WO2010095260A1 - 電池システム、及び、自動車 - Google Patents

電池システム、及び、自動車 Download PDF

Info

Publication number
WO2010095260A1
WO2010095260A1 PCT/JP2009/053167 JP2009053167W WO2010095260A1 WO 2010095260 A1 WO2010095260 A1 WO 2010095260A1 JP 2009053167 W JP2009053167 W JP 2009053167W WO 2010095260 A1 WO2010095260 A1 WO 2010095260A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion secondary
lithium ion
secondary battery
battery
temperature
Prior art date
Application number
PCT/JP2009/053167
Other languages
English (en)
French (fr)
Inventor
寛 浜口
正規 渡邉
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2011500429A priority Critical patent/JP4905609B2/ja
Priority to CN2009801572772A priority patent/CN102326289B/zh
Priority to KR1020117019416A priority patent/KR101192532B1/ko
Priority to PCT/JP2009/053167 priority patent/WO2010095260A1/ja
Publication of WO2010095260A1 publication Critical patent/WO2010095260A1/ja
Priority to US13/207,495 priority patent/US8643341B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0007Measures or means for preventing or attenuating collisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery system including a lithium ion secondary battery and an automobile including the battery system.
  • Lithium ion secondary batteries are attracting attention as a power source for portable devices and as a power source for electric vehicles and hybrid vehicles.
  • Li may be deposited on the negative electrode surface. Since most of Li deposited on the negative electrode surface cannot contribute to the charge / discharge reaction of the battery, there is a problem that the battery capacity decreases when such charging is repeated. In recent years, methods for solving this problem have been proposed (see, for example, Patent Document 1).
  • Patent Document 1 proposes a charging method in which a charging voltage is set according to the battery temperature at the start of charging, and constant voltage charging is performed with this charging voltage. Specifically, the charging voltage is set lower as the battery temperature at the start of charging is lower. As a result, when charging in a low temperature environment, it is possible to prevent the negative electrode potential from decreasing due to a decrease in battery temperature, so that the negative electrode potential is unlikely to decrease to the lithium deposition potential and Li deposition is prevented. Yes.
  • the present invention has been made in view of the current situation, and efficiently deactivates (inactivates) metallic lithium deposited on the negative electrode of a lithium ion secondary battery, thereby improving the safety of the lithium ion secondary battery. It is an object of the present invention to provide a battery system and an automobile that can be enhanced.
  • one aspect of the present invention is a battery system including a lithium ion secondary battery and a temperature control device that controls the temperature of the lithium ion secondary battery, the temperature control device Is a battery system that performs control to maintain the temperature T of the lithium ion secondary battery within a range of 55 ° C. ⁇ T ⁇ 65 ° C. for a predetermined time.
  • the temperature control device performs control to keep the temperature T of the lithium ion secondary battery within a range of 55 ° C. ⁇ T ⁇ 65 ° C. for a predetermined time.
  • the temperature T of the lithium ion secondary battery is efficiently deactivated (inactivated). Can do.
  • the safety of a battery can be improved by deactivating (inactivating) highly active metallic lithium.
  • the decomposition reaction of the non-aqueous electrolyte of the lithium ion secondary battery tends to proceed at 65 ° C. or higher.
  • the temperature control device performs control to keep the temperature T of the lithium ion secondary battery within the range of 55 ° C. ⁇ T ⁇ 65 ° C.
  • the lithium ion secondary battery is mounted on the automobile as a power source for driving the automobile, and the battery system is supplied from an external power source while the automobile is stopped.
  • the lithium ion secondary battery can be charged using electric power
  • the temperature control device is configured to charge the lithium ion secondary battery using electric power supplied from the external power source.
  • a battery system that performs control to maintain the temperature T of the lithium ion secondary battery within a range of 55 ° C. ⁇ T ⁇ 65 ° C. is preferable.
  • the battery system described above is a battery system mounted on a vehicle as a driving power source for a vehicle (specifically, a hybrid vehicle or an electric vehicle), and uses a power supplied from an external power source to provide a lithium ion secondary battery.
  • This is a battery system having a configuration that enables charging of the battery.
  • an automobile equipped with such a battery system it is supplied from an external power source periodically (for example, every few days) during a predetermined time (for example, about 8 hours) while the automobile is stopped (parked in a garage or the like).
  • a predetermined time for example, about 8 hours
  • the temperature T of the lithium ion secondary battery is kept within the range of 55 ° C. ⁇ T ⁇ 65 ° C. during the period of charging the lithium ion secondary battery using the power supplied from the external power source while the vehicle is stopped.
  • metallic lithium deposited on the negative electrode of the lithium ion secondary battery can be deactivated (inactivated) periodically.
  • the temperature control of the lithium ion secondary battery is performed while the automobile is running, the running performance of the automobile may be affected.
  • the temperature of the lithium ion secondary battery may be reduced while the automobile is stopped. Because of the control, there is no such concern.
  • the temperature control device may be a battery system that performs control for maintaining the temperature of the lithium ion secondary battery at 60 ° C. for a predetermined time.
  • the metal lithium deposited on the negative electrode of the lithium ion secondary battery is effectively deactivated while suppressing the decomposition of the non-aqueous electrolyte ( Inactivation).
  • the temperature control device may perform the second temperature control for maintaining the temperature T of the lithium ion secondary battery within a range of 55 ° C. ⁇ T ⁇ 65 ° C.
  • a battery system that performs the first temperature control for keeping the temperature T of the lithium ion secondary battery in a range of 35 ° C. ⁇ T ⁇ 55 ° C. is preferable.
  • the battery capacity decreases as lithium deposits on the negative electrode surface.
  • the safety of the battery can be improved by deactivating (inactivating) the metallic lithium deposited on the negative electrode of the lithium ion secondary battery.
  • the battery capacity decreases as the metal lithium deposited on the negative electrode is deactivated (inactivated). I will do it.
  • the temperature T of the lithium ion secondary battery is set to the predetermined time before maintaining the temperature T of the lithium ion secondary battery within the range of 55 ° C. ⁇ T ⁇ 65 ° C. for a predetermined time. 35 ° C. ⁇ T ⁇ 55 ° C.
  • the metal lithium deposited on the negative electrode of the lithium ion secondary battery can be efficiently converted into lithium ions. Can be returned to. Thereby, the battery capacity reduced by the deposition of lithium can be effectively recovered.
  • the metal lithium that could not be returned to the lithium ion is deactivated (inactivated). be able to. Therefore, according to the battery system described above, it is possible to improve the safety of the battery while effectively recovering the battery capacity that has been reduced by the deposition of lithium.
  • the temperature control device performs control to maintain a temperature T of the lithium ion secondary battery at 45 ° C. as the first temperature control, and performs the lithium temperature control as the second temperature control.
  • a battery system that performs control to maintain the temperature T of the ion secondary battery at 60 ° C. is preferable.
  • the temperature control device performs control to maintain the temperature T of the lithium ion secondary battery at 45 ° C. as the first temperature control, and sets the temperature T of the lithium ion secondary battery to 60 as the second temperature control. Control to keep at °C. That is, the temperature control device performs control to maintain the temperature T of the lithium ion secondary battery at 45 ° C., and then performs control to maintain the temperature T of the lithium ion secondary battery at 60 ° C.
  • the metal lithium deposited on the negative electrode of the lithium ion secondary battery is reverted to lithium ions very efficiently, and the battery is lowered by the lithium deposition.
  • the capacity can be recovered very effectively.
  • the metal lithium that could not be returned to the lithium ion can be effectively deactivated (inactivated). Therefore, according to the above-described battery system, it is possible to greatly improve the safety of the battery while recovering the battery capacity reduced by the precipitation of lithium very effectively.
  • another aspect of the present invention is an automobile including any one of the battery systems described above, wherein the lithium ion secondary battery is mounted as a driving power source for the automobile.
  • a lithium ion battery As a power source for driving an automobile with metallic lithium deposited on the negative electrode.
  • a lithium ion secondary battery mounted as a driving power source for an automobile (such as a hybrid car or an electric car) is charged at a high rate (large current), and therefore is taken into the negative electrode due to the diffusion rate limiting of Li ions.
  • the missing Li ions are likely to be deposited on the negative electrode as metallic Li. Therefore, a lithium ion secondary battery mounted on a vehicle as a power source for driving is in an environment in which metallic lithium is easily deposited on the negative electrode as compared with a case where it is used as a power source for other electronic devices.
  • FIG. 1 is a schematic view of an automobile according to Examples 1 and 2.
  • FIG. 1 is a schematic diagram of a battery system according to Example 1.
  • FIG. It is sectional drawing of a lithium ion secondary battery. It is sectional drawing of the electrode body of a lithium ion secondary battery. It is a partial expanded sectional view of an electrode body, and is equivalent to the B section enlarged view of FIG. It is a bar graph which shows the amount of Li precipitation after each cycle test performed by varying storage temperature.
  • 3 is a flowchart showing a flow of temperature control of the lithium ion secondary battery according to Example 1; 6 is a schematic diagram of a battery system according to Example 2.
  • FIG. 1 is a schematic diagram of a battery system according to Example 1.
  • FIG. 6 is a flowchart showing a flow of temperature control of a lithium ion secondary battery according to Example 2; It is the schematic of the motor vehicle concerning Examples 3 and 4.
  • FIG. 6 is a schematic diagram of a battery system according to Example 3.
  • FIG. 6 is a flowchart showing a flow of temperature control of a lithium ion secondary battery according to Example 3;
  • 6 is a schematic diagram of a battery system according to Example 4.
  • FIG. 6 is a flowchart showing a flow of temperature control of a lithium ion secondary battery according to Example 4;
  • the automobile 1 includes a vehicle body 2, an engine 3, a front motor 4, a rear motor 5, a battery system 6, and a cable 7, and the engine 3, the front motor 4, and the rear motor 5. It is a hybrid car that is driven in combination.
  • the automobile 1 includes the battery system 6 (specifically, the assembled battery 10 of the battery system 6, see FIG. 2) as a power source for driving the front motor 4 and the rear motor 5, using known means.
  • the front motor 4 and the rear motor 5 are configured to be able to travel.
  • the battery system 6 is attached to the vehicle body 2 of the automobile 1 and is connected to the front motor 4 and the rear motor 5 by a cable 7.
  • the battery system 6 includes an assembled battery 10 in which a plurality of lithium ion secondary batteries 100 (single cells) are electrically connected in series with each other, and a temperature control device 20.
  • the temperature control device 20 includes a microcomputer 30, a cooling device 50 (such as a cooling fan), and a heating device 60 (such as a heater).
  • the microcomputer 30 has a ROM, a CPU, a RAM, and the like (not shown).
  • the assembled battery 10 is equipped with a thermistor 40 that detects the battery temperature T of the lithium ion secondary battery 100.
  • the thermistor 40 is electrically connected to the microcomputer 30. Thereby, the microcomputer 30 can detect the battery temperature T of the lithium ion secondary battery 100.
  • a cooling device 50 is electrically connected to the assembled battery 10 via a switch 41. By operating the cooling device 50, the lithium ion secondary battery 100 constituting the assembled battery 10 can be cooled.
  • a heating device 60 is electrically connected to the assembled battery 10 via a switch 42. By operating the heating device 60, the lithium ion secondary battery 100 constituting the assembled battery 10 can be heated.
  • the microcomputer 30 determines whether or not the battery temperature T of the lithium ion secondary battery 100 detected through the thermistor 40 is 60 ° C. Further, when the microcomputer 30 determines that the battery temperature T of the lithium ion secondary battery 100 is not 60 ° C., the microcomputer 30 heats the lithium ion secondary battery 100 so that the temperature T of the lithium ion secondary battery 100 becomes 60 ° C. Or control to cool.
  • the microcomputer 30 determines that the battery temperature T of the lithium ion secondary battery 100 is higher than 60 ° C.
  • the microcomputer 30 controls the cooling device 50 to cool the lithium ion secondary battery 100.
  • the microcomputer 30 transmits an electrical signal that turns the switch 41 (see FIG. 2) “ON” and the switch 42 “OFF”. Thereby, since electric power is supplied from the assembled battery 10 to the cooling device 50, the cooling device 50 operates and the lithium ion secondary battery 100 constituting the assembled battery 10 can be cooled.
  • the microcomputer 30 detects the battery temperature T of the lithium ion secondary battery 100 after starting the cooling of the lithium ion secondary battery 100. Then, it is determined whether or not the battery temperature of the lithium ion secondary battery 100 has reached 60 ° C. When it determines with the battery temperature T of the lithium ion secondary battery 100 not reaching 60 degreeC, the cooling of the lithium ion secondary battery 100 by the cooling device 50 is continued.
  • the microcomputer 30 determines that the battery temperature T of the lithium ion secondary battery 100 has reached 60 ° C.
  • the microcomputer 30 performs control to stop cooling of the lithium ion secondary battery 100. Specifically, an electrical signal for setting the switch 41 to the “OFF” state is transmitted. Thereby, since the power supply from the assembled battery 10 to the cooling device 50 is interrupted, the cooling of the lithium ion secondary battery 100 by the cooling device 50 can be stopped.
  • the microcomputer 30 determines that the battery temperature T of the lithium ion secondary battery 100 is lower than 60 ° C.
  • the microcomputer 30 controls the heating device 60 to heat the lithium ion secondary battery 100.
  • the microcomputer 30 transmits an electrical signal that turns the switch 42 (see FIG. 2) “ON” and the switch 41 “OFF”.
  • the heating device 60 operates and the lithium ion secondary battery 100 constituting the assembled battery 10 can be heated.
  • the microcomputer 30 detects the battery temperature T of the lithium ion secondary battery 100 after starting the heating of the lithium ion secondary battery 100. Then, it is determined whether or not the battery temperature T of the lithium ion secondary battery 100 has reached 60 ° C. When it determines with the battery temperature T of the lithium ion secondary battery 100 not reaching 60 degreeC, the heating of the lithium ion secondary battery 100 by the heating apparatus 60 is continued.
  • the microcomputer 30 determines that the battery temperature T of the lithium ion secondary battery 100 has reached 60 ° C.
  • the microcomputer 30 performs control to stop heating of the lithium ion secondary battery 100. Specifically, an electrical signal for turning off the switch 42 is transmitted. Thereby, since the power supply from the assembled battery 10 to the heating device 60 is interrupted, the heating of the lithium ion secondary battery 100 by the heating device 60 can be stopped.
  • the temperature controller 20 can maintain the battery temperature T of the lithium ion secondary battery 100 within the range of 55 ° C. ⁇ T ⁇ 65 ° C. (specifically, 60 ° C.). .
  • the lithium ion secondary battery 100 is a rectangular sealed lithium ion secondary battery including a rectangular parallelepiped battery case 110, a positive electrode terminal 120, and a negative electrode terminal 130.
  • the battery case 110 is made of metal, and includes a rectangular housing portion 111 that forms a rectangular parallelepiped housing space, and a metal lid portion 112.
  • An electrode body 150, a non-aqueous electrolyte 140, and the like are accommodated in the battery case 110 (rectangular accommodation part 111).
  • the electrode body 150 is an oblong cross section, and is a flat wound body formed by winding a sheet-like positive electrode plate 155, a negative electrode plate 156, and a separator 157.
  • the electrode body 150 is located at one end (right end in FIG. 3) in the axial direction (left and right in FIG. 3), and a positive winding part 155b in which only a part of the positive electrode plate 155 overlaps in a spiral shape, Located at the other end (left end in FIG. 3), only a part of the negative electrode plate 156 has a negative electrode winding part 156b that overlaps in a spiral shape.
  • the positive electrode plate 155 is coated with a positive electrode mixture 152 including a positive electrode active material 153 at a portion other than the positive electrode winding portion 155b (see FIG. 5).
  • a negative electrode mixture 159 including a negative electrode active material 154 is applied to the negative electrode plate 156 at portions other than the negative electrode winding portion 156b (see FIG. 5).
  • the positive electrode winding part 155 b is electrically connected to the positive electrode terminal 120 through the positive electrode current collecting member 122.
  • the negative electrode winding part 156 b is electrically connected to the negative electrode terminal 130 through the negative electrode current collecting member 132.
  • lithium nickelate is used as the positive electrode active material 153.
  • natural graphite is used as the negative electrode active material 154.
  • non-aqueous electrolyte solution 140 non-aqueous electrolyte obtained by dissolving lithium hexafluorophosphate (LiPF 6 ) in a non-aqueous solvent obtained by mixing EC (ethylene carbonate), DMC (dimethyl carbonate), and EMC (ethyl methyl carbonate). A water electrolyte is used.
  • Example 1 five lithium ion secondary batteries 100 (samples 1 to 5) were prepared, and a cycle test was performed with different conditions for each sample. Specifically, Sample 2 was charged for 10 seconds at a current value of 20 C in a temperature environment of 0 ° C., and then discharged for 10 seconds at a current value of 20 C. This charge / discharge cycle was defined as 1 cycle, and 10 cycles were performed. Thereafter, Sample 2 was stored in a thermostatic chamber at ⁇ 15 ° C. for 16 hours. 80 cycles of “charge / discharge-constant storage cycle” in which this charge / discharge cycle (10 cycles) and constant-temperature storage ( ⁇ 15 ° C.) were taken as one cycle were performed.
  • 1C is a current value that can be set to 0% SOC in one hour when the lithium ion secondary battery 100 having a SOC (state of charge) 100% is discharged at a constant current.
  • Sample 3 was stored in a constant temperature bath at 25 ° C. for 16 hours after 10 charge / discharge cycles. Eighty charging / discharging-constant storage cycles with one cycle of this charging / discharging cycle and constant temperature storage (25 ° C.) were performed. In other words, in Sample 3, 16 hours of constant temperature storage (25 ° C.) was provided between 10 charge / discharge cycles, and a total of 800 charge / discharge cycles were performed.
  • Sample 4 was stored in a 45 ° C. constant temperature bath for 16 hours after 10 charge / discharge cycles.
  • the charge / discharge-constant storage cycle in which the charge / discharge cycle and the constant temperature storage (45 ° C.) are one cycle, was performed 80 cycles.
  • 16 hours of constant temperature storage (45 ° C.) was provided between 10 charge / discharge cycles, and a total of 800 charge / discharge cycles were performed.
  • Sample 5 was stored in a 60 ° C. constant temperature bath for 16 hours after 10 charge / discharge cycles. Eighty charging / discharging-constant storage cycles were performed with this charging / discharging cycle and constant temperature storage (60 ° C.) as one cycle. In other words, in Sample 5, constant temperature storage (60 ° C.) for 16 hours was provided between 10 charge / discharge cycles, and a total of 800 charge / discharge cycles were performed.
  • each sample was disassembled and the negative electrode plate 156 was taken out. Thereafter, the amount of lithium deposited on the negative electrode plate 156 was measured for each sample by ICP emission analysis. Specifically, first, a part of the negative electrode plate 156 is cut out, dissolved in aqua regia, and then diluted with water to prepare a sample solution. Next, the amount of lithium in each sample solution (that is, the weight of lithium deposited on a part of the negative electrode plate 156) was measured using an ICP emission spectrometer (ICPS-8100, manufactured by Shimadzu Corporation). Based on this measurement result, the amount of lithium deposited on the entire negative electrode plate 156 was calculated.
  • ICP emission spectrometer ICPS-8100, manufactured by Shimadzu Corporation
  • the ratio of active metallic lithium to deactivated (deactivated) lithium with respect to lithium deposited on the negative electrode plate 156 was measured by a solid Li-NMR method. Specifically, first, a part of the negative electrode plate 156 was cut out, and this was put into a measurement tube of an NMR apparatus (manufactured by BRUKER, solid nuclear magnetic resonance apparatus, DSX400) and subjected to NMR analysis. Thereby, the ratio of active metallic lithium to deactivated (deactivated) lithium was obtained for each sample.
  • the deactivated (inactivated) lithium include lithium that has reacted with the nonaqueous electrolytic solution 140 to become a compound such as LiF or Li 2 CO 3 .
  • the amount of lithium deposited in each sample (the total amount of active metallic lithium and deactivated lithium) is relatively represented by the length of the bar graph using Sample 1 as a reference (A). Further, in the bar graph of each sample, the white portion represents the amount of active metallic lithium, and the hatched portion represents the amount of lithium deactivated (inactivated).
  • the amount of Li deposited on the negative electrode plate 156 was 0.18A. Of these, 0.16A was active metallic lithium, and 0.02A was deactivated (inactivated) lithium. Thus, in sample 4, a part of the metallic lithium deposited on the negative electrode plate 156 can be deactivated (inactivated), and the amount of active metallic lithium deposited can be reduced to 0.16A. It was.
  • the lithium metal deposited on the negative electrode plate 156 can be effectively deactivated (inactivated) by setting the storage temperature of the lithium ion secondary battery 100 to 60 ° C. . Further, from the tendency of fluctuation of the deactivated Li amount (shown by hatching in FIG. 6), the metallic lithium deposited on the negative electrode plate 156 can be efficiently deactivated (inactivated) by increasing the storage temperature above 55 ° C. It can be said that it can be activated).
  • the metallic lithium deposited on the negative electrode plate 156 of the lithium ion secondary battery 100 is efficiently deactivated ( It can be said that it can be inactivated.
  • security of the lithium ion secondary battery 100 can be improved by deactivating (inactivating) highly active metallic lithium.
  • the storage temperature of the lithium ion secondary battery 100 is preferably less than 65 ° C. in order to suppress the decomposition of the nonaqueous electrolyte solution 140.
  • the temperature T of the lithium ion secondary battery 100 is maintained within a range of 55 ° C. ⁇ T ⁇ 65 ° C. for a predetermined time, thereby suppressing the decomposition of the non-aqueous electrolyte 140 and the lithium ion secondary battery 100.
  • the metal lithium deposited on the negative electrode plate 156 can be efficiently deactivated (inactivated), and the amount of deposited metal lithium can be greatly reduced.
  • the metallic lithium deposited on the negative electrode plate 156 is effectively lost while suppressing the decomposition of the nonaqueous electrolyte solution 140. It can be said that the amount of deposited metal lithium can be effectively reduced by being activated (inactivated).
  • step S1 the microcomputer 30 detects the temperature T of the lithium ion secondary battery 100 based on an output signal from the thermistor 40 (see FIG. 2). Subsequently, it progresses to step S2 and it is determined whether the battery temperature T of the detected lithium ion secondary battery 100 is 60 degreeC.
  • step S2 when it is determined that the battery temperature T of the lithium ion secondary battery 100 is 60 ° C. (Yes), the process returns to step S1 again and the above-described processing is performed. On the other hand, when it is determined in step S2 that the battery temperature T of the lithium ion secondary battery 100 is not 60 ° C. (No), the process proceeds to step S3, and the lithium ion secondary battery 100 constituting the assembled battery 10 is cooled. Or start heating.
  • the microcomputer 30 determines that the battery temperature T of the lithium ion secondary battery 100 is higher than 60 ° C.
  • the microcomputer 30 controls the cooling device 50 to cool the lithium ion secondary battery 100.
  • the microcomputer 30 transmits an electrical signal that turns the switch 41 (see FIG. 2) “ON” and the switch 42 “OFF”. Thereby, since electric power is supplied from the assembled battery 10 to the cooling device 50, the cooling device 50 operates and the lithium ion secondary battery 100 constituting the assembled battery 10 can be cooled.
  • the heating device 60 controls to heat the lithium ion secondary battery 100. Specifically, the microcomputer 30 transmits an electrical signal that turns the switch 42 (see FIG. 2) “ON” and the switch 41 “OFF”. Thereby, since electric power is supplied from the assembled battery 10 to the heating device 60, the heating device 60 operates and the lithium ion secondary battery 100 constituting the assembled battery 10 can be heated.
  • step S4 the process proceeds to step S4, and the temperature T of the lithium ion secondary battery 100 is detected. Then, it progresses to step S5 and it is determined whether the battery temperature T of the detected lithium ion secondary battery 100 reached 60 degreeC.
  • step S5 If it is determined in step S5 that the battery temperature T of the lithium ion secondary battery 100 has not reached 60 ° C. (No), the process returns to step S4 again to detect the temperature T of the lithium ion secondary battery 100. To do. Thereafter, when it is determined in step S5 that the battery temperature T of the lithium ion secondary battery 100 has reached 60 ° C. (Yes), the process proceeds to step S6, and the lithium ion secondary battery 100 (the assembled battery 10). Stop cooling or heating.
  • the microcomputer 30 transmits an electrical signal for setting the switch 41 to the “OFF” state. Thereby, since the power supply from the assembled battery 10 to the cooling device 50 is interrupted, the cooling of the lithium ion secondary battery 100 by the cooling device 50 can be stopped.
  • the microcomputer 30 transmits an electrical signal for setting the switch 42 to the “OFF” state. Thereby, since the power supply from the assembled battery 10 to the heating device 60 is interrupted, the heating of the lithium ion secondary battery 100 by the heating device 60 can be stopped.
  • step S7 the microcomputer 30 determines whether or not a predetermined time (for example, 8 hours) has elapsed since it was first determined that the temperature T of the lithium ion secondary battery 100 is 60 ° C. If it is determined that the predetermined time has not elapsed (No), the process returns to step S1 and the above-described processing is performed. On the other hand, if it is determined that the predetermined time has elapsed (Yes), the series of processes is terminated.
  • a predetermined time for example, 8 hours
  • the temperature T of the lithium ion secondary battery 100 is maintained within a range of 55 ° C. ⁇ T ⁇ 65 ° C. (specifically 60 ° C.) for a predetermined time (for example, 8 hours). be able to.
  • the metal lithium deposited on the negative electrode plate 156 of the lithium ion secondary battery 100 is efficiently deactivated (deactivated) while suppressing the decomposition of the non-aqueous electrolyte solution 140, and the amount of deposited metal lithium Can be greatly reduced.
  • security of the lithium ion secondary battery 100 can be improved, and the safety
  • steps S1 to S7 described above may be performed, for example, every predetermined period (for example, once every few days). Further, the amount of Li deposited on the negative electrode plate 156 of the lithium ion secondary battery 100 is estimated, and when this estimated amount reaches a specified value, the processing in the above-described steps S1 to S7 (temperature control of the lithium ion secondary battery 100 is performed). ) May be performed.
  • a hybrid vehicle 21 of the second embodiment is shown in FIG.
  • the hybrid vehicle 21 differs from the hybrid vehicle 1 of the first embodiment only in the battery system.
  • the battery system 26 of the second embodiment includes the assembled battery 10 similar to that of the first embodiment and a temperature control device 320 different from the first embodiment.
  • the temperature control device 320 includes a cooling device 50 and a heating device 60 that are the same as those in the first embodiment, and a microcomputer 330 that is different from the first embodiment.
  • the microcomputer 330 has a ROM, a CPU, a RAM, etc. (not shown).
  • the microcomputer 330 determines whether or not the battery temperature T of the lithium ion secondary battery 100 detected through the thermistor 40 is 45 ° C. Further, when the microcomputer 330 determines that the battery temperature T of the lithium ion secondary battery 100 is not 45 ° C., the microcomputer 330 heats the lithium ion secondary battery 100 so that the temperature T of the lithium ion secondary battery 100 becomes 45 ° C. Or control to cool.
  • the microcomputer 330 determines that the battery temperature of the lithium ion secondary battery 100 is higher than 45 ° C.
  • the microcomputer 330 controls the cooling device 50 to cool the lithium ion secondary battery 100.
  • the microcomputer 330 transmits an electrical signal that turns the switch 41 (see FIG. 8) “ON” and the switch 42 “OFF”. Thereby, since electric power is supplied from the assembled battery 10 to the cooling device 50, the cooling device 50 operates and the lithium ion secondary battery 100 constituting the assembled battery 10 can be cooled.
  • the microcomputer 330 detects the battery temperature of the lithium ion secondary battery 100 after starting the cooling of the lithium ion secondary battery 100. Then, it is determined whether or not the battery temperature of the lithium ion secondary battery 100 has reached 45 ° C. When it determines with the battery temperature of the lithium ion secondary battery 100 not reaching 45 degreeC, the cooling of the lithium ion secondary battery 100 by the cooling device 50 is continued.
  • the microcomputer 330 determines that the battery temperature of the lithium ion secondary battery 100 has reached 45 ° C.
  • the microcomputer 330 performs control to stop cooling of the lithium ion secondary battery 100. Specifically, an electrical signal for setting the switch 41 to the “OFF” state is transmitted. Thereby, since the power supply from the assembled battery 10 to the cooling device 50 is interrupted, the cooling of the lithium ion secondary battery 100 by the cooling device 50 can be stopped.
  • the microcomputer 330 determines that the battery temperature of the lithium ion secondary battery 100 is lower than 45 ° C.
  • the microcomputer 330 controls the heating device 60 to heat the lithium ion secondary battery 100.
  • the microcomputer 330 transmits an electrical signal that turns the switch 42 (see FIG. 8) “ON” and the switch 41 “OFF”.
  • the heating device 60 operates and the lithium ion secondary battery 100 constituting the assembled battery 10 can be heated.
  • the microcomputer 330 detects the battery temperature of the lithium ion secondary battery 100 after starting the heating of the lithium ion secondary battery 100. Then, it is determined whether or not the battery temperature of the lithium ion secondary battery 100 has reached 45 ° C. When it determines with the battery temperature of the lithium ion secondary battery 100 not reaching 45 degreeC, the heating of the lithium ion secondary battery 100 by the heating apparatus 60 is continued.
  • the microcomputer 330 determines that the battery temperature of the lithium ion secondary battery 100 has reached 45 ° C.
  • the microcomputer 330 performs control to stop heating of the lithium ion secondary battery 100. Specifically, an electrical signal for turning off the switch 42 is transmitted. Thereby, since the power supply from the assembled battery 10 to the heating device 60 is interrupted, the heating of the lithium ion secondary battery 100 by the heating device 60 can be stopped.
  • the temperature control device 320 causes the battery temperature of the lithium ion secondary battery 100 to be within a range of 35 ° C. to 55 ° C. (in detail) for a first predetermined time (for example, 4 hours). Can be kept at 45 ° C.).
  • a first predetermined time for example, 4 hours.
  • the metallic lithium deposited on the negative electrode plate 156 of the lithium ion secondary battery 100 can be efficiently returned to lithium ions. Therefore, it is possible to effectively recover the battery capacity that has decreased due to the deposition of lithium.
  • the microcomputer 330 of the second embodiment determines whether or not the battery temperature T of the lithium ion secondary battery 100 detected through the thermistor 40 is 60 ° C. Further, when the microcomputer 330 determines that the battery temperature T of the lithium ion secondary battery 100 is not 60 ° C., the temperature T of the lithium ion secondary battery 100 becomes 60 ° C., similarly to the microcomputer 30 of the first embodiment. In addition, control for heating or cooling the lithium ion secondary battery 100 is performed.
  • the battery temperature of the lithium ion secondary battery 100 was maintained within the range of 35 ° C. to 55 ° C. (specifically, 45 ° C.) for the first predetermined time (for example, 4 hours) (specifically 45 ° C.).
  • the temperature controller 320 sets the battery temperature T of the lithium ion secondary battery 100 within a range of 55 ° C. ⁇ T ⁇ 65 ° C. (specifically 60 ° C.). (Second temperature control).
  • the metal lithium which could not be returned to lithium ions by the first temperature control for the first predetermined time can be deactivated (inactivated) efficiently.
  • the safety of the lithium ion secondary battery 100 can be improved while effectively recovering the battery capacity of the lithium ion secondary battery 100 that has decreased due to the deposition of lithium. Can do.
  • sample 6 a lithium ion secondary battery 100 (referred to as sample 6) was prepared, and this sample 6 was subjected to a cycle test. Note that this cycle test differs from the cycle test performed on samples 2 to 5 described above only in the storage conditions for storing the samples in the thermostat, and the other conditions are the same.
  • sample 6 was subjected to 10 charge / discharge cycles similar to those of the samples 2 to 5. Thereafter, the sample 6 was first stored in a 45 ° C. constant temperature bath for 8 hours, and subsequently stored in a 60 ° C. constant temperature bath for 8 hours. Eighty charge / discharge-constant storage cycles were performed with this charge / discharge cycle and constant-temperature storage (45 ° C. and 60 ° C.) as one cycle. In other words, Sample 6 is provided with a first constant temperature storage (45 ° C.) of 8 hours and a second constant temperature storage (60 ° C.) of 8 hours between 10 charge / discharge cycles, and a total of 800 cycles of charge / discharge cycles. A discharge cycle was performed.
  • the temperature T of the lithium ion secondary battery 100 is maintained within the range of 55 ° C. ⁇ T ⁇ 65 ° C. (especially 60 ° C.) for a predetermined time, thereby suppressing the decomposition of the non-aqueous electrolyte 140.
  • the metal lithium deposited on the negative electrode plate 156 of the lithium ion secondary battery 100 can be efficiently deactivated (deactivated), and the amount of deposited metal lithium can be greatly reduced. Thereby, the safety
  • a battery capacity reduces according to Li precipitation amount.
  • lithium cannot contribute to the charge / discharge reaction of the battery.
  • Sample 5 with a storage temperature of 60 ° C. most effectively deactivates the lithium metal deposited on the negative electrode plate 156 to minimize the amount of deposited metal lithium. I was able to.
  • the Li precipitation amount (metallic lithium + deactivated lithium) was 0.4 A, which was larger than 0.18 A of Sample 4.
  • Sample 4 When comparing the Li precipitation amount for Sample 1 and Sample 4, Sample 4 was able to reduce the Li precipitation amount by 82% compared to Sample 1. That is, Sample 4 was able to recover 82% of the battery capacity reduced by cycle charge / discharge. On the other hand, in sample 5, the Li precipitation amount could be reduced only by 60%. That is, in sample 5, only 60% of the battery capacity reduced by cycle charge / discharge could be recovered. From this result, sample 5 is superior to sample 4 in that metal lithium is effectively deactivated to reduce the amount of deposited metal lithium, but inferior in terms of recovering battery capacity. It can be said that.
  • the storage temperature is most preferably 45 ° C. in order to effectively recover the battery capacity which has been reduced by the precipitation of lithium.
  • the battery temperature is 35 ° C. and the battery temperature is 25 ° C. (70% recovery). It can be said that the capacity can be recovered.
  • the storage temperature is 55 ° C., the battery capacity can be recovered more than when the storage temperature is 60 ° C. (60% recovery). Therefore, if the storage temperature is in the range of 35 ° C. or higher and 55 ° C. or lower, it can be said that the battery capacity decreased due to the precipitation of lithium can be effectively recovered.
  • the battery temperature T of the lithium ion secondary battery 100 is maintained for a predetermined time after maintaining the battery temperature of the lithium ion secondary battery 100 within the range of 35 ° C. to 55 ° C. (particularly 45 ° C.) for a predetermined time. Is maintained within the range of 55 ° C. ⁇ T ⁇ 65 ° C. (especially 60 ° C.), thereby effectively recovering the battery capacity of the lithium ion secondary battery 100 that has been reduced by the precipitation of lithium and the non-aqueous electrolyte solution 140. It can be said that the safety of the lithium ion secondary battery 100 can be improved while suppressing decomposition.
  • step U1 the microcomputer 330 detects the temperature T of the lithium ion secondary battery 100 based on an output signal from the thermistor 40 (see FIG. 8).
  • step U2 the process proceeds to step U2, and it is determined whether or not the detected battery temperature T of the lithium ion secondary battery 100 is 45 ° C.
  • step U2 when it is determined that the battery temperature T of the lithium ion secondary battery 100 is 45 ° C. (Yes), the process returns to step U1 again and the above-described processing is performed. On the other hand, when it is determined in step U2 that the battery temperature T of the lithium ion secondary battery 100 is not 45 ° C. (No), the process proceeds to step U3 to cool the lithium ion secondary battery 100 constituting the assembled battery 10. Or start heating.
  • the microcomputer 330 determines that the battery temperature T of the lithium ion secondary battery 100 is higher than 45 ° C.
  • the microcomputer 330 controls the cooling device 50 to cool the lithium ion secondary battery 100.
  • the microcomputer 330 transmits an electrical signal that turns the switch 41 (see FIG. 8) “ON” and the switch 42 “OFF”. Thereby, since electric power is supplied from the assembled battery 10 to the cooling device 50, the cooling device 50 operates and the lithium ion secondary battery 100 constituting the assembled battery 10 can be cooled.
  • the heating device 60 controls to heat the lithium ion secondary battery 100. Specifically, the microcomputer 330 transmits an electrical signal that turns the switch 42 (see FIG. 8) “ON” and the switch 41 “OFF”. Thereby, since electric power is supplied from the assembled battery 10 to the heating device 60, the heating device 60 operates and the lithium ion secondary battery 100 constituting the assembled battery 10 can be heated.
  • step U4 the process proceeds to step U4, and the temperature T of the lithium ion secondary battery 100 is detected. Then, it progresses to step U5 and it is determined whether the battery temperature T of the detected lithium ion secondary battery 100 reached 45 degreeC.
  • step U5 when it is determined that the battery temperature T of the lithium ion secondary battery 100 does not reach 45 ° C. (No), the process returns to step U4 again to detect the temperature T of the lithium ion secondary battery 100. To do. Thereafter, when it is determined in step U5 that the battery temperature T of the lithium ion secondary battery 100 has reached 45 ° C. (Yes), the process proceeds to step U6, and the lithium ion secondary battery 100 (assembled battery 10). Stop cooling or heating.
  • the microcomputer 330 transmits an electrical signal that sets the switch 41 to the “OFF” state. Thereby, since the power supply from the assembled battery 10 to the cooling device 50 is interrupted, the cooling of the lithium ion secondary battery 100 by the cooling device 50 can be stopped.
  • the microcomputer 330 transmits an electrical signal for setting the switch 42 to the “OFF” state. Thereby, since the power supply from the assembled battery 10 to the heating device 60 is interrupted, the heating of the lithium ion secondary battery 100 by the heating device 60 can be stopped.
  • step U7 the microcomputer 30 determines whether or not a first predetermined time (for example, 4 hours) has elapsed since it was first determined that the temperature T of the lithium ion secondary battery 100 is 45 ° C. To do. If it is determined that the first predetermined time has not elapsed (No), the process returns to step U1 again and the above-described processing is performed.
  • a first predetermined time for example, 4 hours
  • step U8 the microcomputer 330 detects the temperature T of the lithium ion secondary battery 100 based on the output signal from the thermistor 40. . Thereafter, the processes in steps U9 to UE are performed in the same manner as steps S2 to S7 in the first embodiment. However, in the second embodiment, in step UE, the microcomputer 330 first passes the second predetermined time (for example, 4 hours) from the time when the temperature T of the lithium ion secondary battery 100 is first determined to be 60 ° C. It is determined whether or not.
  • the second predetermined time for example, 4 hours
  • step U8 If it is determined that the second predetermined time has not elapsed (No), the process returns to step U8 again, and the above-described processing is performed. On the other hand, if it is determined in step UE that the second predetermined time has elapsed (Yes), the series of processing ends.
  • the battery temperature T of the lithium ion secondary battery 100 is within the range of 35 ° C. to 55 ° C. (specifically 45 ° C.) for the first predetermined time (for example, 4 hours). After that, the battery temperature T of the lithium ion secondary battery 100 can be maintained within a range of 55 ° C. ⁇ T ⁇ 65 ° C. (specifically 60 ° C.) for a second predetermined time (for example, 4 hours). .
  • security of the lithium ion secondary battery 100 can be improved and the safety
  • the processes in steps U1 to U7 correspond to the first temperature control.
  • the processing of steps U8 to UE corresponds to the second temperature control.
  • the processing of the above steps U1 to UE may be performed, for example, every predetermined period (for example, once every several days).
  • the amount of Li deposited on the negative electrode plate 156 of the lithium ion secondary battery 100 is estimated, and when this estimated amount reaches a specified value, the processing in the above-described steps U1 to UE (temperature control of the lithium ion secondary battery 100 is performed). ) May be performed.
  • a hybrid vehicle 11 of the third embodiment is shown in FIG.
  • the hybrid vehicle 11 is different in battery system from the hybrid vehicle 1 of the first embodiment. Further, a power plug 8 connected to the battery system is provided.
  • the battery system 16 of the third embodiment includes an assembled battery 10, a temperature control device 220, a conversion device 44, and a voltage detection device 80.
  • the temperature control device 220 includes a microcomputer 230, a cooling device 50, and a heating device 60. Further, the voltage detection device 80 detects the battery voltage (inter-terminal voltage) of each lithium ion secondary battery 100 constituting the assembled battery 10. *
  • the conversion device 44 is constituted by an AC / DC converter, and can convert the voltage of the commercial power supply 46 (external power supply) into a DC constant voltage having a constant voltage value.
  • the conversion device 44 is electrically connected to the power plug 8 through a cable 71 included in the cable 7. Further, the conversion device 44 is electrically connected to the assembled battery 10 via the switch 43.
  • the conversion device 44 is electrically connected to the cooling device 50 via the switch 41, and is electrically connected to the heating device 60 via the switch 42.
  • the power plug 8 is configured to be electrically connectable to the commercial power source 46.
  • the power plug 8 is electrically connected to the conversion device 44. Therefore, the converter 44 and the commercial power source 46 can be electrically connected through the power plug 8.
  • the cable 71 can be pulled out of the hybrid vehicle 11 together with the power plug 8, and the power plug 8 can be connected to the commercial power supply 46 that is away from the hybrid vehicle 11.
  • the power plug 8 is electrically connected to the commercial power source 46 while the hybrid vehicle 11 is stopped, so that the power is supplied from the commercial power source 46.
  • the lithium ion secondary battery 100 constituting the battery 10 can be charged (hereinafter, this charging is also referred to as plug-in charging).
  • the microcomputer 230 monitors the conversion device 44 and detects that power is supplied from the commercial power supply 46 to the conversion device 44 through the power plug 8, the microcomputer 230 turns off the switches 47 and 48 and turns on the switch 43. To do. Thereby, the lithium ion secondary battery 100 which comprises the assembled battery 10 can be charged using the electric power supplied from the commercial power supply 46.
  • the microcomputer 230 uses the commercial power supply 46 to charge the lithium ion secondary battery 100, and the lithium ion secondary battery 100 constituting the assembled battery 10 is based on the battery voltage detected by the voltage detection device 80. Is estimated. Then, when it is determined that the SOC has reached 100%, the charging of the assembled battery 10 is stopped. Specifically, the switch 43 is turned off and the switches 47 and 48 are turned on.
  • the microcomputer 230 determines whether or not the battery temperature of the lithium ion secondary battery 100 detected through the thermistor 40 is 60 ° C. during plug-in charging. Furthermore, when the microcomputer 230 determines that the battery temperature of the lithium ion secondary battery 100 is not 60 ° C., the temperature of the lithium ion secondary battery 100 is 60 ° C., similarly to the microcomputer 30 of Example 1. Control to heat or cool the lithium ion secondary battery 100 is performed.
  • step T1 the microcomputer 230 starts plug-in charging. Specifically, it is determined whether or not the power plug 8 is electrically connected to the commercial power source 46.
  • the microcomputer 230 monitors the conversion device 44 and detects that power is supplied from the commercial power supply 46 to the conversion device 44 through the power plug 8, whereby the power plug 8 is electrically connected to the commercial power supply 46. Judge that If judged in this way, the microcomputer 230 turns off the switches 47 and 48 and turns on the switch 43. Thereby, electric power can be supplied from the commercial power source 46 to the assembled battery 30 through the converter 44, and charging of the lithium ion secondary battery 100 constituting the assembled battery 30 can be started.
  • step T2 the microcomputer 230 detects the temperature of the lithium ion secondary battery 100 based on the output signal from the thermistor 40. Then, it progresses to step T3 and it is determined whether the battery temperature of the detected lithium ion secondary battery 100 is 60 degreeC. In Step T3, when it is determined that the battery temperature of the lithium ion secondary battery 100 is 60 ° C. (Yes), the process returns to Step T2 again and the above-described processing is performed. On the other hand, when it is determined in step T3 that the battery temperature of the lithium ion secondary battery 100 is not 60 ° C. (No), the process proceeds to step T4, and cooling or heating of the lithium ion secondary battery 100 constituting the assembled battery 10 is performed. To start.
  • the microcomputer 230 determines that the battery temperature of the lithium ion secondary battery 100 is higher than 60 ° C.
  • the microcomputer 230 performs control to cool the lithium ion secondary battery 100 by the cooling device 50.
  • the microcomputer 230 transmits an electrical signal that turns the switch 41 “ON” and the switch 42 “OFF”.
  • the cooling device 50 operates and the lithium ion secondary battery 100 constituting the assembled battery 10 can be cooled.
  • the heating device 60 controls to heat the lithium ion secondary battery 100. Specifically, the microcomputer 230 transmits an electrical signal that turns the switch 42 “ON” and the switch 41 “OFF”. Thereby, since electric power is supplied from the commercial power supply 46 to the heating device 60 through the conversion device 44, the heating device 60 operates and the lithium ion secondary battery 100 constituting the assembled battery 10 can be heated.
  • step T5 the temperature of the lithium ion secondary battery 100 is detected. Then, it progresses to step T6 and it is determined whether the battery temperature of the detected lithium ion secondary battery 100 reached 60 degreeC. If it is determined in step T6 that the battery temperature of the lithium ion secondary battery 100 has not reached 60 ° C. (No), the process returns to step T5 again to detect the temperature of the lithium ion secondary battery 100. Thereafter, when it is determined in step T6 that the battery temperature of the lithium ion secondary battery 100 has reached 60 ° C. (Yes), the process proceeds to step T7, where the lithium ion secondary battery 100 (the assembled battery 10) is cooled or Stop heating.
  • the microcomputer 230 transmits an electrical signal that sets the switch 41 to the “OFF” state.
  • the power supply from the commercial power supply 46 to the cooling device 50 through the converter 44 is interrupted, so that the cooling of the lithium ion secondary battery 100 by the cooling device 50 can be stopped.
  • power is not supplied from the assembled battery 10 to the cooling device 50 (see FIG. 11).
  • the microcomputer 230 transmits an electrical signal for setting the switch 42 to the “OFF” state. Thereby, since the power supply from the commercial power source 46 to the heating device 60 through the converter 44 is interrupted, the heating of the lithium ion secondary battery 100 by the heating device 60 can be stopped. At this time, power is not supplied from the assembled battery 10 to the heating device 60 (see FIG. 11).
  • step T8 the microcomputer 230 determines whether or not plug-in charging has been completed. Specifically, the microcomputer 230 estimates the SOC of the lithium ion secondary battery 100 based on the battery voltage detected by the voltage detection device 80 during plug-in charging. Then, when it is determined that the SOC has reached 100%, the charging of the assembled battery 10 is stopped. Specifically, the switch 43 is turned off and the switches 47 and 48 are turned on. Accordingly, the microcomputer 230 determines that the plug-in charging is completed when the switch 43 is turned off and the switches 47 and 48 are turned on.
  • step T8 determines in step T8 that the plug-in charging has not ended (No)
  • the microcomputer 230 returns to step T2 again and performs the above-described processing.
  • the series of processes is terminated.
  • the lithium ion secondary battery 100 during the period of charging the lithium ion secondary battery 100 using the power supplied from the external power supply (commercial power supply 46) (that is, during plug-in charging), the lithium ion secondary The temperature T of the battery 100 can be maintained within the range of 55 ° C. ⁇ T ⁇ 65 ° C. (specifically, 60 ° C.).
  • the metal lithium deposited on the negative electrode plate 156 of the lithium ion secondary battery 100 is efficiently deactivated (deactivated) while suppressing the decomposition of the non-aqueous electrolyte solution 140, and the amount of deposited metal lithium Can be greatly reduced.
  • security of the lithium ion secondary battery 100 can be improved and the safety
  • steps T1 to T8 described above may be performed every time plug-in charging is performed, for example. Further, the amount of Li deposited on the negative electrode plate 156 of the lithium ion secondary battery 100 may be estimated, and the process may be performed during plug-in charging only when the estimated amount reaches a specified value.
  • a hybrid vehicle 31 of the fourth embodiment is shown in FIG.
  • the hybrid vehicle 31 differs from the hybrid vehicle 11 of the third embodiment only in the battery system.
  • the battery system 36 according to the fourth embodiment includes the assembled battery 10, the conversion device 44, and the voltage detection device 80 that are the same as those in the third embodiment, and a temperature control device 420 that is different from the third embodiment.
  • the temperature control device 420 includes a cooling device 50 and a heating device 60 that are the same as those in the third embodiment, and a microcomputer 430 that is different from the third embodiment.
  • the microcomputer 430 includes a ROM, a CPU, a RAM, and the like (not shown).
  • the microcomputer 430 monitors the converter 44 and detects that power is supplied from the commercial power supply 46 to the converter 44 through the power plug 8, the microcomputer 430 sets the battery based on the battery voltage detected by the voltage detector 80.
  • the SOC of the lithium ion secondary battery 100 constituting the battery 10 is estimated.
  • the plug-in charging period that is, until the SOC of the lithium ion secondary battery 100 reaches 100% by plug-in charging). (Required charging time) is calculated. Thereafter, the switches 47 and 48 are turned off and the switch 43 is turned on. Thereby, the lithium ion secondary battery 100 which comprises the assembled battery 10 can be charged using the electric power supplied from the commercial power supply 46.
  • the microcomputer 430 uses the commercial power supply 46 to charge the lithium ion secondary battery 100, and the lithium ion secondary battery 100 that constitutes the assembled battery 10 based on the battery voltage detected by the voltage detection device 80. Is estimated. As a result, it is possible to grasp how much plug-in charging is progressing, and therefore it is possible to determine whether or not the first half of plug-in charging has ended. Specifically, when the SOC of the lithium ion secondary battery 100 at the start of plug-in charging is 20%, when the estimated SOC reaches 60%, it is determined that the first half of the plug-in charging has ended. be able to. Thereafter, when it is determined that the SOC has reached 100%, the charging of the assembled battery 10 is stopped. Specifically, the switch 43 is turned off and the switches 47 and 48 are turned on.
  • the microcomputer 430 first determines whether or not the battery temperature T of the lithium ion secondary battery 100 detected through the thermistor 40 is 45 ° C. during the first half of the plug-in charging. Further, when the microcomputer 430 determines that the battery temperature T of the lithium ion secondary battery 100 is not 45 ° C., the microcomputer 430 heats the lithium ion secondary battery 100 so that the temperature T of the lithium ion secondary battery 100 becomes 45 ° C. Or control to cool. A specific control method is the same as that in the second embodiment.
  • the temperature controller 420 causes the battery temperature of the lithium ion secondary battery 100 to be within a range of 35 ° C. or higher and 55 ° C. or lower during the first half of plug-in charging (specifically, 45 ° C. ) Can be kept.
  • the metallic lithium deposited on the negative electrode plate 156 of the lithium ion secondary battery 100 can be efficiently returned to lithium ions. Therefore, it is possible to effectively recover the battery capacity that has decreased due to the deposition of lithium.
  • the microcomputer 430 of the fourth embodiment determines whether or not the battery temperature T of the lithium ion secondary battery 100 detected through the thermistor 40 is 60 ° C. Further, when the microcomputer 430 determines that the battery temperature T of the lithium ion secondary battery 100 is not 60 ° C., the microcomputer 430 heats the lithium ion secondary battery 100 so that the temperature T of the lithium ion secondary battery 100 becomes 60 ° C. Or control to cool. A specific control method is the same as in the first to third embodiments.
  • the battery temperature of the lithium ion secondary battery 100 is maintained within the range of 35 ° C. or more and 55 ° C. or less (specifically 45 ° C.) during the first half of the plug-in charge, and then the plug During the second half of the in-charge period, the battery temperature T of the lithium ion secondary battery 100 can be maintained within the range of 55 ° C. ⁇ T ⁇ 65 ° C. (specifically, 60 ° C.). Thereby, the metal lithium which could not be returned to lithium ions during the first half of the plug-in charge can be deactivated (inactivated) efficiently.
  • the battery capacity of the lithium ion secondary battery 100 reduced due to lithium deposition can be effectively recovered while suppressing the decomposition of the non-aqueous electrolyte solution 140, and the lithium The safety of the ion secondary battery 100 can be improved.
  • step V ⁇ b> 1 the microcomputer 430 estimates the SOC of the lithium ion secondary battery 100 configuring the assembled battery 10 based on the battery voltage detected by the voltage detection device 80.
  • step V2 the plug-in charging period (that is, the SOC of the lithium ion secondary battery 100 is set to 100 by plug-in charging based on the preset plug-in charging current value and the current SOC value). % Charge time required to reach%).
  • step V3 plug-in charging is started. Specifically, the switches 47 and 48 are turned off and the switch 43 is turned on. Thereby, the lithium ion secondary battery 100 which comprises the assembled battery 10 can be charged using the electric power supplied from the commercial power supply 46.
  • FIG. 1 the switches 47 and 48 are turned off and the switch 43 is turned on.
  • step V4 the microcomputer 430 detects the temperature T of the lithium ion secondary battery 100 based on the output signal from the thermistor 40. Thereafter, the microcomputer 430 performs the processing of steps V5 to V9 in the same manner as the processing of steps U2 to U6 in the second embodiment.
  • the microcomputer 430 determines whether or not the first half of the plug-in charging period has ended. Specifically, when the SOC of the lithium ion secondary battery 100 at the start of plug-in charging is 20%, when the estimated SOC reaches 60%, it is determined that the first half of the plug-in charging has ended. be able to. Note that the microcomputer 430 estimates (calculates) the SOC of the lithium ion secondary battery 100 constituting the battery pack 10 based on the battery voltage detected by the voltage detection device 80 during the plug-in charging period.
  • step VA when it is determined that the first half of the plug-in charging period has not ended (No), the process returns to step V4 again and the above-described processing is repeated.
  • step VA if it is determined in step VA that the first half of the plug-in charging period has ended (Yes), the process proceeds to step VB, and the microcomputer 430 determines the lithium ion secondary battery 100 based on the output signal from the thermistor 40. The temperature T is detected. Thereafter, the microcomputer 430 performs the processing of steps VC to VH in the same manner as the processing of steps T3 to T8 in the third embodiment.
  • the battery temperature T of the lithium ion secondary battery 100 can be maintained within the range of 55 ° C. ⁇ T ⁇ 65 ° C. (specifically, 60 ° C.).
  • steps V4 to VA correspond to the first temperature control.
  • steps VB to VH corresponds to the second temperature control.
  • the above-described processing of steps V1 to VH is preferably performed every time plug-in charging is performed, for example.
  • the amount of Li deposited on the negative electrode plate 156 of the lithium ion secondary battery 100 may be estimated, and the process may be performed during plug-in charging only when the estimated amount reaches a specified value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Secondary Cells (AREA)
  • Materials Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 リチウムイオン二次電池の負極に析出した金属リチウムを効率よく失活(不活性化)させて、リチウムイオン二次電池の安全性を高めることができる電池システム、及び自動車を提供する。電池システム6は、リチウムイオン二次電池100と、リチウムイオン二次電池100の温度を制御する温度制御装置20とを備える。温度制御装置20は、所定時間、リチウムイオン二次電池100の温度Tを55°C<T<65°Cの範囲内に保つ制御を行う。

Description

電池システム、及び、自動車
 本発明は、リチウムイオン二次電池を備えた電池システム、及び、この電池システムを備えた自動車に関する。
 リチウムイオン二次電池は、携帯機器の電源として、また、電気自動車やハイブリッド自動車などの電源として注目されている。ところで、リチウムイオン二次電池では、例えば、低温環境下において充電(特に、ハイレート充電)を行うと、負極表面にLiが析出してしまうことがある。負極表面に析出したLiの多くは、電池の充放電反応に寄与できなくなるので、このような充電を繰り返すと、電池容量が低下してゆくという問題があった。近年、この問題を解決する方法が提案されている(例えば、特許文献1参照)。
特開2001-52760号公報
 特許文献1では、充電開始時の電池温度に応じて充電電圧を設定し、この充電電圧で定電圧充電を行う充電方法が提案されている。具体的には、充電開始時の電池温度が低温であるほど、充電電圧を低く設定する。これにより、低温環境下での充電時に、電池温度の低下によって負極電位が低下することを防止できるので、負極電位がリチウム析出電位まで低下し難くなり、Liの析出が防止されると記載されている。
 ところで、負極に析出した金属リチウムは活性が高い。従って、負極に金属リチウムが析出した状態を放置しておくのは、リチウムイオン二次電池の安全性を低下させる。このため、近年、負極に析出した金属リチウムを失活(不活性化)させて、リチウムイオン二次電池の安全性を高める技術が求められている。しかしながら、特許文献1の手法では、負極に析出した金属リチウムを失活(不活性化)させて、リチウムイオン二次電池の安全性を高めることはできなかった。
 本発明は、かかる現状に鑑みてなされたものであって、リチウムイオン二次電池の負極に析出した金属リチウムを効率よく失活(不活性化)させて、リチウムイオン二次電池の安全性を高めることができる電池システム、及び自動車を提供することを目的とする。
 上記目的を達成するための、本発明の一態様は、リチウムイオン二次電池と、上記リチウムイオン二次電池の温度を制御する温度制御装置と、を備える電池システムであって、上記温度制御装置は、所定時間、上記リチウムイオン二次電池の温度Tを55℃<T<65℃の範囲内に保つ制御を行う電池システムである。
 上述の電池システムでは、温度制御装置が、所定時間、リチウムイオン二次電池の温度Tを55℃<T<65℃の範囲内に保つ制御を行う。リチウムイオン二次電池の温度Tを、所定時間、55℃より高い温度に保つことで、リチウムイオン二次電池の負極に析出している金属リチウムを、効率よく失活(不活性化)させることができる。このように、活性の高い金属リチウムを失活(不活性化)させることで、電池の安全性を高めることができる。
 また、リチウムイオン二次電池の非水電解液は、65℃以上になると分解反応が進行する傾向にある。これに対し、上述の電池システムでは、温度制御装置が、リチウムイオン二次電池の温度Tを55℃<T<65℃の範囲内に保つ制御を行う。これにより、非水電解液の分解を抑制しつつ、リチウムイオン二次電池の負極に析出している金属リチウムを効率よく失活(不活性化)させることができる。
 さらに、上記の電池システムであって、前記リチウムイオン二次電池は、自動車の駆動用電源として当該自動車に搭載されてなり、前記電池システムは、上記自動車の停車中に、外部電源から供給される電力を用いて上記リチウムイオン二次電池を充電可能とする構成を有し、前記温度制御装置は、上記外部電源から供給される電力を用いて上記リチウムイオン二次電池を充電する期間中、上記リチウムイオン二次電池の温度Tを55℃<T<65℃の範囲内に保つ制御を行う電池システムとすると良い。
 上述の電池システムは、自動車(具体的には、ハイブリッド自動車や電気自動車)の駆動用電源として当該自動車に搭載された電池システムであって、外部電源から供給される電力を用いてリチウムイオン二次電池を充電可能とする構成を有する電池システムである。このような電池システムを搭載した自動車では、定期的に(例えば、数日毎に)、所定時間(例えば、8時間程度)、自動車の停車中(車庫等に駐車中)に外部電源から供給される電力を用いてリチウムイオン二次電池を充電する傾向にある。従って、自動車の停車中に外部電源から供給される電力を用いてリチウムイオン二次電池を充電する期間中、リチウムイオン二次電池の温度Tを55℃<T<65℃の範囲内に保つことで、定期的に、リチウムイオン二次電池の負極に析出している金属リチウムを失活(不活性化)させることができる。
 また、自動車の走行中にリチウムイオン二次電池の温度制御を行うと、自動車の走行性能に影響が及ぶ虞があるが、上述の電池システムでは、自動車の停車中にリチウムイオン二次電池の温度制御を行うため、そのような虞もない。
 さらに、上記いずれかの電池システムであって、前記温度制御装置は、所定時間、前記リチウムイオン二次電池の温度を60℃に保つ制御を行う電池システムとすると良い。
 リチウムイオン二次電池の温度を所定時間60℃に保つことで、非水電解液の分解を抑制しつつ、リチウムイオン二次電池の負極に析出している金属リチウムを、効果的に失活(不活性化)させることができる。
 さらに、上記いずれかの電池システムであって、前記温度制御装置は、前記リチウムイオン二次電池の温度Tを55℃<T<65℃の範囲内に保つ第2温度制御を行う前に、上記リチウムイオン二次電池の温度Tを35℃≦T≦55℃の範囲内に保つ第1温度制御を行う電池システムとすると良い。
 負極表面に析出したリチウムの多くは、電池の充放電反応に寄与できなくなるので、負極表面にリチウムが析出するのに伴って電池容量が低下する。前述のように、リチウムイオン二次電池の負極に析出している金属リチウムを失活(不活性化)させることで、電池の安全性を高めることはできる。しかしながら、一旦失活(不活性化)させたリチウムは、電池の充放電反応に寄与できなくなるので、負極に析出している金属リチウムを失活(不活性化)させるにしたがって、電池容量が低下してゆく。
 これに対し、上述の電池システムでは、リチウムイオン二次電池の温度Tを、所定時間、55℃<T<65℃の範囲内に保つ前に、リチウムイオン二次電池の温度Tを、所定時間、35℃≦T≦55℃の範囲内に保つ。まず初めに、リチウムイオン二次電池の温度Tを、所定時間、35℃≦T≦55℃の範囲内に保つことで、リチウムイオン二次電池の負極に析出した金属リチウムを、効率よくリチウムイオンに戻すことができる。これにより、リチウムの析出により低下した電池容量を、効果的に回復させることができる。その後、リチウムイオン二次電池の温度Tを、所定時間、55℃<T<65℃の範囲内に保つことで、リチウムイオンに戻すことができなかった金属リチウムを失活(不活性化)させることができる。従って、上述の電池システムによれば、リチウムの析出により低下した電池容量を効果的に回復させつつ、電池の安全性を高めることができる。
 さらに、上記の電池システムであって、前記温度制御装置は、前記第1温度制御として、前記リチウムイオン二次電池の温度Tを45℃に保つ制御を行い、前記第2温度制御として、上記リチウムイオン二次電池の温度Tを60℃に保つ制御を行う電池システムとすると良い。
 上述の電池システムでは、温度制御装置が、第1温度制御として、リチウムイオン二次電池の温度Tを45℃に保つ制御を行い、第2温度制御として、リチウムイオン二次電池の温度Tを60℃に保つ制御を行う。すなわち、温度制御装置が、リチウムイオン二次電池の温度Tを45℃に保つ制御を行った後、リチウムイオン二次電池の温度Tを60℃に保つ制御を行う。
 まず初めに、リチウムイオン二次電池の温度Tを所定時間45℃に保つことで、リチウムイオン二次電池の負極に析出した金属リチウムを極めて効率よくリチウムイオンに戻し、リチウムの析出により低下した電池容量を極めて効果的に回復させることができる。その後、リチウムイオン二次電池の温度Tを所定時間60℃に保つことで、リチウムイオンに戻すことができなかった金属リチウムを、効果的に失活(不活性化)させることができる。従って、上述の電池システムによれば、リチウムの析出により低下した電池容量を極めて効果的に回復させつつ、電池の安全性を大きく向上させることができる。
 また、本発明の他の態様は、上記いずれかの電池システムを備える自動車であって、前記リチウムイオン二次電池を、当該自動車の駆動用電源として搭載してなる自動車である。
 負極に金属リチウムが析出した状態で、自動車の駆動用電源としてリチウムイオン電池を使用するのは、安全面で好ましくない。ところで、自動車(ハイブリッド自動車や電気自動車など)の駆動用電源として搭載されたリチウムイオン二次電池は、ハイレート(大電流)で充電が行われるので、Liイオンの拡散律速により、負極中に取り込まれなかったLiイオンが、金属Liとして負極に析出し易くなる。従って、駆動用電源として自動車に搭載されているリチウムイオン二次電池は、他の電子機器の電源として用いる場合に比べて、負極に金属リチウムが析出し易い環境にある。
 これに対し、上述の自動車では、前述の電池システムを備えているので、非水電解液の分解を抑制しつつ、リチウムイオン二次電池の負極に析出している金属リチウムを効率よく失活(不活性化)させることができる。これにより、リチウムイオン二次電池の安全性を高め、ひいては、自動車の安全性を高めることができる。
実施例1,2にかかる自動車の概略図である。 実施例1にかかる電池システムの概略図である。 リチウムイオン二次電池の断面図である。 リチウムイオン二次電池の電極体の断面図である。 電極体の部分拡大断面図であり、図4のB部拡大図に相当する。 保存温度を異ならせて行った各サイクル試験後のLi析出量を示す棒グラフである。 実施例1にかかるリチウムイオン二次電池の温度制御の流れを示すフローチャートである。 実施例2にかかる電池システムの概略図である。 実施例2にかかるリチウムイオン二次電池の温度制御の流れを示すフローチャートである。 実施例3,4にかかる自動車の概略図である。 実施例3にかかる電池システムの概略図である。 実施例3にかかるリチウムイオン二次電池の温度制御の流れを示すフローチャートである。 実施例4にかかる電池システムの概略図である。 実施例4にかかるリチウムイオン二次電池の温度制御の流れを示すフローチャートである。
符号の説明
1,11,21,31 自動車
6,16,26,36 電池システム
10 組電池
20,220,320,420 温度制御装置
30,230,330,430 マイコン(温度制御装置)
46 商用電源(外部電源)
50 冷却装置(温度制御装置)
60 加熱装置(温度制御装置)
100 リチウムイオン二次電池
発明を実施するための形態
(実施例1)
 次に、本発明の実施例1について、図面を参照しつつ説明する。
 本実施例1にかかる自動車1は、図1に示すように、車体2、エンジン3、フロントモータ4、リヤモータ5、電池システム6、及びケーブル7を有し、エンジン3とフロントモータ4及びリヤモータ5との併用で駆動するハイブリッド自動車である。具体的には、この自動車1は、電池システム6(詳細には、電池システム6の組電池10、図2参照)をフロントモータ4及びリヤモータ5の駆動用電源として、公知の手段により、エンジン3とフロントモータ4及びリヤモータ5とを用いて走行できるように構成されている。
 このうち、電池システム6は、自動車1の車体2に取り付けられており、ケーブル7によりフロントモータ4及びリヤモータ5に接続されている。この電池システム6は、図2に示すように、複数のリチウムイオン二次電池100(単電池)を互いに電気的に直列に接続した組電池10と、温度制御装置20とを備えている。温度制御装置20は、マイコン30と冷却装置50(冷却ファンなど)と加熱装置60(ヒータなど)とを有している。マイコン30は、図示しないROM、CPU、RAM等を有している。
 組電池10には、図2に示すように、リチウムイオン二次電池100の電池温度Tを検知するサーミスタ40が装着されている。このサーミスタ40は、マイコン30に電気的に接続されている。これにより、マイコン30において、リチウムイオン二次電池100の電池温度Tを検出することができる。
 また、組電池10には、スイッチ41を介して、冷却装置50が電気的に接続されている。この冷却装置50を作動させることにより、組電池10を構成するリチウムイオン二次電池100を冷却することができる。さらに、組電池10には、スイッチ42を介して、加熱装置60が電気的に接続されている。この加熱装置60を作動させることにより、組電池10を構成するリチウムイオン二次電池100を加熱することができる。
 マイコン30は、サーミスタ40を通じて検出したリチウムイオン二次電池100の電池温度Tが、60℃であるか否かを判断する。さらに、マイコン30は、リチウムイオン二次電池100の電池温度Tが60℃でないと判定した場合、リチウムイオン二次電池100の温度Tが60℃になるように、リチウムイオン二次電池100を加熱または冷却する制御を行う。
 具体的には、マイコン30は、リチウムイオン二次電池100の電池温度Tが60℃より高いと判定した場合は、冷却装置50によりリチウムイオン二次電池100を冷却する制御を行う。詳細には、マイコン30は、スイッチ41(図2参照)を「ON」、スイッチ42を「OFF」とする電気信号を送信する。これにより、組電池10から冷却装置50に電力が供給されるので、冷却装置50が作動し、組電池10を構成するリチウムイオン二次電池100を冷却することができる。
 さらに、マイコン30は、リチウムイオン二次電池100の冷却を開始した後、リチウムイオン二次電池100の電池温度Tを検出する。そして、リチウムイオン二次電池100の電池温度が60℃に達したか否かを判定する。リチウムイオン二次電池100の電池温度Tが60℃に達していないと判定した場合、冷却装置50によるリチウムイオン二次電池100の冷却を継続させる。
 その後、マイコン30は、リチウムイオン二次電池100の電池温度Tが60℃に達したと判定した場合、リチウムイオン二次電池100の冷却を停止する制御を行う。具体的には、スイッチ41を「OFF」の状態とする電気信号を送信する。これにより、組電池10から冷却装置50への電力供給が遮断されるので、冷却装置50によるリチウムイオン二次電池100の冷却を停止させることができる。
 一方、マイコン30は、リチウムイオン二次電池100の電池温度Tが60℃より低いと判定した場合は、加熱装置60によりリチウムイオン二次電池100を加熱する制御を行う。詳細には、マイコン30は、スイッチ42(図2参照)を「ON」、スイッチ41を「OFF」とする電気信号を送信する。これにより、組電池10から加熱装置60に電力が供給されるので、加熱装置60が作動し、組電池10を構成するリチウムイオン二次電池100を加熱することができる。
 さらに、マイコン30は、リチウムイオン二次電池100の加熱を開始した後、リチウムイオン二次電池100の電池温度Tを検出する。そして、リチウムイオン二次電池100の電池温度Tが60℃に達したか否かを判定する。リチウムイオン二次電池100の電池温度Tが60℃に達していないと判定した場合、加熱装置60によるリチウムイオン二次電池100の加熱を継続させる。
 その後、マイコン30は、リチウムイオン二次電池100の電池温度Tが60℃に達したと判定した場合、リチウムイオン二次電池100の加熱を停止する制御を行う。具体的には、スイッチ42を「OFF」とする電気信号を送信する。これにより、組電池10から加熱装置60への電力供給が遮断されるので、加熱装置60によるリチウムイオン二次電池100の加熱を停止させることができる。
 このようにして、本実施例1では、温度制御装置20により、リチウムイオン二次電池100の電池温度Tを55℃<T<65℃の範囲内(詳細には60℃)に保つことができる。
 リチウムイオン二次電池100は、図3に示すように、直方体形状の電池ケース110と、正極端子120と、負極端子130とを備える、角形密閉式のリチウムイオン二次電池である。このうち、電池ケース110は、金属からなり、直方体形状の収容空間をなす角形収容部111と、金属製の蓋部112とを有している。電池ケース110(角形収容部111)の内部には、電極体150や非水電解液140などが収容されている。
 電極体150は、図4,図5に示すように、断面長円状をなし、シート状の正極板155、負極板156、及びセパレータ157を捲回してなる扁平型の捲回体である。この電極体150は、その軸線方向(図3において左右方向)の一方端部(図3において右端部)に位置し、正極板155の一部のみが渦巻状に重なる正極捲回部155bと、他方端部(図3において左端部)に位置し、負極板156の一部のみが渦巻状に重なる負極捲回部156bを有している。正極板155には、正極捲回部155bを除く部位に、正極活物質153を含む正極合材152が塗工されている(図5参照)。同様に、負極板156には、負極捲回部156bを除く部位に、負極活物質154を含む負極合材159が塗工されている(図5参照)。正極捲回部155bは、正極集電部材122を通じて、正極端子120に電気的に接続されている。負極捲回部156bは、負極集電部材132を通じて、負極端子130に電気的に接続されている。
 リチウムイオン二次電池100では、正極活物質153としてニッケル酸リチウムを用いている。また、負極活物質154として、天然黒鉛を用いている。また、非水電解液140として、EC(エチレンカーボネート)とDMC(ジメチルカーボネート)とEMC(エチルメチルカーボネート)とを混合した非水溶媒中に、六フッ化燐酸リチウム(LiPF)を溶解した非水電解液を用いている。
 次に、5つのリチウムイオン二次電池100(サンプル1~5とする)を用意し、各サンプルについて条件を異ならせて、サイクル試験を行った。
 具体的には、サンプル2について、0℃の温度環境下で、20Cの電流値で10秒間充電を行った後、20Cの電流値で10秒間放電を行った。この充放電サイクルを1サイクルとして、10サイクル行った。その後、このサンプル2を、-15℃の恒温槽内に16時間保存した。この充放電サイクル(10サイクル)と恒温保存(-15℃)とを1サイクルとした「充放電-恒温保存サイクル」を、80サイクル行った。換言すれば、サンプル2では、10サイクルの充放電サイクルの間に16時間の恒温保存(-15℃)を設けて、合計800サイクルの充放電サイクルを行った。
 なお、1Cは、SOC(state of charge)100%のリチウムイオン二次電池100を定電流放電したとき、1時間でSOC0%にできる電流値をいう。
 また、サンプル3については、上述の充放電サイクルを10サイクル行った後、25℃の恒温槽内に16時間保存した。この充放電サイクルと恒温保存(25℃)とを1サイクルとした充放電-恒温保存サイクルを、80サイクル行った。換言すれば、サンプル3では、10サイクルの充放電サイクルの間に16時間の恒温保存(25℃)を設けて、合計800サイクルの充放電サイクルを行った。
 また、サンプル4については、上述の充放電サイクルを10サイクル行った後、45℃の恒温槽内に16時間保存した。この充放電サイクルと恒温保存(45℃)とを1サイクルとした充放電-恒温保存サイクルを、80サイクル行った。換言すれば、サンプル4では、10サイクルの充放電サイクルの間に16時間の恒温保存(45℃)を設けて、合計800サイクルの充放電サイクルを行った。
 また、サンプル5については、上述の充放電サイクルを10サイクル行った後、60℃の恒温槽内に16時間保存した。この充放電サイクルと恒温保存(60℃)とを1サイクルとした充放電-恒温保存サイクルを、80サイクル行った。換言すれば、サンプル5では、10サイクルの充放電サイクルの間に16時間の恒温保存(60℃)を設けて、合計800サイクルの充放電サイクルを行った。
 また、サンプル1については、上述の充放電サイクルを10サイクル行った後、他のサンプルと異なり、恒温槽内に保存することなく、引き続き、充放電サイクルを行った。このようにして、合計800サイクルの充放電サイクルを行った。
 サンプル1~5について上述のサイクル試験を行った後、各サンプルを解体し、負極板156を取り出した。その後、各サンプルについて、ICP発光分析により、負極板156に析出しているリチウム量を測定した。具体的には、まず、負極板156の一部を切り出し、これを王水に溶解した後に水で希釈し、サンプル液を用意する。次いで、ICP発光分析装置(島津製作所製、ICPS-8100)を用いて、各サンプル液中のリチウム量(すなわち、負極板156の一部に析出しているリチウムの重量)を測定した。この測定結果に基づいて、負極板156全体に析出したリチウム量を算出した。
 さらに、各サンプルについて、固体Li-NMR法により、負極板156に析出しているリチウムについて、活性な金属リチウムと失活した(不活性化した)リチウムとの割合を測定した。具体的には、まず、負極板156の一部を切り出し、これを、NMR装置(BRUKER製、固体核磁気共鳴装置、DSX400)の測定チューブに入れて、NMR分析を行った。これにより、各サンプルについて、活性な金属リチウムと失活した(不活性化した)リチウムとの割合を取得した。なお、失活した(不活性化した)リチウムとしては、例えば、非水電解液140と反応してLiFやLiCOなどの化合物となったリチウムが挙げられる。
 これらの結果を図6に示す。なお、図6では、各サンプルにおいて析出したリチウム量(活性な金属リチウムと失活したリチウムの合計量)を、サンプル1を基準(A)として、棒グラフの長さで相対的に表している。さらに、各サンプルの棒グラフのうち、白抜き部分が活性な金属リチウムの量を表し、ハッチング部分が失活した(不活性化した)リチウムの量を表している。
 図6に示すように、サンプル1では、負極板156に析出したLi量Aの全てが活性な金属リチウムであった。すなわち、サンプル1では、活性な金属リチウムの析出量がAとなった。
 また、サンプル2では、負極板156に析出したLi量が0.57Aとなり、その全てが活性な金属リチウムであった。すなわち、サンプル2では、活性な金属リチウムの析出量が0.57Aとなった。
 また、サンプル3では、負極板156に析出したLi量が0.3Aとなり、その全てが活性な金属リチウムであった。すなわち、サンプル3では、活性な金属リチウムの析出量が0.3Aとなった。
 また、サンプル4では、負極板156に析出したLi量が0.18Aとなった。このうち、0.16Aが活性な金属リチウムで、0.02Aが失活(不活性化)したリチウムであった。このように、サンプル4では、負極板156に析出している金属リチウムの一部を失活(不活性化)させて、活性な金属リチウムの析出量を0.16Aにまで低減することができた。
 また、サンプル5では、負極板156に析出したLi量が0.4Aとなった。このうち、0.11Aが活性な金属リチウムで、0.29Aが失活(不活性化)したリチウムであった。このように、サンプル5では、負極板156に析出している金属リチウムの多くを失活(不活性化)させて、活性な金属リチウムの析出量を0.11Aにまで低減することができた。
 以上の結果より、リチウムイオン二次電池100の保存温度を60℃にすることで、負極板156に析出している金属リチウムを、効果的に失活(不活性化)させることができるといえる。また、失活したLi量(図6にハッチングで示す)の変動傾向から、保存温度を55℃よりも高くすることで、負極板156に析出している金属リチウムを、効率よく失活(不活性化)させることができるといえる。
 従って、リチウムイオン二次電池100の温度Tを、所定時間、55℃より高い温度に保つことで、リチウムイオン二次電池100の負極板156に析出している金属リチウムを、効率よく失活(不活性化)させることができるといえる。このように、活性の高い金属リチウムを失活(不活性化)させることで、リチウムイオン二次電池100の安全性を高めることができる。
 また、リチウムイオン二次電池100の非水電解液140は、65℃以上になると分解反応が進行する。従って、非水電解液140の分解を抑制するため、リチウムイオン二次電池100の保存温度は、65℃未満とするのが好ましい。
 以上より、リチウムイオン二次電池100の温度Tを、所定時間、55℃<T<65℃の範囲内に保つことで、非水電解液140の分解を抑制しつつ、リチウムイオン二次電池100の負極板156に析出している金属リチウムを効率よく失活(不活性化)させて、金属リチウム析出量を大幅に低減するこができるといえる。特に、リチウムイオン二次電池100の温度Tを、所定時間、60℃に保つことで、非水電解液140の分解を抑制しつつ、負極板156に析出している金属リチウムを効果的に失活(不活性化)させて、金属リチウム析出量を効果的に低減するこができるといえる。
 次に、本実施例1の自動車1におけるリチウムイオン二次電池100の温度制御について、図7を参照して説明する。
 まず、ステップS1において、マイコン30は、サーミスタ40(図2参照)からの出力信号に基づいて、リチウムイオン二次電池100の温度Tを検出する。次いで、ステップS2に進み、検出されたリチウムイオン二次電池100の電池温度Tが、60℃であるか否かを判定する。
 ステップS2において、リチウムイオン二次電池100の電池温度Tが60℃である(Yes)と判定された場合には、再び、ステップS1に戻り、上述の処理を行う。
 一方、ステップS2において、リチウムイオン二次電池100の電池温度Tが60℃でない(No)と判定された場合には、ステップS3に進み、組電池10を構成するリチウムイオン二次電池100の冷却または加熱を開始する。
 具体的には、マイコン30は、リチウムイオン二次電池100の電池温度Tが60℃より高いと判定した場合は、冷却装置50によりリチウムイオン二次電池100を冷却する制御を行う。詳細には、マイコン30は、スイッチ41(図2参照)を「ON」、スイッチ42を「OFF」とする電気信号を送信する。これにより、組電池10から冷却装置50に電力が供給されるので、冷却装置50が作動し、組電池10を構成するリチウムイオン二次電池100を冷却することができる。
 反対に、マイコン30が、リチウムイオン二次電池100の電池温度Tが60℃より低いと判定した場合は、加熱装置60によりリチウムイオン二次電池100を加熱する制御を行う。詳細には、マイコン30は、スイッチ42(図2参照)を「ON」、スイッチ41を「OFF」とする電気信号を送信する。これにより、組電池10から加熱装置60に電力が供給されるので、加熱装置60が作動し、組電池10を構成するリチウムイオン二次電池100を加熱することができる。
 次に、ステップS4に進み、リチウムイオン二次電池100の温度Tを検出する。その後、ステップS5に進み、検出されたリチウムイオン二次電池100の電池温度Tが60℃に達したか否かを判定する。
 ステップS5において、リチウムイオン二次電池100の電池温度Tが60℃に達していない(No)と判定された場合には、再び、ステップS4に戻り、リチウムイオン二次電池100の温度Tを検出する。その後、ステップS5において、リチウムイオン二次電池100の電池温度Tが、60℃に達した(Yes)と判定された場合には、ステップS6に進み、リチウムイオン二次電池100(組電池10)の冷却または加熱を停止する。
 具体的には、リチウムイオン二次電池100を冷却している場合には、マイコン30は、スイッチ41を「OFF」の状態とする電気信号を送信する。これにより、組電池10から冷却装置50への電力供給が遮断されるので、冷却装置50によるリチウムイオン二次電池100の冷却を停止させることができる。
 反対に、リチウムイオン二次電池100を加熱している場合には、マイコン30は、スイッチ42を「OFF」の状態とする電気信号を送信する。これにより、組電池10から加熱装置60への電力供給が遮断されるので、加熱装置60によるリチウムイオン二次電池100の加熱を停止させることができる。
 次いで、ステップS7に進み、マイコン30は、リチウムイオン二次電池100の温度Tが60℃であると最初に判定したときから所定時間(例えば、8時間)が経過したか否かを判定する。所定時間が経過していない(No)と判定した場合は、再び、ステップS1に戻り、上述の処理を行う。一方、所定時間が経過した(Yes)と判定した場合は、一連の処理を終了する。
 このようにして、本実施例1では、リチウムイオン二次電池100の温度Tを、所定時間(例えば、8時間)、55℃<T<65℃の範囲内(詳細には60℃)に保つことができる。これにより、非水電解液140の分解を抑制しつつ、リチウムイオン二次電池100の負極板156に析出している金属リチウムを効率よく失活(不活性化)させて、金属リチウムの析出量を大幅に低減するこができる。これにより、リチウムイオン二次電池100の安全性を高め、ひいては、自動車1の安全性を高めることができる。
 なお、上述のステップS1~S7の処理(リチウムイオン二次電池100の温度制御)は、例えば、所定期間毎(例えば、数日に1回)に行うようにすると良い。また、リチウムイオン二次電池100の負極板156に析出したLiの量を推定し、この推定量が規定値に達したら、上述のステップS1~S7の処理(リチウムイオン二次電池100の温度制御)を行うようにしても良い。
(実施例2)
 次に、本発明の実施例2について、図面を参照しつつ説明する。
 本実施例2のハイブリッド自動車21を、図1に示す。ハイブリッド自動車21は、実施例1のハイブリッド自動車1と比較して、電池システムのみが異なる。
 本実施例2の電池システム26は、図8に示すように、実施例1と同様の組電池10と、実施例1と異なる温度制御装置320とを備えている。温度制御装置320は、実施例1と同様の冷却装置50及び加熱装置60と、実施例1と異なるマイコン330とを有している。マイコン330は、図示しないROM、CPU、RAM等を有している。
 マイコン330は、まず、サーミスタ40を通じて検出したリチウムイオン二次電池100の電池温度Tが、45℃であるか否かを判断する。さらに、マイコン330は、リチウムイオン二次電池100の電池温度Tが45℃でないと判定した場合、リチウムイオン二次電池100の温度Tが45℃になるように、リチウムイオン二次電池100を加熱または冷却する制御を行う。
 具体的には、マイコン330は、リチウムイオン二次電池100の電池温度が45℃より高いと判定した場合は、冷却装置50によりリチウムイオン二次電池100を冷却する制御を行う。詳細には、マイコン330は、スイッチ41(図8参照)を「ON」、スイッチ42を「OFF」とする電気信号を送信する。これにより、組電池10から冷却装置50に電力が供給されるので、冷却装置50が作動し、組電池10を構成するリチウムイオン二次電池100を冷却することができる。
 さらに、マイコン330は、リチウムイオン二次電池100の冷却を開始した後、リチウムイオン二次電池100の電池温度を検出する。そして、リチウムイオン二次電池100の電池温度が45℃に達したか否かを判定する。リチウムイオン二次電池100の電池温度が45℃に達していないと判定した場合、冷却装置50によるリチウムイオン二次電池100の冷却を継続させる。
 その後、マイコン330は、リチウムイオン二次電池100の電池温度が45℃に達したと判定した場合、リチウムイオン二次電池100の冷却を停止する制御を行う。具体的には、スイッチ41を「OFF」の状態とする電気信号を送信する。これにより、組電池10から冷却装置50への電力供給が遮断されるので、冷却装置50によるリチウムイオン二次電池100の冷却を停止させることができる。
 一方、マイコン330は、リチウムイオン二次電池100の電池温度が45℃より低いと判定した場合は、加熱装置60によりリチウムイオン二次電池100を加熱する制御を行う。詳細には、マイコン330は、スイッチ42(図8参照)を「ON」、スイッチ41を「OFF」とする電気信号を送信する。これにより、組電池10から加熱装置60に電力が供給されるので、加熱装置60が作動し、組電池10を構成するリチウムイオン二次電池100を加熱することができる。
 さらに、マイコン330は、リチウムイオン二次電池100の加熱を開始した後、リチウムイオン二次電池100の電池温度を検出する。そして、リチウムイオン二次電池100の電池温度が45℃に達したか否かを判定する。リチウムイオン二次電池100の電池温度が45℃に達していないと判定した場合、加熱装置60によるリチウムイオン二次電池100の加熱を継続させる。
 その後、マイコン330は、リチウムイオン二次電池100の電池温度が45℃に達したと判定した場合、リチウムイオン二次電池100の加熱を停止する制御を行う。具体的には、スイッチ42を「OFF」とする電気信号を送信する。これにより、組電池10から加熱装置60への電力供給が遮断されるので、加熱装置60によるリチウムイオン二次電池100の加熱を停止させることができる。
 このようにして、本実施例2では、温度制御装置320により、第1所定時間(例えば、4時間)、リチウムイオン二次電池100の電池温度を35℃以上55℃以下の範囲内(詳細には45℃)に保つことができる。これにより、リチウムイオン二次電池100の負極板156に析出した金属リチウムを、効率よくリチウムイオンに戻すことができる。従って、リチウムの析出により低下した電池容量を、効果的に回復させることができる。
 その後、本実施例2のマイコン330は、サーミスタ40を通じて検出したリチウムイオン二次電池100の電池温度Tが、60℃であるか否かを判断する。さらに、マイコン330は、リチウムイオン二次電池100の電池温度Tが60℃でないと判定した場合、実施例1のマイコン30と同様に、リチウムイオン二次電池100の温度Tが60℃になるように、リチウムイオン二次電池100を加熱または冷却する制御を行う。
 このように、本実施例2では、リチウムイオン二次電池100の電池温度を第1所定時間(例えば、4時間)35℃以上55℃以下の範囲内(詳細には45℃)に保った(第1温度制御)後、温度制御装置320により、第2所定時間(例えば、4時間)、リチウムイオン二次電池100の電池温度Tを55℃<T<65℃の範囲内(詳細には60℃)に保つ(第2温度制御)ことができる。これにより、第1所定時間の第1温度制御によってリチウムイオンに戻すことができなかった金属リチウムを、効率よく失活(不活性化)させることができる。
 従って、本実施例2の電池システム26によれば、リチウムの析出により低下したリチウムイオン二次電池100の電池容量を効果的に回復させつつ、リチウムイオン二次電池100のの安全性を高めることができる。
 次に、リチウムイオン二次電池100(サンプル6とする)を用意し、このサンプル6についてサイクル試験を行った。なお、このサイクル試験は、前述のサンプル2~5について行ったサイクル試験と比較して、サンプルを恒温槽内に保存する保存条件のみが異なり、その他の条件は同様としている。
 具体的には、まず、サンプル6について、サンプル2~5と同様の充放電サイクルを10サイクル行った。その後、サンプル6を、まず、45℃の恒温槽内に8時間保存した後、引き続いて、60℃の恒温槽内に8時間保存した。この充放電サイクルと恒温保存(45℃と60℃)とを1サイクルとした充放電-恒温保存サイクルを、80サイクル行った。換言すれば、サンプル6では、10サイクルの充放電サイクルの間に、8時間の第1恒温保存(45℃)及び8時間の第2恒温保存(60℃)を設けて、合計800サイクルの充放電サイクルを行った。
 サンプル6について上述のサイクル試験を行った後、前述のサンプル1~5と同様にして、ICP発光分析により、サンプル6の負極板156に析出しているリチウム量を測定した。さらに、サンプル6について、前述のサンプル1~5と同様にして、固体Li-NMR法により、負極板156に析出しているリチウムについて、活性な金属リチウムと失活した(不活性化した)リチウムとの割合を測定した。この結果を図6に示す。
 前述のように、リチウムイオン二次電池100の温度Tを、所定時間、55℃<T<65℃の範囲内(特に、60℃)に保つことで、非水電解液140の分解を抑制しつつ、リチウムイオン二次電池100の負極板156に析出している金属リチウムを効率よく失活(不活性化)させて、金属リチウム析出量を大幅に低減するこができる。これにより、リチウムイオン二次電池100の安全性を高めることができる。
 ところで、リチウムイオン二次電池では、Li析出量に応じて電池容量が低減する。特に、一旦失活(不活性化)させたリチウムは、電池の充放電反応に寄与できなくなる。
 具体的には、図6に示すように、保存温度を60℃としたサンプル5では、最も効果的に負極板156に析出した金属リチウムを失活させて、析出した金属リチウム量を最小にすることができた。しかしながら、Li析出量(金属リチウム+失活リチウム)は0.4Aとなり、サンプル4の0.18Aに比べて大きくなった。
 サンプル1とサンプル4についてLi析出量を比較すると、サンプル4では、サンプル1に比べて、Li析出量を82%低減することができた。すなわち、サンプル4では、サイクル充放電によって低減した電池容量の82%を回復させることができた。これに対し、サンプル5では、Li析出量を60%しか低減できなかった。すなわち、サンプル5では、サイクル充放電によって低減した電池容量の60%しか回復させることができなかった。この結果より、サンプル5は、サンプル4に比べて、金属リチウムを効果的に失活させて析出した金属リチウム量を少量にできた点では優れているが、電池容量を回復させる点では劣っているといえる。
 従って、リチウムの析出により低下した電池容量を効果的に回復させるには、保存温度を45℃とするのが最も好ましいといえる。また、図6に示すLi析出量の変動傾向(換言すれば、電池容量回復傾向)より、保存温度を35℃とした場合は、保存温度を25℃とした場合(70%回復)よりも電池容量を回復させることができるといえる。さらに、保存温度を55℃とした場合は、保存温度を60℃とした場合(60%回復)よりも電池容量を回復させることができるといえる。従って、保存温度を35℃以上55℃以下の範囲内とすれば、リチウムの析出により低下した電池容量を、効果的に回復させることができるといえる。
 以上より、リチウムイオン二次電池100の温度を、所定時間、35℃以上55℃以下の範囲内に保つことで、リチウムの析出により低下した電池容量を、効果的に回復させることができるといえる。特に、リチウムイオン二次電池100の温度を、所定時間、45℃に保つことで、リチウムの析出により低下した電池容量を、極めて効果的に回復させることができるといえる。
 ここで、サンプル6の結果について考察する。図6に示すように、サンプル6では、析出したLi量が0.18Aとなった。従って、サンプル6では、サンプル1に比べて、Li析出量を82%低減することができた。すなわち、サンプル6では、サイクル充放電によって低減した電池容量の82%を回復させることができた。このように、サンプル6では、サンプル4と同等に、リチウムの析出により低下した電池容量を効果的に回復させることができた。これは、サンプル6では、充放電サイクルを10サイクル行った後、サンプル6を、まず、35℃以上55℃以下の範囲内の温度(具体的には45℃)の恒温槽内に保存したからである。
 さらに、サンプル6では、負極板156に析出したリチウムのうち、0.05Aが活性な金属リチウムで、0.13Aが失活(不活性化)したリチウムであった。このように、サンプル6では、負極板156に析出している金属リチウムの多くを失活(不活性化)させて、活性な金属リチウムの析出量を0.05A(全サンプル中で最小)にまで低減することができた。これは、サンプル6では、35℃以上55℃以下の範囲内の温度(詳細には45℃)の恒温槽内に保存した後、サンプル6の電池温度Tを55℃<T<65℃の範囲内(詳細には60℃)に保ったからである。これにより、45℃の保存でリチウムイオンに戻すことができなかった金属リチウムを、効率よく失活(不活性化)させることができたと考えられる。
 以上の結果より、所定時間、リチウムイオン二次電池100の電池温度を35℃以上55℃以下の範囲内(特に45℃)に保った後、所定時間、リチウムイオン二次電池100の電池温度Tを55℃<T<65℃の範囲内(特に60℃)に保つことで、リチウムの析出により低下したリチウムイオン二次電池100の電池容量を効果的に回復させると共に、非水電解液140の分解を抑制しつつ、リチウムイオン二次電池100の安全性を高めることができるといえる。
 次に、本実施例2の自動車21におけるリチウムイオン二次電池100の温度制御について、図9を参照して説明する。
 まず、ステップU1において、マイコン330は、サーミスタ40(図8参照)からの出力信号に基づいて、リチウムイオン二次電池100の温度Tを検出する。次いで、ステップU2に進み、検出されたリチウムイオン二次電池100の電池温度Tが45℃であるか否かを判定する。
 ステップU2において、リチウムイオン二次電池100の電池温度Tが45℃である(Yes)と判定された場合には、再び、ステップU1に戻り、上述の処理を行う。
 一方、ステップU2において、リチウムイオン二次電池100の電池温度Tが45℃でない(No)と判定された場合には、ステップU3に進み、組電池10を構成するリチウムイオン二次電池100の冷却または加熱を開始する。
 具体的には、マイコン330は、リチウムイオン二次電池100の電池温度Tが45℃より高いと判定した場合は、冷却装置50によりリチウムイオン二次電池100を冷却する制御を行う。詳細には、マイコン330は、スイッチ41(図8参照)を「ON」、スイッチ42を「OFF」とする電気信号を送信する。これにより、組電池10から冷却装置50に電力が供給されるので、冷却装置50が作動し、組電池10を構成するリチウムイオン二次電池100を冷却することができる。
 反対に、マイコン330が、リチウムイオン二次電池100の電池温度Tが45℃より低いと判定した場合は、加熱装置60によりリチウムイオン二次電池100を加熱する制御を行う。詳細には、マイコン330は、スイッチ42(図8参照)を「ON」、スイッチ41を「OFF」とする電気信号を送信する。これにより、組電池10から加熱装置60に電力が供給されるので、加熱装置60が作動し、組電池10を構成するリチウムイオン二次電池100を加熱することができる。
 次に、ステップU4に進み、リチウムイオン二次電池100の温度Tを検出する。その後、ステップU5に進み、検出されたリチウムイオン二次電池100の電池温度Tが45℃に達したか否かを判定する。
 ステップU5において、リチウムイオン二次電池100の電池温度Tが45℃に達していない(No)と判定された場合には、再び、ステップU4に戻り、リチウムイオン二次電池100の温度Tを検出する。その後、ステップU5において、リチウムイオン二次電池100の電池温度Tが、45℃に達した(Yes)と判定された場合には、ステップU6に進み、リチウムイオン二次電池100(組電池10)の冷却または加熱を停止する。
 具体的には、リチウムイオン二次電池100を冷却している場合には、マイコン330は、スイッチ41を「OFF」の状態とする電気信号を送信する。これにより、組電池10から冷却装置50への電力供給が遮断されるので、冷却装置50によるリチウムイオン二次電池100の冷却を停止させることができる。
 反対に、リチウムイオン二次電池100を加熱している場合には、マイコン330は、スイッチ42を「OFF」の状態とする電気信号を送信する。これにより、組電池10から加熱装置60への電力供給が遮断されるので、加熱装置60によるリチウムイオン二次電池100の加熱を停止させることができる。
 次いで、ステップU7に進み、マイコン30は、リチウムイオン二次電池100の温度Tが45℃であると最初に判定したときから第1所定時間(例えば、4時間)が経過したか否かを判定する。第1所定時間が経過していない(No)と判定した場合は、再び、ステップU1に戻り、上述の処理を行う。
 一方、第1所定時間が経過した(Yes)と判定した場合には、ステップU8に進み、マイコン330は、サーミスタ40からの出力信号に基づいて、リチウムイオン二次電池100の温度Tを検出する。その後、ステップU9~UEの処理を、実施例1のステップS2~S7と同様に行う。但し、本実施例2では、ステップUEにおいて、マイコン330は、リチウムイオン二次電池100の温度Tが60℃であると最初に判定したときから第2所定時間(例えば、4時間)が経過したか否かを判定する。第2所定時間が経過していない(No)と判定した場合は、再び、ステップU8に戻り、上述の処理を行う。一方、ステップUEにおいて、第2所定時間が経過した(Yes)と判定した場合は、一連の処理を終了する。
 このようにして、本実施例2では、リチウムイオン二次電池100の電池温度Tを、第1所定時間(例えば、4時間)、35℃以上55℃以下の範囲内(詳細には45℃)に保った後、リチウムイオン二次電池100の電池温度Tを、第2所定時間(例えば、4時間)、55℃<T<65℃の範囲内(詳細には60℃)に保つことができる。これにより、リチウムの析出により低下したリチウムイオン二次電池100の電池容量を効果的に回復させつつ、リチウムイオン二次電池100の安全性を高め、ひいては、自動車21の安全性を高めることができる。
 なお、本実施例2では、ステップU1~U7の処理が、第1温度制御に相当する。また、ステップU8~UEの処理が、第2温度制御に相当する。
 また、上述のステップU1~UEの処理(第1温度制御及び第2温度制御)は、例えば、所定期間毎(例えば、数日に1回)に行うようにすると良い。また、リチウムイオン二次電池100の負極板156に析出したLiの量を推定し、この推定量が規定値に達したら、上述のステップU1~UEの処理(リチウムイオン二次電池100の温度制御)を行うようにしても良い。
(実施例3)
 次に、本発明の実施例3について、図面を参照しつつ説明する。
 本実施例3のハイブリッド自動車11を、図10に示す。ハイブリッド自動車11は、実施例1のハイブリッド自動車1と比較して、電池システムが異なる。さらに、電池システムに接続された電源プラグ8を備えている。
 本実施例3の電池システム16は、図11に示すように、組電池10と温度制御装置220と変換装置44と電圧検知装置80とを備えている。
 このうち、温度制御装置220は、マイコン230と冷却装置50と加熱装置60とを有している。また、電圧検知装置80は、組電池10を構成する各々のリチウムイオン二次電池100の電池電圧(端子間電圧)を検知する。 
 変換装置44は、AC/DCコンバータにより構成されており、商用電源46(外部電源)の電圧を、一定電圧値を有する直流定電圧に変換することができる。この変換装置44は、ケーブル7に含まれるケーブル71を通じて、電源プラグ8に電気的に接続されている。さらに、変換装置44は、スイッチ43を介して、組電池10に電気的に接続されている。また、変換装置44は、スイッチ41を介して冷却装置50に電気的に接続されており、スイッチ42を介して加熱装置60に電気的に接続されている。
 電源プラグ8は、商用電源46に電気的に接続可能に構成されている。この電源プラグ8は、変換装置44と電気的に接続されている。従って、電源プラグ8を通じて、変換装置44と商用電源46とを電気的に接続することができる。なお、本実施例3では、電源プラグ8と共にケーブル71をハイブリッド自動車11の外部に引き出すことができ、ハイブリッド自動車11から離れた商用電源46に電源プラグ8を接続できるようになっている。
 このため、本実施例3のハイブリッド自動車11では、ハイブリッド自動車11の停車中に、電源プラグ8を商用電源46に電気的に接続することで、商用電源46から供給される電力を用いて、組電池10を構成するリチウムイオン二次電池100を充電する(以下、この充電をプラグイン充電ともいう)ことができる。
 マイコン230は、変換装置44を監視しており、商用電源46から電源プラグ8を通じて変換装置44に電力が供給されたことを検知すると、スイッチ47,48をOFFにすると共に、スイッチ43をONにする。これにより、商用電源46から供給される電力を用いて、組電池10を構成するリチウムイオン二次電池100を充電することができる。具体的には、商用電源46の電圧を、変換装置44により、所定の一定電圧値を有する直流定電圧に変換しつつ、商用電源46から供給される電力を、変換装置44を通じて、組電池10を構成するリチウムイオン二次電池100に供給する。
 また、マイコン230は、商用電源46を用いてリチウムイオン二次電池100を充電する期間中、電圧検知装置80で検出された電池電圧に基づいて、組電池10を構成するリチウムイオン二次電池100のSOCを推定する。そして、SOCが100%に達したと判定したとき、組電池10の充電を停止させる。具体的には、スイッチ43をOFFにすると共に、スイッチ47,48をONにする。
 また、マイコン230は、プラグイン充電中、サーミスタ40を通じて検出したリチウムイオン二次電池100の電池温度が60℃であるか否かを判断する。さらに、マイコン230は、リチウムイオン二次電池100の電池温度が60℃でないと判定した場合、実施例1のマイコン30と同様に、リチウムイオン二次電池100の温度が60℃になるように、リチウムイオン二次電池100を加熱または冷却する制御を行う。
 次に、本実施例3の自動車11におけるリチウムイオン二次電池100の温度制御について、図12を参照して説明する。
 まず、ステップT1において、マイコン230は、プラグイン充電を開始する。具体的には、電源プラグ8が商用電源46に電気的に接続されたか否かを判定する。マイコン230は、変換装置44を監視しており、商用電源46から電源プラグ8を通じて変換装置44に電力が供給されたことを検知することで、電源プラグ8が商用電源46に電気的に接続されたと判断する。このように判断すると、マイコン230は、スイッチ47,48をOFFにすると共にスイッチ43をONにする。これにより、商用電源46から変換装置44を通じて組電池30に電力を供給し、組電池30を構成するリチウムイオン二次電池100を充電を開始することができる。
 次いで、ステップT2に進み、マイコン230は、サーミスタ40からの出力信号に基づいて、リチウムイオン二次電池100の温度を検出する。その後、ステップT3に進み、検出されたリチウムイオン二次電池100の電池温度が、60℃であるか否かを判定する。ステップT3において、リチウムイオン二次電池100の電池温度が60℃である(Yes)と判定した場合には、再び、ステップT2に戻り、上述の処理を行う。一方、ステップT3において、リチウムイオン二次電池100の電池温度が60℃でない(No)と判定した場合には、ステップT4に進み、組電池10を構成するリチウムイオン二次電池100の冷却または加熱を開始する。
 具体的には、マイコン230は、リチウムイオン二次電池100の電池温度が60℃より高いと判定した場合は、冷却装置50によりリチウムイオン二次電池100を冷却する制御を行う。詳細には、マイコン230は、スイッチ41を「ON」、スイッチ42を「OFF」とする電気信号を送信する。これにより、商用電源46から変換装置44を通じて冷却装置50に電力が供給されるので、冷却装置50が作動し、組電池10を構成するリチウムイオン二次電池100を冷却することができる。
 反対に、マイコン230が、リチウムイオン二次電池100の電池温度が60℃より低いと判定した場合は、加熱装置60によりリチウムイオン二次電池100を加熱する制御を行う。詳細には、マイコン230は、スイッチ42を「ON」、スイッチ41を「OFF」とする電気信号を送信する。これにより、商用電源46から変換装置44を通じて加熱装置60に電力が供給されるので、加熱装置60が作動し、組電池10を構成するリチウムイオン二次電池100を加熱することができる。
 次に、ステップT5に進み、リチウムイオン二次電池100の温度を検出する。その後、ステップT6に進み、検出されたリチウムイオン二次電池100の電池温度が60℃に達したか否かを判定する。ステップT6において、リチウムイオン二次電池100の電池温度が60℃に達していない(No)と判定された場合には、再び、ステップT5に戻り、リチウムイオン二次電池100の温度を検出する。その後、ステップT6において、リチウムイオン二次電池100の電池温度が60℃に達した(Yes)と判定した場合には、ステップT7に進み、リチウムイオン二次電池100(組電池10)の冷却または加熱を停止する。
 具体的には、リチウムイオン二次電池100を冷却している場合には、マイコン230は、スイッチ41を「OFF」の状態とする電気信号を送信する。これにより、商用電源46から変換装置44を通じた冷却装置50への電力供給が遮断されるので、冷却装置50によるリチウムイオン二次電池100の冷却を停止させることができる。なお、このとき、組電池10から冷却装置50に電力が供給されることもない(図11参照)。
 反対に、リチウムイオン二次電池100を加熱している場合には、マイコン230は、スイッチ42を「OFF」の状態とする電気信号を送信する。これにより、商用電源46から変換装置44を通じた加熱装置60への電力供給が遮断されるので、加熱装置60によるリチウムイオン二次電池100の加熱を停止させることができる。なお、このとき、組電池10から加熱装置60に電力が供給されることもない(図11参照)。
 次いで、ステップT8に進み、マイコン230は、プラグイン充電が終了したか否かを判定する。具体的には、マイコン230は、プラグイン充電中、電圧検知装置80で検出された電池電圧に基づいてリチウムイオン二次電池100のSOCを推定する。そして、SOCが100%に達したと判定したとき、組電池10の充電を停止させる。具体的には、スイッチ43をOFFにすると共に、スイッチ47,48をONにする。従って、マイコン230は、スイッチ43をOFFとしてスイッチ47,48をONとしたとき、プラグイン充電が終了したと判定する。
 マイコン230は、ステップT8においてプラグイン充電が終了していない(No)と判定した場合は、再び、ステップT2に戻り、上述の処理を行う。一方、プラグイン充電が終了した(Yes)と判定した場合は、一連の処理を終了する。
 このようにして、本実施例3では、外部電源(商用電源46)から供給される電力を用いてリチウムイオン二次電池100を充電する期間中(すなわち、プラグイン充電中)、リチウムイオン二次電池100の温度Tを、55℃<T<65℃の範囲内(詳細には60℃)に保つことができる。これにより、非水電解液140の分解を抑制しつつ、リチウムイオン二次電池100の負極板156に析出している金属リチウムを効率よく失活(不活性化)させて、金属リチウムの析出量を大幅に低減するこができる。これにより、リチウムイオン二次電池100の安全性を高め、ひいては、自動車11の安全性を高めることができる。
 なお、上述のステップT1~T8の処理(リチウムイオン二次電池100の温度制御)は、例えば、プラグイン充電を行う毎に実施すると良い。また、リチウムイオン二次電池100の負極板156に析出したLiの量を推定し、この推定量が規定値に達した場合に限り、プラグイン充電時に実施するようにしても良い。
(実施例4)
 次に、本発明の実施例4について、図面を参照しつつ説明する。
 本実施例4のハイブリッド自動車31を、図10に示す。ハイブリッド自動車31は、実施例3のハイブリッド自動車11と比較して、電池システムのみが異なる。
 本実施例4の電池システム36は、図13に示すように、実施例3と同様の組電池10、変換装置44、及び電圧検知装置80と、実施例3と異なる温度制御装置420とを備えている。温度制御装置420は、実施例3と同様の冷却装置50及び加熱装置60と、実施例3と異なるマイコン430とを有している。マイコン430は、図示しないROM、CPU、RAM等を有している。
 マイコン430は、変換装置44を監視しており、商用電源46から電源プラグ8を通じて変換装置44に電力が供給されたことを検知すると、電圧検知装置80で検出された電池電圧に基づいて、組電池10を構成するリチウムイオン二次電池100のSOCを推定する。そして、予め設定されているプラグイン充電の電流値と現在のSOCの値とに基づいて、プラグイン充電期間(すなわち、プラグイン充電によってリチウムイオン二次電池100のSOCが100%に達するまでに要する充電時間)を算出する。その後、スイッチ47,48をOFFにすると共に、スイッチ43をONにする。これにより、商用電源46から供給される電力を用いて、組電池10を構成するリチウムイオン二次電池100を充電することができる。
 さらに、マイコン430は、商用電源46を用いてリチウムイオン二次電池100を充電する期間中、電圧検知装置80で検出された電池電圧に基づいて、組電池10を構成するリチウムイオン二次電池100のSOCを推定する。これにより、プラグイン充電がどの程度進行しているかを把握することができるので、プラグイン充電の前半が終了したか否かを判断することができる。具体的には、プラグイン充電を開始したときのリチウムイオン二次電池100のSOCが20%であった場合、推定SOCが60%に達したとき、プラグイン充電の前半が終了したと判断することができる。その後、SOCが100%に達したと判定したとき、組電池10の充電を停止させる。具体的には、スイッチ43をOFFにすると共に、スイッチ47,48をONにする。
 さらに、マイコン430は、まず、プラグイン充電前半の期間中、サーミスタ40を通じて検出したリチウムイオン二次電池100の電池温度Tが、45℃であるか否かを判断する。さらに、マイコン430は、リチウムイオン二次電池100の電池温度Tが45℃でないと判定した場合、リチウムイオン二次電池100の温度Tが45℃になるように、リチウムイオン二次電池100を加熱または冷却する制御を行う。具体的な制御方法は、前述の実施例2と同様である。
 このようにして、本実施例4では、温度制御装置420により、プラグイン充電前半の期間中、リチウムイオン二次電池100の電池温度を35℃以上55℃以下の範囲内(詳細には45℃)に保つことができる。これにより、リチウムイオン二次電池100の負極板156に析出した金属リチウムを、効率よくリチウムイオンに戻すことができる。従って、リチウムの析出により低下した電池容量を、効果的に回復させることができる。
 その後、本実施例4のマイコン430は、サーミスタ40を通じて検出したリチウムイオン二次電池100の電池温度Tが60℃であるか否かを判断する。さらに、マイコン430は、リチウムイオン二次電池100の電池温度Tが60℃でないと判定した場合、リチウムイオン二次電池100の温度Tが60℃になるように、リチウムイオン二次電池100を加熱または冷却する制御を行う。具体的な制御方法は、前述の実施例1~3と同様である。
 このように、本実施例4では、プラグイン充電前半の期間中、リチウムイオン二次電池100の電池温度を35℃以上55℃以下の範囲内(詳細には45℃)に保った後、プラグイン充電後半の期間中、リチウムイオン二次電池100の電池温度Tを55℃<T<65℃の範囲内(詳細には60℃)に保つことができる。これにより、プラグイン充電前半の期間中にリチウムイオンに戻すことができなかった金属リチウムを、効率よく失活(不活性化)させることができる。
 従って、本実施例4の電池システム36によれば、非水電解液140の分解を抑制しつつ、リチウムの析出により低下したリチウムイオン二次電池100の電池容量を効果的に回復させると共に、リチウムイオン二次電池100の安全性を高めることができる。
 次に、本実施例4の自動車31におけるリチウムイオン二次電池100の温度制御について、図14を参照して説明する。
 まず、ステップV1において、マイコン430は、電圧検知装置80で検出された電池電圧に基づいて、組電池10を構成するリチウムイオン二次電池100のSOCを推定する。次いで、ステップV2に進み、予め設定されているプラグイン充電の電流値と現在のSOCの値とに基づいて、プラグイン充電期間(すなわち、プラグイン充電によってリチウムイオン二次電池100のSOCが100%に達するまでに要する充電時間)を算出する。
 その後、ステップV3に進み、プラグイン充電を開始する。具体的には、スイッチ47,48をOFFにすると共に、スイッチ43をONにする。これにより、商用電源46から供給される電力を用いて、組電池10を構成するリチウムイオン二次電池100を充電することができる。
 次いで、ステップV4に進み、マイコン430は、サーミスタ40からの出力信号に基づいて、リチウムイオン二次電池100の温度Tを検出する。その後、マイコン430は、ステップV5~V9の処理を、前述の実施例2のステップU2~U6の処理と同様にして行う。
 次に、ステップVAに進み、マイコン430は、プラグイン充電期間の前半が終了したか否かを判断する。具体的には、プラグイン充電を開始したときのリチウムイオン二次電池100のSOCが20%であった場合、推定SOCが60%に達したとき、プラグイン充電の前半が終了したと判断することができる。なお、マイコン430は、プラグイン充電期間中、電圧検知装置80で検出された電池電圧に基づいて、組電池10を構成するリチウムイオン二次電池100のSOCを推定(算出)している。
 ステップVAにおいて、プラグイン充電期間の前半が終了していない(No)と判定した場合は、再び、ステップV4に戻り、上述の処理を繰り返す。一方、ステップVAにおいて、プラグイン充電期間の前半が終了した(Yes)と判定した場合は、ステップVBに進み、マイコン430は、サーミスタ40からの出力信号に基づいて、リチウムイオン二次電池100の温度Tを検出する。その後、マイコン430は、ステップVC~VHの処理を、前述の実施例3のステップT3~T8の処理と同様にして行う。
 このようにして、本実施例4では、プラグイン充電前半の期間中、リチウムイオン二次電池100の電池温度を35℃以上55℃以下の範囲内(詳細には45℃)に保った後、プラグイン充電後半の期間中、リチウムイオン二次電池100の電池温度Tを55℃<T<65℃の範囲内(詳細には60℃)に保つことができる。これにより、リチウムの析出により低下したリチウムイオン二次電池100の電池容量を効果的に回復させつつ、リチウムイオン二次電池100の安全性を高め、ひいては、自動車31の安全性を高めることができる。
 なお、本実施例4では、ステップV4~VAの処理が、第1温度制御に相当する。また、ステッVB~VHの処理が、第2温度制御に相当する。
 また、上述のステップV1~VHの処理(第1温度制御及び第2温度制御)は、例えば、プラグイン充電を行う毎に実施すると良い。また、リチウムイオン二次電池100の負極板156に析出したLiの量を推定し、この推定量が規定値に達した場合に限り、プラグイン充電時に実施するようにしても良い。
 以上において、本発明を実施例1~4に即して説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。

Claims (6)

  1.  リチウムイオン二次電池と、
     上記リチウムイオン二次電池の温度を制御する温度制御装置と、を備える
    電池システムであって、
     上記温度制御装置は、所定時間、上記リチウムイオン二次電池の温度Tを55℃<T<65℃の範囲内に保つ制御を行う
    電池システム。
  2. 請求項1に記載の電池システムであって、
     前記リチウムイオン二次電池は、
      自動車の駆動用電源として当該自動車に搭載されてなり、
     前記電池システムは、
      上記自動車の停車中に、外部電源から供給される電力を用いて上記リチウムイオン二次電池を充電可能とする構成を有し、
     前記温度制御装置は、
      上記外部電源から供給される電力を用いて上記リチウムイオン二次電池を充電する期間中、上記リチウムイオン二次電池の温度Tを55℃<T<65℃の範囲内に保つ制御を行う
    電池システム。
  3. 請求項1または請求項2に記載の電池システムであって、
     前記温度制御装置は、所定時間、前記リチウムイオン二次電池の温度を60℃に保つ制御を行う
    電池システム。
  4. 請求項1~請求項3のいずれか一項に記載の電池システムであって、
     前記温度制御装置は、前記リチウムイオン二次電池の温度Tを55℃<T<65℃の範囲内に保つ第2温度制御を行う前に、上記リチウムイオン二次電池の温度Tを35℃≦T≦55℃の範囲内に保つ第1温度制御を行う
    電池システム。
  5. 請求項4に記載の電池システムであって、
     前記温度制御装置は、
      前記第1温度制御として、前記リチウムイオン二次電池の温度Tを45℃に保つ制御を行い、
      前記第2温度制御として、上記リチウムイオン二次電池の温度Tを60℃に保つ制御を行う
    電池システム。
  6. 請求項1~請求項5のいずれか一項に記載の電池システムを備える自動車であって、
     前記リチウムイオン二次電池を、当該自動車の駆動用電源として搭載してなる
    自動車。
PCT/JP2009/053167 2009-02-23 2009-02-23 電池システム、及び、自動車 WO2010095260A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011500429A JP4905609B2 (ja) 2009-02-23 2009-02-23 電池システム、及び、自動車
CN2009801572772A CN102326289B (zh) 2009-02-23 2009-02-23 电池***和汽车
KR1020117019416A KR101192532B1 (ko) 2009-02-23 2009-02-23 전지 시스템 및 자동차
PCT/JP2009/053167 WO2010095260A1 (ja) 2009-02-23 2009-02-23 電池システム、及び、自動車
US13/207,495 US8643341B2 (en) 2009-02-23 2011-08-11 Battery system and automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/053167 WO2010095260A1 (ja) 2009-02-23 2009-02-23 電池システム、及び、自動車

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/207,495 Continuation US8643341B2 (en) 2009-02-23 2011-08-11 Battery system and automobile

Publications (1)

Publication Number Publication Date
WO2010095260A1 true WO2010095260A1 (ja) 2010-08-26

Family

ID=42633560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053167 WO2010095260A1 (ja) 2009-02-23 2009-02-23 電池システム、及び、自動車

Country Status (5)

Country Link
US (1) US8643341B2 (ja)
JP (1) JP4905609B2 (ja)
KR (1) KR101192532B1 (ja)
CN (1) CN102326289B (ja)
WO (1) WO2010095260A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013198169A (ja) * 2012-03-15 2013-09-30 Toyota Industries Corp 電力制御方法、車両、及び電力供給システム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110165829A1 (en) * 2010-02-25 2011-07-07 Ford Global Technologies, Llc Automotive vehicle and method for operating climate system of same
US20110302078A1 (en) 2010-06-02 2011-12-08 Bryan Marc Failing Managing an energy transfer between a vehicle and an energy transfer system
WO2015023861A1 (en) * 2013-08-15 2015-02-19 Robert Bosch Gmbh Elevated temperature li/metal battery system
US10090569B2 (en) * 2014-02-03 2018-10-02 Phinergy Ltd. Thermal battery for heating vehicles
EP3062381B1 (en) * 2015-02-26 2018-04-11 Magneti Marelli S.p.A. Cooling circuit with cooling fluid for lithium batteries, and a vehicle comprising said cooling circuit
DE102015208106A1 (de) 2015-04-30 2016-11-03 Robert Bosch Gmbh Verfahren zum Einstellen einer Soll-Betriebstemperatur eines elektrischen Energiespeichers
CN116487794A (zh) 2017-01-09 2023-07-25 米沃奇电动工具公司 用于向电气设备提供输出电力的设备
JP6470804B1 (ja) * 2017-08-31 2019-02-13 株式会社ソフトエナジーコントロールズ コンタクト機能付きマルチチャンネル充放電電源
JP7470642B2 (ja) 2018-10-25 2024-04-18 株式会社半導体エネルギー研究所 二次電池の充電制御回路
CN110901397A (zh) * 2019-11-28 2020-03-24 湖南海博瑞德电智控制技术有限公司 一种用于新能源汽车的锂离子电池管理***
CN117681665B (zh) * 2024-02-04 2024-05-17 宁德时代新能源科技股份有限公司 电池控制方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963652A (ja) * 1995-08-25 1997-03-07 Nec Corp 電池パック
JP2006156024A (ja) * 2004-11-26 2006-06-15 Sanyo Electric Co Ltd 電池システム装置
JP2007087731A (ja) * 2005-09-21 2007-04-05 Gs Yuasa Corporation:Kk 電池の保管容器
JP2008210729A (ja) * 2007-02-28 2008-09-11 Hitachi Vehicle Energy Ltd リチウム二次電池
JP2009009888A (ja) * 2007-06-29 2009-01-15 Sanyo Electric Co Ltd 車両用の電源装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3125198B2 (ja) * 1991-12-04 2001-01-15 本田技研工業株式会社 電気自動車におけるバッテリ温度制御装置
JP2001052760A (ja) 1999-08-04 2001-02-23 Sony Corp 非水電解液二次電池の充電方法
US20050253561A1 (en) * 2004-05-11 2005-11-17 Tibbs Bobby L Temperature sensitive charging of batteries with simple chargers
CN100433447C (zh) * 2004-09-24 2008-11-12 株式会社东芝 蓄电***、再生蓄电***和汽车
JP4314223B2 (ja) * 2004-09-24 2009-08-12 株式会社東芝 回生用蓄電システム、蓄電池システムならびに自動車
JP2009176602A (ja) 2008-01-25 2009-08-06 Toyota Motor Corp 電池システム、及び、自動車
JP2010198759A (ja) 2009-02-23 2010-09-09 Toyota Motor Corp 電池システム、及び、自動車

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963652A (ja) * 1995-08-25 1997-03-07 Nec Corp 電池パック
JP2006156024A (ja) * 2004-11-26 2006-06-15 Sanyo Electric Co Ltd 電池システム装置
JP2007087731A (ja) * 2005-09-21 2007-04-05 Gs Yuasa Corporation:Kk 電池の保管容器
JP2008210729A (ja) * 2007-02-28 2008-09-11 Hitachi Vehicle Energy Ltd リチウム二次電池
JP2009009888A (ja) * 2007-06-29 2009-01-15 Sanyo Electric Co Ltd 車両用の電源装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013198169A (ja) * 2012-03-15 2013-09-30 Toyota Industries Corp 電力制御方法、車両、及び電力供給システム

Also Published As

Publication number Publication date
CN102326289A (zh) 2012-01-18
US20110291622A1 (en) 2011-12-01
KR20110111493A (ko) 2011-10-11
US8643341B2 (en) 2014-02-04
JPWO2010095260A1 (ja) 2012-08-16
JP4905609B2 (ja) 2012-03-28
CN102326289B (zh) 2012-12-12
KR101192532B1 (ko) 2012-10-17

Similar Documents

Publication Publication Date Title
JP4905609B2 (ja) 電池システム、及び、自動車
JP2010198759A (ja) 電池システム、及び、自動車
US10770766B2 (en) Heating control device
CA2732617C (en) Control method for lithium ion secondary battery, and lithium ion secondary battery system
US9557388B2 (en) Battery control device
JP6551749B2 (ja) 二次電池の容量回復方法および容量回復システム
JP2011151943A (ja) 二次電池システム、及びハイブリッド車両
JP6500789B2 (ja) 二次電池の制御システム
JP2014217179A (ja) 車両
JP2010049882A (ja) 車両
JP6589773B2 (ja) 電動車両
JP5737336B2 (ja) 電池システム、車両及び電池搭載機器
JP2012016109A (ja) リチウムイオン電池の充電方法および充電装置
JP5446461B2 (ja) 二次電池の充電方法およびその充電システム,車両,充電設備
US20150004443A1 (en) Apparatus for controlling lithium-ion battery and method of recovering lithium-ion battery
JP5521989B2 (ja) 電池システム、電池システム搭載車両及び二次電池の加熱方法
JP5673422B2 (ja) 二次電池の充電システム
JP6699533B2 (ja) 電池システム
JP2010118266A (ja) リチウムイオン二次電池の内部抵抗低減方法、及び、二次電池システム
JP2009176602A (ja) 電池システム、及び、自動車
JP6627675B2 (ja) 満充電容量回復処理方法
JP4513917B2 (ja) 二次電池システム
JP2020074258A (ja) 充電装置
JP2017022082A (ja) リチウムイオン二次電池の制御装置
JP2017084636A (ja) 電池制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980157277.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840366

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011500429

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117019416

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09840366

Country of ref document: EP

Kind code of ref document: A1