるとおりである。
  HC+HO ------→ COx+H2    ………(1)
  H+NOx ------→ N+HO    ………(2)
 活性金属であるロジウムは、ジルコニウムと共に用いる事で水蒸気改質反応を促進するので(WO2000/027508公報、14頁参照)、この働きをNOxの還元に利用できる。本発明でも、これに類するメカニズムが少なくとも一部生起しているものと思われる。
 水性ガスシフト反応は、排気ガス中のCOを利用し、下記の式(3)のようにして水素を生成するもので、比較的低温時に促進される(特開2007-196146、段落0008等)。
  CO+HO ------→ CO+H    ………(3)
 本発明において使用されるパラジウム成分の含有量は、ハニカム構造型担体の単位体積あたり、0.01~10g/Lが好ましく、0.5~10g/Lがより好ましい。0.01g/Lよりも少ないと充分なCO、HCの浄化性能が得られないことがあり、10g/Lよりも多いと使用量に見合った性能の向上が見られない事がある。
 本発明では、触媒活性金属として、パラジウムを使用することで白金よりもNOx浄化性能が向上することが確認された。理由は定かではないが、低硫黄化が進んだガソリンでは、パラジウムのほうが白金よりも触媒活性が高く維持される傾向があるためではないかと思われる。
 本発明に使用される金属触媒成分は、ロジウム、パラジウムであるが、この他、遷移金属、希土類金属などを含有することができる。遷移金属としては、鉄、ニッケル、コバルト、ジルコニウム、銅など、また希土類金属であるランタン、プラセオジム、ネオジムのほか、金、銀等の貴金属を挙げることができ、これらの中から一種以上を適宜選択できる。
[耐熱性無機酸化物(B)]
 本発明では、触媒活性金属(A)が、耐熱性無機酸化物(以下、無機母材、あるいは単に母材ともいう)に担持されていることが望ましい。
 母材としては、耐熱性が高く、比表面積の大きな多孔質の無機材料が好ましく、例えば、γ-アルミナ、θ-アルミナなどの活性アルミナ、ジルコニア、セリウム-ジルコニウム複合酸化物、セリア、酸化チタン、シリカ、各種ゼオライトなどを用いることができる。このような多孔質無機母材には、ランタン、セリウム、バリウム、プラセオジム、ストロンチウム等の希土類や、アルカリ土類金属を添加し、耐熱性を更に向上させたものを用いてもよい。
 そして、ロジウム成分の母材としては、水蒸気改質反応を促進させるという観点からジルコニア成分を含むことが好ましく、純粋なジルコニアの他、ジルコニアとアルミナとの複合酸化物が使用できるが、このような複合酸化物の場合もジルコニアを主成分とするのが好ましい。また、パラジウム成分の母材としてはγ-Al、又はランタン添加γ-Alから選ばれる一種以上であることが好ましい。ランタンが添加されたγ-アルミナは、耐熱性に優れ、パラジウムなどの白金族金属を担持させた場合、高温時にも高い触媒活性を維持することが可能である(特開2004-290827)。
 γ-アルミナとしては、比表面積(BET法による、以下同様)が、30m/g以上であるもの、更には、90m/g以上であるものが好ましい。γ-アルミナの比表面積値が30m/g以上であると、貴金属を高分散状態で安定化することができる。セリウム-ジルコニウム系複合酸化物(C)は、優れた高温耐性を有することから、これをランタンが添加されたγ-アルミナと併用することで、高温安定性に優れた触媒組成物を得る事が出来る。
[セリウム-ジルコニウム複合酸化物(C)]
 セリウム-ジルコニウム複合酸化物、すなわちCe・Zr(C)は、結晶構造中にパイロクロア相を含むものである。このようなCe・Zr(C)としては、原料混合物をその融点以上の温度で加熱熔融した後、冷却して形成されるインゴットを粉砕して得られるセリウム-ジルコニウム系複合酸化物であることが望ましい。このように融点以上の温度で加熱熔融したセリウム-ジルコニウム系複合酸化物は以下のようにして得られる。
 使用する原料混合物の元素材料は、以下に示す複合酸化物の製造工程において、元素材料を加熱したときに、その少なくとも一つが熔融するものであれば良い。セリウム原料、ジルコニウム原料は、酸化物である事が好ましい。酸化セリウムの融点は2200℃、酸化ジルコニウムの融点は2720℃である。このように元素材料の酸化物は融点が高いわけであるが、元素材料として酸化セリウム、酸化ジルコニウムを用いる場合、融点降下の影響があるので、酸化物の融点よりも低い加熱温度であっても熔融状態を得ることができる場合がある。これら原料には、少量のセリウムまたはジルコニウムの硝酸塩、炭酸塩、硫酸塩、塩化物、臭化物が配合されても良い。このような酸化物以外の原料化合物を配合すると製造工程で熔融が促進される事がある。
 また、融点を下げるためには、微量のフラックスなど第三成分を配合する場合もある。これら元素材料を混合したときの、原料混合物の融点は、セリア/ジルコニアのモル比により異なり、具体的には、CeO/ZrO(モル比)=1/9の場合は約2600℃、モル比が5/5の場合は約2200℃、モル比が9/1の場合は約2000℃である。
 第三成分としてセリウム元素材料、ジルコニウム元素材料以外の材料を併せて用いる場合は、得られるOSC材の特性を損なわない範囲であれば、アルカリ、アルカリ土類、希土類、貴金属成分などを加える事ができる。より具体的には、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アンチモン、ハフニウム、タンタル、レニウム、ビスマス、プラセオジム、ネオジウム、サマリウム、ガドリニウム、ホルミウム、ツリウム、イッテルビウム、ゲルマニウム、セレン、カドミウム、インジウム、スカンジウム、チタン、ニオブ、クロム、鉄、銀、ロジウム、白金などがあげられる。また、このような第三成分は、セリウム元素材料、ジルコニウム元素材料中の不純物に由来して含まれていても良い。ただし、このような第三成分が有害性の規制対象である場合は、その量を低減するか、除去する事が望ましい事は言うまでもない。
 上記セリウム原料とジルコニウム原料は、所定の割合で混合し熔融装置に装入する。熔融方法については、原料混合物の少なくとも一種が熔融する方法であれば特に限定されず、アーク式、高周波熱プラズマ式等が例示される。中でも一般的な電融法、すなわちアーク式電気炉を用いた熔融方法を好ましく利用することができる。
 アーク式電気炉を用いた熔融方法であれば、セリウム原料とジルコニウム原料の混合割合により変化するが、混合されたセリウム原料とジルコニウム原料に、必要に応じ、初期の通電を促すために導電材としてのコークスを所定量添加する。その後、例えば、二次電圧70~100Vで平均負荷電力を80~100kWとし、2400℃以上の温度で加熱する。セリウム-ジルコニウム系複合酸化物の原料混合物が、0.5~3時間加熱熔融されることが望ましい。原料が熔融状態となってから、0.5時間以上保持することにより、均一に熔融させることが出来る。加熱温度は、2000℃以上であればよいが、原料の融点以上、特に2600~2800℃が好ましい。熔融状態での保持時間は、1~2時間とすることが好ましい。なお、熔融時の雰囲気については、特に限定されず、大気中の他、窒素、アルゴン、あるいはヘリウムなどの不活性ガス中とする。また、圧力は特に限定されず、常圧、加圧、減圧のいずれでもよいが、通常、大気圧下で行うことが出来る。
 熔融終了後、電気炉に炭素蓋をして、20~30時間徐冷しインゴットを得る。熔融物の冷却方法は、特に限定されないが、通常、熔融装置から取り出して、大気中で100℃以下、好ましくは50℃以下となるように放冷する。
 これにより、セリウム原料とジルコニウム原料が均一になったセリウム-ジルコニウム系複合酸化物のインゴットを得ることが出来る。このようにして得られたセリウム-ジルコニウム系複合酸化物のセリウムとジルコニウムの含有率は、特に限定されるものではないが、モル比を基準として、[CeO/ZrO]が1/9~9/1であり、さらには、2/3~3/2が好ましい。このような組成比であれば、優れた酸素吸蔵放出性能と耐熱性を得ることができる。
 熔融後のインゴットは、次いで粉砕される。インゴットの粉砕については、特に限定されないが、セリウム-ジルコニウム系複合酸化物の粒径が、3mm以下であるように粉砕することが望ましい。インゴットは、ジョークラッシャーまたはロールクラッシャー等の粉砕機で粉砕することができる。後工程での取り扱いを考慮して、インゴットが1mm以下の粉体になるまで粉砕し、分級するのが好ましい。
 なお、得られた粉末は、磁力選鉱して不純物などを分離した後、所望に応じて、電気炉などにいれ、熔融工程での亜酸化物や過冷却による結晶内の歪みを酸化焼成によって除去することができる。酸化焼成の条件は、インゴットまたは粉末が酸化される条件であれば特に限定されないが、通常、100℃~1000℃、好ましくは600℃~800℃で焼成することができる。また、焼成時間については、特に限定されないが、1~5時間、好ましくは1~3時間とすることができる。
 上記方法で得られた粉末を用途に合わせて、さらに微粉砕することができる。微粉砕については、特に限定されないが、遊星ミル、ボールミルまたはジェットミル等の粉砕機で5~30分間、微粉砕することができる。この微粉砕により、セリウム-ジルコニウム系複合酸化物の平均粒径を0.3~2.0μm、特に0.5~1.5μmとすることが好ましい。詳細な理由は不明であるが、微粉砕されることで複合酸化物の表面積が大きくなり、低い温度域で大きな酸素放出が可能となるものと考えられる。なお、平均粒径の測定はレーザー回折散乱装置などで分析できる。
 また、この範囲で平均粒径を小さくすると、表2に示すように、結晶子サイズが小さくなる傾向がある。「Ce-Zr(C)」の結晶子サイズが、粉砕の程度で大きく変わる理由は定かではないが、原料混合物を超高温で熔融する工程で、「Ce-Zr(C)」の単一な粗大結晶を形成することに由来するものではないかと考えられる。このような粗大結晶が粉砕されることで細分化され、粒径が小さくなる程、結晶子サイズも小さくなるのではないかと考えられる。
 これにより、酸化物換算のモル比:CeO/ZrO)基準として、1/9~9/1の割合でセリウムとジルコニウムを含有するセリウム-ジルコニウム複合酸化物の粉末が得られる。この粉末は、平均粒径1~100μmの時、その比表面積が20m/g以下であり、10m/g以下が好ましく、5m/g以下がより好ましい。
 このセリウム-ジルコニウム系複合酸化物は、加熱耐久試験を行い、その前後における構造の変化をX線回析装置(XRD)により測定すると、図1、5、6の(A)に示すような結果となる。1050℃及び1150℃の高温大気中で、焼成後のメインピーク(Zr0.5Ce0.5に相当)の波形が同じように重なっていることから、十分な熱的安定性を有すると同時に、ピークが極めてシャープであることから、大きな結晶構造を有することが明らかである。
 このようなCe・Zr(C)は、本発明の排気ガス浄化触媒において、その含有量がハニカム型構造体の単位体積あたり、3~200g/Lであることが好ましく、5~100g/Lであることがより好ましい。Ce・Zr(C)が多すぎるとハニカム型構造体の通孔の断面積が小さくなり、背圧が上昇してしまい、エンジンの性能が低下してしまうことがあり、少なすぎるとCe・Zr(C)の性能が発揮されないことがある。
[セリウム含有酸化物(C’)]
 TWCでは、CO、HCなどの還元成分を排気ガス中の酸素と反応させて酸化除去し、NOxを還元して浄化する。ここで、自動車から排出される排気ガス中の酸素濃度は刻々と変化する。また、NOxの浄化は、理論空燃比以下で燃焼された排気ガス雰囲気で促進する。これは、排気ガス中におけるNOxを還元するための成分が増えるためである。
 しかし、自動車エンジンでは、燃料が理論空燃比以上の薄い空燃比で燃焼されることがある。近年、環境への配慮から燃費の向上が望まれ、益々その傾向が増している。このような環境ではNOxの浄化が促進されづらい。そこで、このような排気ガス中の酸素濃度の変化を緩衝することを主目的として、排気ガス浄化触媒の組成中にOSCを配合し、排気ガス中の酸素濃度が高い時には酸素を吸収することで還元成分の濃度を増し、NOxの浄化を促進する。また、OSCに吸収された酸素は、排気ガス中の酸素濃度が薄い時には排気ガス中に酸素を供給し、CO、HCを酸化するために使用される。
 このように通常、OSCとしては、原料混合物の熔融温度以下の温度で焼成されたCe・Zr(C’)が使用されており、その結晶構造は、立方晶及び/又は正方晶型であることが知られている(特開2002-336703、段落0012、段落0029)。
 本発明の排気ガス浄化触媒には、セリウム-ジルコニウム複合酸化物(C)に加え、OSCとしてのセリウム含有酸化物(C’)を使用することが好ましい。このセリウム含有酸化物(C’)としては、セリウム-ジルコニウム複合酸化物(Ce・Zr(C’))が好ましい。
 Ce・Zr(C’)は、高温での耐熱性に優れており、特公平6-75675号公報に記載されているように、原料としてセリウム塩、ジルコニウム塩を混合し、1000℃以下、高くても1300℃の温度で熔融物が生成しない条件で焼成することで得られる。また、各原料は混合ではなく共沈法等によって混合原料としても良い。
 こうして得られたCe・Zr(C’)を用いて、加熱耐久試験を行い、その前後における構造の変化をX線回析装置(XRD)により測定すると、図1、5、6の(B)に示すような結果となる。このように、原料混合物の融点以上の高温で加熱溶融しないで得られたCe・Zr(C’)では、1050℃及び1150℃の高温大気中で焼成後に観測されるメインピーク(Zr0.5Ce0.5に相当)は、徐々にシャープとなっており、高温耐久時の物理的状況変化が著しい。また、熱的安定性が前記セリウム-ジルコニウム系複合酸化物(C)よりも明らかに低いことがわかる。
 このCe・Zr(C’)は、その比表面積が10~300m/gであり、20~200m/gが好ましく、30~100m/gがより好ましい。比表面積が10m/g未満であるものは、充分な活性を示さないことがあり、一方、比表面積が300m/gを超えるものは、熱安定性が不十分であり好ましくない。また、この範囲で平均粒径を小さくしても、表2に示すように、結晶子サイズはあまり変わらない。「Ce-Zr(C’)」の結晶子サイズが、粉砕の程度によりさほど変わらない理由は定かではないが、「Ce-Zr(C’)」が原料混合物の融点より低い温度で焼成して得られるので、結晶が粗大化しないことに由来するものではないかと考えられ、このような結晶が粉砕されてもさほど細分化されないのではないかと考えられる。
 Ce・Zr(C’)の使用量は、ハニカム型構造体の単位体積あたり、5~200g/Lとし、10~100g/Lであることが好ましい。Ce・Zr(C’)が多すぎるとハニカム型構造体の通孔の断面積が小さくなり、背圧が上昇してしまい、エンジンの性能が低下してしまうことがあり、少なすぎるとCe・Zr(C’)の性能が発揮されないことがある。
[ハニカム型構造体]
 本発明の排気ガス浄化触媒は、前記の各触媒成分をハニカム型構造体の表面に被覆したハニカム構造型触媒として使用される。
 ハニカム型構造体の形状は、特に限定されるものではなく、公知のハニカム型構造体(一体構造型担体)の中から選択可能である。このような一体構造型担体の材質としては金属、セラミックスがある。金属の場合はステンレス製のものが一般的であるが、その形状はハニカム状をしたものが一般的である。セラミックスの材質は、コージェライト、ムライト、アルミナ、マグネシア、スピネル、炭化ケイ素などがあるが、ハニカムを作製するための成形性が良く、耐熱性や機械的強度にも優れる点からコージェライト製であることが好ましい。
 TWC用途では、製造の容易さ、構造体としての強度、構造触媒の設置に伴う圧力損失の抑制(排気ガス抜けの良さの維持)、触媒成分の被覆量などを高め安定性を向上しうる点から、コージェライト製フロースルー型担体が好ましい。
 この一体構造型担体の外部形状は、任意であり、断面真円または楕円の円柱型、四角柱型、六角柱型など触媒を適用する排気系の構造に応じて適宜選択できる。一体構造型担体の開口部の孔数についても、処理すべき排気ガスの種類、ガス流量、圧力損失あるいは除去効率などを考慮して適正な孔数が決められるが、自動車用排気ガス浄化装置では1平方インチ当たり10~1500個程度である事が望ましい。
 フロースルー型担体のようなハニカム形状の担体では、その構造的特徴がセル密度であらわされる。本発明では、ハニカム型構造体が、セル密度10~1500cel/inchであり、特に300~900cel/inchのフロースルー型担体である事が好ましい。セル密度が10cel/inch以上であれば、浄化に必要な排気ガスと触媒の接触面積を確保する事ができ、構造上の強度にも優れた排気ガスの浄化性能が得られ、セル密度が1500cell/inch以下であれば内燃機関の排気ガスの圧力を大きく損失することなく、内燃機関の性能を損なう事がなく、排気ガスと触媒の接触面積も充分に確保する事ができる。特に、ガソリンエンジン用のTWCでは、300~900cel/inchのフロースルー型担体が、圧力損失の抑制の点から好ましい。
 本発明では、排気ガス中に含まれる炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)を浄化するために、1種類の触媒組成物層が、ハニカム型構造体上に被覆される。
 本発明の排気ガス浄化触媒の触媒組成物層は、活性金属(A)、耐熱性無機酸化物(B)、及び結晶構造中にパイロクロア相を含むセリウム-ジルコニウム複合酸化物(C)を含み、活性金属(A)がパラジウムとロジウムであり、白金を含まない触媒組成物からなる。すなわち、活性金属種としてのPd成分、Rh成分と、それらの分散媒や母材としての耐熱性無機酸化物と、OSC成分としてのCe・Zr(C)とが含まれる。
 また、Ce・Zr(C)を使用することで、Ce・Zr(C’)だけを使用するよりもNOx浄化性能が向上する理由は定かではないが、両者のOSC性能の違いが影響しているのではないかと考えられる。
 Ce・Zr(C’)、Ce・Zr(C)のOSC性能を調べると、図2のような結果になった。Y軸は試料から放出される酸素量を表し、X軸は時間の経過を表す。なお、リーン(lean)雰囲気は大気であり、リッチ(rich)雰囲気は濃度5mol%の水素を含み残余がヘリウムからなるガスであり、測定中水素濃度は一定に保たれている。ここで、lean雰囲気:大気、rich雰囲気:5%H/Heバランスガス、温度:600℃、試料重量:10mg、試料形状:粉末とし、示差熱天秤として株式会社リガク製 Thermo plus TG 8120を用いて測定した。
 図2からわかるように、lean雰囲気からrich雰囲気への切り替えで、Ce・Zr(C’)が急速に酸素を放出しているのに対し、Ce・Zr(C)では穏やかに酸素を放出している。また、Ce・Zr(C’)は、rich雰囲気への切り替え後、速やかに酸素を放出しきっているのに対し、Ce・Zr(C)は長時間に渡って酸素を放出し続けており、酸素の放出量も多い。
 このようなOSC能力の違いが影響して、Ce・Zr(C)を必須とする本発明の排気ガス浄化触媒は、NOxの浄化性能が向上したものと考えられる。
 触媒組成物層におけるロジウム成分の含有量は、ハニカム構造型担体の単位体積あたり金属換算で0.01~10g/Lであり、0.1~5g/Lが好ましい。また、Ce・Zr(C)の含有量は、ハニカム型構造体の単位体積あたり、3~200g/Lであり、5~100g/Lであることが好ましい。
 本発明の排気ガス浄化触媒の触媒組成物層には、活性金属(A)、耐熱性無機酸化物(B)、Ce・Zr(C)に加え、主要な結晶構造が立方晶及び/又は正方晶のセリウム含有酸化物(C’)を含むことが好ましい。
 酸化活性を発揮する触媒金属種のPd成分は、Rh、Ptに比べて安価であるから比較的多量に使用しうる。そのため、本発明の触媒はPtを使用する触媒よりも安価に作ることができる。
 ただし、Pdは硫黄成分により被毒され触媒の活性が低下し易い(特開2005-021793、段落0005)。そのため、Pdの使用量を増加するか、硫黄含有量が少ない燃料を使用した内燃機関での使用が望ましい。燃料の低硫黄化はガソリン、軽油の両方で進んでいるが、特にガソリンにおいて推進されている。従って、本発明の排気ガス浄化触媒は、ガソリンエンジンからの排気ガスを浄化するTWCとして使用することが好ましい。
 また、本発明の排気ガス浄化触媒の触媒組成物層には、Pd成分とRh成分が使用される。Pd成分のような酸化活性を有する金属と、還元活性を有するRh成分を同一層中に存在させると、互いの活性を相殺してしまうことがある(特開平11-169712、段落0011)。また、Pdは、Rhとの合金化や焼結が懸念される金属でもあり、焼結して活性が低下することがある(特開2005-021793、段落0005;特開2002-326033、段落0004)。そのためPd成分がRh成分と同一の触媒組成物層に存在しないようにすることが検討されている。
 しかしながら、驚くべき事に、本発明ではPd成分とRh成分が同一の触媒組成物層に含まれていても優れた排気ガス浄化性能を発揮することができる。このように単一の触媒組成物層を形成することで高性能の排気ガス浄化触媒が得られるから、触媒の製造コストを低減することができる。
 また、本発明に使用される排気ガス浄化触媒の触媒組成物層には、Ce・Zr(C’)が使用されることが好ましい。触媒組成物層にCe・Zr(C’)が含まれることで、Ce・Zr(C)のみの場合よりもNOx浄化性能が向上する理由は定かではないが、前記した両者のOSC性能の違いが影響しているのではないかと考えられる。すなわち、リーン(lean)雰囲気からリッチ(rich)雰囲気への切り替えで、Ce・Zr(C’)が急速に酸素を放出し、Ce・Zr(C)よりも酸素の放出量も少なくなるためと考えられる。
 また、アルカリ土類金属成分であるBa成分が、触媒組成物層に含まれることが望ましい。アルカリ土類金属成分は、NOx吸蔵成分であるが、Rh成分とアルカリ土類金属成分が同一組成中に存在すると、NOxの浄化性能が低下することが知られている(特開2002-326033、段落0013)。このようにNOx浄化性能が低下する理由は定かではないが、アルカリ土類金属成分がNOx吸蔵作用を有することから、Rh成分によるNOx浄化作用を妨害するためではないかと思われる。従って、従来はアルカリ土類金属成分とRh成分が異なる触媒組成物層中に含まれるように、複数の層構成としていた。
 しかしながら、驚くべき事に、本発明ではBa成分とRh成分が同一の触媒組成物層に含まれていても優れた排気ガス浄化性能を発揮することができる。
 バリウム成分の量は、酸化物換算でハニカム型構造体の単位体積あたり、0.1~50g/Lであり、1~30g/Lがより好ましい。バリウム成分は、少量でも効果を発揮するが、使用量が増えてPdと等モル数になると使用量に見合った効果の向上が望めなくなることがある。
[触媒の調製]
 本発明の排気ガス浄化触媒に使用される触媒組成物は、製法によって特に限定されるものではなく、公知の方法を用いて調製される。その一例としては、触媒金属成分のPd成分原料、Rh成分原料として、これらの硝酸塩、硫酸塩、炭酸塩、酢酸塩等の塩溶液を用意する。これら塩溶液を母材とする耐熱性無機酸化物に混合する。この混合物を乾燥して溶媒を除去し、触媒金属成分が担持した耐熱性無機酸化物母材を得る。ここで、この混合物の乾燥後に焼成工程を加えても良い。焼成工程を経た焼成物は、粉砕等の手段により粉体にすることが望ましい。
 具体的に貴金属をγ-アルミナや酸化ジルコニウム等へ担持させる場合、ジニトロジアンミンパラジウム、硝酸パラジウム、塩化パラジウム、塩化ロジウム(III)、硝酸ロジウム(III)など金属塩の水溶液と、γ-アルミナや酸化ロジウム等を混合して乾燥、焼成を行うことができる。
 次いで、触媒金属成分が担持した耐熱性無機酸化物母材のそれぞれに、水などの媒体を混合し、貴金属スラリーを形成し、セリウム-ジルコニウム系複合酸化物(C)、必要により水などの媒体、セリウム含有酸化物(C’)、Ba成分、他の触媒成分原料を加え、粉砕混合工程を経て触媒組成物スラリーを得る。
 Ba成分は、ハニカム構造型触媒中では酸化バリウムとして存在することが多いが、触媒組成物スラリーを製造するにあたっては、硫酸バリウム、炭酸バリウム、硝酸バリウムなど他のバリウム塩の形で添加しても良く、酸化バリウム、硫酸バリウム、炭酸バリウム、硝酸バリウムを含む複合酸化物で有ってもよい。このうち、硫酸バリウムを用いると、触媒組成物スラリーの粘度が低下し、ウォッシュコートでの塗工性が向上することがある。ハニカム構造型担体は、多数の通孔が集まった形をしており、粘度の高いスラリーは、これら通孔内への触媒組成物スラリーの被覆を困難にする。硫酸バリウムの使用によりスラリーの粘度が低下する事は、Ba成分のみならず、多量の触媒成分をスラリーに添加し易くなることを意味し、活性の高いハニカム型構造触媒の製造を容易にする。
 上記「他の触媒成分」としては、触媒成分そのものでも良いが、後段の焼成工程において触媒成分となる触媒成分原料であっても良い。また、触媒成分を水などの媒体と混合する際には、分散剤、pH調整剤などを配合しても良い。また、特定の機能を持つ触媒成分や助触媒成分の他、ハニカム型構造体への被覆を強固なものとするためバインダー用無機酸化物等を混合することができる。
 本発明に使用されるハニカム構造型触媒は、前記の方法で得られた触媒組成物スラリーをハニカム構造型担体へ一度に塗工して、乾燥、焼成する事により製造することができる。
 ハニカム構造型担体への塗工方法は、特に限定されないがウォッシュコート法が好ましい。乾燥温度は、100~300℃が好ましく、100~200℃がより好ましい。また、焼成温度は、300~1200℃が好ましく、400~800℃、特に400~600℃が好ましい。加熱手段については、電気炉やガス炉等の公知の加熱手段によって行う事ができる。
 本発明では、このようにしてハニカム型構造体表面に直接本発明の触媒組成物層のみを被覆すればよいが、触媒組成物層の上になる排気ガス流れ側や、触媒組成物層の下になるハニカム構造型担体側に別途被覆層を設けても良い。別途設けられる被覆層としては、触媒組成物層とハニカム型構造体の密着性を向上するためのベースコート層や、触媒組成物層の被毒防止層等があげられる。
2.排気ガス浄化装置
 本発明の排気ガス浄化装置は、上記排気ガス浄化触媒を、自動車用ガソリンエンジンから排出される排気ガス流れの中に配置したものである。本発明の排気ガス浄化触媒は、酸化系の活性種としてPd成分を、また還元系の活性種としてRh成分を含んでいることから、排気ガス中に含まれるHC、CO、NOxを浄化するためのTWCとして好ましく使用される。
 前記の通り、本発明の排気ガス浄化触媒の触媒組成物層には、酸化機能を有するPd成分が使用される。一般的に、Pt成分は、硫黄成分で被毒してもPd成分よりも活性が持続できるため、高硫黄濃度の燃料で発生した排気ガスを浄化できるとされている。
 ところが、硫黄成分を含まない排気ガス中では、Pd成分はPt成分に比べてCO、HC、NOxの浄化に優れた活性を発揮し、このPd成分の優位性は、理論空燃比近傍において顕著である(1989年、触媒学会発行、触媒、vol.31、No.8、p566-567)。近年、燃料の低硫黄化が進んでいることから、本発明では、サルファフリー燃料として流通しているガソリンを使用した内燃機関の排気ガス浄化装置に、本発明の触媒を使用することで優れた効果を発揮させることを意図している。
 自動車用ガソリンエンジンは、混合気の燃料濃度がリーン、リッチを繰り返す状態で稼動される。本排気ガス浄化触媒は、触媒組成物層の結晶構造中にパイロクロア相を含むセリウム-ジルコニウム複合酸化物(C)を含むことで、排気ガス浄化装置としての顕著な作用効果が発揮される。また、加えて、主要な結晶構造が立方晶及び/又は正方晶のセリウム含有酸化物(C’)を含むことで、より優れた排気ガス浄化性能を発揮することができる。
 本発明の排気ガス浄化装置においては、本排気ガス浄化触媒を一つ使用すればよい。触媒を2つ以上使用する場合は、本排気ガス浄化触媒を排気ガス流路の上流側と下流側のいずれに配置してもよい。
 近年の自動車用排気ガス浄化触媒では、2以上の触媒を使用することが一般的であるが、本発明では、新たな触媒レイアウトを検討する必要はなく、既存の自動車だけでなく将来市販される自動車に対しても容易に適用可能である。また上流側触媒と下流側触媒の後段に、同様な機能を有する触媒、あるいは全く異なる触媒を組み合わせる等、適宜設計変更して用いる事ができる。
3.排気ガス浄化方法
 本発明の排気ガス浄化方法は、上記の排気ガス浄化装置を用いて、内燃機関から排出される排気ガスを接触させることによって、炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)を浄化する方法である。
 本発明の排気ガス浄化方法は、上記排気ガス浄化触媒1個だけでもHC,CO,NOxが浄化されるものであり、本発明の排気ガス浄化触媒とは別の排気ガス浄化触媒を併用し2個以上とする場合は、本発明の排気ガス浄化触媒を上流側に用いても下流側に用いても同様な作用効果を得ることができる。
 本出願人は、結晶構造中にパイロクロア相を含むセリウム-ジルコニウム複合酸化物(C)を含む触媒を排気ガス流れの下流に配置し、上流側には公知のOSCを含むTWCを配置することで優れた排気ガス浄化性能を発揮する触媒系を提案している(前記特許文献7)。本発明はそのような使用方法に限られず、上流側の触媒としても使用できるものである。
 排気ガスの温度は、例えば、室温のように低くても、また、700℃のように高い場合であっても、触媒機能を期待できる。典型的には、通常、70~800℃であり、100~600℃の温度で用いることが好ましい。排気ガス温度によって触媒活性には、ある程度の差が生じるものの、このように幅広い温度範囲において触媒機能が発揮される。
 本発明は、前記のようなTWCに限られるものではなく、HCを還元剤として用いるディーゼルエンジン排気ガス中のNOx浄化法、すなわちHC-SCR(Selective Catalytic Reduction:選択的触媒還元法)等にも適用できる。HC-SCRは、還元剤としてHCを使用し希薄燃焼される排気ガス中のNOxを浄化するものであり、その際使用されるHCは、燃焼室へ供給される燃料混合空気の空気/燃料比を一時的に小さくして排気ガス中のHC濃度を高くすることや、排気ガス中に直接燃料を噴霧して供給するものである。
 本発明は、ガソリン機関に適用される事が好ましいが、ディーゼル、LPG等、化石燃料やバイオディーゼル燃料を使用する自動車用内燃機関や、ボイラー、ガスタービン等に適用してもよい。
 以下に実施例及び比較例を示し、本発明の特徴を一層明確にする。なお、本発明は、これら実施例の態様に限定されるものではない。なお、触媒成分であるセリウム-ジルコニウム系複合酸化物(C)、(C’)、及びそれを含む触媒組成物スラリーは次に示す方法によって調製した。
[セリウム-ジルコニウム系複合酸化物(C)]
 Zrの原料として高純度酸化ジルコニウム(純度99.9%)を、Ceの原料として高純度酸化セリウム(純度99.9%)を用い、次に示す手順に従って本発明に係るセリウム-ジルコニウム系複合酸化物粉末を製造した。
 まず、粉末10kgを調製するために高純度酸化ジルコニウム(4.2kg)と高純度酸化セリウム(5.8kg)を分取・混合し、アーク式電気炉を用い、二次電圧85V、平均負荷電力99.5kW、通電時間2時間、総電力量182kWhを印加して、2250℃以上で熔融を行った。
 なお、初期の通電を促すためにコークス500gを使用した。熔融終了後、電気炉に炭素蓋をして、大気中で24時間徐冷しインゴットを得た。得られたインゴットをジョークラッシャーおよびロールクラッシャーで3mm以下まで粉砕した後、篩で1mm以下の粉末を捕集し、セリウム-ジルコニウム系複合酸化物を得た。
 次に、熔融工程での亜酸化物や過冷却による結晶内の歪みを除去するために電気炉を用いて大気中、800℃で3時間焼成し、遊星ミルで10分間粉砕し、平均粒径が1.3μmの粉末、Ce・Zr(C)を得た。なお、平均粒径の測定は、レーザー回折散乱装置(COULTER Co., LTD, LS230)で分析した。これは、XRDによって結晶構造中にパイロクロア相を含むことが確認された。また、比表面積が1.3m/gであった。
[セリウム-ジルコニウム系複合酸化物(C’)]
 市販の硝酸セリウム(純度99.0%)およびオキシ硝酸ジルコニウム(純度99.0%)をイオン交換水で溶解し、CeO換算20wt%およびZrO換算25wt%の水溶液を調製した。
 次に、58wt%CeO-42wt%ZrO複合酸化物を調製するための必要な各硝酸溶液を混合し、5%アンモニア水を添加し、最終的にpH=10.2とし、水酸化セリウムと水酸化ジルコニウムを共沈させた。
 そして、吸引ろ過を行った後、純水で水洗した。これを500℃で2時間焼成し、セリウム-ジルコニウム系複合酸化物を得た。ついで、上記Ce・Zr(C)の製造と同様の工程を経て、粒子径2.0μm以下の非熔融型のセリウム-ジルコニウム系複合酸化物、Ce・Zr(C’)をえた。これは、XRDによって結晶構造中に正方晶を単一に含むことが確認された。また、比表面積が74m/gであった。
[Rhスラリー]
 以下の原料を用意し、Rhスラリーを製造した。スラリーの混合はボールミルによる粉砕混合によった。
=Rhスラリーの原料=
 ・硝酸Rh水溶液(金属換算:7wt%)
 ・ZrO(比表面積値:60m/g)
 ・水
 硝酸Rh水溶液を含浸法によりZrOに含浸させRhを担持した。これを乾燥後、300℃で1時間焼成し、Rh担持ZrO(以下、Rh/[ZrO]ということがある。)を得た。
[Pdスラリー]
 以下の原料を用意し、Pdスラリーを製造した。スラリーの混合はボールミルによる粉砕混合によった。
=Pdスラリーの原料=
 ・硝酸Pd水溶液(金属換算:20wt%)
 ・γ-アルミナ(比表面積値:220m/g)
 ・水
 Pd塩水溶液をγ-アルミナに含浸させPdを担持した。これを乾燥後、300℃で1時間焼成し、Pd担持γ-アルミナ(以下、Pd/[γ-アルミナ]ということがある。)を得た。
[Ptスラリー]
 以下の原料を用意し、Ptスラリーを製造した。スラリーの混合はボールミルによる粉砕混合によった。
=Ptスラリーの原料=
 ・亜硝酸ジアンミン白金(II)水溶液(金属換算:20wt%)
 ・γ-アルミナ(比表面積値:220m/g)
 ・水
 Pt塩水溶液をγ-アルミナに含浸させPtを担持した。これを乾燥後、300℃で1時間焼成し、Pt担持γ-アルミナ(以下、Pt/[γ-アルミナ]ということがある。)を得た。
[触媒組成物スラリー1]:Pd,Rh,Ce・Zr(C),Ce・Zr(C’)
 このようにして得られた各貴金属スラリーと、上記Ce・Zr(C)など以下の原料を用意し、触媒組成物スラリー1を製造した。スラリーの混合はボールミルによる粉砕混合によった。 
=触媒組成物スラリー1の原料=
 ・Rh/[ZrO
 ・Pd/[γ-アルミナ]
 ・Ce・Zr(C) 、平均粒径1.3μm、比表面積値1.3m/g
 ・Ce・Zr(C’)、平均粒径2.0μm、比表面積値76m/g
 ・水酸化バリウム(Ba(OH)
 ・γ-アルミナ(比表面積値:220m/g)
 ・水
 バインダーとしてのγ-アルミナを含むこれらの原料をボールミルにより粉砕混合し、触媒組成物スラリー1を得た。
[触媒組成物スラリー2]:Pd,Rh,Ce・Zr(C)
 Ce・Zr(C’)をCe・Zr(C)に代えた以外は、触媒組成物スラリー1と同様にして、触媒組成物スラリー2を製造した。スラリーの混合はボールミルによる粉砕混合によった。
[触媒組成物スラリー3]:Pt,Rh,Ce・Zr(C),Ce・Zr(C’)
 Pd/[γ-アルミナ]をPt/[γ-アルミナ]に代えたことを除き、触媒組成物スラリー1と同様にして触媒組成物スラリー3を得た。
[触媒組成物スラリー4]:Pt,Rh,Ce・Zr(C)
 Ce・Zr(C’)をCe・Zr(C)に、Pd/[γ-アルミナ]をPt/[γ-アルミナ]に代えたことを除き、触媒組成物スラリー2と同様にして触媒組成物スラリー4を得た。
[触媒組成物スラリー5]:Pd,Rh,Ce・Zr(C’)
 Ce・Zr(C)をCe・Zr(C’)に代えたことを除き、触媒組成物スラリー1と同様にして触媒組成物スラリー5を得た。
(実施例1、2)(比較例1、2、3)
 上記触媒組成物スラリー2、又は触媒組成物スラリー1を下記ハニカム型構造体にウォッシュコート法により積層し、下記条件で乾燥焼成した後、下記条件で加熱して、耐久性が向上した本発明のハニカム構造型触媒(実施例1、2)を得た。
 また、触媒組成物スラリー4、触媒組成物スラリー3、又は触媒組成物スラリー5を用いて、同様にして、比較用のハニカム構造型触媒(比較例1、2、3)を得た。
 各ハニカム構造型触媒における層の構成と各成分の組成を表1に示す。表1中の括弧内の数字は、各触媒成分の単位体積あたりの成分量「g/L」を表し、Pd成分、Rh成分,Pt成分の量は金属換算の値である。
=ハニカム型構造体=
 ・材質:コーディエライト製
 ・サイズ:118.4φ×50[mm](容積:550cc)
 ・セル密度:900cel/inch
 ・セル壁の厚み:2.5mil
=乾燥・焼成条件=
 ・乾燥温度:150℃
 ・焼成炉:ガス炉
 ・焼成温度:500℃
 ・焼成時間:2時間
=耐久条件=
 ・耐久:ストイキオ-燃料カット耐久(下記「測定条件」におけるエンジンを使用)
 ・温度:950℃
 ・耐久時間:40時間
Figure JPOXMLDOC01-appb-T000001
 次に、実施例1、実施例2、比較例1、比較例2、比較例3について触媒の浄化性能を比較するため、各触媒通過後の排気ガスに含まれるNMHC(ノンメタンハイドロカーボン)、NOx、THC(トータルハイドロカーボン)、CO([Cold Bag]では排出量の1/10の値、[Hot Bag]では排出量の1/100の値)の排出量を測定した。測定条件は下記の条件に従った。
「測定条件」
 ・評価エンジン:NA2.4L ガソリンエンジン
 ・燃料:市販レギュラーガソリン(硫黄分 10ppm)
 ・測定モード:JC08モード、[ホットフェイズ]、[コールドフェイズ]
 ・排気ガスの測定機器:HORIBA社製 MEXA9400
 JC08モードは、従来の10・15モードに比べると、より実際の走行パターンに近い内容であり、米国のFTPモードと同様に実際の「過渡モード」の一種で、加減速も一定ではなく微妙に変化させている。しかも、あらかじめエンジンを暖機しておいた状態(ホットフェイズ)と、完全に冷えきった状態(コールドフェイズ)での両方で試験が行われる。
 このうちコールドフェイズにおいて採取した排気ガスを「Cold Bag」、ホットフェイズにおいて採取した排気ガスを「Hot Bag」という。「Cold Bag」、「Hot Bag」は、排気ガス浄化触媒装置の評価において広く一般的に採用されており、本発明でも「Cold Bag」、「Hot Bag」中のTHC(トータルハイドロカーボン)成分量、NMHC(ノンメタンハイドロカーボン)成分量、NOx成分量、CO成分量を測定した。NMHCは、メタン以外の炭化水素(脂肪族飽和炭化水素、不飽和炭化水素、芳香族炭化水素)を総称するもので、光化学オキシダントの原因物質として自動車排気ガスにおける排出規制物質として定められている。
 得られた「Cold Bag」の結果を図3に、「Hot Bag」の結果を図4に示す。図中、縦軸の数値は[g/km]を表し、走行距離あたりの排出量を表す。
(実施例3、4)(比較例4、5)
 前記の要領でCe・Zr(C)を調製し、平均粒径0.5μm又は1.1μmに粉砕し、それぞれ1050℃と、1150℃で加熱耐久試験を行い、各試料についてX線回折法(XRD)によってピーク強度を測定し、結晶子サイズを導き出した。
 本測定には、XRD装置として「ブルカー・エイエックスエス株式会社製、MXP21VAHF22 MDS-III」を使用した。また、結晶子サイズの測定は、(2θ)29°付近に現れるセリウム-ジルコニウム複合酸化物固有のピークからScherrer式を用いて計算した。平均粒径0.5μmのCe・Zr(C)のXRDチャートを図5(A)に、平均粒径1.1μmのCe・Zr(C)XRDチャートを図6(A)に示した。
 図5(A)、図6(A)から明らかなように、Ce-Zr(C)は、加熱耐久試験前後ともXRDチャートの形状に大きな変化は見られず、安定で大きな結晶構造を有することが判る。また、表2から明らかなように、Ce-Zr(C)が粉砕によって大きくその結晶子サイズが変わっている。その理由は定かではないが、Ce-Zr(C)が超高温で熔融する工程で単一な粗大結晶を形成することに由来し、このような粗大結晶が粉砕されることで細分化され、粒径が小さくなる程、結晶子サイズも小さくなるのではないかと考えられる。
 次に、このCe・Zr(C)を用いて、実施例2と同様にして、上記触媒組成物スラリー1を調製し、ハニカム型構造体にウォッシュコート法により積層し、乾燥焼成した後、前記条件で加熱して、本発明のハニカム構造型触媒(実施例3、4)を得た。
 その後、触媒の浄化性能を比較するため、各触媒通過後の排気ガスに含まれるNMHC(ノンメタンハイドロカーボン)、NOx、THC(トータルハイドロカーボン)、COの排出量を測定した。実施例2と同様な傾向を示すことが確認された。
 これに対し、前記の要領でCe・Zr(C’)を調製した。平均粒径0.5μmのCe・Zr(C’)のXRDチャートを図5(B)に、平均粒径1.1μmのCe・Zr(C’)XRDチャートを図6(B)に示し、各結晶子サイズを表2にまとめた。
 平均粒径0.5μm又は1.1μmに粉砕した場合では、図5(B)、図6(B)のように加熱耐久試験前後でXRDチャートの形状は大きく異なった。表2から明らかなように、加熱耐久試験後の結晶子サイズは、ほぼ2倍程度に大きくなっている。Ce-Zr(C’)では、粉砕によって結晶子サイズが大きくは変わらないことが分かる。これは、Ce-Zr(C’)が、原料混合物の融点より低い温度で焼成して得られるので、結晶が粗大化しないことに由来し、このような結晶が粉砕されてもさほど細分化されないのではないかと考えられる。
 次に、Ce・Zr(C’)を用いて、比較例2と同様にして、上記触媒組成物スラリー3を調製し、ハニカム型構造体にウォッシュコート法により積層し、乾燥焼成した後、前記条件で加熱して、比較用のハニカム構造型触媒(比較例4、5)を得た。
 その後、触媒の浄化性能を比較するため、各触媒通過後の排気ガスに含まれるNMHC(ノンメタンハイドロカーボン)、NOx、THC(トータルハイドロカーボン)、COの排出量を測定した。比較例2と同様な傾向を示すことが確認された。
Figure JPOXMLDOC01-appb-T000002
「評価」
 上記の結果から、本発明の特定触媒組成物を用いた層構成を有する実施例1~4では、高温時、低温時を問わずNMHC、THC、NOx、COに対して優れた浄化性能を発揮することがわかる。
 特に、Ce・Zr(C),Ce・Zr(C’)を併用した触媒では、光化学スモッグや酸性雨などを引き起こす大気汚染原因物質として排出規制が強化されているNOxについて、その浄化性能が優れていることがわかる。これに対して、比較例1~5では、本発明とは異なる触媒組成物を用いたために、所望の浄化性能が得られていない。
産業上の利用分野
 本発明の排気ガス浄化触媒は、炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)を浄化する三元触媒(TWC)として有効であり、また、HCを還元剤として用いるディーゼルエンジン排気ガス中のNOx浄化法(HC-SCR:選択的触媒還元法)等にも適用できる。本発明は、ガソリン機関に適用される事が好ましいが、ディーゼル、LPG等、化石燃料やバイオディーゼル燃料を使用する自動車用内燃機関や、ボイラー、ガスタービン等にも適用できる。

Claims (17)

  1.  排気ガス中に含まれる炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)を浄化する触媒成分が、ハニカム型構造体上に触媒組成物層として被覆されている排気ガス浄化触媒であって、
     前記触媒成分は、活性金属(A)、耐熱性無機酸化物(B)、及び結晶構造中にパイロクロア相を含むセリウム-ジルコニウム複合酸化物(C)を同一の触媒組成物層に含んでおり、かつ活性金属(A)が、パラジウム及びロジウムであり白金を含まないことを特徴とする排気ガス浄化触媒。
  2.  前記触媒組成物層が、1層のみであることを特徴とする請求項1に記載の排気ガス浄化触媒。
  3.  更に、触媒成分として、主要な結晶構造が立方晶及び/又は正方晶のセリウム含有酸化物(C’)を含むことを特徴とする請求項1に記載の排気ガス浄化触媒。
  4.  セリウム-ジルコニウム複合酸化物(C)は、1050℃及び1150℃の耐久試験後に、X線回折装置(XRD)により測定すると、(2θ)29°付近におけるピーク波形が略重複することを特徴とする請求項1記載の排気ガス浄化触媒。
  5.  活性金属(A)の含有量が、ハニカム型構造体の単位体積あたり、パラジウム、ロジウムともに0.01~10g/Lであることを特徴とする請求項1に記載の排気ガス浄化触媒。
  6.  耐熱性無機酸化物(B)が、アルミナ、ジルコニア、シリカ、チタニア、シリカ-アルミナ、又はゼオライトから選ばれる少なくとも一種であることを特徴とする請求項1に記載の排気ガス浄化触媒。
  7.  耐熱性無機酸化物(B)が、ジルコニアを主成分とする無機母材と、アルミナを主成分とする無機母材を含むことを特徴とする請求項6に記載の排気ガス浄化触媒。
  8.  セリウム-ジルコニウム系複合酸化物(C)が、原料混合物をその融点以上の温度で加熱熔融した後、冷却して形成されるインゴットを粉砕して得られ、平均粒径1~100μmの時、その比表面積が20m/g以下であることを特徴とする請求項1に記載の排気ガス浄化触媒。
  9.  セリウム-ジルコニウム複合酸化物(C)のセリウムとジルコニウムが、酸化物換算のモル比基準で、CeO/ZrO=1/9~9/1の割合で含有されることを特徴とする請求項1又は8に記載の排気ガス浄化触媒。
  10.  セリウム-ジルコニウム系複合酸化物(C)の含有量が、ハニカム型構造体の単位体積あたり、3~200g/Lであることを特徴とする請求項1、8又は9のいずれかに記載の排気ガス浄化触媒。
  11.  セリウム含有酸化物(C’)が、原料混合物をその融点未満の温度で加熱焼成した後、冷却、粉砕して得られ、平均粒径1~100μmの時、その比表面積値が10~300m/gであることを特徴とする請求項3又は10に記載の排気ガス浄化触媒。
  12.  セリウム含有酸化物(C’)の含有量が、ハニカム型構造体の単位体積あたり、5~200g/Lであることを特徴とする請求項3、10又は11に記載の排気ガス浄化触媒。
  13.  触媒組成物には、さらにバリウム成分が含まれ、その含有量が酸化物換算で1~30g/Lであることを特徴とする請求項1に記載の排気ガス浄化触媒。
  14.  ハニカム型構造体が、セル密度10~1500cel/inchのフロースルー型担体であることを特徴とする請求項1に記載の排気ガス浄化触媒。
  15.  請求項1~14のいずれかに記載の触媒を、内燃機関から排出される排気ガスの流路中に配置してなる排気ガス浄化装置。
  16.  内燃機関が、ガソリンエンジンであることを特徴とする請求項15に記載の排気ガス浄化装置。
  17.  請求項15又は16に記載の排気ガス浄化装置に、内燃機関から排出される排気ガスを接触させることによって、排気ガス中に含まれる炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)を浄化することを特徴とする排気ガス浄化方法。
PCT/JP2010/050954 2009-03-09 2010-01-26 排気ガス浄化触媒、それを用いた排気ガス浄化装置、及び排気ガス浄化方法 WO2010103870A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/142,354 US20110274603A1 (en) 2009-03-09 2010-01-26 Exhaust gas purification catalyst, exhaust gas purification apparatus using the same and exhaust gas purification method
JP2011503745A JPWO2010103870A1 (ja) 2009-03-09 2010-01-26 排気ガス浄化触媒、それを用いた排気ガス浄化装置、及び排気ガス浄化方法
EP10750626.3A EP2407238A4 (en) 2009-03-09 2010-01-26 EXHAUST PURIFYING CATALYST, EXHAUST PURIFYING APPARATUS USING THE CATALYST, AND EXHAUST PURIFYING METHOD
CN2010800038278A CN102264467B (zh) 2009-03-09 2010-01-26 排出气体净化催化剂、采用它的排出气体净化装置、以及排出气体净化方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009055260 2009-03-09
JP2009-055260 2009-03-09

Publications (1)

Publication Number Publication Date
WO2010103870A1 true WO2010103870A1 (ja) 2010-09-16

Family

ID=42728165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050954 WO2010103870A1 (ja) 2009-03-09 2010-01-26 排気ガス浄化触媒、それを用いた排気ガス浄化装置、及び排気ガス浄化方法

Country Status (5)

Country Link
US (1) US20110274603A1 (ja)
EP (1) EP2407238A4 (ja)
JP (1) JPWO2010103870A1 (ja)
CN (1) CN102264467B (ja)
WO (1) WO2010103870A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013116446A (ja) * 2011-12-02 2013-06-13 Toyota Motor Corp 排ガス浄化用触媒
JP2014057904A (ja) * 2012-09-14 2014-04-03 Mitsui Mining & Smelting Co Ltd 排気ガス浄化用触媒担体
WO2014129634A1 (ja) * 2013-02-25 2014-08-28 ユミコア日本触媒株式会社 排ガス浄化用触媒およびそれを用いた排ガス浄化方法
JP2016187806A (ja) * 2011-02-28 2016-11-04 コーニング インコーポレイテッド 二酸化炭素を捕捉するための物品
EP2671638A4 (en) * 2011-02-01 2017-04-12 Umicore Shokubai Japan Co., Ltd. Catalyst for cleaning exhaust gas

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5386121B2 (ja) * 2008-07-25 2014-01-15 エヌ・イーケムキャット株式会社 排気ガス浄化触媒装置、並びに排気ガス浄化方法
EP2357038A4 (en) * 2008-12-03 2014-11-05 Daiichi Kigenso Kagaku Kogyo EMISSION CONTROL CATALYST, EMISSION CONTROL DEVICE THEREFOR AND EMISSION CONTROL
JP5720949B2 (ja) * 2011-12-08 2015-05-20 トヨタ自動車株式会社 排ガス浄化用触媒
CN104602809B (zh) * 2012-06-20 2016-08-31 丰田自动车株式会社 用于净化废气的催化剂载体、使用该催化剂载体的用于净化废气的催化剂及生产该用于净化废气的催化剂载体的方法
US9266092B2 (en) 2013-01-24 2016-02-23 Basf Corporation Automotive catalyst composites having a two-metal layer
US9283547B2 (en) 2013-03-14 2016-03-15 Basf Corporation Catalytic article with segregated washcoat and methods of making same
WO2015145788A1 (ja) * 2014-03-25 2015-10-01 第一稀元素化学工業株式会社 セリウム-ジルコニウム系複合酸化物及びその製造方法
CN104061575A (zh) * 2014-06-27 2014-09-24 启东市海信机械有限公司 一种煤气放散点火燃烧器
CN104689856A (zh) * 2015-02-12 2015-06-10 柳州豪祥特科技有限公司 汽车尾气净化催化剂载体的制备方法
US10058846B2 (en) * 2016-09-05 2018-08-28 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gas
DE102018128152A1 (de) * 2018-11-12 2020-05-14 Man Energy Solutions Se Verfahren zur Nachbehandlung des Abgases einer Brennkraftmaschine und Brennkraftmaschine
US10669908B1 (en) 2018-12-03 2020-06-02 Wellhead Power Solutions, Llc Power generating systems and methods for reducing startup NOx emissions in fossile fueled power generation system
CN110252114B (zh) * 2019-06-20 2022-09-09 深圳市中拓智森环保科技有限公司 空气净化剂溶液及其制备方法
US11618008B2 (en) * 2020-10-05 2023-04-04 Ford Global Technologies, Llc Precious group metal on pyrochlore-phase ceria zirconia with superior oxygen storage capacity and TWC performance

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210032A (ja) * 1988-02-18 1989-08-23 Nippon Engeruharudo Kk 排気ガス浄化用触媒及びその製造方法
JPH03106446A (ja) 1989-09-21 1991-05-07 Cataler Kogyo Kk 排ガス浄化用触媒およびその製造方法
JPH05237390A (ja) 1992-02-28 1993-09-17 Nippon Shokubai Co Ltd 排気ガス浄化用触媒
JPH06205976A (ja) * 1993-01-13 1994-07-26 Nissan Motor Co Ltd 排ガス浄化用触媒
JPH0675675B2 (ja) 1986-11-04 1994-09-28 トヨタ自動車株式会社 排気ガス浄化用触媒
JPH09215922A (ja) * 1996-02-09 1997-08-19 Toyota Motor Corp 排ガス浄化用触媒
JPH11169712A (ja) 1997-12-17 1999-06-29 Johnson Massey Japan Kk 排ガス浄化用触媒
JP2000027508A (ja) 1998-07-08 2000-01-25 Denso Corp ドアロック操作装置
WO2000027508A1 (fr) 1998-11-05 2000-05-18 Toyota Jidosha Kabushiki Kaisha Procede et systeme pour purifier les gaz d'echappement et catalyseur de purification des gaz d'echappement utilise avec ce systeme ainsi que procede de fabrication correspondant
JP2001500780A (ja) * 1996-09-04 2001-01-23 エンゲルハード・コーポレーシヨン 触媒組成物およびその製造法
JP2002326033A (ja) 2002-04-26 2002-11-12 Toyota Motor Corp 排ガス浄化用触媒
JP2002336703A (ja) 2001-05-14 2002-11-26 Ict:Kk 排気ガス浄化用触媒
JP2004290827A (ja) 2003-03-27 2004-10-21 Ne Chemcat Corp 軽油燃焼用酸化触媒
JP2005021793A (ja) 2003-07-01 2005-01-27 Mazda Motor Corp 排気ガス浄化用触媒
JP2006036576A (ja) * 2004-07-26 2006-02-09 Daiichi Kigensokagaku Kogyo Co Ltd ジルコニア系多孔質体及びその製造方法
WO2006030763A1 (ja) * 2004-09-16 2006-03-23 Daiichi Kigenso Kagaku Kogyo Co., Ltd. セリウム-ジルコニウム系複合酸化物、その製造方法、それを用いた酸素吸蔵放出材料、排気ガス浄化触媒、及び排気ガス浄化方法
JP2006159159A (ja) 2004-12-10 2006-06-22 Mazda Motor Corp 排気ガス浄化用触媒
JP2007196146A (ja) 2006-01-27 2007-08-09 Babcock Hitachi Kk 排ガス浄化用触媒
JP2007319768A (ja) 2006-05-31 2007-12-13 Toyota Motor Corp 排ガス浄化触媒製造方法
JP2008068225A (ja) 2006-09-15 2008-03-27 Daiichi Kigensokagaku Kogyo Co Ltd 自動車用排気ガス浄化装置に用いられる触媒系、それを用いた排気ガス浄化装置、及び排気ガス浄化方法
JP2008081392A (ja) * 2006-08-22 2008-04-10 Daiichi Kigensokagaku Kogyo Co Ltd 多孔質ジルコニア系粉末及びその製造方法
WO2008093471A1 (ja) * 2007-02-01 2008-08-07 Daiichi Kigenso Kagaku Kogyo Co., Ltd. 自動車用排気ガス浄化装置に用いられる触媒系、それを用いた排気ガス浄化装置、及び排気ガス浄化方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU595655B2 (en) * 1986-11-04 1990-04-05 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for the purification of exhaust gas
EP2357038A4 (en) * 2008-12-03 2014-11-05 Daiichi Kigenso Kagaku Kogyo EMISSION CONTROL CATALYST, EMISSION CONTROL DEVICE THEREFOR AND EMISSION CONTROL

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675675B2 (ja) 1986-11-04 1994-09-28 トヨタ自動車株式会社 排気ガス浄化用触媒
JPH01210032A (ja) * 1988-02-18 1989-08-23 Nippon Engeruharudo Kk 排気ガス浄化用触媒及びその製造方法
JPH03106446A (ja) 1989-09-21 1991-05-07 Cataler Kogyo Kk 排ガス浄化用触媒およびその製造方法
JPH05237390A (ja) 1992-02-28 1993-09-17 Nippon Shokubai Co Ltd 排気ガス浄化用触媒
JPH06205976A (ja) * 1993-01-13 1994-07-26 Nissan Motor Co Ltd 排ガス浄化用触媒
JPH09215922A (ja) * 1996-02-09 1997-08-19 Toyota Motor Corp 排ガス浄化用触媒
JP2001500780A (ja) * 1996-09-04 2001-01-23 エンゲルハード・コーポレーシヨン 触媒組成物およびその製造法
JPH11169712A (ja) 1997-12-17 1999-06-29 Johnson Massey Japan Kk 排ガス浄化用触媒
JP2000027508A (ja) 1998-07-08 2000-01-25 Denso Corp ドアロック操作装置
WO2000027508A1 (fr) 1998-11-05 2000-05-18 Toyota Jidosha Kabushiki Kaisha Procede et systeme pour purifier les gaz d'echappement et catalyseur de purification des gaz d'echappement utilise avec ce systeme ainsi que procede de fabrication correspondant
JP2002336703A (ja) 2001-05-14 2002-11-26 Ict:Kk 排気ガス浄化用触媒
JP2002326033A (ja) 2002-04-26 2002-11-12 Toyota Motor Corp 排ガス浄化用触媒
JP2004290827A (ja) 2003-03-27 2004-10-21 Ne Chemcat Corp 軽油燃焼用酸化触媒
JP2005021793A (ja) 2003-07-01 2005-01-27 Mazda Motor Corp 排気ガス浄化用触媒
JP2006036576A (ja) * 2004-07-26 2006-02-09 Daiichi Kigensokagaku Kogyo Co Ltd ジルコニア系多孔質体及びその製造方法
WO2006030763A1 (ja) * 2004-09-16 2006-03-23 Daiichi Kigenso Kagaku Kogyo Co., Ltd. セリウム-ジルコニウム系複合酸化物、その製造方法、それを用いた酸素吸蔵放出材料、排気ガス浄化触媒、及び排気ガス浄化方法
JP2006159159A (ja) 2004-12-10 2006-06-22 Mazda Motor Corp 排気ガス浄化用触媒
JP2007196146A (ja) 2006-01-27 2007-08-09 Babcock Hitachi Kk 排ガス浄化用触媒
JP2007319768A (ja) 2006-05-31 2007-12-13 Toyota Motor Corp 排ガス浄化触媒製造方法
JP2008081392A (ja) * 2006-08-22 2008-04-10 Daiichi Kigensokagaku Kogyo Co Ltd 多孔質ジルコニア系粉末及びその製造方法
JP2008068225A (ja) 2006-09-15 2008-03-27 Daiichi Kigensokagaku Kogyo Co Ltd 自動車用排気ガス浄化装置に用いられる触媒系、それを用いた排気ガス浄化装置、及び排気ガス浄化方法
WO2008093471A1 (ja) * 2007-02-01 2008-08-07 Daiichi Kigenso Kagaku Kogyo Co., Ltd. 自動車用排気ガス浄化装置に用いられる触媒系、それを用いた排気ガス浄化装置、及び排気ガス浄化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2407238A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2671638A4 (en) * 2011-02-01 2017-04-12 Umicore Shokubai Japan Co., Ltd. Catalyst for cleaning exhaust gas
JP2016187806A (ja) * 2011-02-28 2016-11-04 コーニング インコーポレイテッド 二酸化炭素を捕捉するための物品
JP2013116446A (ja) * 2011-12-02 2013-06-13 Toyota Motor Corp 排ガス浄化用触媒
JP2014057904A (ja) * 2012-09-14 2014-04-03 Mitsui Mining & Smelting Co Ltd 排気ガス浄化用触媒担体
US9707543B2 (en) 2012-09-14 2017-07-18 Mitsui Mining & Smelting Co., Ltd. Exhaust-gas-purification catalyst carrier
WO2014129634A1 (ja) * 2013-02-25 2014-08-28 ユミコア日本触媒株式会社 排ガス浄化用触媒およびそれを用いた排ガス浄化方法
JP5938515B2 (ja) * 2013-02-25 2016-06-22 ユミコア日本触媒株式会社 排ガス浄化用触媒およびそれを用いた排ガス浄化方法
US9421528B2 (en) 2013-02-25 2016-08-23 Umicore Shokubai Japan Co., Ltd. Exhaust gas purifying catalyst and exhaust gas purification method using same

Also Published As

Publication number Publication date
CN102264467B (zh) 2013-11-13
EP2407238A4 (en) 2014-02-12
CN102264467A (zh) 2011-11-30
JPWO2010103870A1 (ja) 2012-09-13
EP2407238A1 (en) 2012-01-18
US20110274603A1 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
WO2010103870A1 (ja) 排気ガス浄化触媒、それを用いた排気ガス浄化装置、及び排気ガス浄化方法
JP5538237B2 (ja) 排気ガス浄化触媒、それを用いた排気ガス浄化装置、及び排気ガス浄化方法
JP5202336B2 (ja) 自動車用排気ガス浄化装置に用いられる触媒系、それを用いた排気ガス浄化装置、及び排気ガス浄化方法
US8057745B2 (en) Catalyst system for vehicle exhaust gas purification devices, exhaust gas purification device using the same, and method for purification of exhaust gases
US7871956B2 (en) Cerium/zirconium-base composite oxide, method for producing the same, oxygen storage/release component using said cerium-zirconium-base composite oxide, exhaust gas purification catalyst, and exhaust gas purification method using the same
EP3317013A1 (en) Nitrous oxide removal catalysts for exhaust systems
JP6007248B2 (ja) 排気ガス浄化用触媒組成物および自動車用排気ガス浄化用触媒
EP1587605A1 (en) Layered catalyst composite and use thereof
WO2012029050A1 (en) Catalyst for gasoline lean burn engines with improved no oxidation activity
JP5502971B1 (ja) 排気ガス用触媒担体及び排ガス浄化触媒
WO2015071724A1 (en) Exhaust gas control catalyst
JP5120360B2 (ja) 酸素吸放出材及びそれを設けた排ガス浄化用触媒
US20240149251A1 (en) Exhaust gas purification catalyst composition and exhaust gas purification catalyst
JP3812579B2 (ja) 排気ガス浄化用触媒

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003827.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750626

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010750626

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011503745

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE