WO2010103725A1 - 無線通信システム、基地局、移動局、基地局の制御方法、移動局の制御方法、及びプログラムが格納された記憶媒体 - Google Patents

無線通信システム、基地局、移動局、基地局の制御方法、移動局の制御方法、及びプログラムが格納された記憶媒体 Download PDF

Info

Publication number
WO2010103725A1
WO2010103725A1 PCT/JP2010/000745 JP2010000745W WO2010103725A1 WO 2010103725 A1 WO2010103725 A1 WO 2010103725A1 JP 2010000745 W JP2010000745 W JP 2010000745W WO 2010103725 A1 WO2010103725 A1 WO 2010103725A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier frequency
frequency band
control
base station
mobile station
Prior art date
Application number
PCT/JP2010/000745
Other languages
English (en)
French (fr)
Inventor
網中洋明
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2011503665A priority Critical patent/JP5609862B2/ja
Priority to US13/202,480 priority patent/US8706132B2/en
Publication of WO2010103725A1 publication Critical patent/WO2010103725A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies

Definitions

  • a plurality of carriers having different frequencies such as MC-HSDPA (Multi-Carrier HSDPA operation) and DC-HSUPA (Dual Cell High Speed Uplink Packet Access) are used.
  • the present invention relates to a radio communication system that performs communication between a base station and a mobile station simultaneously.
  • DC-HSDPA using existing HSDPA High Speed Downlink Packet Access
  • HSDPA High Speed Downlink Packet Access
  • DC-HSDPA uses the HSDPA simultaneously in each of two adjacent carrier frequency bands (each 5 MHz) in the same frequency band, thereby increasing the speed in the downlink direction.
  • the outline of DC-HSDPA under study in 3GPP will be described.
  • Non-Patent Documents 1 to 3 For details of the technical contents of DC-HSDPA, refer to 3GPP Technical Specification (Non-Patent Documents 1 to 3).
  • the first serving HS-DSCH cell is simply called a “serving HS-DSCH cell”.
  • the second serving HS-DSCH cell is also called a “secondary serving HS-DSCH cell”.
  • the second serving HS-DSCH cell is formed dependently on the condition that the first serving HS-DSCH cell is generated.
  • a serving HS-DSCH cell may be called a “primary carrier” or a “base carrier”.
  • the secondary serving HS-DSCH cell may be referred to as a “secondary carrier” or an “extended carrier”.
  • the first serving HS-DSCH cell can use all physical channels of HSDPA described later for communication with a mobile station.
  • the second serving HS-DSCH cell of DC-HSDPA shares part of the control information of the first serving HS-DSCH cell in communication with the mobile station. By sharing this control information, the second serving HS-DSCH cell can be operated by setting only a part of the physical channels of HSDPA described later, and the use efficiency of radio resources due to redundant transmission of control information can be improved. The decline is suppressed.
  • the first serving HS-DSCH cell is referred to as a “primary serving HS-DSCH cell” in order to clarify the identification of the two serving HS-DSCH cells.
  • the primary serving HS-DSCH cell may be abbreviated as “primary cell” and the secondary serving HS-DSCH cell may be abbreviated as “secondary cell”.
  • FIG. 23 shows a physical channel used for performing packet communication by DC-HSDPA between the base station 91 and the mobile station 92 supporting DC-HSDPA.
  • the HS-PDSCH is a downlink physical channel for data transmission that transfers the transport channel HS-DSCH.
  • HS-SCCH is used for transmission of downlink signaling information related to HS-DSCH transmission.
  • HS-DPCCH is an uplink physical channel used for transmitting feedback information related to HS-DSCH transfer from the mobile station 92 to the base station 91.
  • the feedback information includes an ACK response related to hybrid ARQ (Automatic repeat-request) and CQI (channel Quality Indication).
  • ARQ Automatic repeat-request
  • CQI channel Quality Indication
  • the uplink DPCH and downlink DPCH are used for transmission / reception of control information related to DC-HSDPA, power control in the vertical direction, and reporting of measurement information to the base station.
  • E-DCH may be used as uplink communication other than uplink DPCH.
  • E-DCH refer to 3GPP Technical Specification (Non-Patent Document 4). Note that other common physical channels (P-CPICH, SCH, P-CCPCH, S-CCPCH, etc.) that are essential for generating the primary cell and the secondary cell are also used.
  • P-CPICH Primary Common Pilot Channel
  • DPCH Dedicated Physical Channel
  • HS-DPCCH Dedicated Physical Control Channel (uplink) for HS-DSCH
  • HS-DSCH High Speed Downlink Shared Channel
  • HS-PDSCH High Speed Physical Downlink Shared Channel
  • HS-SCCH Shared Control Channel for HS-DSCH
  • P-CCPCH Primary Common Control Physical Channel
  • S-CCPCH Secondary Common Control Physical Channel SCH: Synchronization Channel
  • E-DCH Enhanced Dedicated Channel
  • MC-HSDPA Multi-Carrier HSDPA operation
  • MC-HSDPA uses a combination of carrier frequency bands belonging to different frequency bands, that is, a combination of carrier frequency bands that are not adjacent but separated from each other, for the primary cell and the secondary cell.
  • Non-Patent Document 5 for details of MC-HSDPA.
  • DC-HSDPA of 3GPP Release 8 uses the carrier frequency band adjacent to the primary cell and secondary cell, and the radio environment of the primary cell and secondary cell is always regarded as the same, and the power control of the primary cell and the mobile station measure Share information with secondary cells. Thereby, the power control of a secondary cell and the report of the information which the mobile station regarding a secondary cell measures can be abbreviate
  • FIG. 24 shows a physical channel used for packet communication by MC-HSDPA between the base station 91 and the mobile station 92 supporting MC-HSDPA. Note that FIG. 24 is a diagram created by the present inventor on the assumption that a channel for performing secondary cell control is added, and is not a known diagram.
  • the uplink DPCH and downlink DPCH set in the secondary cell are channels for secondary cell control.
  • the inventor of the present application has found that there is a problem described below when assuming that the secondary cell control of MC-HSDPA is always performed. Assuming that the secondary cell control is always performed in MC-HSDPA, the effect of improving the radio quality of the secondary cell can be expected in the case where the frequency band apart from the carrier frequency band of the primary cell is used for the secondary cell. However, in the case where the carrier frequency bands of the primary cell and the secondary cell are adjacent to each other, it is considered that the secondary cell can share the power control of the primary cell and the information measured by the mobile station, similarly to DC-HSDPA. In spite of this, if additional DPCH, E-DPDCH, etc.
  • Both DC-HSDPA and MC-HSDPA described above are high-speed technologies for downstream packet communication, but high-speed upstream packet communication called HSUPA (High Speed Uplink Packet Access) or EUL (Enhanced Uplink) is used for dual cell operation. There is a similar problem when applied to.
  • HSUPA High Speed Uplink Packet Access
  • EUL Enhanced Uplink
  • the present invention has been made in consideration of the above-mentioned problems, and can select either a combination of carrier frequency bands separated for primary cells and secondary cells or a combination of adjacent carrier frequency bands.
  • a wireless communication system such as HSPA
  • the purpose is to be able to effectively deal with two problems that are in a trade-off relationship (a contradiction) between deterioration of radio resource utilization efficiency and deterioration of secondary cell radio quality.
  • the wireless communication system can perform wireless communication with a mobile station using the first and second carrier frequency bands simultaneously in at least one of the uplink direction and the downlink direction.
  • a base station configured as described above.
  • the mobile station and the base station are configured to be able to switch whether or not to perform control related to the second carrier frequency band using a radio channel transmitted in the second carrier frequency band. .
  • the base station has a wireless communication unit and a control unit.
  • the wireless communication unit can perform wireless communication with a mobile station by simultaneously using the first and second carrier frequency bands in at least one of the uplink direction and the downlink direction.
  • the control unit can switch whether or not to perform control related to the second carrier frequency band using a radio channel transmitted in the second carrier frequency band.
  • the mobile station has a radio communication unit and a control unit.
  • the wireless communication unit can perform wireless communication with the base station by simultaneously using the first and second carrier frequency bands in at least one of the uplink direction and the downlink direction.
  • the control unit can switch whether or not to perform control related to the second carrier frequency band using a radio channel transmitted in the second carrier frequency band.
  • a fourth aspect of the present invention is a base station control method capable of performing wireless communication with a mobile station by simultaneously using the first and second carrier frequency bands in at least one of the uplink direction and the downlink direction. is there.
  • the method includes a step of switching whether to perform control related to the second carrier frequency band using a radio channel transmitted in the second carrier frequency band.
  • a fifth aspect of the present invention is a mobile station control method capable of performing wireless communication with a base station by simultaneously using the first and second carrier frequency bands in at least one of the uplink direction and the downlink direction. is there.
  • the method includes a step of switching whether to perform control related to the second carrier frequency band using a radio channel transmitted in the second carrier frequency band.
  • a computer for processing related to a base station capable of performing wireless communication with a mobile station by simultaneously using the first and second carrier frequency bands in at least one of the uplink direction and the downlink direction.
  • This is a program to be executed.
  • the processing provided by the computer executing the program switches whether or not to perform control related to the second carrier frequency band using a radio channel transmitted in the second carrier frequency band; including.
  • a computer for processing related to a mobile station capable of performing wireless communication with a base station by simultaneously using the first and second carrier frequency bands in at least one of the uplink direction and the downlink direction.
  • This is a program to be executed.
  • the processing provided by the computer executing the program switches whether or not to perform control related to the second carrier frequency band using a radio channel transmitted in the second carrier frequency band; including.
  • Radio communication system, base station, base station controller, mobile station, program, and cell control that can effectively deal with two problems in trade-off relationship (decimation) between degradation and degradation of secondary cell radio quality Can provide a method.
  • FIG. 2 is a block diagram illustrating a configuration example of a base station illustrated in FIG. 1.
  • FIG. 2 is a block diagram illustrating a configuration example of a mobile station illustrated in FIG. 1.
  • It is a block diagram which shows the structural example of the base station control apparatus shown in FIG.
  • It is a sequence diagram which shows the example which changes the control information of a secondary cell.
  • It is a flowchart regarding the change method of the secondary cell control which the base station control apparatus concerning Embodiment 1-3 of invention performs.
  • the base station control device 30 determines whether the secondary cell control is valid / invalid, and notifies the base station 10 and the mobile station 20 of the secondary cell control information.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system including a base station 10 according to the present embodiment.
  • the radio communication system according to the present embodiment will be described as an FDD (Frequencyequdivision Duplex) -CDMA, more specifically, a W-CDMA radio communication system.
  • FDD Frequencyequdivision Duplex
  • the base station 10 is connected to the mobile network operator's core network 80 via the base station control device 30, and relays traffic between the mobile station 20 and the core network 80.
  • the base station 10 is a base station that supports MC-HSDPA, and generates a primary cell and a secondary cell having different frequency channels (carrier frequency bands).
  • the base station 10 transmits a common physical channel (P-CPICH, SCH, etc.) for forming a primary cell and a secondary cell, and carries a HS-DSCH in each of two serving HS-DSCH cells (HS -PDSCH).
  • P-CPICH, SCH common physical channel
  • SCH serving HS-DSCH cells
  • the base station 10 can change whether or not the secondary cell control is executed or the control content thereof.
  • the base station control device 30 sets a secondary cell and a primary cell for the base station 10.
  • a structure of the base station 10, the mobile station 20, and the base station control apparatus 30 and the detail of the change procedure of the control method of a secondary cell are demonstrated in order.
  • the number of secondary cells formed by the base station 10 may be two or more. In the present embodiment, for the convenience of explanation, it is assumed that the number of secondary cells formed by the base station 10 is one.
  • FIG. 2 is a block diagram illustrating a configuration example of the base station 10.
  • the radio communication unit 11 receives an uplink signal transmitted from the mobile station 20.
  • the received data processing unit 13 restores received data by performing various processes such as despreading of received uplink signals, RAKE combining, deinterleaving, channel decoding, and error correction.
  • the obtained reception data is transferred to the base station control device 30 via the communication unit 14.
  • the base station 10 may have the function of a base station control device.
  • the base station 10 has the function of a base station controller, if the received data obtained by the received data processing unit 13 is a location registration request or a radio channel establishment request of the mobile station 20, these controls are executed.
  • the received data is sent to a base station controller function unit (not shown) included in the base station 10.
  • the transmission data processing unit 12 acquires transmission data transmitted to the mobile station 20 from the communication unit 14, and performs error correction coding, rate matching, interleaving, and the like to generate a transport channel. Further, the transmission data processing unit 12 adds a control information such as a TPC (TransmitCPower Control) bit to the data sequence of the transport channel to generate a radio frame. In addition, the transmission data processing unit 12 performs a spreading process and symbol mapping to generate a transmission symbol sequence. The radio communication unit 11 performs a process such as orthogonal modulation, frequency conversion, and signal amplification on the transmission symbol sequence to generate a downlink signal, and transmits this to the mobile station 20.
  • TPC TransmitCPower Control
  • the secondary cell control unit 15 acquires the secondary cell control information notified from the base station control device 30 via the communication unit 14.
  • the secondary cell control unit 15 instructs the radio communication unit 11 to change the secondary cell control based on the acquired secondary cell control information.
  • FIG. 3 is a block diagram illustrating a configuration example of the mobile station 20.
  • the wireless communication unit 21 receives a downlink signal via an antenna.
  • the reception data processing unit 22 sends the reception data restored from the received downlink signal to the buffer unit 26.
  • the received data stored in the buffer unit 26 is read out and used according to its purpose.
  • the transmission data processing unit 25 and the wireless communication unit 21 generate an uplink signal using the transmission data stored in the buffer unit 26 and transmit the uplink signal to the base station 10.
  • the secondary cell control unit 24 acquires secondary cell setting information from the reception data processing unit 22.
  • the secondary cell setting information includes secondary cell control information.
  • the secondary cell control information is generated by the base station control device 30 and includes information that specifies whether or not to execute secondary cell control.
  • the secondary cell control unit 24 instructs the transmission data processing unit 25 via the reception data processing unit 22 and the transmission data control unit 23 to enable or disable the secondary cell control according to the secondary cell control information.
  • FIG. 4 is a block diagram illustrating a configuration example of the base station control device 30.
  • the communication unit 31 receives a signal transmitted from the base station 10.
  • the reception data processing unit 33 transfers the received data to the core network 80 via the communication unit 34.
  • the transmission data processing unit 32 acquires transmission data transmitted toward the mobile station 20 and the base station 10 from the communication unit 34.
  • the secondary cell control unit 35 manages information about the secondary cell, and notifies the base station 10 and the mobile station 20 of the secondary cell setting information including the secondary cell control information from the communication unit 31.
  • FIG. 5 determines whether or not secondary cell control is necessary when a new secondary cell is generated, and enables secondary cell control in the base station 10 and the mobile station 20 based on the determination result (ALT1 in FIG. 5) or It is a sequence diagram which shows an example of the procedure set to invalidity (ALT2 of FIG. 5).
  • FIG. 5 shows the interaction between the base station control device 30, the base station 10 and the mobile station 20, in which “RNC” corresponds to the base station control device 30 and “NB” corresponds to the base station 10.
  • “UE” corresponds to the mobile station 20.
  • step S101 the base station controller 30 determines whether or not the secondary cell should be used from the load state of radio resources, the amount of transmission data, and the like. When it is determined to use the secondary cell, it is further determined whether or not to enable the secondary cell control according to conditions such as the inter-frequency distance between the primary cell and the secondary cell.
  • the base station control apparatus 30 notifies secondary cell setting information to the mobile station 20 using Radio
  • step S104 the mobile station 20 confirms the secondary cell control information included in the secondary cell setting information notified from the base station control device 30, and sends a confirmation completion notification to the base station control device 30 with Radio Bearer Reconfiguration Complete.
  • the base station 10 confirms the secondary cell control information included in the secondary cell configuration information notified from the base station control device 30 (step S105), and transmits a confirmation completion notification using Radio Link Reconfiguration Response. (Step S106).
  • steps S108 to S125 the presence / absence of secondary cell control is set according to the notified secondary cell control information, and transmission of physical channels in the primary cell and the secondary cell is performed.
  • Steps S108 to S117 show a sequence when the secondary cell control is valid
  • steps S118 to S125 show a sequence when the secondary cell control is invalid.
  • steps S108 and S109 the base station 10 and the mobile station 20 determine the operation of the secondary cell with the secondary cell control enabled.
  • steps S110 to S112 a physical channel group related to P-CPICH, DPCH, and HSDPA of the primary cell is transmitted and received between the base station 10 and the mobile station 20.
  • the physical channel group indicated by “HSDPA @ Primary” in the figure includes downlink HS-SCCH, downlink HS-PDSCH, and uplink HS-DPCCH.
  • steps S114 to S116 physical channel groups related to P-CPICH, DPCH and HSDPA of the secondary cell are transmitted and received.
  • the physical channel group indicated by “HSDPA @ Secondary” in the figure includes downlink HS-SCCH, downlink HS-PDSCH, and uplink HS-DPCCH, similar to HSDPA @ Primary.
  • “Measurement Report” in the figure is a message for notifying the base station of the uplink transmission power measured by the mobile station 20 and the reception power of other frequencies, and is executed in both the primary cell and the secondary cell in this sequence example.
  • the Measurement Report of the secondary cell is transmitted using the uplink channel set for the secondary cell or the uplink channel set for the primary cell.
  • steps S118 and S119 the base station 10 and the mobile station 20 determine the operation of the secondary cell in which the secondary cell control is invalidated.
  • steps S120 to S123 the physical channel group and MeasurementMeasureReport related to P-CPICH, DPCH, and HSDPA of the primary cell are transmitted and received between the base station 10 and the mobile station 20.
  • steps S124 and S125 a physical channel group related to P-CPICH and HSDPA of the secondary cell is transmitted from the base station 10 to the mobile station 20. Since secondary cell control is invalid, the physical channel group indicated by “HSDPA @ Secondary” does not include HS-DPCCH, and DPCH transmission / reception and Measurement-Report transmission by the mobile station 20 are not performed.
  • FIG. 6 is a flowchart relating to a change in secondary cell control executed by the base station control device 30.
  • the secondary cell control unit 35 determines whether or not the use condition of the secondary cell is satisfied based on the load state of radio resources, the amount of transmission data, and the like. If the use condition of the secondary cell is not satisfied (NO in S201), the secondary cell control unit 35 repeatedly executes the determination in step S201. If the secondary cell setting condition is satisfied (YES in S201), the secondary cell control unit 35 determines whether secondary cell control is necessary (step S202).
  • the secondary cell control unit 35 may determine that the secondary cell control is “unnecessary”.
  • the secondary cell control unit 35 may determine that the secondary cell control is “necessary”.
  • the secondary cell control unit 35 When it is determined that the secondary cell control is “necessary” (YES in step S202), the secondary cell control unit 35 notifies the base station 10 and the mobile station 20 of the secondary cell setting information including the secondary cell control information indicating “valid”. (Step S203). On the other hand, when the secondary cell control is determined to be “unnecessary” (NO in step S202), the secondary cell control unit 35 transmits the secondary cell setting information including the secondary cell control information indicating “invalid” to the base station 10 and the mobile station. 20 is notified (step S204).
  • FIG. 17 shows an example of secondary cell configuration information (Radio Bearer Reconfiguration) included in the RRC message notified from the base station control device 30 to the mobile station 20.
  • the table of FIG. 18 has shown an example of the secondary cell setting information (Radio
  • FIG. The information element “Control mode indicator” shown in FIGS. 17 and 18 corresponds to secondary cell control information.
  • the data type of “Control mode indicator” is an enumerated type, and has “available” and “not-available” as set elements.
  • Control mode indicator indicating secondary cell control information. Therefore, when using the examples of FIGS. 17 and 18, the base station control device 30 determines whether or not the entire secondary cell control including power control related to the secondary cell, measurement information reporting, uplink channel transmission, and the like (valid or invalid). May be notified to the base station 10 and the mobile station 20 using this one information element (Control mode indicator).
  • FIG. 7 is a flowchart relating to a change in secondary cell control executed by the mobile station 20.
  • the secondary cell control unit 24 determines whether secondary cell setting information has been received. When the secondary cell setting information is not received (No in S301), the secondary cell control unit 24 repeatedly executes the determination in step S301.
  • the secondary cell control unit 24 determines whether to enable the secondary cell control (step S302). Specifically, in step S302, the secondary cell control unit 24 may confirm the secondary cell control information.
  • the control information indicates validity (YES in S302)
  • the secondary cell control unit 24 enables secondary cell control by the reception data processing unit 22 and the transmission data processing unit 25 and sets a secondary cell (step S303).
  • the secondary cell control unit 24 does not perform secondary cell control by the reception data processing unit 22 and the transmission data processing unit 25, and the secondary cell setting information notified from the base station control device 30.
  • a secondary cell is set based on (S304).
  • FIG. 8 is a flowchart relating to the change of secondary cell control executed by the base station 10.
  • the secondary cell control unit 15 determines whether secondary cell setting information has been received. When the secondary cell setting information is not received (NO in S401), the secondary cell control unit 15 repeatedly executes the determination in step S401.
  • the secondary cell control unit 15 determines whether or not to enable the secondary cell control (step S402). Specifically, in step S402, the secondary cell control unit 15 may confirm the control information of the secondary cell.
  • the control information indicates validity (YES in S402)
  • the secondary cell control unit 15 enables the secondary cell control by the reception data processing unit 13 and the transmission data processing unit 12 (step S403).
  • the control information indicates invalidity, the secondary cell control unit 15 does not perform secondary cell control by the reception data processing unit 13 and the transmission data processing unit 12, and is notified from the base station control device 30.
  • a secondary cell is set based on (S404).
  • the base station 10 and the mobile station 20 can change the secondary cell control according to the instruction of the secondary cell control information from the base station control device 30. For example, what is necessary is just to determine the content of the secondary cell control information according to the inter-frequency distance between the carrier frequency band of the primary cell and the carrier frequency band of the secondary cell.
  • the present embodiment can effectively deal with two problems that are in a trade-off relationship (a trade-off relationship) between the deterioration of the utilization efficiency of radio resources and the deterioration of the radio quality of the secondary cell.
  • the base station control device 30 determines whether secondary cell control is necessary and notifies the base station 10 and the mobile station 20 of the secondary cell control information.
  • the necessity (valid or invalid) of secondary cell control including power control, measurement information reporting, uplink channel transmission, and the like is collectively controlled by one information element is specifically described. It was shown to.
  • Embodiment 2 describes an example in which a plurality of information elements are used for secondary cell control transmission to base station 10 and mobile station 20.
  • a part of the plurality of information elements transmits a part of the plurality of control information related to the secondary cell control, and the other part of the plurality of information elements transmits the other part of the plurality of control information.
  • FIG. 19 shows an example of secondary cell setting information (Radio Bearer Reconfiguration) included in the RRC message notified from the base station control device 30 to the mobile station 20.
  • the table of FIG. 20 has shown an example of the secondary cell setting information (Radio
  • Each of the tables in FIGS. 19 and 20 includes two information elements (Control mode indicators 1 and 2) indicating secondary cell control information.
  • the base station control device 30 may control the validity / invalidity of power control and measurement information report with the Control mode indicator 1, and may control the validity / invalidity of uplink channel transmission with the Control mode indicator 2.
  • the assignment of control contents to Control mode indicators 1 and 2 may be modified as follows. (Different combination example 1) -Control mode indicator 1: Power control, uplink channel transmission-Control mode indicator 2: Measurement information report (different combination example 2) -Control mode indicator 1: Measurement information report, uplink channel transmission-Control mode indicator 2: Power control
  • the base station 10 and the mobile station 20 according to the present embodiment have a plurality of details included in the secondary cell control according to the instruction content of the secondary cell control information notified using a plurality of information elements.
  • Control for example, presence / absence of power control, presence / absence of uplink channel transmission, presence / absence of measurement information report
  • the configuration of detailed control can be individually set according to various conditions such as the inter-frequency distance between the carrier frequency band of the primary cell and the carrier frequency band of the secondary cell, and the radio resource load factor of the secondary cell.
  • the base station 10 and the mobile station 20 according to the present embodiment can set not only whether or not to perform the secondary cell control but also the details of the secondary cell control.
  • the base station control device 30 determines whether secondary cell control is necessary and notifies the base station 10 and the mobile station 20 of the secondary cell control information. Furthermore, in the third embodiment, an example in which the same number of information elements as the number of detailed controls included in the secondary cell control is prepared, and the validity / invalidity of each detailed control is individually notified to the base station 10 and the mobile station 20 Will be described.
  • FIG. 21 shows an example of secondary cell setting information (Radio Bearer Reconfiguration) included in the RRC message notified from the base station control device 30 to the mobile station 20.
  • the table of FIG. 22 has shown an example of the secondary cell setting information (Radio
  • Radio Bearer Reconfiguration Radio Bearer Reconfiguration
  • Each of the tables in FIGS. 19 and 20 includes three information elements (Control mode indicator 1 to 3) indicating secondary cell control information.
  • the base station control apparatus 30 may associate three detailed controls, ie, presence / absence of power control, presence / absence of measurement information report, and presence / absence of uplink channel transmission, with three Control mode indicators 1 to 3 in a one-to-one correspondence.
  • the secondary cell control may include four or more detailed controls. In this case, the number of information elements may be increased in accordance with the number of detailed controls.
  • the base station 10 and the mobile station 20 have a plurality of details included in the secondary cell control according to the instruction content of the secondary cell control information notified using a plurality of information elements.
  • Control items for example, presence / absence of power control, presence / absence of uplink channel transmission, presence / absence of measurement information report
  • only necessary control is selectively selected from a plurality of detailed control items. Since it can be executed, more efficient operation is possible.
  • Embodiment 4 of the Invention demonstrates the example which switches secondary cell control information during a secondary cell operation.
  • FIG. 9 is a sequence diagram illustrating an example of a procedure for changing the secondary cell control during the secondary cell operation.
  • step S501 whether the base station control device 30 should change the secondary cell control is determined from the load status of the radio resource, the amount of transmission data, and the like.
  • the base station control device 30 When changing the secondary cell control, the base station control device 30 notifies the mobile station 20 and the base station 10 of the secondary cell control information (S502 and S503).
  • the notification of the secondary cell control information may be performed using, for example, “Radio” Bearer “Reconfiguration” and “Radio” Link “Reconfiguration” Request as described in the first to third embodiments.
  • step S504 the mobile station confirms the secondary cell control information included in the secondary cell setting information notified from the base station control device.
  • the base station 10 confirms the secondary cell control information included in the secondary cell setting information notified from the base station control device 30 (step S505).
  • the mobile station 20 and the base station 10 may notify the base station control device 30 of a confirmation completion notification.
  • the confirmation completion notification for example, Radio Link Reconfiguration Response and Radio Bearer Reconfiguration ⁇ Complete may be used as described in the first to third embodiments.
  • steps S506 to S523 are the same as steps S108 to S125 in the first embodiment, description thereof is omitted.
  • FIG. 10 is a flowchart relating to the change of secondary cell control executed by the base station control device 30.
  • the secondary cell control unit 35 determines whether or not the secondary cell control execution condition is satisfied based on the load status of the secondary cell, the transmission power of the mobile station 20, and the like. In other words, the secondary cell control unit 35 determines the necessity of either the entire secondary cell control or the detailed control items included therein.
  • the secondary cell control unit 35 checks whether or not the secondary cell control is currently enabled (whether or not the secondary cell control is performed) ( Step S604).
  • the secondary cell control unit 35 When the secondary cell control is valid (YES in S604), the secondary cell control unit 35 notifies the base station 10 and the mobile station 20 of secondary cell control information for invalidating the secondary cell control (S605). If the secondary cell control is invalid (NO in S604), there is no need to change the secondary cell control, and the process returns to step S601.
  • step S601 when the secondary cell control execution condition is satisfied (YES in S601), the secondary cell control unit 35 checks whether or not the secondary cell control is currently enabled (step S602). If the secondary cell control is valid (YES in S602), there is no need to change the secondary cell control, and the process returns to step S601. When the secondary cell control is invalid (NO in S602), the secondary cell control unit 35 notifies the base station 10 and the mobile station 20 of secondary cell control information for validating the secondary cell control.
  • the secondary cell setting information notified from the base station control device 30 of this embodiment to the mobile station 20 and the base station 10 is the specific example shown in FIGS. 17 to 22 as correction of Radio Bearer Reconfiguration and modification of NBAP message. Either of these may be used.
  • FIG. 11 is a flowchart relating to the change of secondary cell control executed by the mobile station 20.
  • the secondary cell control unit 24 determines whether secondary cell control information has been received. When the secondary cell setting information is not received (NO in S701), the secondary cell control unit 24 repeatedly executes the determination in step S701. When the secondary cell setting information is received (YES in S701), the secondary cell control unit 24 determines whether or not the secondary cell control information indicates validity, in other words, indicates whether or not secondary cell control is started. Determination is made (step S702). If the control information indicates validity (YES in S702), the secondary cell control unit 24 determines whether the secondary cell control is currently valid, in other words, whether the secondary cell control is being performed (step S703).
  • step S703 If the control of the secondary cell is already effective (YES in step S703), there is no need to change the control, and the process returns to step S701.
  • the control of the secondary cell is invalid (NO in step S703), the secondary cell control by the reception data processing unit 22 and the transmission data processing unit 25 is validated (step S704), and the process returns to step S701.
  • the secondary cell control unit 24 determines whether the secondary cell control is currently valid, in other words, whether the secondary cell control is in progress (S705). . If the secondary cell control is valid (YES in S705), the secondary cell control unit 24 stops the secondary cell control by the reception data processing unit 22 and the transmission data processing unit 25 (step S706). If the secondary cell control is already invalid (NO in S705), there is no need to change the control, and the process returns to step S701.
  • FIG. 12 is a flowchart relating to the change of secondary cell control executed by the base station 10.
  • the secondary cell control unit 15 determines whether secondary cell control information has been received. When the secondary cell control information has not been received (NO in S801), the secondary cell control unit 15 repeatedly executes the determination in step S801. When the secondary cell control information is received (YES in S801), the secondary cell control unit 15 determines whether or not the secondary cell control information indicates validity, in other words, whether or not the secondary cell control is started. (Step S802). When the control information indicates validity (YES in S802), the secondary cell control unit 15 determines whether the secondary cell control is currently valid, in other words, whether the secondary cell control is being performed (step S803).
  • step S803 If the control of the secondary cell is already effective (YES in step S803), there is no need to change the control, and the process returns to step S801. If the control of the secondary cell is invalid (NO in step S803), the secondary cell control by the reception data processing unit 13 and the transmission data processing unit 12 is validated (step S804), and the process returns to step S701.
  • the secondary cell control unit 15 determines whether the secondary cell control is currently valid, in other words, whether the secondary cell control is being performed (S805).
  • the secondary cell control unit 15 stops the secondary cell control by the reception data processing unit 13 and the transmission data processing unit 12 (step S806). If the secondary cell control is already invalid (NO in S805), there is no need to change the control, and the process returns to step S701.
  • the base station 10 and the mobile station 20 can change the secondary cell control during the secondary cell operation according to the instruction of the secondary cell control information from the base station control device 30. Therefore, according to the present embodiment, in a system such as MC-HSPA that can select either a combination of carrier frequency bands separated for primary cells and secondary cells and a combination of adjacent carrier frequency bands, radio resources It is possible to flexibly deal with two problems that are in a trade-off relationship (a contradiction) between the deterioration of the usage efficiency of the mobile station and the deterioration of the radio quality of the secondary cell according to the change in the situation during operation.
  • Embodiments 1 to 4 the example in which the base station control device 30 determines whether the secondary cell control is valid or invalid is shown. In the fifth embodiment, the base station 10 and / or the mobile station 20 will determine whether the secondary cell control is valid / invalid.
  • FIG. 13 is a sequence diagram illustrating an example of a procedure for setting a secondary cell during operation.
  • the base station control device 30 determines whether or not to use the secondary cell based on the load state of radio resources, the amount of transmission data, and the like.
  • the base station control apparatus 30 notifies secondary cell setting information to the mobile station 20 using Radio
  • the base station control apparatus 30 notifies secondary cell setting information to the base station 10 using Radio
  • the secondary cell setting information transmitted by the base station control device 30 may not include the secondary cell control information. .
  • the mobile station 20 confirms the setting information of the secondary cell notified from the base station controller 30 (S904), and transmits a confirmation completion notification to the base station controller 30 using Radio Bearer Reconfiguration Complete (step S907). Further, the base station 10 confirms the secondary cell setting information notified from the base station control device 30 (S905), and transmits a confirmation completion notification using Radio Link Reconfiguration Response (step S906).
  • the mobile station 20 and the base station 10 calculate the inter-frequency distance between the carrier frequency band of the primary cell and the carrier frequency band of the secondary cell.
  • the mobile station 20 and the base station 10 enable the secondary cell control when the inter-frequency distance is larger than a predetermined threshold, and disable the secondary cell control when it is smaller than the threshold.
  • the predetermined threshold used for the determination of the inter-frequency distance may be generated by the mobile station 20 and the base station 10, may be stored in advance in the mobile station 20 and the base station 10, or may be controlled by the base station. You may notify to the mobile station 20 and the base station 10 from the apparatus 30. FIG.
  • the determination of the necessity of secondary cell control using the calculation result of the inter-frequency distance may be performed by either one of the base station 10 and the mobile station 20.
  • the one device that has determined whether or not the secondary cell control is necessary may notify the other device of the determination result or the control content (control valid or invalid) according to the determination result.
  • steps S908 to S925 are the same as steps S108 to S125 in the first embodiment, description thereof is omitted.
  • FIG. 14 is a flowchart relating to a change in secondary cell control executed by the base station control device 30.
  • the secondary cell control unit 35 determines whether or not the secondary cell usage condition is satisfied from the load state of radio resources, the amount of transmission data, and the like. If the use condition of the secondary cell is not satisfied (NO in S1001), the secondary cell control unit 35 repeatedly executes the determination in step S1001. When the use condition of the secondary cell is satisfied (YES in S1001), the secondary cell control unit 35 notifies the base station 10 and the mobile station 20 of the secondary cell setting information (step S1002).
  • FIG. 15 is a flowchart relating to a change in secondary cell control executed by the mobile station 20.
  • the secondary cell control unit 24 determines whether secondary cell setting information has been received. When the secondary cell setting information has not been received (NO in S1101), the secondary cell control unit 24 repeatedly executes the determination in step S1101. When the secondary cell setting information is received (YES in S1101), the secondary cell control unit 24 determines whether or not the secondary cell control is necessary, in other words, whether or not the execution condition of the secondary cell control is satisfied (step S1102). . When the execution condition of the secondary cell control is satisfied (YES in S1102), the secondary cell control unit 24 validates the secondary cell control and sets the secondary cell based on the secondary cell setting information notified from the base station control device 30. (Step S1103).
  • the secondary cell control unit 24 invalidates the secondary cell control and determines the secondary cell based on the secondary cell setting information notified from the base station control device 30. Is set (step S1104).
  • FIG. 16 is a flowchart relating to the change in secondary cell control executed by the base station 10.
  • the secondary cell control unit 15 determines whether secondary cell setting information has been received. When the secondary cell setting information is not received (NO in S1201), the secondary cell control unit 15 repeatedly executes the determination in step S1201. When the secondary cell setting information is received (YES in S1201), the secondary cell control unit 15 determines whether or not the secondary cell control is necessary, in other words, whether or not the execution condition of the secondary cell control is satisfied (step S1202). When the secondary cell control execution condition is satisfied (YES in S1202), the secondary cell control unit 15 validates the secondary cell control and sets the secondary cell based on the secondary cell setting information notified from the base station control device 30. (Step S1203).
  • the secondary cell control unit 15 invalidates the secondary cell control and sets the secondary cell based on the secondary cell setting information notified from the base station control device 30 ( Step S1204).
  • the base station 10 and the mobile station 20 can autonomously determine whether or not secondary cell control needs to be performed.
  • the determination of whether or not the secondary cell control needs to be performed may be performed not only for the entire secondary cell control but also for start / stop (valid / invalid) for each detailed control item included in the secondary cell control.
  • the detailed control items include, for example, the presence / absence of transmission power control, the presence / absence of measurement information reporting, the presence / absence of uplink channel transmission, and the like.
  • radio resources it becomes possible for the base station 10 and the mobile station 20 to autonomously cope with two problems that are in a trade-off relationship (a contradiction) between the deterioration of the use efficiency of the mobile station and the deterioration of the radio quality of the secondary cell.
  • the necessity of secondary cell control is determined based on the inter-frequency distance between the carrier frequency band of the primary cell and the carrier frequency band of the secondary cell.
  • the necessity of secondary cell control may be determined based on other conditions.
  • the start of secondary cell control may be determined in response to the radio resource usage amount and radio resource usage rate of the frequency used for the secondary cell exceeding a predetermined threshold.
  • the start of secondary cell control may be determined when the uplink transmission power of the mobile station 20 connected to the secondary cell exceeds a predetermined threshold.
  • the threshold used for these determinations is the base station control device 30.
  • the base station 10 or the mobile station 20 may measure the throughput and load, and request the base station control device 30 to perform secondary cell control based on the result.
  • Radio Bearer Reconfiguration (RRC message) and Radio Link Reconfiguration Request (NBAP message) are used as messages for notifying secondary cell control information.
  • the RRC message and NBAP message mentioned may be used.
  • RRC message -TRANSPORT CHANNEL RECONFIGURATION -RRC CONNECTION SETUP -RADIO BEARER SETUP -RADIO BEARER RECONFIGURATION -PHYSICAL CHANNEL RECONFIGURATION -CELL UPDATE CONFIRM -ACTIVE SET UPDATE
  • NAP message -RADIO LINK SETUP REQUEST -RADIO LINK ADDITION REQUEST -RADIO LINK PARAMETER UPDATE INDICATION
  • the base station 10 may form a plurality of secondary cells.
  • the base station 10 only needs to form at least one secondary cell and change the content of at least one secondary cell control related to at least one secondary cell.
  • Embodiments 1 to 5 of the invention described above the case where the present invention is applied to a base station that supports W-CDMA MC-HSDPA has been described.
  • the application destination of the present invention is not limited to a base station that supports W-CDMA MC-HSDPA. That is, if a base station communicates with a mobile station by using at least two cells having different frequency channels (carrier frequency bands) and transmitting a physical channel for data transmission in each of the two cells, the downlink channel
  • the present invention is applicable regardless of whether the multiple access scheme is CDMA.
  • each physical channel for data transmission is identified by a difference in orthogonal code (channelization code).
  • the base station employs OFDMA (Orthogonal-Frequency-Division-Multiplexing-Access), such as WiMAX and LTE
  • OFDMA Orthogonal-Frequency-Division-Multiplexing-Access
  • the operations related to changing the control conditions of the secondary cell in the base station controller, base station, and mobile station described in the first to fifth embodiments of the invention are as follows: ASIC (Application Specific Integrated Circuit), DSP (Digital Signal Processor), MPU A computer system including (Micro Processing Unit) or CPU (Central Processing Unit) or a combination thereof may be used. Specifically, the computer system may be made to execute a program including a group of instructions related to the processing operation of each device described with reference to the sequence diagram and the flowchart. Note that these programs can be stored in various types of storage media, and can be transmitted via a communication medium.
  • the storage medium includes, for example, a flexible disk, a hard disk, a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD, a ROM cartridge, a RAM memory cartridge with battery backup, a flash memory cartridge, a nonvolatile RAM cartridge, and the like.
  • the communication medium includes a wired communication medium such as a telephone line, a wireless communication medium such as a microwave line, and the Internet.
  • Embodiments 1 to 5 of the invention can be combined as appropriate.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本発明は、プライマリセル用及びセカンダリセル用に離間したキャリア周波数帯の組み合わせと隣接するキャリア周波数帯の組み合わせのいずれも選択可能である場合に、無線リソースの利用効率の劣化とセカンダリセルの無線品質の劣化というトレードオフ関係にある2つの問題に効果的に対処可能な無線通信システムを提供することを目的としている。本発明にかかる無線通信システムは、移動局(20)と、上り方向及び下り方向の少なくとも一方に第1及び第2のキャリア周波数帯を同時に使用して移動局(20)との無線通信を行えるよう構成された基地局(10)を有する。さらに、移動局(20)及び基地局(10)は、第2のキャリア周波数帯に関する制御を、第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替え可能に構成されている。

Description

無線通信システム、基地局、移動局、基地局の制御方法、移動局の制御方法、及びプログラムが格納された記憶媒体
 本発明は、MC-HSDPA(Multi-Carrier HSDPA operation)やDC-HSUPA(Dual Cell High Speed Uplink Packet Access)などのように、周波数の異なる複数のキャリア(搬送波)を上り方向及び下り方向の少なくとも一方に同時に使用して基地局と移動局の間の通信を行う無線通信システムに関する。
 3GPP(3rd Generation Partnership Project)のRelease 8では、セル端の移動局の通信速度を高速化する技術の1つとして、既存のHSDPA(High Speed Downlink Packet Access)を用いたDC-HSDPAが検討されていた。DC-HSDPAは、同一周波数バンド内で隣接する2つのキャリア周波数帯(各々5MHz)の各々でHSDPAを同時に使用することで、下り方向の高速化を図る。以下では、3GPPにおいて検討中のDC-HSDPAの概要について説明する。なお、DC-HSDPAの技術内容の詳細については、3GPPのTechnical Specification(非特許文献1~3)を参照されたい。
 DC-HSDPAでは、第1のサービングHS-DSCHセルは単に"サービングHS-DSCHセル"と呼ばれている。また、第2のサービングHS-DSCHセルは、"セカンダリ・サービングHS-DSCHセル"と呼ばれている。第2のサービングHS-DSCHセルは、第1のサービングHS-DSCHセルの生成を条件として従属的に形成される。なお、サービングHS-DSCHセルは、"プライマリキャリア"又は"ベースキャリア"と呼ばれる場合がある。また、セカンダリ・サービングHS-DSCHセルは、"セカンダリキャリア"又は"エクステンディッドキャリア"と呼ばれる場合がある。
 第1のサービングHS-DSCHセルは、後述するすべてのHSDPAの物理チャネルを移動局との通信に使用可能である。一方、DC-HSDPAの第2のサービングHS-DSCHセルは、移動局との通信において、第1のサービングHS-DSCHセルの制御情報の一部を共有する。この制御情報の共有によって、第2のサービングHS-DSCHセルは、後述するHSDPAの物理チャネルのうち一部の物理チャネルの設定だけで運用可能となり、制御情報の重複送信による無線リソースの利用効率の低下を抑えている。
 本明細書では、2つのサービングHS-DSCHセルの識別を明確にするため、第1のサービングHS-DSCHセルを"プライマリ・サービングHS-DSCHセル"と呼ぶ。また、以下では、プライマリ・サービングHS-DSCHセルを略して "プライマリセル"と呼び、セカンダリ・サービングHS-DSCHセルを略して"セカンダリセル"と呼ぶ場合がある。
 図23は、DC-HSDPAをサポートする基地局91と移動局92との間で、DC-HSDPAによるパケット通信を行うために使用される物理チャネルを示している。HS-PDSCHは、トランスポートチャネルHS-DSCHを転送するデータ送信用のダウンリンク物理チャネルである。HS-SCCHは、HS-DSCH転送に関するダウンリンクのシグナリング情報の送信に使用される。
 HS-DPCCHは、HS-DSCH転送に関するフィードバック情報を移動局92から基地局91に送信するために使用されるアップリンク物理チャネルである。当該フィードバック情報には、ハイブリッドARQ(Automatic repeat-request)に関するACK応答及びCQI(channel Quality Indication)が含まれる。セカンダリセル使用時は、プライマリセルのHS-DPCCHにプライマリとセカンダリ両方の情報がフィードバック情報に多重される。
 アップリンクDPCH及びダウンリンクDPCHは、DC-HSDPAに関する制御情報の送受信、上下方向の電力制御や測定情報の基地局への報告等に使用される。また、アップリンクDPCH以外の上り方向通信として、E-DCHを用いることもある。E-DCHの詳細については、3GPPのTechnical Specification(非特許文献4)を参照されたい。なお、プライマリセル及びセカンダリセルの生成に必須である他の共通物理チャネル(P-CPICH、SCH、P-CCPCH、S-CCPCHなど)も使用される。
 以下に、省略表記された物理チャネル及びトランスポートチャネルの正式名称を示す。
 P-CPICH:Primary Common Pilot Channel
 DPCH:Dedicated Physical Channel
 HS-DPCCH:Dedicated Physical Control Channel (uplink) for HS-DSCH
 HS-DSCH:High Speed Downlink Shared Channel
 HS-PDSCH:High Speed Physical Downlink Shared Channel
 HS-SCCH:Shared Control Channel for HS-DSCH
 P-CCPCH:Primary Common Control Physical Channel
 S-CCPCH:Secondary Common Control Physical Channel
 SCH:Synchronization Channel
 E-DCH:Enhanced Dedicated Channel
 さらに3GPP Release 9においては、DC-HSDPAを拡張する方式として、MC-HSDPA(Multi-Carrier HSDPA operation)が検討されている。MC-HSDPAは、異なる周波数バンドに属するキャリア周波数帯、つまり隣接せずに離間しているキャリア周波数帯の組み合わせをプライマリセル及びセカンダリセルに使用する。MC-HSDPAの詳細については、非特許文献5を参照されたい。
3GPP, TS25.211 v8.3.0 (2008-12), "Physical channels and mapping of transport channels onto physical channels (FDD) (Release 8)" 3GPP, TS25.212 v8.4.0 (2008-12), "Multiplexing and channel coding (FDD) (Release 8)" 3GPP, TS25.214 v8.4.0 (2008-12), "Physical layer procedures (FDD) (Release 8)" 3GPP, TS25.319 v8.4.0 (2008-12), "Enhanced uplink; Overall description; Stage 2 (Release 8)" 3GPP TSG-RAN Pleanry#43, RP-081123, Work Item Description "Multi-carrier evolution", 2008年12月
 3GPP Release 8のDC-HSDPAでは、プライマリセル及びセカンダリセルに隣接するキャリア周波数帯を使用し、プライマリセルとセカンダリセルの無線環境は常に同様とみなして、プライマリセルの電力制御や移動局が測定する情報をセカンダリセルでも共有する。これにより、セカンダリセルの電力制御や、セカンダリセルに関する移動局が測定する情報の報告を省略することができる。この前提により、DC-HSDPA実行時に、セカンダリセルの電力制御に使用するDPCH、セカンダリセルに関する移動局が測定する情報の報告に使用するアップリンクDPCHやE-DCHを含むすべての上り物理チャネルを設定する必要がない。
 これに対して、上述したように、3GPP Release 9で検討中のMC-HSDPAでは、プライマリセルと隣接しないキャリア周波数帯をセカンダリセルに用いることが検討されている。プライマリセルのキャリア周波数帯から離れた周波数帯をセカンダリセルに使用した場合、もはや、プライマリセルとセカンダリセルの無線環境が同様とみなすことはできない。そこで、セカンダリセルの電力制御に使用するDPCH、セカンダリセルの測定情報の報告に使用するDPCHやE-DCHをセカンダリセルにおいて個別に設定することが想定される。以下では、セカンダリセルの無線チャネルを使用して行われる、セカンダリセルの電力制御、セカンダリセルの測定情報の報告およびセカンダリセルの上りチャネル設定の制御をまとめて「セカンダリセル制御」と呼ぶ。
 図24は、MC-HSDPAをサポートする基地局91と移動局92との間で、MC-HSDPAによるパケット通信を行うために使用される物理チャネルを示している。なお、図24は、セカンダリセル制御を行うためのチャネルを追加することを想定して本願発明者が作成した図であり公知の図ではない。セカンダリセルに設定されているアップリンクDPCH及びダウンリンクDPCHがセカンダリセル制御用のチャネルである。
 本願発明者は、MC-HSDPAのセカンダリセル制御を常時行うと想定した場合、以下に述べる問題があることを見出した。MC-HSDPAにおいてセカンダリセル制御を常時行うと仮定した場合、プライマリセルのキャリア周波数帯から離れた周波数帯をセカンダリセルに使用するケースでセカンダリセルの無線品質向上の効果が期待できる。しかしながら、プライマリセルとセカンダリセルのキャリア周波数帯が隣接しているケースでは、DC-HSDPAと同様に、プライマリセルの電力制御や移動局が測定する情報をセカンダリセルでも共有できると考えられる。これにも関わらず、セカンダリセルで追加のDPCHやE-DPDCH等を常に設定してしまうと、制御信号のオーバーヘッドが増え、DC-HSDPAと比べて無線リソースの利用効率が劣化する可能性がある。一方、セカンダリセル制御を全く行わないと仮定した場合、プライマリセルとセカンダリセルのキャリア周波数帯が隣接しているケースでは問題は生じないと考えられる。しかしながら、プライマリセルとセカンダリセルのキャリア周波数帯が離れているケースでは、プライマリセルとセカンダリセルの無線環境は大きく異なるため、セカンダリセルの制御が不十分となり、セカンダリセルの無線品質が劣化する可能性がある。
 なお、上述したDC-HSDPA及びMC-HSDPAは、いずれも下りパケット通信の高速化技術であるが、デュアルセル運用をHSUPA(High Speed Uplink Packet Access)又はEUL(Enhanced Uplink)と呼ばれる高速上りパケット通信に適用する場合にも同様の問題がある。
 本発明は、上述した問題点を考慮してなされたものであって、プライマリセル用及びセカンダリセル用に離間したキャリア周波数帯の組み合わせと隣接するキャリア周波数帯の組み合わせのいずれも選択可能なMC-HSPA方式等の無線通信システムにおいて、無線リソースの利用効率の劣化とセカンダリセルの無線品質の劣化というトレードオフ関係(背反関係)にある2つの問題に効果的に対処できるようにすることを目的とする
 本発明の第1の態様にかかる無線通信システムは、移動局と、上り方向及び下り方向の少なくとも一方に第1及び第2のキャリア周波数帯を同時に使用して前記移動局との無線通信を行えるよう構成された基地局を有する。さらに、前記移動局及び前記基地局は、前記第2のキャリア周波数帯に関する制御を、前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替え可能に構成されている。
 本発明の第2の態様にかかる基地局は、無線通信部及び制御部を有する。前記無線通信部は、上り方向及び下り方向の少なくとも一方に第1及び第2のキャリア周波数帯を同時に使用して移動局との無線通信を行うことができる。また、前記制御部は、前記第2のキャリア周波数帯に関する制御を、前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替え可能である。
 本発明の第3の態様にかかる移動局は、無線通信部及び制御部を有する。前記無線通信部は、上り方向及び下り方向の少なくとも一方に第1及び第2のキャリア周波数帯を同時に使用して基地局との無線通信を行うことができる。また、前記制御部は、前記第2のキャリア周波数帯に関する制御を、前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替え可能である。
 本発明の第4の態様は、上り方向及び下り方向の少なくとも一方に第1及び第2のキャリア周波数帯を同時に使用して移動局との無線通信を行うことが可能な基地局の制御方法である。当該方法は、前記第2のキャリア周波数帯に関する制御を、前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替えるステップを含む。
 本発明の第5の態様は、上り方向及び下り方向の少なくとも一方に第1及び第2のキャリア周波数帯を同時に使用して基地局との無線通信を行うことが可能な移動局の制御方法である。当該方法は、前記第2のキャリア周波数帯に関する制御を、前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替えるステップを含む。
 本発明の第6の態様は、上り方向及び下り方向の少なくとも一方に第1及び第2のキャリア周波数帯を同時に使用して移動局との無線通信を行うことが可能な基地局に関する処理をコンピュータに実行させるプログラムである。当該プログラムを実行するコンピュータによってもたらされる前記処理は、前記第2のキャリア周波数帯に関する制御を、前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替えること、
を含む。
 本発明の第7の態様は、上り方向及び下り方向の少なくとも一方に第1及び第2のキャリア周波数帯を同時に使用して基地局との無線通信を行うことが可能な移動局に関する処理をコンピュータに実行させるプログラムである。当該プログラムを実行するコンピュータによってもたらされる前記処理は、前記第2のキャリア周波数帯に関する制御を、前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替えること、
を含む。
 上述した本発明の各態様によれば、プライマリセル用及びセカンダリセル用に離間したキャリア周波数帯の組み合わせと隣接するキャリア周波数帯の組み合わせのいずれも選択可能である場合に、無線リソースの利用効率の劣化とセカンダリセルの無線品質の劣化というトレードオフ関係(背反関係)にある2つの問題に効果的に対処可能な無線通信システム、基地局、基地局制御装置、移動局、プログラム、及びセルの制御方法を提供できる。
発明の実施の形態にかかる通信システムに関する図である。 図1に示した基地局の構成例を示すブロック図である。 図1に示した移動局の構成例を示すブロック図である。 図1に示した基地局制御装置の構成例を示すブロック図である。 セカンダリセルの制御情報を変更する例を示すシーケンス図である。 発明の実施の形態1から3にかかる基地局制御装置が実行するセカンダリセル制御の変更方法に関するフローチャートである。 発明の実施の形態1から3にかかる移動局が実行するセカンダリセル制御の変更方法に関するフローチャートである。 発明の実施の形態1から3にかかる基地局が実行するセカンダリセル制御の変更方法に関するフローチャートである。 セカンダリセル制御を変更する手順の一例を示すシーケンス図である。 発明の実施の形態4にかかる基地局制御装置が実行するセカンダリセル制御の変更に関するフローチャートである。 発明の実施の形態4にかかる移動局が実行するセカンダリセル制御の変更に関するフローチャートである。 発明の実施の形態4にかかる基地局が実行するセカンダリセル制御の変更に関するフローチャートである。 セカンダリセル制御を変更する手順の一例を示すシーケンス図である。 発明の実施の形態5にかかる基地局制御装置が実行するセカンダリセル制御の変更に関するフローチャートである。 発明の実施の形態5にかかる移動局が実行するセカンダリセル制御の変更に関するフローチャートである。 発明の実施の形態5にかかる基地局が実行するセカンダリセル制御の変更に関するフローチャートである。 RRC messageに含まれるセカンダリセル設定情報の一例を示すテーブルである。 NBAP messageに含まれるセカンダリセル設定情報の一例を示すテーブルである。 RRC messageに含まれるセカンダリセル設定情報の一例を示すテーブルである。 NBAP messageに含まれるセカンダリセル設定情報の一例を示すテーブルである。 RRC messageに含まれるセカンダリセル設定情報の一例を示すテーブルである。 NBAP messageに含まれるセカンダリセル設定情報の一例を示すテーブルである。 DC-HSDPAによるパケット通信を行うために使用される物理チャネル構成図である。 MC-HSDPAによるパケット通信を行うために使用される物理チャネル構成図である。
 以下では、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。各図面において、同一要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。
<発明の実施の形態1>
 実施の形態1では、基地局制御装置30がセカンダリセル制御の有効・無効を判断し、基地局10および移動局20へセカンダリセル制御情報を通知する。
 図1は、本実施の形態にかかる基地局10を含む無線通信システムの構成例を示す図である。なお、本実施の形態にかかる無線通信システムは、FDD(Frequency division Duplex)-CDMA、より具体的にはW-CDMA方式の無線通信システムであるとして説明を行う。
 基地局10は、基地局制御装置30を介して移動体通信事業者のコアネットワーク80に接続されており、移動局20とコアネットワーク80との間でトラフィックを中継する。基地局10は、MC-HSDPAをサポートする基地局であり、周波数チャネル(キャリア周波数帯)が互いに異なるプライマリセル及びセカンダリセルを生成する。基地局10は、プライマリセル及びセカンダリセルを形成するための共通物理チャネル(P-CPICH、SCH等)を送信するとともに、2つのサービングHS-DSCHセルの各々においてHS-DSCHを運ぶ物理チャネル(HS-PDSCH)を送信する。また、基地局10は、セカンダリセル制御の実行有無又はその制御内容を変更することが可能である。
 基地局制御装置30は、基地局10に対してセカンダリセルとプライマリセルとを設定する。以下では、基地局10、移動局20および基地局制御装置30の構成例とセカンダリセルの制御方法の変更手順の詳細について順に説明する。
 なお、図1では、1つのセカンダリセルのみを図示しているが、基地局10が形成するセカンダリセル数は2つ以上であってもよい。本実施の形態では、説明の便宜のために基地局10が形成するセカンダリセルの数が1つであるとして説明を行う。
 図2は、基地局10の構成例を示すブロック図である。図2において、無線通信部11は、移動局20から送信されたアップリンク信号を受信する。受信データ処理部13は、受信されたアップリンク信号の逆拡散、RAKE合成、デインタリービング、チャネル復号、エラー訂正等の各処理を行って受信データを復元する。得られた受信データは、通信部14を経由して基地局制御装置30に転送される。なお、基地局による自律的な無線リソース制御のために、基地局に基地局制御装置の機能を持たせることが検討されている。よって、基地局10に基地局制御装置の機能を持たせてもよい。基地局10に基地局制御装置の機能を持たせる場合、受信データ処理部13によって得られた受信データが移動局20の位置登録要求や無線チャネル確立要求であれば、これらの制御を実行するために当該受信データは、基地局10が有する基地局制御装置機能部(不図示)に送られる。
 送信データ処理部12は、移動局20に向けて送信される送信データを通信部14から取得し、誤り訂正符号化、レートマッチング、インタリービング等を行なってトランスポートチャネルを生成する。さらに、送信データ処理部12は、トランスポートチャネルのデータ系列にTPC(Transmit Power Control)ビット等の制御情報を付加して無線フレームを生成する。また、送信データ処理部12は、拡散処理、シンボルマッピングを行って送信シンボル列を生成する。無線通信部11は、送信シンボル列の直交変調、周波数変換、信号増幅等の各処理を行ってダウンリンク信号を生成し、これを移動局20に送信する。
 セカンダリセル制御部15は、基地局制御装置30から通知されるセカンダリセル制御情報を通信部14を介して取得する。セカンダリセル制御部15は、取得したセカンダリセル制御情報に基づいて、セカンダリセル制御の変更を無線通信部11に指示する。
 図3は、移動局20の構成例を示すブロック図である。無線通信部21は、アンテナを介してダウンリンク信号を受信する。受信データ処理部22は受信されたダウンリンク信号から復元した受信データをバッファ部26に送る。バッファ部26に格納された受信データは読み出され、その目的に応じて利用される。また、送信データ処理部25及び無線通信部21は、バッファ部26に格納された送信データを用いてアップリンク信号を生成し、基地局10に向けて送信する。
 セカンダリセル制御部24は、セカンダリセル設定情報を受信データ処理部22から取得する。ここで、セカンダリセル設定情報には、セカンダリセル制御情報が含まれる。セカンダリセル制御情報は、基地局制御装置30によって生成され、セカンダリセル制御を実行すべきか否かを指定する情報を含む。セカンダリセル制御部24は、セカンダリセル制御情報に応じて、セカンダリセル制御の有効又は無効を受信データ処理部22および送信データ制御部23を介して送信データ処理部25に指示する。
 図4は、基地局制御装置30の構成例を示すブロック図である。図4において、通信部31は、基地局10から送信された信号を受信する。受信データ処理部33は、受信したデータを、通信部34を経由してコアネットワーク80に転送する。送信データ処理部32は、移動局20および基地局10に向けて送信される送信データを通信部34から取得する。セカンダリセル制御部35は、セカンダリセルに関する情報を管理し、セカンダリセル制御情報を含むセカンダリセル設定情報を通信部31から基地局10および移動局20に通知する。
 続いて以下では、セカンダリセル制御方法の変更手順の具体例について図5~7を参照して説明する。図5は、セカンダリセルを新規に生成する場合に、セカンダリセル制御の要否を決定し、この決定結果に基づいて基地局10及び移動局20におけるセカンダリセル制御を有効(図5のALT1)又は無効(図5のALT2)に設定する手順の一例を示すシーケンス図である。図5は、基地局制御装置30、基地局10及び移動局20の相互作用を示しており、図中の「RNC」は基地局制御装置30に対応し、「NB」は基地局10に対応し、「UE」は移動局20に対応する。
 ステップS101では、基地局制御装置30がセカンダリセルを使用すべきかどうかを無線リソースの負荷状況や送信データ量などから判断する。セカンダリセルの使用を決定した場合、さらにプライマリセルとセカンダリセルの周波数間距離等の条件に応じてセカンダリセル制御を有効にするか否かを判断する。セカンダリセルを使用する場合、基地局制御装置30は、RRC messageの1つであるRadio Bearer Reconfigurationを用いて移動局20にセカンダリセル設定情報を通知する(S102)。また、基地局制御装置30は、NBAP messageの1つであるRadio Link Reconfiguration Requestを用いて基地局10にセカンダリセル設定情報を通知する(S103)。RRC messageおよびNBAP messageのメッセージ構造等の詳細については、3GPP TS 25.331 V8.5.0 (2009-01) "Radio Resource Control (RRC)"、及び3GPP TS25.433 V8.3.0(2008-12) " UTRAN Iub interface Node B Application Part (NBAP) signaling"をそれぞれ参照されたい。
 ステップS104では、移動局20は、基地局制御装置30から通知されたセカンダリセル設定情報に含まれているセカンダリセル制御情報を確認し、基地局制御装置30に対する確認完了通知をRadio Bearer Reconfiguration Completeを用いて送信する(ステップS107)。同様に、基地局10は、基地局制御装置30から通知されたセカンダリセル設定情報に含まれているセカンダリセル制御情報を確認し(ステップS105)、確認完了通知をRadio Link Reconfiguration Responseを用いて送信する(ステップS106)。
 ステップS108からS125では、通知されたセカンダリセル制御情報に従ってセカンダリセル制御の有無を設定し、プライマリセル及びセカンダリセルにおける物理チャネルの送信が行われる。ステップS108からS117は、セカンダリセル制御が有効である場合のシーケンスを示し、ステップS118からS125は、セカンダリセル制御が無効である場合のシーケンスを示す。
 ステップS108及びS109では、基地局10及び移動局20は、セカンダリセル制御を有効にしたセカンダリセルの運用を決定する。ステップS110からS112では、プライマリセルのP-CPICH、DPCH及びHSDPAに関する物理チャネル群が基地局10と移動局20との間で送受信される。図中の「HSDPA@Primary」によって示される物理チャネル群には、ダウンリンクHS-SCCH、ダウンリンクHS-PDSCH、及びアップリンクHS-DPCCHが含まれる。ステップS114からS116では、セカンダリセルのP-CPICH、DPCH及びHSDPAに関する物理チャネル群が送受信される。図中の「HSDPA@Secondary」によって示される物理チャネル群には、HSDPA@Primaryと同様にダウンリンクHS-SCCH、ダウンリンクHS-PDSCH、及びアップリンクHS-DPCCHが含まれる。図中の「Measurement Report」は、移動局20が測定した上り送信電力や他周波数の受信電力などを基地局に通知するメッセージであり、このシーケンス例では、プライマリセルおよびセカンダリセルの両方で実行される。セカンダリセルのMeasurement Reportは、セカンダリセルに設定された上りチャネル、又はプライマリセルに設定された上りチャネルを用いて送信される。
 ステップS118及びS119では、基地局10及び移動局20は、セカンダリセル制御を無効にしたセカンダリセルの運用を決定する。ステップS120からS123では、プライマリセルのP-CPICH、DPCH及びHSDPAに関する物理チャネル群およびMeasurement Reportが基地局10と移動局20との間で送受信される。ステップS124およびS125では、セカンダリセルのP-CPICH及びHSDPAに関する物理チャネル群が基地局10から移動局20に送信される。セカンダリセル制御が無効であるため、「HSDPA@Secondary」によって示される物理チャネル群にはHS-DPCCHが含まれず、また、移動局20によるDPCHの送受信およびMeasurement Reportの送信は行われない。
 図6は、基地局制御装置30が実行するセカンダリセル制御の変更に関するフローチャートである。ステップS201では、セカンダリセル制御部35が、無線リソースの負荷状況や送信データ量などに基づいて、セカンダリセルの使用条件を満足するか否かを判定する。セカンダリセルの使用条件を満足しない場合(S201でNO)、セカンダリセル制御部35はステップS201の判定を繰り返し実行する。セカンダリセルの設定条件を満足する場合(S201でYES)、セカンダリセル制御部35は、セカンダリセル制御の要否を判定する(ステップS202)。具体例を述べると、セカンダリセルのキャリア周波数帯の中心周波数fpとプライマリセルのキャリア周波数帯の中心周波数fsの周波数間距離が予め設定された値fthより小さい場合(fth ≧ |fp - fs|)に、セカンダリセル制御部35はセカンダリセル制御が"不要"と判定すればよい。反対に、周波数間距離が予め設定された値fthより大きい場合(fth < |fp - fs|)に、セカンダリセル制御部35はセカンダリセル制御が"必要"と判定すればよい。
 セカンダリセル制御が"必要"と判定された場合(ステップS202でYES)、セカンダリセル制御部35は、"有効"を示すセカンダリセル制御情報を含むセカンダセル設定情報を基地局10及び移動局20に通知する(ステップS203)。一方、セカンダリセル制御が"不要"と判定された場合(ステップS202でNO)、セカンダリセル制御部35は、"無効"を示すセカンダリセル制御情報を含むセカンダリセル設定情報を基地局10及び移動局20に通知する(ステップS204)。
 図17のテーブルは、基地局制御装置30から移動局20へ通知されるRRC messageに含まれるセカンダリセル設定情報(Radio Bearer Reconfiguration )の一例を示している。また、図18のテーブルは、基地局制御装置30から基地局10へ通知されるNBAP messageに含まれるセカンダリセル設定情報(Radio Link Reconfiguration Request)の一例を示している。図17及び18中に示した情報要素"Control mode indicator"がセカンダリセル制御情報に相当する。"Control mode indicator"のデータタイプは、列挙型(enumerated type)であり、"available"及び"not-available"を集合要素として持つ。
 図17及び18の例には、セカンダリセル制御情報を意味する情報要素(Control mode indicator)がそれぞれ1つ含まれている。よって、図17及び18の例を用いる場合、基地局制御装置30は、セカンダリセルに関する電力制御、測定情報の報告および上りチャネル送信等を含むセカンダリセル制御の全体の要否(有効か無効か)をこの1つの情報要素(Control mode indicator)を用いて基地局10および移動局20に通知すればよい。
 図7は、移動局20が実行するセカンダリセル制御の変更に関するフローチャートである。ステップS301では、セカンダリセル制御部24が、セカンダリセル設定情報を受信したか否か判定する。セカンダリセル設定情報を受信していない場合(S301でNo)、セカンダリセル制御部24はステップS301の判定を繰り返し実行する。セカンダリセル設定情報を受信した場合(S301でYES)、セカンダリセル制御部24は、セカンダリセル制御を有効にするか否かを判定する(ステップS302)。具体的には、ステップS302では、セカンダリセル制御部24が、セカンダリセル制御情報を確認すればよい。制御情報が有効を示す場合(S302でYES)、セカンダリセル制御部24は、受信データ処理部22および送信データ処理部25によるセカンダリセル制御を有効にして、セカンダリセルを設定する(ステップS303)。一方、制御情報が無効を示す場合、セカンダリセル制御部24は、受信データ処理部22および送信データ処理部25によるセカンダリセル制御をすることなく、基地局制御装置30から通知されたセカンダリセル設定情報に基づいてセカンダリセルを設定する(S304)。
 図8は、基地局10が実行するセカンダリセル制御の変更に関するフローチャートである。ステップS401では、セカンダリセル制御部15が、セカンダリセル設定情報を受信したか否か判定する。セカンダリセル設定情報を受信していない場合(S401でNO)、セカンダリセル制御部15はステップS401の判定を繰り返し実行する。セカンダリセルの設定情報を受信した場合(S401でYES)、セカンダリセル制御部15は、セカンダリセル制御を有効にするか否かを判定する(ステップS402)。具体的には、ステップS402では、セカンダリセル制御部15が、セカンダリセルの制御情報を確認すればよい。制御情報が有効を示す場合(S402でYES)、セカンダリセル制御部15は、受信データ処理部13および送信データ処理部12によるセカンダリセル制御を有効にする(ステップS403)。一方、制御情報が無効を示す場合、セカンダリセル制御部15は、受信データ処理部13および送信データ処理部12によるセカンダリセル制御をすることなく、基地局制御装置30から通知されたセカンダリセル設定情報に基づいてセカンダリセルを設定する(S404)。
 上述したように、本実施の形態にかかる基地局10および移動局20は、基地局制御装置30からのセカンダリセル制御情報の指示に応じて、セカンダリセル制御の変更が可能である。例えば、プライマリセルのキャリア周波数帯とセカンダリセルのキャリア周波数帯の周波数間距離に応じてセカンダリセル制御情報の内容を決定すればよい。これにより、本実施の形態は、無線リソースの利用効率の劣化とセカンダリセルの無線品質の劣化というトレードオフ関係(背反関係)にある2つの問題に効果的に対処することができる。
<発明の実施の形態2>
 実施の形態2では、実施の形態1と同様に、基地局制御装置30がセカンダリセル制御の要否を判断し、基地局10および移動局20へセカンダリセル制御情報を通知する。一方、実施の形態1では、電力制御、測定情報の報告および上りチャネル送信等を含むセカンダリセル制御の全体の要否(有効か無効か)を1つの情報要素でまとめて制御する例について具体的に示した。これに対して、実施の形態2では、複数の情報要素を基地局10および移動局20へのセカンダリセル制御の伝達に用いる例を説明する。つまり、複数の情報要素の一部がセカンダリセル制御に関する複数の制御情報の一部を伝達し、複数の情報要素の他の一部が複数の制御情報の他の部分を伝達する。以下では、実施の形態1との差分である複数の情報要素を用いる点について説明する。
 図19のテーブルは、基地局制御装置30から移動局20へ通知されるRRC messageに含まれるセカンダリセル設定情報(Radio Bearer Reconfiguration)の一例を示している。また、図20のテーブルは、基地局制御装置30から基地局10へ通知されるNBAP messageに含まれるセカンダリセル設定情報(Radio Link Reconfiguration Request)の一例を示している。
 図19及び20のテーブルそれぞれには、セカンダリセル制御情報を意味する2つの情報要素(Control mode indicator 1および2)が含まれている。例えば基地局制御装置30は、電力制御および測定情報報告の有効・無効をControl mode indicator 1で制御し、上りチャネル送信の有効・無効をControl mode indicator 2で制御すればよい。また、Control mode indicator 1及び2への制御内容の割り当ては、以下のように変形してもよい。
(異なる組み合わせ例1)
・Control mode indicator 1:電力制御、上りチャネル送信
・Control mode indicator 2:測定情報報告
(異なる組み合わせ例2)
・Control mode indicator 1:測定情報報告、上りチャネル送信
・Control mode indicator 2:電力制御
 上述したように、本実施の形態にかかる基地局10および移動局20は、複数の情報要素を用いて通知されるセカンダリセル制御情報の指示内容に応じて、セカンダリセル制御に含まれる複数の詳細制御(例えば、電力制御の有無、上りチャネル送信の有無、測定情報報告の有無)を個別に変更できる。例えば、プライマリセルのキャリア周波数帯とセカンダリセルのキャリア周波数帯の周波数間距離、セカンダリセルの無線リソース負荷率などの様々な条件に応じて、詳細制御の構成を個別に設定できる。これにより、これにより、本実施の形態にかかる基地局10および移動局20は、セカンダリセル制御を行うか否かだけでなく、セカンダリセル制御の内容をより詳細に設定できる。また、複数の詳細制御項目(例えば、電力制御の有無および測定情報報告の有無)を1つの情報要素で一括して制御するため、基地局制御装置から送信する情報量を抑えつつ、効率のよい運用が可能である。
<発明の実施の形態3>
 実施の形態3では、実施の形態1および2と同様に、基地局制御装置30がセカンダリセル制御の要否を判断し、基地局10および移動局20へセカンダリセル制御情報を通知する。さらに、実施の形態3では、セカンダリセル制御に含まれる複数の詳細制御と同数の複数の情報要素を準備し、各詳細制御の有効・無効を個別に基地局10および移動局20に通知する例について説明する。
 図21のテーブルは、基地局制御装置30から移動局20へ通知されるRRC messageに含まれるセカンダリセル設定情報(Radio Bearer Reconfiguration)の一例を示している。また、図22のテーブルは、基地局制御装置30から基地局10へ通知されるNBAP messageに含まれるセカンダリセル設定情報(Radio Link Reconfiguration Request)の一例を示している。
 図19及び20のテーブルそれぞれには、セカンダリセル制御情報を意味する3つの情報要素(Control mode indicator 1~3)が含まれている。例えば、基地局制御装置30は、電力制御の有無、測定情報報告の有無および上りチャネル送信の有無という3つの詳細制御と3つのControl mode indicator 1~3とを一対一に対応付ければよい。なお、セカンダリセル制御は4つ以上の詳細制御を含んでもよく、この場合には情報要素の数も詳細制御の数に合わせて増加させればよい。
 上述したように、本実施の形態にかかる基地局10および移動局20は、複数の情報要素を用いて通知されるセカンダリセル制御情報の指示内容に応じて、セカンダリセル制御に含まれる複数の詳細制御項目(例えば、電力制御の有無、上りチャネル送信の有無、測定情報報告の有無)を個別に変更できる。さらに、プライマリセルのキャリア周波数帯とセカンダリセルのキャリア周波数帯の周波数間距離やセカンダリセルの無線リソース負荷率など様々な条件に応じて、複数の詳細制御項目のうち必要な制御のみを選択的に実行することができるため、より効率のよい運用が可能である。
<発明の実施の形態4>
 実施の形態1から3では、セカンダリセルを新規に設定する際にセカンダリセル制御情報の有効・無効を決定する例を示した。実施の形態4では、セカンダリセル運用中にセカンダリセル制御情報を切り替える例について説明する。
 セカンダリセル制御の変更手順の具体例について図9~12を参照して説明する。図9は、セカンダリセル運用中にセカンダリセル制御を変更する手順の一例を示すシーケンス図である。
 ステップS501では、基地局制御装置30がセカンダリセル制御を変更すべきかどうか無線リソースの負荷状況や送信データ量などから判断する。セカンダリセル制御を変更する場合、基地局制御装置30は、移動局20及び基地局10に対してセカンダリセル制御情報を通知する(S502及びS503)。セカンダリセル制御情報の通知は、例えば、実施の形態1~3で述べたのと同様に Radio Bearer Reconfiguration 及び Radio Link Reconfiguration Request を用いて行えばよい。
 ステップS504では、移動局は、基地局制御装置から通知されたセカンダリセル設定情報に含まれるセカンダリセル制御情報を確認する。同様に、基地局10は、基地局制御装置30から通知されたセカンダリセル設定情報に含まれているセカンダリセル制御情報を確認する(ステップS505)。なお、移動局20及び基地局10は、基地局制御装置30に確認完了通知を通知してもよい。確認完了通知には、例えば、実施の形態1~3で述べたのと同様に、Radio Link Reconfiguration Response及びRadio Bearer Reconfiguration Completeを使用すればよい。
 ステップS506からS523は、実施の形態1におけるステップS108からS125と同様なので説明を省略する。
 図10は、基地局制御装置30が実行するセカンダリセル制御の変更に関するフローチャートである。ステップS601では、セカンダリセル制御部35が、セカンダリセルの負荷状況や移動局20の送信電力などに基づいて、セカンダリセル制御の実行条件を満足するかどうかを判定する。言い換えると、セカンダリセル制御部35は、セカンダリセル制御の全体又はそれに含まれる詳細制御項目のいずれかの要否を判定する。セカンダリセル制御の実行条件を満足しない場合(S601でNO)、セカンダリセル制御部35は現在セカンダリセル制御が有効になっているか否か(セカンダリセル制御が行われているか否か)を確認する(ステップS604)。セカンダリセル制御が有効である場合(S604でYES)、セカンダリセル制御部35は、セカンダリセル制御を無効にするためのセカンダリセル制御情報を基地局10および移動局20に通知する(S605)。セカンダリセル制御が無効である場合(S604でNO)、セカンダリセル制御を変更する必要がないため、ステップS601へ戻る。
 ステップS601において、セカンダリセル制御の実行条件を満足する場合(S601でYES)、セカンダリセル制御部35は、現在セカンダリセル制御が有効になっているか否かを確認する(ステップS602)。セカンダリセル制御が有効である場合(S602でYES)、セカンダリセル制御を変更する必要がないため、ステップS601に戻る。セカンダリセル制御が無効である場合(S602でNO)、セカンダリセル制御部35は、セカンダリセル制御を有効にするためのセカンダリセル制御情報を基地局10および移動局20に通知する。
 なお、本実施の形態の基地局制御装置30から移動局20及び基地局10へ通知されるセカンダリセル設定情報は、Radio Bearer Reconfigurationの修正及びNBAP messageの修正として図17~22に示した具体例のいずれかを使用すればよい。
 図11は、移動局20が実行するセカンダリセル制御の変更に関するフローチャートである。ステップS701では、セカンダリセル制御部24が、セカンダリセル制御情報を受信したか否か判定する。セカンダリセル設定情報を受信していない場合(S701でNO)、セカンダリセル制御部24はステップS701の判定を繰り返し実行する。セカンダリセルの設定情報を受信した場合(S701でYES)、セカンダリセル制御部24は、セカンダリセル制御情報が有効を示しているか否か、言い換えるとセカンダリセル制御の開始を示しているか否か、を判定する(ステップS702)。制御情報が有効を示す場合(S702でYES)、セカンダリセル制御部24は、現在セカンダリセル制御が有効か否か、言い換えるとセカンダリセル制御中であるか否か、を判断する(ステップS703)。セカンダリセルの制御がすでに有効である場合(ステップS703でYES)、制御を変更する必要がないので、ステップS701に戻る。セカンダリセルの制御が無効である場合(ステップS703でNO)、受信データ処理部22および送信データ処理部25によるセカンダリセル制御を有効にし(ステップS704)、ステップS701に戻る。
 一方、ステップS702でセカンダリセル制御情報が無効を示す場合、セカンダリセル制御部24は、現在セカンダリセル制御が有効か否か、言い換えるとセカンダリセル制御中であるか否か、を判定する(S705)。セカンダリセル制御が有効である場合(S705でYES)、セカンダリセル制御部24は、受信データ処理部22および送信データ処理部25によるセカンダリセル制御を停止する(ステップS706)。セカンダリセル制御がすでに無効である場合(S705でNO)、制御を変更する必要がないので、ステップS701に戻る。
 図12は、基地局10が実行するセカンダリセル制御の変更に関するフローチャートである。ステップS801では、セカンダリセル制御部15が、セカンダリセル制御情報を受信したか否か判定する。セカンダリセル制御情報を受信していない場合(S801でNO)、セカンダリセル制御部15はステップS801の判定を繰り返し実行する。セカンダリセル制御情報を受信した場合(S801でYES)、セカンダリセル制御部15は、セカンダリセル制御情報が有効を示しているか否か、言い換えるとセカンダリセル制御の開始を示しているか否か、を判定する(ステップS802)。制御情報が有効を示す場合(S802でYES)、セカンダリセル制御部15は、現在セカンダリセル制御が有効か否か、言い換えるとセカンダリセル制御中であるか否か、を判断する(ステップS803)。セカンダリセルの制御がすでに有効である場合(ステップS803でYES)、制御を変更する必要がないので、ステップS801に戻る。セカンダリセルの制御が無効である場合(ステップS803でNO)、受信データ処理部13および送信データ処理部12によるセカンダリセル制御を有効にし(ステップS804)、ステップS701に戻る。
 一方、ステップS802でセカンダリセル制御情報が無効を示す場合、セカンダリセル制御部15は、現在セカンダリセル制御が有効か否か、言い換えるとセカンダリセル制御中であるか否か、を判定する(S805)。セカンダリセル制御が有効である場合(S805でYES)、セカンダリセル制御部15は、受信データ処理部13および送信データ処理部12によるセカンダリセル制御を停止する(ステップS806)。セカンダリセル制御がすでに無効である場合(S805でNO)、制御を変更する必要がないので、ステップS701に戻る。
 上述したように、本実施の形態にかかる基地局10および移動局20は、基地局制御装置30からのセカンダリセル制御情報の指示に応じて、セカンダリセル運用中にセカンダリセル制御を変更できる。このため、本実施の形態によれば、プライマリセル用及びセカンダリセル用に離間したキャリア周波数帯の組み合わせと隣接するキャリア周波数帯の組み合わせのいずれも選択可能なMC-HSPA等のシステムにおいて、無線リソースの利用効率の劣化とセカンダリセルの無線品質の劣化というトレードオフ関係(背反関係)にある2つの問題に、運用中の状況変化に応じて柔軟に対処することが可能となる。
<発明の実施の形態5>
 実施の形態1から4では、基地局制御装置30がセカンダリセル制御の有効・無効を判断する例を示した。実施の形態5では、基地局10若しくは移動局20又はこれら両方がセカンダリセル制御の有効・無効を判断するについて説明する。
 セカンダリセル制御方法の変更手順の具体例について図13~16を参照して説明する。図13は、運用中にセカンダリセルを設定する手順の一例を示すシーケンス図である。ステップS901では、基地局制御装置30がセカンダリセルを使用すべきかどうかを無線リソースの負荷状況や送信データ量などに基づいて判断する。セカンダリセルを使用する場合、基地局制御装置30はRRC messageであるRadio Bearer Reconfigurationを用いて移動局20にセカンダリセル設定情報を通知する(S902)。また、基地局制御装置30は、NBAP messageあるRadio Link Reconfiguration Requestを用いて基地局10にセカンダリセル設定情報を通知する(S903)。なお、本実施の形態では、セカンダリセル制御の要否を基地局10及び移動局20において判定するため、基地局制御装置30が送信するセカンダリセル設定情報はセカンダリセル制御情報を含まなくてもよい。
 移動局20は、基地局制御装置30から通知されたセカンダリセルの設定情報を確認し(S904)、基地局制御装置30に確認完了通知をRadio Bearer Reconfiguration Completeを用いて送信する(ステップS907)。また、基地局10は、基地局制御装置30から通知されたセカンダリセル設定情報を確認し(S905)、Radio Link Reconfiguration Responseを用いて確認完了通知を送信する(ステップS906)。
 さらに、ステップS904およびステップS905において、移動局20および基地局10は、プライマリセルのキャリア周波数帯とセカンダリセルのキャリア周波数帯の周波数間距離を計算する。移動局20および基地局10は、周波数間距離が所定の閾値よりも大きい場合にセカンダリセル制御を有効にし、閾値よりも小さい場合にセカンダリセル制御を無効にする。周波数間距離の判定に使用される所定の閾値は、移動局20及び基地局10が生成してもよいし、移動局20内及び基地局10内に予め保持させてもよいし、基地局制御装置30から移動局20及び基地局10に通知してもよい。また、周波数間距離の計算結果を用いたセカンダリセル制御の要否の判定は、基地局10及び移動局20のうちいずれか一方が行ってもよい。この場合、セカンダリセル制御の要否を判定した一方の装置が、判定結果又は判定結果に応じた制御内容(制御有効又は無効)を他方の装置に通知すればよい。
 ステップS908からS925は、実施の形態1におけるステップS108からS125と同様なので説明を省略する。
 図14は、基地局制御装置30が実行するセカンダリセル制御の変更に関するフローチャートである。ステップS1001では、セカンダリセル制御部35が、無線リソースの負荷状況や送信データ量などからセカンダリセルの使用条件を満足するかどうか判定する。セカンダリセルの使用条件を満足しない場合(S1001でNO)、セカンダリセル制御部35はステップS1001の判定を繰り返し実行する。セカンダリセルの使用条件を満足する場合(S1001でYES)、セカンダリセル制御部35は、セカンダリセル設定情報を基地局10および移動局20に通知する(ステップS1002)。
 図15は、移動局20が実行するセカンダリセル制御の変更に関するフローチャートである。ステップS1101では、セカンダリセル制御部24が、セカンダリセル設定情報を受信したか否か判定する。セカンダリセルの設定情報を受信していない場合(S1101でNO)、セカンダリセル制御部24はステップS1101の判定を繰り返し実行する。セカンダリセル設定情報を受信した場合(S1101でYES)、セカンダリセル制御部24は、セカンダリセル制御の要否、言い換えるとセカンダリセル制御の実行条件を満足するか否か、を判定する(ステップS1102)。セカンダリセル制御の実行条件を満足する場合(S1102でYES)、セカンダリセル制御部24は、セカンダリセル制御を有効として、基地局制御装置30から通知されたセカンダリセル設定情報に基づいてセカンダリセルを設定する(ステップS1103)。
 一方、セカンダリセル制御の実行条件を満足しない場合(S1102でNO)、セカンダリセル制御部24は、セカンダリセル制御を無効として、基地局制御装置30から通知されたセカンダリセル設定情報に基づいてセカンダリセルを設定する(ステップS1104)。
 図16は、基地局10が実行するセカンダリセル制御の変更に関するフローチャートである。ステップS1201では、セカンダリセル制御部15が、セカンダリセル設定情報を受信したか否か判定する。セカンダリセル設定情報を受信していない場合(S1201でNO)、セカンダリセル制御部15はステップS1201の判定を繰り返し実行する。セカンダリセル設定情報を受信した場合(S1201でYES)、セカンダリセル制御部15は、セカンダリセル制御の要否、言い換えるとセカンダリセル制御の実行条件を満足するか否かを判定する(ステップS1202)。セカンダリセル制御の実行条件を満足する場合(S1202でYES)、セカンダリセル制御部15は、セカンダリセル制御を有効として、基地局制御装置30から通知されたセカンダリセル設定情報に基づいてセカンダリセルを設定する(ステップS1203)。
 一方、制御条件を満足しない場合(S1202でNO)、セカンダリセル制御部15は、セカンダリセル制御を無効として、基地局制御装置30から通知されたセカンダリセル設定情報に基づいてセカンダリセルを設定する(ステップS1204)。
 上述したように、本実施の形態にかかる基地局10および移動局20は、セカンダリセル制御の実行要否を自律的に判定することができる。なお、セカンダリセル制御の実行要否の判定は、セカンダリセル制御の全体だけでなく、セカンダリセル制御に含まれる詳細制御項目毎に開始・停止(有効・無効)を判定してもよい。詳細制御項目とは、例えば、送信電力制御の有無、測定情報の報告の有無、上りチャネル送信の有無などである。このため、本実施の形態によれば、プライマリセル用及びセカンダリセル用に離間したキャリア周波数帯の組み合わせと隣接するキャリア周波数帯の組み合わせのいずれも選択可能なMC-HSPA等のシステムにおいて、無線リソースの利用効率の劣化とセカンダリセルの無線品質の劣化というトレードオフ関係(背反関係)にある2つの問題に、基地局10および移動局20が自律的に対処することが可能となる。
<その他の実施の形態>
 上述した発明の実施の形態1~5では、プライマリセルのキャリア周波数帯とセカンダリセルのキャリア周波数帯の周波数間距離に基づいてセカンダリセル制御の要否を決定する例を示した。しかしながら、セカンダリセル制御の要否は、他の条件に基づいて判断しても良い。例えば、セカンダリセルに使用される周波数の無線リソース使用量、無線リソース使用率が所定の閾値を超えたことに応じてセカンダリセル制御の開始を判定してもよい。また、セカンダリセルに接続している移動局20の上り送信電力が所定の閾値を超えたことに応じてセカンダリセル制御の開始を判定してもよい。ここで、無線リソース使用率に関する判定又は移動局20の上り送信電力に関する判定が移動局20若しくは基地局10又はこれら両方において行われる場合、これらの判定に使用される閾値は、基地局制御装置30から移動局20又は基地局10に通知してもよい。また、例えば、基地局10若しくは移動局20がスループットや負荷を測定し、その結果により基地局制御装置30にセカンダリセル制御を行うよう要求をするという形態でもよい。
 上述した発明の実施の形態1~5では、セカンダリセル制御情報を通知するメッセージとして、Radio Bearer Reconfiguration (RRC message)およびRadio Link Reconfiguration Request (NBAP message)を用いているが、これらに代えて以下に挙げるRRC messageおよびNBAP messageを用いてもよい。
 [RRC message]
  - TRANSPORT CHANNEL RECONFIGURATION 
  - RRC CONNECTION SETUP 
  - RADIO BEARER SETUP 
  - RADIO BEARER RECONFIGURATION
  - PHYSICAL CHANNEL RECONFIGURATION
  - CELL UPDATE CONFIRM 
  - ACTIVE SET UPDATE
 [NBAP message]
  - RADIO LINK SETUP REQUEST 
  - RADIO LINK ADDITION REQUEST
  - RADIO LINK PARAMETER UPDATE INDICATION
 上述した発明の実施の形態1~5では、基地局10が形成するセカンダリセルの数が1つであるとして説明を行った。しかしながら、基地局10は複数のセカンダリセルを形成してもよい。基地局10は、少なくとも1つのセカンダリセルを形成し、少なくとも1つのセカンダリセルに関する少なくとも1つのセカンダリセル制御の内容を変更可能であればよい。
 上述した発明の実施の形態1~5では、W-CDMA方式のMC-HSDPAをサポートする基地局に本発明を適用する場合について説明した。しかしながら、本発明の適用先は、W-CDMA方式のMC-HSDPAをサポートする基地局に限定されるものではない。つまり、周波数チャネル(キャリア周波数帯)の異なる少なくとも2つのセルを使用し、2つのセルの各々でデータ送信用の物理チャネルを送信することで移動局と通信を行う基地局であれば、下りチャネルの多重アクセス方式がCDMAであるか否かにかかわらず、本発明は適用可能である。上述したW-CDMA方式のMC-HSDPAであれば、データ送信用の各物理チャネルは直交コード(チャネライゼイションコード)の違いによって識別される。一方、WiMAX及びLTEのように下りチャネルの多重アクセス方式にOFDMA(Orthogonal Frequency Division Multiplexing Access)を採用する基地局であれば、データ送信用の各物理チャネルはトーン(サブキャリア)の違いによって識別される。
 発明の実施の形態1~5で述べた基地局制御装置、基地局、および移動局におけるセカンダリセルの制御条件の変更に関する動作は、ASIC(Application Specific Integrated Circuit)、DSP(Digital Signal Processor)、MPU(Micro Processing Unit)若しくはCPU(Central Processing Unit)又はこれらの組み合わせを含むコンピュータ・システムを用いて行えばよい。具体的には、シーケンス図及びフローチャートを用いて説明した各装置の処理動作に関する命令群を含むプログラムをコンピュータ・システムに実行させればよい。なお、これらのプログラムは、様々な種類の記憶媒体に格納することが可能であり、また、通信媒体を介して伝達されることが可能である。ここで、記憶媒体には、例えば、フレキシブルディスク、ハードディスク、磁気ディスク、光磁気ディスク、CD-ROM、DVD、ROMカートリッジ、バッテリバックアップ付きRAMメモリカートリッジ、フラッシュメモリカートリッジ、不揮発性RAMカートリッジ等が含まれる。また、通信媒体には、電話回線等の有線通信媒体、マイクロ波回線等の無線通信媒体等が含まれ、インターネットも含まれる。
 また、発明の実施の形態1~5は、適宜組み合わせることも可能である。さらに、本発明は上述した実施の形態のみに限定されるものではなく、既に述べた本発明の要旨を逸脱しない範囲において種々の変更が可能であることは勿論である。
 この出願は、2009年3月13日に出願された日本出願特願2009-060559を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10 基地局
20 移動局
30 基地局制御装置
11 無線通信部
12 送信データ処理部
13 受信データ処理部
14 通信部
15 セカンダリセル制御部
21 無線通信部
22 受信データ処理部
23 送信データ制御部
24 セカンダリセル制御部
25 送信データ処理部
26 バッファ部
31 通信部
32 送信データ処理部
33 受信データ処理部
34 通信部
35 セカンダリセル制御部
80 コアネットワーク

Claims (43)

  1.  移動局と、
     上り方向及び下り方向の少なくとも一方に第1及び第2のキャリア周波数帯を同時に使用して前記移動局との無線通信を行えるよう構成された基地局と、を備え、
     前記移動局及び前記基地局は、前記第2のキャリア周波数帯に関する制御を、前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替え可能に構成されている、
    無線通信システム。
  2.  前記移動局及び前記基地局は、前記第1のキャリア周波数帯と前記第2のキャリア周波数帯との周波数距離に応じて、前記制御を前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替える、請求項1に記載の無線通信システム。
  3.  前記移動局及び前記基地局は、前記第2のキャリア周波数帯に関する前記制御を、前記第1のキャリア周波数帯で送信される第1の無線チャネルを用いて前記第1のキャリア周波数帯に関する制御に付随して行うか、前記第2のキャリア周波数帯で送信される第2の無線チャネルを用いて前記第1のキャリア周波数帯に関する制御前記第1のキャリア周波数帯に関する制御とは独立して行うかを切り替え可能に構成されている、請求項1又は2に記載の無線通信システム。
  4.  前記移動局及び前記基地局は、前記第2のキャリア周波数帯の無線リソース使用量に応じて、前記制御を前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替える、請求項1~3のいずれか1項に記載の無線通信システム。
  5.  前記移動局及び前記基地局は、前記移動局の上り送信電力の大きさに応じて、前記制御を前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替える、請求項1~4のいずれか1項に記載の無線通信システム。
  6.  前記移動局及び前記基地局は、前記周波数間距離が所定の閾値より大きい場合に、前記第2のキャリア周波数帯で送信される無線チャネルを用いて前記制御を行う、請求項2に記載の無線通信システム。
  7.  前記移動局及び前記基地局は、前記無線リソース使用量が所定の閾値より大きい場合に、前記第2のキャリア周波数帯で送信される無線チャネルを用いて前記制御を行う、請求項4に記載の無線通信システム。
  8.  前記移動局及び前記基地局は、前記上り送信電力が所定の閾値より大きい場合に、前記第2のキャリア周波数帯で送信される無線チャネルを用いて前記制御を行う、請求項5に記載の無線通信システム。
  9.  前記基地局と前記移動局の間の通信制御を行う基地局制御装置をさらに備え、
     前記移動局は、前記基地局又は前記基地局制御装置から送信される制御情報に応じて、前記制御を前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替える、請求項1~8のいずれか1項に記載の無線通信システム。
  10.  前記第2のキャリア周波数帯に関する制御は、複数の詳細制御を含み、
     前記制御情報は、少なくとも1つの情報要素を含み、前記少なくとも1つの情報要素は前記複数の詳細制御のうち2つ以上と関連付けられており、
     前記移動局は、前記少なくとも1つの情報要素の受信結果に応じて、前記2つ以上の詳細制御の切り替えを決定するよう構成されている、請求項9に記載の無線通信システム。
  11.  前記第2のキャリア周波数帯に関する制御は、複数の詳細制御を含み、
     前記制御情報は、前記複数の詳細制御の各々に一対一に対応付けられた複数の情報要素を含み、
     前記移動局は、前記複数の情報要素の受信結果に応じて、前記複数の詳細制御の各々の切り替えを決定するよう構成されている、請求項9に記載の無線通信システム。
  12.  前記移動局は、前記制御を前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを自律的に判定する、請求項1~8のいずれか1項に記載の無線通信システム。
  13.  前記基地局と前記移動局の間の通信制御を行う基地局制御装置をさらに備え、
     前記移動局は、前記基地局又は前記基地局制御装置から前記閾値を受信し、受信した閾値を用いて前記第2のキャリア周波数帯に関する前記制御の切り替えを判定する、請求項6~8のいずれか1項に記載の無線通信システム。
  14.  前記第2のキャリア周波数帯に関する前記制御は、(a)前記第2のキャリア周波数帯を用いて前記移動局から前記基地局へ送信される上り無線チャネル群の構成変更、(b)前記第2のキャリア周波数帯に関する測定結果の前記移動局から前記基地局への報告、(c)前記第2のキャリア周波数帯に関する送信電力制御を含み、
     前記基地局及び移動局は、前記(a)~(c)の一部を選択的に実行できる、請求項1~13のいずれか1項に記載の無線通信システム。
  15.  前記第2のキャリア周波数帯に関する前記制御は、(i)前記移動局から前記基地局へ送信される上り無線チャネル群の構成変更、(ii)前記基地局から前記移動局に送信される下り無線チャネルの通信品質の測定、(iii)前記基地局の下り送信電力制御、のうち少なくとも1つを含む、請求項1~13のいずれか1項に記載の無線通信システム。
  16.  前記第1の無線チャネルを用いる場合、前記第1の無線チャネルを用いて転送される制御情報は、前記第2のキャリア周波数帯に関する前記制御とこれに対応する前記第1のキャリア周波数帯に関する制御との間で兼用される、請求項3に記載の無線通信システム。
  17.  前記第1の無線チャネルを用いて前記第2のキャリアに関する前記制御を行う場合、前記第1のキャリア周波数帯に関する測定情報が、前記第2のキャリア周波数帯に関する前記制御のために使用される、請求項3又は16に記載の無線通信システム。
  18.  前記第2のキャリア周波数帯を用いた無線通信は、前記第1のキャリア周波数帯を用いた無線通信が実行されていることを条件として従属的かつ付加的に行われる、請求項1~17のいずれか1項に記載の無線通信システム。
  19.  上り方向及び下り方向の少なくとも一方に第1及び第2のキャリア周波数帯を同時に使用して移動局との無線通信を行うことが可能な無線通信手段と、
     前記第2のキャリア周波数帯に関する制御を、前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替え可能な制御手段と、
    を備える基地局。
  20.  前記制御手段は、前記第1のキャリア周波数帯と前記第2のキャリア周波数帯との周波数距離に応じて、前記制御を前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替える、請求項19に記載の基地局。
  21.  前記制御手段は、前記第2のキャリア周波数帯に関する前記制御を、前記第1のキャリア周波数帯で送信される第1の無線チャネルを用いて前記第1のキャリア周波数帯に関する制御に付随して行うか、前記第2のキャリア周波数帯で送信される第2の無線チャネルを用いて独立して行うかを切り替え可能に構成されている、請求項19又は20に記載の基地局。
  22.  前記制御手段は、前記第2のキャリア周波数帯の無線リソース使用量に応じて、前記制御を前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替える、請求項19~21のいずれか1項に記載の基地局。
  23.  前記制御手段は、前記移動局の上り送信電力の大きさに応じて、前記制御を前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替える、請求項19~22のいずれか1項に記載の基地局。
  24.  前記制御手段は、前記基地局と前記移動局の間の通信制御を行う基地局制御装置からの指示に応じて、前記制御を前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替える、請求項19~23のいずれか1項に記載の基地局。
  25.  前記制御手段は、前記制御を前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを自律的に判定する、請求項19~23のいずれか1項に記載の基地局。
  26.  前記第2のキャリア周波数帯に関する前記制御は、(a)前記第2のキャリア周波数帯を用いて前記移動局から前記基地局へ送信される上り無線チャネル群の構成変更、(b)前記第2のキャリア周波数帯に関する測定結果の前記移動局から前記基地局への報告、(c)前記第2のキャリア周波数帯に関する送信電力制御を含み、
     前記基地局及び移動局は、前記(a)~(c)の一部を選択的に実行できる、請求項19~25のいずれか1項に記載の基地局。
  27.  前記第2のキャリア周波数帯に関する前記制御は、(i)前記移動局から前記基地局へ送信される上り無線チャネル群の構成変更、(ii)前記基地局から前記移動局に送信される下り無線チャネルの通信品質の測定、(iii)前記基地局の下り送信電力制御、のうち少なくとも1つを含む、請求項19~25のいずれか1項に記載の基地局。
  28.  上り方向及び下り方向の少なくとも一方に第1及び第2のキャリア周波数帯を同時に使用して基地局との無線通信を行うことが可能な無線通信手段と、
     前記第2のキャリア周波数帯に関する制御を、前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替え可能な制御手段と、
    を備える移動局。
  29.  前記制御手段は、前記第1のキャリア周波数帯と前記第2のキャリア周波数帯との周波数距離に応じて、前記制御を前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替える、請求項28に記載の移動局。
  30.  前記制御手段は、前記第2のキャリア周波数帯に関する前記制御を、前記第1のキャリア周波数帯で送信される第1の無線チャネルを用いて前記第1のキャリア周波数帯に関する制御に付随して行うか、前記第2のキャリア周波数帯で送信される第2の無線チャネルを用いて独立して行うかを切り替え可能に構成されている、請求項28又は29に記載の移動局。
  31.  前記制御手段は、前記第2のキャリア周波数帯の無線リソース使用量に応じて、前記制御を前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替える、請求項28~30のいずれか1項に記載の移動局。
  32.  前記制御手段は、前記移動局の上り送信電力の大きさに応じて、前記制御を前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替える、請求項28~31のいずれか1項に記載の移動局。
  33.  前記制御手段は、前記基地局、又は前記基地局と前記移動局の間の通信制御を行う基地局制御装置からの指示に応じて、前記制御を前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替える、請求項28~32のいずれか1項に記載の移動局。
  34.  前記制御手段は、前記制御を前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを自律的に判定する、請求項28~32のいずれか1項に記載の移動局。
  35.  前記第2のキャリア周波数帯に関する前記制御は、(a)前記第2のキャリア周波数帯を用いて前記移動局から前記基地局へ送信される上り無線チャネル群の構成変更、(b)前記第2のキャリア周波数帯に関する測定結果の前記移動局から前記基地局への報告、(c)前記第2のキャリア周波数帯に関する送信電力制御を含み、
     前記基地局及び移動局は、前記(a)~(c)の一部を選択的に実行できる、請求項28~34のいずれか1項に記載の移動局。
  36.  上り方向及び下り方向の少なくとも一方に第1及び第2のキャリア周波数帯を同時に使用して移動局との無線通信を行うことが可能な基地局の制御方法であって、
     前記第2のキャリア周波数帯に関する制御を、前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替えること、
    を備える制御方法。
  37.  前記制御を前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かは、前記第1のキャリア周波数帯と前記第2のキャリア周波数帯との周波数距離に基づいて決定される、請求項36に記載の方法。
  38.  前記第2のキャリア周波数帯に関する前記制御は、(a)前記第1のキャリア周波数帯で送信される第1の無線チャネルを用いた前記第1のキャリア周波数帯に関する制御に付随して前記第2のキャリア周波数帯に関する前記制御を行う制御モードと、(b)前記第2のキャリア周波数帯で送信される第2の無線チャネルを用いることにより前記第1のキャリア周波数帯に関する制御と前記第2のキャリア周波数帯に関する前記制御とを独立して行う制御モードと、の間で切り替えられる、請求項36又は37に記載の方法。
  39.  上り方向及び下り方向の少なくとも一方に第1及び第2のキャリア周波数帯を同時に使用して基地局との無線通信を行うことが可能な移動局の制御方法であって、
     前記第2のキャリア周波数帯に関する制御を、前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替えること、
    を備える制御方法。
  40.  前記制御を前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かは、前記第1のキャリア周波数帯と前記第2のキャリア周波数帯との周波数距離に基づいて決定される、請求項39に記載の方法。
  41.  前記第2のキャリア周波数帯に関する前記制御は、(a)前記第1のキャリア周波数帯で送信される第1の無線チャネルを用いた前記第1のキャリア周波数帯に関する制御に付随して前記第2のキャリア周波数帯に関する前記制御を行う制御モードと、(b)前記第2のキャリア周波数帯で送信される第2の無線チャネルを用いることにより前記第1のキャリア周波数帯に関する制御と前記第2のキャリア周波数帯に関する前記制御とを独立して行う制御モードと、の間で切り替えられる、請求項39又は40に記載の方法。
  42.  上り方向及び下り方向の少なくとも一方に第1及び第2のキャリア周波数帯を同時に使用して移動局との無線通信を行うことが可能な基地局に関する処理をコンピュータに実行させるプログラムが格納された記憶媒体であって、
     前記処理は、
    前記第2のキャリア周波数帯に関する制御を、前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替えること、
    を備える、プログラムが格納された記憶媒体。
  43.  上り方向及び下り方向の少なくとも一方に第1及び第2のキャリア周波数帯を同時に使用して基地局との無線通信を行うことが可能な移動局に関する処理をコンピュータに実行させるプログラムが格納された記憶媒体であって、
     前記処理は、
     前記第2のキャリア周波数帯に関する制御を、前記第2のキャリア周波数帯で送信される無線チャネルを用いて行うか否かを切り替えること、
    を備える、プログラムが格納された記憶媒体。
PCT/JP2010/000745 2009-03-13 2010-02-08 無線通信システム、基地局、移動局、基地局の制御方法、移動局の制御方法、及びプログラムが格納された記憶媒体 WO2010103725A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011503665A JP5609862B2 (ja) 2009-03-13 2010-02-08 無線通信システム、基地局、移動局、基地局の制御方法、移動局の制御方法、及びプログラム
US13/202,480 US8706132B2 (en) 2009-03-13 2010-02-08 Radio communication system, base station, mobile station, control method of base station, control method of mobile station, and storage medium storing program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-060559 2009-03-13
JP2009060559 2009-03-13

Publications (1)

Publication Number Publication Date
WO2010103725A1 true WO2010103725A1 (ja) 2010-09-16

Family

ID=42728024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000745 WO2010103725A1 (ja) 2009-03-13 2010-02-08 無線通信システム、基地局、移動局、基地局の制御方法、移動局の制御方法、及びプログラムが格納された記憶媒体

Country Status (3)

Country Link
US (1) US8706132B2 (ja)
JP (1) JP5609862B2 (ja)
WO (1) WO2010103725A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363885A (ja) * 1989-08-02 1991-03-19 Nec Corp フィルタリング方式
CN102684823A (zh) * 2011-03-16 2012-09-19 中兴通讯股份有限公司 一种双频段载波组合处理方法和***
JP2014504474A (ja) * 2010-12-03 2014-02-20 インターデイジタル パテント ホールディングス インコーポレイテッド マルチ無線アクセス技術キャリアアグリゲーションを実行するための方法、装置、およびシステム
JP2014522136A (ja) * 2011-04-04 2014-08-28 アルカテル−ルーセント セルラ通信システムにおいて2次セルを初期設定するための方法、ユーザ機器、および基地局
CN104584604A (zh) * 2012-08-29 2015-04-29 株式会社Ntt都科摩 移动通信方法、无线基站以及移动台
CN102684823B (zh) * 2011-03-16 2016-12-14 中兴通讯股份有限公司 一种双频段载波组合处理方法和***
JP2017011722A (ja) * 2012-07-27 2017-01-12 京セラ株式会社 基地局
JP2017505056A (ja) * 2014-01-30 2017-02-09 シャープ株式会社 デュアル接続性オペレーションのためのシステムおよび方法
US9635623B2 (en) 2013-12-10 2017-04-25 Fujitsu Limited Base station
US10349463B2 (en) 2012-08-23 2019-07-09 Interdigital Patent Holdings, Inc. Operating with multiple schedulers in a wireless system
US10973019B2 (en) 2012-08-23 2021-04-06 Interdigital Patent Holdings, Inc. Physical layer operation for multi-layer operation in a wireless system
CN115209357A (zh) * 2011-11-04 2022-10-18 苹果公司 无线通信中的确认定时的选择
US11838849B2 (en) 2011-07-29 2023-12-05 Interdigital Patent Holdings, Inc. Methods and apparatus for radio resources management in multi-radio access technology wireless systems

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2556689B1 (en) * 2010-04-08 2017-11-08 Nokia Solutions and Networks Oy Releasing a radio resource (e.g. primary component carrier) based on capacities of base stations
US8599763B2 (en) * 2010-08-16 2013-12-03 Qualcomm Incorporated Timing control in a multi-point high speed downlink packet access network
US9144044B2 (en) * 2010-10-01 2015-09-22 Optis Cellular Technology, Llc Methods providing aided signal synchronization and related network nodes and devices
US11057924B2 (en) * 2011-04-30 2021-07-06 Nokia Solutions And Networks Oy Method and apparatus for decoupling uplink and downlink cell selection
US8395985B2 (en) 2011-07-25 2013-03-12 Ofinno Technologies, Llc Time alignment in multicarrier OFDM network
US9237537B2 (en) 2012-01-25 2016-01-12 Ofinno Technologies, Llc Random access process in a multicarrier base station and wireless device
EP3937551A3 (en) 2012-01-25 2022-02-09 Comcast Cable Communications, LLC Random access channel in multicarrier wireless communications with timing advance groups
US8964780B2 (en) 2012-01-25 2015-02-24 Ofinno Technologies, Llc Sounding in multicarrier wireless communications
US9084270B2 (en) 2012-04-01 2015-07-14 Ofinno Technologies, Llc Radio access for a wireless device and base station
EP2835023B1 (en) 2012-04-01 2021-09-01 Comcast Cable Communications, LLC Cell group configuration in a wireless device and base station with timing advance groups
US11943813B2 (en) 2012-04-01 2024-03-26 Comcast Cable Communications, Llc Cell grouping for wireless communications
US11825419B2 (en) 2012-04-16 2023-11-21 Comcast Cable Communications, Llc Cell timing in a wireless device and base station
US11252679B2 (en) 2012-04-16 2022-02-15 Comcast Cable Communications, Llc Signal transmission power adjustment in a wireless device
EP2839705B1 (en) 2012-04-16 2017-09-06 Comcast Cable Communications, LLC Cell group configuration for uplink transmission in a multicarrier wireless device and base station with timing advance groups
US8989128B2 (en) 2012-04-20 2015-03-24 Ofinno Technologies, Llc Cell timing in a wireless device and base station
US9210664B2 (en) 2012-04-17 2015-12-08 Ofinno Technologies. LLC Preamble transmission in a wireless device
US11582704B2 (en) 2012-04-16 2023-02-14 Comcast Cable Communications, Llc Signal transmission power adjustment in a wireless device
US8964593B2 (en) 2012-04-16 2015-02-24 Ofinno Technologies, Llc Wireless device transmission power
US9179425B2 (en) 2012-04-17 2015-11-03 Ofinno Technologies, Llc Transmit power control in multicarrier communications
US9179457B2 (en) 2012-06-20 2015-11-03 Ofinno Technologies, Llc Carrier configuration in wireless networks
US9107206B2 (en) 2012-06-18 2015-08-11 Ofinne Technologies, LLC Carrier grouping in multicarrier wireless networks
US11622372B2 (en) 2012-06-18 2023-04-04 Comcast Cable Communications, Llc Communication device
US9113387B2 (en) 2012-06-20 2015-08-18 Ofinno Technologies, Llc Handover signalling in wireless networks
US9210619B2 (en) 2012-06-20 2015-12-08 Ofinno Technologies, Llc Signalling mechanisms for wireless device handover
US9084228B2 (en) 2012-06-20 2015-07-14 Ofinno Technologies, Llc Automobile communication device
US11882560B2 (en) 2012-06-18 2024-01-23 Comcast Cable Communications, Llc Carrier grouping in multicarrier wireless networks
US8971298B2 (en) * 2012-06-18 2015-03-03 Ofinno Technologies, Llc Wireless device connection to an application server
US9264930B2 (en) * 2012-11-07 2016-02-16 Qualcomm Incorporated Buffer status reporting and logical channel prioritization in multiflow operation
CN109905219B (zh) 2013-02-22 2021-09-24 日本电气株式会社 无线电通信***、无线电站及其方法
US10299272B2 (en) * 2016-11-04 2019-05-21 Nokia Solutions And Networks Oy Switching carrier frequency while user equipment is in off cycle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004297756A (ja) * 2003-02-06 2004-10-21 Ntt Docomo Inc 移動局、基地局、無線伝送プログラム、及び無線伝送方法
JP2008172355A (ja) * 2007-01-09 2008-07-24 Sharp Corp 基地局装置、端末装置、制御情報送信方法、制御情報受信方法、プログラムおよび無線通信システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8290530B2 (en) * 2006-07-28 2012-10-16 Kyocera Corporation Radio communication method and radio base station

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004297756A (ja) * 2003-02-06 2004-10-21 Ntt Docomo Inc 移動局、基地局、無線伝送プログラム、及び無線伝送方法
JP2008172355A (ja) * 2007-01-09 2008-07-24 Sharp Corp 基地局装置、端末装置、制御情報送信方法、制御情報受信方法、プログラムおよび無線通信システム

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363885A (ja) * 1989-08-02 1991-03-19 Nec Corp フィルタリング方式
US11871391B2 (en) 2010-12-03 2024-01-09 Interdigital Patent Holdings, Inc. Methods, apparatus and systems for performing multi-radio access technology carrier aggregation
JP2014504474A (ja) * 2010-12-03 2014-02-20 インターデイジタル パテント ホールディングス インコーポレイテッド マルチ無線アクセス技術キャリアアグリゲーションを実行するための方法、装置、およびシステム
US11363597B2 (en) 2010-12-03 2022-06-14 Interdigital Patent Holdings, Inc. Methods, apparatus and systems for performing multi-radio access technology carrier aggregation
US9271290B2 (en) 2010-12-03 2016-02-23 Interdigital Patent Holdings, Inc. Methods, apparatus and systems for performing multi-radio access technology carrier aggregation
JP2016195458A (ja) * 2010-12-03 2016-11-17 インターデイジタル パテント ホールディングス インコーポレイテッド マルチ無線アクセス技術キャリアアグリゲーションを実行するための方法、装置、およびシステム
US10560944B2 (en) 2010-12-03 2020-02-11 Interdigital Patent Holdings, Inc. Methods, apparatus and systems for performing multi-radio access technology carrier aggregation
US10143016B2 (en) 2010-12-03 2018-11-27 Interdigital Patent Holdings, Inc. Methods, apparatus and systems for performing multi-radio access technology carrier aggregation
CN102684823B (zh) * 2011-03-16 2016-12-14 中兴通讯股份有限公司 一种双频段载波组合处理方法和***
CN102684823A (zh) * 2011-03-16 2012-09-19 中兴通讯股份有限公司 一种双频段载波组合处理方法和***
JP2014522136A (ja) * 2011-04-04 2014-08-28 アルカテル−ルーセント セルラ通信システムにおいて2次セルを初期設定するための方法、ユーザ機器、および基地局
US11611958B2 (en) 2011-04-04 2023-03-21 Nokia Technologies Oy Method, user equipment and base station for initializing secondary cell in cellular communication system
US11838849B2 (en) 2011-07-29 2023-12-05 Interdigital Patent Holdings, Inc. Methods and apparatus for radio resources management in multi-radio access technology wireless systems
CN115209357B (zh) * 2011-11-04 2024-03-01 苹果公司 无线通信中的确认定时的选择
CN115209357A (zh) * 2011-11-04 2022-10-18 苹果公司 无线通信中的确认定时的选择
JP2017011722A (ja) * 2012-07-27 2017-01-12 京セラ株式会社 基地局
US11184942B2 (en) 2012-08-23 2021-11-23 Interdigital Patent Holdings, Inc. Operating with multiple schedulers in a wireless system
US10973019B2 (en) 2012-08-23 2021-04-06 Interdigital Patent Holdings, Inc. Physical layer operation for multi-layer operation in a wireless system
US10349463B2 (en) 2012-08-23 2019-07-09 Interdigital Patent Holdings, Inc. Operating with multiple schedulers in a wireless system
US11716781B2 (en) 2012-08-23 2023-08-01 Interdigital Patent Holdings, Inc. Operating with multiple schedulers in a wireless system
CN104584604A (zh) * 2012-08-29 2015-04-29 株式会社Ntt都科摩 移动通信方法、无线基站以及移动台
US9635623B2 (en) 2013-12-10 2017-04-25 Fujitsu Limited Base station
JP2017505056A (ja) * 2014-01-30 2017-02-09 シャープ株式会社 デュアル接続性オペレーションのためのシステムおよび方法

Also Published As

Publication number Publication date
JP5609862B2 (ja) 2014-10-22
US20110300856A1 (en) 2011-12-08
JPWO2010103725A1 (ja) 2012-09-13
US8706132B2 (en) 2014-04-22

Similar Documents

Publication Publication Date Title
JP5609862B2 (ja) 無線通信システム、基地局、移動局、基地局の制御方法、移動局の制御方法、及びプログラム
US9049691B2 (en) Base station apparatus, control method of base station apparatus, communication system, and storage medium storing program
KR101330870B1 (ko) 무선 통신에서 다중 캐리어 활용을 위한 방법 및 장치
JP5205093B2 (ja) ユーザ装置及び基地局装置
KR101580347B1 (ko) 최적화된 서빙 듀얼 셀 변경
US10181932B2 (en) Method to coordinate resource allocation to address inter-cell interference
JP5594146B2 (ja) 基地局装置、基地局装置の制御方法、処理装置、プログラム、及び無線通信システム
JP5602239B2 (ja) 柔軟な搬送波集約のための信号方式
KR102189764B1 (ko) 신 캐리어 유형에 대한 기준 신호 설계를 가진 방법 및 시스템
EP2936899B1 (en) Network node and method for allocating uplink radio resources
JP5636132B1 (ja) 基地局、無線端末、及び方法
JP2021533602A (ja) 重複伝送の設定及び/又はアクティベーション方法、重複伝送の方法及び装置
JPWO2014129120A1 (ja) 無線通信システム、無線局、無線端末、通信制御方法、及びプログラム
US20150141016A1 (en) Method for controlling cell activation, base station, and terminal
CN106506132B (zh) 一种多载波空口重配置的方法、用户设备及无线网络控制器
JP5567195B2 (ja) 通信制御方法、基地局、及び無線端末
CN106576306B (zh) 用于管理小区参考符号的功率的网络节点和方法
JP2014022895A (ja) 無線通信システム、無線通信方法、移動局装置、基地局装置、プログラム、および記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750484

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011503665

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13202480

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 6453/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10750484

Country of ref document: EP

Kind code of ref document: A1