WO2010097006A1 - 一种高速覆盖场景下专用信道初始频偏获取方法和*** - Google Patents

一种高速覆盖场景下专用信道初始频偏获取方法和*** Download PDF

Info

Publication number
WO2010097006A1
WO2010097006A1 PCT/CN2009/076200 CN2009076200W WO2010097006A1 WO 2010097006 A1 WO2010097006 A1 WO 2010097006A1 CN 2009076200 W CN2009076200 W CN 2009076200W WO 2010097006 A1 WO2010097006 A1 WO 2010097006A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency offset
propagation delay
offset information
node
extended
Prior art date
Application number
PCT/CN2009/076200
Other languages
English (en)
French (fr)
Inventor
沈伟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2010097006A1 publication Critical patent/WO2010097006A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present invention relates to the field of channel frequency offset acquisition in a wideband code division multiple access (WCDMA) mobile communication system, and more particularly to a method and system for acquiring an initial frequency offset of a dedicated channel in a high speed coverage scenario.
  • WCDMA wideband code division multiple access
  • the Doppler frequency offset of the received signal of the UE can be up to 650 Hz, and the maximum Doppler frequency offset of the received signal of the NodeB can reach 1300 Hz.
  • the frequency variation causes channel fading, especially when the frequency is relatively large.
  • the receiving performance of both the NodeB and the UE has an impact. Therefore, the receiving end needs to perform frequency offset compensation on the channel to ensure system performance.
  • the Rake receiver is typically used to compensate for the frequency offset.
  • the uplink NodeB In the 3GPP 25.214 protocol, after the radio link is established, there is a physical layer synchronization process between the uplink NodeB and the downlink UE.
  • this synchronization process when the frequency offset is large, the RAKE receiver frequency offset estimation and compensation requires a process. It will cause the uplink and downlink synchronization time to be relatively long.
  • the RNC configures the downlink initial power of the dedicated channel without the frequency offset information as a reference, the physical layer may not be synchronized due to insufficient power; for the uplink, the uplink synchronization process is longer.
  • the UE will send higher power and introduce more uplink interference, which has a certain impact on the capacity and performance of the system. Summary of the invention
  • the main object of the present invention is to provide a method and system for acquiring an initial frequency offset of a dedicated channel in a high-speed coverage scenario, which can shorten the uplink and downlink physical layer synchronization time and improve system performance.
  • the present invention provides a method for acquiring an initial frequency offset of a dedicated channel in a high-speed coverage scenario, the method comprising:
  • the base station acquires frequency offset information through a physical random access channel (PRACH), and encapsulates the value of the frequency offset information in a random access channel (RACH).
  • PRACH physical random access channel
  • RACH random access channel
  • RNC Radio Network Controller
  • the Node B extracts the frequency offset information from the RNC through the extended Propagation Delay field carried by the radio link setup signaling and carries the frequency offset information as the initial frequency offset.
  • the method further includes the Node B encapsulating the value of the one-way propagation delay acquired in the random access procedure in the Extended Propagation Delay field.
  • the method further includes:
  • the Node B determines the location of the one-way propagation delay and the frequency offset information in the Extended Propagation Delay field according to the current cell radius.
  • the method further includes: determining a unit of the frequency offset information according to the number of bits occupied by the frequency offset information in the Extended Propagation Delay field and the maximum moving speed of the UE in the current cell.
  • the upper bit is used to indicate a positive or negative sign
  • the lower bit is used to represent the absolute value of the value of the frequency offset information.
  • the method further includes:
  • the RNC performs the configuration of the downlink initial power of the downlink dedicated channel by using the frequency offset information as a reference;
  • the method further includes: the Rake receiver in the Node B performs frequency offset compensation when the dedicated frequency offset is used as the initial frequency offset.
  • the present invention also provides a system for initial frequency offset acquisition of a dedicated channel in a high-speed coverage scenario, the system comprising: a Node B and an RNC, wherein
  • the Node B is configured to acquire frequency offset information by using a PRACH when the UE initiates a random access process, and is further configured to encapsulate the value of the frequency offset information in an Extended Propagation Delay field of the RACH data packet;
  • the RNC sends or receives an Extended Propagation Delay field carried by the RNC and carries the frequency offset information, and extracts the frequency offset information as an initial frequency offset;
  • the RNC is configured to receive an Extended Propagation Delay field that is sent by the Node B and that carries the frequency offset information, and after the random access process is completed, the Extended Propagation Delay field carrying the frequency offset information is used to establish a communication link through the wireless link. Order to send to Node B.
  • the Node B is further configured to acquire a unidirectional propagation delay in the random access process, encapsulate the value of the unidirectional propagation delay in an Extended Propagation Delay field, and carry a one-way propagation delay. And an Extended Propagation Delay field of the frequency offset information is sent to the RNCo
  • the RNC is further configured to receive an Extended Propagation Delay field that is sent by the Node B and that carries the unidirectional propagation delay and the frequency offset information. After the random access process is completed, using the frequency offset information as a reference, performing the downlink dedicated channel. The configuration of the downlink initial power is sent to the Node B, and the Extended Propagation Delay field carrying the unidirectional propagation delay and the frequency offset information is sent to the Node B.
  • the Node B includes: a data acquisition module, a data encapsulation module, a data forwarding module, and a Rake receiver, where
  • the data acquisition module is configured to: when the UE initiates a random access process, obtain frequency offset information by using frequency offset estimation in the preamble detection and message demodulation of the PRACH, and obtain a one-way propagation delay;
  • the frequency offset information is extracted from an Extended Propagation Delay field carried by the RNC and carrying a unidirectional propagation delay and frequency offset information;
  • the data encapsulating module is configured to determine, according to a current cell radius, a location of the unidirectional propagation delay and the frequency offset information in an Extended Propagation Delay field, and determine a value of the unidirectional propagation delay according to the location And the value of the frequency offset information is encapsulated in the Extended Propagation Delay field; and is further used to determine a unit of the frequency offset information value;
  • the data forwarding module is configured to send or receive an Extended Propagation Delay field that is sent by the RNC and carries a one-way propagation delay and frequency offset information, and is used to extract a frequency offset extracted by the data acquiring module. Information is sent to the Rake receiver;
  • the Rake receiver is configured to perform frequency offset compensation when the frequency offset information extracted by the data acquisition module is used as an initial frequency offset in demodulation of a dedicated channel.
  • the present invention determines the number of bits occupied by the unidirectional propagation delay in the Extended Propagation Delay field according to the cell radius, and determines the position of the frequency offset information in the Extended Propagation Delay field;
  • the frequency offset information and the unidirectional propagation delay are encapsulated in the Extended Propagation Delay field and reported to the Radio Network Controller (RNC);
  • the RNC will carry the frequency offset information and the single The Extended Propagation Delay field of the propagation delay is sent to the Node B.
  • the RNC can obtain the frequency offset information when the UE accesses, and use the frequency offset information as a reference information of the downlink initial transmit power configuration of the dedicated channel, for the moving speed.
  • the corresponding initial transmission power configuration of the corresponding radio link dedicated channel is higher, which can speed up the downlink UE physical layer synchronization process and improve the downlink synchronization success rate at a high speed, and the Node B can also directly
  • the frequency offset information that is, the frequency offset value
  • the Rake receiver uses the frequency offset information as the initial frequency offset, thereby shortening the time for the Rake receiver to acquire the frequency offset information.
  • the Rake receiver can perform frequency offset compensation according to the obtained frequency offset value as soon as possible, thereby shortening the time of frequency offset convergence and uplink synchronization, reducing uplink interference during uplink synchronization, and improving system performance.
  • FIG. 1 is a schematic flow chart of a method for acquiring an initial frequency offset of a dedicated channel in a high-speed coverage scenario according to the present invention
  • the NodeB reports the frequency offset information to the RNC through the RACH data packet; the RNC uses the frequency offset information as a reference information for the downlink initial transmit power configuration of the dedicated channel.
  • the downlink initial transmit power configuration of the corresponding radio link dedicated channel is higher, which can speed up the downlink UE physical layer synchronization process and improve the downlink synchronization success rate at a high speed;
  • the frequency offset information is configured to the NodeB, and the NodeB uses the frequency offset value as an initial value (ie, an initial frequency offset) to perform frequency demodulation during dedicated channel demodulation. Offset compensation, improve demodulation performance during uplink synchronization, speed up uplink synchronization and reduce uplink interference.
  • the 3GPP25.435 protocol does not have an interface definition specifically for the NodeB to report the frequency offset information to the RNC in the RACH data packet structure, and when the frequency offset information is reported, the idle field in the RACH data packet structure may be used to carry the frequency offset information; The frequency offset information may also be carried in the increment of the existing field in the RACH data packet structure; or a new interface field may be added in the RACH data packet structure to carry the frequency offset information.
  • the 3GPP 25.433 protocol does not have an interface definition specifically configured for the RNC to configure the frequency offset information for the NodeB in the radio link setup signaling interface. Therefore, it is also necessary to carry the frequency offset information by using the existing field increment, or A new interface field is added to the radio link setup signaling interface to carry the frequency offset information.
  • the Node B when the UE initiates random access, the Node B obtains a one-way propagation delay of the air interface from the Physical Random Access Channel (PRACH), and the one-way propagation delay is obtained. The value of the unidirectional propagation delay is reported to the RNC. Establish a dedicated channel.
  • PRACH Physical Random Access Channel
  • 3GPP TS 25.433 specifies that the unidirectional propagation delay, that is, the Propagation Delay field, ranges from 0 to 255, and the unit is 3 chips (chips), that is, the value range is: 0-765 chips, which can carry up to 8 bits. Information; when the value of the propagation delay exceeds 765 chips, 3GPP TS 25.433 specifies that the current one-way propagation delay is represented by the Extended Propagation Delay field, which ranges from 255-1023 in units of 3 chips. That is, 756 ⁇ 3069 chips, which can carry up to 10 bits of information, and the extra 2 bits of the Extended Propagation Delay field is the increment of the Propagation Delay field.
  • both the Propagation Delay field and the Extended Propagation Delay field can only be used to carry a one-way propagation delay.
  • the value of the one-way propagation delay is generally small and does not exceed the Propagation Delay.
  • the value range of the field does not exceed the value range of the Extended Propagation Delay field. Therefore, in the present invention, the Node B encapsulates the value of the unidirectional propagation delay in the Extended Propagation Delay field of the RACH packet, and The extra bits in the field are used to carry the frequency offset information.
  • the present invention can also add a new interface field definition specifically to carry the frequency offset information in the RACH data packet structure defined by the 3GPP 25.435 protocol, and encapsulate the value of the unidirectional propagation delay in the Propagation Delay field or the Extended Propagation Delay field.
  • the flow of the initial frequency offset acquisition method of the dedicated channel in the high-speed coverage scenario of the present invention is as shown in FIG. 1 , and the process includes:
  • Step 101 The Node B determines the location of the one-way propagation delay and the frequency offset information in the Extended Propagation Delay field.
  • the Node B determines the maximum unidirectional propagation delay value in the cell according to the radius of the current cell, and determines the number of bits occupied by the unidirectional propagation delay value in the Extended Propagation Delay field according to the maximum unidirectional propagation delay value.
  • the maximum number of bits that the unidirectional propagation delay can occupy in the Extended Propagation Delay field can be determined by the number of bits occupied by the maximum propagation delay value in the Extended Propagation Delay field; and then the remaining in the Extended Propagation Delay field The field is used to indicate the frequency offset information.
  • the Extended Propagation Delay field can carry lObit information.
  • Extended Propagation Delay field can carry other information in addition to the propagation delay information and the frequency offset information.
  • the maximum unidirectional propagation delay value of the air interface when the UE accesses in the cell is determined, and can be calculated by the formula /v / c, where / is the cell radius and V is the chip rate. : 3.84Mchips/s, c is the speed of light.
  • the lower 7 bits of the Extended Propagation Delay field are used to indicate the unidirectional propagation delay, and the upper 3 bits are used to indicate the frequency offset information.
  • the unidirectional propagation delay and the frequency offset information are extended.
  • the position in the Propagation Delay field can also be combined in other ways.
  • the Extended Propagation Delay field is ⁇ ; when a UE in the cell range accesses, the unidirectional propagation delay of the air interface is 41, that is, 101001, the lower 7 bits are used. Indicates the one-way propagation delay, and the Extended Propagation Delay field is ⁇ 101001.
  • the maximum unidirectional propagation delay value in the cell is 22, that is, 10110, which occupies 5 bits of the Extended Propagation Delay field.
  • the lower 5 bits of the Extended Propagation Delay field can be set.
  • the upper 5 bits are used to indicate the frequency offset information.
  • the Extended Propagation Delay field is xxxxxl0110.
  • the value of the frequency offset information is the frequency offset value.
  • the unit of the frequency offset information After determining the number of bits of the Extended Propagation Delay field occupied by the unidirectional propagation delay and the frequency offset information, the unit of the frequency offset information needs to be determined.
  • the unit of the frequency offset information may take NHz, where the value of N may be dynamically selected according to the number of bits of the Extended Propagation Delay field occupied by the frequency offset information and the maximum moving speed of the UE in the current cell coverage. .
  • the upper bits of the three bits represent symbols, that is, there are positive frequency offset values and negative frequency offset values, and assuming 0 is negative.
  • the frequency offset information indicated by the Extended Propagation Delay field The following types are included: 011, 010, 001, 000, 101, 110, 111;
  • the maximum frequency offset range can be determined by the maximum moving speed of the UE in the current cell coverage. The calculation here can be implemented by the prior art. , No longer. Assuming that the maximum frequency offset value ranges from -1500 Hz to 1500 Hz, preferably, N can take 500, and the frequency offset values indicated in the Extended Propagation Delay field are as follows: -1500 Hz, -1000 Hz, -500 Hz, 0 Hz, 500 Hz, 1000 Hz, 1500 Hz. ⁇ If the value of the current frequency offset information, that is, the frequency offset value is 450 Hz, the frequency offset value is closer to 500 Hz, and the frequency offset value is expressed as: 101 in the Extended Propagation Delay field.
  • the frequency offset information is encapsulated in the Extended Propagation Delay field for facilitating the acquisition of the frequency offset information.
  • the field in the Extended Propagation Delay field indicating the frequency offset information can also be used to carry other information for other purposes.
  • Step 102 The UE initiates a random access process, and the Node B obtains the frequency offset information by using the frequency offset estimation in the PRACH preamble detection and the message demodulation, and obtains the one-way propagation delay of the air interface when the user accesses the current cell.
  • a UE when a UE performs operations such as registration, location update, or call, it is necessary to initiate a random access procedure.
  • the detection of the signal by the PRACH is divided into two parts: a preamble and a message.
  • the UE sends a random access preamble in an allocated access slot, and sends a random access message after a fixed time; Preamble detection is performed in each random access slot, and the random access message is demodulated.
  • the process in which the Node B obtains the frequency offset information and the one-way propagation delay by using the frequency offset estimation in the preamble detection and the message demodulation is a prior art, and details are not described herein again.
  • Step 103 The Node B encapsulates the unidirectional propagation delay and the frequency offset information in the Extended Propagation Delay field of the RACH packet according to the location of the unidirectional propagation delay and the frequency offset information in the Extended Propagation Delay field, and sends the information to the RNC. .
  • the unidirectional propagation delay and frequency offset information are determined in the Extended Propagation Delay field. After the location, the obtained value of the current one-way propagation delay and the value of the frequency offset information, that is, the frequency offset value are encapsulated in the Extended Propagation Delay field. For example, if the cell radius is 20 km, the unidirectional propagation delay value is 41, and the frequency offset value is 450 Hz, the extended Propagation Delay field is 1010101001.
  • the Node then sends the Extended Propagation Delay field to the RNC.
  • Step 104 After the random access process ends, the RNC performs the configuration of the downlink initial power of the downlink dedicated channel with reference to the frequency offset information; and passes the Extended Propagation Delay field carrying the unidirectional propagation delay and the frequency offset information through the wireless link.
  • the signaling is sent to the Node B.
  • the RNC extracts the frequency offset information from the Extended Propagation Delay field of the RACH packet as a reference for configuring the initial transmit power of the downlink dedicated channel of the radio link, and has a higher moving speed and a larger frequency.
  • the UE has a higher downlink initial transmit power configuration corresponding to the radio link dedicated channel, which can speed up the downlink UE physical layer synchronization process and improve the downlink synchronization success rate at high speed.
  • the RNC extracts the frequency offset information in the same manner as the Node B, and determines the position of the frequency offset information, that is, the frequency offset value and the one-way propagation delay value in the Extended Propagation Delay field according to the radius of the current cell, and then extracts the corresponding frequency offset value. .
  • the RNC encapsulates the Extended Propagation Delay field carrying the unidirectional propagation delay and the frequency offset information in the radio link setup signaling, and sends it to the Node B.
  • the Node B establishes a dedicated channel according to the radio link establishment signaling. Subsequent communication with the UE.
  • a new interface field may be added to the radio link setup signaling defined by the 3GPP TS 25.433, and the frequency offset information is encapsulated in a new interface field, and the radio link establishment signaling is sent to the Node B.
  • Step 105 The Node B extracts the frequency offset information from the Extended Propagation Delay field as the initial frequency offset according to the radius of the current cell, and performs frequency offset compensation.
  • the Node B reads the Extended Propagation Delay field from the radio link setup signaling carried by the RNC and carries the Extended Propagation Delay field, and according to the radius of the current cell, Determine the position of the frequency offset information, that is, the frequency offset value and the one-way propagation delay value in the Extended Propagation Delay field, and then extract the corresponding frequency offset value.
  • the Rake receiver in Node B uses this frequency offset value as the initial frequency offset value to perform frequency offset compensation during demodulation of the dedicated channel, which can improve the demodulation performance in the uplink synchronization process, speed up the uplink synchronization and reduce the uplink.
  • the 3GPP TS 25.433 specifies that the Propagation Delay field ranges from 0 to 255, and can carry up to 8 bits of information, and can only be used to carry one-way propagation delay; When the value of the propagation delay exceeds 255, 3GPP TS 25.433 specifies that the current one-way propagation delay is represented by the Extended Propagation Delay field, and can only be used to carry a one-way propagation delay, which ranges from 255 to 1023. Carry lObit information.
  • the value of the one-way propagation delay is generally small, and does not exceed the range of the one-way propagation delay value represented by the Propagation Delay field: 0 ⁇ 255, which can be represented by a maximum of 8 bits. Therefore,
  • the Node B reports the Propagation Delay field carrying only the one-way propagation delay to the RNC.
  • the Rake receiver obtains the frequency offset information by using the frequency offset estimation in the subsequent frequency offset compensation.
  • the unidirectional propagation delay is directly encapsulated in the Extended Propagation Delay field that can carry lObit information, and then sent to the RNC.
  • the extended Propagation Delay field can carry 10 bits of information. Therefore, in the high-speed coverage scenario, the Extended Propagation Delay field can carry other information, especially frequency offset information, in addition to the one-way propagation delay.
  • the Node B receiver can directly extract the frequency offset information, that is, the frequency offset value, from the Extended Propagation Delay field carried by the RNC carrying the frequency offset information and the unidirectional propagation delay; then the Rake receiver in the Node B
  • the frequency offset compensation can be performed according to the frequency offset value, which shortens the time for the Rake receiver to acquire the frequency offset information.
  • the present invention provides a system for initial frequency offset acquisition.
  • the system includes: a Node B 10, and an RNC 20, where
  • the Node BIO is used to obtain the frequency offset information by using the frequency offset estimation in the PRACH preamble detection and the message demodulation when the UE initiates the random access process; and is also used to encapsulate the value of the frequency offset information in the Extended Propagation of the RACH data packet.
  • the Delay field is also used to send or receive the Extended Propagation Delay field carried by the RNC 20 and carrying the frequency offset information, and extract the frequency offset information therefrom;
  • the RNC20 is configured to receive an Extended Propagation Delay field that is sent by the Node B10 and that carries the frequency offset information, and send the Extended Propagation Delay field that carries the frequency offset information to the extended link establishment signaling by using the radio link establishment signaling. Node B10.
  • the Node B10 is further configured to obtain a unidirectional propagation delay in the random access process, and encapsulate the value of the unidirectional propagation delay in the Extended Propagation Delay field; and carry the unidirectional propagation delay and the frequency offset information.
  • the Extended Propagation Delay field is sent to the RNC20;
  • the RNC 20 is further configured to receive an Extended Propagation Delay field that is sent by the Node B 10 and that carries the unidirectional propagation delay and the frequency offset information. After the random access process is completed, the downlink dedicated channel is downlinked by using the frequency offset information as a reference. The initial power is configured, and the Extended Propagation Delay field carrying the unidirectional propagation delay and the frequency offset information is sent to the Node B 10.
  • the Node B10 may include: a data acquisition module 11, a data encapsulation module 12, a data forwarding module 13, and a Rake receiver 14, wherein
  • the data obtaining module 11 is configured to: when the UE initiates the random access process, obtain the frequency offset information by using the frequency offset estimation in the preamble detection and the message demodulation of the PRACH, and obtain the one-way propagation delay; and is also used to send the data from the RNC20.
  • the frequency offset information is extracted from an Extended Propagation Delay field carrying a one-way propagation delay and frequency offset information;
  • the data encapsulating module 12 is configured to determine, according to the current cell radius, a location of the unidirectional propagation delay and the frequency offset information in the Extended Propagation Delay field, and encapsulate the value of the unidirectional propagation delay and the value of the frequency offset information according to the location.
  • the data forwarding module 13 is configured to send or receive the Extended Propagation Delay field carried by the RNC 20 and carry the unidirectional propagation delay and the frequency offset information to the RNC 20, and send the frequency offset information extracted by the data acquiring module 11 to the Rake for receiving.
  • Machine 14
  • the Rake receiver 14 is configured to perform frequency offset compensation when the frequency offset information extracted by the data acquisition module 11 is used as an initial frequency offset for demodulation of the dedicated channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种高速覆盖场景下专用信道初始频偏获取方法和*** 技术领域
本发明涉及宽带码分多址( WCDMA, Wideband Code Division Multiple Access )移动通信***中信道频偏的获取技术领域,特别是指一种高速覆盖 场景下专用信道初始频偏获取方法和***。 背景技术
在移动通信***中, 信号发射端和信号接收端存在相对速度, 由此产 生多普勒频偏。 在高速移动通信场景下, 基站(NodeB )和用户设备 ( UE ) 接收信号都存在较大的多普勒频率偏移, 如在高速铁路覆盖场景中, 当火 车速度为 350公里 /小时, 载波频率为 2GHZ时, UE接收信号的多普勒频 偏最大可达 650HZ, NodeB接收信号的最大多普勒频率偏移可达 1300HZ, 频率变化会引起信道衰落, 特别是这种比较大频偏时对 NodeB和 UE的接 收性能都有影响, 因此, 接收端需要对信道进行频偏补偿, 以保证***性 能。 通常使用 Rake接收机来对频偏进行补偿。
3GPP 25.214协议中, 无线链路建立后, 上行 NodeB和下行 UE中有一 个物理层同步过程, 在此同步过程中, 当频偏较大时, Rake接收机的频偏 估计和补偿需要一个过程, 会造成上下行同步时间相对较长。 对于下行, 由于 RNC配置专用信道的下行初始功率时没有频偏信息作参考, 有可能因 为功率不够造成物理层同步不上; 对于上行, 较长时间的上行同步过程中
UE会发送较高的功率, 引入较多的上行干扰, 对***的容量和性能都有一 定的影响。 发明内容
有鉴于此, 本发明的主要目的在于提供一种高速覆盖场景下专用信道 初始频偏获取方法和***, 可以缩短上下行物理层同步时间, 提高***性 能。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供了一种高速覆盖场景下专用信道初始频偏获取方法, 该方 法包括:
在用户设备 ( UE )发起随机接入进程时, 基站(Node B )通过物理随 机接入信道(PRACH )获取频偏信息, 并将所述频偏信息的值封装在随机 接入信道( RACH )数据包的扩展传播时延 ( Extended Propagation Delay ) 字段中, 发送给无线网络控制器( RNC );
在所述随机接入进程完成后, Node B从 RNC通过无线链路建立信令 下发的携带有频偏信息的所述 Extended Propagation Delay字段中提取出所 述频偏信息作为初始频偏。
该方法还包括, Node B将在随机接入进程中获取的单向传播时延的值 封装在 Extended Propagation Delay字段中。
在所述 UE发起随机接入进程之前, 该方法还包括:
Node B 依据当前小区半径确定所述单向传播时延和所述频偏信息在 Extended Propagation Delay字段中的位置。
所述 Node B 依据小区半径确定所述单向传播时延和所述频偏信息在 Extended Propagation Delay字段中的位置, 具体为:
依据小区半径确定在当前小区中最大单向传播时延的值; 通过所述最 大单向传播时延的值确定单向传播时延在 Extended Propagation Delay字段 中所能占用最多的比特数; 然后将 Extended Propagation Delay字段中剩余 的比特数用来携带频偏信息。 该方法还包括: 依据所述频偏信息在 Extended Propagation Delay字段 中所占用的比特数和当前小区中 UE 的最大移动速度确定所述频偏信息的 单位。
在所述 Extended Propagation Delay字段的表示频偏信息的部分字段中, 高位用来表示正号或负号, 低位用来表示频偏信息的值的绝对值。
在所述随机接入进程完成后, 该方法还包括:
所述 RNC以所述频偏信息为参考,进行下行专用信道的下行初始功率 的配置;
所述 Node B提取出所述频偏信息后, 该方法还包括: 所述 Node B中 的 Rake接收机以所述频偏信息为初始频偏在专用信道解调时进行频偏补 偿。
本发明还提供了一种高速覆盖场景下专用信道初始频偏获取***, 该 ***包括: Node B和 RNC, 其中,
所述 Node B , 用于在 UE发起随机接入进程时, 通过 PRACH获取频 偏信息; 还用于将所述频偏信息的值封装在 RACH 数据包的 Extended Propagation Delay字段中;还用于向 RNC发送或者接收 RNC下发的携带有 频偏信息的 Extended Propagation Delay字段, 并从中提取出所述频偏信息 作为初始频偏;
所述 RNC , 用于接收 Node B 发送的携带有频偏信息的 Extended Propagation Delay字段, 并在随机接入进程完成后, 将所述携带有频偏信息 的 Extended Propagation Delay字段通过无线链路建立信令下发给 Node B。
所述 Node B , 还用于在所述随机接入进程中获取单向传播时延, 将所 述单向传播时延的值封装在 Extended Propagation Delay字段中; 并将携带 有单向传播时延和频偏信息的 Extended Propagation Delay字段发送给所述 RNCo 所述 RNC, 还用于接收 Node B发送的携带有单向传播时延和频偏信 息的 Extended Propagation Delay字段; 在随机接入进程完成后, 以所述频 偏信息为参考, 进行下行专用信道的下行初始功率的配置, 并将所述携带 有单向传播时延和频偏信息的 Extended Propagation Delay字段下发给 Node B。
所述 Node B 包括: 数据获取模块、 数据封装模块、 数据转发模块和 Rake接收机, 其中,
所述数据获取模块, 用于在 UE发起随机接入进程时, 在 PRACH的前 导检测和消息解调中通过频偏估计得到频偏信息, 并获取单向传播时延; 还用于从所述 RNC 下发的携带有单向传播时延和频偏信息的 Extended Propagation Delay字段中提取出所述频偏信息;
所述数据封装模块, 用于依据当前小区半径确定所述单向传播时延和 所述频偏信息在 Extended Propagation Delay字段中的位置; 并依据所述位 置将所述单向传播时延的值和所述频偏信息的值封装在所述 Extended Propagation Delay字段中; 还用于确定所述频偏信息值的单位;
所述数据转发模块, 用于向所述 RNC发送或者接收所述 RNC下发的 携带有单向传播时延和频偏信息的 Extended Propagation Delay字段; 还用 于将数据获取模块提取出的频偏信息发送给所述 Rake接收机;
所述 Rake接收机, 用于将所述数据获取模块提取出的频偏信息作为初 始频偏在专用信道解调时进行频偏补偿。
高速覆盖场景下, 本发明依据小区半径确定单向传播时延在扩展传播 时延( Extended Propagation Delay )字段中所占比特数, 并以此确定频偏信 息在 Extended Propagation Delay字段中的位置; 然后将频偏信息和单向传 播时延一起封装在 Extended Propagation Delay字段中, 并上报给无线网络 控制器( RNC, Radio Network Controller ); 再由 RNC将携带频偏信息和单 向传播时延的 Extended Propagation Delay字段下发给 Node B; 如此, RNC 可以得到 UE接入时的频偏信息,利用此频偏信息作为专用信道下行初始发 射功率配置的一个参考信息, 对于移动速度较高, 频偏较大的 UE, 其对应 的无线链路专用信道下行初始发射功率配置高一些, 在高速情况下能加快 下行 UE物理层同步过程和提高下行同步成功率, Node B 也可以直接从 Extended Propagation Delay字段提取出频偏信息、 即频偏值, 然后提供给 Rake接收机, Rake接收机以该频偏信息为初始频偏, 这样就缩短了 Rake 接收机获取频偏信息的时间, 使 Rake接收机可以尽快地依据获取的频偏值 进行频偏补偿, 从而就缩短了频偏收敛和上行同步的时间, 减少了上行同 步过程中的上行干扰, 提高了***性能。 附图说明
图 1 为本发明高速覆盖场景下专用信道初始频偏获取方法的流程示意 图;
图 2为本发明高速覆盖场景下专用信道初始频偏获取***的结构关系 示意图。 具体实施方式 下面结合附图和具体实施例对本发明的技术方案进一步详细阐述。 本发明高速覆盖场景下专用信道初始频偏获取方案的主要思想是: NodeB将频偏信息通过 RACH数据包上报给 RNC; RNC利用此频偏信息 作为专用信道下行初始发射功率配置的一个参考信息, 对于移动速度较高, 频偏较大的 UE, 其对应的无线链路专用信道下行初始发射功率配置高一 些, 在高速情况下能加快下行 UE物理层同步过程和提高下行同步成功率; 同时 RNC在随机接入后的无线链路建立中, 将该频偏信息配置给 NodeB, NodeB 利用此频偏值作为初始值(即初始频偏)在专用信道解调时进行频 偏补偿, 改善上行同步过程中的解调性能, 加快上行同步和减少上行干扰。
3GPP25.435协议中没有对于 RACH数据包结构中专门用于 NodeB给 RNC上报频偏信息的接口定义, 则在上报频偏信息时, 可以利用 RACH数 据包结构中的空闲字段来携带频偏信息; 也可以利用 RACH数据包结构中 已有字段的增量携带频偏信息; 或者在 RACH数据包结构中增加新的接口 字段来携带频偏信息。 另外, 3GPP25.433协议中也没有对于无线链路建立 信令接口中专门用于 RNC给 NodeB配置频偏信息的接口定义, 因此,也需 要通过利用现有字段增量携带频偏信息, 或者在无线链路建立信令接口中 增加新的接口字段携带频偏信息。
本发明利用现有协议定义的接口字段增量来携带频偏信息: 在
WCDMA移动通信***中, 当 UE发起随机接入时, Node B会从物理随机 接入信道(PRACH, Physical Random Access Channel ) 中获得空中接口的 单向传播时延, 并将这个单向传播时延的值封装在 RACH 数据包的 Propagation Delay字段中上报给 RNC; 在随后建立专用信道时, RNC将上 报的单向传播时延的值再下发给 Node B , Node B依据该单向传播时延建立 专用信道。
3GPP TS 25.433规定单向传播时延、 即 Propagation Delay字段的取值 范围为: 0-255 , 单位为 3 码片 (chips ), 即其取值范围为: 0-765 chips, 最多可以携带 8bit的信息;当传播时延的值超过 765chips时, 3GPP TS 25.433 规定由扩展传播时延( Extended Propagation Delay )字段来表示当前的单向 传播时延, 其范围为: 255-1023 , 单位为 3 chips, 即 756~3069 chips, 最多 可携带 lObit的信息,其中 Extended Propagation Delay字段多出的 2bit即为 Propagation Delay 字段的增量。 现有技术中, Propagation Delay 字段和 Extended Propagation Delay字段都只能用来携带单向传播时延。但是, 在高 速覆盖场景下, 单向传播时延的值一般比较小, 不会超出 Propagation Delay 字段的取值范围, 也就更不会超出 Extended Propagation Delay字段的取值 范围; 所以本发明中, Node B将单向传播时延的值封装在 RACH数据包的 Extended Propagation Delay字段中,将该字段中多余的比特数用来携带频偏 信息。 当然, 本发明也可以在 3GPP 25.435协议定义的 RACH数据包结构 中增加新的接口字段定义专门来携带频偏信息, 将单向传播时延的值封装 在 Propagation Delay字段或者 Extended Propagation Delay字段中。
下面通过具体的实施例来说明本发明的方案。
采用 RACH数据包的 Extended Propagation Delay字段携带频偏信息时, 本发明高速覆盖场景下专用信道初始频偏获取方法流程如图 1 所示, 该流 程包括:
步骤 101 , Node B确定单向传播时延和频偏信息在 Extended Propagation Delay字段中的位置。
Node B依据当前小区的半径, 确定该小区中最大的单向传播时延值, 并依据该最大单向传播时延值确定单向传播时延值在 Extended Propagation Delay字段中所占的比特数。
在本发明中, 通过最大传播时延值在 Extended Propagation Delay字段 中占用的比特数, 可以确定单向传播时延在 Extended Propagation Delay字 段中所能占用的最多比特数; 然后 Extended Propagation Delay字段中剩余 的字段用来表示频偏信息。 Extended Propagation Delay字段可以携带 lObit 的信息。
另外, Extended Propagation Delay字段中除了携带传播时延信息和频偏 信息外, 还可以携带其他信息。
当小区半径确定时,在该小区中 UE接入时的空中接口的最大单向传播 时延值是确定的, 可以通过公式 /v / c计算出来, 其中 /为小区半径、 V为码 片速率: 3.84Mchips/s、 c为光速。 假设小区半径为 20km, 则最大单向传播 时延为: (20 x l03 x 3.84x l06)/(3 x l08) = 256chips , 则按照 3GPP TS 25.433 的规定, 将该最大单向传播时延上报给 RNC时的值为: 256/3 = 85 , 即该 最大单向传播时延的值需要占用 7个比特, 即: 1010101 , 则单向传播时延 在 Extended Propagation Delay字段中所能占用的最多比特数为 7位。 较佳 地, 可以设定 Extended Propagation Delay字段中低位的 7个比特用来表示 单向传播时延, 高位的 3 个比特用来表示频偏信息, 当然单向传播时延和 频偏信息在 Extended Propagation Delay字段中的位置也可以有其他组合方 式。 当传播时延取最大值 85 时, Extended Propagation Delay 字段为 χχχΙΟΙΟΙΟΙ ; 当小区范围内某个 UE接入, 空中接口的单向传播时延为 41 , 即 101001 时, 用低位的 7 个比特用来表示单向传播时延, 则 Extended Propagation Delay字段为 χχχθ 101001。
假设小区半径配置为 5km, 则该小区中最大单向传播时延值为 22, 即 10110, 占用 Extended Propagation Delay字段的 5个比特, 此时可以设定 Extended Propagation Delay字段中低位的 5个比特用来表示单向传播时延; 高位的 5个比特用来表示频偏信息, 当传播时延取最大值 22时, Extended Propagation Delay字段为 xxxxxl0110。
需要指出的是, 用来表示频偏信息的比特数越多, 则频偏信息的精度 就越高。 本发明中, 频偏信息的值即为频偏值。
确定了单向传播时延和频偏信息各自占用的 Extended Propagation Delay字段的比特数后,需要确定频偏信息的单位。根据实际情况,较佳地, 频偏信息的单位可以取 NHz,其中 N的取值可以依据频偏信息占用 Extended Propagation Delay字段的比特数和当前小区覆盖范围内 UE的最大移动速度 来动态地选择。 以 20km小区为例, 需要用 3个比特来表示频偏信息, 较佳 地, 可以将 3 个比特中高位表示符号, 即有正的频偏值和负的频偏值, 假 设 0表示负, 1表示正, 则 Extended Propagation Delay字段表示的频偏信息 包含以下几种: 011、 010、 001、 000、 101、 110、 111 ; 通过当前小区覆盖 范围内 UE的最大移动速度可以确定最大的频偏值范围,此处的计算可以通 过现有技术来实现, 不再赘述。假设最大频偏值的范围为 -1500Hz~1500Hz, 较佳地, N可以取 500, 则 Extended Propagation Delay字段中表示的频偏值 有以下几种: -1500 Hz、 -1000 Hz, -500 Hz、 0 Hz、 500 Hz、 1000 Hz、 1500 Hz。 ^ 设当前频偏信息的值、 即频偏值为 450Hz,则将该频偏值向 500 Hz靠拢, 则该频偏值在 Extended Propagation Delay字段中被表示为: 101。
需要指出的是, 因为本发明中需要获取的为频偏信息, 因此将频偏信 息封装在 Extended Propagation Delay字段中, 用于方便频偏信息的获取。 但是,根据实际需要, Extended Propagation Delay字段中表示频偏信息的字 段也可以用来携带其他信息, 用于其他用途。
步骤 102, UE发起随机接入进程, Node B在 PRACH的前导检测和消 息解调中通过频偏估计得到频偏信息, 并获得该用户接入当前小区时的空 中接口的单向传播时延。
在 WCDMA***中, 当 UE进行注册、 位置更新或呼叫等操作时, 需 要发起随机接入进程。 在随机接入进程中, PRACH对信号的检测分为前导 和消息两部分, UE在某个分配的接入时隙发送随机接入前导, 并在固定的 时间后发送随机接入消息; Node B在每个随机接入时隙进行前导检测, 并 对随机接入消息进行解调。
具体的, Node B在前导检测和消息解调中通过频偏估计获取频偏信息 和单向传播时延的流程为现有技术, 此处不再赘述。
步骤 103 , Node B依据单向传播时延和频偏信息在 Extended Propagation Delay字段中的位置, 将单向传播时延和频偏信息封装在 RACH数据包的 Extended Propagation Delay字段中, 并发送给 RNC。
确定了单向传播时延和频偏信息在 Extended Propagation Delay字段中 的位置后, 将获取的当前单向传播时延的值和频偏信息的值、 即频偏值封 装在 Extended Propagation Delay字段中。 以小区半径为 20km、 单向传播时 延值为 41 ,且频偏值为 450Hz为例,则将单向传播时延和频偏信息组合后, Extended Propagation Delay字段为: 1010101001。
然后, Node将 Extended Propagation Delay字段上 4艮给 RNC。
步骤 104, 在随机接入进程结束后, RNC以频偏信息为参考进行下行 专用信道的下行初始功率的配置; 并将携带单向传播时延和频偏信息的 Extended Propagation Delay字段通过无线链路建立信令下发给 Node B。
在随机接入进程结束后, RNC从 RACH数据包的 Extended Propagation Delay字段中提取出频偏信息,作为配置无线链路下行专用信道的初始发射 功率的参考, 对于移动速度较高, 频偏较大的 UE, 其对应的无线链路专用 信道下行初始发射功率配置高一些,在高速情况下能加快下行 UE物理层同 步过程和提高下行同步成功率。
其中, RNC提取频偏信息的方式同 Node B , 依据当前小区的半径, 确 定 Extended Propagation Delay字段中频偏信息、 即频偏值和单向传播时延 值的位置, 然后提取出对应的频偏值。
同时, RNC将携带单向传播时延和频偏信息的 Extended Propagation Delay字段封装在无线链路建立信令中, 并下发给 Node B , Node B依据无 线链路建立信令建立专用信道,用于 UE后续的通信。当然,也可以在 3GPP TS 25.433定义的无线链路建立信令中增加新的接口字段, 将频偏信息封装 在新增的接口字段中, 通过无线链路建立信令下发给 Node B。
步骤 105 , Node B依据当前小区的半径,从 Extended Propagation Delay 字段中提取出频偏信息作为初始频偏进行频偏补偿。
Node B从 RNC发送的携带 Extended Propagation Delay字段的无线链路 建立信令中读取 Extended Propagation Delay字段, 并依据当前小区的半径, 确定 Extended Propagation Delay字段中频偏信息、 即频偏值和单向传播时 延值的位置, 然后提取出对应的频偏值。
Node B中的 Rake接收机以此频偏值作为初始频偏值在专用信道解调 时进行频偏补偿, 能够改善上行同步过程中的解调性能, 加快上行同步和 减少上行干 4尤。
需要指出的是, 在 WCDMA移动通信***中, 3GPP TS 25.433规定 Propagation Delay字段的取值范围为: 0~255 , 最多可携带 8bit的信息, 且 只能用于携带单向传播时延; 当单向传播时延的值超过 255 时, 3GPP TS 25.433规定由 Extended Propagation Delay字段来表示当前的单向传播时延, 且只能用来携带单向传播时延,其范围为: 255~1023 ,可携带 lObit的信息。
在高速覆盖场景下, 单向传播时延的值一般比较小, 不会超出 Propagation Delay字段表示的单向传播时延值的范围: 0~255 , 最多只需 8 个比特数来表示, 所以, 现有技术中 Node B 会将只携带单向传播时延的 Propagation Delay字段上报给 RNC; Rake接收机在后续进行频偏补偿时再 通过频偏估计来获得频偏信息。 而本发明中, 不管当前单向传播时延的值 为多少, 直接将单向传播时延封装在可携带 lObit 信息的 Extended Propagation Delay字段中, 并上才艮给 RNC。 由于 Extended Propagation Delay 字段可携带 lObit 的信息, 因此在高速覆盖场景下, Extended Propagation Delay字段除了可以携带单向传播时延外,还有多余的字段可以用来携带其 他信息, 特别是频偏信息; 如此, Node B接收机就可以直接从 RNC下发的 携带有频偏信息和单向传播时延的 Extended Propagation Delay字段中提取 出频偏信息、 即频偏值; 然后 Node B中的 Rake接收机可以依据该频偏值 进行频偏补偿, 这样就缩短了 Rake接收机获取频偏信息的时间。
为了实现上述获取初始频偏的方法, 本发明提供了一种初始频偏获取 的***, 如图 2所示, 该***包括: Node B 10、 和 RNC20, 其中, Node BIO,用于在 UE发起随机接入进程时,在 PRACH的前导检测和 消息解调中通过频偏估计得到频偏信息; 还用于将频偏信息的值封装在 RACH数据包的 Extended Propagation Delay字段中; 还用于向 RNC20发送 或者接收 RNC20下发的携带有频偏信息的 Extended Propagation Delay字 段, 并从中提取出频偏信息;
RNC20 , 用于接收 Node B10 发送的携带有频偏信息的 Extended Propagation Delay 字段, 并在随机接入进程完成后, 将携带有频偏信息的 Extended Propagation Delay字段通过无线链路建立信令下发给 Node B10。
另外, Node B10, 还用于在随机接入进程中获取单向传播时延, 将单 向传播时延的值封装在 Extended Propagation Delay字段中; 并将携带有单 向传播时延和频偏信息的 Extended Propagation Delay字段发送给 RNC20;
RNC20,还用于接收 Node B10发送的携带有单向传播时延和频偏信息 的 Extended Propagation Delay字段; 在随机接入进程完成后, 以所述频偏 信息为参考, 进行下行专用信道的下行初始功率的配置, 并将携带有单向 传播时延和频偏信息的 Extended Propagation Delay字段下发给 Node B 10。
则 Node B10可以包括: 数据获取模块 11、 数据封装模块 12、 数据转 发模块 13 和 Rake接收机 14, 其中,
数据获取模块 11 , 用于在 UE发起随机接入进程时, 在 PRACH的前 导检测和消息解调中通过频偏估计得到频偏信息, 并获取单向传播时延; 还用于从 RNC20 下发的携带有单向传播时延和频偏信息的 Extended Propagation Delay字段中提取出频偏信息;
数据封装模块 12, 用于依据当前小区半径确定单向传播时延和频偏信 息在 Extended Propagation Delay字段中的位置; 并依据该位置将单向传播 时延的值和频偏信息的值封装在 Extended Propagation Delay字段中; 还用 于确定频偏信息值的单位; 数据转发模块 13 , 用于向 RNC20发送或者接收 RNC20下发的携带有 单向传播时延和频偏信息的 Extended Propagation Delay字段; 还用将数据 获取模块 11提取出的频偏信息发送给 Rake接收机 14;
Rake接收机 14, 用于将数据获取模块 11提取出的频偏信息作为初始 频偏在专用信道解调时进行频偏补偿。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种高速覆盖场景下专用信道初始频偏获取方法, 其特征在于, 该 方法包括:
在用户设备 ( UE )发起随机接入进程时, 基站(Node B )通过物理随 机接入信道(PRACH )获取频偏信息, 并将所述频偏信息的值封装在随机 接入信道(RACH )数据包的扩展传播时延 ( Extended Propagation Delay ) 字段中, 发送给无线网络控制器( RNC );
在所述随机接入进程完成后, Node B从 RNC通过无线链路建立信令 下发的携带有频偏信息的所述 Extended Propagation Delay字段中提取出所 述频偏信息作为初始频偏。
2、 根据权利要求 1所述高速覆盖场景下专用信道初始频偏获取方法, 其特征在于, 该方法还包括, Node B将在随机接入进程中获取的单向传播 时延的值封装在 Extended Propagation Delay字段中。
3、 根据权利要求 2所述高速覆盖场景下专用信道初始频偏获取方法, 其特征在于, 在所述 UE发起随机接入进程之前, 该方法还包括:
Node B 依据当前小区半径确定所述单向传播时延和所述频偏信息在 Extended Propagation Delay字段中的位置。
4、 根据权利要求 3所述高速覆盖场景下专用信道初始频偏获取方法, 其特征在于, 所述 Node B依据小区半径确定所述单向传播时延和所述频偏 信息在 Extended Propagation Delay字段中的位置, 具体为:
依据小区半径确定在当前小区中最大单向传播时延的值; 通过所述最 大单向传播时延的值确定单向传播时延在 Extended Propagation Delay字段 中所能占用最多的比特数; 然后将 Extended Propagation Delay字段中剩余 的比特数用来携带频偏信息。
5、 根据权利要求 4所述高速覆盖场景下专用信道初始频偏获取方法, 其特征在于, 该方法还包括: 依据所述频偏信息在 Extended Propagation Delay字段中所占用的比特数和当前小区中 UE的最大移动速度确定所述频 偏信息的单位。
6、 根据权利要求 4所述高速覆盖场景下专用信道初始频偏获取方法, 其特征在于, 在所述 Extended Propagation Delay字段的表示频偏信息的部 分字段中, 高位用来表示正号或负号, 低位用来表示频偏信息的值的绝对 值。
7、根据权利要求 1至 6中任一项所述高速覆盖场景下专用信道初始频 偏获取方法, 其特征在于, 在所述随机接入进程完成后, 该方法还包括: 所述 RNC以所述频偏信息为参考,进行下行专用信道的下行初始功率 的配置;
所述 Node B提取出所述频偏信息后, 该方法还包括: 所述 Node B中 的 Rake接收机以所述频偏信息为初始频偏在专用信道解调时进行频偏补 偿。
8、 一种高速覆盖场景下专用信道初始频偏获取***, 其特征在于, 该 ***包括: Node B和 RNC, 其中,
所述 Node B , 用于在 UE发起随机接入进程时, 通过 PRACH获取频 偏信息; 还用于将所述频偏信息的值封装在 RACH 数据包的 Extended Propagation Delay字段中;还用于向 RNC发送或者接收 RNC下发的携带有 频偏信息的 Extended Propagation Delay字段, 并从中提取出所述频偏信息 作为初始频偏;
所述 RNC , 用于接收 Node B 发送的携带有频偏信息的 Extended Propagation Delay字段, 并在随机接入进程完成后, 将所述携带有频偏信息 的 Extended Propagation Delay字段通过无线链路建立信令下发给 Node B。
9、 根据权利要求 8所述高速覆盖场景下专用信道初始频偏获取***, 其特征在于,
所述 Node B , 还用于在所述随机接入进程中获取单向传播时延, 将所 述单向传播时延的值封装在 Extended Propagation Delay字段中; 并将携带 有单向传播时延和频偏信息的 Extended Propagation Delay字段发送给所述
10、根据权利要求 9所述高速覆盖场景下专用信道初始频偏获取***, 其特征在于,
所述 RNC, 还用于接收 Node B发送的携带有单向传播时延和频偏信 息的 Extended Propagation Delay字段; 在随机接入进程完成后, 以所述频 偏信息为参考, 进行下行专用信道的下行初始功率的配置, 并将所述携带 有单向传播时延和频偏信息的 Extended Propagation Delay字段下发给 Node B。
11、根据权利要求 10所述高速覆盖场景下专用信道初始频偏获取***, 其特征在于,
所述 Node B 包括: 数据获取模块、 数据封装模块、 数据转发模块和 Rake接收机, 其中,
所述数据获取模块, 用于在 UE发起随机接入进程时, 在 PRACH的前 导检测和消息解调中通过频偏估计得到频偏信息, 并获取单向传播时延; 还用于从所述 RNC 下发的携带有单向传播时延和频偏信息的 Extended Propagation Delay字段中提取出所述频偏信息;
所述数据封装模块, 用于依据当前小区半径确定所述单向传播时延和 所述频偏信息在 Extended Propagation Delay字段中的位置; 并依据所述位 置将所述单向传播时延的值和所述频偏信息的值封装在所述 Extended Propagation Delay字段中; 还用于确定所述频偏信息值的单位;
所述数据转发模块, 用于向所述 RNC发送或者接收所述 RNC下发的 携带有单向传播时延和频偏信息的 Extended Propagation Delay字段; 还用 于将数据获取模块提取出的频偏信息发送给所述 Rake接收机;
所述 Rake接收机, 用于将所述数据获取模块提取出的频偏信息作为初 始频偏在专用信道解调时进行频偏补偿。
PCT/CN2009/076200 2009-02-25 2009-12-29 一种高速覆盖场景下专用信道初始频偏获取方法和*** WO2010097006A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910078350.9 2009-02-25
CN2009100783509A CN101511130B (zh) 2009-02-25 2009-02-25 一种高速覆盖场景下的频偏获取方法和***

Publications (1)

Publication Number Publication Date
WO2010097006A1 true WO2010097006A1 (zh) 2010-09-02

Family

ID=41003349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/076200 WO2010097006A1 (zh) 2009-02-25 2009-12-29 一种高速覆盖场景下专用信道初始频偏获取方法和***

Country Status (2)

Country Link
CN (1) CN101511130B (zh)
WO (1) WO2010097006A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101511130B (zh) * 2009-02-25 2011-10-26 中兴通讯股份有限公司 一种高速覆盖场景下的频偏获取方法和***
CN102170705B (zh) * 2011-05-11 2015-03-11 上海华为技术有限公司 随机接入方法和无线接入网元及移动通信***
WO2014205815A1 (zh) * 2013-06-28 2014-12-31 华为技术有限公司 远距离覆盖方法及基站
WO2021088994A1 (en) * 2019-11-08 2021-05-14 FG Innovation Company Limited Method and apparatus for uplink frequency correction

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1741395A (zh) * 2004-08-23 2006-03-01 中兴通讯股份有限公司 一种码分多址***上行专用信道频偏估计方法
CN101022674A (zh) * 2007-03-20 2007-08-22 中兴通讯股份有限公司 随机接入信道的频偏估计和补偿方法
WO2008038128A2 (en) * 2006-09-29 2008-04-03 Nokia Corporation Parallel schmidt-kalman filtering for parameter estimation
CN101193435A (zh) * 2006-11-29 2008-06-04 中兴通讯股份有限公司 一种物理层随机接入信道前导检测门限获得方法
US20080232343A1 (en) * 2006-04-14 2008-09-25 Samsung Electronics Co., Ltd. Apparatus and method for estimating uplink frequency offset in wireless communication system
CN101511130A (zh) * 2009-02-25 2009-08-19 中兴通讯股份有限公司 一种高速覆盖场景下的频偏获取方法和***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1741395A (zh) * 2004-08-23 2006-03-01 中兴通讯股份有限公司 一种码分多址***上行专用信道频偏估计方法
US20080232343A1 (en) * 2006-04-14 2008-09-25 Samsung Electronics Co., Ltd. Apparatus and method for estimating uplink frequency offset in wireless communication system
WO2008038128A2 (en) * 2006-09-29 2008-04-03 Nokia Corporation Parallel schmidt-kalman filtering for parameter estimation
CN101193435A (zh) * 2006-11-29 2008-06-04 中兴通讯股份有限公司 一种物理层随机接入信道前导检测门限获得方法
CN101022674A (zh) * 2007-03-20 2007-08-22 中兴通讯股份有限公司 随机接入信道的频偏估计和补偿方法
CN101511130A (zh) * 2009-02-25 2009-08-19 中兴通讯股份有限公司 一种高速覆盖场景下的频偏获取方法和***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP TS 25.435 V8.1.0, 31 December 2008 (2008-12-31) *

Also Published As

Publication number Publication date
CN101511130B (zh) 2011-10-26
CN101511130A (zh) 2009-08-19

Similar Documents

Publication Publication Date Title
RU2436244C2 (ru) Процедура назначения ресурсов для несинхронизированного радиодоступа к беспроводной связи
CN110249683B (zh) 用于波束故障恢复的方法和装置
US20180359631A1 (en) Method and apparatus for triggering of specific operation mode for terminals operating in extended long range
KR101710607B1 (ko) 이동통신 시스템에서 단말기의 핸드오버를 지원하는 방법 및 장치
EP2897428B1 (en) Method of handling uplink synchronization and related communication device
US8897241B2 (en) Radio resource allocation
FI126278B (fi) Tapahtumaliipaisin aikataulutusinformaatiota varten langattomissa viestintäverkoissa
MX2009001895A (es) Metodo para efectuar y controlar una transferencia en un sistema de comunicacion movil.
US20080188219A1 (en) Use of dedicated rach signatures
CN114585021A (zh) 无线通信***、基站及通信终端
EP2946631A2 (en) Network-assisted ue detection in direct mode ue-to-ue communication
WO2010092422A1 (en) Method and apparatus to limit periodic uplink transmissions
WO2011162114A1 (ja) 無線通信装置、無線通信システム、無線通信方法および基地局
CN103906259A (zh) 用于执行电信***中的随机访问的方法和设备
CN111937428B (zh) 用于无线通信***中的测量的装置和方法
EP3952461A1 (en) Data sending method and communication apparatus
CN113923719A (zh) 用于在移动通信***中接收mac pdu的方法
CN114026926A (zh) 时延补偿方法、设备及存储介质
WO2013189200A1 (zh) 终端到终端的通信方法及终端
KR20150128426A (ko) 단말간 통신을 지원하는 무선 통신 시스템에서 동기신호 선택 방법 및 장치
EP2717646B1 (en) Methods and apparatuses for device-to-device communication
WO2010097006A1 (zh) 一种高速覆盖场景下专用信道初始频偏获取方法和***
CN114503773A (zh) 用于信道状态信息的方法和装置
WO2008049303A1 (fr) Procédé pour qu'un contrôleur de réseau radio obtienne la capacité d'une station de base
WO2019210778A1 (zh) 信息传输方法和信息传输装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09840674

Country of ref document: EP

Kind code of ref document: A1