WO2010101177A1 - 非水電解液電池 - Google Patents

非水電解液電池 Download PDF

Info

Publication number
WO2010101177A1
WO2010101177A1 PCT/JP2010/053425 JP2010053425W WO2010101177A1 WO 2010101177 A1 WO2010101177 A1 WO 2010101177A1 JP 2010053425 W JP2010053425 W JP 2010053425W WO 2010101177 A1 WO2010101177 A1 WO 2010101177A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
positive electrode
negative electrode
lithium
battery
Prior art date
Application number
PCT/JP2010/053425
Other languages
English (en)
French (fr)
Inventor
辻川 知伸
松島 敏雄
雅弘 市村
努 尾形
荒川 正泰
火峰 薮田
傑 松下
林 晃司
寺田 正幸
陽平 伊藤
健二 栗田
幸 黒田
Original Assignee
株式会社Nttファシリティーズ
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttファシリティーズ, 新神戸電機株式会社 filed Critical 株式会社Nttファシリティーズ
Priority to US13/061,189 priority Critical patent/US20110159329A1/en
Priority to CN2010800024222A priority patent/CN102160230A/zh
Priority to EP10748771.2A priority patent/EP2405520A4/en
Priority to JP2011502777A priority patent/JP5509192B2/ja
Publication of WO2010101177A1 publication Critical patent/WO2010101177A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • a non-aqueous electrolyte battery comprising: a non-aqueous electrolyte infiltrating the battery; a flame retardant added to the non-aqueous electrolyte; and a battery container containing the electrode group, the non-aqueous electrolyte, and the flame retardant About.
  • lithium secondary batteries are widely used as power sources for portable devices such as VTR cameras, notebook computers, and mobile phones.
  • EV electric vehicles
  • HEV hybrid vehicles
  • a lithium secondary battery includes a strip-like positive electrode plate in which a positive electrode active material and a negative electrode active material are respectively applied to a metal foil, and a winding group wound so that the negative electrode plate is not in direct contact via a separator. The wound group is infiltrated with the electrolytic solution and hermetically accommodated in the battery container.
  • cobalt-based positive electrode active materials such as lithium cobaltate (LiCoO 2 ) are often used. From the viewpoints of cost and safety, lithium manganate (LiMnO 2 or LiMn 2 O 4 ) Lithium secondary batteries using manganese-based positive electrode active materials such as 4 ) are being studied.
  • lithium secondary batteries such as in-vehicle power sources for electric vehicles require batteries with high output and high capacity.
  • non-aqueous solutions using flammable organic solvents as electrolytes are required.
  • An electrolyte type sealed lithium secondary battery is used.
  • a lithium secondary battery when the battery is abnormal when exposed to an abnormally high temperature environment or when an overcharged state is reached due to a failure of the charging device, the nonaqueous electrolyte is decomposed due to a temperature rise. Vaporization may occur and the battery internal pressure may increase, leading to damage to the battery container.
  • a lithium secondary battery employs a current interrupt mechanism (a kind of disconnect switch) that operates in response to an increase in battery internal pressure and an internal pressure release mechanism (safety valve) that releases internal pressure.
  • the manganese-based positive electrode active material has a problem that the capacity of the negative electrode is reduced due to the elution of manganese ions in the positive electrode active material.
  • a phosphazene-based flame retardant is added to the non-aqueous electrolyte, the manganese ion elution amount is further increased.
  • battery performance has increased, in other words, life has decreased.
  • an object of the present invention is to provide a manganese-based nonaqueous electrolyte battery having a long life while improving safety in the event of battery abnormality.
  • the present invention provides an electrode in which a positive electrode plate using a spinel-based lithium manganese complex oxide as a positive electrode active material and a negative electrode plate using a carbon material as a negative electrode active material are arranged via a separator.
  • a non-aqueous electrolyte in which lithium tetrafluoroborate is added as an electrolyte to an organic solvent and infiltrate the electrode group, and a phosphazene-based flame retardant added at a ratio of 10% by weight or more with respect to the non-aqueous electrolyte
  • a battery container containing the electrode group, the non-aqueous electrolyte, and the flame retardant.
  • the phosphazene-based flame retardant is contained in an amount of 10% by weight or more with respect to the non-aqueous electrolyte, it is possible to suppress ignition and the like when the battery is abnormal and improve safety. Since lithium fluoroborate is added, the elution of manganese ions is suppressed and long-life non-aqueous electrolyte batteries can be used in combination with lithium manganese complex oxide as the positive electrode active material and phosphazene flame retardant Can be provided.
  • the lithium manganese complex oxide may be a spinel type lithium manganese complex oxide in which a part of the manganese site is substituted with at least one of aluminum, magnesium, lithium, cobalt, and nickel. Further, it is desirable that the non-aqueous electrolyte is added with 0.8 mol / liter or more of lithium tetrafluoroborate.
  • the non-aqueous electrolyte may contain 1.0 mol / liter or less of lithium tetrafluoroborate.
  • the phosphazene flame retardant can be added at a ratio of 12% by weight or less with respect to the non-aqueous electrolyte.
  • the lithium manganese complex oxide can be represented by the chemical formula LiMn 2 ⁇ x M x O 4 (M is at least one of Al, Mg, Li, Co, and Ni).
  • the substitution ratio x of the manganese site of the lithium manganese complex oxide may be 0 ⁇ x ⁇ 0.1.
  • the carbon material can be amorphous carbon or graphite.
  • the positive electrode plate and the negative electrode plate may be wound via a separator.
  • the positive electrode plate may include a positive electrode mixture containing a positive electrode active material applied to both sides of the current collector
  • the negative electrode plate may include a negative electrode mixture containing a negative electrode active material applied to both sides of the current collector. .
  • the phosphazene-based flame retardant is contained in an amount of 10% by weight or more with respect to the non-aqueous electrolyte, it is possible to suppress ignition and the like when the battery is abnormal and improve safety, Lithium tetrafluoroborate is added as a non-aqueous electrolysis that suppresses the elution of manganese ions and suppresses the elution of manganese ions even when a lithium manganese complex oxide as a positive electrode active material and a phosphazene flame retardant are used in combination. The effect that a liquid battery can be provided can be obtained.
  • a cylindrical lithium ion secondary battery 20 of the present embodiment includes a nickel-plated steel bottomed cylindrical battery container 7 and a polypropylene hollow cylindrical shaft core 1.
  • a strip-like positive and negative electrode plate has an electrode group 6 wound in a spiral shape through a separator W5.
  • an aluminum positive electrode current collection ring 4 for collecting the electric potential from the positive electrode plate is disposed on an almost extension line of the shaft core 1.
  • the positive electrode current collecting ring 4 is fixed to the upper end portion of the shaft core 1.
  • the edge part of the positive electrode lead piece 2 led out from the positive electrode plate is joined by ultrasonic welding to the peripheral edge of the flange part integrally protruding from the periphery of the positive electrode current collecting ring 4.
  • a disc-shaped battery lid 11 is provided that incorporates a safety valve and serves as a positive electrode external terminal.
  • One end of two positive electrode lead plates formed by stacking a plurality of aluminum ribbons is fixed to the upper portion of the positive electrode current collecting ring 4, and another one is fixed to the lower surface of the battery lid 11. One end is welded. The other ends of the two positive electrode lead plates are joined by welding.
  • a negative electrode current collector ring 5 made of copper for collecting electric potential from the negative electrode plate is disposed below the electrode group 6.
  • the outer peripheral surface of the lower end portion of the shaft core 1 is fixed to the inner peripheral surface of the negative electrode current collecting ring 5.
  • the end of the negative electrode lead piece 3 led out from the negative electrode plate is joined to the outer peripheral edge of the negative electrode current collecting ring 5 by welding.
  • a copper negative electrode lead plate for electrical conduction is welded to the lower part of the negative electrode current collecting ring 5, and the negative electrode lead plate is joined to the inner bottom portion of the battery container 7 by welding.
  • the battery container 7 has an outer diameter of 40 mm and an inner diameter of 39 mm.
  • the battery lid 11 is caulked and fixed to the upper part of the battery container 7 via an insulating and heat resistant EPDM resin gasket 10. For this reason, the positive electrode lead plate is accommodated in the battery container 7 so as to be folded, and the lithium ion secondary battery 20 is sealed.
  • the lithium ion secondary battery 20 is given a function as a battery by performing initial charging at a predetermined voltage and current.
  • Nonaqueous electrolyte Further, a non-aqueous electrolyte (not shown) is injected into the battery container 7.
  • the non-aqueous electrolyte includes lithium tetrafluoroborate (LiBF 4 ) as a lithium salt (electrolyte) in a mixed solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) are mixed at a volume ratio of 2: 3. 0.8 mol / liter (0.8M) or more is added.
  • LiBF 4 lithium tetrafluoroborate
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • a phosphazene derivative mainly composed of phosphorus and nitrogen that is, a phosphazene-based flame retardant is added as a flame retardant in a proportion of 10% by weight or more with respect to the non-aqueous electrolyte.
  • the phosphazene derivative is a cyclic compound represented by the general formula (NPR 2 ) 3 or (NPR 2 ) 4 .
  • R in the general formula represents a halogen element such as fluorine or chlorine or a monovalent substituent.
  • Monovalent substituents include alkoxy groups such as methoxy and ethoxy groups, aryloxy groups such as phenoxy and methylphenoxy groups, alkyl groups such as methyl and ethyl groups, aryl groups such as phenyl and tolyl groups, An amino group containing a substituted amino group such as a methylamino group, an alkylthio group such as a methylthio group or an ethylthio group, and an arylthio group such as a phenylthio group can be given.
  • Such a phosphazene derivative is decomposed in a high temperature environment such as when the battery is abnormal and exhibits an action and fire extinguishing action to prevent pre-ignition.
  • the electrode group 6 is wound around the shaft core 1 through a polyethylene separator W5 having a thickness of 30 ⁇ m and capable of passing lithium ions so that the positive electrode plate and the negative electrode plate are not in direct contact with each other. Yes.
  • the positive electrode lead piece 2 and the negative electrode lead piece 3 are respectively disposed on opposite sides of the electrode group 6.
  • the diameter of the electrode group 6 is set to 38 ⁇ 0.5 mm by adjusting the lengths of the positive electrode plate, the negative electrode plate, and the separator W5.
  • Insulation coating is applied to prevent electrical contact between the wound group 6 and the battery case 7.
  • an adhesive tape in which a hexamethacrylate adhesive is applied to one side of a polyimide base material is used.
  • the pressure-sensitive adhesive tape is wound one or more times from the peripheral surface of the buttock to the outer peripheral surface of the electrode group 6.
  • the number of turns is adjusted so that the maximum diameter portion of the electrode group 6 becomes an insulating coating existing portion, and the maximum diameter is set slightly smaller than the inner diameter of the battery container 7.
  • the positive electrode plate constituting the electrode group 6 has an aluminum foil W1 having a thickness of 20 ⁇ m as a positive electrode current collector.
  • lithium manganate (LiMn 2 O 4 ) powder having a spinel crystal structure as a positive electrode active material or a part of manganese sites (Mn sites) in the crystal is aluminum (Al).
  • the thickness of the applied positive electrode mixture layer W2 is substantially uniform, and the positive electrode mixture is substantially uniformly dispersed in the positive electrode mixture layer W2.
  • the positive electrode mixture includes, for example, 8 parts by mass of flake graphite and 2 parts by mass of acetylene black as a conductive material with respect to 100 parts by mass of the positive electrode active material, and polyvinylidene fluoride (hereinafter referred to as binder). , And abbreviated as PVDF).
  • NMP dispersion solvent N-methyl-2-pyrrolidone
  • an uncoated portion of a positive electrode mixture having a width of 30 mm is formed on one side along the longitudinal direction of the aluminum foil.
  • the uncoated part is cut out in a comb shape, and the positive electrode lead piece 2 is formed in the notch remaining part.
  • the interval between the adjacent positive electrode lead pieces 2 is set to 20 mm, and the width of the positive electrode lead piece 2 is set to 5 mm.
  • the positive electrode plate is pressed after drying and cut into a width of 80 mm.
  • the negative electrode plate has a rolled copper foil W3 having a thickness of 10 ⁇ m as a current collector.
  • a negative electrode mixture containing carbon powder capable of occluding and releasing lithium ions as a negative electrode active material is applied to both surfaces of the rolled copper foil W3 substantially uniformly and uniformly. That is, the thickness of the applied negative electrode mixture layer W4 is substantially uniform, and the negative electrode mixture is substantially uniformly dispersed in the negative electrode mixture layer W4.
  • the negative electrode active material amorphous carbon powder, graphite, or a mixture thereof is used. For example, 10 parts by weight of PVDF as a binder is blended with 90 parts by weight of carbon powder in the negative electrode mixture.
  • An uncoated portion of a negative electrode mixture having a width of 30 mm is formed on one side along the longitudinal direction of the rolled copper foil W3, and a negative electrode lead piece 3 is formed.
  • the interval between the adjacent negative electrode lead pieces 3 is set to 20 mm, and the width of the negative electrode lead piece 3 is set to 5 mm.
  • the negative electrode plate is pressed after drying and cut into a width of 86 mm.
  • the length of the negative electrode plate is such that when the positive electrode plate and the negative electrode plate are wound, the positive electrode plate does not protrude from the negative electrode plate in the winding direction at the innermost winding and outermost winding. 120 mm longer than the length.
  • the width of the negative electrode mixture application part is set to be 6 mm longer than the width of the positive electrode mixture application part so that the positive electrode mixture application part does not protrude from the negative electrode mixture application part in the winding direction and the vertical direction. Yes.
  • a phosphazene flame retardant is added.
  • This phosphazene flame retardant decomposes under a high temperature environment such as when the battery is abnormal, and exhibits an action and fire extinguishing action to prevent pre-ignition.
  • the phosphazene flame retardant imparts flame retardancy or self-extinguishing properties to the non-aqueous electrolyte. Accordingly, the battery is extinguished even when the non-aqueous electrolyte is ignited when the battery is abnormal such as in an overcharged state or when exposed to an abnormally high temperature environment, so that the safety of the battery can be improved.
  • the phosphazene flame retardant is added by 10% by weight or more with respect to the non-aqueous electrolyte. If the amount of the phosphazene-based flame retardant added is too small, it may not be possible to extinguish even if the battery is ignited. On the other hand, if the amount of the phosphazene-based flame retardant added is too large, ion conduction is hindered during normal charge / discharge, and the battery performance such as capacity and output is reduced. In other words, increasing the amount of the phosphazene flame retardant added is advantageous in terms of flame retardancy but disadvantageous in terms of battery performance. For this reason, it is preferable to add a phosphazene-based flame retardant as much as possible in an amount of 10% by weight or more with respect to the non-aqueous electrolyte.
  • LiBF 4 is added to the nonaqueous electrolytic solution as an electrolyte in an amount of 0.8M or more.
  • manganese-based positive electrode active materials such as lithium manganese complex oxide have a problem that manganese ions from the positive electrode mixture layer W2 are eluted.
  • a manganese-based positive electrode active material and a phosphazene-based flame retardant are used in combination, there is a problem that the elution of manganese ions further increases.
  • the elution amount of manganese ions increases, the proportion of lithium ions that can be doped / undoped on the positive electrode side decreases, the irreversible capacity increases, and the battery capacity decreases.
  • the eluted manganese ions may precipitate on the negative electrode side to form dendrites and cause a micro short circuit.
  • 0.8M or more of LiBF 4 that limits manganese elution as an electrolyte is added to the non-aqueous electrolyte, elution of manganese ions can be suppressed. Therefore, battery performance such as capacity and output can be maintained, and as a result, the life can be extended.
  • a part of the Mn site of lithium manganate having a spinel crystal structure is at least one of Al, Mg, Li, Co, and Ni.
  • Spinel type lithium manganese complex oxide substituted with more than one kind is used. For this reason, since the crystal structure can be further strengthened, elution of manganese ions can be further suppressed than when lithium manganate is used as the positive electrode active material.
  • a mixed solvent in which EC and DMC are mixed at a volume ratio of 2: 3 is exemplified as the organic solvent of the nonaqueous electrolytic solution, but the present invention is limited to this. It is not a thing.
  • organic solvents examples include diethyl carbonate, propylene carbonate, ethyl methyl carbonate, vinylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, ⁇ -butyrolactone, tetrahydrofuran, 1, Examples thereof include 3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile and the like.
  • these organic solvents may be used individually by 1 type, and may use 2 or more types of mixed solvents. Further, the mixing ratio of these organic solvents is not limited.
  • the lithium ion secondary battery 20 of the present embodiment as a positive electrode mixture, 100 parts by mass of the positive electrode active material, 8 parts by mass of flaky graphite as a conductive material, 2 parts by mass of acetylene black, and a binder
  • the present invention is not limited to this.
  • Another conductive material usually used for nonaqueous electrolyte batteries may be used, or a conductive material may not be used.
  • other binders may be used.
  • binders examples include polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, and various latexes. And polymers such as acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, and mixtures thereof. Furthermore, it goes without saying that the blending ratio of each material may be changed. Further, the type, shape, crystal structure and the like of the negative electrode active material are not particularly limited.
  • the cylindrical lithium ion secondary battery 20 is exemplified, but the present invention is not limited to this, and can be applied to a battery that uses a non-aqueous electrolyte.
  • the electrode group 6 which wound the positive electrode plate and the negative electrode plate was illustrated, this invention is not limited to this, For example, the electrode which laminated
  • the battery to which the present invention can be applied may be other than a battery having a structure in which the battery lid 11 is caulked and sealed to the battery container 7 described above.
  • a battery in a state where positive and negative external terminals penetrate through the battery lid and are pressed through the shaft core in the battery container can be mentioned.
  • lithium ion secondary battery 20 manufactured according to the above embodiment will be described. In addition, it describes together about the lithium ion secondary battery of the comparative example produced for the comparison.
  • Example 1 the lithium ion secondary battery 20 was produced using spinel-based LiMn 2 O 4 as the positive electrode active material.
  • Example 2 to Example 6 As shown in Table 1 below, in Examples 2 to 6, except that the positive electrode active material in which the Mn site of the spinel-based LiMn 2 O 4 was replaced with Al, Mg, Li, Co, and Ni by 5% was used.
  • the positive electrode active materials are lithium manganese aluminum complex oxide (LiMn 1.9 Al 0.1 O 4 ) in Example 2, and lithium manganese magnesium complex oxide (LiMn 1.9 Mg 0.1 in Example 3).
  • O 4 in Example 4, lithium manganese lithium double oxide (LiMn 1.9 Li 0.1 O 4 ), and in Example 5, lithium manganese cobalt double oxide (LiMn 1.9 Co 0.1 O 4).
  • lithium manganese nickel double oxide LiMn 1.9 Ni 0.1 O 4
  • Example 6 lithium manganese nickel double oxide (LiMn 1.9 Ni 0.1 O 4 ) was used.
  • Example 7 As shown in Table 1 below, in Example 7, lithium ion was used in the same manner as in Example 3 except that a non-aqueous electrolyte in which 12% by weight of a phosphazene flame retardant was added to the non-aqueous electrolyte was used. A secondary battery 20 was produced.
  • Comparative Example 1 does not include a phosphazene-based flame retardant, and instead of LiBF 4 as an electrolyte, a nonaqueous electrolytic solution in which 0.8 M of lithium hexafluorophosphate (LiPF 6 ) is dissolved
  • LiPF 6 lithium hexafluorophosphate
  • a lithium ion secondary battery was produced in the same manner as in Example 1 except that was used.
  • Comparative Example 2 a lithium ion secondary battery was produced in the same manner as in Example 1 except that a nonaqueous electrolytic solution in which 0.8 M LiPF 6 was dissolved was used as the electrolyte.
  • Comparative Examples 3 to 5 As shown in Table 1 below, in Comparative Examples 3 to 5, except that a non-aqueous electrolyte solution in which a phosphazene flame retardant was added in a range of 0 to 8% by weight with respect to the non-aqueous electrolyte solution was used. In the same manner as in Example 3, a lithium ion secondary battery 20 was produced. The addition amount of the phosphazene flame retardant was set to 0% by weight (not added) in Comparative Example 3, 5% by weight in Comparative Example 4, and 8% by weight in Comparative Example 5, respectively.
  • Test 1 The lithium ion secondary batteries of the examples and comparative examples were left for 1 month in an environment of 50 ° C. and then disassembled, and the amount of manganese ions in the non-aqueous electrolyte was measured using an ICP (plasma emission analyzer).
  • ICP plasma emission analyzer
  • the proportion of manganese ions in the lithium ion secondary batteries of each Example and Comparative Example with respect to the amount of manganese ions in Comparative Example 1 is shown in Table 1 as the Mn elution ratio.
  • Table 1 also shows the results of heating the lithium ion secondary batteries of each Example and Comparative Example with a burner and confirming the ignitability of the ruptured and ejected gas.
  • Example 2 A lithium ion secondary battery was produced in the same manner as in Example 3 except that the amount of LiBF 4 added was changed in the range of 0.2 M to 1.0 M.
  • FIG. 2 shows the results of conducting a discharge test of each lithium ion secondary battery at 25 ° C. and 0.2 CA and plotting the discharge capacity against the amount of LiBF 4 added.
  • the present invention improves the safety in the event of battery abnormalities and provides a long-life manganese-based nonaqueous electrolyte battery, which contributes to the manufacture and sale of nonaqueous electrolyte batteries. Has availability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 電池異常時の安全性を向上させ長寿命のマンガン系非水電解液電池を提供する。電池20は、有底円筒状の容器7を有している。容器7には、正極活物質にスピネル系リチウムマンガン複酸化物を用いた正負極と負極活物質に炭素材を用いた負極板とがセパレータW5を介して捲回された電極群6が収容されている。電極群6は、有機溶媒に電解質としてLiBFが添加された電解液に浸潤されている。また、電解液に対しホスファゼン系難燃化剤が10重量%添加されている。電池異常時に電解液が発火しづらくマンガン溶出を抑制できる。

Description

非水電解液電池
 正極活物質にスピネル系リチウムマンガン複酸化物を用いた正極板と負極活物質に炭素材を用いた負極板とがセパレータを介して配置された電極群と、有機溶媒に電解質が添加され電極群を浸潤する非水電解液と、非水電解液に添加された難燃化剤と、上記電極群、非水電解液、難燃化剤を収容する電池容器とを備えた非水電解液電池に関する。
 二次電池の中でもリチウム二次電池は、VTRカメラやノート型パソコン、携帯電話などのポータブル機器等の電源に広く使用されている。一方、リチウム二次電池は高エネルギー密度であることから、電気自動車(EV)やハイブリッド車(HEV)の車載電源としても開発が進められ、一部は実用化されている。
 通常、リチウム二次電池では、正極活物質、負極活物質がそれぞれ金属箔に塗着された帯状の正極板、負極板がセパレータを介して直接接触しないように捲回された捲回群を備えており、この捲回群が電解液に浸潤されて電池容器に密閉収容されている。小形民生用のリチウム二次電池では、コバルト酸リチウム(LiCoO)等のコバルト系正極活物質が多く使用されているが、コストおよび安全性等の観点からマンガン酸リチウム(LiMnOまたはLiMn)等のマンガン系正極活物質を使用したリチウム二次電池の検討が行われている。一方、電気自動車の車載電源等のリチウム二次電池では、高出力、高容量の電池が要求されており、電池性能の向上を図るため、電解液として可燃性を有する有機溶媒を用いた非水電解液タイプの密閉型リチウム二次電池が使用されている。
 ところが、密閉型リチウム二次電池では、例えば、異常な高温環境下に曝されたときや充電装置の故障等により過充電状態に達したときの電池異常時に、温度上昇により非水電解液の分解や気化が生じて電池内圧が上昇し電池容器の破損に到る場合がある。これを回避するため、一般に、リチウム二次電池では、電池内圧の上昇に応じて作動する電流遮断機構(一種の切断スイッチ)や、内圧を解放する内圧解放機構(安全弁)が採用されている。
 また、電池容器が破損した場合には、電池から噴出したガスや漏液した非水電解液が内部短絡や外部火点により容易に引火し燃焼してしまう可能性もある。これを解決するために、ホスファゼン系難燃化剤を非水電解液に添加する技術が開示されている(例えば、特開平6-13108号公報参照)。ホスファゼン系難燃化剤は、電池異常時などの高温になると分解し消火作用を発揮する。
 しかしながら、マンガン系正極活物質は正極活物質のマンガンイオンの溶出により負極の容量を低下させるという問題があり、ホスファゼン系難燃化剤を非水電解液に添加すると、マンガンイオンの溶出量がさらに増加し電池性能、換言すれば、寿命が低下する、という問題があった。
 本発明は上記事案に鑑み、電池異常時の安全性を向上させるとともに、長寿命のマンガン系非水電解液電池を提供することを課題とする。
 上記課題を解決するために、本発明は、正極活物質にスピネル系リチウムマンガン複酸化物を用いた正極板と負極活物質に炭素材を用いた負極板とがセパレータを介して配置された電極群と、有機溶媒に電解質として4フッ化ホウ酸リチウムが添加され前記電極群を浸潤する非水電解液と、前記非水電解液に対し10重量%以上の割合で添加されたホスファゼン系難燃化剤と、上記電極群、非水電解液、難燃化剤を収容する電池容器とを備えたことを特徴とする。
 本発明では、非水電解液に対してホスファゼン系難燃化剤が10重量%以上含有されているので、電池異常時の引火等が抑制され安全性を向上させることができるとともに、電解質として4フッ化ホウ酸リチウムが添加されているので、正極活物質のリチウムマンガン複酸化物とホスファゼン系難燃化剤とを併用しても、マンガンイオンの溶出が抑制され長寿命の非水電解液電池を提供することができる。
 この場合において、リチウムマンガン複酸化物は、マンガンサイトの一部が、アルミニウム、マグネシウム、リチウム、コバルト、ニッケルのうち少なくとも1種類以上で置換されたスピネル系リチウムマンガン複酸化物であってもよい。また、非水電解液は、4フッ化ホウ酸リチウムが0.8モル/リットル以上添加されていることが望ましい。非水電解液は、4フッ化ホウ酸リチウムが1.0モル/リットル以下添加されていてもよい。ホスファゼン系難燃化剤を非水電解液に対し12重量%以下の割合で添加することができる。また、リチウムマンガン複酸化物は、化学式をLiMn2-x(Mは、Al、Mg、Li、Co、Niのうち少なくとも1種)で表すことができる。このとき、リチウムマンガン複酸化物のマンガンサイトの置換割合xが0≦x≦0.1であってもよい。炭素材を非晶質炭素ないし黒鉛とすることができる。また、電極群は、正極板と負極板とがセパレータを介して捲回されていてもよい。このとき、正極板は正極活物質を含む正極合材が集電体の両面に塗布されており、負極板は負極活物質を含む負極合剤が集電体の両面に塗布されていてもよい。
 本発明によれば、非水電解液に対してホスファゼン系難燃化剤が10重量%以上含有されているので、電池異常時の引火等が抑制され安全性を向上させることができるとともに、電解質として4フッ化ホウ酸リチウムが添加されているので、正極活物質のリチウムマンガン複酸化物とホスファゼン系難燃化剤とを併用しても、マンガンイオンの溶出が抑制され長寿命の非水電解液電池を提供することができる、という効果を得ることができる。
本発明を適用した実施形態の円筒型リチウムイオン二次電池を示す断面図である。 実施例の円筒型リチウムイオン二次電池のLiBF添加量に対する放電容量を測定したときのグラフである。
 以下、図面を参照して、本発明を円筒型リチウムイオン二次電池に適用した実施の形態について説明する。
(構成)
 図1に示すように、本実施形態の円筒型リチウムイオン二次電池20は、ニッケルメッキが施されたスチール製で有底円筒状の電池容器7およびポリプロピレン製で中空円筒状の軸芯1に帯状の正負極板がセパレータW5を介して断面渦巻状に捲回された電極群6を有している。
 電極群6の上側には、軸芯1のほぼ延長線上に正極板からの電位を集電するためのアルミニウム製の正極集電リング4が配置されている。正極集電リング4は、軸芯1の上端部に固定されている。正極集電リング4の周囲から一体に張り出している鍔部周縁には、正極板から導出された正極リード片2の端部が超音波溶接で接合されている。正極集電リング4の上方には、安全弁を内蔵し正極外部端子となる円盤状の電池蓋11が配置されている。正極集電リング4の上部には複数枚のアルミニウム製リボンを重ね合わせて構成した2本の正極リード板のうち1本の一端が固定されており、電池蓋11の下面には他の1本の一端が溶接されている。2本の正極リード板の他端同士は溶接で接合されている。
 一方、電極群6の下側には負極板からの電位を集電するための銅製の負極集電リング5が配置されている。負極集電リング5の内周面には軸芯1の下端部外周面が固定されている。負極集電リング5の外周縁には、負極板から導出された負極リード片3の端部が溶接で接合されている。負極集電リング5の下部には電気的導通のための銅製の負極リード板が溶接されており、負極リード板は電池容器7の内底部に溶接で接合されている。電池容器7は、本例では、外径40mm、内径39mmに設定されている。
 電池蓋11は、絶縁性および耐熱性のEPDM樹脂製ガスケット10を介して電池容器7の上部にカシメ固定されている。このため、正極リード板は電池容器7内に折りたたむようにして収容されており、リチウムイオン二次電池20は密封されている。なお、リチウムイオン二次電池20は、所定電圧および電流で初充電を行うことで、電池としての機能が付与される。
(非水電解液)
 また、電池容器7内には、図示しない非水電解液が注液されている。非水電解液には、エチレンカーボネート(EC)およびジメチルカーボネート(DMC)が体積比2:3で混合された混合溶媒中に、リチウム塩(電解質)として4フッ化ホウ酸リチウム(LiBF)が0.8モル/リットル(0.8M)以上添加されている。この非水電解液には、難燃化剤として、リンおよび窒素を主体とするホスファゼン誘導体、すなわち、ホスファゼン系難燃化剤が非水電解液に対し10重量%以上の割合で添加されている。
 ホスファゼン誘導体は、一般式(NPRまたは(NPRで表される環状化合物である。一般式中のRは、フッ素や塩素等のハロゲン元素または一価の置換基を示している。一価の置換基としては、メトキシ基やエトキシ基等のアルコキシ基、フェノキシ基やメチルフェノキシ基等のアリールオキシ基、メチル基やエチル基等のアルキル基、フェニル基やトリル基等のアリール基、メチルアミノ基等の置換型アミノ基を含むアミノ基、メチルチオ基やエチルチオ基等のアルキルチオ基、および、フェニルチオ基等のアリールチオ基を挙げることができる。このようなホスファゼン誘導体は、電池異常時等の高温環境下で分解し、あらかじめ発火することを防止する作用や消火作用を発揮する。
 電極群6は、正極板と負極板とがこれら両極板が直接接触しないように、厚さ30μmでリチウムイオンが通過可能なポリエチレン製のセパレータW5を介し、軸芯1の周囲に捲回されている。正極リード片2と負極リード片3とは、それぞれ電極群6の互いに反対側に配設されている。電極群6の直径は、正極板、負極板、セパレータW5の長さを調整することで、38±0.5mmに設定されている。捲回群6と電池容器7との電気的接触を防止する為に絶縁被覆が施されている。絶縁被覆には、ポリイミド製の基材の片面にヘキサメタアクリレートの粘着剤が塗布された粘着テープが用いられている。粘着テープは鍔部周面から電極群6外周面に亘って一重以上巻かれている。電極群6の最大径部が絶縁被覆存在部となるように巻き数が調整され、該最大径が電池容器7の内径より僅かに小さく設定されている。
 電極群6を構成する正極板は、正極集電体として厚さ20μmのアルミニウム箔W1を有している。アルミニウム箔W1の両面には、正極活物質としてスピネル結晶構造を有したマンガン酸リチウム(LiMn)粉末、または、その結晶中のマンガンサイト(Mnサイト)の一部が、アルミニウム(Al)、マグネシウム(Mg)、リチウム(Li)、コバルト(Co)、ニッケル(Ni)のうち少なくとも1種類以上で置換されたスピネル系リチウムマンガン複酸化物(LiMn2-x、MはAl、Mg、Li、Co、Niから選ばれる1種以上の遷移金属)粉末を含む正極合剤が実質的に均等かつ均質に塗着されている。すなわち、塗着された正極合剤層W2の厚さがほぼ一様であり、かつ、正極合剤層W2内では正極合剤がほぼ一様に分散されている。正極合剤には、例えば、正極活物質の100質量部に対して、導電材として鱗片状黒鉛の8質量部およびアセチレンブラックの2質量部と、バインダ(結着材)としてポリフッ化ビニリデン(以下、PVDFと略記する。)の5質量部が配合されている。アルミニウム箔W1に正極合剤を塗着するときは、分散溶媒のN-メチル-2-ピロリドン(以下、NMPと略記する。)が用いられる。アルミニウム箔の長手方向に沿う一側には、幅30mmの正極合剤の未塗着部が形成されている。未塗着部は櫛状に切り欠かれており、切り欠き残部で正極リード片2が形成されている。本例では、隣り合う正極リード片2の間隔が20mm、正極リード片2の幅が5mmに設定されている。正極板は、乾燥後プレス加工され、幅80mmに裁断されている。
 一方、負極板は、集電体として厚さ10μmの圧延銅箔W3を有している。圧延銅箔W3の両面には、負極活物質としてリチウムイオンを吸蔵、放出可能な炭素粉末を含む負極合剤が実質的に均等かつ均質に塗着されている。すなわち、塗着された負極合剤層W4の厚さがほぼ一様であり、かつ、負極合剤層W4内では負極合剤がほぼ一様に分散されている。負極活物質には、非晶質炭素粉末もしくは黒鉛、またはその混合物が用いられている。負極合剤には、例えば、炭素粉末の90重量部に対して、バインダとしてPVDFの10重量部が配合されている。圧延銅箔W3の長手方向に沿う一側には、正極板と同様に幅30mmの負極合剤の未塗着部が形成されており、負極リード片3が形成されている。本例では、隣り合う負極リード片3の間隔が20mm、負極リード片3の幅が5mmに設定されている。負極板は、乾燥後プレス加工され、幅86mmに裁断されている。なお、負極板の長さは、正極板および負極板を捲回したときに、捲回最内周および最外周で捲回方向に正極板が負極板からはみ出すことがないように、正極板の長さより120mm長く設定されている。また、負極合剤塗布部の幅は、捲回方向と垂直方向において正極合剤塗布部が負極合剤塗布部からはみ出すことがないように、正極合剤塗布部の幅より6mm長く設定されている。
(作用等)
 次に、本実施形態のリチウムイオン二次電池20の作用等について説明する。
 本実施形態のリチウムイオン二次電池20では、ホスファゼン系難燃化剤が添加されている。このホスファゼン系難燃化剤は、電池異常時等の高温環境下で分解し、あらかじめ発火することを防止する作用や消火作用を発揮する。このため、ホスファゼン系難燃化剤により非水電解液に難燃性ないし自己消火性が付与される。これにより、過充電状態等の電池異常時や異常な高温環境下に曝されたときに非水電解液が発火しても消火されるので、電池の安全性を向上させることができる。
 また、本実施形態のリチウムイオン二次電池20では、ホスファゼン系難燃化剤が非水電解液に対して10重量%以上添加されている。ホスファゼン系難燃化剤の添加量が少なすぎると、電池異常時に発火しても消火させることができないことがある。反対に、ホスファゼン系難燃化剤の添加量が多すぎると、通常の充放電時にイオン伝導が妨げられ、容量や出力等の電池性能を低下させることとなる。換言すれば、ホスファゼン系難燃化剤の添加量を多くすると、難燃性の点では有利となるが、電池性能の点では不利となる。このため、非水電解液に対して10重量%以上で、できる限り少ない量のホスファゼン系難燃化剤を添加することが好ましい。
 さらに、本実施形態のリチウムイオン二次電池20では、非水電解液に電解質としてLiBFが0.8M以上添加されている。従来、リチウムマンガン複酸化物等のマンガン系正極活物質には、正極合剤層W2からのマンガンイオンが溶出するという問題がある。さらに、マンガン系正極活物質とホスファゼン系難燃化剤とを併用すると、マンガンイオンの溶出がさらに増加するという問題があった。マンガンイオンの溶出量が増加すると、正極側でリチウムイオンをドープ・脱ドープできる割合が減少して不可逆容量が増加し、電池容量が低下することとなる。また、溶出したマンガンイオンが負極側に析出しデンドライトを形成して微小短絡を引き起す可能性も考えられる。しかしながら、本実施形態のリチウムイオン二次電池20では、非水電解液に電解質としてマンガン溶出を制限するLiBFが0.8M以上添加されているため、マンガンイオンの溶出を抑制することができる。従って、容量や出力等の電池性能を維持することができ、結果的に長寿命化を図ることができる。LiBFの添加量が少なすぎると、マンガンイオンの溶出が抑制されず、また、非水電解液の電気伝導性も低下するので、容量や出力等の電池性能が低下する。反対に、LiBFの添加量を多くしても、マンガンイオンの溶出のさらなる抑制効果は期待できない。従って、非水電解液には、0.8M以上で、できる限り少ない量のLiBFを添加することが好ましい。
 またさらに、本実施形態のリチウムイオン二次電池20では、正極活物質として、スピネル結晶構造を有したマンガン酸リチウムのMnサイトの一部が、Al、Mg、Li、Co、Niのうち少なくとも1種類以上で置換されたスピネル系リチウムマンガン複酸化物が用いられている。このため、結晶構造をよりに強固にできるので、正極活物質としてマンガン酸リチウムを用いた場合よりもさらにマンガンイオンの溶出を抑制することができる。
 なお、本実施形態のリチウムイオン二次電池20では、非水電解液の有機溶媒としてECおよびDMCが体積比2:3で混合された混合溶媒を例示したが、本発明はこれに制限されるものではない。本実施形態以外で用いることのできる有機溶媒としては、ジエチルカーボネート、プロピレンカーボネート、エチルメチルカーボネート、ビニレンカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、γ-ブチロラクトン、テトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル等を挙げることができる。また、これらの有機溶媒は、1種単独で使用してもよく、2種以上の混合溶媒を用いてもよい。さらに、これらの有機溶媒の混合配合比についても限定されるものではない。
 また、本実施形態のリチウムイオン二次電池20では、正極合剤として、正極活物質の100質量部に対して、導電材として鱗片状黒鉛の8質量部およびアセチレンブラックの2質量部と、バインダとしてPVDFの5質量部が配合されているものを例示したが、本発明はこれに制限されるものではない。非水電解液電池に通常使用される別の導電材を用いてもよく、導電材を用いなくてもよい。また、他のバインダを用いてもよい。本実施形態以外で用いることのできるバインダとしては、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセルロ-ス、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン等の重合体及びこれらの混合体等を挙げることができる。さらに、各材料の配合比率を変えてもよいことはもちろんである。また、負極活物質の種類、形状、結晶構造等についても特に制限されるものではない。
 またさらに、本実施形態では、円筒型リチウムイオン二次電池20を例示したが、本発明はこれに限定されるものではなく、非水電解液を使用する電池一般に適用することができる、また、電池の形状についても特に制限はなく、円筒型以外に、例えば、角型等としてもよい。また、本実施形態では、正極板、負極板を捲回した電極群6を例示したが、本発明はこれに限定されるものではなく、例えば、矩形状の正極板、負極板を積層した電極群としてもよい。さらに、本発明の適用可能な電池としては、上述した電池容器7に電池蓋11がカシメ固定されて封口されている構造の電池以外であっても構わない。このような構造の一例として正負極外部端子が電池蓋を貫通し電池容器内で軸芯を介して押し合っている状態の電池を挙げることができる。
 上記実施形態に従い作製したリチウムイオン二次電池20の実施例について説明する。なお、比較のために作製した比較例のリチウムイオン二次電池についても併記する。
(実施例1)
 実施例1では、正極活物質にスピネル系LiMnを用いてリチウムイオン二次電池20を作製した。
(実施例2~実施例6)
 下表1に示すように、実施例2~実施例6では、スピネル系LiMnのMnサイトをAl、Mg、Li、Co、Niでそれぞれ5%置換した正極活物質を用いたこと以外は実施例1と同様にリチウムイオン二次電池20を作製した。正極活物質は、それぞれ、実施例2ではリチウムマンガンアルミニウム複酸化物(LiMn1.9Al0.1)を、実施例3ではリチウムマンガンマグネシウム複酸化物(LiMn1.9Mg0.1)を、実施例4ではリチウムマンガンリチウム複酸化物(LiMn1.9Li0.1)を、実施例5ではリチウムマンガンコバルト複酸化物(LiMn1.9Co0.1)を、実施例6ではリチウムマンガンニッケル複酸化物(LiMn1.9Ni0.1)を用いた。
(実施例7)
 下表1に示すように、実施例7では、ホスファゼン系難燃化剤を非水電解液に対し12重量%添加した非水電解液を用いたこと以外は、実施例3と同様にリチウムイオン二次電池20を作製した。
(比較例1、比較例2)
 下表1に示すように、比較例1では、ホスファゼン系難燃化剤を含まず、電解質としてLiBFに代わり、6フッ化リン酸リチウム(LiPF)を0.8M溶解した非水電解液を用いたこと以外は、実施例1と同様にリチウムイオン二次電池を作製した。比較例2では、電解質としてLiPFを0.8M溶解した非水電解液を用いたこと以外は、実施例1と同様にリチウムイオン二次電池を作製した。
(比較例3~比較例5)
 下表1に示すように、比較例3~比較例5では、ホスファゼン系難燃化剤を非水電解液に対し0~8重量%の範囲で添加した非水電解液を用いたこと以外は、実施例3と同様にリチウムイオン二次電池20を作製した。ホスファゼン系難燃化剤の添加量は、それぞれ、比較例3では0重量%(添加しなかった)、比較例4では5重量%、比較例5では8重量%に設定した。
Figure JPOXMLDOC01-appb-T000001
(試験1)
 各実施例および比較例のリチウムイオン二次電池を50℃の環境下で1ヶ月放置した後に解体し、非水電解液中のマンガンイオン量をICP(プラズマ発光分析装置)を用いて測定した。比較例1のマンガンイオン量に対する各実施例および比較例のリチウムイオン二次電池のマンガンイオンの割合をMn溶出割合として表1に合わせて示す。また、バーナーで各実施例および比較例のリチウムイオン二次電池を加熱し、電池の破裂および噴出したガス等の着火性を確認した結果も表1に合わせて示す。
(評価1)
 実施例1および比較例1、比較例2の結果から、ホスファゼン系難燃化剤を電解液に対し10重量%添加することにより、バーナー加熱時の電池の破裂および噴出したガス等の着火を防止できることが判った。ところが、比較例1、比較例2の結果から、ホスファゼン系難燃化剤を添加することによりMn溶出量が増加していることが確認された。一方、実施例1の電池では、電解質にLiBFを0.8M用いたため、ホスファゼン系難燃化剤を加えていない比較例1の電池より、難燃性を確保するとともに、Mn溶出量を抑制できることが判明した。また、実施例1~実施例6の結果から、実施例1の電池の正極活物質のMnサイトを他の金属で置換することにより、さらにMn溶出量を抑制できることが判った。特に、実施例3の電池、すなわち、MnサイトをMgで置換したリチウムマンガンマグネシウム複酸化物を正極活物質に用いた電池が、最もMn溶出量を抑制できることが明らかになった。さらに、実施例3、実施例7および比較例3~比較例5の結果から、ホスファゼン系難燃化剤の添加量が電解液に対し10重量%よりも少ない場合には、バーナー加熱時に発火した。反対に、ホスファゼン系難燃化剤の添加量が10重量%よりも多い場合には、バーナー加熱時の電池の破裂および噴出したガス等の着火を防止できたが、Mn溶出量が増加することが明らかになった。
(試験2)
 LiBFの添加量を0.2M~1.0Mの範囲で変化させること以外は実施例3と同様にリチウムイオン二次電池を作製した。25℃、0.2CAで各リチウムイオン二次電池の放電試験を行い、LiBFの添加量に対し放電容量をプロットした結果を図2に示す。
(評価2)
 LiBFの添加量が0.8Mより少ない場合には、放電容量が低下しており、反対に、LiBFの添加量が0.8Mより多くしても、放電容量がほぼ変化しないことが判った。従って、非水電解液に電解質としてLiBFを0.8M以上添加することで、容量等の電池性能を維持することができ、結果的に電池寿命を向上させることができることが判明した。
 本発明は、電池異常時の安全性を向上させるとともに、長寿命のマンガン系非水電解液電池を提供するものであるため、非水電解液電池の製造、販売に寄与するので、産業上の利用可能性を有する。

Claims (10)

  1.  正極活物質にスピネル系リチウムマンガン複酸化物を用いた正極板と負極活物質に炭素材を用いた負極板とがセパレータを介して配置された電極群と、
     有機溶媒に電解質として4フッ化ホウ酸リチウムが添加され前記電極群を浸潤する非水電解液と、
    前記非水電解液に対し10重量%以上の割合で添加されたホスファゼン系難燃化剤と、
     上記電極群、非水電解液、難燃化剤を収容する電池容器と、
    を備えた非水電解液電池。
  2.  前記リチウムマンガン複酸化物は、マンガンサイトの一部が、アルミニウム、マグネシウム、リチウム、コバルト、ニッケルのうち少なくとも1種類以上で置換されたスピネル系リチウムマンガン複酸化物であることを特徴とする請求項1に記載の非水電解液電池。
  3.  前記非水電解液は、前記4フッ化ホウ酸リチウムが0.8モル/リットル以上添加されたことを特徴とする請求項1に記載の非水電解液電池。
  4.  前記非水電解液は、前記4フッ化ホウ酸リチウムが1.0モル/リットル以下添加されたことを特徴とする請求項3に記載の非水電解液電池。
  5.  前記ホスファゼン系難燃化剤は、前記非水電解液に対し12重量%以下の割合で添加されたことを特徴とする請求項4に記載の非水電解液電池。
  6.  前記リチウムマンガン複酸化物は、化学式がLiMn2-x(Mは、Al、Mg、Li、Co、Niのうち少なくとも1種)で表されることを特徴とする請求項2に記載の非水電解液電池。
  7.  前記リチウムマンガン複酸化物は、マンガンサイトの置換割合xが0≦x≦0.1であることを特徴とする請求項6に記載の非水電解液電池。
  8.  前記炭素材は、非晶質炭素ないし黒鉛であることを特徴とする請求項7に記載の非水電解液電池。
  9.  前記電極群は、前記正極板と前記負極板とが前記セパレータを介して捲回されたことを特徴とする請求項1に記載の非水電解液電池。
  10.  前記正極板は前記正極活物質を含む正極合材が集電体の両面に塗布されており、前記負極板は前記負極活物質を含む負極合剤が集電体の両面に塗布されたことを特徴とする請求項9に記載の非水電解液電池。
PCT/JP2010/053425 2009-03-03 2010-03-03 非水電解液電池 WO2010101177A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/061,189 US20110159329A1 (en) 2009-03-03 2010-03-03 Non-aqueous electrolyte battery
CN2010800024222A CN102160230A (zh) 2009-03-03 2010-03-03 非水电解液电池
EP10748771.2A EP2405520A4 (en) 2009-03-03 2010-03-03 NONAQUEOUS ELECTROLYTE BATTERY
JP2011502777A JP5509192B2 (ja) 2009-03-03 2010-03-03 非水電解液電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009049420 2009-03-03
JP2009-049420 2009-03-03

Publications (1)

Publication Number Publication Date
WO2010101177A1 true WO2010101177A1 (ja) 2010-09-10

Family

ID=42709732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053425 WO2010101177A1 (ja) 2009-03-03 2010-03-03 非水電解液電池

Country Status (6)

Country Link
US (1) US20110159329A1 (ja)
EP (1) EP2405520A4 (ja)
JP (1) JP5509192B2 (ja)
KR (1) KR20110135913A (ja)
CN (1) CN102160230A (ja)
WO (1) WO2010101177A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130216920A1 (en) * 2010-09-06 2013-08-22 Tomonobu Tsujikawa Nonaqueous electrolyte battery
JP5333689B1 (ja) * 2013-04-02 2013-11-06 新神戸電機株式会社 非水電解液電池
JP2016035837A (ja) * 2014-08-01 2016-03-17 株式会社Nttファシリティーズ リチウムイオン電池及びその製造方法
CN112531221A (zh) * 2020-12-03 2021-03-19 天津空间电源科技有限公司 一种一体化电连接结构的卷绕型锂离子电池及其成型工艺

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10707526B2 (en) 2015-03-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US11050284B2 (en) * 2015-05-11 2021-06-29 Eaglepicher Technologies, Llc Electrolyte, a battery including the same, and methods of reducing electrolyte flammability
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US11600859B2 (en) * 2018-11-21 2023-03-07 Battelle Memorial Institute Electrolyte for stable cycling of rechargeable alkali metal and alkali ion batteries
US11664536B2 (en) 2020-01-09 2023-05-30 Battelle Memorial Institute Electrolytes for lithium batteries with carbon and/or silicon anodes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613108A (ja) 1992-04-09 1994-01-21 Bridgestone Corp 非水電解質電池
JP2001338683A (ja) * 2000-05-26 2001-12-07 Nippon Chem Ind Co Ltd 非水電解液電池
JP2002075444A (ja) * 2000-08-30 2002-03-15 Sony Corp 非水電解質電池
JP2005116424A (ja) * 2003-10-10 2005-04-28 Japan Storage Battery Co Ltd 非水電解質二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3305035B2 (ja) * 1993-03-30 2002-07-22 キヤノン株式会社 リチウム二次電池
TW434187B (en) * 1997-05-07 2001-05-16 Fuji Chem Ind Co Ltd A process for preparing a spinel type of lithium manganese complex oxide
EP1492181B1 (en) * 2002-02-25 2017-04-12 Bridgestone Corporation Nonaqueous electrolyte battery and process for producing the same
JP4632017B2 (ja) * 2003-10-07 2011-02-16 株式会社Gsユアサ 非水電解質二次電池
WO2005064734A1 (ja) * 2003-12-26 2005-07-14 Bridgestone Corporation 電池用非水電解液及びそれを備えた非水電解液電池、並びにポリマー電池用電解質及びそれを備えたポリマー電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613108A (ja) 1992-04-09 1994-01-21 Bridgestone Corp 非水電解質電池
JP2001338683A (ja) * 2000-05-26 2001-12-07 Nippon Chem Ind Co Ltd 非水電解液電池
JP2002075444A (ja) * 2000-08-30 2002-03-15 Sony Corp 非水電解質電池
JP2005116424A (ja) * 2003-10-10 2005-04-28 Japan Storage Battery Co Ltd 非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2405520A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130216920A1 (en) * 2010-09-06 2013-08-22 Tomonobu Tsujikawa Nonaqueous electrolyte battery
JP5333689B1 (ja) * 2013-04-02 2013-11-06 新神戸電機株式会社 非水電解液電池
JP2016035837A (ja) * 2014-08-01 2016-03-17 株式会社Nttファシリティーズ リチウムイオン電池及びその製造方法
CN112531221A (zh) * 2020-12-03 2021-03-19 天津空间电源科技有限公司 一种一体化电连接结构的卷绕型锂离子电池及其成型工艺

Also Published As

Publication number Publication date
CN102160230A (zh) 2011-08-17
EP2405520A4 (en) 2013-08-28
JPWO2010101177A1 (ja) 2012-09-10
KR20110135913A (ko) 2011-12-20
EP2405520A1 (en) 2012-01-11
US20110159329A1 (en) 2011-06-30
JP5509192B2 (ja) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5509192B2 (ja) 非水電解液電池
KR100934065B1 (ko) 리튬 이온 이차전지용 전해질
JP5222496B2 (ja) リチウムイオン二次電池
JP5623198B2 (ja) 非水電解液電池
WO2009150791A1 (ja) 電池
WO2010101180A1 (ja) 非水電解液電池
JP5656521B2 (ja) 非水電解液電池
WO2012033034A1 (ja) 非水電解液電池
KR101671106B1 (ko) 비수전해질 이차 전지
WO2012033045A1 (ja) 非水電解液電池
JP2012059404A5 (ja)
WO2013032005A1 (ja) 非水電解液二次電池
JP5777982B2 (ja) 非水電解液電池
US9979020B2 (en) Nonaqueous electrolyte battery and battery pack
JP5809889B2 (ja) 非水電解液電池の製造方法
JP2014035807A (ja) 電池パック
JP2009259749A (ja) 非水電解液二次電池
WO2013032004A1 (ja) 非水電解液電池
JP2014194857A (ja) リチウムイオン二次電池
JP5398130B2 (ja) 非水電解液電池
WO2013168585A1 (ja) 角形電池
JP2002198101A (ja) 非水電解液二次電池
JP5333689B1 (ja) 非水電解液電池
WO2024070821A1 (ja) 二次電池用電解液および二次電池
JP5809888B2 (ja) 非水電解液電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002422.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117004697

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011502777

Country of ref document: JP

Ref document number: 1432/DELNP/2011

Country of ref document: IN

Ref document number: 2010748771

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE