WO2010103572A1 - 自動変速機の制御装置 - Google Patents

自動変速機の制御装置 Download PDF

Info

Publication number
WO2010103572A1
WO2010103572A1 PCT/JP2009/001106 JP2009001106W WO2010103572A1 WO 2010103572 A1 WO2010103572 A1 WO 2010103572A1 JP 2009001106 W JP2009001106 W JP 2009001106W WO 2010103572 A1 WO2010103572 A1 WO 2010103572A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
vehicle speed
solenoid valve
friction engagement
shift
Prior art date
Application number
PCT/JP2009/001106
Other languages
English (en)
French (fr)
Inventor
板津直樹
野崎芳信
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/001106 priority Critical patent/WO2010103572A1/ja
Priority to US13/255,835 priority patent/US8527162B2/en
Priority to JP2011503560A priority patent/JP5403050B2/ja
Priority to DE112009004492.1T priority patent/DE112009004492B4/de
Publication of WO2010103572A1 publication Critical patent/WO2010103572A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H2059/0295Selector apparatus with mechanisms to return lever to neutral or datum position, e.g. by return springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/08Range selector apparatus
    • F16H59/10Range selector apparatus comprising levers
    • F16H59/105Range selector apparatus comprising levers consisting of electrical switches or sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/34Locking or disabling mechanisms
    • F16H63/3416Parking lock mechanisms or brakes in the transmission
    • F16H63/3483Parking lock mechanisms or brakes in the transmission with hydraulic actuating means

Definitions

  • the present invention relates to a control device for an automatic transmission mounted on a vehicle.
  • the clutch and brake can be switched between an engaged state and a released state by switching a hydraulic path by a solenoid valve, a manual valve, or the like constituting a part of the hydraulic control circuit.
  • the line pressure generated by the oil pump rotated by the engine is switched by a manual valve and supplied to each hydraulic circuit.
  • the line pressure supplied to each hydraulic circuit is regulated by a solenoid valve provided in each hydraulic circuit on the downstream side of the manual valve, and supplied to a hydraulic cylinder that operates the clutch and the brake. Yes.
  • a solenoid valve provided in each hydraulic circuit on the downstream side of the manual valve, and supplied to a hydraulic cylinder that operates the clutch and the brake.
  • the conventional automatic transmission described in Patent Document 1 does not include a manual valve, it is determined in advance which solenoid valve to operate based on the electromagnetic valve logic. Corresponding solenoid valves are actuated to form the desired forward speed. As a result, in the conventional automatic transmission described in Patent Document 1, by operating the solenoid valve corresponding to each gear stage, the brake and the clutch based on the electromagnetic valve logic are operated, and the reverse drive is performed. And a desired forward shift speed are formed.
  • An ECU Electric-Control-Unit
  • Patent Document 1 As described above, in the control apparatus for an automatic transmission described in Patent Document 1 that does not include a manual valve, when a solenoid valve malfunctions at a low vehicle speed when the vehicle is stopped, the user's There was a problem of inviting the behavior of the vehicle against the intention. In particular, even if the solenoid malfunctions when the vehicle is running and the forward clutch or the like is engaged and the power from the driving source is transmitted to the wheels, the user is willing to move. Invitation to the vehicle does not occur, but it becomes a problem when the vehicle is at a low speed, for example.
  • the present invention has been made to solve the above-described conventional problems, and is a case where the shift lever is operated to a position where a neutral range is formed in a state where a solenoid valve has failed.
  • Another object of the present invention is to provide a control device for an automatic transmission that can prevent the frictional engagement element from remaining engaged in accordance with the running state of the vehicle.
  • control device for an automatic transmission includes (1) an input shaft for inputting rotational power from a drive source, an output shaft for transmitting the rotational power to wheels, an engaged state and a released state.
  • a speed change mechanism having a plurality of friction engagement elements that are switched to one of the operating states and shift the rotation input from the input shaft and output from the output shaft, and any one of the plurality of operation positions.
  • An operation member that selects an arbitrary shift range among a plurality of shift ranges including a neutral range by being operated to an operation position, an operation position detection unit that detects an operation position at which the operation member is operated, A plurality of operation state switching means for switching the operation states of the plurality of friction engagement elements by adjusting the hydraulic pressure of the hydraulic oil supplied to the friction engagement elements; Vehicle speed detecting means for detecting the operation state, and supply state switching means for switching to one of a supply state for supplying the operating oil to the operation state switching means and a blocking state for interrupting the supply of the hydraulic oil to the operation state switching means And a shift range selected from among the plurality of shift ranges based on the operation position detected by the operation position detection means, and the operation member is operated to an operation position for setting the neutral range
  • at least the plurality of operating state switching means and the supply so that the transmission state of the rotational power transmitted from the input shaft to the output shaft becomes a non-transmission state according to the vehicle speed detected by the vehicle speed detection unit Control means for controlling to switch any one
  • the control means when the neutral range is set, includes a plurality of operation state switching means and supply states according to the vehicle speed detected by the vehicle speed detection means. Since the non-transmission state is formed by controlling to switch any one of the switching means, even if the operation state switching means becomes unable to switch the operation state of the friction engagement element due to a failure, for example, the vehicle When the engine is in a stopped state, the supply of hydraulic oil to the operating state switching unit can be shut off by the supply state switching unit. As a result, even though the neutral range is set by the control means, the rotational power from the drive source is not transmitted to the output shaft via the input shaft, and the driver can operate the operation member. The behavior of the vehicle that is warped can be prevented, and safety can be further improved as compared with the conventional case.
  • the control means when the neutral speed is set, the control means has a vehicle speed detected by the vehicle speed detection means smaller than a predetermined vehicle speed.
  • the supply state switching unit is controlled to switch to form the non-transmission state, and when the vehicle speed detected by the vehicle speed detection unit is equal to or higher than a predetermined vehicle speed, the plurality of operation state switching units are switched.
  • the non-transmission state is formed by controlling.
  • the control device for an automatic transmission controls the control unit to switch one of the plurality of operation state switching units and the supply state switching unit according to the vehicle speed detected by the vehicle speed detection unit.
  • the operation state switching means becomes unable to switch the operation state of the frictional engagement element due to a failure, for example, when the vehicle is stopped
  • the supply of hydraulic oil to the operating state switching unit can be shut off by the supply state switching unit.
  • the neutral range is set by the control means, the rotational power from the drive source is not transmitted to the output shaft via the input shaft, and the driver can operate the operation member.
  • the behavior of the vehicle that is warped can be prevented, and safety can be further improved as compared with the conventional case.
  • the control device for an automatic transmission cuts off the supply of hydraulic oil to the friction engagement elements by a plurality of operation state switching means, for example, when the vehicle is running. Can do.
  • the control means Immediate responsiveness of the friction engagement element compared to when the supply of hydraulic fluid to the friction engagement element is shut off by the supply state switching means when the shift range is set to other shift ranges Can be made.
  • the vehicle neutral control device (3) when the neutral speed is set and the vehicle speed detected by the vehicle speed detection means is smaller than a predetermined vehicle speed, the plurality of operating state switching means and the supply state switching means are controlled to switch to form the non-transmission state.
  • the non-transmission state is formed by controlling the operation state switching means to switch.
  • the control device for an automatic transmission controls the control unit to switch between the plurality of operation state switching units and the supply state switching unit when the vehicle speed detected by the vehicle speed detection unit is smaller than the predetermined vehicle speed. Therefore, even if the operation state switching means becomes unable to switch the operation state of the friction engagement element due to a failure, for example, in the case where the vehicle is stopped Can cut off the supply of hydraulic oil to the operation state switching means by the supply state switching means. As a result, even though the neutral range is set by the control means, the rotational power from the drive source is not transmitted to the output shaft via the input shaft, and the driver can operate the operation member. The behavior of the vehicle that is warped can be prevented, and safety can be further improved as compared with the conventional case.
  • the control device for an automatic transmission provides a plurality of operation state switching when the vehicle speed detected by the vehicle speed detection means is equal to or higher than a predetermined vehicle speed, for example, when the vehicle is running.
  • a predetermined vehicle speed for example, when the vehicle is running.
  • the vehicle behavior is not contrary to the operation of the operation member by the driver, and it is possible to prevent the driver from feeling uncomfortable, and when the operating state switching means is not broken, the supply state switching means Compared with the case where the supply of hydraulic oil to the friction engagement element is shut off, the immediate response of the friction engagement element can be improved.
  • control means shuts off the supply of the hydraulic oil to the plurality of friction engagement elements when the non-transmission state is formed. As described above, control is performed to switch at least one of the plurality of operating state switching means and the supply state switching means.
  • the control device for an automatic transmission includes at least a plurality of operating state switching means and a supply so as to cut off the supply of hydraulic oil to the plurality of friction engagement elements when the non-transmission state is formed. Since one of the state switching means is controlled to be switched, the operating states of the plurality of friction engagement elements can be switched from the engaged state to the released state.
  • the operation state switching means is in a cut-off state in which the supply of the hydraulic oil to the friction engagement element is cut off in a non-energized state.
  • it is constituted by a linear solenoid valve which is in a supply state in which the hydraulic oil is supplied to the friction engagement element in an energized state.
  • the control device for an automatic transmission can switch the operating state of the friction engagement element in accordance with the electrical signal output by the control means.
  • the plurality of operating state switching means can shut off the supply of hydraulic oil to the frictional engagement element while being in a non-energized state, even if the control means cannot output an electric signal to the linear solenoid valve due to a malfunction.
  • the supply of hydraulic oil to the friction engagement element can be shut off, and a non-transmission state can be formed.
  • the operation state switching means is configured to provide the supply state on a path for supplying the hydraulic oil to the plurality of friction engagement elements. It is provided on the side of the plurality of friction engagement elements with respect to the switching means.
  • the control device for an automatic transmission has a plurality of friction engagements on the path for the operation state switching means to supply the hydraulic oil to the plurality of friction engagement elements. Since it is provided on the joint element side, when the operation state switching means is switched to cut off the supply of hydraulic oil to the plurality of friction engagement elements, the supply state switching means is switched to the plurality of friction engagement elements.
  • the operating states of the plurality of friction engagement elements can be quickly released compared to the case where the supply of the hydraulic oil is cut off. Therefore, the immediate responsiveness of the plurality of friction engagement elements can be improved as compared with the case where the supply of the hydraulic oil to the plurality of friction engagement elements is interrupted by switching the supply state switching means.
  • the automatic transmission control device includes (7) an input shaft for inputting rotational power from a drive source, an output shaft for transmitting the rotational power to wheels, an engaged state and a released state.
  • a speed change mechanism having a plurality of friction engagement elements that are switched to one of the operating states and shift the rotation input from the input shaft and output from the output shaft, and any one of the plurality of operation positions.
  • a shift lever that selects an arbitrary shift range among a plurality of shift ranges including a neutral range by being operated to an operation position, a shift sensor that detects an operation position at which the shift lever is operated, and the plurality of friction members
  • a plurality of linear solenoid valves that switch the operating states of the plurality of friction engagement elements by respectively adjusting the hydraulic pressure of the hydraulic oil supplied to the combination element;
  • a vehicle speed sensor that detects a vehicle speed of the vehicle, and a supply state in which the hydraulic oil is supplied to the linear solenoid valve and an operation state in which the supply of the hydraulic oil to the linear solenoid valve is shut off can be taken.
  • a shift valve a solenoid valve that switches an operation state of the switch valve, a shift range selected from the plurality of shift ranges based on an operation position detected by the shift sensor, and the shift lever
  • the operation position is set to the neutral range
  • the transmission state of the rotational power transmitted from the input shaft to the output shaft is changed to a non-transmission state according to the vehicle speed detected by the vehicle speed sensor.
  • At least the plurality of linear solenoid valves and any of the solenoid valves An electronic control unit which controls to switch or one, characterized by comprising a.
  • the electronic control unit when the neutral range is set, has a plurality of linear solenoid valves and solenoid valves according to the vehicle speed detected by the vehicle speed sensor. Since the non-transmission state is formed by controlling to switch either one of them, even if the linear solenoid valve becomes unable to switch the operating state of the friction engagement element due to a failure, for example, the vehicle stops and In such a state, the supply of hydraulic oil to the linear solenoid valve can be shut off by the solenoid valve. As a result, even though the neutral range is set by the electronic control unit, the rotational power from the drive source is not transmitted to the output shaft via the input shaft, and the driver operates the shift lever. The behavior of the vehicle contrary to the above can be prevented, and the safety can be further improved as compared with the conventional case.
  • the electronic control unit sets the neutral range, and the vehicle speed detected by the vehicle speed sensor is smaller than a predetermined vehicle speed,
  • the solenoid valve is controlled to switch to form the non-transmission state, and on the other hand, when the vehicle speed detected by the vehicle speed sensor is equal to or higher than a predetermined vehicle speed, the plurality of linear solenoid valves are controlled to switch. A non-transmission state is formed.
  • the control device for an automatic transmission controls the electronic control unit to switch one of a plurality of linear solenoid valves and solenoid valves according to the vehicle speed detected by the vehicle speed sensor. Since the non-transmission state is formed, even if the linear solenoid valve is in a state where it is impossible to switch the operation state of the friction engagement element due to a failure, for example, in the case where the vehicle is stopped, the solenoid The supply of hydraulic oil to the linear solenoid valve can be shut off by the valve and the switching valve. As a result, even though the neutral range is set by the electronic control unit, the rotational power from the drive source is not transmitted to the output shaft via the input shaft, and the driver operates the shift lever. The behavior of the vehicle contrary to the above can be prevented, and the safety can be further improved as compared with the conventional case.
  • the control device for an automatic transmission can shut off the supply of hydraulic oil to the friction engagement elements by a plurality of linear solenoid valves when, for example, the vehicle is running. it can.
  • the vehicle is still running even if the linear solenoid valve fails to switch the operating state of the friction engagement element due to a failure.
  • the behavior of the vehicle against the operation of the shift lever by the driver is not prevented, and it is possible to prevent the driver from feeling uncomfortable.
  • the electronic control unit Compared to the case where the supply of hydraulic fluid to the friction engagement element is shut off by the solenoid valve and switching valve when the shift range is set from the range, the immediate response of the friction engagement element is improved. Can be improved.
  • the plurality of linear solenoid valves are controlled so as to switch the plurality of linear solenoid valves and the solenoid valves to form the non-transmission state. It is characterized in that the non-transmission state is formed by controlling to switch.
  • the control device for the automatic transmission is configured such that when the vehicle speed detected by the vehicle speed sensor is smaller than the predetermined vehicle speed, the electronic control unit controls the switching between the plurality of linear solenoid valves and the solenoid valves. Since the transmission state is formed, even if the linear solenoid valve becomes unable to switch the operating state of the friction engagement element due to a failure, for example, in the case where the vehicle is stopped, the solenoid valve In addition, the supply of hydraulic oil to the linear solenoid valve can be shut off by the switching valve. As a result, even though the neutral range is set by the electronic control unit, the rotational power from the drive source is not transmitted to the output shaft via the input shaft, and the driver operates the shift lever.
  • the control device for an automatic transmission uses a plurality of linear solenoid valves when the vehicle speed detected by the vehicle speed sensor is equal to or higher than a predetermined vehicle speed, for example, when the vehicle is running.
  • the supply of hydraulic oil to the friction engagement element can be shut off.
  • the linear solenoid valve fails to switch the operating state of the friction engagement element due to a failure.
  • the electronic control unit supplies the hydraulic oil to the plurality of friction engagement elements when the non-transmission state is formed. Control is performed so that at least one of the plurality of linear solenoid valves and the solenoid valve is switched so as to be shut off.
  • the automatic transmission control device includes at least a plurality of linear solenoid valves and a solenoid valve so as to shut off the supply of hydraulic oil to the plurality of friction engagement elements when the non-transmission state is formed. Therefore, the operation state of the plurality of friction engagement elements can be switched from the engaged state to the released state.
  • the linear solenoid valve is in a cut-off state in which the supply of the hydraulic oil to the friction engagement element is cut off in a non-energized state.
  • the linear solenoid valve is configured to be in a supply state in which the hydraulic oil is supplied to the friction engagement element in an energized state.
  • the control device for the automatic transmission can switch the operating state of the friction engagement element in accordance with the electrical signal output by the electronic control unit.
  • the supply of hydraulic oil to the frictional engagement element can be shut off when a plurality of linear solenoid valves are not energized, even if the electronic control unit cannot output an electrical signal to the linear solenoid valve due to a malfunction.
  • the supply of hydraulic oil to the friction engagement element can be shut off, and a non-transmission state can be formed.
  • the linear solenoid valve is more than the solenoid valve on a path for supplying the hydraulic oil to the plurality of friction engagement elements. Is also provided on the side of the plurality of friction engagement elements.
  • the linear solenoid valve has a plurality of frictional engagements on the path for supplying the hydraulic oil to the plurality of friction engagement elements rather than the solenoid valve and the switching valve. Since it is provided on the coupling element side, when switching the linear solenoid valve to shut off the supply of hydraulic oil to the plurality of friction engagement elements, the solenoid valve is switched to switch the hydraulic oil to the plurality of friction engagement elements.
  • the operation state of the plurality of friction engagement elements can be quickly released as compared with the case where the supply of the above is interrupted. Therefore, the immediate responsiveness of the plurality of friction engagement elements can be improved as compared with the case where the supply of hydraulic oil to the plurality of friction engagement elements is interrupted by switching the solenoid valve.
  • the friction engagement element is engaged according to the traveling state of the vehicle. It is possible to provide a control device for an automatic transmission that can prevent the combined state from being kept.
  • 1 is a configuration diagram of a vehicle equipped with a control device for an automatic transmission according to a first embodiment of the present invention.
  • 1 is a skeleton diagram showing a configuration of an automatic transmission according to a first embodiment of the present invention.
  • 1 is a perspective view schematically showing a configuration of an automatic transmission according to a first embodiment of the present invention. It is an operation
  • a vehicle 10 includes an engine 11 as a drive source, an automatic transmission 12 that automatically changes the rotation output from the engine 11, and the rotation output from the automatic transmission 12 on the road surface.
  • the transmission mechanism 14, the hydraulic control device 60 that controls the automatic transmission 12 by hydraulic pressure, the ECU 100 that constitutes an electronic control device that electrically controls the hydraulic control device 60, and various signals that output detected signals to the ECU 100 Sensors 70 to 76 are provided.
  • the engine 11 is constituted by an internal combustion engine such as a gasoline engine or a diesel engine, and has a combustion chamber formed by a cylinder.
  • the engine 11 burns a mixture of air introduced into the combustion chamber via the throttle valve 6 driven by the throttle actuator 5 and fuel injected from the injector 2.
  • the piston in the cylinder is pushed down by this combustion, and a crankshaft as an output shaft described later is rotated. This rotation is transmitted to the automatic transmission 12 as power.
  • An external combustion engine may be used as the drive source instead of the internal combustion engine.
  • an electric motor or the like may be used as a drive source, or this may be used as an auxiliary.
  • the automatic transmission 12 includes a torque converter 15 constituting a fluid transmission device and a transmission mechanism 20 constituting a stepped transmission.
  • the speed change mechanism 20 according to the present embodiment corresponds to the speed change mechanism according to the present invention and constitutes a part of the control device for the automatic transmission according to the present invention.
  • the torque converter 15 receives power from the engine 11 via a crankshaft, which will be described later, and transmits the input power to the speed change mechanism 20, which will be described later, with increasing torque.
  • the detailed configuration of the torque converter 15 will be described later in detail.
  • the speed change mechanism 20 includes a gear speed change mechanism having a planetary gear that transmits rotational power input from the engine 11, a plurality of friction engagement elements to be described later whose operation state is switched between an engaged state and a released state.
  • the power transmission path of the gear transmission mechanism is switched depending on the operating states of the plurality of friction engagement elements. In this way, the transmission mechanism 20 switches the power transmission path so that the rotation input from the torque converter 15 to the input shaft 22 is decelerated or increased at a predetermined speed ratio ⁇ and is output to the output shaft 56. It has become.
  • the power output from the output shaft 56 of the speed change mechanism 20 is transmitted to the drive wheels 59L and 59R via the propeller shaft 58, the differential mechanism 55, and the drive shafts 57L and 57R.
  • the configuration of the transmission mechanism 20 will be described in detail later.
  • the transmission mechanism 14 includes a propeller shaft 58 coupled to an output shaft 56 (described later) of the transmission mechanism 20, a differential mechanism 55 that distributes rotation transmitted from the propeller shaft 58, a drive shaft 57L coupled to the differential mechanism 55, 57R, and drive wheels 59L and 59R that transmit the rotation transmitted from the drive shafts 57L and 57R to the road surface.
  • the differential mechanism 55 allows a rotational difference between the drive wheel 59L and the drive wheel 59R when the vehicle 10 travels on a curve or the like.
  • the hydraulic control device 60 includes a hydraulic control circuit that forms an oil passage for hydraulic oil discharged from an oil pump that is driven by the rotation of the engine 11, and solenoid valves So1 to So that switch the operating states of friction engagement elements that will be described later. It includes So3 and linear solenoid valves SL1 to SL6.
  • the hydraulic control device 60 controls the speed change operation of the speed change mechanism 20 and a parking lock mechanism described later. The configuration of the hydraulic control device 60 will be described in detail later.
  • the ECU 100 includes a main microcomputer 101 constituting a main control unit, a sub microcomputer 105 constituting an auxiliary control unit, an input port 106 for inputting electric signals of various sensors, the main microcomputer 101 and the sub microcomputer 105. And an output port 107 that outputs the output signal to the hydraulic control device 60 and the engine 11, and these are connected to each other via a bidirectional bus 108.
  • the main microcomputer 101 includes a CPU (Central-Processing-nit) 102, a RAM (Random-Access-Memory) 103, and an EEPROM (Electrically-Erasable-Programmable-Read-Only-Memory) 104. ing.
  • the CPU 102 performs processing of various detection signals input from an input port 106 via an ADC (Analog-Digital-Converter) according to a program stored in the EEPROM 104 in advance while using the primary storage function of the RAM 103. By doing so, output control of the engine 11 and shift control of the automatic transmission 12 are executed.
  • the electrical signal output from the output port 107 is input to control targets such as the engine 11, solenoid valves So1 to So3, and linear solenoid valves SL1 to SL6 via an ADC (not shown).
  • the EEPROM 104 stores a shift diagram in which the vehicle speed and the throttle opening are associated with the shift speed of the automatic transmission 12 as a map. Therefore, the CPU 102 of the ECU 100 determines the shift speed of the automatic transmission 12 based on detection signals from a vehicle speed sensor and a throttle sensor, which will be described later, and a shift diagram stored in the EEPROM 104, and forms the determined shift speed.
  • the hydraulic control device 60 is controlled. Specifically, the CPU 102 of the ECU 100 outputs electrical signals corresponding to the determined shift speed to the solenoid valves So1 to So3 and the linear solenoid valves SL1 to SL6, thereby realizing the shift of the automatic transmission 12. The control to do is executed.
  • the ECU 100 uses the electrical signals output to the solenoid valves So1 to So3 and the linear solenoid valves SL1 to SL6 of the hydraulic control device 60 to engage or disengage the plurality of friction engagement elements that constitute the transmission mechanism 20.
  • One of the operating states is switched.
  • the operating states of the plurality of friction engagement elements are switched using a hydraulic pressure whose original pressure is a line pressure generated by an oil pump described later.
  • the ECU 100 controls the hydraulic control device 60 so as to switch the operating states of the plurality of friction engagement elements.
  • the automatic transmission 12 can switch the transmission path of the rotational power output from the engine 11 to form a desired gear stage. Therefore, the automatic transmission 12 can achieve a shift with a predetermined gear ratio ⁇ .
  • the EEPROM 104 includes a friction engagement element operation table (see FIG. 4) described later, a solenoid valve operation table (see FIG. 7), and hydraulic values supplied to the friction engagement elements.
  • An operation state determination threshold value representing a threshold value for determining the operation state of the combination element and an N range formation method change threshold value Vn described later are stored.
  • the sub microcomputer 105 has a CPU, a RAM, and an EEPROM (not shown) as with the main microcomputer 101.
  • the EEPROM of the sub microcomputer 105 stores a program for detecting an abnormality in processing by the main microcomputer 101. For this reason, the sub microcomputer 105 executes output control of the engine 11, shift control of the automatic transmission 12, etc. instead of the main microcomputer 101 when detecting an abnormality in processing of the main microcomputer 101. It has become.
  • the vehicle 10 further includes an engine speed sensor 70 for detecting the output shaft speed of the engine 11, an intake air quantity sensor 71 for detecting the intake air quantity of the engine 11, and a throttle for adjusting the intake air quantity.
  • a turbine rotation speed sensor 75 for detecting the rotation speed
  • a shift sensor 76 for detecting an operation position of the shift lever 3, and a hydraulic pressure sensor described later are provided.
  • the engine speed sensor 70 generates a pulse as an output signal at every predetermined rotation angle of a timing rotor (not shown) provided on a crankshaft described later, and outputs the pulse to the ECU 100 as a detection signal.
  • ECU 100 calculates engine speed NE based on this detection signal.
  • the intake air amount sensor 71 is constituted by a hot wire type air flow meter provided in the intake flow path to the engine 11, and outputs a detection signal representing the resistance value of the hot wire accompanying the change in the intake air amount Qin to the ECU 100. It is supposed to be.
  • the ECU 100 calculates the intake air amount Qin based on the change in resistance value represented by this detection signal.
  • the throttle sensor 72 is composed of a Hall element that can obtain an output voltage corresponding to the throttle opening ⁇ th of the throttle valve 6, and outputs a detection signal representing this output voltage to the ECU 100.
  • the ECU 100 calculates the throttle opening degree ⁇ th based on this detection signal.
  • the vehicle speed sensor 73 generates a pulse as an output signal at every predetermined rotation angle of a timing rotor (not shown) provided on the output shaft 56 of the automatic transmission 12, and outputs the pulse as a detection signal to the ECU 100. .
  • the ECU 100 calculates the vehicle speed V based on this detection signal. Therefore, since the vehicle speed sensor 73 according to the present embodiment detects the vehicle speed V of the vehicle 10, the vehicle speed sensor 73 corresponds to the vehicle speed detection means according to the present invention, and the automatic transmission control device according to the present invention. Part of
  • the brake sensor 74 generates an output voltage corresponding to a depression amount Qbk of a brake pedal (not shown) provided in the vehicle 10 and outputs the output voltage to the ECU 100 as a detection signal.
  • the brake sensor 74 may output a signal (stepping force switch signal) for switching from an OFF state to an ON state to the ECU 100 when a brake pedal (not shown) is depressed by a driver with a predetermined depression amount.
  • the turbine rotation speed sensor 75 generates a pulse as an output signal at every predetermined rotation angle of a timing rotor (not shown) provided on the input shaft of the speed change mechanism 20, which will be described later, and outputs the pulse as a detection signal to the ECU 100. ing.
  • the ECU 100 calculates the turbine rotational speed NT based on this detection signal.
  • the shift sensor 76 includes a plurality of sensors, and each sensor is provided in the shift operation device 4 corresponding to each operation position of the shift lever 3.
  • each sensor detects the shift lever 3 and outputs a detection signal to the ECU 100. Therefore, the shift sensor 76 according to the present embodiment detects the operation position operated by the shift lever 3, so that it corresponds to the operation position detecting means according to the present invention and the automatic according to the present invention. It constitutes a part of a transmission control device.
  • the operation position detecting means according to the present invention may be configured by a momentary switch or the like installed near the handle in order to realize switching of the shift range or the shift stage near the handle.
  • the shift lever 3 is in a state in which the driver releases a parking position (parking range) for parking the vehicle 10, a reverse traveling position (reverse range) for reverse traveling, and a power transmission path in the automatic transmission 12.
  • Park range parking position
  • reverse range reverse traveling position
  • power transmission path in the automatic transmission 12.
  • Neutral position neutral range
  • forward travel position drive range
  • manual shift position sports range
  • the shift operation position can be switched between an upshift instruction position (+) for instructing an upshift and a down shift instruction position ( ⁇ ) for instructing a downshift.
  • the shift lever 3 is operated to an arbitrary operation position among the plurality of operation positions, and thereby selects an arbitrary shift range from among the plurality of shift ranges including the neutral range (hereinafter referred to as N range). It has become. Therefore, the shift lever 3 according to the present embodiment corresponds to the operation member according to the present invention and constitutes a part of the control device for the automatic transmission according to the present invention.
  • the operation member according to the present invention may be configured by a paddle-shaped switch lever installed near the handle in order to realize a shift range or shift speed change on the handle.
  • a detection signal indicating the manual shift mode is output to the ECU 100.
  • the ECU 100 shifts according to the manual operation of the shift lever 3 by the driver.
  • the ECU 100 controls the hydraulic control device 60 so that the shift stage is set to the high speed stage where the speed ratio ⁇ is small. Switch one stage.
  • the ECU 100 controls the hydraulic control device 60 to switch the shift stage to the low speed stage side where the gear ratio ⁇ is large. Further, the ECU 100 can determine the current shift range and gear position of the automatic transmission 12 based on the detection signal of the shift sensor 76.
  • the torque converter 15 is a pump impeller (hereinafter referred to as an impeller) 16 that is connected to the crankshaft 13 and an output member that is connected to the input shaft 22 of the transmission mechanism 20.
  • the torque converter 15 is filled with oil as a working fluid.
  • the impeller 16 converts the rotational energy of the crankshaft 13 into oil flow energy, and the turbine 17 receives the oil flow to extract the oil flow energy as rotational energy of the turbine 17 to transmit power. Yes.
  • the oil that has rotated the turbine 17 still has considerable energy, and is rectified by the stator 18 and guided to the impeller 16 again, thereby increasing the rotational force of the impeller 16. In this way, the torque in the torque converter 15 is increased.
  • the torque converter 15 has low transmission efficiency due to oil slipping due to the property of transmitting power through oil. Therefore, the torque converter 15 has a lockup clutch 19 that is a direct coupling clutch. When the lockup clutch 19 is pressed against a converter cover (not shown) that rotates integrally with the impeller 16 and is engaged by hydraulic control, the impeller 16 and the turbine 17 are mechanically connected directly. Therefore, the lockup clutch 19 can improve the power transmission efficiency from the engine 11 to the speed change mechanism 20.
  • the input shaft 22 of the speed change mechanism 20 is connected to the turbine 17 and inputs the rotation of the crankshaft 13 through the impeller 16. Therefore, the input shaft 22 receives rotational power from the engine 11 via the torque converter 15.
  • the speed change mechanism 20 includes a first set 24 constituted by a planetary gear mechanism, a second set 33 constituted by a planetary gear mechanism, and a plurality of hydraulic friction engagement elements.
  • the C1 clutch 44, the C2 clutch 46, the C3 clutch 48, the C4 clutch 50, the B1 brake 52, the B2 brake 54, the F1 one-way clutch 53, and the output shaft 56 are provided.
  • the C1 clutch 44, the C2 clutch 46, the C3 clutch 48, the C4 clutch 50, the B1 brake 52, and the B2 brake 54 constitute a plurality of friction engagement elements according to the present invention.
  • the B1 brake 52 has a brake hub provided on the first intermediate drum 30, a drive plate provided so as to rotate with the brake hub, and a driven plate provided on the case 7.
  • the driven plate is fastened by a hydraulic actuator described below, the B1 brake 52 frictionally engages the friction material attached to the drive plate and forms an engaged state.
  • the first set 24 is a double pinion type planetary gear device, and includes an S1 sun gear 25, an R1 ring gear 26, a plurality of inner pinion gears 27, a plurality of outer pinion gears 28, and a CA1 carrier 29. ing.
  • the S1 sun gear 25 is fixed to the case 7 of the automatic transmission 12 so as not to rotate.
  • the R1 ring gear 26 is supported by the first intermediate drum 30 via the C3 clutch 48 so as to be integrally rotatable or relatively rotatable, and can be integrally rotated or relatively rotated by the second intermediate drum 31 described later via the C1 clutch 44. Supported as possible.
  • the plurality of inner pinion gears 27 and the plurality of outer pinion gears 28 are respectively interposed in annular spaces formed by the S1 sun gear 25 and the R1 ring gear 26 facing each other.
  • Each inner pinion gear 27 meshes with the S1 sun gear 25 and each outer pinion gear 28.
  • Each outer pinion gear 28 meshes with each inner pinion gear 27 and the R1 ring gear 26.
  • Each inner pinion gear 27 and each outer pinion gear 28 are supported by a support shaft portion of the CA1 carrier 29 so as to be capable of rotating and revolving. Thereby, each inner pinion gear 27 and each outer pinion gear 28 can rotate about the support shaft of the CA1 carrier 29 as a rotation axis, and can revolve around the input shaft 22 as a rotation axis.
  • the CA1 carrier 29 supports each inner pinion gear 27 and each outer pinion gear 28 so as to be rotatable and revolved by a support shaft portion.
  • the CA1 carrier 29 has a central shaft portion integrally connected to the input shaft 22, and a support shaft portion that supports each inner pinion gear 27 and each outer pinion gear 28 via the C4 clutch 50. Are supported so as to be integrally rotatable or relatively rotatable.
  • the first intermediate drum 30 is rotatably arranged on the outer diameter side of the R1 ring gear 26, supports the R1 ring gear 26 so as to be integrally rotatable or relatively rotatable via a C3 clutch 48, and via a C4 clutch 50.
  • the CA1 carrier 29 is supported so as to be integrally rotatable or relatively rotatable.
  • the first intermediate drum 30 is supported by the case 7 via the B1 brake 52 so that it cannot rotate or can rotate relative to the case 7.
  • the second intermediate drum 31 is provided on the inner peripheral side of the first intermediate drum 30 and supports the R1 ring gear 26 via the C1 clutch 44 so as to be integrally rotatable or relatively rotatable.
  • the second set 33 is a Ravigneaux type planetary gear device, and includes an S2 sun gear 34, an S3 sun gear 35 having a smaller diameter than the S2 sun gear 34, an R2 ring gear 36, a plurality of long pinion gears 37, and a plurality of short pinion gears. 38, a CA2 carrier 39, and an F1 one-way clutch 53.
  • the S2 sun gear 34 is connected to the first intermediate drum 30, is connected to the R1 ring gear 26 via the C3 clutch 48 so as to be integrally rotatable or relatively rotatable, and is rotatable integrally to the CA1 carrier 29 via the C4 clutch 50. Or it is connected so that relative rotation is possible.
  • the S2 sun gear 34 is rotatable about the input shaft 22 as a rotation axis.
  • the S3 sun gear 35 is connected to the second intermediate drum 31, is connected to the R1 ring gear 26 via the C1 clutch 44 so as to be integrally rotatable or relatively rotatable, and is rotatable about the input shaft 22 as a rotation shaft. .
  • the R2 ring gear 36 is connected to the output shaft 56 and is rotatable about the input shaft 22 as a rotation shaft.
  • Each long pinion gear 37 meshes with the S2 sun gear 34, each short pinion gear 38, and the R2 ring gear 36.
  • Each short pinion gear 38 meshes with the S3 sun gear 35 and each long pinion gear 37.
  • the plurality of long pinion gears 37 and the plurality of short pinion gears 38 are respectively interposed in annular spaces formed by the S2 sun gear 34 and the S3 sun gear 35 facing the R2 ring gear 36, and can be rotated and revolved by the CA2 carrier 39. Supported as possible. Thereby, each long pinion gear 37 and each short pinion gear 38 can rotate about the support shaft portion of the CA2 carrier 39 as a rotation axis, and can revolve around the input shaft 22 as a rotation axis.
  • the CA2 carrier 39 supports each long pinion gear 37 and each short pinion gear 38 so as to be capable of rotating and revolving. Further, the CA2 carrier 39 is supported by the central shaft portion so as to be integrally rotatable or relatively rotatable with the input shaft 22 via the C2 clutch 46, and has a support shaft portion that supports each long pinion gear 37 and each short pinion gear 38.
  • the case 7 is supported by the case 7 via the B2 brake 54 so as not to rotate or to allow relative rotation.
  • the C1 clutch 44 operates in any of an engaged state in which the S3 sun gear 35 can rotate integrally with the R1 ring gear 26 and a released state in which the S3 sun gear 35 can rotate relative to the R1 ring gear 26. The state can be taken.
  • the C2 clutch 46 operates in any one of an engaged state in which the CA2 carrier 39 can rotate integrally with the input shaft 22 and a released state in which the CA2 carrier 39 can rotate relative to the input shaft 22. The state can be taken.
  • the C3 clutch 48 includes an engaged state in which the R1 ring gear 26 can rotate integrally with the first intermediate drum 30 and a released state in which the R1 ring gear 26 can rotate relative to the first intermediate drum 30. Either of the operating states can be taken.
  • the C4 clutch 50 may be in an engaged state in which the CA1 carrier 29 can rotate integrally with the first intermediate drum 30 and in a released state in which the CA1 carrier 29 can rotate relative to the first intermediate drum 30. It can be done.
  • the B1 brake 52 is either in an engaged state where the first intermediate drum 30 cannot rotate relative to the case 7 or in a released state where the first intermediate drum 30 can rotate relative to the case 7.
  • the operating state can be taken.
  • the B2 brake 54 is in any one of an engaged state in which the CA2 carrier 39 cannot rotate relative to the case 7 and a released state in which the CA2 carrier 39 can rotate relative to the case 7. Can be taken.
  • the F1 one-way clutch 53 is allowed to rotate in only one direction of the CA2 carrier 39.
  • the automatic transmission 12 can change the shift range, and in the case of a drive range (hereinafter referred to as D range), as described later, the first speed (1st) to the eighth speed. (8th) gear position can be changed. Further, the transmission mechanism 20 of the automatic transmission 12 can form a non-transmission state in which rotational power is not transmitted from the input shaft 22 to the output shaft 56 when the N range is set by the ECU 100 described later. .
  • FIG. 4 the operating state of the friction engagement element which concerns on embodiment of this invention is demonstrated.
  • represents an engaged state.
  • X represents a released state.
  • indicates that the engine is engaged only during engine braking. Further, “ ⁇ ” indicates that the engaged state is established only during driving.
  • FIG. 5 shows the shift stages (1st to 8th, R) that are established according to the operating states of the clutches C1 to C4 and the brakes B1, B2, and F1 one-way clutch 53, and the first set 24 and the first two It is a speed diagram which shows the relationship with the rotation speed ratio of each component in 2 sets 33.
  • the vertical axis represents the speed ratio of each component in the first set 24 and the second set 33, and the interval between the vertical axes is set according to the gear ratio of each element. Further, “C1” to “C4”, “B1”, “B2”, and “F1” are entered at the points where the clutches C1 to C4 and the brakes B1, B2, and F1 one-way clutches are engaged.
  • the ECU 100 determines that the solenoid valves So1 to So3, the linear solenoid valves SL1 to SL6 provided in the hydraulic pressure control device 60 (see FIG. 1) and the solenoid solenoid valves SL1 to SL6 are not shown depending on the combination of the operating states of the friction engagement elements. Controls excitation and de-excitation of transmission solenoids. Thus, in the automatic transmission 12, the operating states of the clutches C1 to C4 and the brakes B1 and B2 are switched, so that a plurality of shift ranges or shift stages are selectively formed.
  • the ECU 100 when it is determined that the current shift range of the automatic transmission 12 is the D range, the ECU 100 is a forward travel position for realizing the automatic shift mode, and therefore the vehicle speed, the throttle opening degree, and the EEPROM 104
  • the automatic transmission 12 is controlled so that one of the 1st (1st speed) to 8th (8th speed) gears is formed on the basis of the shift diagram stored in FIG. Therefore, when the traveling state of the vehicle 10 determined by the vehicle speed and the throttle opening exceeds the upshift line to be upshifted from 3rd to 4th in the shift diagram stored in the EEPROM 104, for example, the automatic transmission 12 is controlled to form 4th.
  • the ECU 100 controls the hydraulic control device 60 so that the C1 clutch 44 and the C4 clutch 50 are engaged so that the automatic transmission 12 forms 4th.
  • the ECU 100 controls the hydraulic pressure so that the clutches C1 to C4 and the brakes B1 and B2 shown in FIG. 4 are activated in accordance with the shift speed in the case of the forward travel position for realizing the automatic shift mode.
  • the device 60 is controlled.
  • the ECU 100 controls the hydraulic pressure so that the clutches C1 to C4 and the brakes B1 and B2 shown in FIG. 4 are activated according to the shift range selected by the driver.
  • the device 60 is controlled.
  • the hydraulic control device 60 is controlled so as to be in the operating state. For example, when a downshift from 4th to 3rd is instructed by the driver operating the shift lever 3 (see FIG. 1), the ECU 100 controls the hydraulic control device 60 to release the C4 clutch 50. , The re-holding for bringing the C3 clutch 48 into the engaged state is executed.
  • the hydraulic control device 60 includes a trochoidal oil pump 61 that is directly or indirectly connected to the crankshaft 13 (see FIG. 2) of the engine 11, and a propeller shaft 58 (see FIG. 1).
  • the parking valve 140 that supplies the line pressure PL to the parking cylinder 149 so as to lock the rotation of the cylinder, the supply state of supplying the line pressure PL to the clutches C1 to C4 and the brakes B1 and B2, and the line pressure PL to the clutches C1 to C4 and the brake
  • the switching valve 150 that is in one of the shut-off states that shut off the supply to B1 and B2, the So1 solenoid valve 110 and the So2 solenoid valve 120 that switch the operating state of the parking valve 140, and the operating state of the switching valve 150 So3 solenoid valve 13 for switching When provided with a clutch C1 ⁇ C4 and the brakes B1, B2 regulates the line pressure PL as a hydraulic pressure of the hydraulic fluid supplied to the pressure SL1 linear solenoid valve 16
  • the oil pump 61 operates in conjunction with the rotation of the crankshaft 13 and outputs hydraulic pressure.
  • the oil pressure output from the oil pump 61 is adjusted to the line pressure PL by a regulator valve (not shown) and the like, and is input to each solenoid valve on the path for supplying the adjusted hydraulic oil to the plurality of friction engagement elements.
  • the open / close states of the So1 solenoid valve 110 to the So3 solenoid valve 130 are switched by the ECU 100 being independently switched between energized states.
  • the So1 solenoid valve 110 has an input port 112 and an output port 114.
  • the input port 112 inputs the line pressure PL. Further, the So1 solenoid valve 110 is opened when energized by the ECU 100, and the line pressure PL input from the input port 112 is output from the output port 114.
  • the So2 solenoid valve 120 has an input port 122 and an output port 124.
  • the input port 122 inputs the line pressure PL. Further, the So2 solenoid valve 120 is opened when energized by the ECU 100, and the line pressure PL input from the input port 122 is output from the output port 124.
  • the parking valve 140 includes input ports 141 to 143, an output port 144, a drain port 145, a spool 146, and a spring 147.
  • the input port 141 receives the line pressure PL.
  • the input port 142 inputs the line pressure PL output from the output port 114 of the So1 solenoid valve 110.
  • the input port 143 receives the line pressure PL output from the output port 124 of the So2 solenoid valve 120.
  • the parking valve 140 outputs the line pressure PL input to the input port 141 by the oil pump 61 according to the position of the spool 146.
  • the parking cylinder 149 in FIG. 6 is a member constituting a known parking lock mechanism.
  • the parking lock mechanism is provided in the vicinity of the output shaft 56 (see FIG. 1).
  • the parking lock mechanism is in a locked state in which the rotation of the output shaft 56 is prohibited.
  • the unlocked state is allowed to allow the output shaft 56 to rotate.
  • FIG. 6 illustrates the positions of the spools of the parking valve 140 and the switching valve 150 separately for the right half (lower end position) and the left half (upper end position).
  • the spool 146 When the So1 solenoid valve 110 is in an open state and the So2 solenoid valve 120 is in a closed state, the spool 146 is caused by the line pressure PL input from the output port 114 of the So1 solenoid valve 110 to the input port 142. The spring 147 is moved to the lower end position against the biasing force. For this reason, since the input port 141 and the output port 144 communicate with each other, the parking valve 140 is in a supply state in which the line pressure PL input to the input port 141 is supplied from the output port 144 to the parking cylinder 149. Thus, when the oil pressure in the parking cylinder 149 increases, the parking lock mechanism is unlocked.
  • the output port 144 and the drain port 145 communicate with each other, so that the hydraulic pressure in the parking cylinder 149 is released through the drain port 145. As a result, the hydraulic oil in the parking cylinder 149 is discharged from the drain port 145, and the parking lock mechanism is locked.
  • the So3 solenoid valve 130 has an input port 132 and an output port 134.
  • the input port 132 inputs the line pressure PL.
  • the So3 solenoid valve 130 is opened when energized by the ECU 100, and the line pressure PL input from the input port 132 is output from the output port 134.
  • the switching valve 150 has input ports 151 and 152, an output port 153, drain ports 154 and 155, a spool 156, and a spring 157. Further, the switching valve 150 outputs the line pressure PL input to the input port 151 from the output port 153 to the linear solenoid valves 161 to 166 according to the position of the spool 156.
  • the switching valve 150 changes the line pressure PL input to the input port 151 from the output port 153 to the SL1 linear.
  • the solenoid valves 161 to SL6 are in a supply state of outputting to the linear solenoid valve 166.
  • the So3 solenoid valve 130 when the So3 solenoid valve 130 is in the open state, the spool 156 is moved to the lower end position against the urging force of the spring 157 by the line pressure PL input to the input port 152.
  • the spool 156 When the spool 156 is held at the lower end position, the communication between the input port 151 and the output port 153 is cut off, so that the switching valve 150 enters a cut-off state in which the line pressure PL is not output from the output port 153.
  • the switching valve 150 is operated in one of a supply state in which hydraulic oil is supplied to the linear solenoid valves 161 to 166 and a cutoff state in which the supply of hydraulic oil to the linear solenoid valves 161 to 166 is cut off.
  • the operation state of the switching valve 150 can be switched by the So3 solenoid valve 130. Accordingly, when the operating state of the switching valve 150 is switched from the supply state to the shut-off state by the So3 solenoid valve 130, hydraulic oil is not supplied to the linear solenoid valves 161 to 166, so that the clutches C1 to C4 and the brakes B1 and B2 are not supplied. Is released, and a non-transmission state is formed in the transmission mechanism 20.
  • the So3 solenoid valve 130 and the switching valve 150 are either in a supply state in which hydraulic oil is supplied to the linear solenoid valves 161 to 166 or in a cutoff state in which supply of hydraulic oil to the linear solenoid valves 161 to 166 is cut off. Switch to one side. Therefore, the So3 solenoid valve 130 and the switching valve 150 according to the present embodiment correspond to the supply state switching means according to the present invention and constitute a part of the control device for the automatic transmission according to the present invention. Note that the So3 solenoid valve 130 and the switching valve 150 may be configured by a single solenoid valve.
  • the linear solenoid valves 161 to 166 are arranged to correspond to the C1 clutch 44, the C2 clutch 46, the C3 clutch 48, the C4 clutch 50, the B1 brake 52, and the B2 brake 54, respectively.
  • the linear solenoid valves 161 to 166 have input ports 171 to 176, output ports 181 to 186, and drain ports 191 to 196, respectively.
  • Each of the linear solenoid valves 161 to 166 is continuously changed in its open / closed state by the ECU 100 being independently controlled in the energized state. As a result, each of the linear solenoid valves 161 to 166 adjusts the line pressure PL input from the input ports 171 to 176 according to the current value from the ECU 100 and outputs the pressure from the output ports 181 to 186, respectively. Yes. Therefore, the linear solenoid valves 161 to 166 switch the operating states of the clutches C1 to C4 and the brakes B1 and B2 by adjusting the line pressure PL supplied to the clutches C1 to C4 and the brakes B1 and B2, respectively. It has become.
  • each of the linear solenoid valves 161 to 166 is in a cut-off state in which the supply of hydraulic oil to the clutches C1 to C4 and the brakes B1 and B2 is cut off in a non-energized state, while the hydraulic oil is supplied to the clutches C1 to C4 and the clutches in the energized state. It is comprised so that it may be in the supply state supplied to brake B1 and B2.
  • each of the linear solenoid valves 161 to 166 according to the present embodiment corresponds to the operation state switching means according to the present invention and constitutes a part of the control device for the automatic transmission according to the present invention.
  • each of the linear solenoid valves 161 to 166 may be constituted by a solenoid valve. In this case, whether or not to use a solenoid valve is appropriately selected according to the configurations of the automatic transmission 12 and the hydraulic control device 60.
  • the linear solenoid valves 161 to 166 are connected to the clutches C1 to C4 and the brake B1 more than the So3 solenoid valve 130 and the switching valve 150 on the path for supplying the line pressure PL to the clutches C1 to C4 and the brakes B1 and B2. , B2 side.
  • the hydraulic control device 60 includes a C1 actuator 201, a C2 actuator 202, a C3 actuator 203, a C4 actuator 204, a B1 actuator 205, and a B2 actuator 206, each of which is provided by a hydraulic actuator (hydraulic cylinder). It is configured.
  • Each of the actuators 201 to 206 is operated by the hydraulic pressure of the hydraulic oil, and the operating state of the clutches C1 to C4 and the brakes B1 and B2 is switched between the engaged state and the released state according to the hydraulic pressure.
  • the linear solenoid valves 161 to 166 communicate with the input ports 171 to 176 and the output ports 181 to 186, respectively. In this state, the communication between the output ports 181 to 186 and the drain ports 191 to 196 is cut off.
  • the actuators 201 to 206 increase the volume of the hydraulic cylinders by the hydraulic pressures PC1, PC2, PC3, PC4, PB1, and PB2 supplied from the linear solenoid valves 161 to 166, respectively. As a result, the actuators 201 to 206 engage the clutches C1 to C4 and the brakes B1 and B2.
  • the linear solenoid valves 161 to 166 are controlled by the ECU 100 so that the input ports 171 to 176 and the output ports 181 to 186 are connected. Each communication is cut off, and the output ports 181 to 186 and the drain ports 191 to 196 are made to communicate with each other.
  • the linear solenoid valves 161 to 166 are cut off, the hydraulic oil in the hydraulic cylinders of the actuators 201 to 206 is discharged from the drain ports 191 to 196. Therefore, the cylinder volume of each actuator 201-206 is reduced. As a result, the actuators 201 to 206 release the clutches C1 to C4 and the brakes B1 and B2.
  • the linear solenoid valves 161 to 166 change the open / close state continuously between the supply state and the cutoff state by controlling the solenoid current by the ECU 100, and supply the hydraulic pressure supplied to the actuators 201 to 206, respectively. The pressure is adjusted.
  • the hydraulic control device 60 is provided with hydraulic sensors 84 to 89.
  • the hydraulic sensors 84 to 89 detect the hydraulic pressures PC1 to PB2, respectively, and output detection signals representing the hydraulic pressures PC1 to PB2 to the ECU 100, respectively.
  • the ECU 100 acquires the hydraulic pressures PC1 to PB2 based on this detection signal.
  • the ECU 100 can determine the operation states of the clutches C1 to C4 and the brakes B1 and B2 based on the hydraulic pressures PC1 to PB2 by referring to an operation state determination threshold (not shown) stored in the EEPROM 104. It can be done. Therefore, the ECU 100 refers to the operation table (see FIG. 4) of the friction engagement elements mapped and stored in the EEPROM 104, and based on the operation states of the clutches C1 to C4 and the brakes B1 and B2, It is also possible to determine the gear position.
  • the ECU 100 controls the open / close states of the So1 solenoid valve 110 to So3 solenoid valve 130 and the linear solenoid valves 161 to 166 independently by the solenoid current.
  • the respective operating states of C1 to C4 and brakes B1 and B2 are switched to cause the automatic transmission 12 to form a desired shift range or gear position.
  • the vehicle 10 according to the present embodiment employs the SBW (Shift-By-Wire) system in which the ECU 100 electrically controls the shift by controlling the excitation and non-excitation of the solenoid valve and the like described above. is doing.
  • the vehicle 10 according to the present embodiment employs a method in which the hydraulic control device 60 is not provided with a conventional manual valve.
  • the ECU 100 sets a shift range selected from the plurality of shift ranges based on the operation position detected by the shift sensor 76, and pre-selects the clutches C1 to C4 and the brakes B1 and B2 according to the set shift range.
  • An electric signal for controlling a predetermined friction engagement element is output.
  • the ECU 100 generates a shift diagram (not shown) that is mapped and stored in the EEPROM 104 based on the vehicle speed V detected by the vehicle speed sensor 73 and the throttle opening Qth detected by the throttle sensor 72.
  • the ECU 100 sets the gear position to the high speed gear side where the gear ratio ⁇ is small every time the shift sensor 76 detects that the shift lever 3 is operated once to the upshift command position (+) in the sports range. Set by shifting step by step.
  • the ECU 100 shifts and sets the gear position step by step to the low speed gear side where the gear ratio ⁇ is large.
  • the ECU 100 selects the friction engagement element corresponding to the shift range or shift speed set in this way with reference to the friction engagement element operation table (see FIG. 4) that is mapped and stored in the EEPROM 104. To do. Further, the ECU 100 refers to the solenoid valve operation table (see FIG. 7), so that the So1 solenoid valve 110 to the So3 solenoid valve 130 and the linear solenoid valves 161 to 166 are formed so as to form the selected shift range or gear position. It is designed to output an electrical signal. Therefore, ECU 100 according to the present embodiment corresponds to the control means and the electronic control unit according to the present invention, and constitutes a part of the control device for the automatic transmission according to the present invention.
  • the ECU 100 controls the linear solenoid valves 161 to 166 to form the input range 22 of the transmission mechanism 20 in order to form the N range when the shift lever 3 is operated at the operation position for setting the N range.
  • the transmission state of the rotational power transmitted to the output shaft 56 is set to the non-transmission state.
  • the ECU 100 sets the input ports 171 to 176 of the linear solenoid valves 161 to 166 and the output ports 181 to 186, respectively.
  • the communication is cut off, and the output ports 181 to 186 and the drain ports 191 to 196 are connected to each other.
  • the ECU 100 releases the hydraulic pressures in the cylinders of the actuators 201 to 206 from the drain ports 191 to 196, and puts the clutches C1 to C4 and the brakes B1 and B2 into the released state, thereby inputting the transmission mechanism 20.
  • the transmission state of the rotational power transmitted from the shaft 22 to the output shaft 56 is set to the non-transmission state.
  • the ECU 100 determines at least the linear solenoid valves 161 to 166 and the So3 solenoid valve 130 according to the vehicle speed V detected by the vehicle speed sensor 73.
  • the non-transmission state is formed by controlling to switch either one of the switching valve 150 and the switching valve 150.
  • the ECU 100 determines that the vehicle speed V detected by the vehicle speed sensor 73 is smaller than the N range formation method change threshold value Vn.
  • the solenoid valve 130 and the switching valve 150 are controlled to be switched to form a non-transmission state.
  • the solenoid valves 161 to 166 are controlled to be switched to form a non-transmission state.
  • the N range formation method change threshold value Vn is due to a malfunction of each of the linear solenoid valves 161 to 166 even though the shift range is switched from the D range to the N range by the driver operating the shift lever 3. Even when the D range is held, the behavior of the vehicle 10 is set to a vehicle speed that does not make the driver feel uncomfortable, and is a value that is experimentally determined in advance.
  • the ECU 100 at least each of the linear solenoid valves 161 to 166, the So3 solenoid valve 130, and the switching valve so as to shut off the supply of hydraulic oil to the clutches C1 to C4 and the brakes B1 and B2 when the non-transmission state is formed. 150 is controlled so as to switch one of them.
  • the process shown in FIG. 8 represents the execution contents of a program related to the control process of the automatic transmission executed by the CPU 102 using the RAM 103 as a work area.
  • the control process for the automatic transmission is executed by the CPU 102 at predetermined time intervals.
  • the CPU 102 determines whether or not the shift range has been switched to the N range (step S11). Specifically, the CPU 102 determines whether or not the shift range has been switched from the D range to the N range based on the detection signal of the shift sensor 76. In the control process of the automatic transmission according to the present embodiment, it is assumed that only the C1 clutch 44 is engaged in the D range and the vehicle 10 is traveling with the first shift stage formed. .
  • step S11 If the CPU 102 determines that the shift range has not been switched to the N range (NO in step S11), the process ends. On the other hand, if the CPU 102 determines that the shift range has been switched to the N range (YES in step S11), the vehicle speed V is changed to the N range formation method stored in the EEPROM 104 based on the detection signal of the vehicle speed sensor 73. It is determined whether it is smaller than the threshold value Vn (step S13).
  • step S13 When the CPU 102 determines that the vehicle speed V is smaller than the N range formation method change threshold value Vn (YES in step S13), the CPU 102 turns on the So3 solenoid valve 130 (see FIG. 6) (step S15).
  • the line pressure PL is supplied from the output port 134 of the So3 solenoid valve 130 to the input port 152 of the switching valve 150, so that the spool 156 moves to the lower end position. .
  • the switching valve 150 is cut off.
  • the switching valve 150 enters the shut-off state the supply of the line pressure PL to the SL1 linear solenoid valve 161 is shut off, and the hydraulic pressure in the cylinder of the C1 actuator 201 is released from the drain port 154 of the switching valve 150. Therefore, since the C1 clutch 44 is in a released state, a non-transmission state is formed.
  • step S17 the CPU 102 sets the SL1 linear solenoid valve 161 in a non-energized state (step S17).
  • the SL1 linear solenoid valve 161 when the SL1 linear solenoid valve 161 is turned off, the SL1 linear solenoid valve 161 is cut off.
  • the communication between the input port 171 and the output port 181 is cut off, and the output port 181 and the drain port 191 communicate with each other.
  • the hydraulic pressure in the cylinder of the C1 actuator 201 is released from the drain port 191 via the output port 181. Therefore, since the C1 clutch 44 is released, a non-transmission state is formed.
  • the present invention is not limited to this.
  • the present invention can also be applied to a case where the N range is switched from a state where another gear position is formed in the range, or a case where the reverse range is switched to the N range.
  • step S17 in FIG. 8 the CPU 102 deenergizes the solenoid valve that is operated to form the shift range and the gear position before switching. For example, if the speed before switching is 6th, in step S17, the SL2 linear solenoid valve 162 and the SL4 linear solenoid valve 164 are turned off.
  • ECU 100 causes each linear solenoid valve 161 ⁇ to correspond to vehicle speed V detected by vehicle speed sensor 73.
  • the So3 solenoid valve 130, and the switching valve 150 are controlled so as to switch one of them, so that the non-transmission state is formed. Therefore, the clutches C1 to C4 and the brake B1 are caused by the failure of each linear solenoid valve 161 to 166. Even if the operation state of B2 cannot be switched, for example, when the vehicle 10 is stopped, the linear solenoid valves 161 to 166 are operated by the So3 solenoid valve 130 and the switching valve 150. The supply of line pressure to can be cut off.
  • the ECU 100 controls the linear solenoid valves 161 to 166, the So3 solenoid valve 130, the switching valve 150, and the like according to the vehicle speed V detected by the vehicle speed sensor 73. Since the non-transmission state is formed by controlling to switch one of the linear solenoid valves 161 to 166, it is impossible to switch the operating states of the clutches C1 to C4 and the brakes B1 and B2 due to a failure. However, for example, when the vehicle 10 is stopped, the supply of hydraulic oil to the linear solenoid valves 161 to 166 can be blocked by the So3 solenoid valve 130 and the switching valve 150.
  • the So3 solenoid valve 130 and the switching valve 150 supply hydraulic oil to the clutches C1 to C4 and the brakes B1 and B2.
  • the clutches C1 to C4 and the brake It is possible to improve the key B1, B2 immediate responsiveness of.
  • control device for the automatic transmission at least each linear solenoid valve 161 so as to cut off the supply of hydraulic fluid to the clutches C1 to C4 and the brakes B1 and B2 when the non-transmission state is formed.
  • the So3 solenoid valve 130, and the switching valve 150 are controlled so that the operating states of the clutches C1 to C4 and the brakes B1 and B2 can be switched from the engaged state to the released state. .
  • control device for the automatic transmission can switch the operating states of the clutches C1 to C4 and the brakes B1 and B2 in accordance with the electric signal output by the ECU 100.
  • the ECU 100 since the supply of hydraulic fluid to the clutches C1 to C4 and the brakes B1 and B2 can be shut off while the linear solenoid valves 161 to 166 are not energized, the ECU 100 causes the linear solenoid valves 161 to 166 to electrically Even when the signal cannot be output, the supply of hydraulic oil to the clutches C1 to C4 and the brakes B1 and B2 can be cut off, and a non-transmission state can be formed.
  • the So3 solenoid valve 130 is provided on the path for the linear solenoid valves 161 to 166 to supply hydraulic oil to the clutches C1 to C4 and the brakes B1 and B2. Since the switching valve 150 is provided on the clutches C1 to C4 and the brakes B1 and B2 side, the linear solenoid valves 161 to 166 are switched to cut off the supply of hydraulic oil to the clutches C1 to C4 and the brakes B1 and B2.
  • the operation state of the clutches C1 to C4 and the brakes B1 and B2 is more than the case where the supply of hydraulic oil to the clutches C1 to C4 and the brakes B1 and B2 is cut off by switching the So3 solenoid valve 130 and the switching valve 150.
  • the immediate response of the clutches C1 to C4 and the brakes B1 and B2 is compared with the case where the hydraulic fluid supplied to the clutches C1 to C4 and the brakes B1 and B2 is shut off by switching the So3 solenoid valve 130 and the switching valve 150. Can be improved.
  • the automatic transmission control apparatus switches one of the So3 solenoid valve 130 and the SL1 linear solenoid valve 161 according to the vehicle speed V to form a non-transmission state.
  • the So3 solenoid valve 130 and the SL1 linear solenoid are used when the vehicle speed V is smaller than the N range formation method change threshold value Vn as in the control apparatus for the automatic transmission according to the second embodiment described below.
  • a non-transmission state may be formed by the valve 161.
  • the ECU 100 When the shift lever 3 is operated to the operation position where the N range is set by the ECU 100, when the vehicle speed V detected by the vehicle speed sensor 73 is smaller than the N range formation method change threshold value Vn, the ECU 100 The non-transmission state is formed by switching the valves 161 to 166, the So3 solenoid valve 130, and the switching valve 150, while the vehicle speed V detected by the vehicle speed sensor 73 changes the N range formation method. When the value is equal to or greater than the value Vn, the ECU 100 controls to switch the linear solenoid valves 161 to 166 to form a non-transmission state. Next, the operation according to the present embodiment will be described. With reference to FIG. 9, the control process of the automatic transmission which concerns on the 2nd Embodiment of this invention is demonstrated.
  • the CPU 102 determines whether or not the shift range has been switched to the N range (step S21).
  • step S21 If the CPU 102 determines that the shift range has not been switched to the N range (NO in step S21), the process ends. On the other hand, if the CPU 102 determines that the shift range has been switched to the N range (YES in step S21), the vehicle speed V is changed to the N range formation method stored in the EEPROM 104 based on the detection signal of the vehicle speed sensor 73. It is determined whether it is smaller than the threshold value Vn (step S23).
  • step S23 When the CPU 102 determines that the vehicle speed V is smaller than the N range formation method change threshold value Vn (YES in step S23), the CPU 102 turns on the So3 solenoid valve 130 (see FIG. 6) (step S25).
  • the CPU 102 energizes the So3 solenoid valve 130 (step S25), de-energizes the SL1 linear solenoid valve 161 (step S27), and ends this process.
  • step S29 if the CPU 102 determines that the vehicle speed V is equal to or higher than the N range formation method change threshold value Vn (NO in step S23), the CPU 102 sets the SL1 linear solenoid valve 161 in a non-energized state (step S29).
  • the ECU 100 when the vehicle speed V detected by the vehicle speed sensor 73 is smaller than the N range formation method threshold value Vn, the ECU 100 performs the linear solenoid valves 161 to 166. And the So3 solenoid valve 130 and the switching valve 150 are switched to form a non-transmission state, so that the operation states of the clutches C1 to C4 and the brakes B1 and B2 are caused by the failure of each linear solenoid valve 161 to 166. Even if the vehicle cannot be switched, for example, when the vehicle 10 is stopped, the hydraulic oil is supplied to the linear solenoid valves 161 to 166 by the So3 solenoid valve 130 and the switching valve 150. Can be cut off.
  • the linear solenoid valves 161 to 166 are used.
  • the supply of hydraulic oil to the clutches C1 to C4 and the brakes B1 and B2 can be shut off.
  • the linear solenoid valves 161 to 166 are unable to switch the operating states of the clutches C1 to C4 and the brakes B1 and B2 due to a failure.
  • the present invention is not limited thereto, and the supply state switching unit is not limited thereto. It is good also as a structure which provided two or more.
  • a configuration in which six linear solenoid valves 161 to 166 are provided may be employed. In this case, the number of supply state switching means is appropriately selected according to the configurations of the automatic transmission 12 and the hydraulic control device 60.
  • the configurations of the So1 solenoid valve 110 to So3 solenoid valve 130 and the linear solenoid valves 161 to 166 have been described as N / C.
  • the state may be N / O (Normally-Open) that is in the supply state, or N / C and N / O may be combined.
  • the present invention is not limited to this, and a plurality of ECUs may be used.
  • the ECU 100 according to the present embodiment may be configured by a plurality of ECUs such as an E-ECU that performs output control of the engine 11 and a T-ECU that performs shift control of the automatic transmission 12. .
  • each ECU inputs and outputs necessary information mutually.
  • the automatic transmission control device is applied to the speed change mechanism that realizes a speed change by switching the operating states of the plurality of friction engagement elements.
  • the control apparatus for an automatic transmission according to the present invention includes, for example, a first shaft and a second shaft that are rotatably supported in a case, a primary pulley provided on the first shaft, and a second shaft.
  • Belt-type continuously variable comprising: a secondary pulley provided on the belt; a belt wound between the primary pulley and the secondary pulley; and a forward / reverse switching mechanism for switching the rotation directions of the first shaft and the second shaft. It can also be applied to a transmission.
  • the electronic control unit controls a plurality of solenoid valves and linear solenoid valves to change the rotational directions of the first shaft and the second shaft, and a clutch as a friction engagement element constituting a forward / reverse switching mechanism. Switch the operating state of the brake.
  • control device for an automatic transmission even when the shift lever is operated to a position where the neutral range is set in a state where the solenoid valve has failed, It is possible to prevent the frictional engagement element from remaining engaged according to the traveling state of the vehicle, which is useful for a control device for an automatic transmission mounted on a vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 本発明は、ソレノイドバルブの故障が発生している状態でニュートラルレンジが設定される位置にシフトレバーが操作された場合であっても、車両の走行状態に応じて摩擦係合要素が係合したままとなってしまうことを防止することができる自動変速機の制御装置を提供する。 ECUは、シフトレンジがNレンジに切り替えられ(ステップS11でYES)、車速VがNレンジ形成方法変更しきい値Vnより小さいと判定した場合には(ステップS13でYES)、So3ソレノイドバルブを通電状態にして(ステップS15)、変速機構を非伝達状態となるよう制御する。一方、ECUは、車速VがNレンジ形成方法変更しきい値Vn以上であると判定した場合には(ステップS13でNO)、SL1リニアソレノイドバルブを非通電状態にして(ステップS17)、変速機構を非伝達状態となるよう制御する。

Description

自動変速機の制御装置
 本発明は、車両に搭載される自動変速機の制御装置に関する。
 従来、車両に搭載される自動変速機にあっては、例えばエンジンからの動力がトルクコンバータを介して変速機構に伝達されるようになっており、摩擦係合要素としてのクラッチやブレーキの係合および解放を行い、複数のギア対によって形成される動力伝達経路が切り替えられて、シフトレンジおよび所望の変速段を形成するようになっている。
 クラッチおよびブレーキは、油圧制御回路の一部を構成するソレノイドバルブおよびマニュアルバルブ等によって油圧経路が切り替えられることにより、その係合状態および解放状態が切り替えられるようになっている。
 ここで、エンジンによって回転されるオイルポンプによって生成されたライン圧は、マニュアルバルブによって切り替えられて各油圧回路に供給されるようになっている。また、各油圧回路に供給されたライン圧は、マニュアルバルブの下流側で各油圧回路に設けられたソレノイドバルブによって調圧されて、クラッチやブレーキを作動させる油圧シリンダに供給されるようになっている。
 このように、マニュアルバルブが作動すると各シフトレンジが形成されると同時に、油圧シリンダに供給される油圧が調圧されることによって、クラッチやブレーキは、その係合状態および解放状態のいずれか一方の作動状態に切り替えられるようになっている。
 また、マニュアルバルブは、シフトレバーと連結部材を介して接続されており、シフトレバーの操作位置に応じて各シフトレンジを形成することが可能となっている。
 近年、シフトレバーの操作位置に応じて電気的に変速制御を行ういわゆるシフト・バイ・ワイヤ方式が存在し、これに伴いマニュアルバルブを備えていない自動変速機も増加しつつある(例えば、特許文献1参照)。
 この従来の特許文献1に記載された自動変速機にあっては、マニュアルバルブを備えていないため、電磁弁ロジックに基づいていずれのソレノイドバルブを作動させるか予め定められており、後進段等や所望の前進変速段を形成するために対応したソレノイドバルブを作動させるようになっている。これにより、従来の特許文献1に記載された自動変速機にあっては、各変速段等に対応したソレノイドバルブを作動させることにより、電磁弁ロジックに基づいたブレーキおよびクラッチを作動させて、後進段等や所望の前進変速段が形成されるようになっている。
 このような従来のシフト・バイ・ワイヤ方式によってシフトレンジおよび変速段の変更が実現される自動変速機にあっては、マニュアルバルブを備えていないため、シフトレバーの操作位置に応じて設けられた複数のシフトセンサからの検出結果と前述した電磁弁ロジックとに基づいてECU(Electronic-Control-Unit)が各ソレノイドバルブを制御するようになっている。
特表2002-533631号公報
 しかしながら、従来のマニュアルバルブを備えている自動変速機にあっては、ソレノイドバルブの故障が発生している状態でニュートラルレンジが形成される位置にシフトレバーが操作されても、マニュアルバルブによってソレノイドバルブに供給される元圧を遮断することができ、前進クラッチ等が係合してしまうといった不具合が生じないが、従来の特許文献1に記載された自動変速機の制御装置にあっては、マニュアルバルブを備えていないため、ソレノイドバルブの故障によって前進クラッチ等が係合してしまい、ニュートラルレンジが形成される位置にシフトレバーが操作されているにもかかわらず、駆動源からの駆動力が変速機構を介して車輪に伝達されてしまうという問題があった。
 このように、マニュアルバルブを備えていない従来の特許文献1に記載された自動変速機の制御装置にあっては、車両が停止しているような低車速でソレノイドバルブの故障が発生するとユーザの意思に反した車両の挙動を招来するという問題があった。
 特に、車両が走行中のときに前記ソレノイドの故障が発生して前進クラッチ等が係合し駆動源からの動力が車輪に伝達されても、元々走行しているため、このようなユーザの意思に反した車両の挙動の招来は生じないが、例えば低速であるときに問題となる。
 本発明は、上述のような従来の問題を解決するためになされたもので、ソレノイドバルブの故障が発生している状態でニュートラルレンジが形成される位置にシフトレバーが操作された場合であっても、車両の走行状態に応じて摩擦係合要素が係合したままとなってしまうことを防止することができる自動変速機の制御装置を提供することを目的とする。
 本発明に係る自動変速機の制御装置は、上記目的達成のため、(1)駆動源からの回転動力を入力する入力軸、車輪に前記回転動力を伝達する出力軸、係合状態および解放状態のいずれか一方の作動状態に切り替えられて前記入力軸から入力された回転を変速して前記出力軸から出力する複数の摩擦係合要素、を有する変速機構と、複数の操作位置のうち任意の操作位置に操作されることによりニュートラルレンジを含む複数のシフトレンジのうち任意のシフトレンジを選択する操作部材と、前記操作部材が操作された操作位置を検出する操作位置検出手段と、前記複数の摩擦係合要素に供給される作動油の油圧をそれぞれ調圧することによって、前記複数の摩擦係合要素の前記作動状態を切り替える複数の作動状態切替手段と、車両の車速を検出する車速検出手段と、前記作動状態切替手段に前記作動油を供給する供給状態および前記作動状態切替手段への前記作動油の供給を遮断する遮断状態のいずれか一方に切り替える供給状態切替手段と、前記操作位置検出手段によって検出された操作位置に基づいて前記複数のシフトレンジのうち選択されたシフトレンジを設定するとともに、前記操作部材が前記ニュートラルレンジを設定する操作位置に操作された場合に、前記車速検出手段によって検出された車速に応じて、前記入力軸から前記出力軸に伝達される前記回転動力の伝達状態を非伝達状態となるよう少なくとも前記複数の作動状態切替手段および前記供給状態切替手段のいずれか一方を切り替えるよう制御する制御手段と、を備えたことを特徴とする。
 この構成により、本発明に係る自動変速機の制御装置は、ニュートラルレンジが設定されている場合に、車速検出手段によって検出された車速に応じて、制御手段が複数の作動状態切替手段および供給状態切替手段のいずれか一方を切り替えるよう制御することによって非伝達状態を形成するので、作動状態切替手段が故障によって摩擦係合要素の作動状態を切り替えることが不可能な状態となっても、例えば車両が停止しているような状態の場合には、供給状態切替手段によって作動状態切替手段への作動油の供給を遮断することができる。この結果、制御手段によってニュートラルレンジが設定されているにもかかわらず、駆動源からの回転動力が入力軸を介して出力軸に伝達されてしまうといったことがなく、運転者による操作部材の操作に反した車両の挙動を防止することができ、従来と比較してより安全性を高めることができる。
 また、上記(1)に記載の自動変速機の制御装置において、(2)前記制御手段は、前記ニュートラルレンジを設定した場合に、前記車速検出手段によって検出された車速が所定車速より小さいとき、前記供給状態切替手段を切り替えるよう制御して前記非伝達状態を形成するようにし、一方、前記車速検出手段によって検出された車速が所定車速以上であるとき、前記複数の作動状態切替手段を切り替えるよう制御して前記非伝達状態を形成するようにしたことを特徴とする。
 この構成により、本発明に係る自動変速機の制御装置は、車速検出手段によって検出された車速に応じて、制御手段が複数の作動状態切替手段および供給状態切替手段のいずれか一方を切り替えるよう制御することによって非伝達状態を形成するので、作動状態切替手段が故障によって摩擦係合要素の作動状態を切り替えることが不可能な状態となっても、例えば車両が停止しているような状態の場合には、供給状態切替手段によって作動状態切替手段への作動油の供給を遮断することができる。この結果、制御手段によってニュートラルレンジが設定されているにもかかわらず、駆動源からの回転動力が入力軸を介して出力軸に伝達されてしまうといったことがなく、運転者による操作部材の操作に反した車両の挙動を防止することができ、従来と比較してより安全性を高めることができる。
 一方、本発明に係る自動変速機の制御装置は、例えば車両が走行しているような状態の場合には、複数の作動状態切替手段によって摩擦係合要素への作動油の供給を遮断することができる。この結果、制御手段によってニュートラルレンジが設定されている状態で、作動状態切替手段が故障によって摩擦係合要素の作動状態を切り替えることが不可能な状態となっても、車両が走行中であるため、運転者による操作部材の操作に反した車両の挙動とはならず、運転者に対して違和感を与えることを防止できるとともに、作動状態切替手段が故障していない場合には、制御手段によってニュートラルレンジからその他のシフトレンジに設定されたときに、供給状態切替手段によって摩擦係合要素への作動油の供給を遮断している場合と比較して、摩擦係合要素の即時の応答性を向上させることができる。
 また、上記(1)に記載の車両のニュートラル制御装置において、(3)前記制御手段は、前記ニュートラルレンジを設定した場合に、前記車速検出手段によって検出された車速が所定車速より小さいとき、前記複数の作動状態切替手段および前記供給状態切替手段を切り替えるよう制御して前記非伝達状態を形成するようにし、一方、前記車速検出手段によって検出された車速が所定車速以上であるとき、前記複数の作動状態切替手段を切り替えるよう制御して前記非伝達状態を形成するようにしたことを特徴とする。
 この構成により、本発明に係る自動変速機の制御装置は、車速検出手段によって検出された車速が所定車速より小さいとき、制御手段が複数の作動状態切替手段および供給状態切替手段を切り替えるよう制御することによって非伝達状態を形成するので、作動状態切替手段が故障によって摩擦係合要素の作動状態を切り替えることが不可能な状態となっても、例えば車両が停止しているような状態の場合には、供給状態切替手段によって作動状態切替手段への作動油の供給を遮断することができる。この結果、制御手段によってニュートラルレンジが設定されているにもかかわらず、駆動源からの回転動力が入力軸を介して出力軸に伝達されてしまうといったことがなく、運転者による操作部材の操作に反した車両の挙動を防止することができ、従来と比較してより安全性を高めることができる。また、供給状態切替手段の故障によって作動状態切替手段への作動油の供給を遮断することが不可能な状態となっても、複数の作動状態切替手段によって摩擦係合要素の作動状態を切り替えることが可能であるので、非伝達状態を形成することができる。
 一方、本発明に係る自動変速機の制御装置は、車速検出手段によって検出された車速が所定車速以上であるとき、例えば車両が走行しているような状態の場合には、複数の作動状態切替手段によって摩擦係合要素への作動油の供給を遮断することができる。この結果、制御手段によってニュートラルレンジが設定されている状態で、作動状態切替手段が故障によって摩擦係合要素の作動状態を切り替えることが不可能な状態となっても、車両が走行中であるため、運転者による操作部材の操作に反した車両の挙動とはならず、運転者に対して違和感を与えることを防止できるとともに、作動状態切替手段が故障していない場合に、供給状態切替手段によって摩擦係合要素への作動油の供給を遮断している場合と比較して、摩擦係合要素の即時の応答性を向上させることができる。
 また、上記(1)に記載の自動変速機の制御装置において、(4)前記制御手段は、前記非伝達状態を形成する際に前記複数の摩擦係合要素への前記作動油の供給を遮断するように少なくとも前記複数の作動状態切替手段および前記供給状態切替手段のいずれか一方を切り替えるよう制御することを特徴とする。
 この構成により、本発明に係る自動変速機の制御装置は、非伝達状態を形成する際に複数の摩擦係合要素への作動油の供給を遮断するように少なくとも複数の作動状態切替手段および供給状態切替手段のいずれか一方を切り替えるよう制御するので、複数の摩擦係合要素の作動状態を係合状態から解放状態に切り替えることができる。
 また、上記(1)に記載の自動変速機の制御装置において、(5)前記作動状態切替手段は、非通電状態で前記摩擦係合要素への前記作動油の供給を遮断する遮断状態となり、一方、通電状態で前記作動油を前記摩擦係合要素に供給する供給状態となるリニアソレノイドバルブによって構成されたことを特徴とする。
 この構成により、本発明に係る自動変速機の制御装置は、摩擦係合要素の作動状態を制御手段によって出力される電気信号に応じて切り替えることができる。また、複数の作動状態切替手段が非通電状態で摩擦係合要素への作動油の供給を遮断することができるので、制御手段が不具合によってリニアソレノイドバルブに電気信号を出力できない状態になっても、摩擦係合要素への作動油の供給を遮断することができ、非伝達状態を形成することができる。
 また、上記(1)に記載の自動変速機の制御装置において、(6)前記作動状態切替手段は、前記作動油を前記複数の摩擦係合要素に供給するための経路上において、前記供給状態切替手段よりも前記複数の摩擦係合要素側に設けられていることを特徴とする。
 この構成により、本発明に係る自動変速機の制御装置は、作動状態切替手段が、作動油を複数の摩擦係合要素に供給するための経路上において、供給状態切替手段よりも複数の摩擦係合要素側に設けられているので、作動状態切替手段を切り替えて複数の摩擦係合要素への作動油の供給を遮断する場合には、供給状態切替手段を切り替えて複数の摩擦係合要素への作動油の供給を遮断する場合よりも、複数の摩擦係合要素の作動状態を素早く解放状態にすることができる。したがって、供給状態切替手段を切り替えて複数の摩擦係合要素への作動油の供給を遮断する場合と比較して、複数の摩擦係合要素の即時の応答性を向上させることができる。
 本発明に係る自動変速機の制御装置は、上記目的達成のため、(7)駆動源からの回転動力を入力する入力軸、車輪に前記回転動力を伝達する出力軸、係合状態および解放状態のいずれか一方の作動状態に切り替えられて前記入力軸から入力された回転を変速して前記出力軸から出力する複数の摩擦係合要素、を有する変速機構と、複数の操作位置のうち任意の操作位置に操作されることによりニュートラルレンジを含む複数のシフトレンジのうち任意のシフトレンジを選択するシフトレバーと、前記シフトレバーが操作された操作位置を検出するシフトセンサと、前記複数の摩擦係合要素に供給される作動油の油圧をそれぞれ調圧することによって、前記複数の摩擦係合要素の前記作動状態を切り替える複数のリニアソレノイドバルブと、車両の車速を検出する車速センサと、前記リニアソレノイドバルブに前記作動油を供給する供給状態および前記リニアソレノイドバルブへの前記作動油の供給を遮断する遮断状態のいずれか一方の作動状態を取り得る切替バルブと、前記切替バルブの作動状態を切り替えるソレノイドバルブと、前記シフトセンサによって検出された操作位置に基づいて前記複数のシフトレンジのうち選択されたシフトレンジを設定するとともに、前記シフトレバーが前記ニュートラルレンジを設定する操作位置に操作された場合に、前記車速センサによって検出された車速に応じて、前記入力軸から前記出力軸に伝達される前記回転動力の伝達状態を非伝達状態となるよう少なくとも前記複数のリニアソレノイドバルブおよび前記ソレノイドバルブのいずれか一方を切り替えるよう制御する電子制御ユニットと、を備えたことを特徴とする。
 この構成により、本発明に係る自動変速機の制御装置は、ニュートラルレンジが設定されている場合に、車速センサによって検出された車速に応じて、電子制御ユニットが複数のリニアソレノイドバルブおよびソレノイドバルブのいずれか一方を切り替えるよう制御することによって非伝達状態を形成するので、リニアソレノイドバルブが故障によって摩擦係合要素の作動状態を切り替えることが不可能な状態となっても、例えば車両が停止しているような状態の場合には、ソレノイドバルブによってリニアソレノイドバルブへの作動油の供給を遮断することができる。この結果、電子制御ユニットによってニュートラルレンジが設定されているにもかかわらず、駆動源からの回転動力が入力軸を介して出力軸に伝達されてしまうといったことがなく、運転者によるシフトレバーの操作に反した車両の挙動を防止することができ、従来と比較してより安全性を高めることができる。
 また、上記(7)に記載の自動変速機の制御装置において、(8)前記電子制御ユニットは、前記ニュートラルレンジを設定した場合に、前記車速センサによって検出された車速が所定車速より小さいとき、前記ソレノイドバルブを切り替えるよう制御して前記非伝達状態を形成するようにし、一方、前記車速センサによって検出された車速が所定車速以上であるとき、前記複数のリニアソレノイドバルブを切り替えるよう制御して前記非伝達状態を形成するようにしたことを特徴とする。
 この構成により、本発明に係る自動変速機の制御装置は、車速センサによって検出された車速に応じて、電子制御ユニットが複数のリニアソレノイドバルブおよびソレノイドバルブのいずれか一方を切り替えるよう制御することによって非伝達状態を形成するので、リニアソレノイドバルブが故障によって摩擦係合要素の作動状態を切り替えることが不可能な状態となっても、例えば車両が停止しているような状態の場合には、ソレノイドバルブおよび切替バルブによってリニアソレノイドバルブへの作動油の供給を遮断することができる。この結果、電子制御ユニットによってニュートラルレンジが設定されているにもかかわらず、駆動源からの回転動力が入力軸を介して出力軸に伝達されてしまうといったことがなく、運転者によるシフトレバーの操作に反した車両の挙動を防止することができ、従来と比較してより安全性を高めることができる。
 一方、本発明に係る自動変速機の制御装置は、例えば車両が走行しているような状態の場合には、複数のリニアソレノイドバルブによって摩擦係合要素への作動油の供給を遮断することができる。この結果、電子制御ユニットによってニュートラルレンジが設定されている状態で、リニアソレノイドバルブが故障によって摩擦係合要素の作動状態を切り替えることが不可能な状態となっても、車両が走行中であるため、運転者によるシフトレバーの操作に反した車両の挙動とはならず、運転者に対して違和感を与えることを防止できるとともに、リニアソレノイドバルブが故障していない場合には、電子制御ユニットによってニュートラルレンジからその他のシフトレンジに設定されたときに、ソレノイドバルブおよび切替バルブによって摩擦係合要素への作動油の供給を遮断している場合と比較して、摩擦係合要素の即時の応答性を向上させることができる。
 また、上記(7)に記載の自動変速機の制御装置において、(9)前記電子制御ユニットは、前記ニュートラルレンジを設定した場合に、前記車速センサによって検出された車速が所定車速より小さいとき、前記複数のリニアソレノイドバルブおよび前記ソレノイドバルブを切り替えるよう制御して前記非伝達状態を形成するようにし、一方、前記車速センサによって検出された車速が所定車速以上であるとき、前記複数のリニアソレノイドバルブを切り替えるよう制御して前記非伝達状態を形成するようにしたことを特徴とする。
 この構成により、本発明に係る自動変速機の制御装置は、車速センサによって検出された車速が所定車速より小さいとき、電子制御ユニットが複数のリニアソレノイドバルブおよびソレノイドバルブを切り替えるよう制御することによって非伝達状態を形成するので、リニアソレノイドバルブが故障によって摩擦係合要素の作動状態を切り替えることが不可能な状態となっても、例えば車両が停止しているような状態の場合には、ソレノイドバルブおよび切替バルブによってリニアソレノイドバルブへの作動油の供給を遮断することができる。この結果、電子制御ユニットによってニュートラルレンジが設定されているにもかかわらず、駆動源からの回転動力が入力軸を介して出力軸に伝達されてしまうといったことがなく、運転者によるシフトレバーの操作に反した車両の挙動を防止することができ、従来と比較してより安全性を高めることができる。また、ソレノイドバルブの故障によってリニアソレノイドバルブへの作動油の供給を遮断することが不可能な状態となっても、複数のリニアソレノイドバルブによって摩擦係合要素の作動状態を切り替えることが可能であるので、非伝達状態を形成することができる。
 一方、本発明に係る自動変速機の制御装置は、車速センサによって検出された車速が所定車速以上であるとき、例えば車両が走行しているような状態の場合には、複数のリニアソレノイドバルブによって摩擦係合要素への作動油の供給を遮断することができる。この結果、電子制御ユニットによってニュートラルレンジが設定されている状態で、リニアソレノイドバルブが故障によって摩擦係合要素の作動状態を切り替えることが不可能な状態となっても、車両が走行中であるため、運転者によるシフトレバーの操作に反した車両の挙動とはならず、運転者に対して違和感を与えることを防止できるとともに、リニアソレノイドバルブが故障していない場合に、ソレノイドバルブおよび切替バルブによって摩擦係合要素への作動油の供給を遮断している場合と比較して、摩擦係合要素の即時の応答性を向上させることができる。
 また、上記(7)に記載の自動変速機の制御装置において、(10)前記電子制御ユニットは、前記非伝達状態を形成する際に前記複数の摩擦係合要素への前記作動油の供給を遮断するように少なくとも前記複数のリニアソレノイドバルブおよび前記ソレノイドバルブのいずれか一方を切り替えるよう制御することを特徴とする。
 この構成により、本発明に係る自動変速機の制御装置は、非伝達状態を形成する際に複数の摩擦係合要素への作動油の供給を遮断するように少なくとも複数のリニアソレノイドバルブおよびソレノイドバルブのいずれか一方を切り替えるよう制御するので、複数の摩擦係合要素の作動状態を係合状態から解放状態に切り替えることができる。
 また、上記(7)に記載の自動変速機の制御装置において、(11)前記リニアソレノイドバルブは、非通電状態で前記摩擦係合要素への前記作動油の供給を遮断する遮断状態となるとともに、通電状態で前記作動油を前記摩擦係合要素に供給する供給状態となるリニアソレノイドバルブによって構成されたことを特徴とする。
 この構成により、本発明に係る自動変速機の制御装置は、摩擦係合要素の作動状態を電子制御ユニットによって出力される電気信号に応じて切り替えることができる。また、複数のリニアソレノイドバルブが非通電状態で摩擦係合要素への作動油の供給を遮断することができるので、電子制御ユニットが不具合によってリニアソレノイドバルブに電気信号を出力できない状態になっても、摩擦係合要素への作動油の供給を遮断することができ、非伝達状態を形成することができる。
 また、上記(7)に記載の自動変速機の制御装置において、(12)前記リニアソレノイドバルブは、前記作動油を前記複数の摩擦係合要素に供給するための経路上において、前記ソレノイドバルブよりも前記複数の摩擦係合要素側に設けられていることを特徴とする。
 この構成により、本発明に係る自動変速機の制御装置は、リニアソレノイドバルブが、作動油を複数の摩擦係合要素に供給するための経路上において、ソレノイドバルブおよび切替バルブよりも複数の摩擦係合要素側に設けられているので、リニアソレノイドバルブを切り替えて複数の摩擦係合要素への作動油の供給を遮断する場合には、ソレノイドバルブを切り替えて複数の摩擦係合要素への作動油の供給を遮断する場合よりも、複数の摩擦係合要素の作動状態を素早く解放状態にすることができる。したがって、ソレノイドバルブを切り替えて複数の摩擦係合要素への作動油の供給を遮断する場合と比較して、複数の摩擦係合要素の即時の応答性を向上させることができる。
 本発明によれば、ソレノイドバルブの故障が発生している状態でニュートラルレンジが設定される位置にシフトレバーが操作された場合であっても、車両の走行状態に応じて摩擦係合要素が係合したままとなってしまうことを防止することができる自動変速機の制御装置を提供することができる。
本発明の第1の実施の形態に係る自動変速機の制御装置を搭載した車両の構成図である。 本発明の第1の実施の形態における自動変速機の構成を表す骨子図である。 本発明の第1の実施の形態における自動変速機の構成を模式的に表す斜視図である。 本発明の第1の実施の形態における摩擦係合要素の作動状態を表す作動表である。 本発明の第1の実施の形態における各遊星歯車機構おける各構成要素の回転数比を変速段毎に表す速度線図である。 本発明の第1の実施の形態における油圧制御装置の構成を表す回路図である。 本発明の第1の実施の形態におけるソレノイドバルブの作動状態を表す作動表である。 本発明の第1の実施の形態における自動変速機の制御処理を表すフローチャートである。 本発明の第2の実施の形態における自動変速機の制御処理を表すフローチャートである。
符号の説明
 3 シフトレバー(操作部材)
 10 車両
 11 エンジン
 12 自動変速機
 15 トルクコンバータ
 20 変速機構
 22 入力軸
 24 第1セット
 33 第2セット
 56 出力軸
 60 油圧制御装置
 70 エンジン回転数センサ
 71 吸入空気量センサ
 72 スロットルセンサ
 73 車速センサ(車速検出手段)
 74 ブレーキセンサ
 75 タービン回転数センサ
 76 シフトセンサ(操作位置検出手段)
 84~89 油圧センサ
 100 ECU(制御手段、電子制御ユニット)
 101 メインマイクロコンピュータ
 102 CPU
 104 EEPROM
 105 サブマイクロコンピュータ
 130 So3ソレノイドバルブ(供給状態切替手段)
 140 パーキングバルブ
 150 切替バルブ(供給状態切替手段)
 161~166 SL1~SL6リニアソレノイドバルブ(作動状態切替手段)
 以下、本発明の実施の形態について、図面を参照して説明する。
 まず、図1を参照して、本実施の形態に係る車両10の概略構成について説明する。
 図1に示すように、車両10は、駆動源としてのエンジン11と、エンジン11から出力された回転を自動的に変速する自動変速機12と、自動変速機12から出力された回転を路面に伝達する伝達機構14と、油圧によって自動変速機12を制御する油圧制御装置60と、油圧制御装置60を電気的に制御する電子制御装置を構成するECU100と、ECU100に検出した信号を出力する各種センサ70~76を備えている。
 エンジン11は、例えばガソリンエンジンやディーゼルエンジンなどの内燃機関により構成されており、シリンダによって形成される燃焼室を有している。エンジン11は、スロットルアクチュエータ5によって駆動されるスロットルバルブ6を介して燃焼室内に導入された空気とインジェクタ2から噴射された燃料との混合気を燃焼させるようになっている。この燃焼によりシリンダ内のピストンが押し下げられて、後述する出力軸としてのクランクシャフトが回転させられ、この回転が動力として自動変速機12に伝達されるようになっている。なお、駆動源として内燃機関の代わりに外燃機関を用いてもよい。またこの他に、駆動源として電動機等を用いてもよく、これを補助的に用いてもよい。
 自動変速機12は、流体式伝動装置を構成するトルクコンバータ15と、有段式の変速機を構成する変速機構20とを含んで構成されている。ここで、本実施の形態に係る変速機構20は、本発明に係る変速機構に対応するとともに、本発明に係る自動変速機の制御装置の一部を構成する。
 トルクコンバータ15は、エンジン11から動力が後述するクランクシャフトを介して入力するとともに、入力された動力をトルクを増大して後述する変速機構20に伝達するようになっている。なお、トルクコンバータ15の詳細な構成については、後で詳細に説明する。
 変速機構20は、エンジン11から入力された回転動力を伝達する遊星歯車を有する歯車変速機構や係合状態と解放状態との間で作動状態が切り替えられる後述する複数の摩擦係合要素等を含んでおり、複数の摩擦係合要素の作動状態によって歯車変速機構の動力伝達経路が切り替えられる。このように、変速機構20は、動力伝達経路が切り替えられることにより、トルクコンバータ15から入力軸22に入力される回転を所定の変速比γで減速あるいは増速して出力軸56に出力するようになっている。変速機構20の出力軸56から出力される動力は、プロペラシャフト58、ディファレンシャル機構55およびドライブシャフト57L、57Rを介して、駆動輪59L、59Rに伝達される。変速機構20の構成については、後で詳細に説明する。
 伝達機構14は、変速機構20の後述する出力軸56に連結されたプロペラシャフト58と、プロペラシャフト58から伝達された回転を分配するディファレンシャル機構55と、ディファレンシャル機構55と連結されたドライブシャフト57L、57Rと、ドライブシャフト57L、57Rから伝達された回転を路面に伝達する駆動輪59L、59Rとを備えている。ディファレンシャル機構55は、車両10がカーブ等を走行する場合に、駆動輪59Lと駆動輪59Rとの回転差を許容するようになっている。
 油圧制御装置60は、エンジン11の回転によって駆動されるオイルポンプから排出された作動油の油路を形成する油圧制御回路や、後述する摩擦係合要素の作動状態を切り替えるためのソレノイドバルブSo1~So3およびリニアソレノイドバルブSL1~SL6を含んで構成されている。油圧制御装置60は、変速機構20の変速動作および後述するパーキングロック機構を制御するようになっている。油圧制御装置60の構成については、後に詳細に説明する。
 ECU100は、主制御部を構成するメインマイクロコンピュータ101と、補助制御部を構成するサブマイクロコンピュータ105と、各種センサの電気信号を入力する入力ポート106と、メインマイクロコンピュータ101およびサブマイクロコンピュータ105によって出力された信号を油圧制御装置60やエンジン11に出力する出力ポート107と、を含んで構成され、これらは双方向性バス108を介して互いに接続されている。また、メインマイクロコンピュータ101は、CPU(Central-Processing-nit)102と、RAM(Random-Access-Memory)103と、EEPROM(Electrically-Erasable-Programmable-Read-Only-Memory)104と、を有している。
 CPU102は、RAM103の一次記憶機能を利用しつつ、予めEEPROM104に記憶されたプログラムに従って、入力ポート106から図示しないADC(Analog-Digital-Converter)を介して入力された各種検出信号の処理等を実行することにより、エンジン11の出力制御、および自動変速機12の変速制御等を実行するようになっている。出力ポート107から出力された電気信号は、図示しないADCを介してエンジン11、ソレノイドバルブSo1~So3、およびリニアソレノイドバルブSL1~SL6等の制御対象に入力されるようになっている。
 また、EEPROM104は、車速およびスロットル開度と自動変速機12の変速段とを対応させた変速線図をマップ化して記憶している。したがって、ECU100のCPU102は、後述する車速センサおよびスロットルセンサの検出信号とEEPROM104に記憶された変速線図とに基づいて自動変速機12の変速段を決定し、決定した変速段を形成するように油圧制御装置60を制御する。具体的には、ECU100のCPU102は、決定した変速段に応じた電気信号をソレノイドバルブSo1~So3、およびリニアソレノイドバルブSL1~SL6に出力するようになっており、自動変速機12の変速を実現するための制御を実行するようになっている。
 また、ECU100は、油圧制御装置60のソレノイドバルブSo1~So3およびリニアソレノイドバルブSL1~SL6に出力する電気信号により、変速機構20を構成する複数の摩擦係合要素を係合状態および解放状態のいずれか一方の作動状態に切り替えるようになっている。ここで、この複数の摩擦係合要素の作動状態は、後述するオイルポンプによって発生させられるライン圧を元圧とする油圧を用いて、切り替えられるようになっている。また、ECU100は、複数の摩擦係合要素の作動状態を切り替えるよう油圧制御装置60を制御する。これにより、自動変速機12は、エンジン11から出力された回転動力の伝達経路を切り替えて、所望の変速段を形成することが可能となっている。したがって、自動変速機12は、所定の変速比γで変速が実現できるようになっている。
 さらに、EEPROM104は、後述する摩擦係合要素の作動表(図4参照)と、ソレノイドバルブの作動表(図7参照)と、各摩擦係合要素に供給される油圧値であって各摩擦係合要素の作動状態を判定するしきい値を表す作動状態判定しきい値と、後述するNレンジ形成方法変更しきい値Vnと、を記憶している。
 サブマイクロコンピュータ105は、メインマイクロコンピュータ101と同様に、図示しないCPU、RAMおよびEEPROMを有している。また、サブマイクロコンピュータ105のEEPROMには、メインマイクロコンピュータ101による処理の異常を検出するプログラムが記憶されている。そのため、サブマイクロコンピュータ105は、メインマイクロコンピュータ101の処理の異常を検出した場合には、メインマイクロコンピュータ101の代わりに、エンジン11の出力制御や自動変速機12の変速制御等を実行するようになっている。
 車両10は、さらに、エンジン11の出力軸回転数を検出するためのエンジン回転数センサ70と、エンジン11の吸入空気量を検出するための吸入空気量センサ71と、吸入空気量を調整するスロットルバルブ6の開度を検出するためのスロットルセンサ72と、車両10の車速Vを検出するための車速センサ73と、ブレーキセンサ74と、トルクコンバータ15のタービン回転数、すなわち自動変速機の入力軸回転数を検出するためのタービン回転数センサ75と、シフトレバー3の操作位置を検出するためのシフトセンサ76と、後述する油圧センサと、を備えている。
 エンジン回転数センサ70は、後述するクランクシャフトに設けられた図示しないタイミングロータの所定の回転角ごとに、出力信号としてのパルスを発生し、検出信号としてECU100に出力するようになっている。ECU100は、この検出信号に基づいて、エンジン回転数NEを算出する。
 吸入空気量センサ71は、エンジン11への吸気流路に設けられたホットワイヤ式のエアフローメータにより構成されており、吸入空気量Qinの変化に伴う熱線の抵抗値を表す検出信号をECU100に出力するようになっている。ECU100は、この検出信号が表す抵抗値の変化に基づいて吸入空気量Qinを算出するようになっている。
 スロットルセンサ72は、スロットルバルブ6のスロットル開度θthに応じた出力電圧が得られるホール素子により構成されており、この出力電圧を表す検出信号をECU100に出力するようになっている。ECU100は、この検出信号に基づいてスロットル開度θthを算出するようになっている。
 車速センサ73は、自動変速機12の出力軸56に設けられた図示しないタイミングロータの所定の回転角ごとに、出力信号としてのパルスを発生し、検出信号としてECU100に出力するようになっている。ECU100は、この検出信号に基づいて、車速Vを算出するようになっている。したがって、本実施の形態に係る車速センサ73は、車両10の車速Vを検出するようになっているので、本発明に係る車速検出手段に対応するとともに、本発明に係る自動変速機の制御装置の一部を構成する。
 ブレーキセンサ74は、車両10に備えられた図示しないブレーキペダルの踏込量Qbkに応じた出力電圧を生成し、検出信号としてECU100に出力するようになっている。なお、ブレーキセンサ74は、図示しないブレーキペダルが運転者により所定の踏込量で踏み込まれたとき、OFF状態からON状態に切り替わる信号(踏力スイッチ信号)をECU100に出力するようにしてもよい。
 タービン回転数センサ75は、後述する変速機構20の入力軸に設けられた図示しないタイミングロータの所定の回転角ごとに、出力信号としてのパルスを発生し、検出信号としてECU100に出力するようになっている。ECU100は、この検出信号に基づいて、タービン回転数NTを算出するようになっている。
 シフトセンサ76は、複数のセンサから構成され、各センサがシフトレバー3の各操作位置に対応してシフト操作装置4にそれぞれ設けられている。シフトレバー3が運転者によって操作された際、各センサがシフトレバー3を検出し、その検出信号をECU100に出力するようになっている。したがって、本実施の形態に係るシフトセンサ76は、シフトレバー3によって操作された操作位置を検出するようになっているので、本発明に係る操作位置検出手段に対応するとともに、本発明に係る自動変速機の制御装置の一部を構成する。なお、本発明に係る操作位置検出手段は、シフトセンサ76の他にハンドル付近でシフトレンジまたは変速段の切り替えを実現するため、ハンドル付近に設置されるモーメンタリスイッチ等により構成されていてもよい。
 ここで、シフトレバー3は、運転者によって、車両10の駐車のための駐車位置(パーキングレンジ)、後進走行のための後進走行位置(リバースレンジ)、自動変速機12における動力伝達経路を解放状態とする中立位置(ニュートラルレンジ)、自動変速モードを実現するための前進走行位置(ドライブレンジ)、手動変速モードにおいてシフト操作するためのマニュアルポジションを表す手動変速位置(スポーツレンジ)、手動変速モードにおいてアップ変速を指示するためのアップ変速指示位置(+)およびダウン変速を指示するためのダウン変速指令位置(-)のシフト操作位置のうち、いずれかに切り替えられるようになっている。
 このように、シフトレバー3は、複数の操作位置のうち任意の操作位置に操作されることによりニュートラルレンジ(以下、Nレンジという)を含む複数のシフトレンジのうち任意のシフトレンジを選択するようになっている。したがって、本実施の形態に係るシフトレバー3は、本発明に係る操作部材に対応するとともに、本発明に係る自動変速機の制御装置の一部を構成する。なお、本発明に係る操作部材は、シフトレバー3の他にハンドル上でシフトレンジまたは変速段の切り替えを実現するため、ハンドル付近に設置されるパドル形状のスイッチレバーにより構成されていてもよい。
 運転者が、シフトレバー3を手動変速位置に操作したとき、手動変速モードを表す検出信号がECU100に出力される。これにより、ECU100は、運転者によるシフトレバー3の手動操作に応じて変速を行うこととなる。手動操作を行う場合、運転者が、シフトレバー3をアップ変速指示位置(+)に1回操作すると、ECU100は、油圧制御装置60を制御して変速段を変速比γの小さい高速段側に1段切り替える。また、運転者が、シフトレバー3をダウン変速指示位置(-)に1回操作すると、ECU100は、油圧制御装置60を制御して変速段を変速比γの大きい低速段側に1段切り替える。
 また、ECU100は、シフトセンサ76の検出信号に基づいて、自動変速機12の現在のシフトレンジおよび変速段を判定することができるようになっている。
 次に、図2、図3を参照して、本実施の形態に係る自動変速機12の構成について説明する。
 まず、図2に示すように、トルクコンバータ15は、クランクシャフト13と連結される入力部材としてのポンプインペラ(以下、インペラという)16と、変速機構20の入力軸22と連結される出力部材としてのタービンランナ(以下、タービンという)17と、ワンウェイクラッチによって一方向の回転が阻止されているステータ18と、を有している。なお、自動変速機12は、入力軸22に対して略対称的に構成されているので、図2では、自動変速機12の下半分の図示を省略する。
 ここで、トルクコンバータ15の内部には作動流体としてのオイルが充てんされている。インペラ16はクランクシャフト13の回転エネルギーをオイルの流れのエネルギーに変換し、タービン17がこのオイルの流れを受け止めることでオイルの流れのエネルギーを、タービン17の回転エネルギーとして取り出し、動力を伝達させている。また、タービン17を回転させたオイルは、まだ相当のエネルギーを有しており、ステータ18により整流され、再びインペラ16に導かれることによって、インペラ16の回転力を増大させる。このようにして、トルクコンバータ15におけるトルクの増大がなされている。
 また、トルクコンバータ15は、オイルを介して動力を伝達する性質上、オイルの滑りが生じるため伝達効率が低いことが知られている。そのため、トルクコンバータ15は、直結クラッチであるロックアップクラッチ19を有している。このロックアップクラッチ19は、油圧制御によって、インペラ16と一体回転する図示しないコンバータカバーに押し当てられ係合状態となると、インペラ16とタービン17とを機械的に直結するようになっている。そのため、ロックアップクラッチ19は、エンジン11から変速機構20への動力の伝達効率を向上させることができる。
 変速機構20の入力軸22は、タービン17に接続されており、インペラ16を介してクランクシャフト13の回転を入力するようになっている。したがって、入力軸22は、トルクコンバータ15を介してエンジン11から回転動力を入力するようになっている。
 図2、図3に示すように、変速機構20は、遊星歯車機構により構成される第1セット24と、遊星歯車機構により構成される第2セット33と、複数の油圧式摩擦係合要素としてのC1クラッチ44と、C2クラッチ46と、C3クラッチ48と、C4クラッチ50と、B1ブレーキ52と、B2ブレーキ54と、F1ワンウェイクラッチ53と、出力軸56とを有している。ここで、C1クラッチ44、C2クラッチ46、C3クラッチ48、C4クラッチ50、B1ブレーキ52、B2ブレーキ54は、本発明に係る複数の摩擦係合要素を構成する。
 B1ブレーキ52は、第1中間ドラム30に設けられたブレーキハブと、ブレーキハブと一定回転するよう設けられたドライブプレートと、ケース7に設けられたドリブンプレートと、を有している。そして、B1ブレーキ52は、後述する油圧アクチュエータによってドリブンプレートを締結させられると、ドライブプレートに取り付けられた摩擦材とドリブンプレートとが摩擦係合し、係合状態を形成する。
 第1セット24は、ダブルピニオン型の遊星歯車装置であり、S1サンギヤ25と、R1リングギヤ26と、複数個のインナーピニオンギヤ27と、複数個のアウターピニオンギヤ28と、CA1キャリヤ29と、を有している。
 S1サンギヤ25は、自動変速機12のケース7に回転不可能に固定されている。R1リングギヤ26は、C3クラッチ48を介して第1中間ドラム30に一体回転可能または相対回転可能に支持されるとともに、C1クラッチ44を介して後述する第2中間ドラム31に一体回転可能または相対回転可能に支持されている。
 複数個のインナーピニオンギヤ27および複数個のアウターピニオンギヤ28は、S1サンギヤ25とR1リングギヤ26とが対向することにより形成される環状空間に、それぞれ介装されている。
 各インナーピニオンギヤ27は、S1サンギヤ25と、それぞれのアウターピニオンギヤ28と、に噛合している。また、それぞれのアウターピニオンギヤ28は、それぞれのインナーピニオンギヤ27と、R1リングギヤ26と、に噛合している。また、各インナーピニオンギヤ27および各アウターピニオンギヤ28は、CA1キャリヤ29の支持軸部によって自転可能および公転可能に支持されている。これにより、各インナーピニオンギヤ27および各アウターピニオンギヤ28は、CA1キャリヤ29の支持軸を回転軸として自転することができるとともに、入力軸22を回転軸として公転することができるようになっている。
 CA1キャリヤ29は、各インナーピニオンギヤ27と、各アウターピニオンギヤ28とを、支持軸部によって自転可能および公転可能に支持するものである。また、CA1キャリヤ29は、中心軸部が入力軸22に一体的に連結され、各インナーピニオンギヤ27と、各アウターピニオンギヤ28とを支持する支持軸部がC4クラッチ50を介して第1中間ドラム30に一体回転可能または相対回転可能に支持されている。
 第1中間ドラム30は、R1リングギヤ26の外径側に回転可能に配置されており、C3クラッチ48を介してR1リングギヤ26を一体回転可能または相対回転可能に支持し、C4クラッチ50を介してCA1キャリヤ29を一体回転可能または相対回転可能に支持している。また、第1中間ドラム30は、B1ブレーキ52を介してケース7に回転不可能または相対回転可能に支持されている。
 第2中間ドラム31は、第1中間ドラム30の内周側に設けられており、C1クラッチ44を介してR1リングギヤ26を一体回転可能または相対回転可能に支持している。
 第2セット33は、ラビニヨ型の遊星歯車装置であり、S2サンギヤ34と、S2サンギヤ34よりも小径のS3サンギヤ35と、R2リングギヤ36と、複数個のロングピニオンギヤ37と、複数個のショートピニオンギヤ38と、CA2キャリヤ39と、F1ワンウェイクラッチ53と、を備えている。
 S2サンギヤ34は、第1中間ドラム30に連結され、C3クラッチ48を介してR1リングギヤ26に一体回転可能または相対回転可能に連結されるとともに、C4クラッチ50を介してCA1キャリヤ29に一体回転可能または相対回転可能に連結されている。また、S2サンギヤ34は、入力軸22を回転軸として回転可能となっている。
 S3サンギヤ35は、第2中間ドラム31に連結され、C1クラッチ44を介してR1リングギヤ26に一体回転可能または相対回転可能に連結されるとともに、入力軸22を回転軸として回転可能となっている。
 R2リングギヤ36は、出力軸56に連結されるとともに、入力軸22を回転軸として回転可能になっている。
 各ロングピニオンギヤ37は、S2サンギヤ34と、それぞれのショートピニオンギヤ38と、R2リングギヤ36と、に噛合している。また、それぞれのショートピニオンギヤ38は、S3サンギヤ35と、それぞれのロングピニオンギヤ37と、に噛合している。
 複数のロングピニオンギヤ37および複数のショートピニオンギヤ38は、S2サンギヤ34およびS3サンギヤ35がR2リングギヤ36と対向することによって形成される環状空間にそれぞれ介装されるとともに、CA2キャリヤ39によって自転可能および公転可能に支持されている。これにより、各ロングピニオンギヤ37および各ショートピニオンギヤ38は、CA2キャリヤ39の支持軸部を回転軸として自転することができるとともに、入力軸22を回転軸として公転することができるようになっている。
 CA2キャリヤ39は、各ロングピニオンギヤ37および各ショートピニオンギヤ38を自転可能および公転可能に支持するようになっている。また、CA2キャリヤ39は、中心軸部がC2クラッチ46を介して入力軸22に一体回転可能または相対回転可能に支持されるとともに、各ロングピニオンギヤ37および各ショートピニオンギヤ38を支持する支持軸部が、B2ブレーキ54を介してケース7に回転不可能または相対回転可能に支持されている。
 C1クラッチ44は、S3サンギヤ35がR1リングギヤ26に対して一体回転可能となる係合状態、および、S3サンギヤ35がR1リングギヤ26に対して相対回転可能となる解放状態のうち、いずれかの作動状態をとることができるようになっている。
 C2クラッチ46は、CA2キャリヤ39が入力軸22に対して一体回転可能となる係合状態、および、CA2キャリヤ39が入力軸22に対して相対回転可能となる解放状態のうち、いずれかの作動状態をとることができるようになっている。
 C3クラッチ48は、R1リングギヤ26が第1中間ドラム30に対して一体回転可能となる係合状態、および、R1リングギヤ26が第1中間ドラム30に対して相対回転可能となる解放状態のうち、いずれかの作動状態をとることができるようになっている。
 C4クラッチ50は、CA1キャリヤ29が第1中間ドラム30に対して一体回転可能となる係合状態、およびCA1キャリヤ29が第1中間ドラム30に対して相対回転可能となる解放状態をとることができるようになっている。
 B1ブレーキ52は、第1中間ドラム30がケース7に対して相対回転不可能となる係合状態、および、第1中間ドラム30がケース7に対して相対回転可能となる解放状態のうち、いずれかの作動状態をとることができるようになっている。
 B2ブレーキ54は、CA2キャリヤ39がケース7に対して相対回転不可能となる係合状態、および、CA2キャリヤ39がケース7に対して相対回転可能となる解放状態のうち、いずれかの作動状態をとることができるようになっている。
 F1ワンウェイクラッチ53は、CA2キャリヤ39の一方向のみの回転を許容するようになっている。
 このような構成により、自動変速機12は、シフトレンジの変更が可能となっており、さらにドライブレンジ(以下、Dレンジという)の場合には、後述するように1速(1st)から8速(8th)の変速段の変更が可能となっている。
 また、自動変速機12の変速機構20は、後述するECU100によってNレンジが設定された際、入力軸22から出力軸56に回転動力を伝達しない非伝達状態を形成することが可能となっている。
 次に、図4を参照して、本発明の実施の形態に係る摩擦係合要素の作動状態を説明する。
 図4において、「○」は係合状態を表している。「×」は解放状態を表している。「◎」はエンジンブレーキ時にのみ係合状態となることを表している。また、「△」は駆動時にのみ係合状態となることを表している。
 図5は、クラッチC1~C4、およびブレーキB1、B2、F1ワンウェイクラッチ53の作動状態に応じて成立する変速段(1st~8th、R)と、そのときの前後二つの第1セット24および第2セット33における各構成要素の回転数比との関係を示す速度線図である。
 図5において、縦軸は第1セット24および第2セット33における各構成要素の速度比を表しており、各縦軸の間隔は、各要素のギア比に応じて設定される。また、クラッチC1~C4およびブレーキB1、B2、F1ワンウェイクラッチが係合される点に、"C1"~"C4"、"B1"、"B2"、"F1"を記入している。
 また、図5に記載された"入力1"~"入力4"は、入力軸22から入力される回転動力の入力位置を示し、また、図5に記載された"出力"は、出力軸56に出力される回転動力の出力位置を示している。
 再び図4に戻り、ECU100は、摩擦係合要素の作動状態の組み合わせに応じて、油圧制御装置60(図1参照)に設けられたソレノイドバルブSo1~So3、リニアソレノイドバルブSL1~SL6および図示しないトランスミッションソレノイド等の励磁、非励磁を制御する。これにより、自動変速機12は、クラッチC1~C4およびブレーキB1、B2の作動状態が切り替えられて、複数のシフトレンジまたは変速段が選択的に形成されるようになっている。
 また、ECU100は、例えば自動変速機12の現在のシフトレンジがDレンジであると判定された場合には、自動変速モードを実現するための前進走行位置であるため、車速およびスロットル開度とEEPROM104に記憶された変速線図とに基づいて、1st(1速)から8th(8速)の変速段のいずれかが形成されるように、自動変速機12を制御するようになっている。したがって、ECU100は、車速およびスロットル開度によって定まる車両10の走行状態が、EEPROM104に記憶された変速線図における例えば3rdから4thにアップシフトすべきアップシフト線を越えた場合には、自動変速機12が4thを形成するように制御するようになっている。このとき、ECU100は、自動変速機12が4thを形成するようC1クラッチ44およびC4クラッチ50が係合状態となるように油圧制御装置60を制御する。このように、ECU100は、自動変速モードを実現するための前進走行位置の場合には、変速段に応じて図4に示すクラッチC1~C4およびブレーキB1、B2の作動状態となるように油圧制御装置60を制御するようになっている。
 また、ECU100は、Dレンジ以外のシフトレンジの場合も同様に、運転者によって選択されたシフトレンジに応じて図4に示すクラッチC1~C4およびブレーキB1、B2の作動状態となるように油圧制御装置60を制御するようになっている。
 また、ECU100は、運転者によって手動変速モードが選択されている場合には、手動変速位置(スポーツレンジ)であるため、指示変速段に応じて図4に示すクラッチC1~C4およびブレーキB1、B2の作動状態となるように油圧制御装置60を制御するようになっている。例えば、運転者によるシフトレバー3(図1参照)の操作により4thから3rdへのダウンシフトが指示されると、ECU100は、油圧制御装置60を制御して、C4クラッチ50を解放状態にするとともに、C3クラッチ48を係合状態にする掴み替えを実行するようになっている。
 次に、図6および図7を参照して、本実施の形態に係る油圧制御装置60の概略構成を説明する。なお、図7に示すソレノイドバルブの作動表において、「○」は通電状態を表し、「×」は非通電状態を表す。また、「N/C(Normally-Close)」は、非通電状態において遮断状態であることを意味する。
 図6に示すように、油圧制御装置60は、エンジン11のクランクシャフト13(図2参照)と直接的または間接的に連結されたトロコイド式のオイルポンプ61と、プロペラシャフト58(図1参照)の回転をロックするようパーキングシリンダ149にライン圧PLを供給するパーキングバルブ140と、ライン圧PLをクラッチC1~C4およびブレーキB1、B2へ供給する供給状態およびライン圧PLをクラッチC1~C4およびブレーキB1、B2へ供給するのを遮断する遮断状態のいずれか一方の状態となる切替バルブ150と、パーキングバルブ140の作動状態を切り替えるSo1ソレノイドバルブ110およびSo2ソレノイドバルブ120と、切替バルブ150の作動状態を切り替えるSo3ソレノイドバルブ130と、クラッチC1~C4およびブレーキB1、B2に供給する作動油の油圧としてのライン圧PLを調圧するSL1リニアソレノイドバルブ161からSL6リニアソレノイドバルブ166と、を備えている。
 オイルポンプ61は、クランクシャフト13の回転と連動して作動し、油圧を出力するようになっている。オイルポンプ61から出力された油圧は、図示しないレギュレータバルブ等によってライン圧PLに調圧され、調圧された作動油を複数の摩擦係合要素に供給する経路上の各ソレノイドバルブ等に入力される。
 So1ソレノイドバルブ110~So3ソレノイドバルブ130は、ECU100によって、それぞれ独立に通電状態が切り替えられることによって、開閉状態を切り替えるようになっている。
 So1ソレノイドバルブ110は、入力ポート112および出力ポート114を有している。入力ポート112はライン圧PLを入力するようになっている。また、So1ソレノイドバルブ110は、ECU100によって通電されることにより開弁し、入力ポート112から入力されたライン圧PLを出力ポート114から出力するようになっている。
 So2ソレノイドバルブ120は、入力ポート122および出力ポート124を有している。入力ポート122はライン圧PLを入力するようになっている。また、So2ソレノイドバルブ120は、ECU100によって通電されることにより開弁し、入力ポート122から入力されたライン圧PLを出力ポート124から出力するようになっている。
 パーキングバルブ140は、入力ポート141~143と、出力ポート144と、ドレンポート145と、スプール146と、スプリング147と、を有している。入力ポート141はライン圧PLを入力するようになっている。入力ポート142は、So1ソレノイドバルブ110の出力ポート114から出力されたライン圧PLを入力するようになっている。入力ポート143は、So2ソレノイドバルブ120の出力ポート124から出力されたライン圧PLを入力するようになっている。
 また、パーキングバルブ140は、オイルポンプ61によって入力ポート141に入力されたライン圧PLを、スプール146の位置に応じて出力するようになっている。
 図6におけるパーキングシリンダ149は、公知のパーキングロック機構を構成する部材である。パーキングロック機構は、出力軸56(図1参照)の近傍に設けられており、パーキングシリンダ149内の油圧が所定値より小さくなると出力軸56の回転を禁止するロック状態となり、パーキングシリンダ149内の油圧が所定値以上になると出力軸56の回転を許容するアンロック状態となる。
 ここで、図6は、パーキングバルブ140および切替バルブ150が有するスプールの位置を、右半分(下端位置)と左半分(上端位置)とに分けて図示している。
 スプール146は、So1ソレノイドバルブ110が開弁状態であってSo2ソレノイドバルブ120が閉弁状態である場合には、So1ソレノイドバルブ110の出力ポート114から入力ポート142に入力されたライン圧PLによって、スプリング147の付勢力に抗して下端位置に移動させられる。このため、入力ポート141と出力ポート144とが連通するため、パーキングバルブ140は、入力ポート141に入力されたライン圧PLを出力ポート144からパーキングシリンダ149に供給する供給状態となる。このように、パーキングシリンダ149内の油圧が増大すると、パーキングロック機構はアンロック状態となる。
 スプール146は、一旦、下端位置に移動した後は、スプール146の上端面と下端面との間に面積差があることから、So2ソレノイドバルブ120の出力ポート124からパーキングバルブ140の入力ポート143にライン圧PLが供給されない限り上端位置へ移行しないようになっている。これにより、図7に示すソレノイドバルブの作動表から明らかなように、2ndから8thの変速段においてSo1ソレノイドバルブ110を閉弁して入力ポート142への油圧の供給を停止しても、スプール146が上端位置に移行しない。そのため、パーキングバルブ140は供給状態を維持するので、パーキングロック機構のアンロック状態が維持され、ロック状態となることを回避する。
 一方、図7に示すソレノイドバルブの作動表から明らかなように、シフトレンジがパーキングレンジとなると、So2ソレノイドバルブ120が通電されるので、So2ソレノイドバルブ120が開弁状態となる。そのため、So2ソレノイドバルブ120の出力ポート124からパーキングバルブ140の入力ポート143に油圧が供給され、スプール146が上端位置に移動する。スプール146が上端位置に移動すると、入力ポート141と出力ポート144との連通が遮断されるので、パーキングバルブ140は、パーキングシリンダ149にライン圧PLを供給しない遮断状態となる。パーキングバルブ140が遮断状態となると、出力ポート144とドレンポート145とが連通するため、パーキングシリンダ149内の油圧がドレンポート145を介して解放される。
 これにより、パーキングシリンダ149内の作動油がドレンポート145から排出されることとなり、パーキングロック機構はロック状態となる。
 また、So3ソレノイドバルブ130は、入力ポート132および出力ポート134を有している。入力ポート132はライン圧PLを入力するようになっている。また、So3ソレノイドバルブ130は、ECU100によって通電され通電状態となることにより開弁し、入力ポート132から入力されたライン圧PLを出力ポート134から出力するようになっている。
 切替バルブ150は、入力ポート151、152と、出力ポート153と、ドレンポート154、155と、スプール156と、スプリング157と、を有している。また、切替バルブ150は、入力ポート151に入力されたライン圧PLを、スプール156の位置に応じて出力ポート153から各リニアソレノイドバルブ161~166に出力するようになっている。
 ここで、So3ソレノイドバルブ130が閉弁状態である場合には、入力ポート152にライン圧PLが入力されないので、スプール156は、スプリング157の付勢力によって上端位置に保持される。スプール156が上端位置に保持されている場合には、入力ポート151と出力ポート153とが連通するため、切替バルブ150は、入力ポート151に入力されたライン圧PLを、出力ポート153からSL1リニアソレノイドバルブ161~SL6リニアソレノイドバルブ166に出力する供給状態となる。
 一方、So3ソレノイドバルブ130が開弁状態である場合には、スプール156は、入力ポート152に入力されたライン圧PLによって、スプリング157の付勢力に抗して下端位置に移動させられる。スプール156が下端位置に保持されると、入力ポート151と出力ポート153との連通が遮断されるため、切替バルブ150は、出力ポート153からのライン圧PLの出力を行わない遮断状態となる。
 このように、切替バルブ150は、各リニアソレノイドバルブ161~166に作動油を供給する供給状態および各リニアソレノイドバルブ161~166への作動油の供給を遮断する遮断状態のいずれか一方の作動状態を取り得るようになっており、切替バルブ150の作動状態はSo3ソレノイドバルブ130によって切り替えられるようになっている。したがって、So3ソレノイドバルブ130によって切替バルブ150の作動状態が供給状態から遮断状態に切り替えられることにより、各リニアソレノイドバルブ161~166に作動油が供給されなくなるので、クラッチC1~C4およびブレーキB1、B2が解放状態となり、変速機構20において非伝達状態が形成される。
 このため、So3ソレノイドバルブ130および切替バルブ150は、各リニアソレノイドバルブ161~166に作動油を供給する供給状態および各リニアソレノイドバルブ161~166への作動油の供給を遮断する遮断状態のいずれか一方に切り替えるようになっている。したがって、本実施の形態に係るSo3ソレノイドバルブ130および切替バルブ150は、本発明に係る供給状態切替手段に対応するとともに、本発明に係る自動変速機の制御装置の一部を構成する。なお、So3ソレノイドバルブ130および切替バルブ150は、一つのソレノイドバルブで構成されていてもよい。
 各リニアソレノイドバルブ161~166は、C1クラッチ44、C2クラッチ46、C3クラッチ48、C4クラッチ50、B1ブレーキ52、B2ブレーキ54にそれぞれ対応するよう配設されている。また、各リニアソレノイドバルブ161~166は、それぞれ、入力ポート171~176と、出力ポート181~186と、ドレンポート191~196と、を有している。
 各リニアソレノイドバルブ161~166は、ECU100によって、それぞれ独立に通電状態が制御されることにより、その開閉状態を連続的に変化するようになっている。これにより、各リニアソレノイドバルブ161~166は、入力ポート171~176から入力されたライン圧PLをECU100からの電流値に応じて調圧して、出力ポート181~186からそれぞれ出力するようになっている。
 したがって、各リニアソレノイドバルブ161~166は、クラッチC1~C4およびブレーキB1、B2に供給されるライン圧PLをそれぞれ調圧することによって、クラッチC1~C4およびブレーキB1、B2の作動状態を切り替えるようになっている。
 さらに、各リニアソレノイドバルブ161~166は、非通電状態でクラッチC1~C4およびブレーキB1、B2への作動油の供給を遮断する遮断状態となり、一方、通電状態で作動油をクラッチC1~C4およびブレーキB1、B2に供給する供給状態となるよう構成されている。このように、本実施の形態に係る各リニアソレノイドバルブ161~166は、本発明に係る作動状態切替手段に対応するとともに、本発明に係る自動変速機の制御装置の一部を構成する。
 なお、各リニアソレノイドバルブ161~166は、ソレノイドバルブで構成されていてもよい。この場合、ソレノイドバルブで構成するか否かは、自動変速機12および油圧制御装置60の構成に応じて適宜選択される。
 また、各リニアソレノイドバルブ161~166は、ライン圧PLをクラッチC1~C4およびブレーキB1、B2に供給するための経路上において、So3ソレノイドバルブ130および切替バルブ150よりもクラッチC1~C4およびブレーキB1、B2側に設けられている。
 また、油圧制御装置60は、C1アクチュエータ201と、C2アクチュエータ202と、C3アクチュエータ203と、C4アクチュエータ204と、B1アクチュエータ205と、B2アクチュエータ206と、を有し、それぞれ油圧アクチュエータ(油圧シリンダ)によって構成されている。各アクチュエータ201~206は、それぞれ作動油の油圧によって作動し、油圧に応じてクラッチC1~C4およびブレーキB1、B2を係合状態および解放状態の間で作動状態を切り替えるようになっている。
 具体的には、クラッチC1~C4およびブレーキB1、B2を係合状態にする場合には、各リニアソレノイドバルブ161~166は、入力ポート171~176と出力ポート181~186とをそれぞれ連通させるとともに、出力ポート181~186とドレンポート191~196とのそれぞれの連通を遮断する供給状態となる。各アクチュエータ201~206は、各リニアソレノイドバルブ161~166からそれぞれ供給された油圧PC1、PC2、PC3、PC4、PB1およびPB2によって油圧シリンダの容積を増大させる。これにより、各アクチュエータ201~206は、クラッチC1~C4およびブレーキB1、B2を係合状態にする。
 一方、クラッチC1~C4およびブレーキB1、B2を解放状態にする場合には、各リニアソレノイドバルブ161~166は、ECU100に制御されることにより、入力ポート171~176と出力ポート181~186とのそれぞれの連通を遮断するとともに、出力ポート181~186とドレンポート191~196とをそれぞれ連通させる遮断状態となる。各リニアソレノイドバルブ161~166は遮断状態となると、各アクチュエータ201~206の油圧シリンダ内の作動油を、ドレンポート191~196から排出する。そのため、各アクチュエータ201~206のシリンダの容積が減少する。これにより、各アクチュエータ201~206は、クラッチC1~C4およびブレーキB1、B2を解放状態にする。
 なお、各リニアソレノイドバルブ161~166は、ECU100にソレノイド電流を制御されることにより、供給状態および遮断状態の間で連続的に開閉状態を変化させ、各アクチュエータ201~206に供給する油圧をそれぞれ調圧するようになっている。
 さらに、油圧制御装置60には、油圧センサ84~89が設けられている。油圧センサ84~89は、油圧PC1~PB2をそれぞれ検出し、油圧PC1~PB2を表す検出信号をそれぞれECU100に出力するようになっている。ECU100は、この検出信号に基づいて、油圧PC1~PB2を取得するようになっている。また、ECU100は、EEPROM104に記憶された図示しない作動状態判定しきい値を参照することにより、油圧PC1~PB2に基づいて、クラッチC1~C4およびブレーキB1、B2の各作動状態を判定することができるようになっている。そのため、ECU100は、EEPROM104にマップ化して記憶された摩擦係合要素の作動表(図4参照)を参照することにより、クラッチC1~C4およびブレーキB1、B2の各作動状態に基づいて、シフトレンジおよび変速段を判定することもできるようになっている。
 ECU100は、ソレノイドバルブの作動表(図7参照)に基づいて、So1ソレノイドバルブ110~So3ソレノイドバルブ130、および各リニアソレノイドバルブ161~166の開閉状態をソレノイド電流によって独立に制御することにより、クラッチC1~C4およびブレーキB1、B2の各作動状態を切り替え、自動変速機12に所望のシフトレンジまたは変速段を形成させるようになっている。
 このように、本実施の形態に係る車両10は、ECU100が上述したソレノイドバルブ等の励磁、非励磁を制御することにより電気的に変速制御を行う、SBW(Shift-By-Wire)方式を採用している。特に、本実施の形態に係る車両10は、油圧制御装置60に従来のマニュアルバルブを備えていない方式を採用している。
 次に、本実施の形態に係る自動変速機の制御装置を構成するECU100の機能について説明する。
 ECU100は、シフトセンサ76によって検出された操作位置に基づいて複数のシフトレンジのうち選択されたシフトレンジを設定するとともに、設定したシフトレンジに応じてクラッチC1~C4およびブレーキB1、B2のうち予め定められた摩擦係合要素を制御する電気信号を出力するようになっている。
 また、ECU100は、Dレンジにおいて、車速センサ73によって検出された車速Vと、スロットルセンサ72によって検出されたスロットル開度Qthとに基づいて、EEPROM104にマップ化して記憶された図示しない変速線図を参照することにより、1st~8thのうちいずれかの変速段を設定するようになっている。さらに、ECU100は、スポーツレンジにおいて、シフトレバー3がアップ変速指示位置(+)に1回操作されたことをシフトセンサ76が検出する度に、変速段を変速比γが小さい高速段側に1段ずつシフトさせて設定する。また、ECU100は、スポーツレンジにおいて、シフトレバー3がダウン変速指示位置(-)に1回操作される度に、変速段を変速比γが大きい低速段側に1段ずつシフトさせて設定する。
 そして、ECU100は、このようにして設定したシフトレンジまたは変速段に対応する摩擦係合要素を、EEPROM104にマップ化して記憶された摩擦係合要素の作動表(図4参照)を参照して選択する。さらに、ECU100は、ソレノイドバルブの作動表(図7参照)を参照して、選択したシフトレンジまたは変速段を形成するよう、So1ソレノイドバルブ110~So3ソレノイドバルブ130、および各リニアソレノイドバルブ161~166に電気信号を出力するようになっている。したがって、本実施の形態に係るECU100は、本発明に係る制御手段および電子制御ユニットに対応するとともに、本発明に係る自動変速機の制御装置の一部を構成する。
 ここで、ECU100は、Nレンジを設定する操作位置にシフトレバー3が操作された場合に、Nレンジを形成するため、各リニアソレノイドバルブ161~166を制御することによって変速機構20の入力軸22から出力軸56に伝達される回転動力の伝達状態を非伝達状態とするようになっている。
 具体的には、ECU100は、Nレンジを設定する操作位置にシフトレバー3が操作された場合に、各リニアソレノイドバルブ161~166の入力ポート171~176と、出力ポート181~186とのそれぞれの連通を遮断するとともに、出力ポート181~186と、ドレンポート191~196とをそれぞれ連通させる。これにより、ECU100は、各アクチュエータ201~206のシリンダ内の油圧を、ドレンポート191~196から解放して、クラッチC1~C4およびブレーキB1、B2を解放状態にすることにより、変速機構20の入力軸22から出力軸56に伝達される回転動力の伝達状態を非伝達状態とするようになっている。
 また、ECU100は、Nレンジを設定する操作位置にシフトレバー3が操作された場合に、車速センサ73によって検出された車速Vに応じて、少なくとも各リニアソレノイドバルブ161~166と、So3ソレノイドバルブ130および切替バルブ150と、のうちのいずれか一方を切り替えるよう制御することによって非伝達状態を形成する。
 具体的には、ECU100は、Nレンジを設定する操作位置にシフトレバー3が操作された場合に、車速センサ73によって検出された車速VがNレンジ形成方法変更しきい値Vnより小さいとき、So3ソレノイドバルブ130および切替バルブ150を切り替えるよう制御して非伝達状態を形成するようにし、一方、車速センサ73によって検出された車速VがNレンジ形成方法変更しきい値Vn以上であるとき、各リニアソレノイドバルブ161~166を切り替えるよう制御して非伝達状態を形成する。
 なお、Nレンジ形成方法変更しきい値Vnは、運転者によるシフトレバー3の操作によってシフトレンジがDレンジからNレンジに切り替えられたにもかかわらず、各リニアソレノイドバルブ161~166の不具合等によりDレンジが保持された場合であっても、車両10の挙動が運転者に違和感を覚えさせない程度の車速に設定され、予め実験的に定められた値である。
 さらに、ECU100は、非伝達状態を形成する際にクラッチC1~C4およびブレーキB1、B2への作動油の供給を遮断するように少なくとも各リニアソレノイドバルブ161~166と、So3ソレノイドバルブ130および切替バルブ150と、のうちいずれか一方を切り替えるよう制御する。
 次に、動作について説明する。
 図8を参照して、本発明の第1の実施の形態に係る自動変速機の制御処理を説明する。
 図8に示す処理は、RAM103を作業領域として、CPU102によって実行される自動変速機の制御処理に係るプログラムの実行内容を表す。また、この自動変速機の制御処理は、CPU102によって、予め定められた時間間隔で実行されるようになっている。
 図8に示すように、まず、CPU102は、シフトレンジがNレンジに切り替えられたか否かを判定する(ステップS11)。具体的には、CPU102は、シフトセンサ76の検出信号に基づいて、シフトレンジがDレンジからNレンジに切り替えられたか否かを判定する。
 なお、本実施の形態における自動変速機の制御処理においては、DレンジにおいてC1クラッチ44のみが係合状態となり、1stの変速段が形成された状態で車両10が走行しているものとして説明する。
 CPU102は、シフトレンジがNレンジに切り替えられていないと判定した場合には(ステップS11でNO)、本処理を終了する。一方、CPU102は、シフトレンジがNレンジに切り替えられたと判定した場合には(ステップS11でYES)、車速センサ73の検出信号に基づいて、車速Vが、EEPROM104に記憶されたNレンジ形成方法変更しきい値Vnより小さいか否かを判定する(ステップS13)。
 CPU102は、車速VがNレンジ形成方法変更しきい値Vnより小さいと判定した場合には(ステップS13でYES)、So3ソレノイドバルブ130(図6参照)を通電状態にする(ステップS15)。
 このように、So3ソレノイドバルブ130を通電状態にすることにより、So3ソレノイドバルブ130の出力ポート134から切替バルブ150の入力ポート152にライン圧PLが供給されるので、スプール156が下端位置に移動する。これにより、切替バルブ150は遮断状態となる。切替バルブ150は遮断状態となると、SL1リニアソレノイドバルブ161へのライン圧PLの供給が遮断されるとともに、C1アクチュエータ201のシリンダ内の油圧が、切替バルブ150のドレンポート154から解放される。したがって、C1クラッチ44が解放状態となるので、非伝達状態が形成される。
 一方、CPU102は、車速VがNレンジ形成方法変更しきい値Vn以上であると判定した場合には(ステップS13でNO)、SL1リニアソレノイドバルブ161を非通電状態にする(ステップS17)。
 このように、SL1リニアソレノイドバルブ161を非通電状態にすると、SL1リニアソレノイドバルブ161は遮断状態となる。SL1リニアソレノイドバルブ161が遮断状態となると、入力ポート171と出力ポート181との連通が遮断されるとともに、出力ポート181とドレンポート191とが連通する。これにより、C1アクチュエータ201のシリンダ内の油圧は、出力ポート181を介してドレンポート191から解放される。そのため、C1クラッチ44が解放状態となるので、非伝達状態が形成される。
 なお、上述した第1の実施の形態においては、Dレンジにおいて1stの変速段が形成された状態から、シフトレンジをNレンジに切り替えた場合について説明したが、これに限られず、Dレンジやスポーツレンジにおいて他の変速段が形成された状態からNレンジに切り替えた場合、またはリバースレンジからNレンジに切り替えた場合についても、本発明を適用することができる。
 この場合には、CPU102は、図8のステップS17において、切替前のシフトレンジおよび変速段を形成するために作動させるソレノイドバルブを非通電状態にする。例えば、切替前の変速段が6thである場合には、ステップS17において、SL2リニアソレノイドバルブ162およびSL4リニアソレノイドバルブ164を非通電状態にする。
 以上のように、本実施の形態に係る自動変速機の制御装置は、Nレンジが設定されている場合に、車速センサ73によって検出された車速Vに応じて、ECU100が各リニアソレノイドバルブ161~166と、So3ソレノイドバルブ130および切替バルブ150と、のうちいずれか一方を切り替えるよう制御することによって非伝達状態を形成するので、各リニアソレノイドバルブ161~166が故障によってクラッチC1~C4およびブレーキB1、B2の作動状態を切り替えることが不可能な状態となっても、例えば車両10が停止しているような状態の場合には、So3ソレノイドバルブ130および切替バルブ150によって各リニアソレノイドバルブ161~166へのライン圧の供給を遮断することができる。この結果、ECU100によってNレンジが設定されているにもかかわらず、エンジン11からの回転動力が入力軸22を介して出力軸56に伝達されてしまうといったことがなく、運転者によるシフトレバー3の操作に反した車両10の挙動を防止することができ、従来と比較してより安全性を高めることができる。
 また、本実施の形態に係る自動変速機の制御装置は、車速センサ73によって検出された車速Vに応じて、ECU100が各リニアソレノイドバルブ161~166と、So3ソレノイドバルブ130および切替バルブ150と、のうちいずれか一方を切り替えるよう制御することによって非伝達状態を形成するので、各リニアソレノイドバルブ161~166が故障によってクラッチC1~C4およびブレーキB1、B2の作動状態を切り替えることが不可能な状態となっても、例えば車両10が停止しているような状態の場合には、So3ソレノイドバルブ130および切替バルブ150によって各リニアソレノイドバルブ161~166への作動油の供給を遮断することができる。この結果、ECU100によってNレンジが設定されているにもかかわらず、エンジン11からの回転動力が入力軸22を介して出力軸56に伝達されてしまうといったことがなく、運転者によるシフトレバー3の操作に反した車両10の挙動を防止することができ、従来と比較してより安全性を高めることができる。
 一方、例えば車両10が走行しているような状態の場合には、各リニアソレノイドバルブ161~166によってクラッチC1~C4およびブレーキB1、B2への作動油の供給を遮断することができる。この結果、ECU100によってNレンジが設定されている状態で、各リニアソレノイドバルブ161~166が故障によってクラッチC1~C4およびブレーキB1、B2の作動状態を切り替えることが不可能な状態となっても、車両10が走行中であるため、運転者によるシフトレバー3の操作に反した車両10の挙動とはならず、運転者に対して違和感を与えることを防止できるとともに、各リニアソレノイドバルブ161~166が故障していない場合には、ECU100によってNレンジからその他のシフトレンジに設定されたときに、So3ソレノイドバルブ130および切替バルブ150によってクラッチC1~C4およびブレーキB1、B2への作動油の供給を遮断している場合と比較して、クラッチC1~C4およびブレーキB1、B2の即時の応答性を向上させることができる。
 また、本実施の形態に係る自動変速機の制御装置は、非伝達状態を形成する際にクラッチC1~C4およびブレーキB1、B2への作動油の供給を遮断するように少なくとも各リニアソレノイドバルブ161~166と、So3ソレノイドバルブ130および切替バルブ150と、のうちいずれか一方を切り替えるよう制御するので、クラッチC1~C4およびブレーキB1、B2の作動状態を係合状態から解放状態に切り替えることができる。
 また、本実施の形態に係る自動変速機の制御装置は、クラッチC1~C4およびブレーキB1、B2の作動状態をECU100によって出力される電気信号に応じて切り替えることができる。また、各リニアソレノイドバルブ161~166が非通電状態でクラッチC1~C4およびブレーキB1、B2への作動油の供給を遮断することができるので、ECU100が不具合によって各リニアソレノイドバルブ161~166に電気信号を出力できない状態になっても、クラッチC1~C4およびブレーキB1、B2への作動油の供給を遮断することができ、非伝達状態を形成することができる。
 また、本実施の形態に係る自動変速機の制御装置は、各リニアソレノイドバルブ161~166が、作動油をクラッチC1~C4およびブレーキB1、B2に供給するための経路上において、So3ソレノイドバルブ130および切替バルブ150よりもクラッチC1~C4およびブレーキB1、B2側に設けられているので、各リニアソレノイドバルブ161~166を切り替えてクラッチC1~C4およびブレーキB1、B2への作動油の供給を遮断する場合には、So3ソレノイドバルブ130および切替バルブ150を切り替えてクラッチC1~C4およびブレーキB1、B2への作動油の供給を遮断する場合よりも、クラッチC1~C4およびブレーキB1、B2の作動状態を素早く解放状態にすることができる。したがって、So3ソレノイドバルブ130および切替バルブ150を切り替えてクラッチC1~C4およびブレーキB1、B2に供給される作動油を遮断する場合と比較して、クラッチC1~C4およびブレーキB1、B2の即時の応答性を向上させることができる。
 以上のように説明した第1の実施の形態に係る自動変速機の制御装置は、車速Vに応じてSo3ソレノイドバルブ130とSL1リニアソレノイドバルブ161とのうちいずれか一方を切り替え非伝達状態を形成したが、以下に説明する第2の実施の形態に係る自動変速機の制御装置のように、車速VがNレンジ形成方法変更しきい値Vnより小さい場合にはSo3ソレノイドバルブ130およびSL1リニアソレノイドバルブ161によって非伝達状態を形成するようにしてもよい。
 (第2の実施の形態)
 以下、本発明の第2の実施の形態について、図面を参照して説明する。ここで、第2の実施の形態に係る車両は、第1の実施の形態に係る車両10と、ECUの機能とその処理のみが異なるので、その他の同一の構成については省略して説明する。なお、第1の実施の形態に係る車両10と同一の構成要素については、図1から図7に示した第1の実施の形態に係る車両10と同一の符号を用いて説明する。
 ECU100によってNレンジが設定される操作位置にシフトレバー3が操作された場合に、車速センサ73によって検出された車速VがNレンジ形成方法変更しきい値Vnより小さいとき、ECU100は、各リニアソレノイドバルブ161~166と、So3ソレノイドバルブ130および切替バルブ150と、を切り替えるよう制御して非伝達状態を形成するようにし、一方、車速センサ73によって検出された車速VがNレンジ形成方法変更しきい値Vn以上であるとき、ECU100は、各リニアソレノイドバルブ161~166を切り替えるよう制御して非伝達状態を形成する。
 次に、本実施の形態に係る動作について説明する。
 図9を参照して、本発明の第2の実施の形態に係る自動変速機の制御処理について説明する。
 図9に示すように、まず、CPU102は、シフトレンジがNレンジに切り替えられたか否かを判定する(ステップS21)。
 CPU102は、シフトレンジがNレンジに切り替えられていないと判定した場合には(ステップS21でNO)、本処理を終了する。一方、CPU102は、シフトレンジがNレンジに切り替えられたと判定した場合には(ステップS21でYES)、車速センサ73の検出信号に基づいて、車速Vが、EEPROM104に記憶されたNレンジ形成方法変更しきい値Vnより小さいか否かを判定する(ステップS23)。
 CPU102は、車速VがNレンジ形成方法変更しきい値Vnより小さいと判定した場合には(ステップS23でYES)、So3ソレノイドバルブ130(図6参照)を通電状態にする(ステップS25)。
 CPU102は、So3ソレノイドバルブ130を通電状態にした後(ステップS25)、SL1リニアソレノイドバルブ161を非通電状態にし(ステップS27)、本処理を終了する。
 一方、CPU102は、車速VがNレンジ形成方法変更しきい値Vn以上であると判定した場合には(ステップS23でNO)、SL1リニアソレノイドバルブ161を非通電状態にする(ステップS29)。
 以上のように、本実施の形態に係る自動変速機の制御装置は、車速センサ73によって検出された車速VがNレンジ形成方法しきい値Vnより小さいとき、ECU100が各リニアソレノイドバルブ161~166と、So3ソレノイドバルブ130および切替バルブ150と、を切り替えるよう制御することによって非伝達状態を形成するので、各リニアソレノイドバルブ161~166が故障によってクラッチC1~C4およびブレーキB1、B2の作動状態を切り替えることが不可能な状態となっても、例えば車両10が停止しているような状態の場合には、So3ソレノイドバルブ130および切替バルブ150によって各リニアソレノイドバルブ161~166への作動油の供給を遮断することができる。この結果、ECU100によってNレンジが設定されているにもかかわらず、エンジン11からの回転動力が入力軸22を介して出力軸56に伝達されてしまうといったことがなく、運転者によるシフトレバー3の操作に反した車両10の挙動を防止することができ、従来と比較してより安全性を高めることができる。また、So3ソレノイドバルブ130および切替バルブ150が故障によって各リニアソレノイドバルブ161~166への作動油の供給の遮断状態を切り替えることが不可能な状態となっても、各リニアソレノイドバルブ161~166によってクラッチC1~C4およびブレーキB1、B2の作動状態を切り替えることが可能であるので、非伝達状態を形成することができる。
 一方、車速センサ73によって検出された車速VがNレンジ形成方法変更しきい値Vn以上であるとき、例えば車両10が走行しているような状態の場合には、各リニアソレノイドバルブ161~166によってクラッチC1~C4およびブレーキB1、B2への作動油の供給を遮断することができる。この結果、ECU100によってNレンジが設定されている状態で、各リニアソレノイドバルブ161~166が故障によってクラッチC1~C4およびブレーキB1、B2の作動状態を切り替えることが不可能な状態となっても、車両10が走行中であるため、運転者によるシフトレバー3の操作に反した車両10の挙動とはならず、運転者に対して違和感を与えることを防止できるとともに、各リニアソレノイドバルブ161~166が故障していない場合に、So3ソレノイドバルブ130および切替バルブ150によってクラッチC1~C4およびブレーキB1、B2への作動油の供給を遮断している場合と比較して、クラッチC1~C4およびブレーキB1、B2の即時の応答性を向上させることができる。
 なお、上述した本発明の各実施の形態においては、So3ソレノイドバルブ130および切替バルブ150から構成される供給状態切替手段を1つ設けた構成として説明したが、これに限らず、供給状態切替手段を2つ以上設けた構成としてもよい。例えば、各リニアソレノイドバルブ161~166に対応して6つ設けた構成としてもよい。この場合、供給状態切替手段の個数は、自動変速機12および油圧制御装置60の構成に応じて適宜選択される。
 また、上述した本発明の各実施の形態においては、So1ソレノイドバルブ110~So3ソレノイドバルブ130、および各リニアソレノイドバルブ161~166の構成をN/Cとして説明したが、これに限らず、非通電状態において供給状態となるN/O(Normally-Open)としてもよく、または、N/CおよびN/Oを組み合わせてもよい。
 また、上述した本発明の各実施の形態においては、1つのECUを有するものとして説明したが、これに限らず、複数のECUによって構成されるものであってもよい。例えば、エンジン11の出力制御を実行するE-ECU、自動変速機12の変速制御を実行するT-ECU等の複数のECUによって、本実施の形態のECU100が構成されるものであってもよい。この場合、各ECUは、必要な情報を相互に入出力する。
 また、上述した本発明の各実施の形態においては、複数の摩擦係合要素の作動状態を切り替えて変速を実現する変速機構に本発明に係る自動変速機の制御装置を適用して説明したが、これに限定されない。本発明に係る自動変速機の制御装置は、例えば、ケース内に回転可能に支持された第1の軸および第2の軸と、第1の軸に設けられたプライマリプーリと、第2の軸に設けられたセカンダリプーリと、プライマリプーリとセカンダリプーリとの間に巻き掛けられたベルトと、第1の軸および第2の軸の回転方向を切り換える前後進切換機構とを、備えるベルト式無段変速機に適用することもできる。この場合、電子制御ユニットが、複数のソレノイドバルブやリニアソレノイドバルブを制御して、第1の軸および第2の軸の回転方向を切り換える前後進切換機構を構成する摩擦係合要素としてのクラッチやブレーキの作動状態を切り替える。
 以上に説明したように、本発明に係る自動変速機の制御装置は、ソレノイドバルブの故障が発生している状態でニュートラルレンジが設定される位置にシフトレバーが操作された場合であっても、車両の走行状態に応じて摩擦係合要素が係合したままとなってしまうことを防止することができ、車両に搭載される自動変速機の制御装置に有用である。
 

Claims (12)

  1.  駆動源からの回転動力を入力する入力軸、車輪に前記回転動力を伝達する出力軸、係合状態および解放状態のいずれか一方の作動状態に切り替えられて前記入力軸から入力された回転を変速して前記出力軸から出力する複数の摩擦係合要素、を有する変速機構と、
     複数の操作位置のうち任意の操作位置に操作されることによりニュートラルレンジを含む複数のシフトレンジのうち任意のシフトレンジを選択する操作部材と、
     前記操作部材が操作された操作位置を検出する操作位置検出手段と、
     前記複数の摩擦係合要素に供給される作動油の油圧をそれぞれ調圧することによって、前記複数の摩擦係合要素の前記作動状態を切り替える複数の作動状態切替手段と、
     車両の車速を検出する車速検出手段と、
     前記作動状態切替手段に前記作動油を供給する供給状態および前記作動状態切替手段への前記作動油の供給を遮断する遮断状態のいずれか一方に切り替える供給状態切替手段と、
     前記操作位置検出手段によって検出された操作位置に基づいて前記複数のシフトレンジのうち選択されたシフトレンジを設定するとともに、前記操作部材が前記ニュートラルレンジを設定する操作位置に操作された場合に、前記車速検出手段によって検出された車速に応じて、前記入力軸から前記出力軸に伝達される前記回転動力の伝達状態を非伝達状態となるよう少なくとも前記複数の作動状態切替手段および前記供給状態切替手段のいずれか一方を切り替えるよう制御する制御手段と、を備えたことを特徴とする自動変速機の制御装置。
  2.  前記制御手段は、前記ニュートラルレンジを設定した場合に、前記車速検出手段によって検出された車速が所定車速より小さいとき、前記供給状態切替手段を切り替えるよう制御して前記非伝達状態を形成するようにし、一方、前記車速検出手段によって検出された車速が所定車速以上であるとき、前記複数の作動状態切替手段を切り替えるよう制御して前記非伝達状態を形成するようにしたことを特徴とする請求項1に記載の自動変速機の制御装置。
  3.  前記制御手段は、前記ニュートラルレンジを設定した場合に、前記車速検出手段によって検出された車速が所定車速より小さいとき、前記複数の作動状態切替手段および前記供給状態切替手段を切り替えるよう制御して前記非伝達状態を形成するようにし、一方、前記車速検出手段によって検出された車速が所定車速以上であるとき、前記複数の作動状態切替手段を切り替えるよう制御して前記非伝達状態を形成するようにしたことを特徴とする請求項1に記載の自動変速機の制御装置。
  4.  前記制御手段は、前記非伝達状態を形成する際に前記複数の摩擦係合要素への前記作動油の供給を遮断するように少なくとも前記複数の作動状態切替手段および前記供給状態切替手段のいずれか一方を切り替えるよう制御することを特徴とする請求項1に記載の自動変速機の制御装置。
  5.  前記作動状態切替手段は、非通電状態で前記摩擦係合要素への前記作動油の供給を遮断する遮断状態となり、一方、通電状態で前記作動油を前記摩擦係合要素に供給する供給状態となるリニアソレノイドバルブによって構成されたことを特徴とする請求項1に記載の自動変速機の制御装置。
  6.  前記作動状態切替手段は、前記作動油を前記複数の摩擦係合要素に供給するための経路上において、前記供給状態切替手段よりも前記複数の摩擦係合要素側に設けられていることを特徴とする請求項1に記載の自動変速機の制御装置。
  7.  駆動源からの回転動力を入力する入力軸、車輪に前記回転動力を伝達する出力軸、係合状態および解放状態のいずれか一方の作動状態に切り替えられて前記入力軸から入力された回転を変速して前記出力軸から出力する複数の摩擦係合要素、を有する変速機構と、
     複数の操作位置のうち任意の操作位置に操作されることによりニュートラルレンジを含む複数のシフトレンジのうち任意のシフトレンジを選択するシフトレバーと、
     前記シフトレバーが操作された操作位置を検出するシフトセンサと、
     前記複数の摩擦係合要素に供給される作動油の油圧をそれぞれ調圧することによって、前記複数の摩擦係合要素の前記作動状態を切り替える複数のリニアソレノイドバルブと、
     車両の車速を検出する車速センサと、
     前記リニアソレノイドバルブに前記作動油を供給する供給状態および前記リニアソレノイドバルブへの前記作動油の供給を遮断する遮断状態のいずれか一方の作動状態を取り得る切替バルブと、
     前記切替バルブの作動状態を切り替えるソレノイドバルブと、
     前記シフトセンサによって検出された操作位置に基づいて前記複数のシフトレンジのうち選択されたシフトレンジを設定するとともに、前記シフトレバーが前記ニュートラルレンジを設定する操作位置に操作された場合に、前記車速センサによって検出された車速に応じて、前記入力軸から前記出力軸に伝達される前記回転動力の伝達状態を非伝達状態となるよう少なくとも前記複数のリニアソレノイドバルブおよび前記ソレノイドバルブのいずれか一方を切り替えるよう制御する電子制御ユニットと、を備えたことを特徴とする自動変速機の制御装置。
  8.  前記電子制御ユニットは、前記ニュートラルレンジを設定した場合に、前記車速センサによって検出された車速が所定車速より小さいとき、前記ソレノイドバルブを切り替えるよう制御して前記非伝達状態を形成するようにし、一方、前記車速センサによって検出された車速が所定車速以上であるとき、前記複数のリニアソレノイドバルブを切り替えるよう制御して前記非伝達状態を形成するようにしたことを特徴とする請求項7に記載の自動変速機の制御装置。
  9.  前記電子制御ユニットは、前記ニュートラルレンジを設定した場合に、前記車速センサによって検出された車速が所定車速より小さいとき、前記複数のリニアソレノイドバルブおよび前記ソレノイドバルブを切り替えるよう制御して前記非伝達状態を形成するようにし、一方、前記車速センサによって検出された車速が所定車速以上であるとき、前記複数のリニアソレノイドバルブを切り替えるよう制御して前記非伝達状態を形成するようにしたことを特徴とする請求項7に記載の自動変速機の制御装置。
  10.  前記電子制御ユニットは、前記非伝達状態を形成する際に前記複数の摩擦係合要素への前記作動油の供給を遮断するように少なくとも前記複数のリニアソレノイドバルブおよび前記ソレノイドバルブのいずれか一方を切り替えるよう制御することを特徴とする請求項7に記載の自動変速機の制御装置。
  11.  前記リニアソレノイドバルブは、非通電状態で前記摩擦係合要素への前記作動油の供給を遮断する遮断状態となるとともに、通電状態で前記作動油を前記摩擦係合要素に供給する供給状態となるリニアソレノイドバルブによって構成されたことを特徴とする請求項7に記載の自動変速機の制御装置。
  12.  前記リニアソレノイドバルブは、前記作動油を前記複数の摩擦係合要素に供給するための経路上において、前記ソレノイドバルブよりも前記複数の摩擦係合要素側に設けられていることを特徴とする請求項7に記載の自動変速機の制御装置。
     
PCT/JP2009/001106 2009-03-12 2009-03-12 自動変速機の制御装置 WO2010103572A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2009/001106 WO2010103572A1 (ja) 2009-03-12 2009-03-12 自動変速機の制御装置
US13/255,835 US8527162B2 (en) 2009-03-12 2009-03-12 Control apparatus for an automatic transmission
JP2011503560A JP5403050B2 (ja) 2009-03-12 2009-03-12 自動変速機の制御装置
DE112009004492.1T DE112009004492B4 (de) 2009-03-12 2009-03-12 Steuergerät für ein Automatikgetriebe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/001106 WO2010103572A1 (ja) 2009-03-12 2009-03-12 自動変速機の制御装置

Publications (1)

Publication Number Publication Date
WO2010103572A1 true WO2010103572A1 (ja) 2010-09-16

Family

ID=42727882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001106 WO2010103572A1 (ja) 2009-03-12 2009-03-12 自動変速機の制御装置

Country Status (4)

Country Link
US (1) US8527162B2 (ja)
JP (1) JP5403050B2 (ja)
DE (1) DE112009004492B4 (ja)
WO (1) WO2010103572A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103711896A (zh) * 2012-10-05 2014-04-09 现代自动车株式会社 用于控制减振离合器的液压力的***和方法
WO2018079348A1 (ja) * 2016-10-26 2018-05-03 ジヤトコ株式会社 車両の制御装置及び車両の制御方法
JP2018162869A (ja) * 2017-03-27 2018-10-18 本田技研工業株式会社 自動変速機

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515446B2 (ja) * 2009-06-19 2014-06-11 トヨタ自動車株式会社 車両用制御装置および車両用制御方法
US10041586B2 (en) * 2016-03-24 2018-08-07 GM Global Technology Operations LLC Method and apparatus for transmission range monitoring
KR20230006658A (ko) * 2021-07-01 2023-01-11 에스엘 주식회사 차량용 변속 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09112679A (ja) * 1995-10-18 1997-05-02 Denso Corp 自動変速機用油圧制御装置
JPH1078128A (ja) * 1996-06-28 1998-03-24 Caterpillar Inc 変速機のための独立ラッチ装置
JP2006336717A (ja) * 2005-05-31 2006-12-14 Denso Corp 車両制御システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19858543A1 (de) 1998-12-18 2000-06-21 Zahnradfabrik Friedrichshafen Steuereinrichtung für ein automatisches Kraftfahrzeug-Getriebe
JP3523523B2 (ja) * 1999-04-27 2004-04-26 本田技研工業株式会社 自動変速機の制御装置
US7261673B2 (en) * 2002-10-21 2007-08-28 Nissan Diesel Motor Co., Ltd. Apparatus for controlling automatic transmission
DE60320441T2 (de) * 2002-10-28 2009-05-07 Nissan Diesel Motor Co., Ltd., Ageo Automatische gangwechselsteuerung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09112679A (ja) * 1995-10-18 1997-05-02 Denso Corp 自動変速機用油圧制御装置
JPH1078128A (ja) * 1996-06-28 1998-03-24 Caterpillar Inc 変速機のための独立ラッチ装置
JP2006336717A (ja) * 2005-05-31 2006-12-14 Denso Corp 車両制御システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103711896A (zh) * 2012-10-05 2014-04-09 现代自动车株式会社 用于控制减振离合器的液压力的***和方法
WO2018079348A1 (ja) * 2016-10-26 2018-05-03 ジヤトコ株式会社 車両の制御装置及び車両の制御方法
CN109642661A (zh) * 2016-10-26 2019-04-16 加特可株式会社 车辆的控制装置及车辆的控制方法
JPWO2018079348A1 (ja) * 2016-10-26 2019-06-24 ジヤトコ株式会社 車両の制御装置及び車両の制御方法
JP2018162869A (ja) * 2017-03-27 2018-10-18 本田技研工業株式会社 自動変速機

Also Published As

Publication number Publication date
US20110320096A1 (en) 2011-12-29
JPWO2010103572A1 (ja) 2012-09-10
DE112009004492T5 (de) 2012-09-20
US8527162B2 (en) 2013-09-03
JP5403050B2 (ja) 2014-01-29
DE112009004492B4 (de) 2021-05-06

Similar Documents

Publication Publication Date Title
JP4748601B2 (ja) 自動変速機の油圧制御装置、及びそれを備えたハイブリッド駆動装置
JP4805127B2 (ja) 自動変速機の油圧制御装置、及びそれを備えたハイブリッド駆動装置
JP4506655B2 (ja) 車両用自動変速機の油圧制御装置
US7621837B2 (en) Hydraulic control apparatus for an automatic transmission
US8360220B2 (en) Power transmission device and vehicle having the same
JP5403050B2 (ja) 自動変速機の制御装置
JP4913170B2 (ja) 自動変速機の油圧制御装置
CN100458236C (zh) 用于车辆自动变速器的控制装置
JP4893460B2 (ja) 変速機の制御装置
JP5633579B2 (ja) 車両用自動変速機の制御装置
JP4715932B2 (ja) 車両用自動変速機の油圧制御装置
CN105626853B (zh) 自动变速控制***
WO2011122097A1 (ja) ロックアップクラッチの油圧制御装置
JP5123130B2 (ja) 自動変速機の制御装置
JP5131174B2 (ja) 自動変速機の制御装置
JP4289059B2 (ja) 車両用自動変速機の油圧制御装置
JP2004036670A (ja) 自動変速機の油圧制御装置
WO2009090836A1 (ja) 自動変速機の制御装置および制御方法
JP3420396B2 (ja) 自動変速機の制御装置
JP2009180339A (ja) 自動変速機
JP5135680B2 (ja) 自動変速機の異常判定装置
JP2023184375A (ja) 車両用動力伝達装置
JP4976876B2 (ja) 車両用自動変速機の油圧制御装置
JP2013245770A (ja) 油圧制御装置
JP2011214616A (ja) 油圧制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841404

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011503560

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13255835

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112009004492

Country of ref document: DE

Ref document number: 1120090044921

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09841404

Country of ref document: EP

Kind code of ref document: A1