WO2010100134A2 - Exzenterschneckenpumpe - Google Patents

Exzenterschneckenpumpe Download PDF

Info

Publication number
WO2010100134A2
WO2010100134A2 PCT/EP2010/052597 EP2010052597W WO2010100134A2 WO 2010100134 A2 WO2010100134 A2 WO 2010100134A2 EP 2010052597 W EP2010052597 W EP 2010052597W WO 2010100134 A2 WO2010100134 A2 WO 2010100134A2
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
eccentric screw
screw pump
stator
longitudinal direction
Prior art date
Application number
PCT/EP2010/052597
Other languages
English (en)
French (fr)
Other versions
WO2010100134A3 (de
Inventor
Ralf Daunheimer
Original Assignee
Ralf Daunheimer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40911653&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010100134(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ralf Daunheimer filed Critical Ralf Daunheimer
Priority to ES10711641T priority Critical patent/ES2846680T3/es
Priority to CA2754139A priority patent/CA2754139C/en
Priority to DK10711641.0T priority patent/DK2404061T3/da
Priority to US13/203,268 priority patent/US9109595B2/en
Priority to EP10711641.0A priority patent/EP2404061B1/de
Priority to PL10711641T priority patent/PL2404061T3/pl
Priority to RU2011139951/06A priority patent/RU2535795C2/ru
Publication of WO2010100134A2 publication Critical patent/WO2010100134A2/de
Publication of WO2010100134A3 publication Critical patent/WO2010100134A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/91Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/20Geometry of the rotor
    • F04C2250/201Geometry of the rotor conical shape

Definitions

  • the invention relates to an eccentric screw pump, in particular for conveying viscous, highly viscous and abrasive media, having a longitudinal direction L, at least comprising a conical, helically wound, at least catchy rotor with a pitch h, with at least one eccentricity e and at least one cross-section d, the in a single- or multi-start conical stator, rotatably arranged, in which between the rotor and stator, a plurality of chambers each having a volume is formed, which serve to convey the medium and in which limits the chambers between the stator and rotor by a sealing line D. are.
  • the invention further relates to an eccentric screw pump, in particular for conveying viscous, highly viscous and abrasive media, having a longitudinal direction L, at least comprising a stepped, helically wound, at least catchy rotor with a pitch h, with at least one eccentricity e and at least one cross section d, which is rotatably arranged in a single or multi-stage staircase-shaped stator.
  • Eccentric screw pumps are well known in the art, so z. B. in DE 633 784 a Eccentric screw pump, in which two helical elements are in one another and in which the outer element has a helix or tooth more than the inner element and in which the pitches of the helical turns of the two elements behave like the gait or tooth numbers, but constant, may be increasing or decreasing, wherein at least three cooperating helical elements are provided, of which the middle has one tooth more than the interior and one tooth less than the exterior.
  • an eccentric screw pump with a conical worm shaft and a housing insert is known, which is characterized in that the eccentric screw shaft has a round, cylindrical base cross-section and a conically rising conical outer diameter, and that the conically wound inner hollow screw with the double pitch of the eccentric screw shaft, causing a conical, hypocycloidal rolling of the eccentric screw shaft on the inner shell of the conical, helical hollow screw.
  • a problem with the progressing cavity pumps of the prior art is that with progressive cavity pumps which have a plurality of chambers, wear phenomena may result in so-called cavitation when the pump is operated by increasing the chamber volume, resulting in that the delivery rate of such an eccentric screw pump is no longer optimal.
  • the eccentric screw pump according to the invention is characterized in that the volumes of each individual chamber between the stator and rotor are the same size.
  • the cross-section d of the rotor decreases in the longitudinal direction of the rotor.
  • About the decrease of the cross section may e.g. with varying change in eccentricity, the chamber volume kept constant.
  • the eccentricity of the rotor in the longitudinal direction L increases or decreases
  • the pitch h of the rotor increases or decreases in the longitudinal direction L
  • the rotor has a decreasing or increasing cross section d in the longitudinal direction. Due to the variations of the parameters described above, the pump power of the eccentric screw pump according to the invention can be further optimized, or adapted to the corresponding needs, which are for example specified by the material to be conveyed.
  • the rotor as wear protection, a coating, for. B. with chromium, with a ceramic material or other materials.
  • stator and / or rotor may consist of an elastomer or a solid. Again, it is possible, depending on the intended application for the eccentric screw according to the invention to provide the appropriate material for the stator and / or rotor.
  • the stator may also comprise an annular or tubular stator shell made of a different material.
  • This stator jacket can be used to protect the stator and thus to increase the service life of the eccentric screw pump.
  • the stator jacket is conically shaped.
  • the stator has a uniform plastic wall thickness.
  • FIG. 1a the longitudinal section through the rotor of an eccentric screw pump according to the invention
  • FIG. 1b shows the view of the rotor of an eccentric screw pump according to the invention at position A;
  • FIG. 1c shows a further view of a rotor of an eccentric screw pump according to the invention at point B;
  • FIG. 3a shows the longitudinal section through a further embodiment of the eccentric screw pump according to the invention
  • 3b shows the view of the rotor of an eccentric screw pump according to the invention at the position A;
  • 3c shows the view of the rotor on the rotor of an eccentric screw pump according to the invention at position B;
  • FIG. 4a shows the longitudinal section through the rotor and stator of an eccentric screw pump according to the invention
  • FIG. 4b shows the view of an eccentric screw pump according to the invention at position A
  • FIG. 4a shows the longitudinal section through the rotor and stator of an eccentric screw pump according to the invention
  • FIG. 4b shows the view of an eccentric screw pump according to the invention at position A
  • FIG. 4b shows the view of an eccentric screw pump according to the invention at position A
  • FIG. 4c shows the view of an eccentric screw pump according to the invention at position B;
  • 5a shows the longitudinal section through an eccentric screw pump according to the invention of a further embodiment
  • FIG. 5b shows the view of an eccentric screw pump according to the invention at position A;
  • 5c shows the view of an eccentric screw pump according to the invention at position B;
  • FIG. 6a shows the longitudinal section through a further embodiment of the eccentric screw pump according to the invention.
  • FIG. 6b shows the view of an eccentric screw pump according to the invention at position A;
  • FIG. 6c shows the view of an eccentric screw pump according to the invention at position B;
  • FIG. 7a shows the longitudinal section through a further embodiment of an eccentric screw pump according to the invention.
  • FIG. 7b shows the view of an eccentric screw pump according to the invention at position A;
  • FIG. 1 shows a rotor 1 of an eccentric screw according to the invention in longitudinal section.
  • the rotor 1 has a pitch h and an eccentricity ei at the beginning of the rotor 1 and an eccentricity e n to the end of the rotor 1.
  • the eccentricity of the rotor 1 increases, so that the dimension e n is greater than the measure egg.
  • the view A A is shown on the starting end of the rotor 1.
  • the rotor 1 has a cross-section di on and also recognizable in this view eccentricity ei.
  • Fig. Ic shows the view B: B of Fig.
  • FIGS. 1 and 2 show the stator 2 of an eccentric screw pump according to the invention.
  • the rotor 1 described above from Fig. Ia can be introduced and thus forms the eccentric screw pump according to the invention, which is characterized in that the individual volumes which are present for the transport of the medium in the longitudinal direction L of the rotor are the same size.
  • the longitudinal view of Fig. 2 can be clearly see the conicity of the stator and the matching thereinto rotor. Due to the conicity of stator 2 and rotor 1 and the corresponding adjustment of pitch, cross-section and / or eccentricity, it is possible to keep the individual volumes of the chambers located in the eccentric screw pump according to the invention constant.
  • FIGS. 1 shows the stator 2 of an eccentric screw pump according to the invention.
  • FIG. 3a, 3b and 3c show a further embodiment of a rotor 1, which can be introduced into an eccentric screw pump according to the invention.
  • the rotor 1 At its beginning (view A: A), the rotor 1 has a cross-section di, which is larger than the cross-section of the rotor 1 at its end (view B: B), which is marked with the dimension d2.
  • view B: B Along the longitudinal direction L of the rotor 1 can be seen a decrease in the cross section of the rotor, which results in that the rotor 1 has a conical shape.
  • the eccentricity e of the rotor starts at the beginning of the rotor 1 (position A) with a size ei and ends at the position B with a maximum value e n .
  • the eccentricity e thus increases in the longitudinal direction of the rotor 1, that is to say from the larger cross section to the smaller cross section d.
  • FIGS. 3b and 3c the respective views A: A and B: B are shown, which make it possible to observe the end or the beginning of the rotor 1.
  • the eccentricity ei at the beginning of the rotor 1, at the point A with the cross-section di is significantly lower than the eccentricity e n , which in Fig. 3c, the one view (view B: B) on the rotor end, shows.
  • the cross section d2 is also smaller than the cross section di.
  • FIG. 4 a shows an eccentric screw pump 100 according to the invention, which has a rotor 1 and a stator 2. Between the rotor 1 and the stator 2 different chamber volumes V3, V 4 , V 5 ... V n of the chambers 3, 4, 5 ... n can be seen, which according to the invention are all the same size. The same size of the volumes just mentioned results from the fact that both the rotor 1 agreed taper and it has adapted thereto eccentricity, pitch and / or cross section of the rotor 1, which is surrounded by the correspondingly shaped stator 2.
  • a sealing line D is formed between the stator 2 and the rotor 1, along which the necessary pressure is built up, which is necessary to the abrasive, highly viscous medium under pressure by the eccentric screw pump 100 to transport. Due to the rotational movement of the rotor 1, this sealing line travels substantially helically along the longitudinal direction L in the direction of the outlet of the eccentric screw pump 100 according to the invention and moves the medium to be transported in the direction of the pump outlet. The medium to be transported which is located within the volumes is thereby moved in the direction of the outlet of the eccentric screw pump 100 according to the invention.
  • the drive of the eccentric screw pump 100 according to the invention can, for. Example, via an electric motor, which is arranged at the end (position A) of the eccentric screw pump according to the invention, which has the cross-section di and rotates at this point the rotor 1. It can also be seen that the cross-section di at the beginning of the rotor 1 is greater than the cross-section d2 to the end of the rotor 1. This is accompanied by the fact that the eccentricity of the eccentric screw pump 100 according to the invention at the beginning, that is in the region of entry in the eccentric screw pump (position A) is lower than the end (position B), that is to the outlet end of the medium of the eccentric screw pump 100 out.
  • the eccentricity at the inlet of the eccentric screw pump (position A) is marked with ei net and the eccentricity at the output (position B) of the eccentric screw pump 100 according to the invention is marked with e n .
  • the views of the entrance area or the end area of the eccentric screw pump 100 according to the invention which are shown in FIGS. 4b and 4c, likewise clearly show once again that the eccentricity increases in the longitudinal direction L of the eccentric screw pump 100 according to the invention or in the longitudinal direction L of the rotor 1 so that ei is smaller than e n . This is associated with the fact that the cross-section di at the beginning of the rotor is greater than the cross-section d2 of the rotor 1 in the end of the eccentric screw pump 100.
  • Figs. 4a to 4c an eccentric screw pump 100 is shown in which both the cross section of the rotor 1 as also the eccentricity e of the rotor 1 has been changed.
  • FIGS. 5a to 5c show a further possible embodiment of the eccentric screw pump 100 according to the invention, which differs from the eccentric screw pump 100 shown in FIGS. 4a to 4c in that the cross section di of the rotor 1 in the longitudinal direction L of the rotor 1 is not changed.
  • V n to keep the volumes V3, V 4, V 5, the same size
  • an eccentric screw pump according to the invention was 100, the pitch h of the rotor or the stator in the longitudinal direction L of the eccentric screw pump according to the invention modified in this embodiment.
  • Fig. 5a it can be seen that the slope h in the longitudinal direction L of the eccentric screw pump 100 according to the invention decreases.
  • FIGS. 6a to 6c respectively show the views along the line A: A and B: B from FIG. 5a, namely the views on the inlet end and the outlet end of this embodiment of FIG It can be seen that the eccentricity ei at the inlet end of the eccentric screw pump is greater than the eccentricity e n in the outlet region.
  • FIGS. 6a to 6c likewise show a further embodiment of the eccentric screw pump 100 according to the invention, which differs from the eccentric screw pump shown in FIGS. 4a to 4c in that in this embodiment both the cross section and the pitch of the rotor or of the rotor Stators were changed.
  • FIGS. 6b and 6c it can be seen that the cross section of the rotor 1 in the inlet region of the eccentric screw pump is greater than the cross section of the rotor 1 in the outlet region of the eccentric screw pump.
  • FIGS. 7a to 7c A further variant of the eccentric screw pump according to the invention is shown in FIGS. 7a to 7c, in which both the eccentricity, the cross section and the pitch of the rotor or the stator have been changed, the individual volumes V 3 , V 4 , V 5 being kept constant were.
  • Fig. 7a can be seen that the slope h decreases in the longitudinal direction L of the eccentric screw pump according to the invention.
  • the change in the cross section of the rotor 1 and the eccentricity e are shown in FIGS. 7b and 7c.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

Eine Exzenterschneckenpumpe (100), insbesondere zur Förderung von dickflüssigen, hochviskosen und abrasiven Medien, mit einer Längsrichtung L, weist einen konischen, schraubenförmig gewundenen, mindestens eingängigen Rotor (1) mit einer Steigung h auf, mit mindestens einer Exzentrizität (e1, e2, e3,...en) und mindestens einem Querschnitt d, der in einem ein oder mehrgängigen konischen Stator (2), drehbar angeordnet ist, bei der zwischen Rotor (1) und Stator (2) eine Mehrzahl von Kammern (3, 4, 5...n) mit jeweils einem Volumen (V3, V4, V5...Vn) gebildet ist, die zur Beförderung des Mediums dienen und bei der die Kammern (3, 4, 5...n) zwischen Stator (2) und Rotor (1) durch eine Dichtlinie D begrenzt sind. Dabei sind die Volumina (V3, V4, V5...Vn) jeder einzelnen Kammer (3, 4, 5...n) zwischen Stator (2) und Rotor (1) gleich groß.

Description

Exzenterschneckenpumpe
Die Erfindung betrifft eine Exzenterschneckenpumpe, insbesondere zur Förderung von dickflüssigen, hochviskosen und abrasiven Medien, mit einer Längsrichtung L, mindestens aufweisend einen konischen, schraubenförmig gewundenen, mindestens eingängigen Rotor mit einer Steigung h, mit mindestens einer Exzentrizität e und mindestens einem Querschnitt d, der in einem ein- oder mehrgängigen konischen Stator, drehbar angeordnet ist, bei der zwischen Rotor und Stator eine Mehrzahl von Kammern mit jeweils einem Volumen gebildet ist, die zur Beförderung des Mediums dienen und bei der die Kammern zwischen Stator und Rotor durch eine Dichtlinie D begrenzt sind. Die Erfindung betrifft weiterhin eine Exzenterschneckenpumpe, insbesondere zur Förderung von dickflüssigen, hochviskosen und abrasiven Medien, mit einer Längsrichtung L, mindestens aufweisend einen treppenförmigen, schraubenförmig gewundenen, mindestens eingängigen Rotor mit einer Steigung h, mit mindestens einer Exzentrizität e und mindestens einem Querschnitt d, der in einem ein- oder mehrgängigen treppenförmigen Stator, drehbar angeordnet ist.
Exzenterschneckenpumpen sind aus dem Stand der Technik hinreichend bekannt, so wird z. B. in der DE 633 784 eine Exzenterschneckenpumpe beschrieben, bei der zwei schraubenförmige Elemente ineinander liegen und bei der das äußere Element einen Schraubengang oder -zahn mehr als das innere Element hat und bei der sich die Steigungen der Schraubenwindungen der beiden Elemente wie die Gang- oder Zahnzahlen verhalten, dabei aber konstant, zunehmend oder abnehmend sein können, wobei wenigstens drei zusammenwirkende schneckenförmige Elemente vorgesehen sind, von denen das mittlere einen Zahn mehr als das Innere und einen Zahn weniger als das Äußere aufweist.
Aus der DE 27 36 590 Al wird eine Exzenterschneckenpumpe mit einer konischen Schneckenwelle und einem Gehäuseeinsatz bekannt, die sich dadurch auszeichnet, dass die Exzenterschneckenwelle einen runden, zylindrischen Grundquerschnitt und einen konisch ansteigenden kegeligen Außendurchmesser hat, und dass die konisch gewundene Innen- hohlschnecke mit der doppelten Steigung der Exzenterschneckenwelle, ein konisch, hypozykloides Abrollen der Exzenterschneckenwelle auf dem Innenmantel der konischen, gewundenen Hohlschnecke bewirkt.
Problematisch bei den Exzenterschneckenpumpen des Standes der Technik ist, dass es bei Exzenterschneckenpumpen die mehrere Kammern aufweisen, durch Verschleißerscheinungen beim Betrieb der Pumpe durch Kammervolumenerhöhung zur sogenannten Kavitation kommen kann, was dazu führt, dass die Förderleistung einer solchen Exzenterschneckenpumpe nicht mehr optimal ist.
Ausgehend von dieser Problemstellung ist es Aufgabe der Erfindung, eine Exzenterschneckenpumpe bereitzustellen, die sich bei Verschleiß einfach nachstellen lässt, sodass immer eine optimale Pumpleistung erwartet werden kann und ein Austausch von Stator und/oder Rotor weniger oft erforderlich ist.
Zur Problemlösung zeichnet sich die erfindungsgemäße Exzenterschneckenpumpe dadurch aus, dass die Volumina jeder einzelnen Kammer zwischen Stator und Rotor gleichgroß sind.
Durch diese erfindungsgemäße Ausbildung einer Exzenterschneckenpumpe kann es ermöglicht werden, dass die Pumpe immer die maximal mögliche Förderleistung aufweist. Bei evtl. Verschleißerscheinungen kann z. B. die Rotorwelle bzw. der Stator in Längsrichtung verschoben werden, sodass das Kammervolumen wieder gleich ist und die Pumpleistung der Exzenterschneckenpumpe optimal ist.
Erfindungsgemäß ist vorgesehen, dass der Querschnitt d des Rotors in Längsrichtung des Rotors abnimmt. Über die Abnahme des Querschnittes kann z.B. bei sich verändernder Veränderung der Exzentrizität das Kammervolumen konstant gehalten .
Darüber hinaus sind weitere Ausgestaltungsformen möglich, nämlich dass die Steigung h des Rotors mit abnehmendem Querschnitt d des Rotors abnimmt und dass der Rotor in Längsrichtung L einen abnehmenden Querschnitt d aufweist. Es ist auch möglich, dass die Exzentrizität e des Rotors in Längsrichtung L zu oder abnimmt und dass der Querschnitt d des Rotors ab oder zunimmt. Des Weiteren kann die erfindungsgemäße Exzenterschneckenpumpe derart ausgebildet werden, dass die Exzentrizität des Rotors in Längsrichtung zu oder abnimmt und die Steigung h des Rotors in Längsrichtung zu- oder abnimmt. Es ist auch möglich, dass bei einer erfindungsgemäßen Exzenterschneckenpumpe die Exzentrizität des Rotors in Längsrichtung L zu oder abnimmt, die Steigung h des Rotors in Längsrichtung L zu oder abnimmt und das der Rotor in Längsrichtung einen ab- oder zunehmenden Querschnitt d aufweist. Durch die Variationen der zuvor beschriebenen Parameter kann die Pumpleistung der erfindungsgemäßen Exzenterschneckenpumpe weiter optimiert werden, bzw. an die entsprechenden Bedürfnisse, die z.B. vom zu fördernden Gut vorgegeben werden, angepasst werden.
Darüber hinaus ist es aufgrund dieser Variationsmöglichkeiten möglich, Exzenterschneckenpumpen für die verschiedensten Anwendungsgebiete, nämlich Anwendungsgebiete in denen dickflüssige, hochviskose und/oder abrasive Medien transportiert werden müssen, bereitzustellen.
Um die Standzeit der erfindungsgemäßen Exzenterschneckenpumpe zu erhöhen, kann der Rotor als Verschleißschutz eine Beschichtung, z. B. mit Chrom, mit einem keramischen Werkstoff oder anderen Materialien aufweisen.
Erfindungsgemäß ist vorgesehen, dass Stator und/oder Rotor aus einem Elastomer oder einem Feststoff bestehen können. Auch hier besteht die Möglichkeit, je nach dem vorgesehenen Einsatzgebiet für die erfindungsgemäße Exzenterschneckenpumpe das entsprechende Material für Stator und/oder Rotor vorzusehen.
Vorteilhafterweise kann ebenfalls der Stator einen aus einem anderen Material bestehenden ring- oder röhrenförmigen Statormantel aufweisen. Dieser Statormantel kann zum Schütze des Stators und damit zur Erhöhung der Standdauer der Exzenterschneckenpumpe eingesetzt werden. Vor- teilhafterweise ist dabei der Statormantel konisch geformt .
Erfindungsgemäß ist des Weiteren vorgesehen, dass der Stator eine gleichmäßige KunststoffWandstärke aufweist.
Anhand einer Zeichnung soll ein Ausführungsbeispiel der Erfindung näher erläutert werden. Es zeigen:
Fig. Ia den Längschnitt durch den Rotor einer erfindungsgemäßen Exzenterschneckenpumpe;
Fig. Ib die Ansicht des Rotors einer erfindungsgemäßen Exzenterschneckenpumpe an der Position A;
Fig. Ic eine weitere Ansicht eines Rotors einer erfindungsgemäßen Exzenterschneckenpumpe an der Stelle B;
Fig. 2 den Längsschnitt durch eine erfindungsgemäße Exzenterschneckenpumpe;
Fig. 3a den Längsschnitt durch eine weitere Ausführungsform der erfindungsgemäßen Exzenterschneckenpumpe;
Fig. 3b die Ansicht des Rotors einer erfindungsgemäßen Exzenterschneckenpumpe an der Position A;
Fig. 3c die Ansicht des Rotors auf den Rotor einer erfindungsgemäßen Exzenterschneckenpumpe an der Position B;
Fig. 4a den Längsschnitt durch Rotor und Stator einer erfindungsgemäßen Exzenterschneckenpumpe; Fig. 4b die Ansicht einer erfindungsgemäßen Exzenterschneckenpumpe an der Position A;
Fig. 4c die Ansicht einer erfindungsgemäßen Exzenterschneckenpumpe an der Position B;
Fig. 5a den Längsschnitt durch eine erfindungsgemäße Exzenterschneckenpumpe einer weiteren Ausführungsform;
Fig. 5b die Ansicht einer erfindungsgemäßen Exzenterschneckenpumpe an der Position A;
Fig. 5c die Ansicht einer erfindungsgemäßen Exzenterschneckenpumpe an der Position B;
Fig. 6a den Längsschnitt durch eine weitere Ausführungsform der Erfindungsgemäßen Exzenterschneckenpumpe;
Fig. 6b die Ansicht einer erfindungsgemäßen Exzenterschneckenpumpe an der Position A;
Fig. 6c die Ansicht einer erfindungsgemäßen Exzenterschneckenpumpe an der Position B;
Fig. 7a den Längsschnitt durch eine weitere Ausführungsform einer erfindungsgemäßen Exzenterschneckenpumpe;
Fig. 7b die Ansicht einer erfindungsgemäßen Exzenterschneckenpumpe an der Position A; und
Fig. 7c die Ansicht einer erfindungsgemäßen Exzenterschneckenpumpe an der Position B. Fig. 1 zeigt einen Rotor 1 einer erfindungsgemäßen Exzenterschneckenpumpe im Längsschnitt. Der Rotor 1 weist eine Steigung h auf sowie eine Exzentrizität ei zu Beginn des Rotors 1 und eine Exzentrizität en zum Ende des Rotors 1. In Längsrichtung L des Rotors 1 nimmt die Exzentrizität des Rotors 1 zu, sodass das Maß en größer ist als das Maß ei. In Fig. Ib ist die Ansicht A: A auf das Anfangsende des Rotors 1 dargestellt. Der Rotor 1 weist einen Querschnitt di auf und die auch in dieser Ansicht erkennbare Exzentrizität ei.Fig. Ic zeigt die Ansicht B:B aus Fig. Ia, in der zu erkennen ist, dass der Querschnitt dn am Ende des Rotors 1 geringer ist als der Querschnitt di am Beginn des Rotors 1. Zu erkennen ist auch, dass die Exzentrizität im Verlauf des Rotors 1 in Längsrichtung L zunimmt .
Fig. 2 zeigt den Stator 2 einer erfindungsgemäßen Exzenterschneckenpumpe. In diesen Stator 2 kann der zuvor beschriebene Rotor 1 aus Fig. Ia eingebracht werden und bildet auf diese Weise die erfindungsgemäße Exzenterschneckenpumpe, die sich dadurch auszeichnet, dass die einzelnen Volumina die für den Transport des Mediums vorhanden sind in Längsrichtung L des Rotors gleichgroß sind. In der Längsdarstellung der Fig. 2 lässt sich deutlich die Konizität des Stators sowie des dahin hinein passenden Rotors erkennen. Aufgrund der Konizität von Stator 2 und Rotor 1 und der entsprechenden Einstellung von Steigung, Querschnitt und/oder Exzentrizität ist es möglich, die einzelnen Volumina der sich in der erfindungsgemäßen Exzenterschneckenpumpe befindenden Kammern konstant zu halten. Die Fig. 3a, 3b und 3c zeigen eine weitere Ausführungsform eines Rotors 1, der in eine erfindungsgemäße Exzenterschneckenpumpe eingebracht werden kann. An seinem Beginn (Ansicht A:A) weist der Rotor 1 einen Querschnitt di auf, der größer ist als der Querschnitt des Rotors 1 an seinem Ende (Ansicht B: B), der mit dem Maß d2 gekennzeichnet ist. Entlang der Längsrichtung L des Rotors 1 lässt sich eine Abnahme des Querschnitts des Rotors erkennen, die darin resultiert, dass der Rotor 1 eine konische Form aufweist. Die Exzentrizität e des Rotors beginnt am Beginn des Rotors 1 (Position A) mit einer Größe ei und endet an der Position B mit einem Maximalwert en. Die Exzentrizität e nimmt also in Längsrichtung des Rotors 1, das heißt vom größeren Querschnitt zum kleineren Querschnitt d, zu. In den Figuren 3b und 3c sind die jeweiligen Ansichten A:A sowie B:B dargestellt, die die Aufsicht auf das Ende bzw. den Anfang des Rotors 1 ermöglichen. Der Fig. 3b lässt sich entnehmen, dass die Exzentrizität ei am Beginn des Rotors 1, an der Stelle A mit dem Querschnitt di deutlich geringer ist als die Exzentrizität en, die sich in der Fig. 3c, die eine Ansicht (Ansicht B:B) auf das Rotorende darstellt, zeigt. Der Fig. 3c lässt sich ebenfalls entnehmen, dass der Querschnitt d2 ebenfalls kleiner ist als der Querschnitt di .
In der Fig. 4a ist eine erfindungsgemäße Exzenterschneckenpumpe 100 dargestellt, die einen Rotor 1 und einen Stator 2 aufweist. Zwischen Rotor 1 und Stator 2 sind verschiedene Kammervolumina V3, V4, V5 ... Vn der Kammern 3, 4, 5...n zu erkennen, die erfindngsgemäß alle gleichgroß sind. Die gleiche Größe der soeben aufgeführten Volumina resultiert daraus, dass sowohl der Rotor 1 eine vorbe- stimmte Konizität und daran eine daran angepasste Exzentrizität, Steigung und/oder Querschnitt des Rotors 1 aufweist, der von dem entsprechend ausgeformten Stator 2 umgeben wird. Damit der Transport eines flüssigen abrasiven und/oder hochviskosen Mediums durch die Exzenterschneckenpumpe 100 erfolgen kann, ist zwischen dem Stator 2 und dem Rotor 1 eine Dichtlinie D gebildet, entlang derer der notwendige Druck aufgebaut wird, der notwendig ist, um das abrasive, hochviskose Medium unter Druck durch die Exzenterschneckenpumpe 100 zu transportieren. Durch die Drehbewegung des Rotors 1 wandert diese Dichtlinie im Wesentlichen spiralförmig entlang der Längsrichtung L in Richtung des Ausgangs der erfindungsgemäßen Exzenterschneckenpumpe 100 und bewegt das zu transportierende Medium in Richtung des Pumpenausgangs. Das zu transportierende Medium das sich innerhalb der Volumina befindet wird dabei in Richtung des Ausgangs der erfindungsgemäßen Exzenterschneckenpumpe 100 bewegt. Der Antrieb der erfindungsgemäßen Exzenterschneckenpumpe 100 kann z. B. über einen Elektromotor erfolgen, der an dem Ende (Position A) der erfindungsgemäßen Exzenterschneckenpumpe angeordnet ist, die den Querschnitt di aufweist und an dieser Stelle den Rotor 1 dreht. Fig. 4a ist ebenfalls zu entnehmen, dass der Querschnitt di zu Beginn des Rotors 1 größer ist als der Querschnitt d2 zum Ende des Rotors 1. Hiermit geht einher, dass auch die Exzentrizität der erfindungsgemäßen Exzenterschneckenpumpe 100 zu Beginn, das heißt im Bereich des Eintritts in die Exzenterschneckenpumpe (Position A) geringer ist als zum Ende (Position B) , das heißt zum Austrittsende des Mediums der Exzenterschneckenpumpe 100 hin. Die Exzentrizität am Eingang der Exzenterschneckenpumpe (Position A) ist mit ei gekennzeich- net und die Exzentrizität am Ausgang (Position B) der erfindungsgemäßen Exzenterschneckenpumpe 100 ist mit en gekennzeichnet. Die Ansichten auf den Eingangsbereich bzw. den Endbereich der erfindungsgemäßen Exzenterschneckenpumpe 100, die in den Fig. 4b und 4c dargestellt sind zeigen ebenfalls noch einmal deutlich, dass die Exzentrizität in Längsrichtung L der erfindungsgemäßen Exzenterschneckenpumpe 100, bzw. in Längsrichtung L des Rotors 1 zunimmt, sodass ei kleiner ist als en. Damit geht einher, dass auch der Querschnitt di zu Beginn des Rotors größer ist als der Querschnitt d2 des Rotors 1 im Endbereich der Exzenterschneckenpumpe 100. In den Fig. 4a bis 4c ist eine Exzenterschneckenpumpe 100 gezeigt, bei der sowohl der Querschnitt des Rotors 1 als auch die Exzentrizität e des Rotors 1 verändert wurde.
Die Fig. 5a bis 5c zeigen eine weitere mögliche Ausführungsform der erfindungsgemäßen Exzenterschneckenpumpe 100, die sich von der in den Fig. 4a bis 4c gezeigten Exzenterschneckenpumpe 100 dadurch unterscheidet, dass der Querschnitt di des Rotors 1 in Längsrichtung L des Rotors 1 nicht verändert wird. Um die Volumina V3, V4, V5 bis Vn trotzdem gleichgroß zu halten, wurde bei dieser Ausführungsform einer erfindungsgemäßen Exzenterschneckenpumpe 100 die Steigung h des Rotors bzw. des Stators in Längsrichtung L der erfindungsgemäßen Exzenterschneckenpumpe verändert. Insbesondere der Fig. 5a ist zu entnehmen, dass die Steigung h in Längsrichtung L der erfindungsgemäßen Exzenterschneckenpumpe 100 abnimmt. Die Fig. 5b bzw. 5c zeigen die Ansichten entlang der Linie A:A bzw. B:B aus Fig. 5a, nämlich die Ansichten auf das Eintrittsende bzw. das Austrittsende dieser Ausführungsform der erfindungsgemäßen Exzenterschneckenpumpe 100. Es zeigt sich, dass die Exzentrizität ei am Eintrittsende der Exzenterschneckenpumpe größer ist als die Exzentrizität en im Austrittsbereich. In den Fig. 6a bis 6c ist ebenfalls eine weitere Ausführungsform der erfindungsgemäßen Exzenterschneckenpumpe 100 dargestellt, die sich von der in den Fig. 4a bis 4c dargestellten Exzenterschneckenpumpe dahingehend unterscheidet, dass bei dieser Ausführungsform sowohl der Querschnitt als auch die Steigung des Rotors bzw. des Stators verändert wurden.
Insbesondere den Fig. 6b und 6c ist zu entnehmen, dass der Querschnitt des Rotors 1 im Einlassbereich der Exzenterschneckenpumpe größer ist als der Querschnitt des Rotors 1 im Auslassbereich der Exzenterschneckenpumpe.
In den Fig. 7a bis 7c ist eine weitere Variante der erfindungsgemäßen Exzenterschneckenpumpe dargestellt, bei der sowohl die Exzentrizität, der Querschnitt und die Steigung des Rotors bzw. des Stators verändert wurden, wobei die einzelnen Volumina V3, V4, V5 konstant gehalten wurden. Insbesondere der Fig. 7a lässt sich entnehmen, dass die Steigung h in Längsrichtung L der erfindungsgemäßen Exzenterschneckenpumpe abnimmt. Die Veränderung hinsichtlich des Querschnitts des Rotors 1 sowie der Exzentrizität e zeigen die Fig. 7b und 7c. Bezugs zeichenliste 100 Exzenterschneckenpumpe 1 Rotor
2 Stator
3 Kammer
4 Kammer
5 Kammer n Kammer ei Exzentrizität e.2 Exzentrizität e3 Exzentrizität en Exzentrizität
Vi Volumen
V2 Volumen
V3 Volumen
Vn Volumen
L Längsrichtung h Steigung d Querschnitt

Claims

Patentansprüche :
1. Exzenterschneckenpumpe (100), insbesondere zur Förderung von dickflüssigen, hochviskosen und abrasiven Medien, mit einer Längsrichtung L, mindestens aufweisend einen konischen, schraubenförmig gewundenen, mindestens eingängigen Rotor (1) mit einer Steigung h, mit mindestens einer Exzentrizität (ei, θ2, e3, ...en) und mindestens einem Querschnitt d, der in einem ein oder mehrgängigen konischen Stator (2), drehbar angeordnet ist,
- bei der zwischen Rotor (1) und Stator (2) eine Mehrzahl von Kammern (3, 4, 5...n) mit jeweils einem Volumen (V3, V4, V5...Vn) gebildet ist, die zur Beförderung des Mediums dienen,
- bei der die Kammern (3, 4, 5...n) zwischen Stator
(2) und Rotor (1) durch eine Dichtlinie D begrenzt sind,
dadurch gekennzeichnet, dass
die Volumina (V3, V4, V5...Vn) jeder einzelnen Kammer (3, 4, 5...n) zwischen Stator (2) und Rotor (1) gleich groß sind.
2. Exzenterschneckenpumpe, insbesondere zur Förderung von dickflüssigen, hochviskosen und abrasiven Medien, mit einer Längsrichtung L, mindestens aufweisend ei- nen treppenförmigen, schraubenförmig gewundenen, mindestens eingängigen Rotor mit einer Steigung h, mit mindestens einer Exzentrizität e und mindestens einem Querschnitt d, der in einem ein oder mehrgängigen, treppenförmigen Stator, drehbar angeordnet ist,
— bei der zwischen Rotor und Stator eine Mehrzahl von Kammern mit jeweils einem Volumen gebildet ist, die zur Beförderung des Mediums dienen,
— bei der die Kammern zwischen Stator und Rotor durch eine Dichtlinie D begrenzt sind,
dadurch gekennzeichnet, dass
die Volumina jeder einzelnen Kammer zwischen Stator und Rotor gleich groß sind.
3. Exzenterschneckenpumpe (100) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Steigung h des Rotors (1) in Längsrichtung L des Rotors (1) abnimmt.
4. Exzenterschneckenpumpe (100) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Rotor (1) als Verschleißschutz eine Beschichtung z.B. mit Chrom, mit einem keramischen Werkstoff oder mit anderen Materialien aufweist.
5. Exzenterschneckenpumpe (100) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Steigung h des Rotors (1) mit abnehmenden Querschnitt d des Rotors (1) abnimmt und dass der Rotors (1) in Längsrichtung L einen abnehmenden Querschnitt d aufweist.
6. Exzenterschneckenpumpe (100) nach einem Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Exzentrizität
(ei, θ2, θ3, ...en) des Rotors (1) in Längsrichtung L zu- oder abnimmt und der Querschnitt d des Rotors (1) ab- oder zunimmt.
7. Exzenterschneckenpumpe (100) nach einem Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Exzentrizität
(ei, θ2, θ3, ...en) des Rotors (1) in Längsrichtung L zu- oder abnimmt und die Steigung h des Rotors (1) in Längsrichtung L zu- oder abnimmt.
8. Exzenterschneckenpumpe (100) nach einem Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Exzentrizität
(ei, θ2, θ3, ...en) des Rotors (1) in Längsrichtung L zu- oder abnimmt, die Steigung h des Rotors (1) in Längsrichtung L zu- oder abnimmt und dass der Rotor (1) in Längsrichtung L einen ab- oder zunehmenden Querschnitt d aufweist.
9. Exzenterschneckenpumpe (100) nach einem oder mehreren der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der Stator (2) und/oder der Rotor (1) aus einem Elastomer oder einem Feststoff besteht.
10. Exzenterschneckenpumpe (100) nach einem oder mehreren der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der Stator (2) einen aus einem anderen Material bestehenden ring- oder röhrenförmigen Statormantel aufweist.
11. Exzenterschneckenpumpe (100) Anspruch 10, dadurch gekennzeichnet, dass der Statormantel eine konische Form aufweist.
12. Exzenterschneckenpumpe (100) nach einem oder mehreren der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der Stator (2) eine gleichmäßige KunststoffWandstärke aufweist.
PCT/EP2010/052597 2009-03-02 2010-03-02 Exzenterschneckenpumpe WO2010100134A2 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES10711641T ES2846680T3 (es) 2009-03-02 2010-03-02 Bomba helicoidal excéntrica
CA2754139A CA2754139C (en) 2009-03-02 2010-03-02 Eccentric screw pump
DK10711641.0T DK2404061T3 (da) 2009-03-02 2010-03-02 Excentersnekkepumpe
US13/203,268 US9109595B2 (en) 2009-03-02 2010-03-02 Helical gear pump
EP10711641.0A EP2404061B1 (de) 2009-03-02 2010-03-02 Exzenterschneckenpumpe
PL10711641T PL2404061T3 (pl) 2009-03-02 2010-03-02 Mimośrodowa pompa śrubowa
RU2011139951/06A RU2535795C2 (ru) 2009-03-02 2010-03-02 Эксцентриковый червячный насос (варианты)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202009002823.2 2009-03-02
DE202009002823U DE202009002823U1 (de) 2009-03-02 2009-03-02 Exzenterschneckenpumpe

Publications (2)

Publication Number Publication Date
WO2010100134A2 true WO2010100134A2 (de) 2010-09-10
WO2010100134A3 WO2010100134A3 (de) 2010-12-29

Family

ID=40911653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/052597 WO2010100134A2 (de) 2009-03-02 2010-03-02 Exzenterschneckenpumpe

Country Status (10)

Country Link
US (1) US9109595B2 (de)
EP (1) EP2404061B1 (de)
CA (1) CA2754139C (de)
DE (1) DE202009002823U1 (de)
DK (1) DK2404061T3 (de)
ES (1) ES2846680T3 (de)
PL (1) PL2404061T3 (de)
PT (1) PT2404061T (de)
RU (1) RU2535795C2 (de)
WO (1) WO2010100134A2 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106640627A (zh) * 2016-12-30 2017-05-10 北京工业大学 一种等过流面积的锥螺杆‑衬套副
WO2017210779A1 (en) * 2016-06-10 2017-12-14 Activate Artificial Lift Inc. Progressing cavity pump and methods of operation
WO2018130718A1 (de) 2017-01-16 2018-07-19 Vogelsang Gmbh & Co. Kg Regelung der spaltgeometrie in einer exzenterschneckenpumpe
EP2404061B1 (de) 2009-03-02 2020-11-11 Ralf Daunheimer Exzenterschneckenpumpe
EP4187095A1 (de) 2021-11-30 2023-05-31 Vogelsang GmbH & Co. KG Exzenterschneckenpumpe mit arbeitszustellung und ruhezustellung sowie verfahren zum steuern der exzenterschneckenpumpe
DE202022107205U1 (de) 2022-12-23 2024-04-22 Vogelsang Gmbh & Co. Kg Exzenterschneckenpumpe mit gekapselter Statorauskleidung

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2532833B1 (de) 2011-06-10 2015-07-29 ViscoTec Pumpen-u. Dosiertechnik GmbH Förderelement für eine Exzenterschneckenpumpe und Exzenterschneckenpumpe
DE202011110637U1 (de) 2011-06-10 2015-07-02 Viscotec Pumpen- U. Dosiertechnik Gmbh Exzenterschneckenpumpe
CN103775334B (zh) * 2014-02-13 2016-01-13 北京工业大学 一种锥螺杆-衬套副
DE102014117483A1 (de) 2014-04-14 2015-10-15 Erich Netzsch Gmbh & Co. Holding Kg Verstellbare Pumpeinheit für eine Verdrängerpumpe
JP5802914B1 (ja) 2014-11-14 2015-11-04 兵神装備株式会社 流動体搬送装置
US10626866B2 (en) * 2014-12-23 2020-04-21 Schlumberger Technology Corporation Method to improve downhole motor durability
BE1025347B1 (nl) * 2017-06-28 2019-02-05 Atlas Copco Airpower Naamloze Vennootschap Cilindrisch symmetrische volumetrische machine
US11035338B2 (en) 2017-11-16 2021-06-15 Weatherford Technology Holdings, Llc Load balanced power section of progressing cavity device
DE202018104142U1 (de) * 2018-07-18 2019-10-22 Vogelsang Gmbh & Co. Kg Rotor für eine Exzenterschneckenpumpe
CA3131941A1 (en) * 2019-03-11 2020-09-17 National Oilwell Varco, L.P. Progressing cavity devices and assemblies for coupling multiple stages of progressing cavity devices
WO2020232231A1 (en) * 2019-05-14 2020-11-19 Schlumberger Technology Corporation Mud motor or progressive cavity pump with varying pitch and taper
CN114341499B (zh) * 2019-08-29 2023-12-29 兵神装备株式会社 单轴偏心螺杆泵
CA3114159A1 (en) 2020-04-02 2021-10-02 Abaco Drilling Technologies Llc Tapered stators in positive displacement motors remediating effects of rotor tilt
US11421533B2 (en) 2020-04-02 2022-08-23 Abaco Drilling Technologies Llc Tapered stators in positive displacement motors remediating effects of rotor tilt
US11859632B2 (en) 2020-11-04 2024-01-02 John Lloyd Bowman Boundary-layer pump and method of use

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE633784C (de) 1935-03-21 1936-08-06 Rene Joseph Louis Moineau Als Pumpe, Motor oder UEbertragungsorgan o. dgl. verwendbare Vorrichtung
DE2736590A1 (de) 1977-08-13 1979-02-22 Hartmut Kowalzik Exzenterschneckenpumpe mit konischer schneckenwelle und gehaeuse-einsatz

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2733854A (en) * 1956-02-07 chang
US1892217A (en) 1930-05-13 1932-12-27 Moineau Rene Joseph Louis Gear mechanism
US2085115A (en) * 1934-05-02 1937-06-29 Moineau Rene Joseph Louis Gear mechanism
GB441246A (en) * 1935-03-21 1936-01-15 Rene Joseph Louis Moineau Improvements in gear mechanisms, adapted for use as pumps, compressors, motors or transmission devices
US2290137A (en) * 1938-10-22 1942-07-14 Roy G Dorrance Compressor for refrigerating apparatus
US2553548A (en) 1945-08-14 1951-05-22 Henry D Canazzi Rotary internal-combustion engine of the helical piston type
US2532145A (en) * 1948-03-02 1950-11-28 Robbins & Myers Pump
US2957427A (en) 1956-12-28 1960-10-25 Walter J O'connor Self-regulating pumping mechanism
US3139035A (en) 1960-10-24 1964-06-30 Walter J O'connor Cavity pump mechanism
GB972420A (en) 1963-04-23 1964-10-14 Gustav Rudolf Lindberg Screw pump
FR2136996B1 (de) * 1971-05-11 1973-05-11 Creusot Loire
US3771900A (en) * 1971-10-14 1973-11-13 S Baehr Graduated screw pump
DE2632716A1 (de) 1976-07-21 1978-01-26 Martin Theodor Melchior Fluessigkeitspumpe, insbesondere fuer gips-anwurfgeraete
IT1174991B (it) * 1983-07-06 1987-07-01 Pompe F B M Spa Pompa centrifuga per materiali e prodotti molto densi e/o viscosi
DE3442977A1 (de) 1984-11-24 1986-05-28 Verschleiß-Technik Dr.-Ing. Hans Wahl GmbH & Co, 7302 Ostfildern Schneckenpumpe sowie verfahren und vorrichtung zu ihrer herstellung
BR8707675A (pt) * 1986-04-23 1989-08-15 Svenska Rotor Maskiner Ab Maquina de deslocamento positivo rotativa do tipo de engrenagem conica para um fluido de trabalho compressivel
US5120204A (en) * 1989-02-01 1992-06-09 Mono Pumps Limited Helical gear pump with progressive interference between rotor and stator
DE4237966A1 (de) 1992-11-11 1994-05-26 Arnold Jaeger Exzenterschneckenpumpe
RU2119061C1 (ru) * 1993-12-15 1998-09-20 Роман Львович Сницаренко Устройство для преобразования тепловой энергии газа в механическую
US5722820A (en) 1996-05-28 1998-03-03 Robbins & Myers, Inc. Progressing cavity pump having less compressive fit near the discharge
GB2341423B (en) * 1998-09-09 2002-04-24 Mono Pumps Ltd Progressing cavity pump
US6354824B1 (en) * 2000-03-09 2002-03-12 Kudu Industries, Inc. Ceramic hardfacing for progressing cavity pump rotors
US6457958B1 (en) 2001-03-27 2002-10-01 Weatherford/Lamb, Inc. Self compensating adjustable fit progressing cavity pump for oil-well applications with varying temperatures
RU2214513C1 (ru) * 2002-04-24 2003-10-20 Давыдов Владимир Всеволодович Героторная машина
DE10345597A1 (de) 2003-09-29 2005-05-12 Verschleis Technik Dr Ing Hans Förderschnecke für eine Exzenterschneckenpumpe
DE202005008989U1 (de) 2005-06-07 2005-08-11 Seepex Gmbh + Co Kg Exzenterschneckenpumpe
ATE415560T1 (de) * 2006-01-26 2008-12-15 Grundfos Management As Exzenterschneckenpumpe
WO2008000505A1 (en) * 2006-06-30 2008-01-03 Grundfos Management A/S Moineau pump
ATE502214T1 (de) * 2007-05-04 2011-04-15 Grundfos Management As Moineau-pumpe
ATE445782T1 (de) * 2007-11-02 2009-10-15 Grundfos Management As Moineau-pumpe
DE202009002823U1 (de) 2009-03-02 2009-07-30 Daunheimer, Ralf Exzenterschneckenpumpe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE633784C (de) 1935-03-21 1936-08-06 Rene Joseph Louis Moineau Als Pumpe, Motor oder UEbertragungsorgan o. dgl. verwendbare Vorrichtung
DE2736590A1 (de) 1977-08-13 1979-02-22 Hartmut Kowalzik Exzenterschneckenpumpe mit konischer schneckenwelle und gehaeuse-einsatz

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2404061B1 (de) 2009-03-02 2020-11-11 Ralf Daunheimer Exzenterschneckenpumpe
WO2017210779A1 (en) * 2016-06-10 2017-12-14 Activate Artificial Lift Inc. Progressing cavity pump and methods of operation
US11499549B2 (en) 2016-06-10 2022-11-15 Activate Artificial Lift Inc. Progressing cavity pump and methods of operation
CN106640627A (zh) * 2016-12-30 2017-05-10 北京工业大学 一种等过流面积的锥螺杆‑衬套副
CN110392785B (zh) * 2017-01-16 2021-03-30 福格申有限责任两合公司 偏心螺杆泵中间隙几何形状的调节
CN110392785A (zh) * 2017-01-16 2019-10-29 福格申有限责任两合公司 偏心蜗杆泵中间隙几何形状的调节
DE102017100715A1 (de) 2017-01-16 2018-07-19 Hugo Vogelsang Maschinenbau Gmbh Regelung der Spaltgeometrie in einer Exzenterschneckenpumpe
US11286928B2 (en) 2017-01-16 2022-03-29 Vogelsang Gmbh & Co. Kg Controlling the gap geometry in an eccentric screw pump
WO2018130718A1 (de) 2017-01-16 2018-07-19 Vogelsang Gmbh & Co. Kg Regelung der spaltgeometrie in einer exzenterschneckenpumpe
EP4137698A1 (de) 2017-01-16 2023-02-22 Vogelsang GmbH & Co. KG Regelung der spaltgeometrie in einer exzenterschneckenpumpe
EP4187095A1 (de) 2021-11-30 2023-05-31 Vogelsang GmbH & Co. KG Exzenterschneckenpumpe mit arbeitszustellung und ruhezustellung sowie verfahren zum steuern der exzenterschneckenpumpe
DE102021131427A1 (de) 2021-11-30 2023-06-01 Vogelsang Gmbh & Co. Kg Exzenterschneckenpumpe mit Arbeitszustellung und Ruhezustellung sowie Verfahren zum Steuern der Exzenterschneckenpumpe
DE202022107205U1 (de) 2022-12-23 2024-04-22 Vogelsang Gmbh & Co. Kg Exzenterschneckenpumpe mit gekapselter Statorauskleidung

Also Published As

Publication number Publication date
RU2535795C2 (ru) 2014-12-20
PL2404061T3 (pl) 2021-06-28
EP2404061A2 (de) 2012-01-11
US9109595B2 (en) 2015-08-18
DE202009002823U1 (de) 2009-07-30
PT2404061T (pt) 2021-01-29
WO2010100134A3 (de) 2010-12-29
DK2404061T3 (da) 2021-02-08
RU2011139951A (ru) 2013-04-10
US20110305589A1 (en) 2011-12-15
CA2754139C (en) 2018-07-24
CA2754139A1 (en) 2010-09-10
EP2404061B1 (de) 2020-11-11
ES2846680T3 (es) 2021-07-28

Similar Documents

Publication Publication Date Title
EP2404061B1 (de) Exzenterschneckenpumpe
EP2125146B1 (de) Rückspülfilter
WO2003033240A1 (de) Extruder zur gewinnung von kunststoff-schmelzen
EP1523403B1 (de) Extruder
DE1553057C3 (de) Rotationskolbenmaschine
EP0509218B1 (de) Zahnradpumpe
EP2964957B1 (de) Exzenterschneckenpumpe mit überdruckschutz
DE4031554A1 (de) Schlauchpumpe
EP1320453B1 (de) Schneckenextruder-zahnradpumpen-anordnung für hochviskose medien
EP1129292A1 (de) Schnecke für eine exzenterschneckenpumpe oder einen untertagebohrmotor
DE602004004309T2 (de) Schraubenpumpe
EP1958757A2 (de) Extruder
WO2021009275A1 (de) Stator für eine exzenterschneckenpumpe
DE102013100451B4 (de) Rotor für Schnecken- und / oder Exzenterschneckenpumpen und Schnecken- oder Exzenterschneckenpumpe
CH677518A5 (de)
DE202005005212U1 (de) Förderschnecke eines Extruders
WO2018162360A1 (de) Exzenterschneckenpumpe
EP3961035A1 (de) Verfahren und schraubenspindelpumpe zur förderung eines gas-flüssigkeitsgemischs
EP1601875B1 (de) Exzenterschneckenpumpe
DE3710930C2 (de)
DE4211149A1 (de) Mehrwellige Schneckenmaschine mit Zahnradpumpe
DE102014014278B3 (de) Exzenterschneckendoppelpumpe mit einem Rotor, welcher starr an die Schnecke eines Einschneckenextruders gekoppelt ist
EP3913187B1 (de) Schraubenspindelpumpe
WO2018019318A1 (de) Rotor-stator-system mit einem einlauftrichter für eine exzenterschneckenpumpe
DE10211673A1 (de) Mehrwellen-Extruder mit Austragsschnecke

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10711641

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13203268

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2754139

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011139951

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010711641

Country of ref document: EP