WO2010100944A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2010100944A1
WO2010100944A1 PCT/JP2010/001548 JP2010001548W WO2010100944A1 WO 2010100944 A1 WO2010100944 A1 WO 2010100944A1 JP 2010001548 W JP2010001548 W JP 2010001548W WO 2010100944 A1 WO2010100944 A1 WO 2010100944A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
guide wall
air conditioner
rotation axis
flow
Prior art date
Application number
PCT/JP2010/001548
Other languages
English (en)
French (fr)
Inventor
池田尚史
田所敬英
平川誠司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2011502667A priority Critical patent/JP5289554B2/ja
Priority to EP10748543.5A priority patent/EP2405206B1/en
Priority to CN201080008143.7A priority patent/CN102326030B/zh
Publication of WO2010100944A1 publication Critical patent/WO2010100944A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0025Cross-flow or tangential fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise

Definitions

  • the present invention relates to an air conditioner equipped with a cross-flow fan as a blowing means.
  • a conventional air conditioner equipped with a cross-flow fan has been disclosed in which a small-hole dimple is formed on the casing surface (see, for example, Patent Document 1).
  • small hole recesses dops
  • an air conditioner equipped with this cross-flow fan small hole recesses (dimples) are arranged in a lattice pattern at equal intervals on a plane side wall perpendicular to the rotation axis of the fan in the blowout grill.
  • a vortex generating means formed on the casing surface is disclosed (for example, see Patent Document 2).
  • the air conditioner equipped with the cross-flow fan includes vortex generating means that is provided on the downstream side when viewed from the fan on the casing surface and generates a vertical vortex in the air flowing out through the fan.
  • vortex generating means By this vortex generating means, a vertical vortex is generated at the vortex generating portion, and the upper layer and the lower layer of air are agitated to prevent the flow from being separated from the casing surface.
  • JP-A-8-121396 (4th, 5th page, FIG. 6) Japanese Patent Laid-Open No. 2002-250534 (pages 2, 3 and 2)
  • the air conditioner equipped with the once-through fan described in Patent Document 1 has a plurality of dimples (small hole depressions) formed in a lattice shape on the casing surface, and the fan blowout flow passes through the dimple surface.
  • the direction of the dimple downstream side is not specified, which may be unstable.
  • the present invention has been made to solve the above-described problems, and prevents the air blown from the fan from being peeled off from the casing in the air path from the blower outlet to the room.
  • An object of the present invention is to obtain an air conditioner equipped with a cross-flow fan that can reduce noise and prevent an increase in the input of a driving fan motor. It is another object of the present invention to prevent dew fly that occurs when the blown air becomes low speed at both ends in the direction of the rotation axis of the fan and the backflow of the room air occurs, and the room air is cooled by low-temperature air.
  • An air conditioner includes a suction port through which room air is sucked in, a heat exchanger that exchanges heat with the sucked room air, and a blowout port through which the heat-exchanged room air is blown into the room,
  • the longitudinal direction of the air conditioner main body is the rotational axis direction, and is driven to rotate by a motor from the suction port to the blower outlet.
  • a blower having an impeller that blows air, and a front side of the blowout side flow path from the impeller to the blowout port that separates an upstream suction side flow path and a downstream blowout flow path of the impeller
  • a stabilizer that constitutes a side, a spiral guide wall that constitutes the back side of the outlet-side flow path from the impeller to the outlet, and rotation of the impeller provided at least in part of the guide wall Abbreviated in cross section perpendicular to the axis
  • a step extending in the axial direction a recessed shape rectangular plurality Hon'nami set and is characterized by comprising a stepped portion to be stepped in the direction of the blowing of the blower.
  • an air conditioner capable of preventing noise and energy saving by preventing separation from the casing while a high-speed air flow blown out from the fan flows into the air outlet.
  • the air conditioner which draws in the airflow of the center side of the vicinity at the both ends of the rotating shaft direction of a fan, and can prevent the backflow from a room
  • FIG. 2 is a longitudinal sectional view taken along line QQ in FIG. 1.
  • FIG. 1 It is a perspective view which shows the housing
  • FIG. FIG. 4 is an explanatory diagram showing a cross-section by enlarging a part near the guide wall in the air conditioner according to Embodiment 1.
  • FIG. 4 is an explanatory diagram showing a cross-section by enlarging a part of a stepped portion in the air conditioner according to Embodiment 1. It is explanatory drawing which shows the effect
  • FIG. FIG. 4 is a perspective view showing a configuration in which the suction grille is divided in the longitudinal direction of the main body in the upper part of the air conditioner main body according to the air conditioner according to the first embodiment.
  • FIG. 10A is an explanatory diagram showing the distribution of the blown wind speed V from the impeller, in which the horizontal direction indicates the impeller rotation axis direction and the vertical direction indicates the wind speed V in the air conditioner according to the first embodiment.
  • FIG. 10 (b) is a front view showing the guide wall and the rear surface of the housing that is integrated with the guide wall, and shows the impeller of the cross-flow fan, but the position of the impeller is shown by a dotted line.
  • FIG. 4 is a perspective view showing a guide wall and a housing rear surface part integrally formed with the air conditioner according to Embodiment 1;
  • FIG. 4 is an explanatory diagram showing the impeller rotation axis direction in the horizontal direction and the wind speed V in the vertical direction in the air conditioner according to the first embodiment.
  • FIG. 10 is a perspective view showing a guide wall and a housing rear surface part integrally formed with the air conditioner according to the second embodiment.
  • FIG. 10 is an explanatory diagram showing a blow-off flow in the vicinity of a guide wall in the vicinity of an impeller alone at both ends in the direction of the rotation axis in a cross section perpendicular to the rotation axis O of the cross-flow fan according to the air conditioner according to the second embodiment.
  • FIG. 1 It is a perspective view which shows the guide wall at the time of removing the impeller of a once-through fan, and the housing
  • FIG. 10 is an exploded perspective view showing a guide wall and a housing rear surface part integrally formed with the guide wall according to the third embodiment of the present invention.
  • FIG. Embodiment 1 relates to the present embodiment, and is an external perspective view showing an air conditioner equipped with a cross-flow fan as a blower.
  • FIG. 2 is a longitudinal sectional view taken along line QQ in FIG. 1, and
  • FIG. 4 is a schematic configuration diagram showing an impeller of a once-through fan mounted on an air conditioner.
  • FIG. 4 is a view of a case and a cross-flow fan that form a part of a main body outer shell integrated with a guide wall of the air conditioner according to the present embodiment.
  • FIG. 5 is a perspective view showing an impeller, FIG.
  • FIG. 5 is a perspective view showing a housing rear surface portion 1c when the impeller 8a of the cross-flow fan is removed
  • FIG. 6 is an enlarged view of a part near the guide wall
  • FIG. 7 is an explanatory view showing a cross section by enlarging a part of the stepped portion 14.
  • the air flow is indicated by white arrows in FIG. 1 and indicated by dotted arrows in FIGS. 2 and 4 indicate the rotation direction of the impeller 8a of the cross-flow fan 8.
  • O is the rotation axis of the impeller 8a, and shows the rotation center in the sectional view.
  • the air conditioner main body 1 is installed on a wall 11a of a room 11 to be air-conditioned.
  • the air conditioner body 1 is composed of a front panel 1a, a housing front surface portion 1b, and a housing back surface portion 1c disposed on the front surface of the body.
  • the upper part 1d of the air conditioner main body 1d spanning the housing front part 1b and the housing back part 1c is formed with an air inlet 2 for indoor air, and further, an electrostatic precipitator 6 for collecting dust by electrostaticizing dust and dust.
  • a mesh-like filter 5 and a heat exchanger 7 are disposed on the upstream side of the impeller 8a of the cross-flow fan 8 serving as a blower.
  • the stabilizer 9 having a shape extending in the vicinity of the impeller 8a separates the suction side flow path E1 on the upstream side of the impeller 8a and the blowout side flow path E2 on the downstream side, from the impeller 8a.
  • the front side of the outlet side flow path E2 up to the outlet 3 is configured, and the water droplets dripped from the heat exchanger 7 can be temporarily stored.
  • the back side of the blowout side flow path E2 from the impeller 8a to the blower outlet 3 is comprised with the spiral guide wall 10, and the guide wall 10 is integrally formed with the housing
  • the guide wall 10 points from the guide wall starting point 10a which is the closest part to the impeller 8a on the upstream side to the guide wall end point 10b which is the closest point to the stabilizer 9 on the downstream side.
  • a straight line connecting the rotation center O and each of the guide wall start point 10a and the guide wall end point 10b forms a spiral angle ⁇ c that is a predetermined angle.
  • a straight line connecting each position of the guide wall 10 and the rotation axis center O is formed in a spiral shape that gradually increases from the guide wall start point 10a to the guide wall end point 10b.
  • a part of the guide wall 10 has a plurality of recesses connected stepwise from the impeller 8a to the outlet 3 to form a stepped portion 14. Further, an up / down wind direction vane 4a and a left / right wind direction vane 4b are rotatably attached to the air outlet 3.
  • FIG. 3 showing the impeller 8a of the once-through fan 8
  • one blade 8c is shown on the upper side of the rotating shaft O, and a view seen from the front is shown on the lower side of the rotating shaft O.
  • the impeller 8a of the once-through fan 8 is formed of a thermoplastic resin such as AS.
  • One end portion of the blade 8c extending in the rotation axis direction L is fixed to the outer peripheral portion of the disc-shaped ring 8b, and a plurality of blades 8c are provided along the outer peripheral portion of the ring 8b to form a single impeller 8d.
  • the other end of the blade 8c of one impeller single unit 8d is welded to the back surface (the surface to which the blade 8c is not fixed) of the ring 8b of the adjacent single impeller unit 8d.
  • a ring 8b serving as an end of the impeller 8a is welded to form the impeller 8a.
  • the fan shaft 8f which comprises the rotating shaft O is fixed to the end of the impeller 8a with a screw etc., for example.
  • a fan boss 8e formed integrally with the ring 8b and a motor shaft 12a of the motor 12 are fixed with screws or the like so that the other end of the impeller 8a protrudes to the inner side of the impeller 8a.
  • Both end portions are supported by the fan shaft 8f and the fan boss 8e.
  • the motor 12 rotates, the room air is sucked from the suction port 2 and blown into the room from the air outlet 3 by rotating in the rotation direction RO as shown in FIG.
  • the impeller 8a is accommodated in the air conditioner body 1 so that the rotation axis direction L of the impeller 8a coincides with the longitudinal direction of the air conditioner body 1.
  • a surging block 15 is formed as a flow path reducing member on both ends of the impeller 8a on the downstream side of the guide wall 10.
  • the width of the outlet side flow path E2 is reduced.
  • a step portion 14 is provided in a part of the guide wall 10. As shown in FIG. 5, the step portion 14 provided on the guide wall 10 is formed in a part of the rotational axis direction L of the impeller 8a, in this case, in the central part.
  • the blow-out flow in the center portion in the rotation axis direction L is a relatively high-speed flow Ff.
  • the blowing flow at both end portions in the rotation axis direction L becomes a blowing flow Fs that is slower than the flow at the central portion.
  • the stepped portion 14 includes, for example, a plurality of stepped portions extending in the rotation axis direction L and recessed in a substantially triangular shape in a cross section perpendicular to the rotation axis O of the impeller 8 a, in this case, five steps.
  • Steps 14A, 14B, 14C, 14D, and 14E are arranged in parallel to form a staircase.
  • a step end portion 14d of the step portion 14E located most downstream from the step start portion 14a of the step portion 14A located most upstream is formed inside the guide wall end point 10b from the guide wall start point 10a.
  • the lengths C1, C2 of line segments O-14a, O-14b, O-14d connecting the rotation center O of the impeller 8a of the once-through fan and the step start point 14a, the step deepest point 14b, and the step end portion 14d respectively.
  • the step deepest portion 14b is located near the step start portion 14a side between the step start portion 14a and the step end portion 14d. That is, when the distance h connecting the step start portion 14a and the deepest step portion 14b is compared with the length S connecting the deepest step point 14b and the step end portion 14d, h ⁇ S.
  • the surface connecting the step maximum depth point 14b and the step end portion 14d is a step slope portion 14c that is a flat inclined surface facing the impeller 8a.
  • the stepped portion 14 provided in the guide wall 10 satisfies C1 ⁇ C2 ⁇ C3, and therefore gradually from the rotation center O toward the downstream side of the outlet side flow path E2. It is formed in an expanding direction.
  • the distance h that connects the step start portion 14a and the deepest step portion 14b and the distance S that connects the deepest step portion 14b and the step end portion 14d are approximately.
  • h 2 mm
  • S 15 mm
  • h / S is set to about 0.1 to 0.3.
  • the spiral surface of the guide wall 10 having no step portion 14 is formed, here, the spiral virtual surface IM of the guide wall 10 is formed.
  • h and S of the steps of the stepped portion 14 do not necessarily have to be the same.
  • the step portion forming angle ⁇ s that is the angle from the step start portion 14a of the step portion 14A to the step end portion 14d of the step portion 14E around the rotation center O is a spiral angle from the guide wall start point 10a to the guide wall end point 10b.
  • the angle is smaller than ⁇ c.
  • the step portion forming angle ⁇ s formed by the straight line connecting the rotation center O and the step deepest point 14b of the step portion 14A and the straight line connecting the rotation center O and the step end portion 14d of the step portion 14E on the most downstream side is set to a predetermined value.
  • the angle is set to, for example, approximately 60 °
  • the guide wall spiral angle ⁇ c is set to, for example, approximately 140 °
  • ⁇ s is formed to be approximately 1/2 of ⁇ c.
  • One step constituting the step portion 14 has a shape in which the cross section is recessed in a substantially triangular shape from the spiral virtual surface IM of the guide wall 10. That is, the step is located at a position that is lowered in a direction of approximately 90 degrees ( ⁇ 1) from the step start portion 14a located on the start point 10a side of the guide wall 10 toward the back side of the guide wall 10 (the right side in FIG. 7).
  • the deepest part 14b is formed.
  • a step slope 14c which is a surface extending along the virtual surface IM in a direction of approximately 80 degrees ( ⁇ 2) from the deepest step portion 14b toward the virtual surface IM of the guide wall 10, is formed.
  • a portion where the step slope 14c intersects the virtual surface IM is a step end portion 14d.
  • the angle ( ⁇ 3) formed by the step surface 14c and the virtual surface IM at the step end portion 14d is about 10 degrees or less.
  • the step start portion 14a, the step deepest portion 14b, and the step end portion 14d form one step 14B having a substantially triangular shape.
  • the impeller 8a of the cross-flow fan 8 rotates in the RO direction. Then, the air in the room 11 is sucked from the suction port 2 provided in the upper part 1d of the air conditioner main body, dust is removed by the electric dust collector 6 and the filter 5, and heat is exchanged by the heat exchanger 7. That is, the air is heated and heated, or cooled, cooled, or dehumidified, and sucked into the impeller 8a of the cross-flow fan 8 through the suction-side flow path E1.
  • the flow blown out from the impeller 8a is guided to the guide wall 10 and the stabilizer 9 and travels to the blowout port 3 through the blowout side region E2. And it is air-conditioned by blowing to the room 11.
  • the air flow is controlled in the vertical and horizontal directions by the vertical wind direction vanes 4a and the left and right wind direction vanes 4b, so that the entire room 11 is blown to suppress temperature unevenness.
  • a relatively high-speed flow Ff blown from the impeller 8a and flowing along the guide wall surface in the central portion of the blowing region E2 in the rotation axis direction L collides with the guide wall 10 and is blown to the blowout port 3.
  • a blowing wind speed difference arises for every single impeller 8d adjacent in the rotational axis direction L of the impeller 8a, and disturbance is caused by shear friction between the blown flows in the vicinity of the ring 8b.
  • the guide wall 10 has a simple curved spiral shape. For this reason, pressure fluctuations occur due to collisions of blown winds and turbulent flows on the surface of the guide wall 10, causing noise.
  • the blown-out flow is a high-speed flow Ff and hits the guide wall 10 at a high speed.
  • the stepped portion 14 shown in FIGS. 5 to 7 is provided in, for example, the central portion of the guide wall 10.
  • a high-speed flow Ff flows through the central portion, and the action of the step portion 14 on the high-speed flow Ff will be described with reference to FIG.
  • a part of the high-speed flow Ff flowing along the step portion 14 is changed in the direction from the step start portion 14a of the step 14A on the most upstream side to the deepest step portion 14b and falls into the step 14A.
  • a vortex G1 is generated. For this reason, a negative pressure is generated by the vortex G1 at the deepest step 14b.
  • the high-speed blowing flow Ff blown from the impeller 8a and flowing in the vicinity of the surface of the guide wall 10 is drawn into the negative pressure from the step start portion 14a as shown by the flow X, and is downstream of the step slope 14c. Reattach to part. And it goes to the step part 14B connected to the step part 14A.
  • a similar phenomenon also occurs at the step start portion 14a of the step portion 14B, and reattaches to the step slope 14c from the middle of the step portion 14B.
  • the step 14 formed with a plurality of steps causes the step start portion 14a to move away from the surface of the guide wall 10 and to reattach to the middle of the step slope 14c and flow like a flow X. .
  • the surface area of the guide wall 10 with which the high-speed flow contacts is reduced in the blowing flow X as compared with the blowing flow Ff when the stepped portion 14 is not provided.
  • the sound source is reduced.
  • peeling on the surface of the guide wall 10 is suppressed by generating a negative pressure in the vortex G1.
  • the step portion 14 is provided so as to extend in the rotation axis direction L. For this reason, the magnitude
  • the guide wall 10 by preventing the guide wall 10 from being peeled off from the surface, it is possible to prevent a reduction in the air volume with respect to the input power, leading to energy saving.
  • the step end portion 14d does not protrude from the virtual surface IM of the guide wall 10 to the air passage side of the outlet side flow path E2, but gradually along the spiral virtual surface IM of the guide wall 10 Since the shape expands, the flow in the vicinity of the guide wall 10 flowing from the upstream side is not obstructed. For this reason, ventilation resistance is reduced and motor power can be reduced, so that power consumption can be reduced.
  • the noise and efficiency of the cross-flow fan can be reduced, and by installing this cross-flow fan, an air conditioner that can be quiet and save energy can be obtained.
  • the step start portion 14 a and the step end portion 14 d are located on the spiral virtual surface IM of the guide wall 10, and the deepest step portion 14 b is located on the back side of the guide wall 10 with respect to the virtual surface IM.
  • C1 ⁇ C3 is always satisfied.
  • the deepest step 14 b is located in a portion recessed from the step start portion 14 a to the back side of the guide wall 10.
  • C2 ⁇ C3 indicates that the position of the deepest step 14b is not greatly recessed from the virtual surface IM.
  • a step with a large depression width is provided, a large vortex is formed in this portion, and the blowout flow flowing along the guide wall 10 is disturbed by the large vortex.
  • h ⁇ S is configured, and in the cross section perpendicular to the rotation axis direction L as shown in FIG. 8, the deepest step portion 14b is closer to the step start portion 14a than the step end portion 14d. . That is, in FIG. 7, the step has a triangular cross section where ⁇ 1> ⁇ 3. For this reason, the vortex G1 is likely to occur in a portion close to the step start portion 14a. Furthermore, the length of the slope portion 14c is increased to form a shape that is easily reattached. Further, h / S is preferably set to 0.1 to 0.3. If h / S is less than 0.1, the indentation is too small, the vortex is small, and the effect of reattachment is small. On the other hand, if h / S is greater than 0.3, the indentation is too large and the vortex is large and the flow is disturbed.
  • ⁇ 1, ⁇ 2, and ⁇ 3 are examples, they are not limited to this example.
  • the shape is preferably such that the vortex G1 is likely to be generated from the flow in the vicinity of the guide wall 10. From this point of view, it is preferable that ⁇ 1 and ⁇ 2 be approximately 90 ° because the vortex G1 is likely to be generated. In particular, if ⁇ 2 is 90 ° or less, the vortex G1 is generated in the vicinity of the deepest step portion 14b, so that the flow drawn by the negative pressure can be smoothly reattached to the slope portion 14c. ⁇ 3 is small, and the flow of the step slope portion 14c can be smoothly passed to the step start portion 14a of the next step.
  • the deepest step portion 14b is above the straight line, that is, the back side of the guide wall 10 If the shape is located in the portion that has digged into the mold, the mold cannot be released. For this reason, it is preferable that the deepest step 14b is positioned below a straight line that passes through the step start portion 14a and indicates the release direction. However, this does not apply to other manufacturing methods.
  • the step portion 14 has five steps, but the number is not limited to five, and two or more steps may be provided in parallel.
  • the stepped portion 14 is configured so that the stepped end portion 14d of the adjacent upstream stepped portion 14A and the stepped start portion 14a of the stepped portion 14B connected to the downstream side thereof are located at substantially the same position. did.
  • the present invention is not limited to this configuration.
  • a plurality of steps may be provided with a certain distance between the step end portion 14d of the step 14A on the upstream side and the step start portion 14a of the step 14B on the downstream side. In other words, the same effect can be obtained if a plurality of steps are provided at least in a continuous manner at a predetermined interval.
  • the stepped portion 14 may be located anywhere as long as it is between the guide wall start point 10a and the guide wall end point 10b. However, a vortex or the like is likely to be formed immediately downstream of the guide wall starting point 10a depending on the shape of the guide wall starting point 10a, and an unstable flow is likely to occur. In order to obtain an effective effect by the stepped portion 14, it is preferable to provide the stepped portion 14 at a portion where the flow along the guide wall 10 is to some extent. As shown in FIG. 2, by providing the stepped portion 14 in the vicinity of the flow substantially along the guide wall 10, the effect of suppressing separation of the flow along the guide wall 10 works effectively.
  • FIG. 9 is a perspective view showing a configuration in which the air inlet 2 is divided in the longitudinal direction of the main body in the air conditioner main body upper part 1d according to the present embodiment.
  • the first suction port 2 ⁇ / b> A and the second suction port 2 ⁇ / b> B are divided into two parts by, for example, the dividing part 2 ⁇ / b> C near the center in the rotation axis direction.
  • the electric dust collector 2, the additional filter, and the like are arranged asymmetrically on the upstream side of the heat exchanger 7, the suction ventilation resistance is different on the left and right, and the dividing portion 2C may be provided near the center.
  • the stepped step portion 14 extending in the impeller rotation axis direction L is formed on the guide wall 10, thereby reducing the noise and the high efficiency of the cross-flow fan 8. And an air conditioner that is quiet and energy saving can be obtained.
  • the suction port 2 is divided into two in the rotational axis direction L of the impeller 8a and is configured by the first suction port 2A and the second suction port 2B, the dividing portion 2C that divides the suction port 2 into two parts. becomes resistance. For this reason, it becomes difficult for the impeller 8a to suck and blow out at the downstream side of the dividing portion 2C.
  • Fig.10 (a) has shown distribution of the blowing wind speed V from the impeller 8a.
  • the horizontal direction is the impeller rotational axis direction L, and the wind speed V is indicated in the vertical direction. As shown in the figure, the wind speed V is low in the downstream portion of the dividing portion 2C.
  • FIG. 10B is a front view showing the guide wall 10 and the housing rear surface portion 1c integrally formed therewith, and the impeller 8a of the cross-flow fan is removed, and the position of the impeller 8a is a dotted line. It shows with.
  • the positions in the rotation axis direction L are substantially matched.
  • FIG. 11 is a perspective view showing the guide wall 10 and the housing back surface portion 1c configured integrally therewith.
  • the step portion 16 is divided into left and right portions and formed at two locations, the first step portion 16A and the second step portion 16B.
  • the step portion 16 is not formed in the central portion B corresponding to the divided portion 2C near the center in the rotation axis direction L.
  • the detailed cross-sectional shapes of the first and second step portions 16A and 16B are the same as those of the step portion 14 in FIGS.
  • the first and second step portions 16A and 16B are formed in the guide wall 10 where the blower wind speed of the impeller 8a is relatively high, for example, where the blown wind speed is Vs or higher. That is, the blown-out wind speed increases at a position corresponding to the downstream of the first and second suction ports 2A, 2B, and the flow in the vicinity of the guide wall surface shown in FIG.
  • the surface area of the guide wall 10 in contact with the high-speed flow is large, noise increases.
  • a vortex is generated in the vicinity of the deepest step portion of the step portions 16A and 16B, and a negative pressure is generated in the vicinity thereof.
  • the surface area of the guide wall 10 which a high-speed flow touches is reduced, suppressing that the high-speed flow which passes along the guide wall 10 surface peels. Thereby, noise can be reduced.
  • first and second stepped portions 16A and 16B are respectively provided in, for example, the entire surface of the portion that extends in the rotation axis direction L and is considered to collide with the high-speed flow.
  • the blown wind speed is distributed in the rotation axis direction L, and the size of the vortex generated by the step portions 16A and 16B also changes in the rotation axis direction L. For this reason, pressure fluctuations are reduced in the rotation axis direction L, and noise can be further reduced.
  • the step portion 16 is constituted by connecting a plurality of steps, for example, five steps in FIGS. For this reason, since the pressure fluctuation of the blowout flow is gradually diffused toward the blowout port 3 in the blowout region E2, noise can be further reduced.
  • Step portions 16A and 16B are not formed in the portion B where the blowing air speed is particularly low.
  • the blowing air speed is particularly low.
  • noise caused by collision with the guide wall 10 is not a problem.
  • the step portion 16 is formed in this portion, there is a possibility that the flow is obstructed by the generated vortex. Therefore, in this configuration example, the first and second step portions 16A and 16B are provided only in the portion where the blow-out flow is high speed, and noise due to the high-speed flow is reduced.
  • FIG. 12 shows the rotational axis direction L of the impeller 8a in the horizontal direction, and the wind speed V in the vertical direction.
  • the stepped portion 16 is provided in a portion where the blown wind speed V is equal to or higher than the predetermined wind speed Vs.
  • the predetermined wind speed value Vs varies depending on the size of the air conditioner and the cross-flow fan and the configuration of the wind path. For this reason, it cannot be set unconditionally, but it can be set empirically or experimentally or by simulation. Further, since the blown wind speed is the lowest at both ends in the rotation axis direction L, for example, a value equal to or higher than the intermediate value between the wind speed at both ends and the wind speed of the fastest portion may be set as Vs.
  • the air conditioner body 1 is provided on the downstream side of the heat exchanger 7 between the air outlet and the air outlet 3, the longitudinal direction of the air conditioner main body 1 is set as the rotation axis direction L, and is driven to rotate by the motor 12.
  • the blower 8 having the impeller 8a for blowing air, the suction side flow path E1 on the upstream side of the impeller 8a and the blowout side flow path E2 on the downstream side are separated, and the blowout side flow path from the impeller 8a to the blowout port 3 Provided on at least a part of the guide wall 10, the stabilizer 9 that constitutes the front side of E2, the spiral guide wall 10 that constitutes the back side of the outlet side flow path E2 from the impeller 8a to the outlet 3;
  • the cross section perpendicular to the rotational axis O of the impeller 8a is approximately three.
  • a plurality of stepped portions 14A, 14B, 14C, 14D, and 14E that are concave in shape and extend in the rotation axis direction L are provided side by side, and a stepped portion 14 that is stepped in the direction in which the blower 8 blows air is provided.
  • the upstream end of one step of the step 14 is defined as a step start portion 14a, and the deepest recessed portion of the step in a substantially triangular shape is the deepest step 14b.
  • the downstream end of the step is the step end 14d, the length C1 connecting the rotation center O of the impeller 8a and the step start portion 14a, and the length C2 connecting the rotation center O of the impeller 8a and the step deepest portion 14b.
  • the step between the rotation center O of the impeller 8a and the length C3 connecting the step end portion 14d is configured such that C1 ⁇ C2 ⁇ C3, thereby obstructing the flow in the vicinity of the guide wall 10. Therefore, there is an effect that an air conditioner that can reduce airflow resistance and power consumption can be obtained.
  • the upstream end of one step of the step 14 is defined as a step start portion 14a, and the deepest recessed portion of the step in a substantially triangular shape is the deepest step 14b.
  • the downstream end of the step is the step end portion 14d, and the relationship between the length h connecting the step start portion 14a and the step deepest portion 14b, and the length S connecting the step deepest portion 14b and the step end portion 14d,
  • the step portion 14 in the guide wall 10 where the air flow blown from the impeller 8a becomes high speed in the rotational axis direction L of the impeller 8a the surface area of the guide wall 10 with which the high-speed flow contacts is reduced. There is an effect that it is possible to obtain an air conditioner that can be reduced to reduce noise.
  • the suction port 2 is divided into two in the rotational axis direction L of the impeller 8a, and is constituted by a first suction port 2A and a second suction port 2B.
  • the guide wall 10 is located at a position corresponding to the downstream of the first suction port 2A. Since the first step portion 16A provided and the second step portion 16B provided in the guide wall 10 at a position corresponding to the downstream of the second suction port 2B are provided, the portion of the guide wall 10 in contact with the high-speed flow is provided.
  • the step portions 16A and 16B are provided, and the surface area of the guide wall 10 with which the high-speed flow is in contact is reduced, so that an air conditioner capable of reducing noise can be obtained.
  • FIG. 13 relates to the air conditioner of the present embodiment, and is a front view showing the guide wall 10 and the housing back surface portion 1c configured integrally therewith, with the impeller 8a of the cross-flow fan being removed, The position of the impeller 8a is indicated by a dotted line.
  • FIG. 14 is a perspective view showing the guide wall 10 and the housing back surface portion 1c configured integrally therewith.
  • the same reference numerals as those in Embodiment 1 denote the same or corresponding parts.
  • the stepped portions 17A and 17B in the present embodiment are provided in the vicinity of the low-speed blowing flow Fs, for example, at both ends of the guide wall 10 in the rotation axis direction L.
  • the step portions 17A and 17B provided so as to be adjacent to the side walls of both end portions are configured by connecting a plurality of steps, for example, five steps, in a staircase pattern.
  • the cross-sectional shape perpendicular to the rotation axis O is a substantially triangular shape as in FIG. In this configuration, since the surging block 15 is provided as a flow path reducing member at both ends of the guide wall 10, the stepped portions 17 ⁇ / b> A and 17 ⁇ / b> B are provided adjacent to the surging block 15.
  • each of the stepped portions 17A and 17B has one end portion inside the surging block 15 in the rotational axis direction L, and the other end portion is a single impeller unit that is at least the second from the end portion of the impeller 8a. It is stretched so as to cover 8d. That is, the stepped portion 17A is provided so as to straddle the impeller single unit 8d1 on the fan shaft side of the impeller 8a and a part of the single impeller unit 8d2 adjacent to the inside of the single impeller unit 8d1. Further, the stepped portion 17B is provided so as to straddle the impeller single unit 8d3 on the fan motor side and the impeller single unit 8d4 adjacent to the inside of the single impeller unit 8d3.
  • FIG. 15 is a cross-sectional view perpendicular to the rotational axis O of the impeller 8a, and is an explanatory view showing the blow-out flow in the vicinity of the guide wall 10 near the impeller single bodies 8d1 and 8d3 at both ends in the rotational axis direction L.
  • a dotted line Ff indicates a fast flow
  • Fs indicates a slow flow
  • stepped portions 17A and 17B are provided at both ends in the rotational axis direction L of the impeller 8a.
  • an unstable flow Fs at a low wind speed in the vicinity of the guide wall 10 generated when dust is accumulated on the filter 5 generates a vortex G1 at the deepest step portion 17b, and a negative pressure is generated.
  • To the step slope portion 17c. it reattaches, flows along the step slope portion 17c, and flows to the step end portion 17d.
  • the unstable flow Fs at a low wind speed contacts the guide wall 10, so that the flow that is about to separate from the surface of the guide wall 10 is diffused along the surface of the guide wall 10 and is difficult to be separated.
  • the stepped portions 17A and 17B are formed across the stepped blades 8d2 and 8d4 adjacent to the blades 8d1 and 8d3 at both ends of the bladed wheel 8a. Comparing the blowout flow in the vicinity of the impeller single unit 8d1, 8d3 and the impeller single unit 8d2, 8d4, the impeller single unit 8d1, 8d3 has a relatively negative pressure, and the impeller unit 8d2, 8d4 has a high pressure.
  • the flow blown from the impellers 8d2 and 8d4 passes through the step deepest portions 17b of the stepped portions 17A and 17B to the impeller single pieces 8d1 and 8d3 at both ends where the negative pressure is relatively negative, and both end portions in the rotational axis direction L The flow is attracted to. For this reason, the blowing flow can be diffused in the direction of both end portions of the impeller 8a, and the wind speed at this portion can be increased, so that backflow from the room can be reliably prevented.
  • a cross-flow fan that does not easily generate a backflow phenomenon even if dust accumulates on the filter is obtained, and a high-quality air conditioner can be obtained by installing this cross-flow fan.
  • the impeller 8a of the blower 8 is configured by fixing a single impeller 8d divided into a plurality in the rotation axis direction L, and includes step portions 17A and 17B provided at both ends of the guide wall 10 in the rotation axis direction L. Since the length in the rotation axis direction L extends so as to extend to the adjacent impeller units 8d2 and 8d4 fixed to the impeller units 8d1 and 8d3 at both ends, the rotation through the step deepest portion 17b. There is an effect that an air conditioner that can prevent backflow by attracting the flow in the axial direction L and reliably reducing the extremely low speed region can be obtained.
  • FIG. 16 relates to the air conditioner according to the present embodiment, and is a perspective view showing the guide wall 10 and the housing back surface portion 1c configured integrally with the guide wall 10 when the impeller 8a of the cross-flow fan is removed.
  • a step portion 18 extending from one end portion in the impeller rotational axis direction L to the other end portion is formed.
  • the step portion 18 can achieve the noise reduction and energy saving effects as described in the first embodiment at the central portion in the rotation axis direction L, and can prevent back flow from the room at both ends in the rotation axis direction L.
  • An air conditioner is obtained. As shown in FIG.
  • the step portion 18 on the side wall of the guide wall 10, here, the entire guide wall 10 in the rotation axis direction L inside the surging block 15, the effects of both of FIG. 8 and FIG. 15 are achieved. Is obtained. That is, in the central portion in the rotation axis direction L where the blow-out flow is high speed, the surface area of the guide wall 10 with which the high-speed flow Ff is in contact is reduced, and separation from the surface of the guide wall 10 is suppressed, thereby reducing noise and energy saving. Can be Further, at both ends where the blown flow is low speed and unstable, the blown flow Fs can be diffused to the surface side of the guide wall 10 to prevent backflow from the room, and a high-quality air conditioner can be obtained.
  • the stepped portion 18 is formed so as to extend from one end portion to the other end portion of the guide wall 10 in the rotation axis direction L, thereby preventing the blow-off flow from being separated by the negative pressure generated in the stepped portion 18.
  • FIG. 17 relates to the air conditioner according to the present embodiment, and is a perspective view showing the guide wall 10 when the impeller 8a of the once-through fan is removed and the housing back surface portion 1c configured integrally therewith.
  • a step portion 19 extending from one end portion in the impeller rotation axis direction L to the other end portion is formed.
  • step-difference part 19 in the several places of the rotating shaft direction L, for example, the three division ribs 13, are provided, and the level
  • the dividing rib 13 is a partition having a wall surface extending in a direction perpendicular to the rotation axis O and connecting a step start portion 19a and a step end portion 19d of each step portion 19 provided at the center and both ends.
  • the dividing ribs 13 are provided so as to extend in a direction perpendicular to the rotation axis direction L.
  • the surface of the dividing rib 13 facing the impeller 8a is configured to substantially coincide with the virtual surface of the guide wall 10 where the stepped portion 19 is not provided.
  • the dividing rib 13 prevents the high-speed flow Ff flowing through the center portion from flowing excessively to both ends through the step portion 19. Between the surface of the dividing rib 13 that faces the impeller 8a and the impeller 8a, there is a space that does not form the stepped portion 19. For this reason, the flow from the center side to both ends is suppressed to some extent. That is, rectification is performed by forcing the flow from the center side to both ends in the direction orthogonal to the rotation axis O by the dividing rib 13. In this way, the flow of the guide wall 10 near both ends can be further stabilized, and a higher quality air conditioner can be obtained.
  • the start position 13A of the split rib 13 that is the partition start portion is the same as the start position of the step portion 19, and the end position 13B of the split rib 13 that is the partition end portion is the step portion 19. It may be the same as the end position of. That is, the dividing rib 13 is provided in the range of the step portion forming angle ⁇ s.
  • the dividing rib 13 has a function of preventing the high-speed flow at the center side from flowing excessively to the low-speed flow portions at both ends through the step portion 19.
  • the surface along the surface of the guide wall 10 in the direction perpendicular to the rotation axis O may be provided so as to include at least a portion where the step portion 19 is formed.
  • the position at which the dividing rib 13 is provided in the rotation axis direction L is not limited to FIG. If one is provided at least near both ends, the flow of the guide wall 10 near both ends can be rectified and stabilized.
  • each step portion 19 extending in the direction perpendicular to the rotation axis O between the center portion and both end portions in the rotation axis direction L of the guide wall 10 and provided at the center portion and both end portions.
  • the partition 13 having a wall surface that connects the step 19a and the step end portion 19d is provided, and the effect of the step portion 19 is effectively prevented by preventing the high-speed flow flowing through the center portion from flowing excessively through the step portion 19 to both ends. It has the effect of being able to demonstrate, obtaining a stable flow, and obtaining a high-quality air conditioner.
  • FIG. 18 is a perspective view showing the guide wall 10 and the housing rear surface portion 1c configured integrally therewith when the impeller 8a of the cross-flow fan is removed, according to the air conditioner according to the present embodiment.
  • the stepped portions 20 and 21 are divided into three in the rotation axis direction L, and the stepped portion forming angle ⁇ s between the central stepped portion 20 and the both end stepped portions 21 and the normal surface length S of the plurality of steps are changed.
  • the step start portion and the step end portion are shifted in the air blowing direction by the step portion forming angle ⁇ s (c) of the central step portion 20 and the step portion forming angle ⁇ s (e) of the both end step portions 21, respectively.
  • ⁇ s (c) ⁇ s (e) are both the central step 20 and the both end steps 21 are gradually increased from the upstream side to the downstream side with respect to the normal lengths Sc and Se, which are step widths of a plurality of steps.
  • the flow around the guide wall 10 is a high-speed flow at the center portion in the rotation axis direction L and a low-speed flow at both ends. Therefore, the start position of the both-ends step portion 21 is configured upstream of the start position of the center step portion 20.
  • the flow at both ends of the flow having a velocity distribution blown out from the impeller 8a generates vortices at both end step portions 21 and becomes negative pressure at the deepest step portion. As a result, the flow in the central portion that flows near the both ends is attracted to both ends, and becomes a flow having a component toward both ends.
  • each of the slope lengths of the step portions 20 and 21 is configured to be different.
  • the normal length Sc of the central step 20 and the normal length Se of the both-end step 21 are independently changed so as to gradually increase from the upstream side to the downstream side.
  • the spiral guide wall 10 has a shape that forms a flow path such that the flow path width gradually increases.
  • the slope lengths Sc and Se of the stepped portions 20 and 21 can be changed gradually from the upstream side to the downstream side.
  • the blowout flow whose speed is gradually decreased can be diffused so as to be a flow along the guide wall 10 by the negative pressure generated in the vicinity of the deepest step portion of the step portions 20 and 21. .
  • a wide blowing flow can be blown into the room from the blower outlet 3.
  • a blowout flow with good sensibility can be obtained instead of a partially concentrated biased flow.
  • the shape of the stepped portions 20 and 21 is changed in accordance with the difference in the flow speed and the ventilation resistance of the impeller 8a depending on the rotation axis direction L, and the surface shape of the guide wall 10 is optimized. As a result, noise can be further reduced, energy can be saved, and a high quality air conditioner can be obtained by preventing backflow.
  • FIG. 19 is a perspective view of the air conditioner according to the present embodiment, showing the guide wall 10 when the cross-flow fan impeller 8a is removed and the housing rear surface portion 1c configured integrally therewith.
  • the stepped portions 22 and 23 are divided into two in the rotation axis direction L, and the stepped portion forming angle ⁇ s and the slopes of the plurality of steps are formed between the stepped portion 22 on the left side and the stepped portion 23 on the right side.
  • the length S is changed.
  • the suction-side flow path E1 may include a high-performance filter that can collect finer dust than the electrostatic precipitator 6 and the filter 5 on the upstream side of the heat exchanger 7.
  • a high-performance filter that can collect finer dust than the electrostatic precipitator 6 and the filter 5 on the upstream side of the heat exchanger 7.
  • the ventilation resistance on the downstream side thereof becomes high, and a low-speed flow tends to occur. Therefore, as shown in FIG. 19, in the portion where the airflow resistance on the left side is high, the stepped portion forming angle ⁇ s is increased as in the stepped portion 22 to diffuse the low-speed blowing flow to the surface of the guide wall 10. be able to.
  • the boundary portion between the stepped portion 22 and the stepped portion 23 is configured by shifting the position of the deepest portion of the plurality of steps, so that it is possible to control that the flow in the direction of the rotation axis O becomes excessive, and the blowout flow Can be rectified in a direction perpendicular to the rotation axis O.
  • optimization of the shape of the stepped portion shown in FIGS. 18 and 19 is configured by dividing the stepped portion into a plurality of portions in the rotation axis direction L, and the position of the step start portion in the plurality of divided stepped portions is determined. It was made to differ in the adjacent level
  • noise can be reduced by taking into consideration the surface area of the flow along the guide wall 10 by the step portion formed in the high-speed flow portion in the central portion.
  • the stepped portion formed in the low-speed flow portions at both ends can diffuse so as to flow along the guide wall 10, prevent backflow from the room, and obtain a highly reliable air conditioner. it can.
  • the shape of the stepped portion can be changed in the rotation axis direction L according to the wind speed and the air volume flowing along the guide wall 10.
  • the ventilation resistance in that portion can be obtained.
  • the rectification effect can be controlled by changing the method.
  • the same step structure is formed in the adjacent step part, and the position of the step start part and the position of the deepest part of the step are also obtained by slightly shifting the step start position of the step on the most upstream side with the adjacent step part.
  • the position of the step end portion can be changed.
  • the stepped portion is divided into a plurality of portions in the rotation axis direction L, and the position of the step start portion or the position of the deepest step or the step end portion of the divided step portions 20, 21, 22, 23 Can be optimized in accordance with the difference in ventilation resistance in the rotation axis direction L, by making the positions of the adjacent step portions 20 and 21 or the step portions 22 and 23 different.
  • an air conditioner that can further reduce noise, save energy, and improve quality can be obtained.
  • the length S connecting the deepest step portion and the step end portion of one step constituting the step portion is gradually increased or decreased gradually from the upstream side to the downstream side with respect to the plurality of steps.
  • the following effects are obtained. That is, in addition to the effect of providing the step portion by gradually changing the length S connecting the deepest step portion and the step end portion of one step from the upstream side to the downstream side with respect to the plurality of steps.
  • an air conditioner that is easy to control the blowing direction and that is easy to release during manufacture can be obtained.
  • the effect of providing the step portion by gradually changing the length S connecting the deepest step portion of the step and the end portion of the step to the plurality of steps from the upstream side to the downstream side In addition to the effect of diffusing the blowing flow in the flow path of the blowing side flow path E2, and providing the step portion, there is an effect that the back flow is surely prevented and a highly reliable air conditioner is obtained.
  • all the slope lengths S of the steps constituting the stepped portions are the same, but may be changed gradually longer or shorter from the upstream side toward the downstream side.
  • the stepped portions divided into a plurality of portions in the rotational axis direction L such as the stepped portions 16A and 16B in FIGS. 10 and 11 and the stepped portions 17A and 17B in FIGS. 13 and 14, are divided. You may comprise so that the position of the level
  • the deepest step portion of the plurality of steps constituting the step portion is configured in parallel to the rotation axis direction L, but the present invention is not limited to this. You may comprise so that it may incline a little with respect to the rotating shaft direction L.
  • the step portion is configured to extend in the rotation axis direction L, the size of the vortex G1 changes in this direction, the pressure fluctuation is reduced, and noise can be reduced.
  • step difference was arrange
  • FIG. 20 is a partially exploded perspective view showing the housing back surface portion 1c.
  • a lower layer base 10c is formed on the rear surface portion of the guide wall 10 in the housing back surface portion 1c, and a plurality of lower layer side fitting portions, for example, concave and convex guide holes 10d are formed on the guide wall surface side.
  • the surface piece 25 of the guide wall is composed of, for example, five portions 25a, 25b, 25c, 25d, and 25e in the rotation axis direction L.
  • Each back surface of the surface pieces 25a, 25b, 25c, 25d, and 25e is configured to be fitted into the guide hole 10d so as to be fitted into the lower layer side fitting portion 10d of the lower layer base 10c corresponding to the fixing position of the guide wall.
  • Step portions 26b and 26d having any of the configurations described in the first and second embodiments are provided.
  • the guide walls of each part are divided by the airflow resistance distribution on the suction region E1 side by dividing the both ends 25a and 25e, the central part 25c, and the intermediate parts 25b and 25d between the both ends and the central part.
  • Ten surface shapes are optimized and determined by, for example, simulation.
  • the step portions 26 are not provided in the both end portions 25a and 25e and the central portion 25c, but the step portions 26b and 26d are provided in the intermediate portions 25b and 25d between the both end portions and the central portion.
  • each surface piece 25a, 25b, 25c, 25d, 25e is comprised integrally or separately, and is the lower layer side fitting part of the lower layer base
  • substrate 10c applicable to the fixing position of the guide wall 10 on the back surface of each surface piece. By fitting into the guide hole 10d, it is fixed to the housing back surface portion 1c.
  • each surface piece can be changed by several surface piece 25a, 25b, 25c, 25d, 25e which divided
  • the case back part 1c can be standardized in common, and can be easily changed, so that it can be generalized in response to changes in the environmental conditions.
  • the guide wall 10 having a shape suitable for the environmental situation can be configured. As a result, noise can be reduced, energy can be saved, and a higher quality air conditioner can be obtained.
  • the guide wall 10 is divided into five pieces in the rotation axis direction L, and the surface pieces 25a, 25b, 25c, 25d, and 25e of the guide wall are configured to fit into the lower layer base 10c of the guide wall.
  • the shape of each piece can be designed freely.
  • the configuration is not limited to five pieces, and the configuration may be divided in, for example, the rotation direction of the impeller 8a, that is, the direction perpendicular to the rotation axis O.
  • the fitting portion 10d is not limited to the configuration in which the fitting is performed by the unevenness, and may be fitted in a claw shape. Other configurations may also be used.
  • the air conditioner body 1 is provided on the downstream side of the heat exchanger 7 between the air outlet and the air outlet 3, the longitudinal direction of the air conditioner main body 1 is set as the rotation axis direction L, and is driven to rotate by the motor 12.
  • the blower 8 having the impeller 8a for blowing air, the suction side flow path E1 on the upstream side of the impeller 8a and the blowout side flow path E2 on the downstream side are separated, and the blowout side flow path from the impeller 8a to the blowout port 3
  • a stabilizer 9 constituting the front side of E1, a spiral guide wall 10 constituting the back side of the outlet side flow path E2 from the impeller 8a to the outlet 3, and a lower layer on the surface of the guide wall 10;
  • Lower layer side fitting portion 1 on the surface side of guide wall 10 each of the surface pieces 25 a, 25 b, 25 c, 25 d, and 25 e is provided with a plurality of surface pieces 25 a, 25 b, 25 c, 25 d, and 25 e, each of which includes a lower layer substrate 10 c having d.
  • the back surface of the base plate is formed so as to be fitted to the lower layer side fitting portion 10d of the lower layer base 10c corresponding to the fixed position of the guide wall, and the combination of the surface pieces 25a, 25b, 25c, 25d, 25e can be changed.
  • a noise reduction, energy saving, and highly reliable air conditioner can be obtained as an optimum shape according to the ventilation resistance on the surface of the guide wall 10, and the ventilation resistance is different in the rotation axis direction L.
  • Even in the case of the configuration it is only necessary to change the guide wall piece 16 in common with the case back portion 1c, and the entire large-scale mold can be manufactured. Fine molding is not required, the corresponding specification change is easily, Hakare reduction of manufacturing costs, as a result, it is possible to provide an inexpensive product.
  • At least one surface piece 25b, 25d of the plurality of surface pieces 25a, 25b, 25c, 25d, 25e has at least one step portion of the step portions described in the first or second embodiment.
  • Air conditioner main body 1c Case back part 1d Air conditioner main body upper part 2 Suction port 2A, 2B 1st, 2nd suction port 3 Outlet 5 Filter 6 Electric dust collector 7 Heat exchanger 8 Blower 8a Impeller 8d Blade Single vehicle 8d1, 8d3 Single impeller at both ends of impeller 8d2, 8d4 Single inner impeller adjacent from both ends of impeller 9 Stabilizer 10 Guide wall 10a Guide wall start point 10b Guide wall end point 10c Lower layer base 10d Intersection 12 Motor 13 Partition 14 Stepped portion 14A, 14B, 14C, 14D, 14E One step 14a Stepped portion start portion 14b Stepped portion deepest portion 14c Stepped portion slope portion 14d Stepped portion end portion 15 Flow path reducing members 16, 17, 18, 19 , 20, 21, 22, 23 Stepped portion 25 Guide wall surface piece 26 Stepped portion C1 Distance between impeller rotation axis center O and step start portion 14a C2 Distance between impeller rotation axis center O and step deepest portion 14b C3 Distance between

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 吸込口2と、熱交換器7と、吹出口3と、熱交換器7の下流側に設けられ、空気調和機本体1の長手方向を回転軸方向Lとし、吸込口2から吹出口3へ室内空気を送風する羽根車8aを有する送風機8と、羽根車8aの上流側の吸込側流路E1と下流側の吹出側流路E2を分離し、吹出側流路E2の前面側を構成するスタビライザー9と、吹出側流路E2の背面側を構成する渦巻状のガイドウォール10と、ガイドウォール10の少なくとも一部に設けられ、羽根車8aの回転軸Oに垂直な断面で略三角形状にくぼんだ形状であって回転軸方向Lに伸びる段差を複数本並設し、送風機8の送風方向に階段状となる段差部14を備えることで、階段状の段差で生成される負圧により吹出流れの剥離を防止して、低騒音で省エネルギー化できるようにする。

Description

空気調和機
 本発明は、送風手段として貫流ファンを搭載した空気調和機に関するものである。
 従来の貫流ファンを搭載した空気調和機は、ケーシング表面に小孔の窪み(ディンプル)を形成したものが開示されている(例えば、特許文献1参照)。この貫流ファンを搭載した空気調和機では、吹出しグリルにおけるファンの回転軸に対し垂直方向にある平面側壁に、等間隔で且つ格子状に小孔の窪み(ディンプル)を配設している。ディンプルを複数形成することで、ファン吹出部から通風路にかけて高風速域での剥離を低減しようとしている。
 また、ケーシング表面に渦発生手段を形成したものが開示されている(例えば、特許文献2参照)。この貫流ファンを搭載した空気調和機では、ケーシング面上のファンから見て下流側に設けられ、ファンを介して流出する空気に縦渦を発生させる渦発生手段を具えている。この渦発生手段によって、渦発生部で縦渦を発生させ、空気の上層と下層を撹拌することにより、流れをケーシング面上から剥離するのを防止している。
特開平8-121396号公報(第4、5頁、図6) 特開2002-250534号公報(第2、3頁、図2)
 特許文献1に掲載された貫流ファンを搭載した空気調和機は、ケーシング表面に格子状に複数形成されたディンプル(小孔窪み)が半円球状の窪みのため、ファン吹出流れがディンプル表面を通過する際、ディンプル下流側の方向が規定されず不安定となる可能性があり問題であった。
 また、特許文献2に掲載された貫流ファンは、ケーシング表面から突出した渦発生部で縦渦を発生するために、ファン吹出流れをせき止めるように渦発生部の上流側面がスタビライザー方向へ向いている。そのため、流れが阻害され通風抵抗となり、ファンの回転にトルク増大となる結果、駆動するファンモータの入力が悪化する可能性があるという問題点があった。
 本発明は、上記のような問題点を解消するためになされたものであり、ファンから吹出した空気が吹出口から室内に吹出されるまでの風路において、ケーシングから剥離するのを防止して、低騒音化でき、駆動するファンモータの入力の増加を防止できる貫流ファンを搭載した空気調和機を得ることを目的とする。
 また、ファンの回転軸方向の両端部で、吹出空気が低速度となって室内空気の逆流が生じ、室内空気が低温の空気に冷やされて生じる露飛びを防止することを目的とする。
 本発明に係る空気調和機は、室内空気が吸い込まれる吸込口と、吸い込まれた前記室内空気と熱交換する熱交換器と、熱交換された前記室内空気が室内へ吹き出される吹出口と、前記吸込口と前記吹出口の間の前記熱交換器の下流側に設けられ、空気調和機本体の長手方向を回転軸方向とし、モータで回転駆動されて前記吸込口から前記吹出口へ前記室内空気を送風する羽根車を有する送風機と、前記羽根車の上流側の吸込側流路と下流側の吹出側流路を分離し、前記羽根車から前記吹出口までの前記吹出側流路の前面側を構成するスタビライザーと、前記羽根車から前記吹出口までの前記吹出側流路の背面側を構成する渦巻状のガイドウォールと、前記ガイドウォールの少なくとも一部に設けられ、前記羽根車の回転軸に垂直な断面で略三角形にくぼんだ形状であって前記回転軸方向に伸びる段差を複数本並設し、前記送風機の前記送風する方向に階段状となる段差部と、を備えたことを特徴とするものである。
 本発明によれば、ファンから吹出された高速度の空気流が吹出口に流れる間にケーシングから剥離するのを防止して、低騒音化及び省エネルギー化できる空気調和機を得ることができる。
 また、ファンの回転軸方向の両端部で、その近傍の中央側の空気流を引き込み、室内からの逆流を防止できる空気調和機を得ることができる。
本発明の実施の形態1による空気調和機に係り、貫流ファンを搭載した空気調和機を示す外観斜視図である。 図1のQ-Q線における縦断面図である。 実施の形態1による空気調和機に搭載される貫流ファンの羽根車を示す概略構成図である。 実施の形態1に係る空気調和機のガイドウォールと一体の本体外郭の一部を形成する筐体及び貫流ファンの羽根車を示す斜視図である。 実施の形態1による空気調和機に係り、貫流ファンの羽根車を外した場合の筐体背面部を示す斜視図である。 実施の形態1による空気調和機に係り、ガイドウォール付近の一部分を拡大して断面を示す説明図である。 実施の形態1による空気調和機に係り、段差部の一部を拡大して断面を示す説明図である。 実施の形態1による空気調和機に係り、段差部の作用を示す説明図である。 実施の形態1による空気調和機に係り、空気調和機本体上部において、吸込グリルが本体長手方向に分割されている構成を示す斜視図である。 実施の形態1による空気調和機に係り、図10(a)は羽根車からの吹出風速Vの分布を示す説明図であり、横方向は羽根車回転軸方向、縦方向に風速Vを示す。図10(b)は、ガイドウォールとこれと一体に構成されている筐体背面部を示す正面図であり、貫流ファンの羽根車を外して示すが、羽根車の位置は点線で示す。 実施の形態1による空気調和機に係り、ガイドウォールとこれと一体に構成されている筐体背面部を示す斜視図である。 実施の形態1による空気調和機に係り、横方向に羽根車回転軸方向を示し、縦方向に風速Vを示す説明図である。 本発明の実施の形態2による空気調和機に係り、ガイドウォールとこれと一体に構成されている筐体背面部を示す正面図である。 実施の形態2による空気調和機に係り、ガイドウォールとこれと一体に構成されている筐体背面部を示す斜視図である。 実施の形態2による空気調和機に係り、貫流ファンの回転軸Oに垂直な断面で、回転軸方向の両端部の羽根車単体付近におけるガイドウォール近傍の吹出流れを示す説明図である。 実施の形態2による空気調和機に係り、貫流ファンの羽根車を外した場合のガイドウォールとこれと一体に構成されている筐体背面部を示す斜視図である。 実施の形態2による空気調和機に係り、貫流ファンの羽根車を外した場合のガイドウォールとこれと一体に構成されている筐体背面部を示す斜視図である。 実施の形態2による空気調和機に係り、貫流ファンの羽根車を外した場合の筐体背面部を示す斜視図である。 実施の形態2による空気調和機に係り、貫流ファンの羽根車を外した場合のガイドウォールとこれと一体に構成されている筐体背面部を示す斜視図である。 本発明の実施の形態3による空気調和機に係り、ガイドウォールとこれと一体に構成されている筐体背面部を一部分解して示す分解斜視図である。
実施の形態1.
 以下、本発明の実施の形態1について、図に基づいて説明する。図1は本実施の形態に係り、送風機として貫流ファンを搭載した空気調和機を示す外観斜視図、図2は図1のQ-Q線における縦断面図、図3は本実施の形態に係る空気調和機に搭載される貫流ファンの羽根車を示す概略構成図、図4は本実施の形態に係る空気調和機のガイドウォールと一体の本体外郭の一部を形成する筐体及び貫流ファンの羽根車を示す斜視図、図5は本実施の形態に係り、貫流ファンの羽根車8aを外した場合の筐体背面部1cを示す斜視図、図6はガイドウォール付近の一部分を拡大して断面を示す説明図、図7は段差部14の一部を拡大して断面を示す説明図である。空気の流れを、図1では白抜き矢印で示し、図2、図6では点線矢印で示す。また、図2、図4における太矢印ROは貫流ファン8の羽根車8aの回転方向を示している。また、Oは羽根車8aの回転軸であり、断面図では回転中心を示す。
 図1及び図2に示すように、空気調和機本体1は空調される部屋11の壁11aに設置される。空気調和機本体1は本体正面に配設する前面パネル1a、筐体前面部1b、筐体背面部1cで構成されている。そして筐体前面部1b及び筐体背面部1cにまたがる空気調和機本体上部1dには、室内空気の吸込口2が形成され、さらに、ホコリを静電させ集塵する電気集塵器6、ホコリを除塵する網目状のフィルタ5、熱交換器7を送風機である貫流ファン8の羽根車8aの上流側に配設している。
 図2に示すように、羽根車8aの近傍に伸びた形状のスタビライザー9は、羽根車8aの上流側の吸込側流路E1と下流側の吹出側流路E2を分離し、羽根車8aから吹出口3までの吹出側流路E2の前面側を構成しており、さらに熱交換器7から滴下される水滴を一時貯水できるような形状となっている。また、羽根車8aから吹出口3までの吹出側流路E2の背面側は、渦巻状のガイドウォール10で構成され、ガイドウォール10は筐体背面部1cと一体に形成されている。ガイドウォール10は、上流側は羽根車8aとの最近接部となるガイドウォール始点10aから下流側はスタビライザー9との最近接点であるガイドウォール終点10bまでを指す。回転中心Oと、ガイドウォール始点10a及びガイドウォール終点10bのそれぞれを結ぶ直線は所定角度である渦巻角θcをなす。また、ガイドウォール10の各位置と回転軸中心Oとを結ぶ直線は、ガイドウォール始点10aからガイドウォール終点10bに至るまで、ほぼ徐々に長くなるような渦巻き形状で形成している。そして、ガイドウォール10の一部には、羽根車8aから吹出口3へ向かい複数の凹部が階段状に連接し段差部14を形成している。
 さらに吹出口3には上下風向ベーン4a、左右風向ベーン4bが回動自在に取り付けられている。
 貫流ファン8の羽根車8aを示す図3では、回転軸Oの上側には1枚の翼8cを示し、回転軸Oの下側には正面から見た図を示す。図3に示すように、貫流ファン8の羽根車8aは、例えばASなどの熱可塑性樹脂で成形される。回転軸方向Lに伸びる翼8cの一端部を円板状のリング8bの外周部に固着し、リング8bの外周部に沿って翼8cを複数枚設けて羽根車単体8dとする。1つの羽根車単体8dの翼8cの他端部と、隣の羽根車単体8dのリング8bの裏面(翼8cを固着していない面)とを溶着する。複数の羽根車単体8dを溶着後、羽根車8aの端部となるリング8bを溶着し羽根車8aが形成される。
さらに羽根車8aの一端は、回転軸Oを成すファンシャフト8fを例えばネジ等で固着する。また、羽根車8aの他端は、羽根車8aの内部側に突出するように、例えばリング8bと一体に形成されているファンボス8eとモータ12のモータシャフト12aをネジ等で固定する。ファンシャフト8f及びファンボス8eによって両端部が支持される。モータ12が回転するに連れて回転軸Oを回転中心として図2のように回転方向ROに回転することで、室内空気は吸込口2から吸い込まれて、吹出口3から室内に送風される。羽根車8aの回転軸方向Lは空気調和機本体1の長手方向と一致するように、羽根車8aは空気調和記本体1内に収納される。
 また、図4、図5において、ガイドウォール10の下流側で、羽根車8aの両端部側に流路縮小部材として、例えばサージングブロック15を形成している。このサージングブロック15によって、吹出側流路E2の幅を減少させる。流れの幅を減少することで、羽根車8aから吹出される空気流が羽根車8aの両端部付近で低風速となるのを防ぎ、室内の空気が逆流するのを防止している。また、ガイドウォール10の一部に段差部14を設けている。このガイドウォール10に設けた段差部14は、図5に示すように、羽根車8aの回転軸方向Lの一部分、ここでは中央部分に形成されている。ガイドウォール10に沿った流れで、回転軸方向Lの中央部分の吹出流れは比較的高速の流れFfである。これに対して、回転軸方向Lの両端部分の吹出流れは、中央部分の流れよりも低速な吹出流れFsとなる。
 また、図6に示すように、段差部14は、例えば、回転軸方向Lに伸び羽根車8aの回転軸Oに垂直な断面で略三角形状にくぼんだ段差を複数本、ここでは5本の段差14A、14B、14C、14D、14Eを並設して階段状とする。最も上流に位置する段差部14Aの段差開始部14aから最も下流に位置する段差部14Eの段差終了部14dが、ガイドウォール始点10aからガイドウォール終点10bの内側に形成されている。また、貫流ファンの羽根車8aの回転中心Oと、段差開始点14a、段差最深点14b、段差終了部14dをそれぞれ結ぶ線分O-14a、O-14b、O-14dの長さC1、C2、C3において、C1<C2<C3とする。また、各段差14A、14B、14C、14D、14Eにおいて、段差最深部14bは、段差開始部14aと段差終了部14dとの間で段差開始部14a側の近くに位置する。即ち、段差開始部14aと段差最深部14bを結ぶ距離hと、段差最深点14bと段差終了部14dを結ぶ長さSとを比較すると、h<Sとする。段差最深点14bと段差終了部14dを結ぶ面は、羽根車8aに面する平坦な傾斜面である段差法面部14cである。
 図6、図7に示すように、ガイドウォール10に設けた段差部14は、C1<C2≦C3を満足しているので、吹出側流路E2の下流に向かって、回転中心Oから徐々に拡大する方向で形成されている。例えば、羽根車8aの半径が53mmの貫流ファン8を用い、一番上流側の段差14AではC1=76mm、C2=78mm、C3=79mmとした。
段差14Aに接続する段差14BではC1=79mmとなり、段差14C~14Eまで、連接して構成する。
 また、複数の段差14A、14B、14C、14D、14Eのそれぞれにおいては、段差開始部14aと段差最深部14bを結ぶ距離hと、段差最深点14bと段差終了部14dを結ぶ距離Sとは略同様とし、例えばh=2mm程度、S=15mm程度とし、h/Sを0.1~0.3程度で構成した。ただし、各段差14A~14Eの段差開始部と段差終了部を結ぶと、段差部14を設けない構成のガイドウォール10の渦巻状の表面、ここではガイドウォール10の渦巻状の仮想表面IMになるように構成するので、必ずしも段差部14の各段差のhとSは同じでなくてもよい。
 また、回転中心Oを中心として段差部14Aの段差開始部14aから段差部14Eの段差終了部14dまでの角度である段差部形成角度θsは、ガイドウォール始点10aからガイドウォール終点10bまでの渦巻角θcよりも小さい角度である。例えばここでは回転中心Oと段差部14Aの段差最深点14bとを結ぶ直線と、回転中心Oと最下流側の段差部14Eの段差終了部14dを結ぶ直線がなす段差部形成角度θsを、所定角度、例えば略60°程度とし、ガイドウォール渦巻角θcを例えば略140°程度として、θsがθcの略1/2程度をなすように形成する。
 以下、段差部14について図7に基づいてさらに詳しく説明する。段差部14を構成する1つの段差はガイドウォール10の渦巻状の仮想表面IMから、断面が略三角形状にくぼんだ形状である。即ち、ガイドウォール10の始点10a側に位置する段差開始部14aからガイドウォール10の背面側(図7では向かって右側の方向)に向かって略90度(θ1)の方向に下がった位置に段差最深部14bを形成する。さらに段差最深部14bからガイドウォール10の仮想表面IMに向かい、略80度(θ2)の方向に仮想表面IMに沿って伸びる面である段差法面14cを形成する。段差法面14cが仮想表面IMに交わる部分が段差終了部14dである。ここでは段差終了部14dにおける段差法面14cと仮想表面IMとのなす角度(θ3)は、略10度程度以下になる。例えば、段差開始部14a、段差最深部14b、段差終了部14dで、略三角形状にくぼんだ形状の1つの段差14Bを形成している。
 このように構成された空気調和機本体1において、電源基板によって羽根車8aを回転駆動するモータ12に通電されると貫流ファン8の羽根車8aがRO方向に回転する。すると空気調和機本体上部1dに設けられた吸込口2より部屋11の空気が吸込まれ、電気集塵器6、フィルタ5でホコリが除去された後、熱交換器7で熱交換される。即ち、空気は加熱され暖房、または冷却され冷房、除湿のいずれかがされ、吸込側流路E1を通って貫流ファン8の羽根車8aへ吸込まれる。その後、羽根車8aから吹出された流れは、ガイドウォール10、スタビライザー9に誘導されて吹出側領域E2を通って吹出口3へ向かう。そして、部屋11へ吹出すことで空調される。この際、上下風向ベーン4a、左右風向ベーン4bにより吹出し空気を上下、左右方向へ風向制御することで、部屋11全体に風を流し温度ムラの抑制を図っている。
 この時、吹出領域E2の回転軸方向Lの中央部分において、羽根車8aから吹出され、ガイドウォール表面に沿って流れる比較的高速の流れFfは、ガイドウォール10に衝突し吹出口3へ送風される。また、羽根車8aの回転軸方向Lで隣り合う羽根車単体8dごとに吹出風速差が生じ、特にリング8b付近で吹出流れ同士のせん断摩擦により乱れが生じる。従来の空気調和機ではガイドウォール10は単なる湾曲した渦巻形状であった。このため、ガイドウォール10の表面で吹出風の衝突や乱れ流が衝突することで圧力変動が生じ、騒音の原因となっていた。特に回転軸方向Lの中央部分では吹出流れが高速の流れFfであり、高速でガイドウォール10にぶつかるので騒音が大きくなっていた。
 ここで、本実施の形態では図5~図7で示した段差部14をガイドウォール10の例えば中央部分に設けている。中央部分は高速の流れFfが流れ、この高速の流れFfに対する段差部14の作用を図8の説明図で説明する。図8のように、段差部14に沿って流れる高速の流れFfの一部は、一番上流側の段差14Aの段差開始部14aから段差最深部14bの方向に向きを変え、段差14Aに落ち込んで渦G1が生成される。このため段差最深部14bで渦G1によって負圧が発生する。この状態でさらに羽根車8aから吹出されてガイドウォール10表面近傍を流れる高速の吹出流れFfは、流れXに示すように段差開始部14aから負圧に引き込まれて段差法面14cの下流側の一部分に再付着する。
そして段差部14Aに連接する段差部14Bへ向かう。段差部14Bの段差開始部14aでも同様の現象が生じ、段差部14Bの途中から段差法面14cに再付着する。複数の段差が形成されている段差部14によって、段差開始部14aでガイドウォール10の表面から離れ、段差法面14cの途中に再付着する現象が繰り返されて流れXのように流れることになる。このため、段差部14を設けていない場合の吹出流れFfと比べると、吹出流れXでは高速流が接するガイドウォール10の表面積が縮小する。結果的に音源が減少することになる。また、渦G1で負圧が生成されることで、ガイドウォール10表面での剥離が抑制される。
 また、回転軸方向Lに対して吹出流れの流速に分布が生じている。本実施の形態では、段差部14を回転軸方向Lに伸びるように設けている。このため、回転軸方向Lで渦G1の大きさが変化して、回転軸方向Lで圧力変動が緩和される。さらに、段差14A、14B、14C、14D、14Eのように段差が連接して複数設けられていることで、吹出流れFfの圧力変動が徐々に拡散される。これらのことから、さらなる低騒音化が図れる。
 また、ガイドウォール10の表面からの剥離を防ぐことで、入力電力に対する風量の低減を防止でき、省エネルギー化につながる。
 さらに、C1<C2≦C3より、段差終了部14dはガイドウォール10の仮想表面IMから吹出側流路E2の風路側へ突出せず、ガイドウォール10の渦巻状の仮想表面IMに沿って徐々に拡大する形状なので、上流から流れてきたガイドウォール10近傍の流れを阻害することがない。このため通風抵抗が低減し、モータ動力が低減できるので、消費電力の低減を図ることができる。
 以上の結果、段差部14を設けることで、貫流ファンの低騒音化及び高効率化が図れ、この貫流ファンを搭載することで静粛で省エネルギー化できる空気調和機が得られる。
 段差開始部14aと段差終了部14dは、ガイドウォール10の渦巻状の仮想表面IMに位置し、段差最深部14bは仮想表面IMよりもガイドウォール10の裏面側にくぼんだ部分に位置する。ここで、ガイドウォール10が渦巻状であるので、C1<C3は常に満足されている。C1<C2を満足することで、段差最深部14bが段差開始部14aからガイドウォール10の裏面側にくぼんだ部分に位置することを表している。また、C2≦C3によって、段差最深部14bの位置が、仮想表面IMから大きくくぼんではいないことを表している。例えば図8に示す断面で、羽根車8aの回転中心を中心とし、1つの段差の段差終了部14dを通る円を描いた場合、その円の内側に段差最深部14bが位置するように段差を形成すればよい。そして、渦G1を生じさせ、この部分を負圧とするだけの最低限のくぼみ幅(=C2-C1)の段差14A、14B、14C、14D、14Eを形成すればよい。大きなくぼみ幅の段差を設けると、この部分に大きな渦ができ、この大きな渦によってガイドウォール10に沿って流れる吹出流れをかえって乱すことになる。
 また、h<Sとなるように構成しており、図8に示すような回転軸方向Lに垂直な断面で、段差最深部14bは段差終了部14dよりも段差開始部14aに近い位置とする。即ち、図7では段差はθ1>θ3となる三角形状の断面を有する。このため、段差開始部14aに近い部分で渦G1が生じやすい。さらに法面部14cの長さを長くとって再付着しやすい形状となる。
 また、h/Sは0.1~0.3とするのが好ましい。h/Sが0.1より小さいと、くぼみが小さすぎて渦が小さく、再付着の効果が小さい。一方、h/Sが0.3より大きいと、くぼみが大きすぎて渦が大きく、かえって流れを乱すためである。
 また、θ1、θ2、θ3は、一例を示したが、これに限るものではない。ガイドウォール10付近の流れから渦G1が生じやすいような形状であることが好ましい。その意味から、θ1及びθ2は略90°前後である方が渦G1が生じやすい形状となり好ましい。特にθ2が90°以下であれば、渦G1が段差最深部14bの近傍に発生するので、負圧によって引き寄せられた流れを法面部14cにスムーズに再付着させることができ、好ましい。θ3は小さくしており、段差法面部14cの流れを次の段差の段差開始部14aにスムーズに流すことができる。
 製作上で、ガイドウォール10全体を一体として型を使って製造する場合、離型しうる形状とすることが必要となる。例えば、回転軸方向Lに垂直な断面で、各段差の段差開始部14aを通り離型方向を示す直線を描いた場合、この直線よりも段差最深部14bが上方、即ちガイドウォール10の裏面側に食い込んだ部分に位置する形状とすると、離型できなくなる。このため、段差開始部14aを通り離型方向を示す直線よりも下方に段差最深部14bを位置することが好ましい。ただし、他の方法で製作する場合には、この限りではない。
 また、本実施の形態では、5本の段差を有する段差部14としたが、5本に限るものではなく、2本以上を並設すればよい。また、例えば図8では、隣り合う上流側の段差14Aの段差終了部14dとその下流側に連接する段差14Bの段差開始部14aがほぼ同様の位置となるように連接して段差部14を構成した。この構成に限るものではなく、例えば上流側の段差14Aの段差終了部14dとその下流側の段差14Bの段差開始部14aの間をある程度離して複数の段差を設けてもよい。即ち、複数の段差が所定間隔あけて少なくとも連続して階段状に設けられていれば、同様の効果が得られる。
 また、段差部14はガイドウォール始点10aとガイドウォール終点10bの間であれば、どこに位置していてもよい。ただし、ガイドウォール始点10aのすぐ下流側は、ガイドウォール始点10aの形状によっては渦などができやすく、不安定な流れになりやすい。段差部14によって有効な効果を得るためには、ある程度ガイドウォール10に沿った流れとなる部分に段差部14を設けるのが好ましい。図2に示したように、段差部14を略ガイドウォール10に沿った流れとなる付近に設けることで、ガイドウォール10に沿った流れが剥離するのを抑制する作用が効果的に働く。
 図9は本実施の形態に係り、空気調和機本体上部1dにおいて、吸込口2が本体長手方向に分割されている構成を示す斜視図である。図9に示すように、回転軸方向の中央付近で例えば分割部2Cによって第1吸込口2Aと第2吸込口2Bに二分割されている。電気集塵器2や追加フィルタなどが熱交換器7の上流側に左右非対称で配設され、吸込通風抵抗が左右で異なる構成となり、中央付近に分割部2Cを設けることがある。
 この構成例でも、図6~図8に示したように、羽根車回転軸方向Lに伸びる階段状の段差部14をガイドウォール10に形成することで、貫流ファン8の低騒音化及び高効率化が図れ、静粛で省エネルギー化できる空気調和機が得られる。このように吸込口2が羽根車8aの回転軸方向Lに2分割されて第1吸込口2Aと第2吸込口2Bより構成されている場合には、吸込口2を二分割する分割部2Cが抵抗となる。このため、分割部2Cの下流側で羽根車8aが吸込み及び吹出しにくくなる。このため、分割部2Cの下流に相当する位置では他の領域に比べて吹出風速が低くなる可能性がある。図10(a)は羽根車8aからの吹出風速Vの分布を示している。横方向は羽根車回転軸方向Lであり、縦方向に風速Vを示している。図に示すように、分割部2Cの下流部分で風速Vが低くなっている。
 図10(b)は、ガイドウォール10とこれと一体に構成されている筐体背面部1cを示す正面図であり、貫流ファンの羽根車8aを外して示すが、羽根車8aの位置は点線で示す。10(a)と10(b)において、回転軸方向Lの位置をほぼ一致させている。また、図11はガイドウォール10とこれと一体に構成されている筐体背面部1cを示す斜視図である。この構成例において、第1、第2吸込口2A、2Bに対応して、段差部16は左右に分割して第1段差部16Aと第2段差部16Bの2箇所に形成している。即ち、回転軸方向Lで中央付近の分割部2Cに相当する中央部Bには段差部16を形成していない。この第1、第2段差部16A、16Bの詳しい断面形状は、図2、図6~図8における段差部14と同様である。
 羽根車8aの吹出風速が比較的高い部分、例えば吹出風速がVs以上になる部分、ガイドウォール10に第1、第2段差部16A、16Bを形成している。即ち第1、第2吸込口2A、2Bの下流に相当する位置で吹出風速が高くなり、図6に示したガイドウォール表面近傍の流れも高速でガイドウォール10に衝突する。高速流が接するガイドウォール10の表面積が大きいと騒音が大きくなるのであるが、段差部16A、16Bの段差最深部付近に渦を生成させてその近傍に負圧を発生させる。そして、ガイドウォール10表面を通る高速流が剥離するのを抑制しつつ高速流が接するガイドウォール10の表面積を減少させる。これによって、騒音を低減できる。
 さらに、第1、第2段差部16A、16Bはそれぞれ回転軸方向Lに伸び、高速流が衝突すると考えられる部分の例えば全面に設けている。回転軸方向Lで吹出風速に分布があり、段差部16A、16Bによって生じる渦の大きさも回転軸方向Lで変化する。このため、回転軸方向Lで圧力変動が緩和されてさらに低騒音化を図ることができる。また、段差部16では複数の段差、例えば図10、図11では5本の段差を連接して構成している。このため、吹出流れの圧力変動は、吹出領域E2で吹出口3に向かって徐々に拡散されるので、さらに低騒音化を図ることができる。
 特に吹出風速が低い部分Bには段差部16A、16Bを形成していない。吹出風速が低い場合、ガイドウォール10に衝突することによる騒音はあまり問題ではない。この部分に段差部16を形成すると、生じる渦によって流れを阻害する可能性がある。そこで、この構成例では、吹出流れが高速である部分のみに第1、第2段差部16A、16Bを設け、高速流による騒音を低減している。
 羽根車8aの上流側の構成によっては、羽根車8aからの吹出風速Vの分布が図12のようになる場合もある。図12は横方向に羽根車8aの回転軸方向Lを示し、縦方向に風速Vを示す。この時にも、吹出流れが高速である部分、例えば吹出風速VがVs以上になる部分のガイドウォール10に、複数の段差を階段状に連ねた段差部16を設ければ、高速流による騒音を低減することができる。
 ここで、閾値とするVsは、貫流ファン8の送風量によっても異なるので
 上記では、説明の都合上、吹出風速Vが所定の風速Vs以上になる部分に段差部16を設けるとした。この所定の風速値Vsは空気調和機や貫流ファンの大きさや風路の構成によって異なる。このため一概に設定できないが、経験的、または実験的に設定したり、シミュレーションによって設定することができる。また、回転軸方向Lの両端部で吹出風速は最も低くなるので、例えば両端部における風速と最も速い部分の風速との中間値以上の値をVsとして設定するなどしてもよい。
 以上のように、室内空気が吸い込まれる吸込口2と、吸い込まれた室内空気と熱交換する熱交換器7と、熱交換された室内空気が室内へ吹き出される吹出口3と、吸込口2と吹出口3の間の熱交換器7の下流側に設けられ、空気調和機本体1の長手方向を回転軸方向Lとし、モータ12で回転駆動されて吸込口2から吹出口3へ室内空気を送風する羽根車8aを有する送風機8と、羽根車8aの上流側の吸込側流路E1と下流側の吹出側流路E2を分離し、羽根車8aから吹出口3までの吹出側流路E2の前面側を構成するスタビライザー9と、羽根車8aから吹出口3までの吹出側流路E2の背面側を構成する渦巻状のガイドウォール10と、ガイドウォール10の少なくとも一部に設けられ、羽根車8aの回転軸Oに垂直な断面で略三角形にくぼんだ形状であって回転軸方向Lに伸びる段差14A、14B、14C、14D、14Eを複数本並設し、送風機8の送風する方向に階段状となる段差部14と、を備えたことにより、ガイドウォール10表面での剥離を抑制し、圧力変動を拡散して低騒音な空気調和機を得ることができる効果がある。
 また、羽根車8aの回転軸Oに垂直な断面で、段差部14の1つの段差の上流側端部を段差開始部14aとし、段差の略三角形状に最も深くくぼんだ部分を段差最深部14bとし、段差の下流側端部を段差終了部14dとし、羽根車8aの回転中心Oと段差開始部14aを結ぶ長さC1、羽根車8aの回転中心Oと段差最深部14bを結ぶ長さC2、羽根車8aの回転中心Oと段差終了部14dを結ぶ長さC3の間の関係を、C1<C2≦C3となるように段差を構成したことにより、ガイドウォール10近傍の流れを阻害することなく通風抵抗を低減でき、消費電力を低減できる空気調和機を得ることができる効果がある。
 また、羽根車8aの回転軸Oに垂直な断面で、段差部14の1つの段差の上流側端部を段差開始部14aとし、段差の略三角形状に最も深くくぼんだ部分を段差最深部14bとし、段差の下流側端部を段差終了部14dとし、段差開始部14aと段差最深部14bを結ぶ長さh、段差最深部14bと段差終了部14dを結ぶ長さSの間の関係を、h<Sとなるように段差を構成したことにより、段差最深部14b付近に渦G1を確実に発生させて負圧を生じさせることができ、低騒音な空気調和機を得ることができる効果がある。
 また、羽根車8aの回転軸方向Lで、羽根車8aから吹出される空気流が高速となる部分のガイドウォール10に段差部14を設けたことにより、高速流が接するガイドウォール10の表面積を縮小して、低騒音化を図ることができる空気調和機を得ることができる効果がある。
 また、吸込口2は羽根車8aの回転軸方向Lに二分割されて第1吸込口2Aと第2吸込口2Bより構成され、第1吸込口2Aの下流に相当する位置のガイドウォール10に設けた第1段差部16Aと、第2吸込口2Bの下流に相当する位置のガイドウォール10に設けた第2段差部16Bと、を備えたことにより、高速流が接するガイドウォール10の部分に段差部16A、16Bを設け、高速流が接するガイドウォール10の表面積を縮小して、低騒音化を図ることができる空気調和機を得ることができる効果がある。
実施の形態2.
 以下、本発明の実施の形態2に係る空気調和機について図を用いて説明する。本実施の形態は、羽根車8aの回転軸方向Lで両端部付近のガイドウォール10に関するものである。図13は本実施の形態の空気調和機に係り、ガイドウォール10とこれと一体に構成されている筐体背面部1cを示す正面図であり、貫流ファンの羽根車8aを外して示すが、羽根車8aの位置は点線で示す。また、図14はガイドウォール10とこれと一体に構成されている筐体背面部1cを示す斜視図である。図中、実施の形態1と同一符号は同一、又は相当部分を示す。
 図13及び図14に示すように、本実施の形態における段差部17A、17Bは、低速度の吹出流れFsが流れる付近、例えばガイドウォール10の回転軸方向Lの両端部に設けている。両端部の側壁に隣接するように設けた段差部17A、17Bは、複数の段差、例えば5本の段差を並設して階段状に連ねて構成する。その回転軸Oに垂直な断面形状は図7と同様、略三角形状にくぼんだ形状である。この構成では、ガイドウォール10の両端部に流路縮小部材としてサージングブロック15を備えているので、段差部17A、17Bは、サージングブロック15に隣接して設けている。また、段差部17A、17Bのそれぞれは、回転軸方向Lには、一端部が、サージングブロック15の内側であり、他端部が、少なくとも羽根車8aの端部から2つ目の羽根車単体8dにかかるように、伸びて構成する。即ち、段差部17Aは、羽根車8aのファンシャフト側の羽根車単体8d1及び羽根車単体8d1の内側に隣り合う羽根車単体8d2の一部にまたがる様に設ける。また、段差部17Bは、ファンモータ側の羽根車単体8d3及び羽根車単体8d3の内側に隣り合う羽根車単体8d4にまたがる様に設ける。
 図13の羽根車8aの回転軸方向Lにおける両端部の羽根車8d1、8d3から吹出されてガイドウォール10の近傍の流れは、羽根車回転軸方向Lの中央付近から吹出される高速流れFfに対し低速で不安定な流れFsになりやすい。図15は羽根車8aの回転軸Oに垂直な断面で、回転軸方向Lの両端部の羽根車単体8d1、8d3付近におけるガイドウォール10近傍の吹出流れを示す説明図である。図において、点線Ffは速度の速い流れを示し、Fsは速度の遅い流れを示す。空気調和機本体が長時間運転され部屋11の空気に含まれるホコリがフィルタ5に堆積し、貫流ファン8の通風抵抗が増加すると、羽根車8aの回転軸方向Lの両端部からの吹出流れは風速が低下する。ガイドウォール10付近を見ると、高速流れFfはガイドウォール10に届かずにガイドウォール10から離れた位置を通り、低速流れFsがガイドウォール10の近くを流れる。このように両端部における吹出流れの風速が低下してすると、この付近が極低速領域となって吹出口3から高湿度である部屋の空気が逆流する可能性がある。この逆流が生じると、冷房運転時、冷やされている吹出口3に結露が生じ、最悪の場合には結露水が羽根車8aの吹出流れと共に部屋11へ吹出され床を汚してしまう恐れがあった。
 本実施の形態では羽根車8aの回転軸方向Lの両端部に段差部17A、17Bを設けている。例えばフィルタ5へホコリが堆積した時などに生じるガイドウォール10近傍の低風速で不安定な流れFsは、段差最深部17bで渦G1が生成されることで負圧が発生し、流れYのように段差法面部17cに引き寄せられる。そして、再付着し段差法面部17cに沿って流れて段差終了部17dに流れていく。このように低風速で不安定な流れFsがガイドウォール10に接することで、ガイドウォール10の表面から離れようとする流れがガイドウォール10の表面に沿うように拡散され、剥離しにくくなる。
 また、羽根車8aの両端部の羽根車単体8d1、8d3に対し、それぞれ隣り合う羽根車単体8d2、8d4の位置に、段差部17A、17Bをまたがって形成している。羽根車単体8d1、8d3と羽根車単体8d2、8d4付近での吹出流れを比較すると、相対的に羽根車単体8d1、8d3で負圧となり、羽根車単体8d2、8d4で高圧となる。
羽根車単体8d2、8d4から吹出された流れが、相対的に負圧となる両端部の羽根車単体8d1、8d3へ段差部17A、17Bの段差最深部17bを通り、回転軸方向Lの両端部へ流れが誘引される。このため、羽根車8aの両端部の方向に吹出流れを拡散でき、この部分での風速を上昇できることで、室内からの逆流を確実に防止できる。
 その結果、例えばホコリがフィルタに堆積しても逆流現象が発生しにくい貫流ファンが得られ、この貫流ファンを搭載することで高品質な空気調和機が得られる。
 以上のように、段差部17を、ガイドウォール10の回転軸方向Lの両端部に接続されている側壁に隣接するように、ガイドウォール10の回転軸方向Lの両端部に設けたことにより、段差最深部17bに生じる負圧によってガイドウォール10に沿うように流れを拡散し、この付近での逆流の発生を防止して高品質な空気調和機が得られる効果がある。
 また、送風機8の羽根車8aは回転軸方向Lに複数に分割された羽根車単体8dを固着して構成され、ガイドウォール10の回転軸方向Lの両端部に設けた段差部17A、17Bの回転軸方向Lの長さを、両端部の羽根車単体8d1、8d3にそれぞれ固着されている隣の羽根車単体8d2、8d4にかかるように伸びて構成したことにより、段差最深部17bを通る回転軸方向Lの流れを誘引して極低速域を確実に低減することで逆流を防止できる空気調和機が得られる効果がある。
 図16は、本実施の形態による空気調和機に係り、貫流ファンの羽根車8aを外した場合のガイドウォール10とこれと一体に構成されている筐体背面部1cを示す斜視図である。この構成例では、羽根車回転軸方向Lの一端部から他端部まで伸びた段差部18を形成する。段差部18によって、回転軸方向Lの中央部分では実施の形態1で述べたような低騒音化及び省エネルギー効果が得られ、回転軸方向Lの両端部では室内からの逆流を防止できる高品質な空気調和機が得られる。図16のように、ガイドウォール10の側壁、ここではサージングブロック15の内側で回転軸方向Lの全体のガイドウォール10に段差部18を形成することで、図8と図15の両方の作用効果が得られる。即ち、吹出流れが高速である回転軸方向Lの中央部では、高速流Ffが接するガイドウォール10の表面積を減少しガイドウォール10の表面からの剥離も抑制されることで、低騒音化及び省エネルギー化できる。さらに吹出流れが低速で不安定である両端部では、吹出流れFsをガイドウォール10の表面側に拡散して、室内からの逆流を防ぐことができ、高品質な空気調和機が得られる。
 以上のように、回転軸方向Lでガイドウォール10の一端部から他端部まで伸びるように段差部18を形成したことにより、段差部18に生じる負圧によって吹出流れの剥離を防止し、低騒音化、省エネルギー化及び逆流を防止できる空気調和機が得られる効果がある。
 図17は、本実施の形態による空気調和機に係り、貫流ファンの羽根車8aを外した場合のガイドウォール10とこれと一体に構成されている筐体背面部1cを示す斜視図である。この構成例では、羽根車回転軸方向Lの一端部から他端部まで伸びた段差部19を形成する。そして、回転軸方向Lの数箇所で段差部19を分割する複数の仕切り、例えば3本の分割リブ13を設け、段差部19を4箇所に分割している。分割リブ13は、回転軸Oに垂直な方向に伸び、中央部と両端部に設けたそれぞれの段差部19の段差開始部19aと段差終了部19dを結ぶ壁面を有する仕切りである。
 図16のように、中央部分と両端部分の全体に伸びた段差部18を設けると、前述したように、中央部から両端部に向かって吹出流れを拡散できる効果が得られる。一方、中央部の吹出流れの高速流Ffと両端部の吹出流れの低速流Fsの速度の違いによっては、中央部から両端部へ多く流れ過ぎる可能性もある。そこで、図17に示した構成例では回転軸方向Lに垂直の方向に伸びるように分割リブ13を設ける。分割リブ13の羽根車8aに対向する面は、段差部19を設けていないガイドウォール10の仮想表面とほぼ一致するように構成する。この分割リブ13によって、中央部を流れる高速流Ffが段差部19を通って両端部へ過剰に流れるのが阻止される。分割リブ13の羽根車8aに対向する面と羽根車8aの間には、段差部19を形成しない構成の空間が存在する。このため、中央側から両端部へ流れるのをある程度抑制する。即ち、分割リブ13によって、中央側から両端部へ向かう流れを回転軸Oに直交する方向へ強制することで整流する。このように、両端部付近のガイドウォール10の流れをさらに安定化でき、さらに高品質な空気調和機が得られる。
 回転軸Oに垂直な断面で、仕切り開始部である分割リブ13の開始位置13Aは、段差部19の開始位置と同様とし、仕切り終了部である分割リブ13の終了位置13Bは、段差部19の終了位置と同様とすればよい。即ち、段差部形成角度θsの範囲に分割リブ13を設ける。分割リブ13は、段差部19を通って、中央側の高速流が両端部の低速流の部分に過剰に流れるのを阻止する働きを有する。このため、回転軸Oに垂直な方向のガイドウォール10の表面に沿った面では、少なくとも段差部19が形成されている部分を含むように設けられていればよい。
 なお、分割リブ13を回転軸方向Lでどの位置に設けるかについては、図16に限定されるものではない。少なくとも両端部の近傍に1本ずつ設ければ、両端部付近のガイドウォール10の流れを整流して安定化できる効果がある。
 以上のように、ガイドウォール10の回転軸方向Lの中央部と両端部の間に、回転軸Oに垂直な方向に伸び、中央部と両端部に設けたそれぞれの段差部19の段差開始部19aと段差終了部19dを結ぶ壁面を有する仕切り13を備え、中央部を流れる高速流が段差部19を通って両端部へ過剰に流れるのを阻止することにより、段差部19の効果を有効に発揮でき、安定した流れを得て、高品質な空気調和機が得られる効果がある。
 図18は、本実施の形態による空気調和機に係り、貫流ファンの羽根車8aを外した場合のガイドウォール10とこれと一体に構成されている筐体背面部1cを示す斜視図である。この構成例では、段差部20、21は回転軸方向Lで3分割され、中央部段差部20と両端部段差部21の段差部形成角度θs及び複数の段差の法面長さSを変化させている。例えば、中央部段差部20の段差部形成角度θs(c)と、両端部段差部21の段差部形成角度θs(e)とで、段差開始部及び段差終了部をそれぞれ送風方向にずらすと共に、θs(c)<θs(e)としている。さらに、中央部段差部20と両端部段差部21を共に、複数の段差の段差幅である法面長さScとSeを上流側から下流側に向かって徐々に長くしている。
 前述の様に、ガイドウォール10の周辺の流れは、回転軸方向Lの中央部分で高速流であり、両端部で低速流になる。そこで、両端部段差部21の開始位置を中央部段差部20の開始位置よりも上流側に構成している。羽根車8aから吹出された速度分布を有する流れのうちの両端部の流れは、両端部段差部21で渦を発生し、段差最深部で負圧になる。
これによって、両端部の近くを流れる中央部の流れは、両端部に引き寄せられて、両端部に向かう成分を有する流れとなる。このため、回転軸方向Lで、吹出流れの速度差が若干緩和され、両端部付近の低速度の流れが、ガイドウォール10の両端部側に拡散されるので、室内からの逆流をさらに確実に防止できる。
 また、両端部段差部21と中央部段差部20の段差最深部の位置が互いにずれるので、中央部から両端部へ向かう流れが多くなりすぎるのを防止できる。即ち、中央部段差部20と両端部段差部21との境界部分に図17で示したような分割リブを設けなくても、中央部側から両端部への流れを整流する作用を発揮する。
 また、段差部20、21の法面長さのそれぞれを異なるように構成する。ここでは、中央部段差部20の法面長さScと両端部段差部21の法面長さSeをそれぞれ独立して上流側から下流側に徐々に長くなるように変化させている。回転軸Oに垂直な断面で、渦巻状のガイドウォール10は、流路幅が徐々に広くなるような流路を形成する形状である。
この渦巻状の広がりにつれて段差部の法面長さSを下流側で長くした場合には、下流部分で風向ベーン直前の流れを整流できる。この後、風向ベーンによって通風抵抗を変化させて室内に吹出す際、吹出し方向をコントロールしやすくなる。また、筐体背面部1cを成形する時に、成形型から抜きやすい形状であり、離型が容易な構成である。
 一方、段差部20、21の法面長さSc、Seを、上流側から下流側に徐々に短くなるように変化させることもできる。この場合には、徐々に速度が低下してくる吹出流れを、段差部20、21の段差最深部に付近に生じる負圧によって、ガイドウォール10に沿った流れになるように拡散させることができる。このため、幅広い吹出流れを吹出口3から室内に吹出させることができる。このように、部分的に集中した偏った流れではなく、体感性のよい吹出流れが得られる。
 図18では、回転軸方向Lによって羽根車8aの吹出流れの速度や通風抵抗の差に応じて、段差部20、21の形状を変化させ、ガイドウォール10の表面形状を最適化している。これによって、さらに低騒音化でき、省エネルギー化でき、さらに逆流を防止して高品質な空気調和機が得られる。
 図19は、本実施の形態による空気調和機に係り、貫流ファンの羽根車8aを外した場合のガイドウォール10とこれと一体に構成されている筐体背面部1cを示す斜視図である。この構成例では、段差部22、23は回転軸方向Lで2分割し、向かって左側の段差部22と向かって右側の段差部23とで、段差部形成角度θs及び複数の段差の法面長さSを変化させている。
 例えば、吸込側流路E1で、熱交換器7の上流側で電気集塵器6やフィルタ5よりもさらに細かいホコリが集塵可能な高性能フィルタなどを備える場合がある。このような高性能フィルタを備えた場合、その下流側の通風抵抗が高くなり、低速流れになりやすい。そこで、図19に示すように、向かって左側の通風抵抗が高い部分では、段差部22のように段差部形成角度θsを大きくすることで、低速の吹出流れをガイドウォール10の表面に拡散させることができる。また、上流側の通風抵抗が低い部分では、段差部23のように段差部形成角度θsを小さくすることで、その流れの位置に必要なだけの剥離防止作用や拡散作用を得ることができる。また、段差部22と段差部23との境界部分では、複数の段差の最深部の位置をずらして構成していることで、回転軸O方向の流れが多くなりすぎるのを制御でき、吹出流れを回転軸Oに直行する方向に向けて整流できる。
 このように、羽根車8aの回転軸方向Lでの通風抵抗の差によって段差部22、23の形状を最適化することで、さらに低騒音化でき、省エネルギー化でき、さらに高品質な空気調和機が得られる。
 ここで、図18、図19に示した段差部の形状の最適化とは、回転軸方向Lで段差部を複数に分割して構成し、分割した複数の段差部における段差開始部の位置を隣接する段差部で異なるようにした。また、分割した複数の段差部における段差開始部の位置を隣接する段差部で異なるようにした。また、分割した複数の段差部における段差最深部の位置を隣接する段差部で異なるようにした。また、分割した複数の段差部における段差終了部の位置を、隣接する段差部で異なるように構成した。このように、隣接する段差部で異なるように構成することで、中央部から両端部への流れを整流できる。また、中央部分の高速流の部分に形成される段差部によって、ガイドウォール10に沿った流れの表面積を考慮して、騒音を低減できる。また、両端部の低速流の部分に形成される段差部によって、ガイドウォール10に沿った流れになるように拡散でき、室内からの逆流を防いで、信頼性の高い空気調和機を得ることができる。
 このように、回転軸方向Lに段差部を分割すれば、ガイドウォール10に沿って流れて来る風速や風量に応じて、段差部の形状を回転軸方向Lに変化させて構成することができる。
 もちろん、隣接する段差部で、段差開始部の位置及び段差最深部の位置及び段差終了部の位置のすべてを変化させるのではなく、少なくとも1つの位置を変化させれば、ある程度その部分における通風抵抗に応じて最適化でき、また、ある程度の回転軸方向Lの整流効果を得ることができる。逆に、変化のさせ方によって、整流効果を制御できる。
 また、隣接する段差部で、全く同様の段差の構成とし、その最上流側の段差の段差開始位置を隣接する段差部で若干ずらすことによっても、段差開始部の位置及び段差最深部の位置及び段差終了部の位置を変化させることができる。
 以上のように、回転軸方向Lで段差部を複数に分割して構成し、分割した複数の段差部20、21、22、23における段差開始部の位置または段差最深部の位置または段差終了部の位置を、隣接する段差部20と21、又は段差部22と23で異なるように構成したことにより、回転軸方向Lでの通風抵抗の差に応じてカイドウォール10の表面形状を最適化でき、さらに低騒音化、省エネルギー化、及び高品質化を図ることができる空気調和機が得られる効果がある。
 また、段差部を構成する1つの段差の段差最深部と段差終了部とを結ぶ長さSを、複数の段差に対して上流側から下流側に向かって徐々に長くまたは徐々に短く変化させたことにより、以下の効果を有する。
 即ち、1つの段差の段差最深部と段差終了部とを結ぶ長さSを、複数の段差に対して上流側から下流側に向かって徐々に長く変化させることにより、段差部を設ける効果に加え、吹出方向をコントロールしやすく、製造時に離型しやすい空気調和機が得られる効果がある。
 また、1つの段差の段差最深部と段差終了部とを結ぶ長さSを、複数の段差に対して上流側から下流側に向かって徐々に長く変化させることにより、段差部を設ける効果に加え、吹出側流路E2の流路に吹出流れを拡散でき、段差部を設ける効果に加え、確実に逆流を防止して信頼性の高い空気調和機が得られる効果がある。
 なお、実施の形態1では、段差部を構成する段差の法面部長さSはをすべて同様としたが、上流側から下流側に向かって徐々に長くまたは短く変化させてもよい。また、図10、図11の段差部16A、16Bや、図13、図14の段差部17Aや17Bのように、回転軸方向Lで複数に分割して構成されている段差部では、分割した複数の段差部における段差開始部の位置または段差最深部の位置または段差終了部の位置を、分割した段差部で異なるように構成してもよい。
 また、実施の形態1及び実施の形態2では、段差部を構成する複数の段差の段差最深部を、回転軸方向Lに平行に構成したが、これに限るものではない。回転軸方向Lに対して若干傾斜するように構成してもよい。段差部は、回転軸方向Lに伸びて構成されていれば、この方向で渦G1の大きさが変化して圧力変動が緩和され、低騒音化が図れる。
 また、複数の段差をほぼ平行に配置したが、互いに平行でなく、若干傾いていてもよい。段差部は、回転軸Oに垂直な方向の断面で、複数の段差がほぼ階段状に構成されていれば、送風方向に吹出流れの圧力変動が徐々に拡散され、低騒音化が図れる。
 実施の形態3.
 以下、本発明の実施の形態3に係る空気調和機を図を用いて説明する。なお、主な構成及び対応する符号は実施の形態1または実施の形態2と同様である。図20は筐体背面部1cを一部分解して示す斜視図である。筐体背面部1cにはガイドウォール10の背面部分に下層基盤10cが形成され、そのガイドウォール表面側には複数の下層側勘合部、例えば凹凸形状のガイド穴10dを有する。ガイドウォールの表面ピース25は、ここでは例えば回転軸方向Lに5つの部分25a、25b、25c、25d、25eで構成している。表面ピース25a、25b、25c、25d、25eのそれぞれの裏面は、ガイドウォールの固定位置に該当する下層基盤10cの下層側嵌合部10dに嵌合するように、ガイド穴10dにはめ込み可能に構成する。実施の形態1及び実施の形態2で説明したいずれかの構成の段差部26b、26dを設ける。
 回転軸方向Lで、両端部25a、25e、中央部25c、両端部と中央部の中間部25b、25dのように分割して、吸込領域E1側での通風抵抗分布により、各部分のガイドウォール10の表面形状を、例えばシミュレーションなどによって最適化して決定する。
図20の場合には、例えば両端部25a、25e、中央部25cには段差部26を設けず、両端部と中央部の中間部25b、25dに段差部26b、26dを設ける。そして、それぞれの表面ピース25a、25b、25c、25d、25eを一体または別体に構成し、各表面ピースの裏面に、ガイドウォール10の固定位置に該当する下層基盤10cの下層側勘合部であるガイド穴10dに勘合させることで、筐体背面部1cに固着する。
 このように構成すれば、ガイドウォール10の表面を複数に分割した複数の表面ピース25a、25b、25c、25d、25eで、各表面ピースの組み合わせが変更可能である。使用する環境状況によって異なる形状のガイドウォール10を製造する際でも、筐体背面部1cを共通にして規格化でき、容易に変更できることで、環境状況の変化に対応して汎用化できる。さらにその環境状況に適した形状のガイドウォール10を構成できる。
これによって、低騒音化でき、省エネルギー化でき、さらに高品質な空気調和機が得られる。
 また、このように形成することで、通風抵抗が羽根車長手方向Lで異なる仕様の構成でも、筐体背面部1cを共通としてガイドウォールの表面ピース25を変更するだけで対応できる。このため、ガイドウォール10の少なくとも一部に段差部を有することで、低騒音化、省エネルギー化、及び高信頼性の空気調和機を構成でき、さらに全体の大型な型の製作及び成形が不要で、仕様変更の対応がしやすく、製造コストの低減が図れる。その結果、安価な製品を提供することができる。
 図20では、ガイドウォール10を回転軸方向Lに5ピースに分割して、ガイドウォールの表面ピース25a、25b、25c、25d、25eをガイドウォールの下層基盤10cに勘合するように構成した。これによって、各ピースの形状を自由自在に設計することができる。また、一度運転してみて、運転状態の騒音や逆流状態を測定し、設計をさらに最適になるように容易に変更できる。
 なお、5ピースに限るものではなく、例えば羽根車8aの回転方向、即ち回転軸Oに垂直な方向に構成を分割してもよい。
 また、勘合部10dは凹凸によって勘合させる構成に限らず、爪状ではめ込まれるようにしてもよい。また、他の構成でもよい。
 以上のように、室内空気が吸い込まれる吸込口2と、吸い込まれた室内空気と熱交換する熱交換器7と、熱交換された室内空気が室内へ吹き出される吹出口3と、吸込口2と吹出口3の間の熱交換器7の下流側に設けられ、空気調和機本体1の長手方向を回転軸方向Lとし、モータ12で回転駆動されて吸込口2から吹出口3へ室内空気を送風する羽根車8aを有する送風機8と、羽根車8aの上流側の吸込側流路E1と下流側の吹出側流路E2を分離し、羽根車8aから吹出口3までの吹出側流路E1の前面側を構成するスタビライザー9と、羽根車8aから吹出口3までの吹出側流路E2の背面側を構成する渦巻状のガイドウォール10と、ガイドウォール10の表面の下層に設けられ、ガイドウォール10の表面側に下層側嵌合部10dを有する下層基盤10cを備え、ガイドウォール10の表面を複数に分割した複数の表面ピース25a、25b、25c、25d、25eで構成すると共に、表面ピース25a、25b、25c、25d、25eのそれぞれの裏面はガイドウォールの固定位置に該当する下層基盤10cの下層側嵌合部10dに嵌合するように形成し、各表面ピース25a、25b、25c、25d、25eの組み合わせを変更可能としたことにより、カイドウォール10の表面を通風抵抗に応じて最適な形状として、低騒音化、省エネルギー化、及び高信頼性の空気調和機を得ることができ、さらに、通風抵抗が回転軸方向Lで異なる構成のものでも、筐体背面部1cを共通にガイドウォールピース16を変更するだけで済み、全体の大型な型の製作および成形が不要で、仕様変更の対応がしやすく、製造コストの低減が図れ、その結果、安価な製品を提供することができる。
 また、複数の表面ピース25a、25b、25c、25d、25eの少なくとも1つの表面ピース25b、25dは、実施の形態1または2で述べた段差部のうちのいずれか少なくとも1つの段差部を有することを特徴とすることにより、低騒音で省エネルギー化でき、信頼性の高い空気調和機を製作する際の仕様変更に対応しやすく、汎用性のある空気調和機が得られる効果がある。
 1 空気調和機本体
 1c 筐体背面部
 1d 空気調和機本体上部
 2 吸込口
 2A、2B 第1、第2吸込口
 3 吹出口
 5 フィルタ
 6 電気集塵器
 7 熱交換器
 8 送風機
 8a 羽根車
 8d 羽根車単体
 8d1、8d3 羽根車の両端部の羽根車単体
 8d2、8d4 羽根車の両端部から隣り合う内側の羽根車単体
 9 スタビライザー
 10 ガイドウォール
 10a ガイドウォール始点
 10b ガイドウォール終点
 10c 下層基盤
 10d 勘合部
 12 モータ
 13 仕切り
 14 段差部
 14A、14B、14C、14D、14E 1つの段差
 14a 段差部開始部
 14b 段差部最深部
 14c 段差部法面部
 14d 段差部終了部
 15 流路縮小部材
 16、17、18、19、20、21、22、23 段差部
 25 ガイドウォールの表面ピース
 26 段差部
 C1 羽根車回転軸中心Oと段差開始部14aとの距離
 C2 羽根車回転軸中心Oと段差最深部14bとの距離
 C3 羽根車回転軸中心Oと段差終了部14dとの距離
 E1 羽根車吸込側流路
 E2 羽根車吹出側流路
 Ff 高速の吹出流れ
 Fs 低速の吹出流れ
 G1 渦
 L 羽根車回転軸方向
 O 羽根車回転軸(回転中心)
 RO 羽根車回転方向
 S 段差最深部と段差終了部との間の長さ(法面部長さ)
 h 段差開始部と段差最深部との間の長さ
 θc ガイドウォール渦巻角
 θs 段差部形成角度

Claims (13)

  1.  室内空気が吸い込まれる吸込口と、
     吸い込まれた前記室内空気と熱交換する熱交換器と、
     熱交換された前記室内空気が室内へ吹き出される吹出口と、
     前記吸込口と前記吹出口の間の前記熱交換器の下流側に設けられ、空気調和機本体の長手方向を回転軸方向とし、モータで回転駆動されて前記吸込口から前記吹出口へ前記室内空気を送風する羽根車を有する送風機と、
     前記羽根車の上流側の吸込側流路と下流側の吹出側流路を分離し、前記羽根車から前記吹出口までの前記吹出側流路の前面側を構成するスタビライザーと、
     前記羽根車から前記吹出口までの前記吹出側流路の背面側を構成する渦巻状のガイドウォールと、
     前記ガイドウォールの少なくとも一部に設けられ、前記羽根車の回転軸に垂直な断面で略三角形にくぼんだ形状であって前記回転軸方向に伸びる段差を複数本並設し、前記送風機の前記送風する方向に階段状となる段差部と、
     を備えたことを特徴とする空気調和機。
  2.  前記羽根車の回転軸に垂直な断面で、前記段差部の1つの段差の上流側端部を段差開始部とし、前記段差の略三角形状に最も深くくぼんだ部分を段差最深部とし、前記段差の下流側端部を段差終了部とし、前記羽根車の回転中心Oと前記段差開始部を結ぶ長さC1、前記羽根車の回転中心Oと前記段差最深部を結ぶ長さC2、前記羽根車の回転中心Oと前記段差終了部を結ぶ長さC3の間の関係を、C1<C2≦C3となるように前記段差を構成したことを特徴とする請求項1記載の空気調和機。
  3.  前記羽根車の回転軸に垂直な断面で、前記段差部の1つの段差の上流側端部を段差開始部とし、前記段差の略三角形状に最も深くくぼんだ部分を段差最深部とし、前記段差の下流側端部を段差終了部とし、前記段差開始部と前記段差最深部を結ぶ長さh、前記段差最深部と前記段差終了部を結ぶ長さSの間の関係を、h<Sとなるように前記段差を構成したことを特徴とする請求項1または請求項2記載の空気調和機。
  4.  前記羽根車の回転軸方向で、前記羽根車から吹出される空気流が高速となる部分のガイドウォールに前記段差部を設けたことを特徴とする請求項1乃至請求項3のいずれかに記載の空気調和機。
  5.  前記吸込口は前記羽根車の回転軸方向に二分割されて第1吸込口と第2吸込口より構成され、前記第1吸込口の下流に相当する位置の前記ガイドウォールに設けた第1段差部と、前記第2吸込口の下流に相当する位置の前記ガイドウォールに設けた第2段差部と、を備えたことを特徴とする請求項4記載の空気調和機。
  6.  前記段差部を、前記ガイドウォールの前記回転軸方向の両端部に接続されている側壁に隣接するように、前記ガイドウォールの前記回転軸方向の両端部に設けたことを特徴とする請求項1乃至請求項5のいずれかに記載の空気調和機。
  7.  前記送風機の前記羽根車は前記回転軸方向に複数に分割された羽根車単体を固着して構成され、前記ガイドウォールの前記回転軸方向の両端部に設けた前記段差部の前記回転軸方向の長さを、前記両端部の前記羽根車単体にそれぞれ固着されている隣の羽根車単体にかかるように伸びて構成したことを特徴とする請求項6記載の空気調和機。
  8.  前記回転軸方向で前記ガイドウォールの一端部から他端部まで伸びるように前記段差部を形成したことを特徴とする請求項1乃至請求項4のいずれかに記載の空気調和機。
  9.  前記ガイドウォールの前記回転軸方向の中央部と両端部の間に、前記回転軸に垂直な方向に伸び、前記中央部と前記両端部に設けたそれぞれの段差部の段差開始部と段差終了部を結ぶ壁面を有する仕切りを備え、前記中央部を流れる高速流が前記段差部を通って前記両端部へ過剰に流れるのを阻止することを特徴とする請求項8記載の空気調和機。
  10.  前記回転軸方向で前記段差部を複数に分割して構成し、分割した複数の段差部における前記段差開始部の位置または前記段差最深部の位1置または前記段差終了部の位置を、隣接する段差部で異なるように構成したことを特徴とする請求項8記載の空気調和機。
  11.  前記段差部を構成する1つの段差の前記段差最深部と前記段差終了部とを結ぶ長さSを、複数の段差に対して上流側から下流側に向かって徐々に長くまたは徐々に短く変化させたことを特徴とする請求項2乃至請求項10のいずれかに記載の空気調和機。
  12.  室内空気が吸い込まれる吸込口と、
     吸い込まれた前記室内空気と熱交換する熱交換器と、
     熱交換された前記室内空気が室内へ吹き出される吹出口と、
     前記吸込口と前記吹出口の間の前記熱交換器の下流側に設けられ、空気調和機本体の長手方向を回転軸方向とし、モータで回転駆動されて前記吸込口から前記吹出口へ前記室内空気を送風する羽根車を有する送風機と、
     前記羽根車の上流側の吸込側流路と下流側の吹出側流路を分離し、前記羽根車から前記吹出口までの前記吹出側流路の前面側を構成するスタビライザーと、
     前記羽根車から前記吹出口までの前記吹出側流路の背面側を構成する渦巻状のガイドウォールと、
     前記ガイドウォールの表面の下層に設けられ、前記ガイドウォールの表面側に下層側嵌合部を有する下層基盤を備え、
     前記ガイドウォールの表面を複数に分割した複数の表面ピースで構成すると共に、前記表面ピースのそれぞれの裏面は前記ガイドウォールの固定位置に該当する前記下層基盤の下層側嵌合部に嵌合するように形成し、各表面ピースの組み合わせを変更可能としたことを特徴とする空気調和機。
  13.  前記複数の表面ピースの少なくとも1つの表面ピースは、請求項1乃至請求項11のいずれかに記載の段差部を有することを特徴とする請求項12記載の空気調和機。
PCT/JP2010/001548 2009-03-06 2010-03-05 空気調和機 WO2010100944A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011502667A JP5289554B2 (ja) 2009-03-06 2010-03-05 空気調和機
EP10748543.5A EP2405206B1 (en) 2009-03-06 2010-03-05 Air conditioner
CN201080008143.7A CN102326030B (zh) 2009-03-06 2010-03-05 空调机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-053647 2009-03-06
JP2009053647 2009-03-06

Publications (1)

Publication Number Publication Date
WO2010100944A1 true WO2010100944A1 (ja) 2010-09-10

Family

ID=42709510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001548 WO2010100944A1 (ja) 2009-03-06 2010-03-05 空気調和機

Country Status (4)

Country Link
EP (1) EP2405206B1 (ja)
JP (1) JP5289554B2 (ja)
CN (1) CN102326030B (ja)
WO (1) WO2010100944A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211746A (ja) * 2011-03-31 2012-11-01 Mitsubishi Electric Corp 空気調和機
CN103370578A (zh) * 2011-01-11 2013-10-23 夏普株式会社 空气调节机
JP2018124004A (ja) * 2017-01-31 2018-08-09 ダイキン工業株式会社 室内機

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5477441B2 (ja) * 2012-09-28 2014-04-23 ダイキン工業株式会社 空気調和機
JP5533969B2 (ja) 2012-09-28 2014-06-25 ダイキン工業株式会社 空気調和機
ES2778303T3 (es) 2012-12-19 2020-08-10 Mitsubishi Electric Corp Acondicionador de aire
JP5716766B2 (ja) * 2013-02-12 2015-05-13 ダイキン工業株式会社 空気調和機
JP6468416B2 (ja) * 2013-09-30 2019-02-13 ダイキン工業株式会社 クロスフローファン及びこれを備える空気調和機の室内機
JP6843721B2 (ja) * 2017-09-27 2021-03-17 ダイキン工業株式会社 空気調和機
CN108412807B (zh) * 2018-04-03 2023-08-15 珠海格力节能环保制冷技术研究中心有限公司 蜗壳、风机组件和空调器
KR102549804B1 (ko) * 2018-08-21 2023-06-29 엘지전자 주식회사 공기조화기

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121398A (ja) 1994-10-26 1996-05-14 Ishikawajima Harima Heavy Ind Co Ltd ターボ圧縮機の放風装置
JPH08121396A (ja) * 1994-10-28 1996-05-14 Matsushita Electric Ind Co Ltd 送風機
JP2002250534A (ja) 2001-02-23 2002-09-06 Mitsubishi Heavy Ind Ltd 空気調和機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979601A (ja) * 1995-09-13 1997-03-28 Matsushita Electric Ind Co Ltd 横断流送風機
AU719205B2 (en) * 1996-08-23 2000-05-04 Mitsubishi Denki Kabushiki Kaisha Air conditioner indoor unit
JP3497073B2 (ja) * 1998-01-19 2004-02-16 三菱電機株式会社 貫流送風機
JPH11294376A (ja) * 1998-04-08 1999-10-26 Calsonic Corp 送風装置
JP3532432B2 (ja) * 1999-01-12 2004-05-31 シャープ株式会社 クロスフローファン及びそれを用いた流体送り装置
JP3695740B2 (ja) * 1999-02-02 2005-09-14 松下電器産業株式会社 空気調和機の室内ユニット
JP2002257078A (ja) * 2001-02-26 2002-09-11 Matsushita Electric Ind Co Ltd 多翼形羽根車とその製造方法
JP2002286244A (ja) * 2001-03-26 2002-10-03 Mitsubishi Heavy Ind Ltd 空気調和機
JP4873845B2 (ja) * 2004-10-01 2012-02-08 三菱電機株式会社 空気調和機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121398A (ja) 1994-10-26 1996-05-14 Ishikawajima Harima Heavy Ind Co Ltd ターボ圧縮機の放風装置
JPH08121396A (ja) * 1994-10-28 1996-05-14 Matsushita Electric Ind Co Ltd 送風機
JP2002250534A (ja) 2001-02-23 2002-09-06 Mitsubishi Heavy Ind Ltd 空気調和機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103370578A (zh) * 2011-01-11 2013-10-23 夏普株式会社 空气调节机
CN103370578B (zh) * 2011-01-11 2016-03-30 夏普株式会社 空气调节机
JP2012211746A (ja) * 2011-03-31 2012-11-01 Mitsubishi Electric Corp 空気調和機
JP2018124004A (ja) * 2017-01-31 2018-08-09 ダイキン工業株式会社 室内機

Also Published As

Publication number Publication date
EP2405206B1 (en) 2019-04-24
EP2405206A1 (en) 2012-01-11
JP5289554B2 (ja) 2013-09-11
CN102326030A (zh) 2012-01-18
JPWO2010100944A1 (ja) 2012-09-06
EP2405206A4 (en) 2013-12-18
CN102326030B (zh) 2014-12-31

Similar Documents

Publication Publication Date Title
JP5289554B2 (ja) 空気調和機
JP4840343B2 (ja) 貫流ファン及び空気調和機
JP6041895B2 (ja) 空気調和機
JP4973249B2 (ja) 多翼ファン
TWI513908B (zh) Cross flow fan, forming mold and fluid feeding device
WO2010104083A1 (ja) クロスフローファン及びこれを備えた空気調和機
EP2549114B1 (en) Cross-flow fan and air conditioner
WO2013150673A1 (ja) 空気調和装置の室内機
JP5269060B2 (ja) 貫流ファン及び空気調和機の室内機
WO2012002081A1 (ja) ファン、成型用金型および流体送り装置
JP5744209B2 (ja) 空気調和機
JP4918650B2 (ja) 多翼ファン
JP4832498B2 (ja) 貫流ファン及び空気調和機
WO2012096127A1 (ja) 空気調和機
JP5263335B2 (ja) 貫流ファン及び空気調和機
EP2280176B1 (en) Cross flow fan and air conditioner equipped with same
JP5631429B2 (ja) 空気調和機
JP2012013092A (ja) ファン、成型用金型および流体送り装置
JP5361944B2 (ja) 貫流ファン及び空気調和機
JP5264960B2 (ja) 貫流ファン及び空気調和機
JP5575288B2 (ja) 貫流ファン及び空気調和機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080008143.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748543

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011502667

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 4862/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010748543

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE