WO2010103713A1 - Surface acoustic wave element - Google Patents

Surface acoustic wave element Download PDF

Info

Publication number
WO2010103713A1
WO2010103713A1 PCT/JP2010/000291 JP2010000291W WO2010103713A1 WO 2010103713 A1 WO2010103713 A1 WO 2010103713A1 JP 2010000291 W JP2010000291 W JP 2010000291W WO 2010103713 A1 WO2010103713 A1 WO 2010103713A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric substrate
acoustic wave
surface acoustic
support layer
substrate
Prior art date
Application number
PCT/JP2010/000291
Other languages
French (fr)
Japanese (ja)
Inventor
大村正志
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Publication of WO2010103713A1 publication Critical patent/WO2010103713A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/058Holders; Supports for surface acoustic wave devices
    • H03H9/059Holders; Supports for surface acoustic wave devices consisting of mounting pads or bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Definitions

  • the present invention relates to a surface acoustic wave element, and more particularly to a surface acoustic wave element in which a support layer is formed on a piezoelectric substrate.
  • the piezoelectric substrate In the surface acoustic wave element, it is necessary to make the piezoelectric substrate thin in order to obtain desired characteristics. In order to reduce the thickness of the piezoelectric substrate, for example, a manufacturing method shown in a sectional view of FIG. 10 has been proposed.
  • FIG. 10A after bonding the piezoelectric substrate 111A and the silicon support substrate 112A, as shown in FIG. 10B, a part 111C of the piezoelectric substrate 111A is cut and polished.
  • the piezoelectric substrate 111B having a desired thickness is formed by removing.
  • an element pattern 101a including an IDT electrode (IDT: interdigital transducer) 113, an electrode pad 114 and a wiring pattern is formed on the piezoelectric substrate 111B, and a bump 108 is formed on the electrode pad 114. To do.
  • IDT electrode interdigital transducer
  • a part 112C of the support substrate 112A is removed by cutting and polishing to form a support layer 112B having a desired thickness.
  • the piezoelectric substrate 111B and the support substrate 112B are cut so that the element patterns 101a are separated, and the surface acoustic wave separated into pieces as shown in FIG.
  • the element 110 that is, the surface acoustic wave element 110 in which the support layer 112 is formed on the piezoelectric substrate 111 is manufactured (for example, see Patent Document 1).
  • the element pattern 220 is formed as shown in the cross-sectional view of FIG. Due to this heat, warpage due to a difference in linear expansion coefficient between the piezoelectric substrate 210 and the support substrate 240 may occur, and accurate patterning may not be possible. In the worst case, the wafer itself is broken. Further, as shown in the sectional view of FIG. 9A, the wafer is warped as shown in the sectional view of FIG. 9B due to heat in the process of bonding the support substrate 240 to the flat piezoelectric substrate 210 as shown in the sectional view of FIG. Or cracks may occur.
  • the present invention intends to provide a surface acoustic wave element capable of preventing the occurrence of warping due to the formation of a support layer on a piezoelectric substrate.
  • the present invention provides a surface acoustic wave element configured as follows.
  • the surface acoustic wave element includes (a) a first piezoelectric substrate having a pair of main surfaces, (b) a second piezoelectric substrate having a pair of main surfaces, and (c) a pair of main surfaces, One of the main surfaces is bonded to one of the main surfaces of the first piezoelectric substrate, and the other of the main surfaces includes a support layer bonded to one of the main surfaces of the second piezoelectric substrate, An element pattern including an IDT electrode is formed on at least one of the other main surface of the first piezoelectric substrate and the other main surface of the second piezoelectric substrate.
  • the linear expansion coefficient of the support layer is smaller than the linear expansion coefficient of the first piezoelectric substrate and smaller than the linear expansion coefficient of the second piezoelectric substrate.
  • the surface acoustic wave element has a sandwich structure in which a support layer is sandwiched between first and second piezoelectric substrates, and an element pattern including an IDT electrode is formed on at least one of the piezoelectric substrates.
  • the first warp caused by the joining of the first piezoelectric substrate and the support layer if there is no second piezoelectric substrate, the first warp caused by the joining of the first piezoelectric substrate and the support layer, and if there is no first piezoelectric substrate, the second piezoelectric substrate and the support layer Since the second warp caused by the joining is opposite to each other, the first warp and the second warp cancel each other. Therefore, it is possible to prevent the occurrence of warpage due to the formation of the support layer on the piezoelectric substrate.
  • the linear expansion coefficient of the support layer is smaller than the linear expansion coefficients of the first and second piezoelectric substrates, the expansion and contraction of the piezoelectric substrate is suppressed by the support layer, and the variation in the frequency characteristics due to the temperature change becomes small. The characteristics are improved.
  • an element pattern including an IDT electrode is formed on both the other main surface of the first piezoelectric substrate and the other main surface of the second piezoelectric substrate.
  • the surface acoustic wave element is formed more than in the case where the element pattern is formed only on one side of the chip. It can be downsized.
  • the thickness of the support layer is larger than the thickness of the first piezoelectric substrate and larger than the thickness of the second piezoelectric substrate.
  • the support layer thicker than the first and second piezoelectric substrates, expansion and contraction of the piezoelectric substrate accompanying a temperature change can be sufficiently suppressed by the support layer, and the temperature characteristic improvement effect can be enhanced.
  • the surface acoustic wave device according to the present invention can prevent warpage due to the formation of the support layer on the piezoelectric substrate.
  • Example 1 It is sectional drawing of a surface acoustic wave element.
  • Example 1 It is sectional drawing which shows the manufacturing process of a surface acoustic wave element.
  • Example 1 It is sectional drawing which shows the manufacturing process of a surface acoustic wave element.
  • Example 2 It is sectional drawing which shows the mounting state of a surface acoustic wave element.
  • Example 2 It is sectional drawing which shows the mounting state of a surface acoustic wave element.
  • Example 2 It is sectional drawing which shows the manufacturing process of a surface acoustic wave element.
  • Example 2 It is sectional drawing which shows the manufacturing process of a surface acoustic wave element.
  • Example 2 It is sectional drawing which shows the manufacturing process of a surface acoustic wave element.
  • Reference example It is sectional drawing which shows the manufacturing process of a surface acoustic wave element.
  • Example 1 A surface acoustic wave element 2 of Example 1 will be described with reference to FIGS.
  • FIG. 1 is a cross-sectional view of a surface acoustic wave element 2 according to the first embodiment.
  • first and second piezoelectric substrates 12 and 16 are bonded via a support layer 14.
  • An element pattern 20 including an IDT electrode is formed on the surface 12 a of the first piezoelectric substrate 12.
  • An element pattern including an IDT electrode is not formed on the surface 16 b of the second piezoelectric substrate 16.
  • FIGS. 2 and 3 are cross-sectional views schematically showing a method for manufacturing the surface acoustic wave device 2 of the first embodiment.
  • a wafer-like first piezoelectric substrate 12 is prepared.
  • a lithium tantalate (LiTaO 3 ) substrate (LT substrate) or a lithium niobate (LiNbO 3 ) substrate (LN substrate) is prepared.
  • the support layer 14 is formed on the back surface 12b of the first piezoelectric substrate 12 by thermal spraying.
  • the linear expansion coefficient is sufficiently higher than that of the piezoelectric substrates 12 and 16 such as the LT substrate and the LN substrate, using a material such as a metal or ceramic such as Si, Al 2 O 3 , SiO 2 .
  • the support layer 14 can be easily formed, and the effect of improving the temperature characteristics by the support layer 14 can be increased. Even if the back surface 12b of the piezoelectric substrate 12 is uneven, the support layer 14 can be easily formed by thermal spraying, and the flatness of the back surface 12b of the piezoelectric substrate 12 is high as in the case of direct bonding. Manufacturing is simple because accuracy is not required.
  • a member that becomes the support layer 14 is formed in advance using a material such as Si, Al 2 O 3 , SiO 2, such as metal or ceramic, and this member is attached to the back surface 12 b of the first piezoelectric substrate 12. To join.
  • FIG. 3 (f) Pattern Formation Next, as shown in FIG. 3 (f), an element including an IDT electrode, a pad, and a wiring connecting the IDT electrode and the pad on the surface 12a of the first piezoelectric substrate 12.
  • the pattern 20 is formed using a photolithography technique or an etching technique.
  • the surface acoustic wave element 2 of Example 1 has a sandwich structure in which a support layer 14 is sandwiched between first and second piezoelectric substrates 12 and 16, and an element pattern 20 including an IDT electrode is formed on one piezoelectric substrate 12. Is formed.
  • the surface acoustic wave element 2 has a sandwich structure, and if there is no second piezoelectric substrate 16, the first warp caused by the bonding of the first piezoelectric substrate 12 and the support layer 14 and the first piezoelectric substrate 12 are absent. Since the second warp caused by the joining of the second piezoelectric substrate 16 and the support layer 14 is opposite to each other, the first warp and the second warp cancel each other. Therefore, it is possible to prevent the occurrence of warpage due to the formation of the support layer on the piezoelectric substrate.
  • the surface acoustic wave element 2 is formed so that the linear expansion coefficient of the support layer 14 is smaller than the linear expansion coefficients of the first and second piezoelectric substrates 12 and 16.
  • the expansion and contraction of the piezoelectric substrates 12 and 16 is suppressed by the support layer 14, fluctuations in the frequency characteristics accompanying temperature changes are reduced, and the temperature characteristics of the surface acoustic wave element 2 are improved.
  • the support layer 14 is formed using a material such as Si, Al 2 O 3 , or SiO 2 , the temperature characteristics are improved. .
  • the thickness of the support layer 14 is preferably larger than the thickness of the first piezoelectric substrate 12 and larger than the thickness of the second piezoelectric substrate 16. In this case, by making the support layer 14 thicker than the piezoelectric substrates 12 and 16, the expansion and contraction of the piezoelectric substrates 12 and 16 due to temperature change can be sufficiently suppressed by the support layer 14, and the effect of improving the temperature characteristics can be achieved. Can be increased.
  • Example 2 A surface acoustic wave element 2a of Example 2 will be described with reference to FIGS.
  • FIG. 4 is a cross-sectional view of the surface acoustic wave element 2a according to the second embodiment.
  • the surface acoustic wave element 2 a according to the second embodiment is similar to the first embodiment, in which the first and second piezoelectric substrates 12 and 16 are joined via the support layer 14.
  • An element pattern 20 is formed on the surface 12 a of 12.
  • the element pattern 22 including the IDT electrode is also formed on the surface 16 b of the second piezoelectric substrate 16.
  • the surface acoustic wave element 2 a is a duplexer in which a transmission resonator and a filter are formed by one element pattern 20 and a reception resonator and a filter are formed by the other element pattern 22.
  • the chip body 10 in which the support layer 14 is sandwiched between the pair of piezoelectric substrates 12 and 16, the chip body as in the first embodiment.
  • the surface acoustic wave element can be reduced in size as compared with the case where the element pattern 20 is formed only on one side of 10.
  • the surface acoustic wave element 2a can be mounted on the circuit board 30 as shown in the cross-sectional view of FIG.
  • one piezoelectric substrate 12 side is electrically connected to the circuit substrate 30 via the bonding wire 40
  • the other piezoelectric substrate 16 side is electrically connected to the circuit substrate 30 via the bump 42.
  • the surface acoustic wave element 2 a can be mounted in a standing state on the circuit board 30.
  • the electrodes formed on the piezoelectric substrates 12 and 16 are electrically connected to the circuit substrate 30 via the solder 44.
  • FIGS. 7 and 8 are cross-sectional views schematically showing manufacturing steps of the surface acoustic wave element 2a.
  • support layers 15s and 15t are formed on the back surfaces 12b and 16a of the first and second piezoelectric substrates 12 and 16 by thermal spraying, and the surfaces 15a and 15b of the support layers 15s and 15t are formed. They are joined together using an adhesive.
  • the surface acoustic wave element 2 a is formed so that the linear expansion coefficients of the support layers 14; 15 s and 15 t are smaller than the linear expansion coefficients of the first and second piezoelectric substrates 12 and 16.
  • the expansion and contraction of the piezoelectric substrates 12 and 16 is suppressed by the support layers 14; 15s and 15t, the fluctuation of the frequency characteristics accompanying the temperature change is reduced, and the temperature characteristics of the surface acoustic wave element 2 are improved.
  • a material such as Si, Al 2 O 3 , or SiO 2
  • the thickness of the support layer 14 and the total thickness of the support layers 15 s and 15 t are preferably larger than the thickness of the first piezoelectric substrate 12 and larger than the thickness of the second piezoelectric substrate 16.
  • the support layers 14; 15s, 15t thicker than the piezoelectric substrates 12, 16, the expansion and contraction of the piezoelectric substrates 12, 16 due to temperature changes can be sufficiently suppressed by the support layers 14; 15s, 15t. It is possible to increase the effect of improving the temperature characteristics.
  • the sandwich structure in which the support layer 14; 15s, 15t is sandwiched between the piezoelectric substrates 12 and 16 can cause warpage due to the formation of the support layer on the piezoelectric substrate. Can be prevented.
  • the surface acoustic wave element 2 may be manufactured by a manufacturing method different from the manufacturing method described above.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

Disclosed is a surface acoustic wave element wherein occurrence of warping due to the formation of a supporting layer on a piezoelectric substrate can be prevented. The surface acoustic wave element comprises: (a) a first piezoelectric substrate (12) having a pair of main surfaces (12a, 12b); (b) a second piezoelectric substrate (16) having a pair of main surfaces (16a, 16b); and (c) a supporting layer (14) having a pair of main surfaces (14a, 14b) respectively bonded to one main surface (12b, 16a) of the first and second piezoelectric substrate (12, 16). At least one main surface (12a) among the other main surface (12a, 16b) of the first and second piezoelectric substrate (12, 16) is provided with an element pattern (20) containing an IDT electrode. The linear expansion coefficient of the supporting layer (14) is lower than both the linear expansion coefficient of the first piezoelectric substrate (12) and the linear expansion coefficient of the second piezoelectric substrate (16).

Description

弾性表面波素子Surface acoustic wave device
 本発明は、弾性表面波素子に関し、詳しくは、圧電基板に支持層が形成された弾性表面波素子に関する。 The present invention relates to a surface acoustic wave element, and more particularly to a surface acoustic wave element in which a support layer is formed on a piezoelectric substrate.
 弾性表面波素子は、所望の特性を得るために圧電基板を薄くする必要がある。圧電基板を薄くするため、例えば図10の断面図に示す製造方法が提案されている。 In the surface acoustic wave element, it is necessary to make the piezoelectric substrate thin in order to obtain desired characteristics. In order to reduce the thickness of the piezoelectric substrate, for example, a manufacturing method shown in a sectional view of FIG. 10 has been proposed.
 すなわち、図10(a)に示すように、圧電基板111Aとシリコンの支持基板112Aとを貼り合わせた後、図10(b)に示すように、圧電基板111Aの一部111Cを切削・研磨により除去して、所望の厚さを有する圧電基板111Bを形成する。次いで、図10(c)に示すように、圧電基板111BにIDT電極(IDT:interdigital transducer)113,電極パッド114及び配線パターンを含む素子パターン101aを形成し、電極パッド114上にバンプ108を形成する。次いで、図10(d)に示すように、支持基板112Aの一部112Cを切削・研磨により除去して、所望の厚さを有する支持層112Bを形成する。次いで、図10(e)に示すように、素子パターン101aが個別になるように圧電基板111B及び支持基板112Bをカットすることにより、図10(f)に示すよう個片化された弾性表面波素子110、すなわち圧電基板111に支持層112が形成された弾性表面波素子110を作製する(例えば、特許文献1参照)。 That is, as shown in FIG. 10A, after bonding the piezoelectric substrate 111A and the silicon support substrate 112A, as shown in FIG. 10B, a part 111C of the piezoelectric substrate 111A is cut and polished. The piezoelectric substrate 111B having a desired thickness is formed by removing. Next, as shown in FIG. 10C, an element pattern 101a including an IDT electrode (IDT: interdigital transducer) 113, an electrode pad 114 and a wiring pattern is formed on the piezoelectric substrate 111B, and a bump 108 is formed on the electrode pad 114. To do. Next, as shown in FIG. 10D, a part 112C of the support substrate 112A is removed by cutting and polishing to form a support layer 112B having a desired thickness. Next, as shown in FIG. 10E, the piezoelectric substrate 111B and the support substrate 112B are cut so that the element patterns 101a are separated, and the surface acoustic wave separated into pieces as shown in FIG. The element 110, that is, the surface acoustic wave element 110 in which the support layer 112 is formed on the piezoelectric substrate 111 is manufactured (for example, see Patent Document 1).
特開2004-297693号公報JP 2004-297893 A
 しかしながら、この製造方法のように、圧電基板と支持基板とを貼り合わせた状態で圧電基板に素子パターンを形成すると、図9(c)の断面図に示すように、素子パターン220を形成する際の熱により、圧電基板210と支持基板240との線膨張係数の差に起因する反りが発生し、正確にパターニングできないことがあり、最悪の場合にはウェハ自体が割れる。また、図9(a)の断面図に示すように平坦な圧電基板210に、支持基板240を貼り合わせる工程での熱によって、図9(b)の断面図に示すようにウェハに反りが発生したり、割れが発生したりすることがある。 However, when the element pattern is formed on the piezoelectric substrate with the piezoelectric substrate and the supporting substrate bonded together as in this manufacturing method, the element pattern 220 is formed as shown in the cross-sectional view of FIG. Due to this heat, warpage due to a difference in linear expansion coefficient between the piezoelectric substrate 210 and the support substrate 240 may occur, and accurate patterning may not be possible. In the worst case, the wafer itself is broken. Further, as shown in the sectional view of FIG. 9A, the wafer is warped as shown in the sectional view of FIG. 9B due to heat in the process of bonding the support substrate 240 to the flat piezoelectric substrate 210 as shown in the sectional view of FIG. Or cracks may occur.
 本発明は、かかる実情に鑑み、圧電基板に支持層が形成されたことによる反りの発生を防止することができる弾性表面波素子を提供しようとするものである。 In view of such circumstances, the present invention intends to provide a surface acoustic wave element capable of preventing the occurrence of warping due to the formation of a support layer on a piezoelectric substrate.
 本発明は、上記課題を解決するために、以下のように構成した弾性表面波素子を提供する。 In order to solve the above problems, the present invention provides a surface acoustic wave element configured as follows.
 弾性表面波素子は、(a)一対の主面を有する第1の圧電基板と、(b)一対の主面を有する第2の圧電基板と、(c)一対の主面を有し、当該主面の一方が前記第1の圧電基板の前記主面の一方に接合され、当該主面の他方が前記第2の圧電基板の前記主面の一方に接合された支持層とを備える、前記第1の圧電基板の前記主面の他方と前記第2の圧電基板の前記主面の他方との少なくとも一方に、IDT電極を含む素子パターンが形成されている。前記支持層の線膨張係数は、前記第1の圧電基板の線膨張係数よりも小さく、かつ前記第2の圧電基板の線膨張係数よりも小さい。 The surface acoustic wave element includes (a) a first piezoelectric substrate having a pair of main surfaces, (b) a second piezoelectric substrate having a pair of main surfaces, and (c) a pair of main surfaces, One of the main surfaces is bonded to one of the main surfaces of the first piezoelectric substrate, and the other of the main surfaces includes a support layer bonded to one of the main surfaces of the second piezoelectric substrate, An element pattern including an IDT electrode is formed on at least one of the other main surface of the first piezoelectric substrate and the other main surface of the second piezoelectric substrate. The linear expansion coefficient of the support layer is smaller than the linear expansion coefficient of the first piezoelectric substrate and smaller than the linear expansion coefficient of the second piezoelectric substrate.
 上記構成において、弾性表面波素子は、第1及び第2の圧電基板に支持層が挟まれたサンドイッチ構造であり、少なくとも一方の圧電基板に、IDT電極を含む素子パターンが形成されている。 In the above configuration, the surface acoustic wave element has a sandwich structure in which a support layer is sandwiched between first and second piezoelectric substrates, and an element pattern including an IDT electrode is formed on at least one of the piezoelectric substrates.
 上記構成によれば、第2の圧電基板が無ければ第1の圧電基板と支持層との接合により生じる第1の反りと、第1の圧電基板が無ければ第2の圧電基板と支持層との接合により生じる第2の反りとは、互いに逆向きになるため、第1の反りと第2の反りは相殺し合う。したがって、圧電基板に支持層が形成されたことによる反りの発生を防止することができる。 According to the above configuration, if there is no second piezoelectric substrate, the first warp caused by the joining of the first piezoelectric substrate and the support layer, and if there is no first piezoelectric substrate, the second piezoelectric substrate and the support layer Since the second warp caused by the joining is opposite to each other, the first warp and the second warp cancel each other. Therefore, it is possible to prevent the occurrence of warpage due to the formation of the support layer on the piezoelectric substrate.
 また、支持層の線膨張係数が第1及び第2の圧電基板の線膨張係数よりも小さいと、圧電基板の伸縮が支持層によって抑制され、温度変化に伴う周波数特性の変動が小さくなり、温度特性が改善される。 Further, if the linear expansion coefficient of the support layer is smaller than the linear expansion coefficients of the first and second piezoelectric substrates, the expansion and contraction of the piezoelectric substrate is suppressed by the support layer, and the variation in the frequency characteristics due to the temperature change becomes small. The characteristics are improved.
 好ましくは、前記第1の圧電基板の前記主面の他方と前記第2の圧電基板の前記主面の他方との両方に、IDT電極を含む素子パターンが形成されている。 Preferably, an element pattern including an IDT electrode is formed on both the other main surface of the first piezoelectric substrate and the other main surface of the second piezoelectric substrate.
 この場合、一対の圧電基板の間に支持層が挟まれたチップの両面に素子パターンを形成することができるので、チップの片面にのみ素子パターンが形成される場合よりも、弾性表面波素子を小型化することができる。 In this case, since the element pattern can be formed on both sides of the chip in which the support layer is sandwiched between the pair of piezoelectric substrates, the surface acoustic wave element is formed more than in the case where the element pattern is formed only on one side of the chip. It can be downsized.
 好ましくは、前記支持層の厚みが、前記第1の圧電基板の厚みよりも大きく、かつ前記第2の圧電基板の厚みよりも大きい。 Preferably, the thickness of the support layer is larger than the thickness of the first piezoelectric substrate and larger than the thickness of the second piezoelectric substrate.
 この場合、支持層を第1及び第2の圧電基板よりも厚くすることにより、温度変化に伴う圧電基板の伸縮を支持層によって十分に抑制することができ、温度特性改善効果を高めることができる。 In this case, by making the support layer thicker than the first and second piezoelectric substrates, expansion and contraction of the piezoelectric substrate accompanying a temperature change can be sufficiently suppressed by the support layer, and the temperature characteristic improvement effect can be enhanced. .
 本発明の弾性表面波素子は、圧電基板に支持層が形成されたことによる反りの発生を防止することができる。 The surface acoustic wave device according to the present invention can prevent warpage due to the formation of the support layer on the piezoelectric substrate.
弾性表面波素子の断面図である。(実施例1)It is sectional drawing of a surface acoustic wave element. (Example 1) 弾性表面波素子の製造工程を示す断面図である。(実施例1)It is sectional drawing which shows the manufacturing process of a surface acoustic wave element. (Example 1) 弾性表面波素子の製造工程を示す断面図である。(実施例1)It is sectional drawing which shows the manufacturing process of a surface acoustic wave element. (Example 1) 弾性表面波素子の断面図である。(実施例2)It is sectional drawing of a surface acoustic wave element. (Example 2) 弾性表面波素子の実装状態を示す断面図である。(実施例2)It is sectional drawing which shows the mounting state of a surface acoustic wave element. (Example 2) 弾性表面波素子の実装状態を示す断面図である。(実施例2)It is sectional drawing which shows the mounting state of a surface acoustic wave element. (Example 2) 弾性表面波素子の製造工程を示す断面図である。(実施例2)It is sectional drawing which shows the manufacturing process of a surface acoustic wave element. (Example 2) 弾性表面波素子の製造工程を示す断面図である。(実施例2)It is sectional drawing which shows the manufacturing process of a surface acoustic wave element. (Example 2) 弾性表面波素子の製造工程を示す断面図である。(参考例)It is sectional drawing which shows the manufacturing process of a surface acoustic wave element. (Reference example) 弾性表面波素子の製造工程を示す断面図である。(従来例)It is sectional drawing which shows the manufacturing process of a surface acoustic wave element. (Conventional example)
 以下、本発明の実施の形態について、図1~図8を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS.
 <実施例1> 実施例1の弾性表面波素子2について、図1~図3を参照しながら説明する。 Example 1 A surface acoustic wave element 2 of Example 1 will be described with reference to FIGS.
 図1は、実施例1の弾性表面波素子2の断面図である。図1に示すように、弾性表面波素子2は、第1及び第2の圧電基板12,16が支持層14を介して接合されている。第1の圧電基板12の表面12aには、IDT電極を含む素子パターン20が形成されている。第2の圧電基板16の表面16bには、IDT電極を含む素子パターンは形成されていない。 FIG. 1 is a cross-sectional view of a surface acoustic wave element 2 according to the first embodiment. As shown in FIG. 1, in the surface acoustic wave element 2, first and second piezoelectric substrates 12 and 16 are bonded via a support layer 14. An element pattern 20 including an IDT electrode is formed on the surface 12 a of the first piezoelectric substrate 12. An element pattern including an IDT electrode is not formed on the surface 16 b of the second piezoelectric substrate 16.
 次に、弾性表面波素子2の製造方法について、図2及び図3を参照しながら説明する。図2及び図3は、実施例1の弾性表面波素子2の製造方法を模式的に示す断面図である。 Next, a method for manufacturing the surface acoustic wave element 2 will be described with reference to FIGS. 2 and 3 are cross-sectional views schematically showing a method for manufacturing the surface acoustic wave device 2 of the first embodiment.
 (a)基板準備
 まず、図2(a)に示すように、ウェハ状の第1の圧電基板12を準備する。例えば、タンタル酸リチウム(LiTaO)基板(LT基板)やニオブ酸リチウム(LiNbO)基板(LN基板)を準備する。
(A) Substrate Preparation First, as shown in FIG. 2A, a wafer-like first piezoelectric substrate 12 is prepared. For example, a lithium tantalate (LiTaO 3 ) substrate (LT substrate) or a lithium niobate (LiNbO 3 ) substrate (LN substrate) is prepared.
 (b)支持層形成
 次いで、図2(b)に示すように、第1の圧電基板12の裏面12bに支持層14を形成する。
(B) Formation of Support Layer Next, as illustrated in FIG. 2B, the support layer 14 is formed on the back surface 12 b of the first piezoelectric substrate 12.
 例えば、第1の圧電基板12の裏面12bに、溶射により支持層14を形成する。溶射により支持層14を形成すると、LT基板やLN基板などの圧電基板12,16よりも線膨張係数が十分にSi、Al、SiOなど、金属やセラミックなどの材料を用いて、支持層14を容易に形成することができ、支持層14による温度特性の改善効果を大きくすることができる。また、圧電基板12の裏面12bに凹凸があっても、溶射であれば支持層14を容易に形成することができ、直接接合の場合のように圧電基板12の裏面12bの平坦性について高い加工精度は要求されないため、製造が簡単である。 For example, the support layer 14 is formed on the back surface 12b of the first piezoelectric substrate 12 by thermal spraying. When the support layer 14 is formed by thermal spraying, the linear expansion coefficient is sufficiently higher than that of the piezoelectric substrates 12 and 16 such as the LT substrate and the LN substrate, using a material such as a metal or ceramic such as Si, Al 2 O 3 , SiO 2 , The support layer 14 can be easily formed, and the effect of improving the temperature characteristics by the support layer 14 can be increased. Even if the back surface 12b of the piezoelectric substrate 12 is uneven, the support layer 14 can be easily formed by thermal spraying, and the flatness of the back surface 12b of the piezoelectric substrate 12 is high as in the case of direct bonding. Manufacturing is simple because accuracy is not required.
 あるいは、支持層14になる部材をSi、Al、SiOなど、金属やセラミックなどの材料を用いて予め形成しておき、この部材を第1の圧電基板12の裏面12bに接着材を用いて接合する。 Alternatively, a member that becomes the support layer 14 is formed in advance using a material such as Si, Al 2 O 3 , SiO 2, such as metal or ceramic, and this member is attached to the back surface 12 b of the first piezoelectric substrate 12. To join.
 (c)基板薄化
 次いで、図2(c)に示すように、第1の圧電基板12の表面12aについて、研削(グラインド)、研磨(ラッピング)などの除去加工を行い、第1の圧電基板12を薄くする。
(C) Substrate Thinning Next, as shown in FIG. 2 (c), the surface 12a of the first piezoelectric substrate 12 is subjected to removal processing such as grinding (grinding) and polishing (lapping) to obtain the first piezoelectric substrate. 12 is thinned.
 (d)基板貼り合わせ
 次いで、図3(d)に示すように、支持層14の第1の圧電基板12とは反対側の面14bに、接着材を用いて第2の圧電基板16を接合する。
(D) Substrate Bonding Next, as shown in FIG. 3D, the second piezoelectric substrate 16 is bonded to the surface 14b of the support layer 14 on the side opposite to the first piezoelectric substrate 12 using an adhesive. To do.
 (e)基板薄化
 次いで、図3(e)に示すように、第2の圧電基板16の表面16bについて、研削(グラインド)、研磨(ラッピング)などの除去加工を行い、第2の圧電基板16を薄くする。
(E) Substrate thinning Next, as shown in FIG. 3 (e), the surface 16b of the second piezoelectric substrate 16 is subjected to removal processing such as grinding (grinding) and polishing (lapping) to obtain a second piezoelectric substrate. Make 16 thinner.
 (f)パターン形成
 次いで、図3(f)に示すように、第1の圧電基板12の表面12aに、IDT電極と、パッドと、IDT電極とパッドとの間を接続する配線とを含む素子パターン20を、フォトリソグラフィー技術やエッチング技術を用いて形成する。
(F) Pattern Formation Next, as shown in FIG. 3 (f), an element including an IDT electrode, a pad, and a wiring connecting the IDT electrode and the pad on the surface 12a of the first piezoelectric substrate 12. The pattern 20 is formed using a photolithography technique or an etching technique.
 (g)基板分割工程
 次いで、圧電基板12,16及び支持層14のチップ本体10を、ダイシング加工などにより分割し、弾性表面波素子2の個片を形成する。
(G) Substrate Dividing Step Next, the piezoelectric substrates 12 and 16 and the chip body 10 of the support layer 14 are divided by dicing or the like to form individual pieces of the surface acoustic wave element 2.
 実施例1の弾性表面波素子2は、第1及び第2の圧電基板12,16に支持層14が挟まれたサンドイッチ構造であり、一方の圧電基板12に、IDT電極を含む素子パターン20が形成されている。 The surface acoustic wave element 2 of Example 1 has a sandwich structure in which a support layer 14 is sandwiched between first and second piezoelectric substrates 12 and 16, and an element pattern 20 including an IDT electrode is formed on one piezoelectric substrate 12. Is formed.
 弾性表面波素子2は、サンドイッチ構造によって、第2の圧電基板16が無ければ第1の圧電基板12と支持層14との接合により生じる第1の反りと、第1の圧電基板12が無ければ第2の圧電基板16と支持層14との接合により生じる第2の反りとが、互いに逆向きになるため、第1の反りと第2の反りは相殺し合う。したがって、圧電基板に支持層が形成されたことによる反りの発生を防止することができる。 The surface acoustic wave element 2 has a sandwich structure, and if there is no second piezoelectric substrate 16, the first warp caused by the bonding of the first piezoelectric substrate 12 and the support layer 14 and the first piezoelectric substrate 12 are absent. Since the second warp caused by the joining of the second piezoelectric substrate 16 and the support layer 14 is opposite to each other, the first warp and the second warp cancel each other. Therefore, it is possible to prevent the occurrence of warpage due to the formation of the support layer on the piezoelectric substrate.
 弾性表面波素子2は、支持層14の線膨張係数が第1及び第2の圧電基板12,16の線膨張係数よりも小さくなるように形成する。これによって、圧電基板12,16の伸縮が支持層14によって抑制され、温度変化に伴う周波数特性の変動が小さくなり、弾性表面波素子2の温度特性が改善される。例えば、第1及び第2の圧電基板12,16にLT基板やLN基板を用い、支持層14をSi、Al、SiOなどの材料を用いて形成すると、温度特性が改善される。 The surface acoustic wave element 2 is formed so that the linear expansion coefficient of the support layer 14 is smaller than the linear expansion coefficients of the first and second piezoelectric substrates 12 and 16. As a result, the expansion and contraction of the piezoelectric substrates 12 and 16 is suppressed by the support layer 14, fluctuations in the frequency characteristics accompanying temperature changes are reduced, and the temperature characteristics of the surface acoustic wave element 2 are improved. For example, when an LT substrate or an LN substrate is used for the first and second piezoelectric substrates 12 and 16 and the support layer 14 is formed using a material such as Si, Al 2 O 3 , or SiO 2 , the temperature characteristics are improved. .
 支持層14の厚みは、第1の圧電基板12の厚みよりも大きく、かつ第2の圧電基板16の厚みよりも大きくすることが好ましい。この場合、支持層14を圧電基板12,16よりも厚くすることにより、温度変化に伴う圧電基板12,16の伸縮を、支持層14によって十分に抑制することができ、温度特性の改善効果を高めることができる。 The thickness of the support layer 14 is preferably larger than the thickness of the first piezoelectric substrate 12 and larger than the thickness of the second piezoelectric substrate 16. In this case, by making the support layer 14 thicker than the piezoelectric substrates 12 and 16, the expansion and contraction of the piezoelectric substrates 12 and 16 due to temperature change can be sufficiently suppressed by the support layer 14, and the effect of improving the temperature characteristics can be achieved. Can be increased.
 <実施例2> 実施例2の弾性表面波素子2aについて、図4~図8を参照しながら説明する。 Example 2 A surface acoustic wave element 2a of Example 2 will be described with reference to FIGS.
 図4は、実施例2の弾性表面波素子2aの断面図である。図4に示すように、実施例2の弾性表面波素子2aは、実施例1と同じく、第1及び第2の圧電基板12,16が支持層14を介して接合され、第1の圧電基板12の表面12aに素子パターン20が形成されている。ただし、実施例1と異なり、第2の圧電基板16の表面16bにも、IDT電極を含む素子パターン22が形成されている。 FIG. 4 is a cross-sectional view of the surface acoustic wave element 2a according to the second embodiment. As shown in FIG. 4, the surface acoustic wave element 2 a according to the second embodiment is similar to the first embodiment, in which the first and second piezoelectric substrates 12 and 16 are joined via the support layer 14. An element pattern 20 is formed on the surface 12 a of 12. However, unlike Example 1, the element pattern 22 including the IDT electrode is also formed on the surface 16 b of the second piezoelectric substrate 16.
 例えば、弾性表面波素子2aは、一方の素子パターン20により送信用の共振子やフィルタが形成され、他方の素子パターン22により受信用の共振子やフィルタが形成されたデュプレクサである。 For example, the surface acoustic wave element 2 a is a duplexer in which a transmission resonator and a filter are formed by one element pattern 20 and a reception resonator and a filter are formed by the other element pattern 22.
 弾性表面波素子2aは、一対の圧電基板12,16の間に支持層14が挟まれたチップ本体10の両面に素子パターン20,22が形成されているため、実施例1のようにチップ本体10の片面にのみ素子パターン20が形成される場合よりも、弾性表面波素子を小型化することができる。 In the surface acoustic wave element 2a, since the element patterns 20 and 22 are formed on both surfaces of the chip body 10 in which the support layer 14 is sandwiched between the pair of piezoelectric substrates 12 and 16, the chip body as in the first embodiment. The surface acoustic wave element can be reduced in size as compared with the case where the element pattern 20 is formed only on one side of 10.
 弾性表面波素子2aは、図5の断面図に示すように、回路基板30に寝かせた状態で実装できる。例えば、一方の圧電基板12側がボンディングワイヤ40を介して、他方の圧電基板16側がバンプ42を介して、それぞれ回路基板30に電気的に接続される。 The surface acoustic wave element 2a can be mounted on the circuit board 30 as shown in the cross-sectional view of FIG. For example, one piezoelectric substrate 12 side is electrically connected to the circuit substrate 30 via the bonding wire 40, and the other piezoelectric substrate 16 side is electrically connected to the circuit substrate 30 via the bump 42.
 あるいは、図6の断面図に示すように、弾性表面波素子2aは、回路基板30に立てた状態で実装できる。例えば、それぞれの圧電基板12,16に形成された電極が、はんだ44を介して回路基板30に電気的に接続される。 Alternatively, as shown in the cross-sectional view of FIG. 6, the surface acoustic wave element 2 a can be mounted in a standing state on the circuit board 30. For example, the electrodes formed on the piezoelectric substrates 12 and 16 are electrically connected to the circuit substrate 30 via the solder 44.
 次に、弾性表面波素子2aの製造方法について、図7及び図8を参照しながら説明する。図7及び図8は、弾性表面波素子2aの製造工程を模式的に示す断面図である。 Next, a method for manufacturing the surface acoustic wave element 2a will be described with reference to FIGS. 7 and 8 are cross-sectional views schematically showing manufacturing steps of the surface acoustic wave element 2a.
 (a)パターン形成
 図7(a)に示すように、ウェハ状の第1及び第2の圧電基板12,16の表面12a,16bに、IDT電極と、パッドと、IDT電極とパッドとの間を接続する配線とを含む素子パターン20,22を、フォトリソグラフィー技術やエッチング技術を用いて形成する。
(A) Pattern formation As shown to Fig.7 (a), between the IDT electrode, a pad, and an IDT electrode and a pad on the surface 12a, 16b of the wafer-like 1st and 2nd piezoelectric substrates 12 and 16 The element patterns 20 and 22 including the wiring for connecting are formed using a photolithography technique or an etching technique.
 (b)基板薄化
 次いで、図7(b)に示すように、第1及び第2の圧電基板12,16の裏面12b,16aについて、研削(グラインド)、研磨(ラッピング)などの除去加工を行い、第1及び第2の圧電基板12,26を薄くする。
(B) Substrate thinning Next, as shown in FIG. 7B, the back surfaces 12b and 16a of the first and second piezoelectric substrates 12 and 16 are subjected to removal processing such as grinding (grinding) and polishing (lapping). The first and second piezoelectric substrates 12 and 26 are thinned.
 (c)支持層貼り合わせ
 次いで、図7(c)に示すように、予め形成された支持層14の上面14a及び下面14bに、接着材を用いて、第1及び第2の圧電基板12,16の裏面12b,16aを接合する。
(C) Support Layer Bonding Next, as shown in FIG. 7C, the first and second piezoelectric substrates 12, 12 are formed using an adhesive on the upper surface 14 a and the lower surface 14 b of the support layer 14 formed in advance. The back surfaces 12b and 16a of 16 are joined.
 あるいは、図8に示すように、第1及び第2の圧電基板12,16の裏面12b,16aに、それぞれ、溶射により支持層15s,15tを形成し、支持層15s,15tの表面15a,15b同士を、接着材を用いて接合する。 Alternatively, as shown in FIG. 8, support layers 15s and 15t are formed on the back surfaces 12b and 16a of the first and second piezoelectric substrates 12 and 16 by thermal spraying, and the surfaces 15a and 15b of the support layers 15s and 15t are formed. They are joined together using an adhesive.
 (d)基板分割工程
 次いで、圧電基板12,16及び支持層14;15s,15tが一体に形成されたチップ本体10を、ダイシング加工などにより分割し、弾性表面波素子2aの個片を形成する。
(D) Substrate Dividing Step Next, the chip body 10 on which the piezoelectric substrates 12 and 16 and the support layers 14; 15s and 15t are integrally formed is divided by dicing or the like to form individual pieces of the surface acoustic wave element 2a. .
 弾性表面波素子2aは、支持層14;15s,15tの線膨張係数が第1及び第2の圧電基板12,16の線膨張係数よりも小さくなるように形成する。これによって、圧電基板12,16の伸縮が支持層14;15s,15tによって抑制され、温度変化に伴う周波数特性の変動が小さくなり、弾性表面波素子2の温度特性が改善される。例えば、第1及び第2の圧電基板12,16にLT基板やLN基板を用い、支持層14;15s,15tをSi、Al、SiOなどの材料を用いて形成すると、温度特性が改善される。 The surface acoustic wave element 2 a is formed so that the linear expansion coefficients of the support layers 14; 15 s and 15 t are smaller than the linear expansion coefficients of the first and second piezoelectric substrates 12 and 16. As a result, the expansion and contraction of the piezoelectric substrates 12 and 16 is suppressed by the support layers 14; 15s and 15t, the fluctuation of the frequency characteristics accompanying the temperature change is reduced, and the temperature characteristics of the surface acoustic wave element 2 are improved. For example, when an LT substrate or an LN substrate is used for the first and second piezoelectric substrates 12 and 16, and the support layers 14; 15s and 15t are formed using a material such as Si, Al 2 O 3 , or SiO 2 , temperature characteristics are obtained. Is improved.
 支持層14の厚みや支持層15s,15tの合計厚みは、第1の圧電基板12の厚みよりも大きく、かつ第2の圧電基板16の厚みよりも大きくすることが好ましい。この場合、支持層14;15s,15tを圧電基板12,16よりも厚くすることにより、温度変化に伴う圧電基板12,16の伸縮を、支持層14;15s,15tによって十分に抑制することができ、温度特性の改善効果を高めることができる。 The thickness of the support layer 14 and the total thickness of the support layers 15 s and 15 t are preferably larger than the thickness of the first piezoelectric substrate 12 and larger than the thickness of the second piezoelectric substrate 16. In this case, by making the support layers 14; 15s, 15t thicker than the piezoelectric substrates 12, 16, the expansion and contraction of the piezoelectric substrates 12, 16 due to temperature changes can be sufficiently suppressed by the support layers 14; 15s, 15t. It is possible to increase the effect of improving the temperature characteristics.
 <まとめ> 以上に説明したように、圧電基板12,16の間に支持層14;15s,15tが挟まれるサンドイッチ構造にすることで、圧電基板に支持層が形成されたことによる反りの発生を防止することができる。 <Summary> As described above, the sandwich structure in which the support layer 14; 15s, 15t is sandwiched between the piezoelectric substrates 12 and 16 can cause warpage due to the formation of the support layer on the piezoelectric substrate. Can be prevented.
 なお、本発明は、上記実施の形態に限定されるものではなく、種々変更を加えて実施することが可能である。 It should be noted that the present invention is not limited to the above embodiment, and can be implemented with various modifications.
 例えば、弾性表面波素子2は、上述した製造方法とは異なる製造方法で製造してもよい。 For example, the surface acoustic wave element 2 may be manufactured by a manufacturing method different from the manufacturing method described above.
  2,2a 弾性表面波素子
 10,10a チップ本体
 12 第1の圧電基板
 12a 表面(他方主面)
 12b 裏面(一方主面)
 14 支持層
 14a 上面(一方主面)
 14b 下面(他方主面)
 15s,15t 支持層
 16 第2の圧電基板
 16a 裏面(一方主面)
 16b 表面(他方主面)
 20,22 素子パターン
2, 2a Surface acoustic wave element 10, 10a Chip body 12 First piezoelectric substrate 12a Surface (the other main surface)
12b Back side (one main side)
14 Support layer 14a Upper surface (one main surface)
14b Lower surface (the other main surface)
15s, 15t Support layer 16 Second piezoelectric substrate 16a Back surface (one main surface)
16b Surface (the other main surface)
20,22 Element pattern

Claims (3)

  1.  一対の主面を有する第1の圧電基板と、
     一対の主面を有する第2の圧電基板と、
     一対の主面を有し、当該主面の一方が前記第1の圧電基板の前記主面の一方に接合され、当該主面の他方が前記第2の圧電基板の前記主面の一方に接合された支持層と、
    を備え、
     前記第1の圧電基板の前記主面の他方と前記第2の圧電基板の前記主面の他方との少なくとも一方に、IDT電極を含む素子パターンが形成され、
     前記支持層の線膨張係数は、前記第1の圧電基板の線膨張係数よりも小さく、かつ前記第2の圧電基板の線膨張係数よりも小さいことを特徴とする、弾性表面波素子。
    A first piezoelectric substrate having a pair of main surfaces;
    A second piezoelectric substrate having a pair of main surfaces;
    A pair of main surfaces, wherein one of the main surfaces is bonded to one of the main surfaces of the first piezoelectric substrate, and the other of the main surfaces is bonded to one of the main surfaces of the second piezoelectric substrate; A supported support layer,
    With
    An element pattern including an IDT electrode is formed on at least one of the other main surface of the first piezoelectric substrate and the other main surface of the second piezoelectric substrate,
    The surface acoustic wave device according to claim 1, wherein a linear expansion coefficient of the support layer is smaller than a linear expansion coefficient of the first piezoelectric substrate and smaller than a linear expansion coefficient of the second piezoelectric substrate.
  2.  前記第1の圧電基板の前記主面の他方と前記第2の圧電基板の前記主面の他方との両方に、IDT電極を含む素子パターンが形成されたことを特徴とする、請求項1に記載の弾性表面波素子。 The element pattern including an IDT electrode is formed on both the other main surface of the first piezoelectric substrate and the other main surface of the second piezoelectric substrate. The surface acoustic wave device described.
  3.  前記支持層の厚みが、前記第1の圧電基板の厚みよりも大きく、かつ前記第2の圧電基板の厚みよりも大きいことを特徴とする、請求項1又は2に記載の弾性表面波素子。 3. The surface acoustic wave device according to claim 1, wherein the thickness of the support layer is larger than the thickness of the first piezoelectric substrate and larger than the thickness of the second piezoelectric substrate.
PCT/JP2010/000291 2009-03-10 2010-01-20 Surface acoustic wave element WO2010103713A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-057208 2009-03-10
JP2009057208 2009-03-10

Publications (1)

Publication Number Publication Date
WO2010103713A1 true WO2010103713A1 (en) 2010-09-16

Family

ID=42728014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000291 WO2010103713A1 (en) 2009-03-10 2010-01-20 Surface acoustic wave element

Country Status (1)

Country Link
WO (1) WO2010103713A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013545398A (en) * 2010-11-02 2013-12-19 レイセオン カンパニー Low acceleration sensitivity mounting of surface acoustic wave resonator
WO2016060072A1 (en) * 2014-10-17 2016-04-21 株式会社村田製作所 Piezoelectric device and method for manufacturing piezoelectric device
JP2017220778A (en) * 2016-06-07 2017-12-14 太陽誘電株式会社 Acoustic wave device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155070A (en) * 1997-06-02 1999-02-26 Matsushita Electric Ind Co Ltd Surface acoustic wave element and its producing method
JP2000049563A (en) * 1998-07-31 2000-02-18 Kinseki Ltd Surface acoustic wave device
JP2002135076A (en) * 2000-10-27 2002-05-10 Matsushita Electric Ind Co Ltd Surface acoustic wave device and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155070A (en) * 1997-06-02 1999-02-26 Matsushita Electric Ind Co Ltd Surface acoustic wave element and its producing method
JP2000049563A (en) * 1998-07-31 2000-02-18 Kinseki Ltd Surface acoustic wave device
JP2002135076A (en) * 2000-10-27 2002-05-10 Matsushita Electric Ind Co Ltd Surface acoustic wave device and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013545398A (en) * 2010-11-02 2013-12-19 レイセオン カンパニー Low acceleration sensitivity mounting of surface acoustic wave resonator
WO2016060072A1 (en) * 2014-10-17 2016-04-21 株式会社村田製作所 Piezoelectric device and method for manufacturing piezoelectric device
JPWO2016060072A1 (en) * 2014-10-17 2017-05-18 株式会社村田製作所 Piezoelectric device and method for manufacturing piezoelectric device
US10594297B2 (en) 2014-10-17 2020-03-17 Murata Manufacturing Co., Ltd. Piezoelectric device and manufacturing method therefor
JP2017220778A (en) * 2016-06-07 2017-12-14 太陽誘電株式会社 Acoustic wave device
US10250231B2 (en) 2016-06-07 2019-04-02 Taiyo Yuden Co., Ltd. Acoustic wave device

Similar Documents

Publication Publication Date Title
JP6315716B2 (en) Elastic wave device
US6426583B1 (en) Surface acoustic wave element, method for producing the same and surface acoustic wave device using the same
US20170250669A1 (en) Electronic device
US7854049B2 (en) Method of manufacturing a piezoelectric thin film device
JP2019186655A (en) Elastic wave device, multiplexer, and composite substrate
JP5056837B2 (en) Method for manufacturing piezoelectric device
JP5833239B2 (en) Composite substrate, piezoelectric device, and composite substrate manufacturing method
US9159901B2 (en) Composite substrate and elastic wave device
KR101661361B1 (en) Composite substrate, and elastic surface wave filter and resonator using the same
JP6642499B2 (en) Elastic wave device
JP7370146B2 (en) Acoustic wave devices, filters and multiplexers
JP2007214902A (en) Surface acoustic wave device
JP2019179961A (en) Acoustic wave device
JP6433930B2 (en) Elastic wave device
JP4368499B2 (en) Method for manufacturing surface acoustic wave element and method for manufacturing surface acoustic wave device using the same
WO2010103713A1 (en) Surface acoustic wave element
JP5458651B2 (en) Surface acoustic wave element substrate and surface acoustic wave element manufacturing method
JP4863097B2 (en) Manufacturing method of surface acoustic wave device
JP7231360B2 (en) elastic wave device
JP2020191597A (en) Elastic wave device and manufacturing method thereof
JP7373301B2 (en) Acoustic wave devices, filters and multiplexers
JP5446338B2 (en) Manufacturing method of surface acoustic wave element and surface acoustic wave element
JP2010251827A (en) Surface acoustic wave element
JP2014033467A (en) Surface acoustic wave element
JP2006270170A (en) Elastic surface acoustic wave element and manufacturing method of elastic surface acoustic wave element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10750473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP