WO2010098350A1 - Antifouling coating composition and antifouling coating fluid containing the composition - Google Patents

Antifouling coating composition and antifouling coating fluid containing the composition Download PDF

Info

Publication number
WO2010098350A1
WO2010098350A1 PCT/JP2010/052871 JP2010052871W WO2010098350A1 WO 2010098350 A1 WO2010098350 A1 WO 2010098350A1 JP 2010052871 W JP2010052871 W JP 2010052871W WO 2010098350 A1 WO2010098350 A1 WO 2010098350A1
Authority
WO
WIPO (PCT)
Prior art keywords
antifouling
coating film
coating
composition
weight
Prior art date
Application number
PCT/JP2010/052871
Other languages
French (fr)
Japanese (ja)
Inventor
徳文 永松
Original Assignee
Nagamatu Yoshifumi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagamatu Yoshifumi filed Critical Nagamatu Yoshifumi
Publication of WO2010098350A1 publication Critical patent/WO2010098350A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/062Copolymers with monomers not covered by C09D133/06
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/10Block or graft copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof

Definitions

  • the present invention relates to an antifouling paint composition and an antifouling paint liquid containing the same. More specifically, an antifouling paint composition capable of producing an antifouling coating film for water-resistant organisms that achieves both high antifouling performance and low environmental load, and an antifouling paint in which the composition is dispersed in a solvent. It is about liquid.
  • Underwater structures such as fish nets, water pipes, breakwaters, aquatic poles used for aquaculture, etc., and aquatic organisms such as seaweeds, shellfish and microorganisms adhere to the surface of the ship's bottom.
  • aquatic organisms such as seaweeds, shellfish and microorganisms adhere to the surface of the ship's bottom.
  • There is a problem of breeding In particular, when such aquatic organisms breed in a ship, the resistance of the bottom surface of the ship increases, causing a decrease in the fuel use efficiency of the ship.
  • removing such aquatic organisms from the bottom of the ship requires a great deal of labor, which increases the maintenance cost of the ship.
  • aquatic organisms adhere to fish nets such as aquaculture nets and stationary nets, and breeding may cause problems such as acid deficiency of fished organisms due to blockage of the nets.
  • fish nets such as aquaculture nets and stationary nets
  • breeding may cause problems such as acid deficiency of fished organisms due to blockage of the nets.
  • aquatic organisms adhere to the seawater supply and drainage pipes of thermal power, nuclear power plants, large chemical plants, etc., and breeding hinders cooling water supply and drainage circulation and lowers cooling efficiency.
  • an antifouling paint containing an antifouling agent containing an organic compound such as organic tin has been used as such an antifouling paint, particularly an antifouling paint for ships (for example, Patent Document 1).
  • Such antifouling paints not only exhibit antifouling effects by releasing organic compounds that are toxic to aquatic organisms, but also the paint itself gradually dissolves in water, so the bottom surface of the ship can always be kept clean. it can.
  • toxic organic compounds have an adverse effect on the human body and biological systems, antifouling paints for ships with particularly low environmental loads have been studied in recent years.
  • a silyl ester antifouling paint composition (for example, Patent Document 2) has been proposed as an antifouling paint such as a marine antifouling paint having a small environmental load.
  • an antifouling paint composition containing a conventionally used vehicle such as copper oxide in a copolymer of a halogen-containing acrylate compound monomer and an unsaturated monomer such as methyl methacrylate (for example, patent document) 3) has been proposed.
  • the silyl ester antifouling paint composition disclosed in Patent Document 2 is inferior in antifouling performance as compared with an antifouling paint containing organic tin as an antifouling agent, and the stability of the coating film is insufficient. Therefore, the coating film tends to become brittle, and cracks and peeling may occur.
  • the vehicle such as the copper compound antifouling agent contained in the antifouling paint disclosed in Patent Document 3 is less toxic than the conventional organic tin as described above, but it is a large amount in a large tanker or the like. When used, the adverse effects on the biological system cannot be avoided.
  • the object of the present invention is to form an antifouling coating film that has a low environmental load, is excellent in antifouling properties and mechanical strength, and has excellent durability even in water. It is to provide an antifouling coating composition.
  • the present inventors consider that it is more effective to solve the above problems to suppress the adhesion of aquatic organisms to the coating film than to suppress the propagation of aquatic organisms with an antifouling agent.
  • solid fats and oils have a low affinity with water, so they have the effect of suppressing the adhesion of aquatic organisms, but they are used as antifouling coatings for water because they lack durability and hardness in water.
  • a specific polyol resin can form a coating film excellent in durability and mechanical strength, it has hydrophilic properties, and therefore, aquatic organisms are easily attached thereto, and the antifouling property in water is insufficient.
  • an antifouling coating composition containing (A) solid oil and fat: 1 to 30% by weight and (B) polyol resin: 70 to 99% by weight.
  • the acrylic polyol resin is a silicon-modified acrylic polyol resin.
  • ⁇ 5> The antifouling coating composition according to any one of ⁇ 1> to ⁇ 4>, further comprising (C) a natural resin.
  • the antifouling paint composition of the present invention has a low environmental impact, is excellent in antifouling properties and mechanical strength, and can form a sustainable antifouling coating film with excellent durability even in water. it can.
  • FIG. 11 is an enlarged view of FIG. 10 (only a sample pole portion). It is a photograph of the sample pole (unpainted) of the seawater exposure test (after 7 months) in Test Example 23. It is an enlarged view (only a pole part) of FIG.
  • the present invention relates to an antifouling paint composition comprising (A) solid oil and fat: 1 to 30% by weight and (B) polyol resin: 70 to 99% by weight (hereinafter referred to as “the antifouling paint composition of the present invention”). Or it may be simply referred to as “the coating composition of the present invention”).
  • the antifouling paint composition of the present invention is characterized by containing (A) a solid fat having an action of suppressing adhesion of aquatic organisms and (B) a polyol resin having an action of improving the durability of the coating film.
  • A a solid fat having an action of suppressing adhesion of aquatic organisms
  • B a polyol resin having an action of improving the durability of the coating film.
  • adhesiveness with a base material will improve, and the hardness of this composition can be improved.
  • Solid fats and oils used in the present invention are solid or semisolid solid fats (waxes) at room temperature, and petroleum-based waxes such as so-called paraffin wax and microwax, Either natural wax or synthetic wax may be used, but paraffin wax is preferable in that it has a suitable effect for preventing adhesion of the underwater composition and is easily available.
  • Paraffin wax is a solid or semi-solid oil (wax) that is solid or semi-solid at room temperature, which is mainly composed of straight-chain paraffinic hydrocarbons having about 18 to 30 carbon atoms. Generally, it is separated and refined from petroleum distillation oil. Manufactured.
  • Paraffin wax is usually distinguished by its melting point. According to JIS K 2235, there are 8 types of paraffin wax from 120 paraffin (melting point: 48.9 ° C to 51.7 ° C) to 155 paraffin (melting point: 68.3 ° C to 71.0 ° C). Is stipulated. These tend to have lower flexibility as the melting point is higher, and those having an appropriate melting point may be used depending on the application. For example, 135 paraffin is suitable for a ship bottom paint that does not melt at room temperature and has moderate flexibility. Moreover, 155 paraffin is suitably used in applications that have a relatively high temperature environment such as a drainage conduit for a power plant. As a commercially available product, PARAFFINWAX series such as “PARAFFINWAX-135” and “PARAFFINWAX-155” manufactured by Nippon Seiwa Co., Ltd. can be mentioned as a suitable example.
  • the polyol resin used in the present invention (hereinafter sometimes referred to as component (B)) is a resin generally used as a main component of a polyurethane resin, and is a polyether polyol resin, a polyester polyol resin, or an acrylic polyol. Examples thereof include resins and epoxy polyol resins. Among these, acrylic polyol resins, for example, acrylic polyol resins having 2 to 3 functional groups can be preferably used. Furthermore, a silicon-modified acrylic polyol resin obtained by modifying an acrylic polyol resin with silicon is preferably used.
  • the silicon-modified acrylic polyol resin suitably used in the present invention, (I) a polycondensation product obtained by dealcoholizing an alkoxysilyl group-containing organopolysiloxane and a hydroxyl group-containing acrylic resin, (II) a copolymer of a polysiloxane macromonomer having an organopolysiloxane chain and a polymerizable unsaturated group and another polymerizable unsaturated monomer, And so on.
  • the silicon-modified acrylic polyol preferably has a hydroxyl value in the range of 20 to 100 mgKOH / g and a number average molecular weight in the range of 10,000 to 50,000.
  • a silicon-modified acrylic polyol a commercially available product can be cited as a suitable example, Kessio (main agent) (manufactured by Kawakami Paint Co., Ltd.).
  • the polyol resin imparts flexibility, mechanical strength and durability to the coating film made of the present coating composition, but the following method is used to adjust the flexibility (hardness) of the coating film. Can be added as needed. (1) An isocyanate component that reacts with the polyol resin to form a urethane bond is added. By this method, the hardness of the coating film can be increased. (2) A plasticizer is added. By this method, the hardness of the coating film can be lowered.
  • the isocyanate component (1) acts as a curing agent for the (B) polyol resin.
  • aliphatic diisocyanates such as hexamethylene diisocyanate and trimethylhexane diisocyanate; hydrogenated xylylene diisocyanate, 4,4′-methylenebis ( Cycloaliphatic diisocyanates such as cyclohexyl isocyanate); aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate, and diphenylmethane diisocyanate.
  • aliphatic diisocyanates such as hexamethylene diisocyanate and trimethylhexane diisocyanate
  • hydrogenated xylylene diisocyanate such as cyclohexyl isocyanate
  • aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate, and diphenylmethane diisocyanate.
  • the addition amount of the isocyanate component is appropriately selected depending on the type and amount of the (B) polyol resin contained in the coating composition of the present invention and the target hardness of the antifouling coating film. B) About 1 to 30 parts by weight per 100 parts by weight of the polyol resin.
  • the plasticizer is not particularly limited as long as it is compatible with the coating composition of the present invention, and examples thereof include silicone elastomers, DOA (dioctyl adipate), DOP (dioctyl phthalate) and the like.
  • the addition amount of the plasticizer is usually 0.5 to 20 parts by weight, preferably 1 to 10 parts by weight with respect to 100 parts by weight of the (B) polyol resin.
  • composition ratio of (A) solid oil and fat to (B) polyol resin in the antifouling coating composition of the present invention is as follows: (A) solid oil and fat: 1 to 30% by weight and (B) polyol resin: 70 to 99% by weight %. If the solid fat is less than 1% by weight, the adhesion control of underwater organisms is insufficient. On the other hand, if the solid fat exceeds 30% by weight, they cannot be separated and mixed uniformly.
  • the coating composition of this invention can be used in said range, there exists a suitable composition range with the use. For example, when used as a ship bottom coating composition, (A) solid fat and oil: 1 to 10% by weight and (B) polyol resin: 90 to 99% by weight are preferable.
  • the coating composition of the present invention has sufficient antifouling properties and flexibility suitable for ship operation. Further, when used as a coating composition for an underwater structure, (A) solid fat / oil: 10 to 25% by weight and (B) polyol resin: 75 to 90% by weight are preferable. When the composition is within this range, the coating composition of the present invention has a suitable hardness as well as sufficient antifouling properties.
  • the “underwater structure” refers to an object that is left at least for a certain period of time, and is specifically placed in seawater, and specifically includes a breakwater, a nori culture pole, and the like.
  • component (C) natural resin (hereinafter may be referred to as component (C)) can be added to the coating composition of the present invention.
  • the component (C) has an effect when enhancing the adhesion to the substrate, and functions as a binder for the paint.
  • the coating composition of the present invention is not limited to inorganic materials such as concrete and resin-based materials such as fiber reinforced plastic, but also metals such as aluminum and stainless steel. Adhesion in the case of forming directly on the substrate to be formed can be improved.
  • the component (C) has a higher hardness than the (A) solid fat and the (B) polyol resin, the hardness of the coating composition itself of the present invention is improved by containing the component (C). To do.
  • component (C) specifically, coumarone / indene resin, terpene resin, terpene / phenol resin, aromatic hydrocarbon-modified terpene resin, terpene hydrogenated resin, terpene / phenolic hydrogenated system
  • component (C) specifically, coumarone / indene resin, terpene resin, terpene / phenol resin, aromatic hydrocarbon-modified terpene resin, terpene hydrogenated resin, terpene / phenolic hydrogenated system
  • resins rosin resins, hydrogenated rosin ester resins, rosin-modified phenol resins, and alkylphenol resins.
  • rosin-based resin, hydrogenated rosin ester-based resin, rosin containing rosin as a constituent component at least because it has good compatibility with other components and can have appropriate hardness after the coating film is cured.
  • Modified phenolic resins are preferably used.
  • the solvent for dissolving the component (C) is not particularly limited as long as it can dissolve the component (C).
  • butyl acetate can be mentioned as a suitable example.
  • the content of the natural resin (component (C)) relative to the solid fat (component (A)) and polyol resin (component (B)) used in the antifouling coating composition of the present invention is appropriately determined according to the application. There are no particular restrictions.
  • the component (C) is 1 to 5 parts by weight (preferably 2 to 4 parts by weight) when the total amount of component (A) and component (B) is 100 parts by weight. It is.
  • the content of the component (C) is less than 1 part by weight, the adhesion to the ship bottom may be insufficient, and when it exceeds 5 parts by weight, the hardness of the paint composition for ship bottom becomes high. It may be too much.
  • the component (C) is combined with the component (A).
  • the amount is preferably 50 to 150 parts by weight with respect to 100 parts by weight as the total of component (B). This is because when the hardness of the coating composition of the present invention is insufficient, the coating composition of the present invention was formed on the surface of underwater structures such as breakwaters installed near the seabed and aquaculture poles such as seaweed This is because, when used as a coating film, the coating film made of the coating composition of the present invention may be peeled off or damaged by sand wound up from the seabed.
  • the antifouling paint composition of the present invention contains the component (C) in the above-described proportion, the hardness of the antifouling paint composition is increased, so that the above-described problem is hardly generated.
  • the antifouling paint composition of the present invention can be produced by stirring in a solvent or in the absence of a solvent, but is usually dispersed in a solvent to obtain an antifouling paint liquid (hereinafter referred to as “antifouling paint”). Liquid “or simply” paint liquid ").
  • the solvent may be any solvent that can disperse the antifouling coating composition of the present invention.
  • carboxylic acids such as acetic acid, propionic acid, and butyric acid
  • Alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-ethylhexanol, cyclohexanol, 1-hexanol, 2-hexanol, 1-octanol, 2-octanol, 3-octanol Ethers such as diglyme, diphenyl ether, dibenzyl ether, diallyl ether, tetrahydrofuran (THF), dioxane; Amides such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide; Ketones such as cyclohexanone; aromatic hydrocarbons such as toluene, xylene, do
  • the above can be mixed and used.
  • the antifouling coating composition of the present invention can be produced by a known method.
  • the order of blending the components during production is arbitrary.
  • components (A), (B) and (C) in addition to the components (A), (B) and (C), other conventionally known additional components may be added as necessary.
  • additional components include compatibilizers for components (A), (B) and (C), antifouling agents having killing power to aquatic organisms, pigments, wetting agents, reaction accelerators, precipitation inhibitors and the like.
  • These contents are not particularly limited as long as the object of the present invention is not impaired, but is usually 30 parts by weight or less, preferably 10 parts by weight or less, and particularly preferably 3 parts by weight or less. is there. When the content is larger than 30 parts by weight, the antifouling performance of the coating film is remarkably lowered, and the coating film tends to crack or peel off.
  • the soap as the surfactant contains one or more fatty acids selected from linear saturated fatty acids or linear unsaturated fatty acids and salts thereof, and examples of the linear saturated fatty acids include lauric acid, myristic acid, palmitic acid , Stearic acid, arachidic acid, behenic acid and the like.
  • linear unsaturated fatty acids include zomarinic acid, oleic acid, elaidic acid, gadoleic acid, erucic acid, linoleic acid, linolenic acid, ricinoleic acid and the like.
  • 1 or more types chosen from said linear saturated fatty acid or linear unsaturated fatty acid can also be added directly as a compatibilizing agent.
  • the antifouling agent having killing power to aquatic organisms known ones can be used, but these enhance the antifouling performance of the coating film, but if adding too much, the environmental load increases. Therefore, it is desirable to avoid using as much as possible.
  • pigments include extender pigments, rust preventive pigments, and colored pigments. Specifically, talc, clay, calcium carbonate, barium sulfate, zirconium oxide, zinc white, bengara, carbon black, silica powder, and cyanine coloration. Examples thereof include pigments, chromium oxide, aluminum molybdate, zinc molybdate, calcium molybdate, aluminum phosphate, and barium metaborate, which are used as one or a mixture of two or more according to the purpose.
  • the base substrate to which the coating liquid of the present invention is applied is not particularly limited and may be any material such as an inorganic material such as metal, resin, concrete.
  • a base material used as a ship bottom for example, a zinc phosphate-treated dull steel plate and a galvanized steel plate can be mentioned.
  • the coating liquid of the present invention constitutes underwater structures such as concrete breakwaters, fiber reinforced plastics, and culture poles made of resinous materials such as vinyl chloride as the base material. It can be suitably applied to the material, and can form a coating film made of the coating composition of the present invention.
  • coating antifouling property with respect to aquatic organisms can be acquired also by kneading the coating composition of this invention to fibers, such as a fish net.
  • the method of applying the antifouling coating liquid of the present invention to the base substrate is not particularly limited, and can be performed by a conventionally known application method.
  • a spray coating method, a roll coating method, a brush coating method, a bar coater coating method, or the like can be appropriately employed.
  • the drying time of the coating film after the antifouling coating liquid of the present invention is applied to the base substrate varies depending on the composition and the coating amount in the antifouling coating liquid, but is at least 20 minutes to 60 minutes after application. It is possible. By setting the drying time to 20 minutes or longer, the fluidity of the coating film can be maintained for a sufficient time, and a flat and uniform continuous film can be formed without special leveling treatment. By setting the drying time to 60 minutes or less, problems such as dripping can be prevented.
  • the curing time of the coating film varies depending on the composition and the coating amount in the antifouling coating liquid, but is usually cured in about one day at room temperature.
  • the film thickness of the antifouling coating film of the present invention is not particularly limited as long as the effect of the present invention can be obtained, and is preferably about 1 to 200 ⁇ m from the viewpoint of forming a smooth coating film.
  • the thickness is about 10 to 100 ⁇ m.
  • the antifouling coating film of the present invention has a hardness of about 1B, depending on the composition of the antifouling coating composition, the drying time, and the like. Therefore, it is hard to be damaged even in water, and the coating film is difficult to peel off.
  • the coating film of the present invention can be easily peeled off using a conventionally known release agent. Therefore, the construction fails for any reason, and when the coating film is cracked or clouded or after use, the coating film can be peeled off and re-executed.
  • a coating film having a uniform thickness could be formed when the amount of the solid fat of component (A) was 1 to 30% by weight. Although 35 wt% can form a coating film, it was confirmed that component (A) and component (B) were separated in the film. Moreover, the coating film in which the amount of solid fats and oils was 0.5% by weight had insufficient peelability on the coating film surface.
  • coating liquid 1 500 g of the component (A) was put in a mixing container containing 20 L of the solvent (a), and mixed well at room temperature to obtain a mixed liquid 1. Subsequently, the liquid mixture 1 was filtered and the filtrate was collect
  • coating liquid 4 was obtained in the same manner as in the preparation of the coating liquid 1 except that the component (B) was not added.
  • the composition is shown in Table 1.
  • coating liquid 5 was obtained in the same manner as the preparation of the coating liquid 2 except that the component (B) was not added.
  • the composition is shown in Table 1.
  • the coating liquid 6 is the same as the preparation of the coating liquid 2 except that the raw materials are adjusted so that the ratio of the component (A) to the component (B) is the composition shown in Table 1. Got.
  • coating liquid 7 is the same as the manufacturing of the coating liquid 2 except that the raw materials were adjusted so that the ratio of the component (A) and the component (B) is the composition shown in Table 1. Got.
  • Preparation of paint liquids 8 to 14 Preparation of paint liquid 1 except that the raw materials were adjusted so that the proportions of component (A), component (B), and component (C) were as shown in Table 1. Similarly, paint liquids 8 to 14 were obtained. Component (C) was dissolved in an appropriate amount of solvent (c) and added.
  • Coating film performance evaluation The coating film made of the prepared coating liquid was evaluated for coating film performance evaluation (adhesion between the coating film and the substrate, peelability of the coating film surface and weather resistance) by the above measurement method. It was.
  • Test Example 1 An undercoat for rust prevention (manufactured by Daishin Paint Co., Ltd., product name Epon Mild) was applied to a steel plate of 50 ⁇ 120 ⁇ 1.2 mm by brushing and dried at room temperature for about 1 day to form a base coating film.
  • the coating liquid 1 was applied to the steel sheet on which the base coating film was formed by brush coating so that the dry film thickness was 20 to 30 ⁇ m, and the sample substrate 1 was obtained by drying at room temperature for 1 day.
  • Table 2 shows the results of evaluating the adhesion between the coating film and the base material, the peelability of the coating film surface, and the weather resistance with respect to the sample substrate 1.
  • Test Example 2 A paint substrate 2 was applied by brushing to a steel sheet on which the same undercoat film as in Test Example 1 was formed, and the sample substrate 2 was obtained by drying at room temperature for 1 day. .
  • Table 2 shows the results of evaluating the adhesion between the coating film and the substrate, the peelability of the coating film surface, and the weather resistance of the sample substrate 2.
  • Test Example 3 The sample substrate 3 was obtained by applying the coating liquid 3 with a brush so that the dry film thickness was 20 to 30 ⁇ m, and drying at room temperature for 1 day on the steel sheet on which the same undercoat as in Test Example 1 was formed. .
  • Table 2 shows the results of evaluating the adhesion between the coating film and the substrate, the peelability of the coating film surface, and the weather resistance with respect to the sample substrate 3.
  • seawater resistance test neutral salt sprayability
  • Test Example 4 The sample substrate 4 was obtained by applying the coating liquid 4 with a brush so that the dry film thickness was 20 to 30 ⁇ m, and drying at room temperature for 1 day on the steel sheet on which the same undercoat as in Test Example 1 was formed. . Table 2 also shows the results of evaluating the adhesion between the coating film and the substrate, the peelability of the coating film surface, and the weather resistance of the sample substrate 4.
  • Test Example 5 The sample substrate 5 was obtained by applying the coating liquid 5 by brush coating to a steel sheet on which the same undercoat film as in Test Example 1 was formed, and drying at room temperature for 1 day so that the dry film thickness was 20 to 30 ⁇ m. .
  • Table 2 also shows the results of evaluating the adhesion between the coating film and the substrate, the peelability of the coating film surface, and the weather resistance with respect to the sample substrate 5.
  • Test Example 6 Using a 50 x 120 x 2 mm aluminum substrate (no base paint), apply paint solution 3 with a brush so that the dry film thickness is 20 to 30 ⁇ m, and dry at room temperature for 1 day to obtain sample substrate 6 It was. Table 3 shows the results of evaluating the adhesion between the coating film and the substrate, the peelability of the coating film surface, and the weather resistance with respect to the sample substrate 6.
  • Test Example 7 Using the same aluminum substrate as in Test Example 6 (without the base coating), applying the coating liquid 5 with a brush so that the dry film thickness is 20 to 30 ⁇ m and drying at room temperature for 1 day, a sample substrate 7 is obtained. It was. Table 3 shows the results of evaluating the adhesion between the coating film and the substrate, the peelability of the coating film surface, and the weather resistance with respect to the sample substrate 7.
  • Test Example 8 Using the same aluminum substrate as in Test Example 6 (without the base coating), the coating liquid 6 was applied by brushing so that the dry film thickness was 20 to 30 ⁇ m, and the sample substrate 8 was obtained by drying at room temperature for 1 day. It was. Table 3 shows the results of evaluating the adhesion between the coating film and the base material, the peelability of the coating film surface, and the weather resistance of the sample substrate 8.
  • Test Example 9 Using the same aluminum substrate as in Test Example 6 (without the base coating), applying the coating liquid 7 with a brush so that the dry film thickness is 20 to 30 ⁇ m and drying at room temperature for 1 day, a sample substrate 9 is obtained. It was. Table 3 also shows the results of evaluating the adhesion between the coating film and the base material, the peelability of the coating film surface, and the weather resistance with respect to the sample substrate 9.
  • Seawater exposure test Prepare a sample by applying the prepared coating solution to a base paint coated steel sheet (similar to that used in Test Example 1 above), a concrete cylinder, a concrete flat plate, and an aquaculture pole. Then, a seawater exposure test was performed, and the antifouling property of the antifouling coating composition was evaluated.
  • FIG. 1 shows a photograph of a sample steel plate substrate (with no antifouling coating film) in a seawater exposure test (after one year).
  • FIG. 2 shows a partially enlarged photograph of FIG.
  • Test Example 11 A seawater exposure test was performed in the same manner as in Test Example 10 except that the paint liquid 8 was used instead of the paint liquid 3.
  • FIG. 3 shows a photograph of the sample steel plate substrate in the seawater exposure test (after 4 months).
  • Test Example 12 A seawater exposure test was conducted in the same manner as in Test Example 10, using a steel plate substrate (with a base coating) that had not been coated with an antifouling coating film.
  • FIG. 4 shows a photograph of the sample steel plate substrate in the seawater exposure test (after 4 months).
  • Test Example 13 (2) Seawater exposure test (concrete cylinder) Sample concrete cylinder with antifouling coating formed by applying paint liquid 3 with a brush to a concrete cylinder with a diameter of 20 cm and a length of 50 cm so that the dry film thickness is 20-30 ⁇ m and drying at room temperature for 1 day Got. Using this sample concrete cylinder, a seawater exposure test was performed under the same conditions as in Test Example 10. Fig. 5 shows a photograph of the sample concrete cylinder in the seawater exposure test (after one year).
  • Test Example 14 A seawater exposure test was performed under the same conditions as in Test Example 10 using a concrete cylinder having a diameter of 20 cm and a length of 50 cm, which did not form an antifouling coating film.
  • Fig. 5 shows a photograph of the sample concrete cylinder in the seawater exposure test (after one year).
  • Test Example 16 One of the other parts of the concrete flat plate described in Test Example 15 is coated with the paint solution 10 by brushing so that the dry film thickness is 20 to 30 ⁇ m, and dried at room temperature for one day, thereby preventing the antifouling coating. A film was formed (see FIG. 6).
  • a seawater exposure test was performed under the same conditions as in Test Example 10. The results after 4 months, 6 months, and 10 months after the seawater exposure test are shown in FIGS. 7, 8, and 9, respectively.
  • Test Example 17 One of the other portions of the concrete flat plate described in Test Example 15 is coated with the coating liquid 11 by brushing so that the dry film thickness is 20 to 30 ⁇ m, and is dried at room temperature for 1 day, thereby providing an antifouling coating. A film was formed (see FIG. 6).
  • a seawater exposure test was performed under the same conditions as in Test Example 10. The results after 4 months, 6 months, and 10 months after the seawater exposure test are shown in FIGS. 7, 8, and 9, respectively.
  • Test Example 18 One of the other portions of the concrete flat plate described in Test Example 15 was subjected to a seawater exposure test under the same conditions as Test Example 10 without forming an antifouling coating film (see FIG. 6). The results after 4 months, 6 months, and 10 months after the seawater exposure test are shown in FIGS. 7, 8, and 9, respectively.
  • Test Example 19 to Test Example 21 A concrete plate having a size of 100 ⁇ 100 cm and a thickness of 5 cm is divided into three parts with a tape, and paint liquids 12, 13, and 14 are applied to each part by brushing so that the dry film thickness is 20 to 30 ⁇ m. 20, 21 samples were prepared. Using the concrete flat plate, a seawater exposure test was performed under the same conditions as in Test Example 10.
  • Test Example 23 The sample pole described in Test Example 22 was held in a state of being submerged in the sea of about 3 m without forming an antifouling coating film. A photograph 7 months after the test is shown in FIG. FIG. 13 shows an enlarged view (only the pole portion).
  • the antifouling coating film comprising the antifouling coating composition of the present invention has high adhesion to the substrate and peelability of the coating film surface, and can suppress the adhesion and propagation of aquatic organisms over a long period of time. It is extremely promising.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Catching Or Destruction (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

An antifouling coating composition which is reduced in environmental burden, has excellent antifouling properties and mechanical strength, and can form an antifouling coating film capable of retaining excellent durability over long even underwater. The antifouling coating composition is characterized by comprising 1-30 wt.% solid fat (A) and 70-99 wt.% polyol resin (B). A coating film formed from the antifouling coating composition has high adhesion to the substrate and can inhibit, over long, aquatic organisms from adhering thereto or multiplying thereon.

Description

防汚性塗料組成物および該組成物を含む防汚性塗料液Antifouling paint composition and antifouling paint liquid containing the composition
 本発明は、防汚性塗料組成物およびそれを含む防汚性塗料液に関する。さらに詳しくは、高い防汚性能と低環境負荷を両立した耐水棲生物用の防汚性塗膜を作製することができる防汚性塗料組成物および該組成物を溶剤に分散した防汚性塗料液に関するものである。 The present invention relates to an antifouling paint composition and an antifouling paint liquid containing the same. More specifically, an antifouling paint composition capable of producing an antifouling coating film for water-resistant organisms that achieves both high antifouling performance and low environmental load, and an antifouling paint in which the composition is dispersed in a solvent. It is about liquid.
 水中に長期間使用される魚網、配水管、防波堤、海苔の養殖に使用される養殖用ポールなどの水中構造物、船舶の船底の表面には海藻、貝類、微生物類などの水棲生物が付着し、繁殖するという問題がある。特に船舶において、このような水棲生物が繁殖すると、船底表面の抵抗が増加して、船舶の燃料使用効率の低下を引き起こす。また、このような水棲生物を船底から除去するには、多大な労力が必要となるため、船舶のメンテナンスコストを増大させる一因となっている。 Underwater structures such as fish nets, water pipes, breakwaters, aquatic poles used for aquaculture, etc., and aquatic organisms such as seaweeds, shellfish and microorganisms adhere to the surface of the ship's bottom. There is a problem of breeding. In particular, when such aquatic organisms breed in a ship, the resistance of the bottom surface of the ship increases, causing a decrease in the fuel use efficiency of the ship. In addition, removing such aquatic organisms from the bottom of the ship requires a great deal of labor, which increases the maintenance cost of the ship.
 また、湾岸に配置される防波堤、海苔の養殖に使用される養殖用ポールなどの水中構造物などには、水棲生物のうち、特に海草の繁殖が問題となる。
 特に養殖用ポールは、年に1,2回はメンテナンスのため、陸に揚げなければならないが、これらの養殖用ポールを陸に引き揚げる際に養殖用ポールに付着した海洋生物が抵抗になるという問題がある。また、これらの養殖用ポールを再度使用するためには、これらから海洋生物を取り除く必要があり、多大な労力を要する。
In addition, the propagation of seaweeds among aquatic organisms is particularly problematic for underwater structures such as breakwaters placed on the bay coast and aquaculture poles used for aquaculture.
In particular, aquaculture poles must be lifted to the land for maintenance once or twice a year, but when these aquaculture poles are lifted to the land, marine organisms attached to the aquaculture poles become a resistance. There is. Moreover, in order to use these aquaculture poles again, it is necessary to remove marine organisms from them, requiring a great deal of labor.
 また、養殖網や定置網等の魚網に水棲生物が付着し、繁殖すると網目の閉塞による漁獲生物の酸欠致死等の問題を生じるおそれがある。
 火力、原子力発電所や大型化学プラント等の海水の給排水管に水棲生物が付着し、繁殖すると冷却水の給排水循環に支障を来し冷却効率が低下するという問題がある。
In addition, aquatic organisms adhere to fish nets such as aquaculture nets and stationary nets, and breeding may cause problems such as acid deficiency of fished organisms due to blockage of the nets.
There is a problem that aquatic organisms adhere to the seawater supply and drainage pipes of thermal power, nuclear power plants, large chemical plants, etc., and breeding hinders cooling water supply and drainage circulation and lowers cooling efficiency.
 このような被害を抑制する方法として、上記の水棲生物の付着、繁殖を防止する防汚塗料を使用することが行われてきた。従来、このような防汚塗料、特に船舶用の防汚塗料として有機錫等の有機化合物を含む防汚剤として含有する防汚塗料が用いられていた(例えば、特許文献1)。このような防汚塗料は、水棲生物に対する毒性を有する有機化合物を放出して防汚効果を発揮するのみならず、塗料自体も水中に徐々に溶解するため、船底表面を常に清浄に保つことができる。しかしながら、このような毒性を有する有機化合物は人体や生体系へ悪影響を及ぼすため、近年、特に環境負荷の小さい船舶用防汚塗料が検討されている。 As a method for suppressing such damage, the use of antifouling paints for preventing the above-mentioned adhesion and propagation of aquatic organisms has been carried out. Conventionally, an antifouling paint containing an antifouling agent containing an organic compound such as organic tin has been used as such an antifouling paint, particularly an antifouling paint for ships (for example, Patent Document 1). Such antifouling paints not only exhibit antifouling effects by releasing organic compounds that are toxic to aquatic organisms, but also the paint itself gradually dissolves in water, so the bottom surface of the ship can always be kept clean. it can. However, since such toxic organic compounds have an adverse effect on the human body and biological systems, antifouling paints for ships with particularly low environmental loads have been studied in recent years.
 環境負荷の小さい船舶用防汚塗料等の防汚塗料としては、シリルエステル系防汚塗料組成物(例えば、特許文献2)が提案されている。また、ハロゲン含有アクリレート化合物単量体とメチルメタクリレートのような不飽和単量体の共重合体に酸化銅等の従来から使用されているビヒクルを含有する防汚性塗料組成物(例えば、特許文献3)が提案されている。 A silyl ester antifouling paint composition (for example, Patent Document 2) has been proposed as an antifouling paint such as a marine antifouling paint having a small environmental load. In addition, an antifouling paint composition containing a conventionally used vehicle such as copper oxide in a copolymer of a halogen-containing acrylate compound monomer and an unsaturated monomer such as methyl methacrylate (for example, patent document) 3) has been proposed.
特開昭60-94471号公報JP-A-60-94471 特開平4-264170号公報JP-A-4-264170 特開2008-1896号公報JP 2008-1896 A
 しかしながら、特許文献2で開示されたシリルエステル系防汚塗料組成物は、有機錫を防汚剤として含む防汚塗料と比較して防汚性能が劣り、また、塗膜の安定性が不十分であるため塗膜が脆弱化しやすく、クラックや剥離が生じるおそれがある。
 また、特許文献3で開示された防汚塗料に含まれる銅化合物系防汚剤等のビヒクルは、上記のように従来の有機錫などと比較して毒性が低いものの、大型タンカーなどで多量に使用される場合には、やはり生体系へ悪影響を避けることはできない。
However, the silyl ester antifouling paint composition disclosed in Patent Document 2 is inferior in antifouling performance as compared with an antifouling paint containing organic tin as an antifouling agent, and the stability of the coating film is insufficient. Therefore, the coating film tends to become brittle, and cracks and peeling may occur.
Further, the vehicle such as the copper compound antifouling agent contained in the antifouling paint disclosed in Patent Document 3 is less toxic than the conventional organic tin as described above, but it is a large amount in a large tanker or the like. When used, the adverse effects on the biological system cannot be avoided.
 このように、これまでの防汚塗料から形成された防汚性塗膜には、防汚性能と、低環境負荷の両方を満足するものが存在しないのが実状である。
 かかる状況下、本発明の目的は、環境負荷が小さく、しかも防汚性や機械的強度に優れ、かつ、水中においても優れた耐久性を持続可能な防汚性塗膜を形成することができる防汚性塗料組成物を提供することである。
As described above, there is actually no antifouling coating film formed from the conventional antifouling paints that satisfies both the antifouling performance and the low environmental load.
Under such circumstances, the object of the present invention is to form an antifouling coating film that has a low environmental load, is excellent in antifouling properties and mechanical strength, and has excellent durability even in water. It is to provide an antifouling coating composition.
 本発明者らは、水棲生物の繁殖を防汚剤によって抑制することより、むしろ塗膜への水棲生物の付着を抑制することの方が上記課題の解決に有効であると考え、固形油脂の表面付着抑制性に注目して検討を行った。
 元来、固形油脂は、水との親和性が低いため、水棲生物の付着を抑制する作用があるが、水中での耐久性や硬度が不足するため、水中用防汚塗膜としては使用されていない。
 一方、特定のポリオール樹脂は、耐久性や機械強度に優れる塗膜が形成できるものの、親水性の性質を有するため、水生生物が付着しやすく水中での防汚性が不十分である。
 また、固形油脂は疎水性であり、ポリオール樹脂は親水性であるため、両者を均一に混合することは極めて困難とされていた。
 しかしながら、本発明者らの鋭意研究を重ねた結果、固形油脂と、ポリオール樹脂との相溶性は高くないため両者は分離しやすいものの、両者の混合比を好適な一定範囲内とすることにより、均一組成の塗料組成物を得ることができ、該塗料組成物からなる塗膜は、水棲生物の付着を好適に抑制し、かつ、長期間水中で優れた耐久性を持続可能という性質を得ることができることを見出し、本発明を完成するに至った。
The present inventors consider that it is more effective to solve the above problems to suppress the adhesion of aquatic organisms to the coating film than to suppress the propagation of aquatic organisms with an antifouling agent. A study was conducted focusing on the surface adhesion suppression.
Originally, solid fats and oils have a low affinity with water, so they have the effect of suppressing the adhesion of aquatic organisms, but they are used as antifouling coatings for water because they lack durability and hardness in water. Not.
On the other hand, although a specific polyol resin can form a coating film excellent in durability and mechanical strength, it has hydrophilic properties, and therefore, aquatic organisms are easily attached thereto, and the antifouling property in water is insufficient.
Moreover, since solid fats and oils are hydrophobic and polyol resin is hydrophilic, it was made very difficult to mix both uniformly.
However, as a result of repeated earnest research by the inventors, the compatibility between the solid fat and the polyol resin is not high, so both are easy to separate, but by making the mixing ratio of both within a suitable fixed range, A coating composition having a uniform composition can be obtained, and a coating film made of the coating composition should suitably suppress the adhesion of aquatic organisms and can maintain excellent durability in water for a long period of time. As a result, the present invention has been completed.
 すなわち、本発明は、以下の発明に係るものである。
 <1> (A)固形油脂:1~30重量%および(B)ポリオール樹脂:70~99重量%を含有する防汚性塗料組成物。
 <2> (A)固形油脂が、パラフィンワックスである前記<1>記載の防汚性塗料組成物。
 <3> (B)ポリオール樹脂が、アクリル系ポリオール樹脂である前記<1>記載の防汚性塗料組成物。
 <4> アクリル系ポリオール樹脂が、シリコン変性アクリル系ポリオール樹脂である前記<3>記載の防汚性塗料組成物。
 <5> さらに(C)天然樹脂を含んでなる前記<1>から<4>のいずれかに記載の防汚性塗料組成物。
 <6> (C)天然樹脂が、ロジンである前記<5>記載の防汚性塗料組成物。
 <7> (C)天然樹脂の含有量が、(A)固形油脂と(B)ポリオール樹脂との合計100重量部に対し、1~5重量部である前記<5>または<6>記載の船底用防汚性塗料組成物。
 <8> (C)天然樹脂の含有量が、(A)固形油脂と(B)ポリオール樹脂との合計100重量部に対し、50~150重量部である前記<5>または<6>記載の水中構造物用防汚性塗料組成物。
 <9> 前記<1>から<8>のいずれかに記載した防汚性塗料組成物を、溶剤に分散してなる防汚性塗料液。
 <10> 前記<1>から<7>のいずれかに記載した防汚性塗料組成物を含んでなる船舶用防汚性塗膜。
 <11> 前記<1>から<6>のいずれかにまたは前記<8>に記載した防汚性塗料組成物を含んでなる水中構造物用汚性塗膜。
 <12> 前記<1>から<6>のいずれかに記載した防汚性塗料組成物を含んでなる魚網。
That is, the present invention relates to the following inventions.
<1> An antifouling coating composition containing (A) solid oil and fat: 1 to 30% by weight and (B) polyol resin: 70 to 99% by weight.
<2> (A) The antifouling coating composition according to <1>, wherein the solid fat is paraffin wax.
<3> (B) The antifouling coating composition according to <1>, wherein the polyol resin is an acrylic polyol resin.
<4> The antifouling coating composition according to <3>, wherein the acrylic polyol resin is a silicon-modified acrylic polyol resin.
<5> The antifouling coating composition according to any one of <1> to <4>, further comprising (C) a natural resin.
<6> (C) The antifouling coating composition according to <5>, wherein the natural resin is rosin.
<7> (5) or <6>, wherein the content of (C) natural resin is 1 to 5 parts by weight with respect to 100 parts by weight in total of (A) solid oil and fat and (B) polyol resin Antifouling paint composition for ship bottom.
<8> (5) or <6>, wherein the content of (C) natural resin is 50 to 150 parts by weight with respect to 100 parts by weight as a total of (A) solid oil and fat and (B) polyol resin Antifouling paint composition for underwater structures.
<9> An antifouling coating liquid obtained by dispersing the antifouling coating composition according to any one of <1> to <8> in a solvent.
<10> A marine antifouling coating film comprising the antifouling coating composition according to any one of <1> to <7>.
<11> An antifouling coating film for an underwater structure, comprising the antifouling coating composition according to any one of <1> to <6> or <8>.
<12> A fish net comprising the antifouling coating composition according to any one of <1> to <6>.
 本発明の防汚性塗料組成物は、環境負荷が小さく、しかも防汚性や機械的強度に優れ、かつ、水中においても優れた耐久性を持続可能な防汚性塗膜を形成することができる。 The antifouling paint composition of the present invention has a low environmental impact, is excellent in antifouling properties and mechanical strength, and can form a sustainable antifouling coating film with excellent durability even in water. it can.
試験例10における、海水暴露試験(1年後)の試料鋼板基板(一部防汚性塗膜なし)の写真である。It is a photograph of the sample steel plate board | substrate (partly without antifouling coating film) of the seawater exposure test (after one year) in Test Example 10. 図1の一部拡大写真である。It is a partially expanded photograph of FIG. 試験例11における、海水暴露試験(4ヶ月後)の試料鋼板基板の写真である。It is a photograph of the sample steel plate board | substrate of the seawater exposure test (after 4 months) in Test Example 11. 試験例12における、海水暴露試験(4ヶ月後)の試料鋼板基板(未塗装)の写真である。It is a photograph of the sample steel plate substrate (unpainted) of the seawater exposure test (after 4 months) in Test Example 12. 試験例13及び14における、海水暴露試験(1年後)の試料コンクリート円筒の写真である。It is a photograph of the sample concrete cylinder of the seawater exposure test (after one year) in Test Examples 13 and 14. 試験例15~18における、試験前の試料コンクリート平板の写真である。19 is a photograph of a sample concrete flat plate before test in Test Examples 15 to 18. 試験例15~18における、海水暴露試験(4ヶ月後)の試料コンクリート平板の写真である。19 is a photograph of a sample concrete flat plate in a seawater exposure test (after 4 months) in Test Examples 15 to 18. 試験例15~18における、海水暴露試験(6ヶ月後)の試料コンクリート平板の写真である。19 is a photograph of a sample concrete flat plate in a seawater exposure test (after 6 months) in Test Examples 15 to 18. 試験例15~18における、海水暴露試験(10ヶ月後)の試料コンクリート平板の写真である。19 is a photograph of a sample concrete flat plate in a seawater exposure test (after 10 months) in Test Examples 15 to 18. 試験例22における、海水暴露試験(7ヶ月後)の試料ポールの写真である。It is a photograph of the sample pole of the seawater exposure test (after 7 months) in Test Example 22. 図10の拡大図(試料ポール部分のみ)である。FIG. 11 is an enlarged view of FIG. 10 (only a sample pole portion). 試験例23における、海水暴露試験(7ヶ月後)の試料ポール(未塗装)の写真である。It is a photograph of the sample pole (unpainted) of the seawater exposure test (after 7 months) in Test Example 23. 図12の拡大図(ポール部分のみ)である。It is an enlarged view (only a pole part) of FIG.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明は、(A)固形油脂:1~30重量%および(B)ポリオール樹脂:70~99重量%を含有する防汚性塗料組成物(以下、「本発明の防汚性塗料組成物」あるいは単に「本発明の塗料組成物」と呼ぶ場合がある。)に係るものである。
 本発明の防汚性塗料組成物の特徴は、水棲生物の付着を抑制する作用を有する(A)固形油脂と、塗膜の耐久性を向上させる作用がある(B)ポリオール樹脂とを含有することにあり、両者を特定の組成で含むことによって、水棲生物の付着を好適に抑制し、かつ、長期間水中で優れた耐久性を持続可能という性質を得ることができる。
 また、詳しくは後述するが、該組成物にさらに特定の天然樹脂を添加すると下地基材との密着性が向上すし、また、該組成物の硬度を向上させることができる。
 以下、本発明の塗料組成物の構成成分を詳細に説明する。
The present invention relates to an antifouling paint composition comprising (A) solid oil and fat: 1 to 30% by weight and (B) polyol resin: 70 to 99% by weight (hereinafter referred to as “the antifouling paint composition of the present invention”). Or it may be simply referred to as “the coating composition of the present invention”).
The antifouling paint composition of the present invention is characterized by containing (A) a solid fat having an action of suppressing adhesion of aquatic organisms and (B) a polyol resin having an action of improving the durability of the coating film. In particular, by including both of them in a specific composition, it is possible to suitably suppress the adhesion of aquatic organisms and to obtain the property that excellent durability can be maintained in water for a long period of time.
Moreover, although mentioned later in detail, when specific natural resin is further added to this composition, adhesiveness with a base material will improve, and the hardness of this composition can be improved.
Hereinafter, the components of the coating composition of the present invention will be described in detail.
[(A)固形油脂]
 本発明に用いられる固形油脂(以下、成分(A)と称す場合がある。)は、常温において固体あるいは半固体の固形油脂(ワックス)であり、いわゆるパラフィンワックスやマイクロワックスなどの石油系ワックス、天然ワックス、合成ワックスのいずれを用いてもよいが、水中組成物の付着防止に好適な効果が得られ、かつ、入手が容易であるという点でパラフィンワックスが好適である。
 パラフィンワックスは、炭素数18~30程度の直鎖状パラフィン系炭化水素を主成分とする常温において固体あるいは半固体の固形油脂(ワックス)であり、一般に、石油の減圧蒸留留出油から分離精製して製造される。
 パラフィンワックスは、通常、その融点で区別され、JIS K 2235では120パラフィン(融点:48.9℃~51.7℃)から155パラフィン(融点:68.3℃~71.0℃)まで8種類が規定されている。これらは融点が高温であるほど柔軟性が低下する傾向があり、用途によって、適当な融点を有するものが使用すればよい。例えば、常温で溶融せずに適度な柔軟性を有する船底塗料の場合などは、135パラフィンが好適である。また、発電所の排水用導水管など比較的高温環境となる用途では、155パラフィンが好適に使用される。
 それぞれ市販品としては、日本精蝋株式会社製「PARAFFINWAX-135」、「PARAFFINWAX-155」などのPARAFFINWAXシリーズを好適な一例に挙げることができる。
[(A) Solid fat / oil]
Solid fats and oils (hereinafter sometimes referred to as “component (A)”) used in the present invention are solid or semisolid solid fats (waxes) at room temperature, and petroleum-based waxes such as so-called paraffin wax and microwax, Either natural wax or synthetic wax may be used, but paraffin wax is preferable in that it has a suitable effect for preventing adhesion of the underwater composition and is easily available.
Paraffin wax is a solid or semi-solid oil (wax) that is solid or semi-solid at room temperature, which is mainly composed of straight-chain paraffinic hydrocarbons having about 18 to 30 carbon atoms. Generally, it is separated and refined from petroleum distillation oil. Manufactured.
Paraffin wax is usually distinguished by its melting point. According to JIS K 2235, there are 8 types of paraffin wax from 120 paraffin (melting point: 48.9 ° C to 51.7 ° C) to 155 paraffin (melting point: 68.3 ° C to 71.0 ° C). Is stipulated. These tend to have lower flexibility as the melting point is higher, and those having an appropriate melting point may be used depending on the application. For example, 135 paraffin is suitable for a ship bottom paint that does not melt at room temperature and has moderate flexibility. Moreover, 155 paraffin is suitably used in applications that have a relatively high temperature environment such as a drainage conduit for a power plant.
As a commercially available product, PARAFFINWAX series such as “PARAFFINWAX-135” and “PARAFFINWAX-155” manufactured by Nippon Seiwa Co., Ltd. can be mentioned as a suitable example.
[(B)ポリオール樹脂]
 本発明で使用されるポリオール樹脂(以下、成分(B)と称す場合がある。)とは、一般にポリウレタン樹脂の主成分として使用される樹脂であり、ポリエーテルポリオール樹脂、ポリエステルポリオール樹脂、アクリルポリオール樹脂、エポキシポリオール樹脂等が挙げられる。このなかでも、アクリルポリオール樹脂、例えば、官能基が2から3のアクリルポリオール樹脂が好適に使用できる。更に、アクリルポリオール樹脂をシリコンで変性したシリコン変性アクリル系ポリオール樹脂が好適に使用される。
[(B) Polyol resin]
The polyol resin used in the present invention (hereinafter sometimes referred to as component (B)) is a resin generally used as a main component of a polyurethane resin, and is a polyether polyol resin, a polyester polyol resin, or an acrylic polyol. Examples thereof include resins and epoxy polyol resins. Among these, acrylic polyol resins, for example, acrylic polyol resins having 2 to 3 functional groups can be preferably used. Furthermore, a silicon-modified acrylic polyol resin obtained by modifying an acrylic polyol resin with silicon is preferably used.
  本発明に好適に用いられるシリコン変性アクリル系ポリオール樹脂としては、
(I)アルコキシシリル基含有オルガノポリシロキサンと水酸基含有アクリル樹脂とを脱アルコール反応させてなる縮重合体、
(II)オルガノポリシロキサン鎖と重合性不飽和基を有するポリシロキサンマクロモノマーと他の重合性不飽和単量体との共重合体、
などを挙げることができる。
As the silicon-modified acrylic polyol resin suitably used in the present invention,
(I) a polycondensation product obtained by dealcoholizing an alkoxysilyl group-containing organopolysiloxane and a hydroxyl group-containing acrylic resin,
(II) a copolymer of a polysiloxane macromonomer having an organopolysiloxane chain and a polymerizable unsaturated group and another polymerizable unsaturated monomer,
And so on.
 シリコン変性アクリルポリオールは、水酸基価が20~100mgKOH/gの範囲内にあり、数平均分子量が10,000~50,000の範囲内にあることが好適である。
 シリコン変性アクリルポリオールとしては、市販品として、ケシゾー(主剤)(川上塗料株式会社製)を好適な一例に挙げることができる。
The silicon-modified acrylic polyol preferably has a hydroxyl value in the range of 20 to 100 mgKOH / g and a number average molecular weight in the range of 10,000 to 50,000.
As a silicon-modified acrylic polyol, a commercially available product can be cited as a suitable example, Kessio (main agent) (manufactured by Kawakami Paint Co., Ltd.).
 なお、上記ポリオール樹脂は、本塗料組成物からなる塗膜に柔軟性、機械的強度および耐久性を付与するものであるが、この塗膜の柔軟性(硬度)を調整するために次の方法を必要に応じ追加することができる。
(1)ポリオール樹脂と反応しウレタン結合を形成するイソシアネート成分を添加する。
この方法により、塗膜の硬度を上げることができる。
(2)可塑剤を添加する。
 この方法により、塗膜の硬度を下げることができる。
The polyol resin imparts flexibility, mechanical strength and durability to the coating film made of the present coating composition, but the following method is used to adjust the flexibility (hardness) of the coating film. Can be added as needed.
(1) An isocyanate component that reacts with the polyol resin to form a urethane bond is added.
By this method, the hardness of the coating film can be increased.
(2) A plasticizer is added.
By this method, the hardness of the coating film can be lowered.
 上記(1)のイソシアネート成分は、(B)ポリオール樹脂の硬化剤として作用し、例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサンジイソシアネートなどの脂肪族ジイソシアネート類;水素添加キシリレンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)などの環状脂肪族ジイソシアネート類;トリレンジイソシアネート、キシリレンジイソシアネ-ト、ジフェニルメタンジイソシアネートなどの芳香族ジイソシアネート類などが挙げられる。これらは、単独で又は2種以上を組合せて使用することができる。 The isocyanate component (1) acts as a curing agent for the (B) polyol resin. For example, aliphatic diisocyanates such as hexamethylene diisocyanate and trimethylhexane diisocyanate; hydrogenated xylylene diisocyanate, 4,4′-methylenebis ( Cycloaliphatic diisocyanates such as cyclohexyl isocyanate); aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate, and diphenylmethane diisocyanate. These can be used alone or in combination of two or more.
 イソシアネート成分の添加量は、本発明の塗料組成物に含まれる(B)ポリオール樹脂の種類や量により、また、防汚性塗膜の目的とする硬度によって、適宜選択されるが、通常、(B)ポリオール樹脂100重量部に対して、1~30重量部程度である。 The addition amount of the isocyanate component is appropriately selected depending on the type and amount of the (B) polyol resin contained in the coating composition of the present invention and the target hardness of the antifouling coating film. B) About 1 to 30 parts by weight per 100 parts by weight of the polyol resin.
 一方、上記可塑剤としては、本発明の塗料組成物に相溶性があるものであれば特に制限がなく、シリコーン系エラストマー、DOA(ジオクチルアジペート)やDOP(ジオクチルフタレート)などを挙げることができる。可塑剤の添加量は、(B)ポリオール樹脂100重量部に対し、通常、0.5~20重量部、好ましくは1~10重量部である。 On the other hand, the plasticizer is not particularly limited as long as it is compatible with the coating composition of the present invention, and examples thereof include silicone elastomers, DOA (dioctyl adipate), DOP (dioctyl phthalate) and the like. The addition amount of the plasticizer is usually 0.5 to 20 parts by weight, preferably 1 to 10 parts by weight with respect to 100 parts by weight of the (B) polyol resin.
 本発明の防汚性塗料組成物中の(A)固形油脂と(B)ポリオール樹脂との組成比率は、(A)固形油脂:1~30重量%および(B)ポリオール樹脂:70~99重量%である。固形油脂が1重量%未満では水中生物の付着抑制性が不十分となり、一方固形油脂が30重量%を超えると両者が分離して均一に混合することができない。
 なお、本発明の塗料組成物は、上記の範囲にて使用可能であるが、その用途によって好適な組成範囲が存在する。
 例えば、船底用塗料組成物として用いる場合には、好ましくは、(A)固形油脂:1~10重量%および(B)ポリオール樹脂:90~99重量%である。組成がこの範囲内であると、本発明の塗料組成物は、十分な防汚性と共に船の運航上好適な柔軟性を有する。
 また、水中構造物用塗料組成物として使用する場合には、好ましくは、(A)固形油脂:10~25重量%および(B)ポリオール樹脂:75~90重量%である。組成がこの範囲内であると、本発明の塗料組成物は、十分な防汚性と共に適度な硬度を有する。
 なお、「水中構造物」とは、少なくとも一定期間、水中、特に海水中に静置された状態に供するものを指し、具体的には、防波堤や海苔養殖用ポールなどが挙げられる。
The composition ratio of (A) solid oil and fat to (B) polyol resin in the antifouling coating composition of the present invention is as follows: (A) solid oil and fat: 1 to 30% by weight and (B) polyol resin: 70 to 99% by weight %. If the solid fat is less than 1% by weight, the adhesion control of underwater organisms is insufficient. On the other hand, if the solid fat exceeds 30% by weight, they cannot be separated and mixed uniformly.
In addition, although the coating composition of this invention can be used in said range, there exists a suitable composition range with the use.
For example, when used as a ship bottom coating composition, (A) solid fat and oil: 1 to 10% by weight and (B) polyol resin: 90 to 99% by weight are preferable. When the composition is within this range, the coating composition of the present invention has sufficient antifouling properties and flexibility suitable for ship operation.
Further, when used as a coating composition for an underwater structure, (A) solid fat / oil: 10 to 25% by weight and (B) polyol resin: 75 to 90% by weight are preferable. When the composition is within this range, the coating composition of the present invention has a suitable hardness as well as sufficient antifouling properties.
The “underwater structure” refers to an object that is left at least for a certain period of time, and is specifically placed in seawater, and specifically includes a breakwater, a nori culture pole, and the like.
 さらに、本発明の塗料組成物には、(C)天然樹脂(以下、成分(C)と称す場合がある。)を添加することができる。
 成分(C)は、基材との密着性を高めると作用を有し、塗料の結合剤として機能する。特に、成分(C)を添加することによって、本発明の塗料組成物は、下地素材がコンクリートなどの無機系素材や繊維強化プラスチックなどの樹脂系素材のみならず、アルミニウムやステンレスなど、特に金属からなる基材に対して直接形成した場合における密着性を高めることができる。さらに、成分(C)は、上記(A)固形油脂と(B)ポリオール樹脂と比較して、硬度が高いため、成分(C)を含有することによって本発明の塗料組成物自体の硬度が向上する。
Furthermore, (C) natural resin (hereinafter may be referred to as component (C)) can be added to the coating composition of the present invention.
The component (C) has an effect when enhancing the adhesion to the substrate, and functions as a binder for the paint. In particular, by adding component (C), the coating composition of the present invention is not limited to inorganic materials such as concrete and resin-based materials such as fiber reinforced plastic, but also metals such as aluminum and stainless steel. Adhesion in the case of forming directly on the substrate to be formed can be improved. Furthermore, since the component (C) has a higher hardness than the (A) solid fat and the (B) polyol resin, the hardness of the coating composition itself of the present invention is improved by containing the component (C). To do.
 成分(C)として、具体的には、クマロン・インデン系樹脂、テルペン系樹脂、テルペン・フェノール系樹脂、芳香族炭化水素変性テルペン系樹脂、テルペン系水素添加系樹脂、テルペン・フェノール系水素添加系樹脂、ロジン系樹脂、水素添加ロジンエステル系樹脂、ロジン変性フェノール系樹脂、アルキルフェノール系樹脂などが挙げられる。
 この中でも、他の成分との相溶性がよく、塗膜が硬化した後に適度な硬度を有することができることから、少なくとも構成成分にロジンを含有する、ロジン系樹脂、水素添加ロジンエステル系樹脂、ロジン変性フェノール系樹脂が好適に使用される。
As component (C), specifically, coumarone / indene resin, terpene resin, terpene / phenol resin, aromatic hydrocarbon-modified terpene resin, terpene hydrogenated resin, terpene / phenolic hydrogenated system Examples thereof include resins, rosin resins, hydrogenated rosin ester resins, rosin-modified phenol resins, and alkylphenol resins.
Among these, rosin-based resin, hydrogenated rosin ester-based resin, rosin containing rosin as a constituent component at least because it has good compatibility with other components and can have appropriate hardness after the coating film is cured. Modified phenolic resins are preferably used.
 成分(C)を溶解する溶媒は、成分(C)を溶解できればよく特に限定はなく、例えば、酢酸ブチルを好適な一例として挙げることができる。 The solvent for dissolving the component (C) is not particularly limited as long as it can dissolve the component (C). For example, butyl acetate can be mentioned as a suitable example.
 本発明の防汚性塗料組成物に用いられる固形油脂(成分(A))、ポリオール樹脂(成分(B))に対する天然樹脂(成分(C))の含有量は、その用途に応じて適宜決定され特に制限はない。
 例えば、本発明の防汚性塗料組成物が、適度な柔軟性と船底の金属基板に対する高い密着性が要求される、船底用防汚性塗料組成物として使用される場合には、成分(C)の含有量としては、成分(A)と成分(B)の合計量を100重量部としたとき、成分(C)の含有量が1~5重量部(好ましくは、2~4重量部)である。成分(C)の含有量が1重量部未満の場合は、船底への密着性が不十分になる場合があり、5重量部を超える場合には、船底用塗料組成物としては硬度が高くなりすぎるおそれがある。
The content of the natural resin (component (C)) relative to the solid fat (component (A)) and polyol resin (component (B)) used in the antifouling coating composition of the present invention is appropriately determined according to the application. There are no particular restrictions.
For example, when the antifouling paint composition of the present invention is used as an antifouling paint composition for ship bottoms where moderate flexibility and high adhesion to the metal substrate on the ship bottom are required, the component (C The content of component (C) is 1 to 5 parts by weight (preferably 2 to 4 parts by weight) when the total amount of component (A) and component (B) is 100 parts by weight. It is. When the content of the component (C) is less than 1 part by weight, the adhesion to the ship bottom may be insufficient, and when it exceeds 5 parts by weight, the hardness of the paint composition for ship bottom becomes high. It may be too much.
 また、本発明の防汚性塗料組成物が、適度な硬度を必要とする、水中構造物用防汚性塗料組成物として使用される場合には、成分(C)が、成分(A)と成分(B)の合計100重量部に対し、50~150重量部であることが好ましい。
 これは、本発明の塗料組成物の硬度が不足する場合、本発明の塗料組成物を海底付近に設置された防波堤などや、海苔などの養殖用ポールなどの水中構造物の表面に形成された塗膜として使用すると、海底から巻き上げられた砂等によって、本発明の塗料組成物からなる塗膜が剥離、破損することがあるためである。また、本発明の塗料組成物の硬度が不足すると、海草類の種子が本発明の塗料組成物(塗膜)中に潜り込んで、海草が繁殖しやすい。
 そのため、本発明の防汚性塗料組成物が、上述の割合の成分(C)を含むことによって、該防汚性塗料組成物の硬度が増加するため、上記の問題が発生しづらくなる。
In addition, when the antifouling coating composition of the present invention is used as an antifouling coating composition for underwater structures that requires appropriate hardness, the component (C) is combined with the component (A). The amount is preferably 50 to 150 parts by weight with respect to 100 parts by weight as the total of component (B).
This is because when the hardness of the coating composition of the present invention is insufficient, the coating composition of the present invention was formed on the surface of underwater structures such as breakwaters installed near the seabed and aquaculture poles such as seaweed This is because, when used as a coating film, the coating film made of the coating composition of the present invention may be peeled off or damaged by sand wound up from the seabed. In addition, when the hardness of the coating composition of the present invention is insufficient, seaweed seeds sink into the coating composition (coating film) of the present invention, and seagrass is likely to propagate.
Therefore, when the antifouling paint composition of the present invention contains the component (C) in the above-described proportion, the hardness of the antifouling paint composition is increased, so that the above-described problem is hardly generated.
 本発明の防汚性塗料組成物は、溶媒中あるいは溶媒非存在下で攪拌することにより製造することができるが、通常、溶媒に分散して防汚性塗料液(以下、「防汚性塗料液」あるいは、単に「塗料液」と呼ぶ場合もある。)として使用される。 The antifouling paint composition of the present invention can be produced by stirring in a solvent or in the absence of a solvent, but is usually dispersed in a solvent to obtain an antifouling paint liquid (hereinafter referred to as “antifouling paint”). Liquid "or simply" paint liquid ").
 溶媒としては、本発明の防汚性塗料組成物を分散できる溶媒であればよく、具体的には、酢酸、プロピオン酸、酪酸等のカルボン酸類;
メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-エチルヘキサノール、シクロヘキサノール、1-ヘキサノール、2-ヘキサノール、1-オクタノール、2-オクタノール、3-オクタノール等のアルコール類;ジグライム、ジフェニルエーテル、ジベンジルエーテル、ジアリルエーテル、テトラヒドロフラン(THF)、ジオキサン等のエーテル類;
N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類;
シクロヘキサノン等のケトン類;トルエン、キシレン、ドデシルベンゼン等の芳香族炭化水素類;
ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素類;
酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、酢酸アミル、蟻酸エチル、プロピオン酸ブチル、メトキシプロピルアセテート、γ-ブチロラクトン、ジ(n-オクチル)フタレイト等のエステル類;
エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等を挙げることができ、これらは1種あるいは2種以上を混合して用いることができる。
 この中でも、本発明の防汚性塗料組成物の安定性を高め、塗装作業性や塗膜乾燥性が好適になるという観点からは、脂肪族炭化水素類およびエステル類を含むことが望ましい。脂肪族炭化水素類としては、ヘキサンが好適であり、エステル類としては、酢酸ブチルが好適である。
The solvent may be any solvent that can disperse the antifouling coating composition of the present invention. Specifically, carboxylic acids such as acetic acid, propionic acid, and butyric acid;
Alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-ethylhexanol, cyclohexanol, 1-hexanol, 2-hexanol, 1-octanol, 2-octanol, 3-octanol Ethers such as diglyme, diphenyl ether, dibenzyl ether, diallyl ether, tetrahydrofuran (THF), dioxane;
Amides such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide;
Ketones such as cyclohexanone; aromatic hydrocarbons such as toluene, xylene, dodecylbenzene;
Aliphatic hydrocarbons such as pentane, hexane, heptane, and octane;
Esters such as methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, amyl acetate, ethyl formate, butyl propionate, methoxypropyl acetate, γ-butyrolactone, di (n-octyl) phthalate;
Examples include ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate. The above can be mixed and used.
Among these, from the viewpoint of improving the stability of the antifouling coating composition of the present invention and making the coating workability and the coating film drying property suitable, it is desirable to include aliphatic hydrocarbons and esters. Hexane is preferred as the aliphatic hydrocarbon, and butyl acetate is preferred as the ester.
 本発明の防汚性塗料組成物は、公知の方法で製造することができる。製造する際の各成分の配合順序は任意である。 The antifouling coating composition of the present invention can be produced by a known method. The order of blending the components during production is arbitrary.
 本発明では上記の成分(A)、(B)及び(C)のほかに、必要に応じて従来公知の他の付加的成分を添加してもよい。
 例えば、成分(A)、(B)及び(C)に対する相溶化剤、水棲生物への殺傷力を持つ防汚剤、顔料、湿潤剤、反応促進剤、沈澱防止剤などが挙げられる。
 これらの含有量には、本発明の目的を損なわない範囲において、特に制限はないが、通常、30重量部以下であり、好ましくは10重量部以下であり、特に好適には3重量部以下である。30重量部より多量に含有すると、塗膜の防汚性能が著しく低下したり、塗膜にワレ、ハガレを生じたりする傾向がある。
In the present invention, in addition to the components (A), (B) and (C), other conventionally known additional components may be added as necessary.
Examples thereof include compatibilizers for components (A), (B) and (C), antifouling agents having killing power to aquatic organisms, pigments, wetting agents, reaction accelerators, precipitation inhibitors and the like.
These contents are not particularly limited as long as the object of the present invention is not impaired, but is usually 30 parts by weight or less, preferably 10 parts by weight or less, and particularly preferably 3 parts by weight or less. is there. When the content is larger than 30 parts by weight, the antifouling performance of the coating film is remarkably lowered, and the coating film tends to crack or peel off.
 成分(A)、(B)及び(C)に対する相溶化剤として、石鹸などの界面活性剤を添加することが好ましい。界面活性剤としての石鹸には、直鎖飽和脂肪酸または直鎖不飽和脂肪酸から選ばれた1種以上の脂肪酸およびこれらの塩を含み、直鎖飽和脂肪酸としては、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキン酸、ベヘン酸等が挙げられる。直鎖不飽和脂肪酸としては、ゾーマリン酸,オレイン酸,エライジン酸,ガドレイン酸,エルカ酸,リノール酸,リノレン酸,リシノール酸等が挙げられる。また、相溶化剤として、上記の直鎖飽和脂肪酸または直鎖不飽和脂肪酸から選ばれた1種以上を直接添加することもできる。 It is preferable to add a surfactant such as soap as a compatibilizer for the components (A), (B) and (C). The soap as the surfactant contains one or more fatty acids selected from linear saturated fatty acids or linear unsaturated fatty acids and salts thereof, and examples of the linear saturated fatty acids include lauric acid, myristic acid, palmitic acid , Stearic acid, arachidic acid, behenic acid and the like. Examples of linear unsaturated fatty acids include zomarinic acid, oleic acid, elaidic acid, gadoleic acid, erucic acid, linoleic acid, linolenic acid, ricinoleic acid and the like. Moreover, 1 or more types chosen from said linear saturated fatty acid or linear unsaturated fatty acid can also be added directly as a compatibilizing agent.
 また、水棲生物への殺傷力を持つ防汚剤としては、公知のものを使用することができるが、これらは、塗膜の防汚性能を高める一方、多く添加しすぎると環境負荷が大きくなるため、できるだけ使用を避けることが望ましい。 In addition, as the antifouling agent having killing power to aquatic organisms, known ones can be used, but these enhance the antifouling performance of the coating film, but if adding too much, the environmental load increases. Therefore, it is desirable to avoid using as much as possible.
 また、顔料としては、体質顔料、防錆顔料、着色顔料があり、具体的には、タルク、クレー、炭酸カルシウム、硫酸バリウム、酸化ジルコニウム、亜鉛華、ベンガラ、カーボンブラック、シリカ粉、シアニン系着色顔料、酸化クロム、モリブデン酸アルミニウム、モリブデン酸亜鉛、モリブデン酸カルシウム、リン酸アルミニウム、メタホウ酸バリウム等が挙げられ、目的に応じて1種又は2種以上の混合物として使用する。 Examples of pigments include extender pigments, rust preventive pigments, and colored pigments. Specifically, talc, clay, calcium carbonate, barium sulfate, zirconium oxide, zinc white, bengara, carbon black, silica powder, and cyanine coloration. Examples thereof include pigments, chromium oxide, aluminum molybdate, zinc molybdate, calcium molybdate, aluminum phosphate, and barium metaborate, which are used as one or a mixture of two or more according to the purpose.
 本発明の塗料液を塗布する下地基材としては、特に限定はなく、金属、樹脂、コンクリートなどの無機材料などいずれの材料でもよい。
 特に船底として利用される下地基材としては、例えば、リン酸亜鉛処理したダル鋼板、亜鉛めっき鋼板が挙げられる。なお、金属性下地基材には、さび止め等の目的で、公知の下塗塗料からなる塗膜を形成してもよい。
 また、本発明の塗料液は、下地基材としては、コンクリート製等の防波堤や、繊維強化プラスチック(Fiber Reinforced Plastics)や、塩化ビニル等の樹脂系素材からなる養殖ポールなど水中構造物を構成する材料にも好適に塗布可能であり、本発明の塗料組成物からなる塗膜を形成可能である。
 また、塗布とはいえないが、本発明の塗料組成物を魚網などの繊維に練り込むことによっても、水中生物に対する防汚性を得ることができる。
The base substrate to which the coating liquid of the present invention is applied is not particularly limited and may be any material such as an inorganic material such as metal, resin, concrete.
In particular, as a base material used as a ship bottom, for example, a zinc phosphate-treated dull steel plate and a galvanized steel plate can be mentioned. In addition, you may form the coating film which consists of a well-known undercoat for the objective of a rust prevention etc. on a metallic base substrate.
In addition, the coating liquid of the present invention constitutes underwater structures such as concrete breakwaters, fiber reinforced plastics, and culture poles made of resinous materials such as vinyl chloride as the base material. It can be suitably applied to the material, and can form a coating film made of the coating composition of the present invention.
Moreover, although it cannot be said that it is application | coating, antifouling property with respect to aquatic organisms can be acquired also by kneading the coating composition of this invention to fibers, such as a fish net.
 本発明の防汚性塗料液の下地基材への塗布方法は特に限定されず、従来公知の塗布方法で行うことができる。例えば、スプレー塗装法、ロール塗装法、刷毛塗り塗装法、バーコーター塗装法などを適宜採用することができる。 The method of applying the antifouling coating liquid of the present invention to the base substrate is not particularly limited, and can be performed by a conventionally known application method. For example, a spray coating method, a roll coating method, a brush coating method, a bar coater coating method, or the like can be appropriately employed.
 本発明の防汚性塗料液を下地基材に塗布した後の塗膜の乾燥時間は、防汚性塗料液における組成および塗布量で変化するが、少なくとも塗布後20分以上60分以下にすることが可能である。乾燥時間を20分以上にすることで、塗膜の流動性が十分な時間保たれ、特別なレベリング処理をしなくとも平坦で均一な膜厚の連続膜を形成できる。乾燥時間を60分以下にすることで、液だれなどの問題を防ぐことができる。 The drying time of the coating film after the antifouling coating liquid of the present invention is applied to the base substrate varies depending on the composition and the coating amount in the antifouling coating liquid, but is at least 20 minutes to 60 minutes after application. It is possible. By setting the drying time to 20 minutes or longer, the fluidity of the coating film can be maintained for a sufficient time, and a flat and uniform continuous film can be formed without special leveling treatment. By setting the drying time to 60 minutes or less, problems such as dripping can be prevented.
 塗膜の硬化時間は、防汚性塗料液における組成および塗布量で変化するが、通常、常温下においては1日程度で硬化する。 The curing time of the coating film varies depending on the composition and the coating amount in the antifouling coating liquid, but is usually cured in about one day at room temperature.
 本発明の防汚性塗膜の膜厚は、本発明の効果を得ることができれば特に限定されるものではなく、通常、1~200μm程度、平滑な塗膜を形成するという観点からは、好ましくは10~100μm程度の厚みが挙げられる。
 本発明の防汚性塗膜は、防汚性塗料組成物の組成や乾燥時間などにもよるが、1B程度の硬度を有する。そのため、水中においても傷つきづらく、塗膜が剥離しにくい。
The film thickness of the antifouling coating film of the present invention is not particularly limited as long as the effect of the present invention can be obtained, and is preferably about 1 to 200 μm from the viewpoint of forming a smooth coating film. The thickness is about 10 to 100 μm.
The antifouling coating film of the present invention has a hardness of about 1B, depending on the composition of the antifouling coating composition, the drying time, and the like. Therefore, it is hard to be damaged even in water, and the coating film is difficult to peel off.
 本発明の塗膜は、従来公知の剥離剤を用いて簡単に剥離することができる。
 そのため、何からの理由で施工が失敗し、塗膜にひび割れ、白濁などが生じた場合や使用後に塗膜を剥離し、再施工することができる。
The coating film of the present invention can be easily peeled off using a conventionally known release agent.
Therefore, the construction fails for any reason, and when the coating film is cracked or clouded or after use, the coating film can be peeled off and re-executed.
 以下、本発明を実施例によりさらに詳細に説明する。なお実施例中「部」、「%」は重量を基準として示す。 Hereinafter, the present invention will be described in more detail with reference to examples. In the examples, “parts” and “%” are based on weight.
 実施例に使用した材料は、以下のとおりである。

成分(A):固形油脂(パラフィン)
      日本精蝋株式会社製「PARAFFINWAX-135」
成分(B):ポリオール樹脂
      川上塗料株式会社製「ケシゾー(主剤)」
       (固形分62%、酢酸ブチル34%、添加剤4%)
成分(C):天然樹脂
      ハリマ化成株式会社「ロジン」
成分(D):脂肪酸・脂肪酸塩混合物
      ロケット石鹸株式会社「サンロケット」
溶媒(a):炭化水素系溶剤
      新日本石油化学株式会社製 「ノルマルヘキサン」
                (ノルマルヘキサン60%、メチルペンタン8%、                 メチルシクロペンタン30%、他の炭化水素2%)
溶媒(b):エステル系溶剤 
      酢酸ブチル
溶媒(c):塩化メチレン
The materials used in the examples are as follows.

Component (A): Solid fat (paraffin)
“PARAFFINWAX-135” manufactured by Nippon Seiwa Co., Ltd.
Ingredient (B): Polyol resin “Keshiso (main agent)” manufactured by Kawakami Paint Co., Ltd.
(Solid content 62%, butyl acetate 34%, additive 4%)
Ingredient (C): Natural resin Harima Kasei Co., Ltd. “Rosin”
Ingredient (D): Fatty acid / fatty acid salt mixture Rocket Soap Co., Ltd. “Sun Rocket”
Solvent (a): Hydrocarbon-based solvent “Normal Hexane” manufactured by Nippon Petrochemical Co., Ltd.
(Normal hexane 60%, methylpentane 8%, methylcyclopentane 30%, other hydrocarbons 2%)
Solvent (b): Ester solvent
Butyl acetate solvent (c): Methylene chloride
 以下の試験例に記載の特性の測定方法としては次のような条件にて測定した。
 <塗膜と基材との密着性>
 JIS K5600-5-6(1991)に準拠して、各防汚性塗膜の接着力を測定した。
The measurement methods described in the following test examples were measured under the following conditions.
<Adhesion between coating film and substrate>
In accordance with JIS K5600-5-6 (1991), the adhesion of each antifouling coating film was measured.
 <塗膜表面の剥離性>
 JISZ0237(2000)に準拠して測定した。
<Removability of coating surface>
It measured based on JISZ0237 (2000).
 <耐候性>
 JIS K5600-7-7(1991)に準拠して測定した。
<Weather resistance>
It was measured according to JIS K5600-7-7 (1991).
 <耐海水性試験>(耐中性塩水噴霧性)
 JIS Z 2371(促進試験:1000h)に準拠して測定した。
<Seawater resistance test> (Neutral resistance salt spray)
It measured based on JISZ2371 (acceleration test: 1000h).
 以下に具体的な試験例を示す。 The following are specific test examples.
1.成分混合試験
 成分(A)と成分(B)との混合比率を変化させ、溶液の混合性および形成した塗膜の性質を評価した。
 上記成分(A)と成分(B)とを、成分(A)の固形油脂と成分(B)における固形成分との合計が100重量%とした場合に、成分(A)の固形油脂の量が0.5、1、5、10、15、20、25、30、35、40(重量%)となるように、溶媒(a):溶媒(b)=1:1を混合した溶剤に添加し、混合した。その結果、固形油脂量が、30重量%までは、溶液は均等に混合することができたが、30重量%を超えると両成分が分離しはじめた。
 また、成分(A)の固形油脂の量が1~30重量%で均一厚みの塗膜が形成できた。35重量%は塗膜を形成できるものの、膜内にて成分(A)と成分(B)が分離していることが確認された。また、固形油脂の量が0.5重量%の塗膜は、塗膜表面の剥離性が不十分であった。
1. Component mixing test The mixing ratio of the component (A) and the component (B) was changed, and the mixing property of the solution and the properties of the formed coating film were evaluated.
When the total of the component (A) and the component (B) is 100% by weight of the solid fat in the component (A) and the solid component in the component (B), the amount of the solid fat in the component (A) is The solvent (a): solvent (b) = 1: 1 was added to the mixed solvent so as to be 0.5, 1, 5, 10, 15, 20, 25, 30, 35, 40 (% by weight). , Mixed. As a result, the solution could be mixed evenly up to 30% by weight of the solid fat, but when it exceeded 30% by weight, both components began to separate.
In addition, a coating film having a uniform thickness could be formed when the amount of the solid fat of component (A) was 1 to 30% by weight. Although 35 wt% can form a coating film, it was confirmed that component (A) and component (B) were separated in the film. Moreover, the coating film in which the amount of solid fats and oils was 0.5% by weight had insufficient peelability on the coating film surface.
2.塗料液の作製
(1)塗料液1の作製
 20Lの溶媒(a)を入れた混合用容器に、上記成分(A)500gを入れて、室温で十分に混合して混合液1を得た。次いで、混合液1を濾過し、濾液を回収した。
 この濾液100gに対して、成分(B)300g及び溶媒(b)30gを入れ、室温で均一になるまで混合することによって、塗料液1を得た。その組成を、表1に示す。
2. Preparation of coating liquid (1) Preparation of coating liquid 1 500 g of the component (A) was put in a mixing container containing 20 L of the solvent (a), and mixed well at room temperature to obtain a mixed liquid 1. Subsequently, the liquid mixture 1 was filtered and the filtrate was collect | recovered.
A coating liquid 1 was obtained by adding 300 g of the component (B) and 30 g of the solvent (b) to 100 g of the filtrate and mixing the mixture at room temperature until uniform. The composition is shown in Table 1.
(2)塗料液2の作製
 上記塗料液1の作製における、混合液1の作製の際に、成分(A)500gの他に、成分(D)60gを添加し混合液2を得た。なお、成分(D)は、完全に溶解せず残渣が残った。該混合液を濾過した後の工程は、塗料液1の作製と同様として、塗料液2を得た。その組成を、表1に示す。
(2) Preparation of coating liquid 2 When preparing the mixed liquid 1 in the preparation of the above coating liquid 1, in addition to 500 g of the component (A), 60 g of the component (D) was added to obtain the mixed liquid 2. In addition, the component (D) did not melt | dissolve completely but the residue remained. The process after filtering the mixed liquid was the same as the preparation of the coating liquid 1, and the coating liquid 2 was obtained. The composition is shown in Table 1.
(3)塗料液3の作製
 上記塗料液1の作製における、該混合液を濾過した得られた濾液100gに対して、成分(B)300gと、溶媒(b)30gに溶解した成分(C)10gを入れ、室温で均一になるまで混合することによって塗料液3を得た。その組成を、表1に示す。
(3) Preparation of coating liquid 3 Component (B) dissolved in 30 g of component (B) 300 g and solvent (b) with respect to 100 g of the filtrate obtained by filtering the mixed liquid in the preparation of coating liquid 1 A coating liquid 3 was obtained by adding 10 g and mixing at room temperature until uniform. The composition is shown in Table 1.
(4)塗料液4の作製
 成分(B)を添加しないこと以外は、塗料液1の作製と同様として、塗料液4を得た。その組成を、表1に示す。
(4) Preparation of coating liquid 4 A coating liquid 4 was obtained in the same manner as in the preparation of the coating liquid 1 except that the component (B) was not added. The composition is shown in Table 1.
(5)塗料液5の作製
 成分(B)を添加しないこと以外は、塗料液2の作製と同様として、塗料液5を得た。その組成を、表1に示す。
(5) Preparation of coating liquid 5 A coating liquid 5 was obtained in the same manner as the preparation of the coating liquid 2 except that the component (B) was not added. The composition is shown in Table 1.
(6)塗料液6の作製
 成分(A)と成分(B)との割合が、表1に示す組成になるように原料を調整した以外は、塗料液2の作製と同様として、塗料液6を得た。
(6) Preparation of coating liquid 6 The coating liquid 6 is the same as the preparation of the coating liquid 2 except that the raw materials are adjusted so that the ratio of the component (A) to the component (B) is the composition shown in Table 1. Got.
(7)塗料液7の作製
 成分(A)と成分(B)との割合が、表1に示す組成になるように原料を調整した以外は、塗料液2の作製と同様として、塗料液7を得た。
(7) Preparation of coating liquid 7 The coating liquid 7 is the same as the manufacturing of the coating liquid 2 except that the raw materials were adjusted so that the ratio of the component (A) and the component (B) is the composition shown in Table 1. Got.
(8)塗料液8~14の作製
 成分(A)、成分(B)、成分(C)の割合が、表1に示す組成になるように原料を調整した以外は、塗料液1の作製と同様として、塗料液8~14を得た。なお、成分(C)は適量の溶媒(c)に溶解して添加した。
(8) Preparation of paint liquids 8 to 14 Preparation of paint liquid 1 except that the raw materials were adjusted so that the proportions of component (A), component (B), and component (C) were as shown in Table 1. Similarly, paint liquids 8 to 14 were obtained. Component (C) was dissolved in an appropriate amount of solvent (c) and added.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
3.塗膜性能評価
 作製した塗料液からなる塗膜について、上記の測定方にて、塗膜性能評価(塗膜と基材との密着性、塗膜表面の剥離性及び耐候性)の評価を行った。
3. Coating film performance evaluation The coating film made of the prepared coating liquid was evaluated for coating film performance evaluation (adhesion between the coating film and the substrate, peelability of the coating film surface and weather resistance) by the above measurement method. It was.
「試験例1」
 50×120×1.2mmの鋼板に、刷毛塗りで防錆用下地塗料(大信ペイント株式会社製、品名エポンマイルド)を下塗りし、1日間程度室温で乾燥し下地塗膜を形成した。
 下地塗膜が形成された鋼板に、乾燥膜厚が20~30μmとなるよう刷毛塗りで塗料液1を塗布し、1日間室温で乾燥することで試料基板1を得た。
 試料基板1に対して、塗膜と基材との密着性、塗膜表面の剥離性及び耐候性を評価した結果を表2に示す。
“Test Example 1”
An undercoat for rust prevention (manufactured by Daishin Paint Co., Ltd., product name Epon Mild) was applied to a steel plate of 50 × 120 × 1.2 mm by brushing and dried at room temperature for about 1 day to form a base coating film.
The coating liquid 1 was applied to the steel sheet on which the base coating film was formed by brush coating so that the dry film thickness was 20 to 30 μm, and the sample substrate 1 was obtained by drying at room temperature for 1 day.
Table 2 shows the results of evaluating the adhesion between the coating film and the base material, the peelability of the coating film surface, and the weather resistance with respect to the sample substrate 1.
「試験例2」  
 試験例1と同様の下地塗膜が形成された鋼板に、乾燥膜厚が20~30μmとなるよう刷毛塗りで塗料液2を塗布し、1日間室温で乾燥することで試料基板2を得た。
 試料基板2に対して、塗膜と基材との密着性、塗膜表面の剥離性及び耐候性を評価した結果を表2に併せて示す。
"Test Example 2"
A paint substrate 2 was applied by brushing to a steel sheet on which the same undercoat film as in Test Example 1 was formed, and the sample substrate 2 was obtained by drying at room temperature for 1 day. .
Table 2 shows the results of evaluating the adhesion between the coating film and the substrate, the peelability of the coating film surface, and the weather resistance of the sample substrate 2.
 「試験例3」  
 試験例1と同様の下地塗膜が形成された鋼板に、乾燥膜厚が20~30μmとなるよう刷毛塗りで塗料液3を塗布し、1日間室温で乾燥することで試料基板3を得た。
 試料基板3に対して、塗膜と基材との密着性、塗膜表面の剥離性及び耐候性を評価した結果を表2に併せて示す。また、耐海水性試験(耐中性塩水噴霧性)の結果、塗料表面に錆の発生はほとんど確認できなかった。
“Test Example 3”
The sample substrate 3 was obtained by applying the coating liquid 3 with a brush so that the dry film thickness was 20 to 30 μm, and drying at room temperature for 1 day on the steel sheet on which the same undercoat as in Test Example 1 was formed. .
Table 2 shows the results of evaluating the adhesion between the coating film and the substrate, the peelability of the coating film surface, and the weather resistance with respect to the sample substrate 3. In addition, as a result of the seawater resistance test (neutral salt sprayability), almost no rust was observed on the paint surface.
 「試験例4」  
 試験例1と同様の下地塗膜が形成された鋼板に、乾燥膜厚が20~30μmとなるよう刷毛塗りで塗料液4を塗布し、1日間室温で乾燥することで試料基板4を得た。
 試料基板4に対して、塗膜と基材との密着性、塗膜表面の剥離性及び耐候性を評価した結果を表2に併せて示す。
“Test Example 4”
The sample substrate 4 was obtained by applying the coating liquid 4 with a brush so that the dry film thickness was 20 to 30 μm, and drying at room temperature for 1 day on the steel sheet on which the same undercoat as in Test Example 1 was formed. .
Table 2 also shows the results of evaluating the adhesion between the coating film and the substrate, the peelability of the coating film surface, and the weather resistance of the sample substrate 4.
 「試験例5」  
 試験例1と同様の下地塗膜が形成された鋼板に、乾燥膜厚が20~30μmとなるよう刷毛塗りで塗料液5を塗布し、1日間室温で乾燥することで試料基板5を得た。
 試料基板5に対して、塗膜と基材との密着性、塗膜表面の剥離性及び耐候性を評価した結果を表2に併せて示す。
“Test Example 5”
The sample substrate 5 was obtained by applying the coating liquid 5 by brush coating to a steel sheet on which the same undercoat film as in Test Example 1 was formed, and drying at room temperature for 1 day so that the dry film thickness was 20 to 30 μm. .
Table 2 also shows the results of evaluating the adhesion between the coating film and the substrate, the peelability of the coating film surface, and the weather resistance with respect to the sample substrate 5.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
「試験例6」  
 50×120×2mmのアルミ基板(下地塗料なし)を使用し、乾燥膜厚が20~30μmとなるよう刷毛塗りで塗料液3を塗布し、1日間室温で乾燥することで試料基板6を得た。
 試料基板6に対して、塗膜と基材との密着性、塗膜表面の剥離性及び耐候性を評価した結果を表3に示す。
"Test Example 6"
Using a 50 x 120 x 2 mm aluminum substrate (no base paint), apply paint solution 3 with a brush so that the dry film thickness is 20 to 30 µm, and dry at room temperature for 1 day to obtain sample substrate 6 It was.
Table 3 shows the results of evaluating the adhesion between the coating film and the substrate, the peelability of the coating film surface, and the weather resistance with respect to the sample substrate 6.
「試験例7」  
 試験例6と同様のアルミ基板(下地塗料なし)を使用し、乾燥膜厚が20~30μmとなるよう刷毛塗りで塗料液5を塗布し、1日間室温で乾燥することで試料基板7を得た。
 試料基板7に対して、塗膜と基材との密着性、塗膜表面の剥離性及び耐候性を評価した結果を表3に併せて示す。
"Test Example 7"
Using the same aluminum substrate as in Test Example 6 (without the base coating), applying the coating liquid 5 with a brush so that the dry film thickness is 20 to 30 μm and drying at room temperature for 1 day, a sample substrate 7 is obtained. It was.
Table 3 shows the results of evaluating the adhesion between the coating film and the substrate, the peelability of the coating film surface, and the weather resistance with respect to the sample substrate 7.
「試験例8」
 試験例6と同様のアルミ基板(下地塗料なし)を使用し、乾燥膜厚が20~30μmとなるよう刷毛塗りで塗料液6を塗布し、1日間室温で乾燥することで試料基板8を得た。
 試料基板8に対して、塗膜と基材との密着性、塗膜表面の剥離性及び耐候性を評価した結果を表3に併せて示す。
"Test Example 8"
Using the same aluminum substrate as in Test Example 6 (without the base coating), the coating liquid 6 was applied by brushing so that the dry film thickness was 20 to 30 μm, and the sample substrate 8 was obtained by drying at room temperature for 1 day. It was.
Table 3 shows the results of evaluating the adhesion between the coating film and the base material, the peelability of the coating film surface, and the weather resistance of the sample substrate 8.
「試験例9」
 試験例6と同様のアルミ基板(下地塗料なし)を使用し、乾燥膜厚が20~30μmとなるよう刷毛塗りで塗料液7を塗布し、1日間室温で乾燥することで試料基板9を得た。
 試料基板9に対して、塗膜と基材との密着性、塗膜表面の剥離性及び耐候性を評価した結果を表3に併せて示す。
"Test Example 9"
Using the same aluminum substrate as in Test Example 6 (without the base coating), applying the coating liquid 7 with a brush so that the dry film thickness is 20 to 30 μm and drying at room temperature for 1 day, a sample substrate 9 is obtained. It was.
Table 3 also shows the results of evaluating the adhesion between the coating film and the base material, the peelability of the coating film surface, and the weather resistance with respect to the sample substrate 9.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
4.海水暴露試験
 下地塗料被覆鋼板(上記試験例1で使用のものと同様)、コンクリート製円柱、コンクリート製平板、養殖用ポールに対し、作製した塗布液を塗布した試料を作製し、該試料を使用して、海水暴露試験を行い、防汚性塗料組成物の防汚性の評価を行った。
4). Seawater exposure test Prepare a sample by applying the prepared coating solution to a base paint coated steel sheet (similar to that used in Test Example 1 above), a concrete cylinder, a concrete flat plate, and an aquaculture pole. Then, a seawater exposure test was performed, and the antifouling property of the antifouling coating composition was evaluated.
 (1)海水暴露試験(下地塗料被覆鋼板)
 「試験例10」
 50×120×1.2mmの鋼板に、刷毛塗りで防錆用下地塗料(大信ペイント株式会社製、品名エポンマイルド)を下塗りし、1日間程度室温で乾燥し下地塗膜を形成した。
 下地塗膜が形成された鋼板に、乾燥膜厚が20~30μmとなるよう刷毛塗りで塗料液3を塗布し、1日間室温で乾燥することで試料鋼板基板を得た。
 10枚の試料鋼板基板を、潮の満ち引きを利用して、海水中に12時間/1日浸漬、それ以外は大気暴露する条件で海水を暴露し、1年間における生物の付着状況を目視観察した。図1に海水暴露試験(1年後)の試料鋼板基板(一部防汚性塗膜なし)の写真を示す。また、図2に図1の一部拡大写真を示す。
(1) Seawater exposure test (undercoating coated steel sheet)
"Test Example 10"
An undercoat for rust prevention (manufactured by Daishin Paint Co., Ltd., product name Epon Mild) was applied to a steel plate of 50 × 120 × 1.2 mm by brushing and dried at room temperature for about 1 day to form a base coating film.
The coating liquid 3 was applied to the steel sheet on which the base coating film was formed by brush coating so that the dry film thickness was 20 to 30 μm, and dried at room temperature for 1 day to obtain a sample steel sheet substrate.
Ten sample steel plate substrates are immersed in seawater for 12 hours / day using tides, and otherwise exposed to the atmosphere under seawater conditions. did. FIG. 1 shows a photograph of a sample steel plate substrate (with no antifouling coating film) in a seawater exposure test (after one year). FIG. 2 shows a partially enlarged photograph of FIG.
 「試験例11」
 塗料液3の代わりに、塗料液8を使用した以外は試験例10と同様の方法で、海水暴露試験を行った。図3に海水暴露試験(4ヶ月後)の試料鋼板基板の写真を示す。
"Test Example 11"
A seawater exposure test was performed in the same manner as in Test Example 10 except that the paint liquid 8 was used instead of the paint liquid 3. FIG. 3 shows a photograph of the sample steel plate substrate in the seawater exposure test (after 4 months).
 「試験例12」
 防汚塗膜未塗装の鋼板基板(下地塗料あり)を使用して、試験例10と同様の方法で、海水暴露試験を行った。図4に海水暴露試験(4ヶ月後)の試料鋼板基板の写真を示す。
“Test Example 12”
A seawater exposure test was conducted in the same manner as in Test Example 10, using a steel plate substrate (with a base coating) that had not been coated with an antifouling coating film. FIG. 4 shows a photograph of the sample steel plate substrate in the seawater exposure test (after 4 months).
 図1~3からわかるように防汚性塗膜が形成された部分では、塗膜表面への水棲生物の付着は確認できなかった。一方、試験例10(図1)における防汚塗膜が形成されていない部分(下地塗膜なし、下地塗膜のみの部分)や試験例12(図4)における防汚塗膜未塗装の鋼板基板では、海水暴露1ヶ月程度からフジツボなどの水棲生物の付着が確認された。 As can be seen from FIGS. 1 to 3, adhesion of aquatic organisms to the surface of the coating film was not confirmed in the portion where the antifouling coating film was formed. On the other hand, the part in which the antifouling coating film is not formed in Test Example 10 (FIG. 1) (the part having no undercoating film, only the undercoating film) or the uncoated antifouling coating film in Test Example 12 (FIG. 4) On the substrate, adhesion of aquatic organisms such as barnacles was confirmed from seawater exposure for about one month.
 「試験例13」
 (2)海水暴露試験(コンクリート円柱)
 直径20cm、長さ50cmのコンクリート円柱に、乾燥膜厚が20~30μmとなるよう刷毛塗りで塗料液3を塗布し、1日間室温で乾燥することで、防汚塗膜を形成した試料コンクリート円筒を得た。この試料コンクリート円筒を使用して、試験例10と同じ条件で海水暴露試験を行った。図5に海水暴露試験(1年後)の試料コンクリート円筒の写真を示す。
"Test Example 13"
(2) Seawater exposure test (concrete cylinder)
Sample concrete cylinder with antifouling coating formed by applying paint liquid 3 with a brush to a concrete cylinder with a diameter of 20 cm and a length of 50 cm so that the dry film thickness is 20-30 μm and drying at room temperature for 1 day Got. Using this sample concrete cylinder, a seawater exposure test was performed under the same conditions as in Test Example 10. Fig. 5 shows a photograph of the sample concrete cylinder in the seawater exposure test (after one year).
 「試験例14」
 防汚塗膜を形成していない、直径20cm、長さ50cmのコンクリート円柱を使用して、試験例10と同じ条件で海水暴露試験を行った。図5に海水暴露試験(1年後)の試料コンクリート円筒の写真を示す。
"Test Example 14"
A seawater exposure test was performed under the same conditions as in Test Example 10 using a concrete cylinder having a diameter of 20 cm and a length of 50 cm, which did not form an antifouling coating film. Fig. 5 shows a photograph of the sample concrete cylinder in the seawater exposure test (after one year).
 図5から明らかなように、試験例13のコンクリート円柱にはフジツボの付着が確認されないのに対し、試験例14のコンクリート円柱には多量のフジツボの付着が確認された。 As is clear from FIG. 5, the adhesion of barnacles to the concrete cylinder of Test Example 13 was not confirmed, whereas the adhesion of a large amount of barnacles to the concrete cylinder of Test Example 14 was confirmed.
 (2)海水暴露試験(コンクリート平板)
 「試験例15」
 100×100cm、厚さ5cmのコンクリート平板をテープで4分割し、その4分割した部分の一つに乾燥膜厚が20~30μmとなるよう刷毛塗りで塗料液9を塗布し、1日間室温で乾燥することで、防汚塗膜を形成した(図6参照)。
 該コンクリート平板を使用して、試験例10と同じ条件で海水暴露試験を行った。海水暴露試験4ヶ月後、6ヶ月後、10ヶ月後の結果をそれぞれ図7,図8,図9に示す。
(2) Seawater exposure test (concrete flat plate)
"Test Example 15"
A 100 × 100 cm, 5 cm thick concrete flat plate is divided into four parts with tape, and paint solution 9 is applied to one of the four divided parts with a brush so that the dry film thickness is 20 to 30 μm. By drying, an antifouling coating film was formed (see FIG. 6).
Using the concrete flat plate, a seawater exposure test was performed under the same conditions as in Test Example 10. The results after 4 months, 6 months, and 10 months after the seawater exposure test are shown in FIGS. 7, 8, and 9, respectively.
 「試験例16」
 上記試験例15にて記載したコンクリート平板の他の部分の一つに乾燥膜厚が20~30μmとなるよう刷毛塗りで塗料液10を塗布し、1日間室温で乾燥することで、防汚塗膜を形成した(図6参照)。
 該コンクリート平板を使用して、試験例10と同じ条件で海水暴露試験を行った。海水暴露試験4ヶ月後、6ヶ月後、10ヶ月後の結果をそれぞれ図7,図8,図9に示す。
"Test Example 16"
One of the other parts of the concrete flat plate described in Test Example 15 is coated with the paint solution 10 by brushing so that the dry film thickness is 20 to 30 μm, and dried at room temperature for one day, thereby preventing the antifouling coating. A film was formed (see FIG. 6).
Using the concrete flat plate, a seawater exposure test was performed under the same conditions as in Test Example 10. The results after 4 months, 6 months, and 10 months after the seawater exposure test are shown in FIGS. 7, 8, and 9, respectively.
 「試験例17」
 上記試験例15にて記載したコンクリート平板の他の部分の一つに乾燥膜厚が20~30μmとなるよう刷毛塗りで塗料液11を塗布し、1日間室温で乾燥することで、防汚塗膜を形成した(図6参照)。
 該コンクリート平板を使用して、試験例10と同じ条件で海水暴露試験を行った。海水暴露試験4ヶ月後、6ヶ月後、10ヶ月後の結果をそれぞれ図7,図8,図9に示す。
"Test Example 17"
One of the other portions of the concrete flat plate described in Test Example 15 is coated with the coating liquid 11 by brushing so that the dry film thickness is 20 to 30 μm, and is dried at room temperature for 1 day, thereby providing an antifouling coating. A film was formed (see FIG. 6).
Using the concrete flat plate, a seawater exposure test was performed under the same conditions as in Test Example 10. The results after 4 months, 6 months, and 10 months after the seawater exposure test are shown in FIGS. 7, 8, and 9, respectively.
 「試験例18」
 上記試験例15にて記載したコンクリート平板の他の部分の一つを、防汚塗膜を形成せずに(図6参照)、試験例10と同じ条件で海水暴露試験を行った。海水暴露試験4ヶ月後、6ヶ月後、10ヶ月後の結果をそれぞれ図7,図8,図9に示す。
"Test Example 18"
One of the other portions of the concrete flat plate described in Test Example 15 was subjected to a seawater exposure test under the same conditions as Test Example 10 without forming an antifouling coating film (see FIG. 6). The results after 4 months, 6 months, and 10 months after the seawater exposure test are shown in FIGS. 7, 8, and 9, respectively.
 「試験例19~試験例21」
 100×100cm、厚さ5cmのコンクリート平板をテープで3分割し、それぞれの部分に、乾燥膜厚が20~30μmとなるよう刷毛塗りで塗料液12,13,14を塗布し、試験例19、20、21の試料を作製した。該コンクリート平板を使用して、試験例10と同じ条件で海水暴露試験を行った。
“Test Example 19 to Test Example 21”
A concrete plate having a size of 100 × 100 cm and a thickness of 5 cm is divided into three parts with a tape, and paint liquids 12, 13, and 14 are applied to each part by brushing so that the dry film thickness is 20 to 30 μm. 20, 21 samples were prepared. Using the concrete flat plate, a seawater exposure test was performed under the same conditions as in Test Example 10.
 未塗装の試験例18では、海水暴露試験1ヶ月後(図示せず)から海草の存在が確認された。海水暴露試験4ヶ月後(図7)及び6ヶ月後(図8)では試験例18の全面に大量の海草が発生していることが確認された。また、海水暴露試験10ヶ月後に海草を取り除いて基板表面を確認したところ、図9に示すようにフジツボなどの水棲生物の付着が確認された。
 一方、図7~9から明らかなように試験例15、16では、海水暴露試験10ヶ月間、海草の付着がほとんど確認されず、塗膜による防汚性が確認された。また、海水暴露試験10ヶ月後(図9)に示すようにフジツボなどの水棲生物の付着も確認されなかった。
 試験例17では、海水暴露試験6ヶ月後ぐらいに海草の付着が確認されたものの、未塗装の試験例18と比較して明らかにその量は少なかった。また、海水暴露試験10ヶ月後においてもフジツボなどの水棲生物の付着も確認されなかった。
 また、試験例19、20、21においても海水暴露試験10ヶ月間、海草の発生およびフジツボなどの水棲生物の付着も確認されなかった。
In unpainted Test Example 18, the presence of seaweed was confirmed one month after the seawater exposure test (not shown). It was confirmed that a large amount of seaweed was generated on the entire surface of Test Example 18 after 4 months (FIG. 7) and 6 months (FIG. 8) of the seawater exposure test. In addition, when the seaweed was removed 10 months after the seawater exposure test and the substrate surface was confirmed, adhesion of aquatic organisms such as barnacles was confirmed as shown in FIG.
On the other hand, as is clear from FIGS. 7 to 9, in Test Examples 15 and 16, the adhesion of seaweed was hardly confirmed for 10 months in the seawater exposure test, and the antifouling property by the coating film was confirmed. Further, as shown in 10 months after the seawater exposure test (FIG. 9), adhesion of aquatic organisms such as barnacles was not confirmed.
In Test Example 17, adhesion of seaweed was confirmed about six months after the seawater exposure test, but the amount was clearly less than in unpainted Test Example 18. In addition, adhesion of aquatic organisms such as barnacles was not confirmed even after 10 months from the seawater exposure test.
In addition, in Test Examples 19, 20, and 21, no seaweed generation and adhesion of aquatic organisms such as barnacles were confirmed for 10 months in the seawater exposure test.
 (4)海水暴露試験(養殖用ポール)
 「試験例22」
 直径46mmの養殖用ポール(宇部日東化成株式会社製、FRPパイプ)を、30cmに切断した試料を、ロープに数珠繋ぎに固定し、試料ポールとした。該ポールに、試料乾燥膜厚が20~30μmとなるよう刷毛塗りで塗料液9を塗布し、1日間室温で乾燥することで、防汚塗膜を形成した。なお、同様にロープ部分にも防汚塗膜を形成した。
 塗膜を形成した試料ポールを、約3mの海中に沈めた状態で保持した。試験7ヶ月後の写真を図10に示す。また、その図11にその拡大図(ポール部分のみ)を示す。
(4) Seawater exposure test (aquaculture pole)
"Test Example 22"
A sample obtained by cutting an aquaculture pole having a diameter of 46 mm (FRP pipe, manufactured by Ube Nitto Kasei Co., Ltd.) to 30 cm was fixed to a rope in a daisy chain to obtain a sample pole. A coating liquid 9 was applied to the pole by brushing so that the sample dry film thickness was 20 to 30 μm, and dried at room temperature for 1 day to form an antifouling coating film. Similarly, an antifouling coating film was also formed on the rope portion.
The sample pole on which the coating film was formed was held in a state of being submerged in about 3 m of sea. A photograph after 7 months of the test is shown in FIG. Moreover, the enlarged view (only pole part) is shown in the FIG.
 「試験例23」
 上記試験例22にて記載した試料ポールを、防汚塗膜を形成せずに、約3mの海中に沈めた状態で保持した。試験7ヶ月後の写真を図12に示す。また、その図13にその拡大図(ポール部分のみ)を示す。
"Test Example 23"
The sample pole described in Test Example 22 was held in a state of being submerged in the sea of about 3 m without forming an antifouling coating film. A photograph 7 months after the test is shown in FIG. FIG. 13 shows an enlarged view (only the pole portion).
 図10~13から明らかなように、試験例23の塗膜を形成していない試料ポール(ロープ部分含む)には多量のフジツボなどの水棲生物の付着が確認された。
 一方、試験例22の塗膜を形成した試料ポールにはフジツボなどの水棲生物の付着が確認されなかった。
As is apparent from FIGS. 10 to 13, adhesion of a large amount of aquatic organisms such as barnacles was confirmed on the sample pole (including the rope portion) where the coating film of Test Example 23 was not formed.
On the other hand, adhesion of aquatic organisms such as barnacles was not confirmed on the sample pole on which the coating film of Test Example 22 was formed.
 本発明の防汚性塗料組成物からなる防汚性塗膜は、基板との密着性および塗膜表面の剥離性が高く、長期にわたり水棲生物の付着、繁殖を抑制することができるので、工業的に極めて有望である。 The antifouling coating film comprising the antifouling coating composition of the present invention has high adhesion to the substrate and peelability of the coating film surface, and can suppress the adhesion and propagation of aquatic organisms over a long period of time. It is extremely promising.

Claims (12)

  1.  (A)固形油脂:1~30重量%および(B)ポリオール樹脂:70~99重量%を含有することを特徴とする防汚性塗料組成物。 (A) Solid fat / oil: 1 to 30% by weight, and (B) polyol resin: 70 to 99% by weight.
  2.  (A)固形油脂が、パラフィンワックスである請求項1記載の防汚性塗料組成物。 The antifouling paint composition according to claim 1, wherein (A) the solid fat is paraffin wax.
  3.  (B)ポリオール樹脂が、アクリル系ポリオール樹脂である請求項1または2記載の防汚性塗料組成物。 (B) The antifouling paint composition according to claim 1 or 2, wherein the polyol resin is an acrylic polyol resin.
  4.  アクリル系ポリオール樹脂が、シリコン変性アクリル系ポリオール樹脂である請求項3記載の防汚性塗料組成物。 The antifouling paint composition according to claim 3, wherein the acrylic polyol resin is a silicon-modified acrylic polyol resin.
  5.  さらに(C)天然樹脂を含んでなる請求項1から4のいずれかの項に記載の防汚性塗料組成物。 The antifouling paint composition according to any one of claims 1 to 4, further comprising (C) a natural resin.
  6.  (C)天然樹脂が、ロジンである請求項5記載の防汚性塗料組成物。 (C) The antifouling paint composition according to claim 5, wherein the natural resin is rosin.
  7.  (C)天然樹脂の含有量が、(A)固形油脂と(B)ポリオール樹脂との合計100重量部に対し、1~5重量部である請求項5または6記載の船底用防汚性塗料組成物。 The antifouling paint for ship bottom according to claim 5 or 6, wherein the content of (C) natural resin is 1 to 5 parts by weight with respect to 100 parts by weight as a total of (A) solid oil and fat and (B) polyol resin. Composition.
  8.  (C)天然樹脂の含有量が、(A)固形油脂と(B)ポリオール樹脂との合計100重量部に対し、50~150重量部である請求項5または6記載の水中構造物用防汚性塗料組成物。 The antifouling for underwater structures according to claim 5 or 6, wherein the content of (C) natural resin is 50 to 150 parts by weight with respect to 100 parts by weight as a total of (A) solid oil and fat and (B) polyol resin. Coating composition.
  9.  請求項1から8のいずれかの項に記載した防汚性塗料組成物を、溶剤に分散してなることを特徴とする防汚性塗料液。 An antifouling paint liquid obtained by dispersing the antifouling paint composition according to any one of claims 1 to 8 in a solvent.
  10.  請求項1から7のいずれかの項に記載した防汚性塗料組成物を含んでなる船舶用防汚性塗膜。 A marine antifouling coating film comprising the antifouling paint composition according to any one of claims 1 to 7.
  11.  請求項1から6のいずれかの項または請求項8に記載した防汚性塗料組成物を含んでなる水中構造物用汚性塗膜。 An antifouling coating film for an underwater structure comprising the antifouling coating composition according to any one of claims 1 to 6 or claim 8.
  12.  請求項1から6のいずれかの項に記載した防汚性塗料組成物を含んでなる魚網。 A fish net comprising the antifouling paint composition according to any one of claims 1 to 6.
PCT/JP2010/052871 2009-02-27 2010-02-24 Antifouling coating composition and antifouling coating fluid containing the composition WO2010098350A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009046500A JP2012111785A (en) 2009-02-27 2009-02-27 Antifouling coating composition and antifouling coating fluid containing the same
JP2009-046500 2009-02-27

Publications (1)

Publication Number Publication Date
WO2010098350A1 true WO2010098350A1 (en) 2010-09-02

Family

ID=42665556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052871 WO2010098350A1 (en) 2009-02-27 2010-02-24 Antifouling coating composition and antifouling coating fluid containing the composition

Country Status (2)

Country Link
JP (1) JP2012111785A (en)
WO (1) WO2010098350A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018052524A (en) * 2016-09-27 2018-04-05 Jfeコンテイナー株式会社 Metallic drum

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101714132B1 (en) * 2014-12-30 2017-03-09 현대자동차주식회사 Antifouling clear paint composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54103440A (en) * 1978-01-19 1979-08-14 British Petroleum Co Process for treating surface of underwater object
JPS64172A (en) * 1987-02-24 1989-01-05 Kanae Toryo Kk Antifouling coating composition
JPH01148372A (en) * 1987-12-02 1989-06-09 Kansai Paint Co Ltd Process for forming stainproof coating film
JPH01252677A (en) * 1988-03-31 1989-10-09 Nippon Oil & Fats Co Ltd Underwater antifouling coating agent
JPH05320538A (en) * 1992-05-18 1993-12-03 Kansai Paint Co Ltd Antifouling coating compound composition
WO2010018645A1 (en) * 2008-08-11 2010-02-18 Kfアテイン株式会社 Antifouling paint

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54103440A (en) * 1978-01-19 1979-08-14 British Petroleum Co Process for treating surface of underwater object
JPS64172A (en) * 1987-02-24 1989-01-05 Kanae Toryo Kk Antifouling coating composition
JPH01148372A (en) * 1987-12-02 1989-06-09 Kansai Paint Co Ltd Process for forming stainproof coating film
JPH01252677A (en) * 1988-03-31 1989-10-09 Nippon Oil & Fats Co Ltd Underwater antifouling coating agent
JPH05320538A (en) * 1992-05-18 1993-12-03 Kansai Paint Co Ltd Antifouling coating compound composition
WO2010018645A1 (en) * 2008-08-11 2010-02-18 Kfアテイン株式会社 Antifouling paint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018052524A (en) * 2016-09-27 2018-04-05 Jfeコンテイナー株式会社 Metallic drum

Also Published As

Publication number Publication date
JP2012111785A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
JP5415551B2 (en) Antifouling paint composition, and antifouling coating film, composite coating film and underwater structure
JP5815730B2 (en) Antifouling paint composition, antifouling coating film and antifouling substrate, and method for producing antifouling substrate
KR101241747B1 (en) Antifouling coating composition, antifouling coating film formed using the composition, coated object having the coating film on the surface, and method of antifouling treatment by formation of the coating film
KR101963670B1 (en) Antifouling coating composition
JPH02151672A (en) Antifouling coating material
CN112358813B (en) Method for preventing fouling of substrate, antifouling coating composition, and method for producing antifouling coating composition
JP2021155719A (en) Aqueous antifouling coating composition
CN112513207B (en) Antifouling coating composition, antifouling coating film, substrate with antifouling coating film, method for producing same, and method for repairing same
EP3222682A1 (en) Two-part anti-fouling paint composition, anti-fouling paint film, anti-fouling base member, and method for manufacturing anti-fouling base member
WO2017164283A1 (en) Antifouling coating composition, antifouling coating film, antifouling substrate and method for producing same
WO2010098350A1 (en) Antifouling coating composition and antifouling coating fluid containing the composition
JP2002256176A (en) Composite antifouling coating film, marine structure, underwater structure, fishing equipment and fishing net coated with the coating film and antifouling method
JP2005060510A (en) Coating material composition, antifouling coating film, antifouling underwater structure, and antifouling method
US20070021532A1 (en) Coating method for ship-bottom paint
KR102536232B1 (en) Antifouling paint composition comprising fluorinated (meth)acrylate
EP3094180B1 (en) Antifouling coating composition and its use on man-made structures
JP7488348B2 (en) Surface protection coating composition
CN115678394B (en) Functional marine long-acting antifouling paint
KR20210120867A (en) Antifouling coating composition
KR20230157434A (en) Antifouling paint composition and film
ES2811952T3 (en) Antifouling coating composition and its use on artificial structures
CN115298274A (en) Antifouling coating composition
JP2021008572A (en) Algae breeding coating composition, algae breeding coating film, base material with algae breeding coating film, and manufacturing method of the base material
TWI385223B (en) An antifouling paint composition, a method for producing the composition, an antifouling coating film formed using the same, a coating material having a coating film on its surface, and a antifouling treatment method for forming the coating film
JP2000303003A (en) Antifouling coating composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10746230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP