WO2010094378A1 - Organische elektronische vorrichtung - Google Patents

Organische elektronische vorrichtung Download PDF

Info

Publication number
WO2010094378A1
WO2010094378A1 PCT/EP2010/000330 EP2010000330W WO2010094378A1 WO 2010094378 A1 WO2010094378 A1 WO 2010094378A1 EP 2010000330 W EP2010000330 W EP 2010000330W WO 2010094378 A1 WO2010094378 A1 WO 2010094378A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
organic
aromatic
group
substituted
Prior art date
Application number
PCT/EP2010/000330
Other languages
English (en)
French (fr)
Inventor
Esther Breuning
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to KR1020117021690A priority Critical patent/KR101751544B1/ko
Priority to JP2011550439A priority patent/JP5677983B2/ja
Priority to CN201080008207.3A priority patent/CN102317408B/zh
Priority to US13/201,981 priority patent/US9066410B2/en
Publication of WO2010094378A1 publication Critical patent/WO2010094378A1/de

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • C07D221/06Ring systems of three rings
    • C07D221/14Aza-phenalenes, e.g. 1,8-naphthalimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D259/00Heterocyclic compounds containing rings having more than four nitrogen atoms as the only ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B1/00Dyes with anthracene nucleus not condensed with any other ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B3/00Dyes with an anthracene nucleus condensed with one or more carbocyclic rings
    • C09B3/02Benzathrones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B3/00Dyes with an anthracene nucleus condensed with one or more carbocyclic rings
    • C09B3/22Dibenzanthrones; Isodibenzanthrones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • C09K2211/1081Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1475Heterocyclic containing nitrogen and oxygen as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1483Heterocyclic containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1491Heterocyclic containing other combinations of heteroatoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to organic electronic devices, in particular organic electroluminescent devices containing aromatic nitrogen heterocycles.
  • OLEDs organic electroluminescent devices
  • OLEDs organic electroluminescent devices
  • AIQ 3 has long been used as an electron transport material (eg US Pat. No. 4,539,507), but has several disadvantages: It can not be vapor-deposited without residue, since it partially decomposes at the sublimation temperature, which is a major problem, in particular for production plants. This has the consequence that the Aufdampfarion must always be cleaned or changed. Furthermore, decomposition products of AIQ 3 enter the OLED, where they contribute to a reduced lifetime and reduced quantum and power efficiency. AIQ 3 also has low electron mobility, resulting in higher voltages and lower power efficiency. To avoid short circuits in the display, one would like to increase the layer thickness; this is not possible with AIQ 3 because of the low charge carrier mobility and the resulting increase in voltage.
  • hexaazatriphenylene derivatives are also used as hole injection or hole transport materials in organic electroluminescent devices according to the prior art (eg WO 01/049806).
  • WO 01/049806 hexaazatriphenylene derivatives, especially those substituted by cyano groups, are also used as hole injection or hole transport materials in organic electroluminescent devices according to the prior art (eg WO 01/049806).
  • WO 01/049806 organic electroluminescent devices
  • Heptaazaphenalen derivatives in particular those which are substituted by aromatic groups, alkoxy groups or amino groups, are already known in the literature as protection against UV radiation (eg WO 07/006807) or as flame retardants (for example WO 01 / 021698).
  • protection against UV radiation eg WO 07/006807
  • flame retardants for example WO 01 / 021698.
  • a Use of such compounds in organic electronic devices is not known.
  • the invention thus relates to an organic electronic device comprising cathode, anode and at least one organic layer, which is arranged between cathode and anode and which contains at least one compound according to formula (1) or formula (2),
  • X is the same or different CR 1 or N at each occurrence;
  • Y is identical or different at each occurrence and is a bivalent group selected from the group consisting of B (R 1 ) 2 , C (R 1 ) 2, - A -
  • R is identical or different at each occurrence H, D, F, Cl 1 Br, I,
  • Aryloxy or heteroaryloxy group having 5 to 60 aromatic ring atoms which may be substituted by one or more radicals R 2 , or a combination of these systems;
  • Ar is the same or different at each occurrence, an aromatic or heteroaromatic ring system having 5 to 30 aromatic ring atoms, with one or more non-aromatic
  • R 1 may be substituted; it is also possible for two radicals Ar, which bind to the same nitrogen or phosphorus atom, to be bonded by a single bond or a bridge selected from B (R 2 ), C (R 2 ) 2 ,
  • R 2 is identical or different at each occurrence H, D or an aliphatic, aromatic and / or heteroaromatic hydrocarbon radical having 1 to 20 C atoms, in which also H atoms may be replaced by F; It can have two or more adjacent
  • Substituents R 2 also together form a mono- or polycyclic, aliphatic or aromatic ring system
  • n 0, 1, 2, 3, 4, 5 or 6;
  • n 0, 1, 2 or 3;
  • An organic electronic device in the sense of the present invention is understood to mean a device which contains anode and cathode and at least one layer arranged between the anode and the cathode, this layer comprising at least one organic layer or organometallic compound.
  • anode and cathode may consist of or contain purely inorganic materials.
  • the organic electronic device is particularly selected from the group consisting of organic electroluminescent devices (OLEDs) 1 organic integrated circuits (O-ICs), organic FeId effect transistors (O-FETs), organic thin film transistors (O-TFTs), organic light emitting transistors (O-LETs), organic solar cells (O-SCs), organic optical detectors, organic photoreceptors, organic field quench devices (O-FQDs), light-emitting electrochemical cells (LECs), organic laser diodes (O-lasers) and organic plasmon-emitting device "(DM Koller et al., Nature Photonics 2008, 1-4), but in particular organic electroluminescent devices (OLEDs).
  • O-ICs organic integrated circuits
  • O-FETs organic FeId effect transistors
  • OF-TFTs organic thin film transistors
  • O-LETs organic light emitting transistors
  • O-SCs organic solar cells
  • organic optical detectors organic photoreceptors
  • organic field quench devices O-
  • An aryl group in the sense of this invention contains 6 to 60 C atoms;
  • a heteroaryl group contains 2 to 60 C atoms and at least 1 heteroatom, with the proviso that the sum of C atoms and heteroatoms gives at least 5.
  • the heteroatoms are preferably selected from N, O and / or S.
  • a simple aromatic cycle ie benzene, or a simple heteroaromatic cycle, for example pyridine, pyrimidine, thiophene, etc., or a fused aryl or heteroaryl group, for example naphthalene, anthracene, pyrene, quinoline, isoquinoline, etc., understood.
  • An aromatic ring system in the sense of this invention contains 6 to 60 carbon atoms in the ring system.
  • a heteroaromatic ring system in the sense of this invention contains 2 to 60 C atoms and at least one heteroatom in the ring system, with the proviso that the sum of C atoms and heteroatoms gives at least 5.
  • the heteroatoms are preferably selected from N, O and / or S.
  • the aromatic ring system is to be understood as meaning a system which does not necessarily contain only aryl or heteroaryl groups but in which several aryl or heteroaryl groups are also replaced by a short, nonaromatic moiety (preferably less than 10% of the total) H different atoms), such.
  • N or O atom may be interrupted.
  • systems such as 9,9'-spirobifluorene, 9,9-diaryl fluorene, triarylamine, diaryl ether, stilbene, benzophenone, etc. are to be understood as aromatic ring systems in the context of this invention.
  • aromatic or heteroaromatic ring system is understood as meaning systems in which a plurality of aryl or heteroaryl groups are linked together by single bonds, for example biphenyl, terphenyl or bipyridine.
  • a C 1 - to C 4 -alkyl group in which individual H atoms or CH 2 groups can also be substituted by the abovementioned groups particularly preferably the radicals methyl, ethyl, n-propyl, i Propyl, n-butyl, i-butyl, s-butyl, t-butyl, 2-methylbutyl, n-pentyl, s -pentyl, cyclopentyl, n -hexyl, cyclohexyl, n -heptyl, cycloheptyl, n-octyl, cyclooctyl , 2-ethylhexyl, trifluoromethyl, pentafluoroethyl and 2,2,2-trifluoroethyl.
  • an alkenyl group is understood as meaning, in particular, ethenyl, propenyl, butenyl, pentenyl, cyclopentenyl, hexenyl, cyclohexenyl, heptenyl, cycloheptyl, octenyl and cyclooctenyl.
  • an alkynyl group is understood as meaning, in particular, ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl or octynyl.
  • a C 1 - to C 4 -alkoxy group is particularly preferably understood as meaning methoxy, trifluoromethoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, s-butoxy, t-butoxy or 2-methylbutoxy.
  • aromatic or heteroaromatic ring system having 5-60 aromatic ring atoms, which may be substituted in each case with the abovementioned radicals R and which may be linked via any positions on the aromatic or heteroaromatic, are understood in particular groups which are derived from benzene, Naphthalene, anthracene, phenanthrene, benzanthracene, benzphenanthrene, pyrene, chrysene, perylene, fluoranthene, naphthacene, pentacene, benzpyrene, biphenyl, biphenylene, terphenyl, Terphenylene, fluorene, spirobifluorene, dihydrophenanthrene, dihydropyrene, tetrahydropyrene, cis or trans indenofluorene, truxene, isotruxene, spirotruxene, spiroisotruxene, furan, benzofuran
  • the compounds have the formula (1) or formula (2) has a glass transition temperature Tg of greater than 70 ° C, particularly preferably greater than 100 0 C, most preferably greater than 110 0 C.
  • R 1 in formula (4) and formula (6) is hydrogen or deuterium, in particular hydrogen. Very particular preference is given to the compounds of the formula (3).
  • the index n is in
  • the subscript m in compounds of the formula (2), (5) and (6) is 0, 1 or 2, particularly preferably 1.
  • the subscript p in the formulas (1), (3) and (4) is the same or different at each occurrence for 0 or 1 and in the formula (2), (5) and (6) the same or different at each occurrence for 1 or 2.
  • R in the compounds of the formulas (1) to (6) is identical or different at each occurrence for F, CN, CF 3 , or an aromatic or heteroaromatic ring system having 5 to 30 aromatic ring atoms, in each case may be substituted by one or more radicals R 1 , but is preferably unsubstituted.
  • aromatic or heteroaromatic ring systems which can form the group R are selected from the group consisting of phenyl, 2-, 3- or 4-pyridyl, pyrazinyl, 2-, 4- or 5-pyrimidinyl, 3- or 4- pyridazinyl, Ortho-, meta- or para-biphenyl, ortho-, meta- or para-terphenyl, 2-fluorenyl, 2-spirobifluorenyl, 1-naphthyl, 2-naphthyl, anthracenyl, phenyl-anthracenyl, 1- or 2-naphthylanthracenyl, binaphthyl , Pyrenyl, fluoranethane, 2-, 3-, 4-, 5-, 6- or 7-benzanthracenyl, N-imidazolyl, N-benzimidazolyl, phenyl-N-benzimidazolyl, N-phenylbenzimidazolyl, phenyl
  • radicals R are the same. This applies in particular to the preferred and particularly preferred radicals R mentioned above. This preference is based on the better synthetic accessibility of the compounds.
  • Y when p is other than 0, is identical or different at each occurrence for a divalent group selected from the group consisting of C (R 1 ) 2 , NR 1 and a bivalent aryl or heteroaryl group having 5 to 14 aromatic ring atoms, which may be substituted by one or more radicals R 1 .
  • Y in the formulas (1), (3) and (4) is the same or different at each occurrence selected from a single bond, NR 1 or a bivalent aryl or heteroaryl group having 5 to 10 aromatic ring atoms, which is substituted with one or more R 1 may be substituted.
  • Y in the formulas (2), (5) and (6) is the same or different at each occurrence of NR 1 .
  • Examples of preferred compounds according to the formulas (1) to (6) are the structures (1) to (90) depicted below.
  • Amino groups is possible. Furthermore, the introduction of aromatic substituents by Friedel-Crafts reaction is possible. The introduction of aromatic or heteroaromatic substituents is also possible by reaction of Trichlorheptaazaphenalens with organometallic derivatives of aromatic or heteroaromatic compounds, in particular with organolithium or Grignard compounds. Furthermore, palladium-catalyzed coupling reactions, in particular with boronic acid derivatives (Suzuki coupling) or organozinc compounds (Negishi coupling), are possible for the introduction of aromatic substituents. Diarylamino groups can be introduced by palladium-catalyzed Hartwig-Buchwald coupling.
  • the halogen function can be converted into an electrophilic group by transmetalation with organolithium compounds or Grignard compounds, which can then be reacted with a plurality of electrophiles, such as, for example, an electrophilic group.
  • electrophiles such as, for example, an electrophilic group.
  • aryl boron halides aldehydes, ketones, nitriles, esters, halo esters, carbon dioxide, arylphosphine halides, halosulfinic acids, haloarylsulfonic, etc.
  • the trinitro compound is accessible by oxidation from the triaminoheptaazaphenalene.
  • Unsymmetrically substituted compounds can each be obtained by adjusting the stoichiometry.
  • the corresponding triamino compound can serve from starting compound.
  • the amino groups can be converted by oxidation in the nitro groups.
  • the amino groups can be substituted, for example by Hartwig-Buchwald reaction.
  • Boron esters can also be used as monomers for the production of corresponding oligomers, polymers or as a core of dendrimers, these oligomers, polymers and dendrimers in turn for use in organic electronic Vorrich- tions, in particular in organic electroluminescent devices are.
  • the oligomerization or polymerization is preferably carried out via the halogen functionality or the boronic acid functionality.
  • An oligomer in the context of this invention is understood as meaning a compound which has about 3 to 9 repeat units.
  • a polymer according to this invention has about 10 or more repeat units.
  • Another object of the invention are therefore organic electronic devices, in particular organic Elektrolumineszenzvor- directions containing at least one oligomer, polymer or dendrimer, which contains one or more compounds of formula (1) to (6), wherein one or more radicals R bonds of the compound according to formula (1) to (6) to the polymer, oligomer or dendrimer.
  • the polymers, oligomers or dendrimers may be conjugated, partially conjugated or non-conjugated.
  • the oligomers or polymers may be linear or branched.
  • the units according to formulas (1) to (6) can either be linked directly to one another or they can be bonded via a divalent group, such as, for example, B. via a group Y or via a substituted or unsubstituted alkylene group, via a heteroatom or via a bivalent aromatic or heteroaromatic group, be linked together.
  • branched a divalent group
  • Structures may, for example, be linked to a branched oligomer or polymer by three or more units of formula (1) to (6) via a trivalent or higher valent group, for example via a trivalent or more valent aromatic or heteroaromatic group.
  • the units of the formula (1) to (6) especially as a branching point in oligomers, polymers and dendrimers, since just the triple chlorine-substituted units are well synthetic accessible.
  • the corresponding monomers are homopolymerized or copolymerized with further monomers.
  • Suitable and preferred comonomers are selected from fluorenes (eg according to EP 842208 or WO 00/22026), spirobifluorenes (eg according to EP 707020, EP 894107 or WO 06/061181), para-phenylenes (eg.
  • WO 92/18552 carbazoles (eg according to WO 04/070772 or WO 04/113468), thiophenes (eg according to EP 1028136), dihydric phenanthrenes (eg according to WO 05/014689) , cisones (for example according to WO 05/040302), phenanthrenes (for example according to WO 05/104264), cisones (for example according to WO 04/041901 or WO 04/113412), or WO 07/017066) or even more of these units.
  • the polymers, oligomers and dendrimers usually also contain further units, for example emitting (fluorescent or phosphorescent) units, such as.
  • Vinyltriarylamines for example according to WO 07/068325
  • phosphorescent metal complexes for example according to WO 06/003000
  • charge transport units for example, WO 07/068325
  • the repeat olefins of the invention are particularly suitable as charge transport units for electrons.
  • Another object of the invention is the use of compounds of the formula (1), (2), (3), (4), (5) or (6) or corresponding oligomers, polymers or dendrimers in organic electronic devices, in particular organic electroluminescent devices.
  • the organic electroluminescent device includes an anode, a cathode and at least one emitting layer, wherein at least one organic layer, which may be the emitting layer or another layer, comprises at least one compound according to formulas (1) to (6) or a corresponding oligomer, polymer or dendrimer contains.
  • the organic electroluminescent device may contain further layers. These are for example selected from in each case one or more hole injection layers, hole transport layers, hole blocking layers, electron transport layers, electron injection layers, electron blocking layers, exciton blocking layers, charge generation layers (charge generation layers) and / or organic or inorganic p / n junctions.
  • the layers in particular the charge transport layers, may also be doped.
  • the doping of the layers may be advantageous for improved charge transport. It should be noted, however, that not necessarily each of these layers must be present and the choice of layers always depends on the compounds used and in particular also on the fact that it is a fluorescent or phosphorescent electroluminescent device.
  • the organic electroluminescent device contains a plurality of emitting layers, wherein at least one organic layer, which may be an emitting layer or another layer, contains at least one compound according to one of the formulas (1) to (6). Particularly preferably, these emission layers have a total of several emission maxima between 380 nm and 750 nm, so that overall white emission results, d. H.
  • various emitting compounds are used which can fluoresce or phosphoresce and which emit blue and yellow, orange or red light.
  • three-layer systems ie systems with three emitting layers, wherein at least one of these layers contains at least one compound according to one of the formulas (1) to (6) and wherein the three layers show blue, green and orange or red emission (for the principal For construction, see, for example, WO 05/011013).
  • white emission emitters which have broadband emission bands and thereby show white emission.
  • the compounds according to formulas (1) to (6) are used as hole injection or hole injection methods.
  • used transport material if at least one substituent R, preferably at least two substituents R, particularly preferably all three substituents R stand for an electron-deficient group.
  • the hole transport is not via the HOMO but via the LUMO ("lowest unoccupied molecular orbital", lowest unoccupied molecular orbital).
  • Particularly preferred substituents R are then selected from
  • the electron-poor heterocycles are preferably selected from pyridine, pyrazine, pyrimidine, pyridazine, triazine, pyrazole, imidazole, triazole, benzimidazole, quinoline, isoquinoline, quinoxaline, thiadiazole, thiazole or oxadiazole, which in each case may be substituted by one or more radicals R 1 , Since the LUMO of these compounds is equally deep or even lower compared to the Hexaazatriphenylenderivaten used in the prior art as Lochinjetechnischien, the compounds of formula (1) to (6) are as good or better than the materials according to the prior art as Lochinjetechnischs- or hole transport materials.
  • a hole injection material in the context of this invention is to be understood as a compound which is used in a hole injection layer.
  • a hole injection layer in the sense of this invention is a layer which directly adjoins the anode.
  • the hole injection layer in the structure of the organic electroluminescent device follows a hole transporting layer so that the hole injection layer is sandwiched between the anode and a hole transporting layer.
  • a hole transport layer in the sense of the present invention is a layer which lies between a hole injection layer and the emitting layer.
  • the electroluminescent device according to the invention comprises a structure comprising, in this order: anode - hole injection layer containing at least one compound according to one of the formulas (1) to (6) - hole transport layer, preferably containing at least one triaryl amine derivative - emitting layer - cathode. It is also possible in this structure to use two or more hole transport layers, which preferably all contain at least one triarylamine derivative.
  • a further preferred construction of the electroluminescent device comprises in this order: anode hole injection layer, preferably containing at least one triarylamine derivative hole transport layer, containing at least one compound according to one of the formulas (1) to (6) hole transport layer, preferably containing at least one triarylamine derivative emitting layer Cathode.
  • a further hole transport layer preferably containing at least one Triarylaminderivat is introduced and / or that instead of a hole transport layer, which are preferred a triarylamine derivative, two or more hole transport layers, which preferably each contain at least one triarylamine derivative, are used between the layer containing the compound according to any one of formulas (1) to (6) and the emitting layer.
  • these devices may furthermore contain one or more of the other layers listed above, for example electron transport layers, etc.
  • the compounds of the formula (1) to (6) are used as electron transport material or as hole blocking material in an electron transport layer or a hole blocking layer.
  • a hole blocking layer in the sense of this invention is a layer which lies between an emitting layer and an electron transport layer and directly adjoins the emitting layer.
  • the substituents R identical or different in each occurrence, are an aromatic or heteroaromatic ring system, which are preferably selected from the abovementioned groups.
  • the compound is doped with electron donor compounds. This is especially true for use in an electron transport layer. Suitable dopants are alkali metals or alkali metal complexes or compounds, in particular lithium compounds, for example lithium quinolinate.
  • the compounds according to formulas (1) to (6) are used as charge generation material in a charge generation layer.
  • the compounds of the formula (1) to (6) are used as matrix material for an emitting compound, in particular for a phosphorescent compound. This is especially true for compounds in which R is an aryl or heteroaryl group.
  • the phosphorescent compound is preferably a red or green phosphorescent compound.
  • the materials are also suitable for other organic electronic devices, as mentioned above.
  • low work function metals, metal alloys or multilayer structures of various metals are preferable, such as alkaline earth metals, alkali metals, main group metals or lanthanides (e.g., Ca, Ba, Mg, Al, In, Mg, Yb, Sm , Etc.).
  • alkaline earth metals alkali metals
  • main group metals or lanthanides e.g., Ca, Ba, Mg, Al, In, Mg, Yb, Sm , Etc.
  • further metals which have a relatively high work function such as, for example, B. Ag, which then usually combinations of metals, such as Ca / Ag or Ba / Ag, are used.
  • metal alloys in particular alloys of an alkali metal or alkaline earth metal and silver, particularly preferably an alloy of Mg and Ag. It may also be preferred to introduce between a metallic cathode and the organic semiconductor a thin intermediate layer of a material with a high dielectric constant. Suitable for this purpose are, for example, alkali metal or alkaline earth metal fluorides, but also the corresponding oxides or carbonates (for example LiF, Li 2 O, CsF, Cs 2 CO 3 , BaF 2 , MgO, NaF 1, etc.). The layer thickness of this intermediate layer is preferably between 0.5 and 5 nm.
  • the anode of the electronic device of the present invention high work function materials are preferred.
  • the anode has a work function greater than 4.5 eV. Vacuum up.
  • Metals with high redox potential suitable such as Ag, Pt or Au.
  • metal / metal oxide electrodes for example Al / Ni / NiO ⁇ , Al / PtO ⁇
  • at least one of the electrodes must be transparent to allow either the irradiation of the organic material (O-SC) or the outcoupling of light (OLED / PLED, O-laser).
  • O-SC organic material
  • O-laser O-laser
  • a preferred construction uses a transparent anode.
  • Preferred anode materials here are conductive mixed metal oxides. Particularly preferred are indium tin oxide (ITO) or indium zinc oxide (IZO). Preference is furthermore given to conductive, doped organic materials, in particular conductive doped polymers.
  • the device is patterned, contacted, and finally hermetically sealed according to application Qe, as the life of such devices is drastically reduced in the presence of water and / or air.
  • the emitting layer may contain fluorescent and / or phosphorescent dopants, preferably in each case in combination with a matrix material (host material).
  • Suitable fluorescent dopants are selected from the class of monostyrylamines, distyrylamines, tristyrylamines, tetrastyrylamines, styrylphosphines, styryl ethers and arylamines.
  • a monostyrylamine is meant a compound containing a substituted or unsubstituted styryl group and at least one, preferably aromatic, amine.
  • distyrylamine is a compound understood tion containing two substituted or unsubstituted styryl groups and at least one, preferably aromatic, amine.
  • a tristyrylamine is understood as meaning a compound which contains three substituted or unsubstituted styryl groups and at least one, preferably aromatic, amine.
  • a tetrastyrylamine is meant a compound containing four substituted or unsubstituted styryl groups and at least one, preferably aromatic, amine.
  • the styryl groups are particularly preferred stilbenes, which may also be further substituted.
  • Corresponding phosphines and ethers are defined in analogy to the amines.
  • An arylamine or an aromatic amine in the context of this invention is understood as meaning a compound which contains three substituted or unsubstituted aromatic or heteroaromatic ring systems bonded directly to the nitrogen.
  • At least one of these aromatic or heteroaromatic ring systems is preferably a fused ring system, more preferably at least 14 aromatic ring atoms.
  • Preferred examples of these are aromatic anthraceneamines, aromatic anthracenediamines, aromatic pyrenamines, aromatic pyrenediamines, aromatic chrysenamines or aromatic chrysenediamines.
  • aromatic anthracene amine is meant a compound in which a diarylamino group is bonded directly to an anthracene group, preferably in the 9-position.
  • An aromatic anthracenediamine is understood to mean a compound in which two diarylamino groups are bonded directly to an anthracene group, preferably in the 9,10-position.
  • Aromatic pyrenamines, pyrenediamines, chrysenamines and chrysenediamines are defined analogously thereto, the diarylamino groups being preferably attached to the pyrene in the 1-position or in the 1,6-position.
  • Further preferred dopants are selected from indenofluorenamines or -diamines, for example according to WO 06/122630, benzoindenofluorene-amines or -diamines, for example according to WO 08/006449, and dibenzoindenofluorenamines or -diamines, for example according to
  • WO 07/140847 examples of dopants from the class of styrylamines are substituted or unsubstituted tristilbenamines or the dopants described in WO 06/000388, WO 06/058737, WO 06/000389, WO 07/065549 and WO 07/115610. Further preferred are those in the unpublished application DE 102008035413.9 disclosed condensed hydrocarbons.
  • fluorescent dopants are the structures depicted in the following table, as well as the derivatives of these structures disclosed in JP 06/001973, WO 04/047499, WO 06/098080, WO 07/065678, US 2005/0260442 and WO 04/092111.
  • Suitable host materials for the fluorescent emitters are selected from the classes of the oligoarylenes (for example 2,2 ', 7,7'-tetraphenylspirobifluorene according to EP 676461 or dinaphthylanthracene), in particular the oligoarylenes containing condensed aromatic groups, the oligo- arylenevinylenes (eg DPVBi or spiro-DPVBi according to EP 676461), the polypodal metal complexes (eg according to WO 04/081017), the hole-conducting compounds (eg according to WO 04/058911), the electron-conducting compounds, in particular Ketones, phosphine oxides, sulfoxides, etc.
  • the oligoarylenes for example 2,2 ', 7,7'-tetraphenylspirobifluorene according to EP 676461 or dinaphthylanthracene
  • Particularly preferred host materials are selected from the classes of oligoarylenes containing naphthalene, anthracene, Benzanthracen, Benzophenanthren and / or pyrene or atropisomers of these compounds, the oligoarylenevinylenes, the ketones, the phosphine oxides and the sulfoxides.
  • Very particularly preferred host materials are selected from the classes of oligoarylenes containing anthracene, Benzanthracen, Benzophenanthren and / or pyrene or atropisomers of these compounds.
  • an oligoarylene is to be understood as meaning a compound in which at least three aryl or arylene groups are bonded to one another.
  • Suitable host materials include, for example, the materials depicted in the following table, as well as derivatives of these materials, as described in WO 04/018587, WO 08/006449, US 5935721, US 2005/0181232, JP 2000/273056, EP 681019, US 2004 / 0247937 and US 2005/0211958.
  • Particularly suitable as phosphorescent compounds are compounds which emit light, preferably in the visible range, with suitable excitation and also contain at least one atom of atomic number greater than 20, preferably greater than 38 and less than 84, particularly preferably greater than 56 and less than 80.
  • Preferred phosphorescence emitters are compounds which are copper, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum, silver, gold or europium, especially compounds containing iridium or platinum.
  • all luminescent metal complexes which contain the abovementioned metal are referred to as phosphorescent compounds.
  • Suitable phosphorescent emitters may be the
  • Suitable matrix materials for the phosphorescent emitter are selected from the group consisting of aromatic ketones, phosphine oxides, sulfoxides and sulfones, eg. B. according to WO 04/013080, WO 04/093207, WO 06/005627 or not disclosed application DE 102008033943.1, triarylamines, carbazole derivatives, for. B. CBP (N 1 N-Biscarbazolylbiphenyl) or in WO 05/039246, US 2005/0069729, JP 2004/288381, EP 1205527 or WO 08/086851 disclosed carbazole derivatives, cis- and trans -indolocarbazole derivatives, z. B. according to WO 07/063754 or WO 08/056746, Azacarbazolen, z. B. according to EP
  • bipolar matrix materials e.g. B. according to WO 07/137725, silanes, z. B. according to WO 05/111172, azaboroles or boronic esters, for. B. according to WO 06/117052, triazine derivatives, z. B. according to the unpublished application DE 102008036982.9, WO 07/063754 or WO 08/056746, or zinc complexes, for. B. according to WO 09/062578.
  • Suitable charge transport materials as used in Lochinjetechnische transport layer or in the electron transport layer of the organic electroluminescent device according to the invention
  • Examples of preferred hole transport materials which can be used in a hole transport or hole injection layer in the electroluminescent device according to the invention are indenofluorenamines and derivatives (for example according to WO 06/122630, WO 06/100896 or the unpublished application DE 102008024182.2), the amine derivatives disclosed in EP 1661888, hexaazatriphenylene derivatives (for example according to WO 01/049806), fused aromatic amine derivatives (for example according to US 5,061,569), the amine derivatives disclosed in WO 95/09147, monobenzoindenofluoreneamines (e.g.
  • WO 08/006449 or dibenzoindenofluoreneamines (eg according to WO 07/140847).
  • Further suitable hole transport and hole injection materials are derivatives of the abovementioned compounds, as described in JP 2001/226331, EP 676461, EP 650955, WO 01/049806, US 4780536, WO 98/30071, EP 891121, EP 1661888, JP 2006/253445 , EP 650955, WO 06/073054 and US 5061569 are disclosed.
  • Suitable hole transport or hole injection materials are, for example, the materials listed in the following table.
  • Suitable electron transport or electron injection materials that can be used in the electroluminescent device according to the invention are, for example, the materials listed in the following table. Further suitable electron transport and electron injection materials are derivatives of the above-depicted compounds as disclosed in JP 2000/053957, WO 03/060956, WO 04/028217 and WO 04/080975.
  • an organic electroluminescent device characterized in that one or more layers are coated with a sublimation process.
  • the materials are vacuum deposited in vacuum sublimation at an initial pressure less than 10 "5 mbar, preferably less than 10 " 6 mbar. It should be noted, however, that the initial pressure may be even lower, for example less than 10 "7 mbar.
  • an organic electroluminescent device characterized in that one or more layers are coated with the OVPD (Organic Vapor Phase Deposition) method or with the aid of a carrier gas sublimation.
  • the materials are applied at a pressure between 10 "applied 5 mbar and 1 bar.
  • OVJP organic vapor jet printing
  • the materials are applied directly through a nozzle and patterned (eg. BMS Arnold et al., Appl. Phys. Lett., 2008, 92, 053301).
  • an organic electroluminescent device characterized in that one or more layers of solution, such. B. by spin coating, or with any printing process, such.
  • any printing process such as screen printing, flexographic printing or offset printing, but particularly preferably LITI (Light Induced Thermal Imaging, thermal transfer printing) or ink Jet printing (inkjet printing) can be made.
  • LITI Light Induced Thermal Imaging, thermal transfer printing
  • ink Jet printing inkjet printing
  • soluble compounds are needed. High solubility can be achieved by suitable substitution of the compounds.
  • solutions of individual materials can be applied, but also solutions containing several compounds, for example matrix material and dopant.
  • the compounds according to the invention When used in organic electroluminescent devices, the compounds according to the invention have the following surprising advantages over the prior art:
  • the compounds of formulas (1) to (6) have a high thermal stability and can sublime undecomposed.
  • the compounds according to the formulas (1) to (6) in particular compounds of the formula (3) which are substituted with electron-poor substituents, in particular F, CN and / or electron-poor heterocycles, are very suitable as hole injection material or As a hole transport material for use in a hole injection layer or in a hole transport layer and lead in this use to high efficiencies, in particular to high power efficiencies, and long lifetimes.
  • the compounds according to the formulas (1) to (6) are very suitable as electron transport material or as hole blocking material for use in an electron transport layer or in a hole blocking layer and lead in this Use to high efficiencies, especially high power efficiencies, and long lifetimes.
  • the compounds according to the formulas (1) to (6) are very suitable as matrix material for emitting compounds, in particular for phosphorescent compounds, for use in an emitting layer.
  • the compounds according to the formulas (1) to (6) have a very high photostability, so do not decompose under the action of light, and are therefore very well suited for use both in organic electroluminescent devices as well as in organic solar cells.
  • the solvents and reagents can be obtained from ALDRICH or ABCR.
  • the precursor Trichlorheptaaza- phenalen can be prepared according to EP 1854797.
  • Triphenylhepta- azaphenals and trimesitylheptaazaphenals can be prepared according to H. Schröder et al., J. Org. Chem. 1962, 27, 4262-4266.
  • OLEDs according to the invention is carried out by a general process according to WO 04/058911, which is adapted to the conditions described here (layer thickness variation, materials used).
  • the OLEDs consist of the following layer sequence: Substrate / PEDOT 20 nm / hole injection layer (HIL) 5 nm / hole transport layer (HTL-1) 20 nm / hole transport layer (HTL-2) 20 nm / emission layer (EML) 30 nm / electron transport layer (ETL ) 20 nm and finally a cathode.
  • HIL hole injection layer
  • HTL-1 hole transport layer
  • HTL-2 hole transport layer
  • EML emission layer
  • ETL electron transport layer
  • the materials except for PEDOT are thermally evaporated in a vacuum chamber.
  • the emission layer always consists of a matrix material (host) and a dopant (dopant), which is mixed by cover evaporation to the host.
  • the compound H1 is used as the matrix material, which is doped in each case with 10% of D1.
  • These OLEDs show green emission.
  • hole transport material in the HTL-1 the compound HTM-1 is used.
  • Hole transport material in the HTL-2 is NPB used.
  • the cathode is formed by a 1 nm thick LiF layer and a 100 nm thick Al layer deposited thereon. Table 1 shows the chemical structures of the materials used to construct the OLEDs.
  • Electroluminescence spectra the efficiency (measured in cd / A), the power efficiency (measured in Im / W) as a function of the brightness, calculated from current-voltage-brightness characteristics (IUL characteristics), and determines the lifetime.
  • the lifetime is defined as the time after which the initial brightness of 25000 cd / m 2 has fallen to half.
  • the threshold voltage is defined as the voltage at which the OLED reaches a brightness of 1 cd / m 2 .
  • Table 2 summarizes the results of some OLEDs (Examples 3 to 8).
  • HIM-1 Tricyanoheptaaza- phenalen, from Example 1
  • HIM-2 Hexacyanohexaazatriphenylen, according to the prior art
  • OLEDs 1 containing HIM-1 in the hole injection layer are characterized by improved efficiency, in particular improved power efficiency, and lifetime over prior art HIM-2.
  • the threshold voltage and color coordinates in the use of HIM-1 according to the invention are very similar to the use of HIM-2 according to the prior art.
  • Triphenylheptaazaphenalen (ETM-1) or Trimesitylheptaaza- phenalen (ETM-2) is used as electron transport material in the electron transport layer (ETL)
  • ETM-1 Triphenylheptaazaphenalen
  • ETM-2 Trimesitylheptaaza- phenalen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Die vorliegende Erfindung betrifft organische Elektrolumineszenzvorrichtungen, welche aromatische Stickstoffheterocyclen enthalten, insbesondere in einer Lochinjektionsschicht und/oder in einer Lochblockierschicht und/oder in einer Elektronentransportschicht und/oder in einer emittierenden Schicht.

Description

Organische elektronische Vorrichtung
Die vorliegende Erfindung betrifft organische elektronische Vorrichtungen, insbesondere organische Elektrolumineszenzvorrichtungen, welche aromatische Stickstoffheterocyclen enthalten.
Der Aufbau organischer Elektrolumineszenzvorrichtungen (OLEDs), in denen organische Halbleiter als funktionelle Materialien eingesetzt werden, ist beispielsweise in US 4539507, US 5151629, EP 0676461 und WO 98/27136 beschrieben. Allerdings sind noch weitere Verbesserungen wünschenswert, bevor diese Vorrichtungen für hochwertige und langlebige Displays verwendet werden können. So gibt es insbesondere bei der Lebensdauer, der Effizienz und der Betriebsspannung organischer Elektro- lumineszenzvorrichtungen derzeit noch Verbesserungsbedarf. Weiterhin ist es erforderlich, dass die Verbindungen eine hohe thermische Stabilität aufweisen und sich unzersetzt sublimieren lassen.
Insbesondere bei den Ladungsinjektions- und -transportmaterialien sind noch Verbesserungen wünschenswert, da gerade auch die Eigenschaften der Ladungstransportmaterialien einen wesentlichen Einfluss auf die oben genannten Eigenschaften der organischen Elektrolumineszenzvorrichtung ausüben. Insbesondere besteht Verbesserungsbedarf bei Elektronentrans- portmaterialien und Lochinjektions- bzw. Lochtransportmaterialien, welche gleichzeitig zu guter Effizienz, hoher Lebensdauer und geringer Betriebsspannung führen. Gerade auch die Eigenschaften dieser Materialien sind häufig limitierend für die Lebensdauer, die Effizienz und die Betriebsspannung der organischen Elektrolumineszenzvorrichtung.
AIQ3 wird bereits seit langem als Elektronentransportmaterial verwendet (z. B. US 4,539,507), hat allerdings mehrere Nachteile: Es lässt sich nicht rückstandsfrei aufdampfen, da es sich bei der Sublimationstemperatur teilweise zersetzt, was insbesondere für Produktionsanlagen ein großes Problem darstellt. Dies hat zur Folge, dass die Aufdampfquellen immer wieder gereinigt oder gewechselt werden müssen. Des Weiteren gelangen Zersetzungsprodukte von AIQ3 in die OLED, die dort zu einer verringerten Lebensdauer und reduzierten Quanten- und Leistungseffizienz beitragen. AIQ3 hat außerdem eine niedrige Elektronenbeweglichkeit, was zu höheren Spannungen und damit zu einer niedrigeren Leistungseffizienz führt. Um Kurzschlüsse im Display zu vermeiden, würde man gern die Schichtdicke erhöhen; dies ist mit AIQ3 wegen der geringen Ladungsträgerbeweglichkeit und der daraus resultierenden Spannungserhöhung nicht möglich. Die Ladungsträgerbeweglichkeit anderer Elektronenleiter (US 4,539,507) ist ebenfalls zu gering, um dickere Schichten damit aufzubauen, wobei die Lebensdauer der OLED noch schlechter ist als bei Verwendung von AIQ3. Als ungünstig erweist sich auch die Eigenfarbe (im Feststoff gelb) von AIQ3, die gerade bei blauen OLEDs durch Reabsorption und schwache Reemission zu Farbverschiebungen führen kann. Hier sind blaue OLEDs nur mit starken Effizienz- bzw. Farborteinbußen darstellbar.
Als Lochinjektions- bzw. Lochtransportmaterialien in organischen Elektro- lumineszenzvorrichtungen gemäß dem Stand der Technik werden außer verschiedenen Triarylaminderivaten bzw. Carbazolderivaten insbesondere auch Hexaazatriphenylenderivate, vor allem solche, die mit Cyanogruppen substituiert sind, verwendet (z. B. WO 01/049806). Hier besteht ebenfalls noch weiterer Verbesserungsbedarf in Bezug auf die Lebensdauer, die Effizienz und die Betriebsspannung.
Es besteht also weiterhin Bedarf an Elektronentransportmaterialien und Lochinjektions- bzw. Lochtransportmaterialien, die in organischen Elektro- lumineszenzvorrichtungen zu guten Effizienzen und gleichzeitig zu hohen Lebensdauern führen. Es wurde nun überraschend gefunden, dass orga- nische Elektrolumineszenzvorrichtungen, die bestimmte - im Folgenden aufgeführte - Stickstoffheteroaromaten als Elektronentransportmaterialien oder als Lochinjektions- bzw. Lochtransportmaterialien enthalten, deutliche Verbesserungen gegenüber dem Stand der Technik aufweisen. Mit diesen Materialien ist es möglich, gleichzeitig hohe Effizienzen und lange Lebens- dauern zu erhalten.
Heptaazaphenalen-Derivate, insbesondere solche, welche mit aromatischen Gruppen, Alkoxygruppen oder Aminogruppen substituiert sind, sind in der Literatur bereits bekannt als Schutz gegen UV-Strahlung (z. B. WO 07/006807) oder als Flammschutzmittel (z. B. WO 01/021698). Eine Verwendung derartiger Verbindungen in organischen elektronischen Vorrichtungen ist nicht bekannt.
Gegenstand der Erfindung ist somit eine organische elektronische Vorrichtung, enthaltend Kathode, Anode und mindestens eine organische Schicht, welche zwischen Kathode und Anode angeordnet ist und welche mindestens eine Verbindung gemäß Formel (1) oder Formel (2) enthält,
Figure imgf000004_0001
Formel (1)
Figure imgf000004_0002
Formel (2)
wobei für die verwendeten Symbole und Indizes gilt:
X ist bei jedem Auftreten gleich oder verschieden CR1 oder N;
Y ist bei jedem Auftreten gleich oder verschieden eine bivalente Gruppe, ausgewählt aus der Gruppe bestehend aus B(R1)2, C(R1)2, - A -
NR1, O, S1 C(=O), C(=C(R1)2l S(=O), S(=O)2, P(=O)(R1)2, oder einem bivalenten aromatischen oder heteroaromatischen Ringsystem mit 5 bis 18 aromatischen Ringatomen, welches mit einem oder mehreren Resten R1 substituiert sein kann;
R ist bei jedem Auftreten gleich oder verschieden H, D, F, Cl1 Br, I,
CHO, N(R1)2, N(Ar)2, C(=O)Ar, P(=O)(Ar)2, S(=O)Ar, S(=O)2Ar, CR1=CR1Ar, CN, NO2, Si(R1)3, B(OR1)2, B(R1)2, B(Ar)2, B(N(R1)2)2, OSO2R1, eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine geradkettige Alkenyl- oder Alkinyl- gruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische
Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2- Gruppen durch R1C=CR1, C≡C, Si(R1)2) Ge(R1)2, Sn(R1)2, C=O, C=S, C=Se, C=NR1, P(=O)(R1), SO, SO2, NR1, O, S oder CONR1 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, Cl, Br, I, CN oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die jeweils durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Kombination dieser Systeme;
R1 ist bei jedem Auftreten gleich oder verschieden H, D, F, Cl, Br, I, CHO, N(R2)2, N(Ar)2, C(=O)Ar, P(=O)(Ar)2, S(=O)Ar, S(=O)2Ar, CR2=CR2Ar, CN, NO2, Si(R2)3, B(OR2)2, B(R2)2, B(N(R2)2)2, OSO2R2, eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine geradkettige Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-,
Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R2 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R2C=CR2, C=C, Si(R2)2, Ge(R2)2, Sn(R2)2, C=O, C=S, C=Se, C=NR2, P(=O)(R2), SO, SO2, NR2, O, S oder CONR2 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F1 Cl, Br, I1 CN oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R2 substituiert sein kann, oder eine
Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R2 substituiert sein kann, oder eine Kombination dieser Systeme;
Ar ist bei jedem Auftreten gleich oder verschieden ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 30 aromatischen Ringatomen, das mit einem oder mehreren nicht-aromatischen
Resten R1 substituiert sein kann; dabei können auch zwei Reste Ar, welche an dasselbe Stickstoff- oder Phosphoratom binden, durch eine Einfachbindung oder eine Brücke, ausgewählt aus B(R2), C(R2)2,
Si(R2)2, , C C=O, C=NR2, C=C(R2)2, O, S, S=O, SO2, N(R2), P(R2) und P(=O)R2, miteinander verknüpft sein;
R2 ist bei jedem Auftreten gleich oder verschieden H, D oder ein aliphatischer, aromatischer und/oder heteroaromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, in dem auch H-Atome durch F ersetzt sein können; dabei können zwei oder mehrere benachbarte
Substituenten R2 auch miteinander ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden;
n ist 0, 1 , 2, 3, 4, 5 oder 6;
m ist 0, 1 , 2 oder 3;
p ist bei jedem Auftreten gleich oder verschieden 0, 1 , 2 oder 3, wobei p = 0 bedeutet, dass zwischen den Einheiten eine Einfachbindung vorliegt.
Unter einer organischen elektronischen Vorrichtung im Sinne der vorliegenden Erfindung wird eine Vorrichtung verstanden, welche Anode und Kathode und mindestens eine zwischen Anode und Kathode ange- ordnete Schicht enthält, wobei diese Schicht mindestens eine organische oder metallorganische Verbindung enthält. Es ist jedoch nicht notwendig, dass die Vorrichtung nur organische Schichten enthält. So können auch eine oder mehrere Schichten vorhanden sein, welche anorganische Materialien enthalten oder vollständig aus anorganischen Materialien bestehen. Ebenso können Anode und Kathode aus rein anorganischen Materialien bestehen oder solche enthalten.
Die organische elektronische Vorrichtung ist insbesondere ausgewählt aus der Gruppe bestehend aus organischen Elektrolumineszenzvorrichtungen (OLEDs)1 organischen integrierten Schaltungen (O-ICs), organischen FeId- Effekt-Transistoren (O-FETs), organischen Dünnfilmtransistoren (O-TFTs), organischen lichtemittierendeh Transistoren (O-LETs), organischen Solarzellen (O-SCs), organischen optischen Detektoren, organischen Photorezeptoren, organischen Feld-Quench-Devices (O-FQDs), lichtemittierenden elektrochemischen Zellen (LECs), organischen Laserdioden (O-Laser) und „organic plasmon emitting device" (D. M. Koller et al., Nature Photonics 2008, 1-4), insbesondere aber organischen Elektro- lumineszenzvorrichtungen (OLEDs).
Eine Arylgruppe im Sinne dieser Erfindung enthält 6 bis 60 C-Atome; eine Heteroarylgruppe im Sinne dieser Erfindung enthält 2 bis 60 C-Atome und mindestens 1 Heteroatom, mit der Maßgabe, dass die Summe aus C-Atomen und Heteroatomen mindestens 5 ergibt. Die Heteroatome sind bevorzugt ausgewählt aus N, O und/oder S. Dabei wird unter einer Arylgruppe bzw. Heteroarylgruppe entweder ein einfacher aromatischer Cyclus, also Benzol, bzw. ein einfacher heteroaromatischer Cyclus, beispielsweise Pyridin, Pyrimidin, Thiophen, etc., oder eine kondensierte Aryl- oder Heteroarylgruppe, beispielsweise Naphthalin, Anthracen, Pyren, Chinolin, Isochinolin, etc., verstanden.
Ein aromatisches Ringsystem im Sinne dieser Erfindung enthält 6 bis 60 C-Atome im Ringsystem. Ein heteroaromatisches Ringsystem im Sinne dieser Erfindung enthält 2 bis 60 C-Atome und mindestens ein Heteroatom im Ringsystem, mit der Maßgabe, dass die Summe aus C-Atomen und Heteroatomen mindestens 5 ergibt. Die Heteroatome sind bevorzugt ausgewählt aus N, O und/oder S. Unter einem aromatischen oder hetero- aromatischen Ringsystem im Sinne dieser Erfindung soll ein System verstanden werden, das nicht notwendigerweise nur Aryl- oder Hetero- arylgruppen enthält, sondern in dem auch mehrere Aryl- oder Heteroaryl- gruppen durch eine kurze, nicht-aromatische Einheit (bevorzugt weniger als 10 % der von H verschiedenen Atome), wie z. B. ein sp3-hybridisiertes C-, N- oder O-Atom, unterbrochen sein können. So sollen beispielsweise auch Systeme wie 9,9'-Spirobifluoren, 9,9-Diarylfluoren, Triarylamin, Diarylether, Stilben, Benzophenon, etc. als aromatische Ringsysteme im Sinne dieser Erfindung verstanden werden. Ebenso werden unter einem aromatischen bzw. heteroaromatischen Ringsystem Systeme verstanden, in denen mehrere Aryl- bzw. Heteroarylgruppen durch Einfachbindungen miteinander verknüpft sind, beispielsweise Biphenyl, Terphenyl oder Bipyridin.
Im Rahmen der vorliegenden Erfindung werden unter einer Cr bis C4o- Alkylgruppe, in der auch einzelne H-Atome oder CH2-Gruppen durch die oben genannten Gruppen substituiert sein können, besonders bevorzugt die Reste Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, s-Butyl, t-Butyl, 2-Methylbutyl, n-Pentyl, s-Pentyl, Cyclopentyl, n-Hexyl, Cyclohexyl, n-Heptyl, Cycloheptyl, n-Octyl, Cyclooctyl, 2-Ethylhexyl, Trifluormethyl, Pentafluorethyl und 2,2,2-Trifluorethyl verstanden. Unter einer Alkenyl- gruppe im Sinne dieser Erfindung werden insbesondere Ethenyl, Propenyl, Butenyl, Pentenyl, Cyclopentenyl, Hexenyl, Cyclohexenyl, Heptenyl, Cyclo- heptenyl, Octenyl und Cyclooctenyl verstanden. Unter einer Alkinylgruppe im Sinne dieser Erfindung werden insbesondere Ethinyl, Propinyl, Butinyl, Pentinyl, Hexinyl, Heptinyl oder Octinyl verstanden. Unter einer d- bis C4o- Alkoxygruppe werden besonders bevorzugt Methoxy, Trifluormethoxy, Ethoxy, n-Propoxy, i-Propoxy, n-Butoxy, i-Butoxy, s-Butoxy, t-Butoxy oder 2-Methylbutoxy verstanden. Unter einem aromatischen oder heteroaromatischen Ringsystem mit 5 - 60 aromatischen Ringatomen, welches noch jeweils mit den oben genannten Resten R substituiert sein kann und welches über beliebige Positionen am Aromaten bzw. Heteroaromaten verknüpft sein kann, werden insbesondere Gruppen verstanden, die abgeleitet sind von Benzol, Naphthalin, Anthracen, Phenanthren, Benz- anthracen, Benzphenanthren, Pyren, Chrysen, Perylen, Fluoranthen, Naphthacen, Pentacen, Benzpyren, Biphenyl, Biphenylen, Terphenyl, Terphenylen, Fluoren, Spirobifluoren, Dihydrophenanthren, Dihydropyren, Tetrahydropyren, eis- oder trans-lndenofluoren, Truxen, Isotruxen, Spiro- truxen, Spiroisotruxen, Furan, Benzofuran, Isobenzofuran, Dibenzofuran, Thiophen, Benzothiophen, Isobenzothiophen, Dibenzothiophen, Pyrrol, Indol, Isoindol, Carbazol, Pyridin, Chinolin, Isochinolin, Acridin, Phenanthridin, Benzo-5,6-chinolin, Benzo-6,7-chinolin, Benzo-7,8-chinolin, Phenothiazin, Phenoxazin, Pyrazol, Indazol, Imidazol, Benzimidazol, Naphthimidazol, Phenanthrimidazol, Pyridimidazol, Pyrazinimidazol, Chinoxalinimidazol, Oxazol, Benzoxazol, Naphthoxazol, Anthroxazol, Phenanthroxazol, Isoxazol, 1 ,2-Thiazol, 1,3-Thiazol, Benzothiazol, Pyridazin, Benzopyridazin, Pyrimidin, Benzpyrimidin, Chinoxalin, 1,5- Diazaanthracen, 2,7-Diazapyren, 2,3-Diazapyren, 1,6-Diazapyren, 1 ,8- Diazapyren, 4,5-Diazapyren, 4,5,9,10-Tetraazaperylen, Pyrazin, Phenazin, Phenoxazin, Phenothiazin, Fluorubin, Naphthyridin, Azacarbazol, Benzo- carbolin, Phenanthrolin, 1 ,2,3-Triazol, 1 ,2,4-Triazol, Benzotriazol, 1 ,2,3- Oxadiazol, 1 ,2,4-Oxadiazol, 1 ,2,5-Oxadiazol, 1 ,3,4-Oxadiazol, 1 ,2,3- Thiadiazol, 1 ,2,4-Thiadiazol, 1 ,2,5-Thiadiazol, 1 ,3,4-Thiadiazol, 1 ,3,5- Triazin, 1 ,2,4-Triazin, 1 ,2,3-Triazin, Tetrazol, 1 ,2,4,5-Tetrazin, 1 ,2,3,4- Tetrazin, 1 ,2,3,5-Tetrazin, Purin, Pteridin, Indolizin und Benzothiadiazol.
Bevorzugt weisen die Verbindungen gemäß Formel (1) bzw. Formel (2) eine Glasübergangstemperatur TG von größer als 70 °C auf, besonders bevorzugt größer als 100 0C, ganz besonders bevorzugt größer als 110 0C.
In einer bevorzugten Ausführungsform der Erfindung stehen in Verbindungen der Formel (1) bzw. der Formel (2) alle Symbole X für N, oder es stehen alle Symbole X für CR1. Bevorzugt sind also die Verbindungen gemäß Formel (3), Formel (4), Formel (5) oder Formel (6),
Figure imgf000009_0001
Formel (3)
Figure imgf000010_0001
20 Formel (5)
Figure imgf000010_0002
Formel (6)
35 wobei die verwendeten Symbole und Indizes dieselbe Bedeutung haben, wie oben beschrieben. Besonders bevorzugt steht R1 in Formel (4) und Formel (6) für Wasserstoff oder Deuterium, insbesondere für Wasserstoff. Ganz besonders bevorzugt sind die Verbindungen der Formel (3).
In einer bevorzugten Ausführungsform der Erfindung steht der Index n in
Verbindungen der Formel (1), (3) und (4) für 0, 1 oder 2, besonders bevorzugt für 0 oder 1 , ganz besonders bevorzugt für 0.
In einer weiteren bevorzugten Ausführungsform der Erfindung steht der Index m in Verbindungen der Formel (2), (5) und (6) für 0, 1 oder 2, besonders bevorzugt für 1.
In einer weiteren bevorzugten Ausführungsform der Erfindung steht der Index p in der Formel (1), (3) und (4) gleich oder verschieden bei jedem Auftreten für 0 oder 1 und in der Formel (2), (5) und (6) gleich oder verschieden bei jedem Auftreten für 1 oder 2.
In einer bevorzugten Ausführungsform der Erfindung steht R in den Verbindungen der Formeln (1) bis (6) gleich oder verschieden bei jedem Auftreten für F, N(R1)2, N(Ar)2, C(=O)Ar, P(=O)(Ar)2, CN, NO2, eine gerad- kettige Alkylgruppe mit 1 bis 10 C-Atomen oder eine verzweigte oder cyclische Alkylgruppe mit 3 bis 10 C-Atomen, die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei ein oder mehrere H-Atome durch F oder CN ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 40 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann. In einer besonders bevorzugten Ausführungsform der Erfindung steht R in den Verbindungen der Formeln (1) bis (6) gleich oder verschieden bei jedem Auftreten für F, CN, CF3, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 30 aromatischen Ringatomen, welches jeweils durch einen oder mehrere Reste R1 substituiert sein kann, bevorzugt aber unsubstituiert ist. Besonders bevorzugte aromatische oder heteroaromatische Ringsysteme, welche die Gruppe R bilden können, sind ausgewählt aus der Gruppe bestehend aus Phenyl, 2-, 3- oder 4-Pyridyl, Pyrazinyl, 2-, 4- oder 5-Pyrimidinyl, 3- oder 4-Pyridazinyl, Ortho-, meta- oder para-Biphenyl, Ortho-, meta- oder para-Terphenyl, 2- Fluorenyl, 2-Spirobifluorenyl, 1-Naphthyl, 2-Naphthyl, Anthracenyl, Phenyl- anthracenyl, 1- oder 2-Naphthylanthracenyl, Binaphthyl, Pyrenyl, Fluoran- thenyl, 2-, 3-, 4-, 5-, 6- oder 7-Benzanthracenyl, N-Imidazolyl, N-Benz- imidazolyl, Phenyl-N-benzimidazolyl, N-Phenylbenzimidazolyl, Phenyl-N- phenylbenzimidazolyl oder Kombinationen dieser Gruppen, welche jeweils durch einen oder mehrere Reste R1 substituiert sein können.
Besonders bevorzugt sind alle Reste R gleich gewählt. Dies gilt insbesondere für die oben aufgeführten bevorzugten und besonders bevor- zugten Reste R. Diese Bevorzugung begründet sich in der besseren synthetischen Zugänglichkeit der Verbindungen.
Besonders bevorzugt sind die Strukturen der oben aufgeführten Formeln (1) bis (6), in denen n = 0 oder 1 , insbesondere n = 0, ist und m = 1 ist und in denen R die oben aufgeführte bevorzugte bzw. besonders bevorzugte Bedeutung aufweist und in denen p die oben genannte bevorzugte Bedeutung aufweist.
Bevorzugt sind weiterhin die Strukturen der oben aufgeführten Formeln (1) bis (6), in denen Y, wenn p ungleich 0 ist, gleich oder verschieden bei jedem Auftreten für eine bivalente Gruppe, ausgewählt aus der Gruppe bestehend aus C(R1)2, NR1 und einer bivalenten Aryl- oder Heteroaryl- gruppe mit 5 bis 14 aromatischen Ringatomen, welche mit einem oder mehreren Resten R1 substituiert sein kann. Besonders bevorzugt ist Y in den Formeln (1), (3) und (4) gleich oder verschieden bei jedem Auftreten ausgewählt aus einer Einfachbindung, NR1 oder einer bivalenten Aryl- oder Heteroarylgruppe mit 5 bis 10 aromatischen Ringatomen, welche mit einem oder mehreren Resten R1 substituiert sein kann. Besonders bevorzugt ist Y in den Formeln (2), (5) und (6) gleich oder verschieden bei jedem Auftreten NR1.
Beispiele für bevorzugte Verbindungen gemäß den Formeln (1) bis (6) sind die im Folgenden abgebildeten Strukturen (1) bis (90).
Figure imgf000013_0001
Figure imgf000014_0001
Figure imgf000015_0001
30
35
Figure imgf000016_0001
Figure imgf000017_0001
Figure imgf000018_0001
Figure imgf000019_0001
35
Figure imgf000020_0001
Figure imgf000021_0001
35
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000025_0001
Die Synthese der Verbindungen gemäß den Formeln (1) bis (6) ist dem Fachmann der organischen Chemie bekannt. Als Ausgangsverbindung kann in allen Fällen Trihalogen-heptaazaphenalen bzw. ein entsprechendes Phenalenderivat mit weniger Stickstoffatomen dienen. Insbesondere eignet sich Trichlorheptaazaphenalen. Dieses kann durch direkte Chlorierung der korrespondierenden Säure erhalten werden, beispielsweise gemäß EP 1854797. Dieses kann weiterhin durch Sandmeyer-Reaktion, also durch Diazotierung, des Triaminoheptaaza- phenalens erhalten werden, welches wiederum direkt aus Melamin zugänglich ist (z. B. gemäß H. May, J. Applied Chemistry 1959, 9, 340- 344). Die Chlorsubstituenten können dann durch nukleophile aromatische Substitution gegen andere Nukleophile, beispielsweise F oder CN, ausgetauscht werden, insbesondere unter Aktivierung durch eine Lewis-Säure. Auch die Einführung anderer Gruppen, beispielsweise substituierter
Aminogruppen ist so möglich. Weiterhin ist die Einführung aromatischer Substituenten durch Friedel-Crafts-Reaktion möglich. Die Einführung aromatischer oder heteroaromatischer Substituenten ist ebenfalls durch Reaktion des Trichlorheptaazaphenalens mit metallorganischen Derivaten von aromatischen oder heteroaromatischen Verbindungen möglich, insbesondere mit Organolithiumverbindungen oder Grignard-Verbindungen. Weiterhin sind palladiumkatalysierte Kupplungsreaktionen, insbesondere mit Boronsäurederivaten (Suzuki-Kupplung) oder Organozinkverbindungen (Negishi-Kupplung), zur Einführung aromatischer Substituenten möglich. Diarylaminogruppen können durch palladiumkatalysierte Hartwig- Buchwald-Kupplung eingeführt werden. Die Halogenfunktion kann durch Transmetallierung mit Organolithiumverbindungen bzw. Grignardverbin- dungen in eine elektrophile Gruppe überführt werden, die dann mit einer Vielzahl von Elektrophilen, wie z. B. Aryl-Bor-Halogeniden, Aldehyden, Ketonen, Nitrilen, Estern, Halogenestern, Kohlendioxid, Arylphosphin- halogeniden, Halogensulfinsäuren, Halogenarylsulfonsäuren, etc., gekuppelt werden. Die Trinitroverbindung ist durch Oxidation aus dem Triaminoheptaazaphenalens zugänglich. Unsymmetrisch substituierte Verbindungen können jeweils durch Anpassung der Stöchiometrie erhalten werden. Diese Reaktionen sind schematisch im nachfolgenden Schema 1 aufgeführt. Schema 1 :
Figure imgf000027_0001
Figure imgf000027_0002
Figure imgf000027_0003
Aromat Ar
Lewis-Säure
(Friedel-Crafts-
Reaktion)
Figure imgf000027_0004
Figure imgf000027_0005
Weiterhin kann die entsprechende Triamino-Verbindung aus Ausgangsverbindung dienen. So können die Aminogruppen durch Oxidation in die Nitrogruppen überführt werden. Weiterhin können die Aminogruppen, beispielsweise durch Hartwig-Buchwald-Reaktion, substituiert werden.
Cyclische Verbindungen der Formel (2) mit Y = NH sind zugänglich durch Erhitzen von 2,6,10-Triaminoheptaazaphenalen auf 450 bis 600 0C für 15 bis 60 Minuten (z. B. gemäß SU 1747448 A1). Diese können, wie oben für die nicht-cyclischen Verbindungen beschrieben, weiter funktionalisiert werden.
Die oben genannten Reaktionen sind dem Fachmann der organischen Chemie generell bekannt und können von ihm ohne erfinderisches Zutun auch auf die Verbindungen gemäß den Formeln (1) bis (6) angewandt werden.
Die oben beschriebenen Verbindungen der Formeln (1) bis (6), insbesondere Verbindungen, in welchen mindestens eine Gruppe R für eine reaktive Abgangsgruppe, wie Brom, lod, Triflat, Tosylat, Boronsäure oder
Boronsäureester, steht, können auch als Monomere zur Erzeugung entsprechender Oligomere, Polymere oder als Kern von Dendrimeren Verwendung finden, wobei diese Oligomere, Polymere und Dendrimere sich wiederum für den Einsatz in organischen elektronischen Vorrich- tungen, insbesondere in organischen Elektrolumineszenzvorrichtungen, eignen. Die Oligomerisation bzw. Polymerisation erfolgt dabei bevorzugt über die Halogenfunktionalität bzw. die Boronsäurefunktionalität. Unter einem Oligomer im Sinne dieser Erfindung wird eine Verbindung verstanden, welche etwa 3 bis 9 Wiederholeinheiten aufweist. Ein Polymer im Sinne dieser Erfindung weist etwa 10 oder mehr Wiederholeinheiten auf.
Weiterer Gegenstand der Erfindung sind daher organische elektronische Vorrichtungen, insbesondere organische Elektrolumineszenzvor- richtungen, enthaltend mindestens ein Oligomer, Polymer oder Dendrimer, welches eine oder mehrere Verbindungen gemäß Formel (1) bis (6) enthält, wobei ein oder mehrere Reste R Bindungen der Verbindung gemäß Formel (1) bis (6) zum Polymer, Oligomer oder Dendrimer darstellen. Die Polymere, Oligomere oder Dendrimere können konjugiert, teilkonjugiert oder nicht-konjugiert sein. Die Oligomere oder Polymere können linear oder verzweigt sein. In den linear verknüpften Strukturen können die Einheiten gemäß Formel (1) bis (6) sowohl direkt miteinander verknüpft sein oder sie können über eine bivalente Gruppe, wie z. B. über eine Gruppe Y oder über eine substituierte oder unsubstituierte Alkylengruppe, über ein Heteroatom oder über eine bivalente aromatische oder hetero- aromatische Gruppe, miteinander verknüpft sein. In verzweigten
Strukturen können beispielsweise drei oder mehrere Einheiten gemäß Formel (1) bis (6) über eine trivalente oder höhervalente Gruppe, beispielsweise über eine trivalente oder höhervalente aromatische oder heteroaromatische Gruppe, zu einem verzweigten Oligomer oder Polymer verknüpft sein. Weiterhin eignen sich die Einheiten gemäß Formel (1) bis (6) insbesondere auch als Verzweigungspunkt in Oligomeren, Polymeren und Dendrimeren, da gerade die dreifach Chlor-substituierten Einheiten gut synthetisch zugänglich sind.
Zur Herstellung der Oligomere oder Polymere werden die entsprechenden Monomere homopolymerisiert oder mit weiteren Monomeren copolymeri- siert. Geeignete und bevorzugte Comonomere sind gewählt aus Fluorenen (z. B. gemäß EP 842208 oder WO 00/22026), Spirobifluorenen (z. B. gemäß EP 707020, EP 894107 oder WO 06/061181), Para-phenylenen (z. B. gemäß WO 92/18552), Carbazolen (z. B. gemäß WO 04/070772 oder WO 04/113468), Thiophenen (z. B. gemäß EP 1028136), Dihydro- phenanthrenen (z. B. gemäß WO 05/014689), eis- und trans-lndeno- fluorenen (z. B. gemäß WO 04/041901 oder WO 04/113412), Ketonen (z. B. gemäß WO 05/040302), Phenanthrenen (z. B. gemäß WO 05/104264 oder WO 07/017066) oder auch mehreren dieser Einheiten. Die Polymere, Oligomere und Dendrimere enthalten üblicherweise noch weitere Einheiten, beispielsweise emittierende (fluoreszierende oder phosphoreszierende) Einheiten, wie z. B. Vinyltriarylamine (z. B. gemäß WO 07/068325) oder phosphoreszierende Metallkomplexe (z. B. gemäß WO 06/003000), und/oder Ladungstransporteinheiten. Dabei eignen sich die erfindungsgemäßen Wiederholeineiten insbesondere als Ladungstransporteinheiten für Elektronen.
Ein weiterer Gegenstand der Erfindung ist die Verwendung von Verbindungen gemäß Formel (1), (2), (3), (4), (5) oder (6) bzw. entsprechender Oligomere, Polymere oder Dendrimere in organischen elektronischen Vorrichtungen, insbesondere in organischen Elektrolumineszenz- vorrichtungen.
Die organische Elektrolumineszenzvorrichtung enthält Anode, Kathode und mindestens eine emittierende Schicht, wobei mindestens eine organische Schicht, die die emittierende Schicht oder eine andere Schicht sein kann, mindestens eine Verbindung gemäß Formel (1) bis (6) oder ein entsprechendes Oligomer, Polymer oder Dendrimer enthält. Außer Kathode, Anode und der emittierenden Schicht kann die organische Elektrolumineszenzvorrichtung noch weitere Schichten enthalten. Diese sind beispielsweise gewählt aus jeweils einer oder mehreren Lochinjektionsschichten, Lochtransportschichten, Lochblockierschichten, Elektronentransportschichten, Elektroneninjektionsschichten, Elektronen- blockierschichten, Excitonenblockierschichten, Ladungserzeugungs- schichten (Charge-Generation Layers) und/oder organischen oder anorganischen p/n-Übergängen. Weiterhin können die Schichten, insbesondere die Ladungstransportschichten, auch dotiert sein. Die Dotierung der Schichten kann für einen verbesserten Ladungstransport vorteilhaft sein. Es sei aber darauf hingewiesen, dass nicht notwendigerweise jede dieser Schichten vorhanden sein muss und die Wahl der Schichten immer von den verwendeten Verbindungen abhängt und insbesondere auch von der Tatsache, ob es sich um eine fluoreszierende oder phosphoreszierende Elektrolumineszenzvorrichtung handelt.
In einer Ausführungsform der Erfindung enthält die organische Elektrolumineszenzvorrichtung mehrere emittierende Schichten, wobei mindestens eine organische Schicht, die eine emittierende Schicht oder eine andere Schicht sein kann, mindestens eine Verbindung gemäß einer der Formeln (1) bis (6) enthält. Besonders bevorzugt weisen diese Emissionsschichten insgesamt mehrere Emissionsmaxima zwischen 380 nm und 750 nm auf, so dass insgesamt weiße Emission resultiert, d. h. in den emittierenden Schichten werden verschiedene emittierende Verbindungen verwendet, die fluoreszieren oder phosphoreszieren können und die blaues und gelbes, orange oder rotes Licht emittieren. Insbesondere bevorzugt sind Dreischichtsysteme, also Systeme mit drei emittierenden Schichten, wobei mindestens eine dieser Schichten mindestens eine Verbindung gemäß einer der Formeln (1) bis (6) enthält und wobei die drei Schichten blaue, grüne und orange oder rote Emission zeigen (für den prinzipiellen Aufbau siehe z. B. WO 05/011013). Ebenso eignen sich für weiße Emission Emitter, welche breitbandige Emissionsbanden aufweisen und dadurch weiße Emission zeigen.
In einer bevorzugten Ausführungsform der Erfindung werden die Verbindungen gemäß Formel (1) bis (6) als Lochinjektions- bzw. Loch- transportmaterial verwendet. Dies gilt insbesondere, wenn mindestens ein Substituent R, bevorzugt mindestens zwei Substituenten R, besonders bevorzugt alle drei Substituenten R für eine elektronenarme Gruppe stehen. Im Gegensatz zu Triarylaminderivaten, die üblicherweise in der Lochinjektions- bzw. Lochtransportschicht verwendet werden und bei denen der Lochtransport über das HOMO („highest occupied molecular orbital", höchstes besetztes Molekülorbital) der entsprechenden Verbindung erfolgt, erfolgt bei Verbindungen der Formel (1) bis (6) der Lochtransport nicht über das HOMO, sondern über das LUMO („lowest unoccupied molecular orbital", niedrigstes unbesetztes Molekülorbital). Besonders bevorzugte Substituenten R sind dann ausgewählt aus der
Gruppe bestehend aus CN, F, NO2, CF3 und substituierten oder unsubsti- tuierten elektronenarmen Heterocyclen. Dabei sind die elektronenarmen Heterocyclen bevorzugt ausgewählt aus Pyridin, Pyrazin, Pyrimidin, Pyridazin, Triazin, Pyrazol, Imidazol, Triazol, Benzimidazol, Chinolin, Isochinolin, Chinoxalin, Thiadiazol, Thiazol oder Oxadiazol, welches jeweils durch einen oder mehrere Reste R1 substituiert sein kann. Da das LUMO dieser Verbindungen gleich tief oder sogar noch tiefer liegt im Vergleich zu den Hexaazatriphenylenderivaten, die gemäß dem Stand der Technik als Lochinjektionsmaterialien verwendet werden, eignen sich die Verbindungen gemäß Formel (1) bis (6) genauso gut oder besser als die Materialien gemäß dem Stand der Technik als Lochinjektions- bzw. Lochtransportmaterialien. Dabei soll unter einem Lochinjektionsmaterial im Sinne dieser Erfindung eine Verbindung verstanden werden, welche in einer Lochinjektionsschicht eingesetzt wird. Eine Lochinjektionsschicht im Sinne dieser Erfindung ist eine Schicht, welche direkt an die Anode angrenzt. Üblicherweise folgt der Lochinjektionsschicht im Aufbau der organischen Elektrolumineszenzvorrichtung eine Lochtransportschicht, so dass die Lochinjektionsschicht zwischen der Anode und einer Lochtransportschicht liegt. Eine Lochtransportschicht im Sinne der vorliegenden Erfindung ist eine Schicht, welche zwischen einer Lochinjektionsschicht und der emittierenden Schicht liegt.
In einer bevorzugten Ausführungsform der Erfindung umfasst die erfindungsgemäße Elektrolumineszenzvorrichtung einen Aufbau, enthaltend in dieser Reihenfolge: Anode - Lochinjektionsschicht enthaltend mindestens eine Verbindung gemäß einer der Formeln (1) bis (6) - Lochtransportschicht, bevorzugt enthaltend mindestens ein Triaryl- aminderivat - emittierende Schicht - Kathode. Ebenso ist es in diesem Aufbau möglich, zwei oder mehrere Lochtransportschichten zu verwenden, die bevorzugt alle mindestens ein Triarylaminderivat enthalten. Ein weiterer bevorzugter Aufbau der Elektrolumineszenzvorrichtung enthält in dieser Reihenfolge: Anode - Lochinjektionsschicht, bevorzugt enthaltend mindestens ein Triarylaminderivat - Lochtransportschicht, enthaltend mindestens eine Verbindung gemäß einer der Formeln (1) bis (6) - Lochtransportschicht, bevorzugt enthaltend mindestens ein Triarylaminderivat - emittierende Schicht - Kathode. Ebenso ist in diesem Aufbau möglich, dass zwischen die Lochinjektionsschicht und die Schicht enthaltend die Verbindung gemäß einer der Formeln (1) bis (6) eine weitere Lochtransportschicht, bevorzugt enthaltend mindestens ein Triarylaminderivat, eingebracht ist und/oder dass statt einer Lochtransportschicht, welche bevorzugt ein Triarylaminderivat enthält, zwei oder mehrere Lochtransportschichten, welche bevorzugt jeweils mindestens ein Triarylaminderivat enthalten, zwischen der Schicht enthaltend die Verbindung gemäß einer der Formeln (1) bis (6) und der emittierenden Schicht verwendet werden. Außerdem können diese Vorrichtungen weiterhin eine oder mehrere der oben aufgeführten weiteren Schichten, beispielsweise Elektronentrans- portschichten etc., enthalten.
In nochmals einer weiteren Ausführungsform der Erfindung werden die Verbindungen gemäß Formel (1) bis (6) als Elektronentransportmaterial bzw. als Lochblockiermaterial in einer Elektronentransportschicht bzw. einer Lochblockierschicht eingesetzt. Eine Lochblockierschicht im Sinne dieser Erfindung ist eine Schicht, die zwischen einer emittierenden Schicht und einer Elektronentransportschicht liegt und direkt an die emittierende Schicht angrenzt. Hier ist es bevorzugt, wenn die Substituenten R gleich oder verschieden bei jedem Auftreten für ein aromatisches oder heteroaromatisches Ringsystem stehen, welche bevorzugt ausgewählt sind aus den oben genannten Gruppen. Weiterhin kann es bevorzugt sein, wenn die Verbindung mit Elektronendonorverbindungen dotiert ist. Dies gilt insbesondere für die Verwendung in einer Elektronentransportschicht. Geeignete Dotanden sind Alkalimetalle oder Alkalimetallkomplexe bzw. -verbindungen, insbesondere Lithiumverbindungen, beispielsweise Lithiumchinolinat.
In nochmals einer weiteren Ausführungsform der Erfindung werden die Verbindungen gemäß Formel (1) bis (6) als Ladungserzeugungsmaterial in einer Ladungserzeugungsschicht (Charge generation layer) eingesetzt.
In nochmals einer weiteren Ausführungsform der Erfindung werden die Verbindungen gemäß Formel (1) bis (6) als Matrixmaterial für eine emittierende Verbindung, insbesondere für eine phosphoreszierende Verbindung eingesetzt. Dies gilt insbesondere für Verbindungen, in welchen R für eine Aryl- oder Heteroarylgruppe steht. Die phosphoreszierende Verbindung ist dabei bevorzugt eine rot oder grün phosphoreszierende Verbindung.
in den oben genannten Funktionen, also insbesondere als Lochinjektionsbzw, -transportmaterial, als Elektronentransportmaterial oder als Ladungserzeugungmaterial, eignen sich die Materialien auch für andere organische elektronische Vorrichtungen, wie sie oben genannt wurden.
Als Kathode der erfindungsgemäßen elektronischen Vorrichtung sind Metalle mit geringer Austrittsarbeit, Metalllegierungen oder mehrlagige Strukturen aus verschiedenen Metallen bevorzugt, wie beispielsweise Erdalkalimetalle, Alkalimetalle, Hauptgruppenmetalle oder Lanthanoide (z. B. Ca, Ba, Mg, AI, In, Mg, Yb, Sm, etc.). Bei mehrlagigen Strukturen können auch zusätzlich zu den genannten Metallen weitere Metalle verwendet werden, die eine relativ hohe Austrittsarbeit aufweisen, wie z. B. Ag, wobei dann in der Regel Kombinationen der Metalle, wie beispielsweise Ca/Ag oder Ba/Ag, verwendet werden. Ebenso bevorzugt sind Metalllegierungen, insbesondere Legierungen aus einem Alkalimetall oder Erdalkalimetall und Silber, besonders bevorzugt eine Legierung aus Mg und Ag. Es kann auch bevorzugt sein, zwischen einer metallischen Kathode und dem organischen Halbleiter eine dünne Zwischenschicht eines Materials mit einer hohen Dielektrizitätskonstante einzubringen. Hierfür kommen beispielsweise Alkalimetall- oder Erdalkalimetallfluoride, aber auch die entsprechenden Oxide oder Carbonate in Frage (z. B. LiF, Li2O, CsF, Cs2CO3, BaF2, MgO, NaF1 etc.). Die Schichtdicke dieser Zwischenschicht beträgt bevorzugt zwischen 0.5 und 5 nm.
Als Anode der erfindungsgemäßen elektronischen Vorrichtung sind Materialien mit hoher Austrittsarbeit bevorzugt. Bevorzugt weist die Anode eine Austrittsarbeit größer 4.5 eV vs. Vakuum auf. Hierfür sind einerseits
Metalle mit hohem Redoxpotential geeignet, wie beispielsweise Ag, Pt oder Au. Es können andererseits auch Metall/Metalloxid-Elektroden (z. B. AI/Ni/NiOχ, AI/PtOχ) bevorzugt sein. Für einige Anwendungen muss mindestens eine der Elektroden transparent sein, um entweder die Bestrahlung des organischen Materials (O-SC) oder die Auskopplung von Licht (OLED/PLED, O-Laser) zu ermöglichen. Ein bevorzugter Aufbau verwendet eine transparente Anode. Bevorzugte Anodenmaterialien sind hier leitfähige gemischte Metalloxide. Besonders bevorzugt sind Indium- Zinn-Oxid (ITO) oder Indium-Zink Oxid (IZO). Bevorzugt sind weiterhin leitfähige, dotierte organische Materialien, insbesondere leitfähige dotierte Polymere.
Die Vorrichtung wird entsprechend Qe nach Anwendung) strukturiert, kontaktiert und schließlich hermetisch versiegelt, da sich die Lebensdauer derartiger Vorrichtungen bei Anwesenheit von Wasser und/oder Luft drastisch verkürzt.
Es können generell alle weiteren Materialien, wie sie gemäß dem Stand der Technik in organischen Elektrolumineszenzvorrichtungen eingesetzt werden, auch in Kombination mit den Verbindungen gemäß den Formeln (1) bis (6) eingesetzt werden. Die emittierende Schicht kann dabei fluoreszierende und/oder phosphoreszierende Dotanden, bevorzugt jeweils in Kombination mit einem Matrixmaterial (Hostmaterial), enthalten.
Geeignete fluoreszierende Dotanden sind ausgewählt aus der Klasse der Monostyrylamine, der Distyrylamine, der Tristyrylamine, der Tetrastyryl- amine, der Styrylphosphine, der Styrylether und der Arylamine. Unter einem Monostyrylamin wird eine Verbindung verstanden, die eine substituierte oder unsubstituierte Styrylgruppe und mindestens ein, bevorzugt aromatisches, Amin enthält. Unter einem Distyrylamin wird eine Verbin- dung verstanden, die zwei substituierte oder unsubstituierte Styrylgruppen und mindestens ein, bevorzugt aromatisches, Amin enthält. Unter einem Tristyrylamin wird eine Verbindung verstanden, die drei substituierte oder unsubstituierte Styrylgruppen und mindestens ein, bevorzugt aromatisches, Amin enthält. Unter einem Tetrastyrylamin wird eine Verbindung verstanden, die vier substituierte oder unsubstituierte Styrylgruppen und mindestens ein, bevorzugt aromatisches, Amin enthält. Die Styrylgruppen sind besonders bevorzugt Stilbene, die auch noch weiter substituiert sein können. Entsprechende Phosphine und Ether sind in Analogie zu den Aminen definiert. Unter einem Arylamin bzw. einem aromatischen Amin im Sinne dieser Erfindung wird eine Verbindung verstanden, die drei substituierte oder unsubstituierte aromatische oder heteroaromatische Ringsysteme direkt an den Stickstoff gebunden enthält. Bevorzugt ist mindestens eines dieser aromatischen oder heteroaromatischen Ringsysteme ein kondensiertes Ringsystem, besonders bevorzugt mit mindestens 14 aromatischen Ringatomen. Bevorzugte Beispiele hierfür sind aromatische Anthracenamine, aromatische Anthracendiamine, aromatische Pyrenamine, aromatische Pyrendiamine, aromatische Chrysenamine oder aromatische Chrysendiamine. Unter einem aromatischen Anthracenamin wird eine Verbindung verstanden, in der eine Diarylaminogruppe direkt an eine Anthracengruppe gebunden ist, vorzugsweise in 9-Position. Unter einem aromatischen Anthracendiamin wird eine Verbindung verstanden, in der zwei Diarylaminogruppen direkt an eine Anthracengruppe gebunden sind, vorzugsweise in 9,10-Position. Aromatische Pyrenamine, Pyrendiamine, Chrysenamine und Chrysendiamine sind analog dazu definiert, wobei die Diarylaminogruppen am Pyren bevorzugt in 1 -Position bzw. in 1,6-Position gebunden sind. Weitere bevorzugte Dotanden sind gewählt aus Indenofluorenaminen bzw. -diaminen, beispielsweise gemäß WO 06/122630, Benzoindenofluoren- aminen bzw. -diaminen, beispielsweise gemäß WO 08/006449, und Dibenzoindenofluorenaminen bzw. -diaminen, beispielsweise gemäß
WO 07/140847. Beispiele für Dotanden aus der Klasse der Styrylamine sind substituierte oder unsubstituierte Tristilbenamine oder die Dotanden, die in WO 06/000388, WO 06/058737, WO 06/000389, WO 07/065549 und WO 07/115610 beschrieben sind. Weiterhin bevorzugt sind die in der nicht offen gelegten Anmeldung DE 102008035413.9 offenbarten kondensierten Kohlenwasserstoffe.
Weitere geeignete fluoreszierende Dotanden sind die in der folgenden Tabelle abgebildeten Strukturen, sowie die in JP 06/001973, WO 04/047499, WO 06/098080, WO 07/065678, US 2005/0260442 und WO 04/092111 offenbarten Derivate dieser Strukturen.
Figure imgf000036_0001
Geeignete Hostmaterialien für die fluoreszierenden Emitter sind ausgewählt aus den Klassen der Oligoarylene (z. B. 2,2',7,7'-Tetraphenylspiro- bifluoren gemäß EP 676461 oder Dinaphthylanthracen), insbesondere der Oligoarylene enthaltend kondensierte aromatische Gruppen, der Oligo- arylenvinylene (z. B. DPVBi oder Spiro-DPVBi gemäß EP 676461), der polypodalen Metallkomplexe (z. B. gemäß WO 04/081017), der lochleitenden Verbindungen (z. B. gemäß WO 04/058911), der elektronenleitenden Verbindungen, insbesondere Ketone, Phosphinoxide, Sulfoxide, etc. (z. B. gemäß WO 05/084081 und WO 05/084082), der Atropisomere (z. B. gemäß WO 06/048268), der Boronsäurederivate (z. B. gemäß WO 06/117052), der Benzanthracene (z. B. gemäß WO 08/145239) oder der Benzophenanthrene (z. B. gemäß der noch nicht offen gelegten Anmeldung DE 102009005746.3). Besonders bevorzugte Hostmaterialien sind ausgewählt aus den Klassen der Oligoarylene, enthaltend Naphthalin, Anthracen, Benzanthracen, Benzophenanthren und/oder Pyren oder Atropisomere dieser Verbindungen, der Oligoarylenvinylene, der Ketone, der Phosphinoxide und der Sulfoxide. Ganz besonders bevorzugte Hostmaterialien sind ausgewählt aus den Klassen der Oligoarylene, enthaltend Anthracen, Benzanthracen, Benzophenanthren und/oder Pyren oder Atropisomere dieser Verbindungen. Unter einem Oligoarylen im Sinne dieser Erfindung soll eine Verbindung verstanden werden, in der mindestens drei Aryl- bzw. Arylengruppen aneinander gebunden sind.
Geeignete Hostmaterialien sind weiterhin beispielsweise die in der folgenden Tabelle abgebildeten Materialien, sowie Derivate dieser Materialien, wie sie in WO 04/018587, WO 08/006449, US 5935721, US 2005/0181232, JP 2000/273056, EP 681019, US 2004/0247937 und US 2005/0211958 offenbart werden.
Figure imgf000037_0001
Als phosphoreszierende Verbindungen eignen sich insbesondere Verbindungen, die bei geeigneter Anregung Licht, vorzugsweise im sichtbaren Bereich, emittieren und außerdem mindestens ein Atom der Ordnungszahl größer 20, bevorzugt größer 38 und kleiner 84, besonders bevorzugt größer 56 und kleiner 80 enthalten. Bevorzugt werden als Phosphoreszenzemitter Verbindungen, die Kupfer, Molybdän, Wolfram, Rhenium, Ruthenium, Osmium, Rhodium, Iridium, Palladium, Platin, Silber, Gold oder Europium enthalten, verwendet, insbesondere Verbindungen, die Iridium oder Platin enthalten. Im Sinne der vorliegenden Anmeldung werden alle lumineszierenden Metallkomplexe, die die oben genannten Metall enthalten, als phosphoreszierende Verbindungen bezeichnet.
Beispiele für geeignete phosphoreszierende Emitter können den
Anmeldungen WO 00/70655, WO 01/41512, WO 02/02714, WO 02/15645, EP 1191613, EP 1191612, EP 1191614, WO 04/081017, WO 05/033244, WO 05/042550, WO 05/113563, WO 06/008069, WO 06/061182, WO 06/081973 und der nicht offen gelegten Anmeldung DE 102008027005.9 entnommen werden. Generell eignen sich alle phosphoreszierenden Komplexe, wie sie gemäß dem Stand der Technik für phosphoreszierende OLEDs verwendet werden und wie sie dem Fachmann auf dem Gebiet der organischen Elektrolumineszenz bekannt sind, und der Fachmann kann ohne erfinderisches Zutun weitere phosphores- zierende Verbindungen verwenden.
Geeignete Matrixmaterialien für den phosphoreszierenden Emitter sind ausgewählt aus der Gruppe bestehend aus aromatischen Ketonen, Phosphinoxiden, Sulfoxiden und Sulfonen, z. B. gemäß WO 04/013080, WO 04/093207, WO 06/005627 oder der nicht offen gelegten Anmeldung DE 102008033943.1 , Triarylaminen, Carbazolderivaten, z. B. CBP (N1N- Biscarbazolylbiphenyl) oder die in WO 05/039246, US 2005/0069729, JP 2004/288381 , EP 1205527 oder WO 08/086851 offenbarten Carbazol- derivate, eis- und trans-lndolocarbazolderivaten, z. B. gemäß WO 07/063754 oder WO 08/056746, Azacarbazolen, z. B. gemäß EP
1617710, EP 1617711 , EP 1731584, JP 2005/347160, bipolaren Matrixmaterialien, z. B. gemäß WO 07/137725, Silanen, z. B. gemäß WO 05/111172, Azaborolen oder Boronestern, z. B. gemäß WO 06/117052, Triazinderivaten, z. B. gemäß der nicht offen gelegten Anmeldung DE 102008036982.9, WO 07/063754 oder WO 08/056746, oder Zinkkomplexen, z. B. gemäß WO 09/062578.
Geeignete Ladungstransportmaterialien, wie sie in der Lochinjektionsbzw. Lochtransportschicht oder in der Elektronentransportschicht der erfindungsgemäßen organischen Elektrolumineszenzvorrichtung verwendet werden können, sind außer den erfindungsgemäßen Materialien beispielsweise die in Y. Shirota et al., Chem. Rev. 2007, 107(4), 953-1010 offenbarten Verbindungen oder andere Materialien, wie sie gemäß dem Stand der Technik in diesen Schichten eingesetzt werden.
Beispiele für bevorzugte Lochtransportmaterialien, die in einer Lochtransport- oder Lochinjektionsschicht in der erfindungsgemäßen Elektro- lumineszenzvorrichtung verwendet werden können, sind Indenofluoren- amine und Derivate (z. B. gemäß WO 06/122630, WO 06/100896 oder der nicht offen gelegten Anmeldung DE 102008024182.2), die in EP 1661888 offenbarten Aminderivate, Hexaazatriphenylenderivate (z. B. gemäß WO 01/049806), Aminderivate mit kondensierten Aromaten (z. B. gemäß US 5,061,569), die in WO 95/09147 offenbarten Aminderivate, Monobenzoindenofluorenamine (z. B. gemäß WO 08/006449) oder Dibenzoindenofluorenamine (z. B. gemäß WO 07/140847). Weiterhin geeignete Lochtransport- und Lochinjektionsmaterialien sind Derivate der oben genannten Verbindungen, wie sie in JP 2001/226331 , EP 676461, EP 650955, WO 01/049806, US 4780536, WO 98/30071 , EP 891121 , EP 1661888, JP 2006/253445, EP 650955, WO 06/073054 und US 5061569 offenbart werden.
Geeignete Lochtransport- oder Lochinjektionsmaterialien sind weiterhin beispielsweise die in der folgenden Tabelle aufgeführten Materialien.
Figure imgf000039_0001
Figure imgf000040_0001
Geeignete Elektronentransport- oder Elektroneninjektionsmaterialien, die in der erfindungsgemäßen Elektrolumineszenzvorrichtung verwendet werden können, sind beispielsweise die in der folgenden Tabelle aufgeführten Materialien. Weiterhin geeignete Elektronentransport- und Elektroneninjektionsmaterialien sind Derivate der oben abgebildeten Verbindungen, wie sie in JP 2000/053957, WO 03/060956, WO 04/028217 und WO 04/080975 offenbart werden.
Figure imgf000041_0001
Figure imgf000041_0002
Weiterhin bevorzugt ist eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten mit einem Sublimationsverfahren beschichtet werden. Dabei werden die Materialien in Vakuum-Sublimationsanlagen bei einem Anfangsdruck kleiner 10"5 mbar, bevorzugt kleiner 10"6 mbar aufgedampft. Es sei jedoch angemerkt, dass der Anfangsdruck auch noch geringer sein kann, beispielsweise kleiner 10"7 mbar.
Bevorzugt ist ebenfalls eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten mit dem OVPD (Organic Vapour Phase Deposition) Verfahren oder mit Hilfe einer Trägergassublimation beschichtet werden. Dabei werden die Materialien bei einem Druck zwischen 10"5 mbar und 1 bar aufgebracht. Ein Spezialfall dieses Verfahrens ist das OVJP (Organic Vapour Jet Printing) Verfahren, bei dem die Materialien direkt durch eine Düse aufgebracht und so strukturiert werden (z. B. M. S. Arnold et al., Appl. Phys. Lett. 2008, 92, 053301).
Weiterhin bevorzugt ist eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten aus Lösung, wie z. B. durch Spincoating, oder mit einem beliebigen Druckverfahren, wie z. B. Siebdruck, Flexodruck oder Offsetdruck, besonders bevorzugt aber LITI (Light Induced Thermal Imaging, Thermotransferdruck) oder Ink- Jet Druck (Tintenstrahldruck), hergestellt werden. Hierfür sind lösliche Verbindungen nötig. Hohe Löslichkeit lässt sich durch geeignete Substitution der Verbindungen erreichen. Dabei können nicht nur Lösungen aus einzelnen Materialien aufgebracht werden, sondern auch Lösungen, die mehrere Verbindungen enthalten, beispielsweise Matrixmaterial und Dotand.
Es ist auch möglich, mehrere dieser Verfahren zu kombinieren und beispielsweise eine oder mehrere Schichten aufzudampfen und eine oder mehrere weitere Schichten aus Lösung aufzubringen.
Die oben genannten Verfahren sind ein weiterer Gegenstand der vorliegenden Erfindung.
Die erfindungsgemäßen Verbindungen weisen bei Verwendung in organischen Elektrolumineszenzvorrichtungen folgende überraschende Vorteile gegenüber dem Stand der Technik auf:
1. Die Verbindungen der Formeln (1) bis (6) weisen eine hohe thermische Stabilität auf und lassen sich unzersetzt sublimieren.
2. Die Verbindungen gemäß den Formeln (1) bis (6), insbesondere Verbindungen gemäß Formel (3), welche mit elektronenarmen Substituenten, insbesondere F, CN und/oder elektronenarmen Hetero- cyclen, substituiert sind, eignen sich sehr gut als Lochinjektionsmaterial bzw. als Lochtransportmaterial für die Verwendung in einer Lochinjektionsschicht bzw. in einer Lochtransportschicht und führen bei dieser Verwendung zu hohen Effizienzen, insbesondere zu hohen Leistungseffizienzen, und langen Lebensdauern.
3. Die Verbindungen gemäß den Formeln (1) bis (6), insbesondere solche, welche mit aromatischen oder heteroaromatischen Gruppen substituiert sind, eignen sich sehr gut als Elektronentransportmaterial oder als Lochblockiermaterial für die Verwendung in einer Elektronen- transportschicht bzw. in einer Lochblockierschicht und führen bei dieser Verwendung zu hohen Effizienzen, insbesondere zu hohen Leistungseffizienzen, und langen Lebensdauern.
4. Die Verbindungen gemäß den Formeln (1) bis (6), insbesondere solche, welche mit aromatischen oder heteroaromatischen Gruppen substituiert sind, eignen sich sehr gut als Matrixmaterial für emittierende Verbindungen, insbesondere für phosphoreszierende Verbindungen, für die Verwendung in einer emittierenden Schicht.
5. Die Verbindungen gemäß den Formeln (1) bis (6) weisen eine sehr hohe Photostabilität auf, zersetzen sich also nicht unter der Einwirkung von Licht, und sind daher sehr gut für den Einsatz sowohl in organischen Elektrolumineszenzvorrichtungen wie auch in organischen Solarzellen geeignet.
Die Erfindung wird durch die nachfolgenden Beispiele genauer beschrieben, ohne sie dadurch einschränken zu wollen. Der Fachmann kann ohne erfinderisch tätig zu werden weitere erfindungsgemäße organische elektronische Vorrichtungen, insbesondere organische Elektrolumineszenzvorrichtungen, herstellen.
Beispiele:
Die nachfolgenden Synthesen werden - sofern nicht anders angegeben - unter einer Schutzgasatmosphäre in getrockneten Lösungsmitteln durchgeführt. Die Lösungsmittel und Reagenzien können von den Firmen ALDRICH bzw. ABCR bezogen werden. Die Vorstufe Trichlorheptaaza- phenalen kann gemäß EP 1854797 hergestellt werden. Triphenylhepta- azaphenalen und Trimesitylheptaazaphenalen können gemäß H. Schröder et al., J. Org. Chem. 1962, 27, 4262-4266 hergestellt werden.
Beispiel 1: Synthese von Tricyanoheptaazaphenalen (HIM-1)
Figure imgf000043_0001
50 g (181 mmol) Trichlorheptaazaphenalen und 53.45 g (597 mmol, 3.3 Äquivalente) Kupfer(l)cyanid werden in 750 mL DMF suspendiert und unter Argon 60 h auf 130 0C erhitzt. Nach Abkühlen auf Raumtemperatur wird die Reaktionsmischung in 1000 mL konzentrierte Ammoniaklösung gegeben und 4 h an der Luft kräftig gerührt. Der dabei ausfallende orga- nische Niederschlag wird abgesaugt und mit kaltem Ethanol gewaschen.
Der Rückstand wird mit Acetonitril soxhfetiert, der auskristallisierte Niederschlag wird abgesaugt, mit wenig kaltem Acetonitril gewaschen und im Vakuum getrocknet. Ausbeute: 39.1 g (157 mmol), 87 % der Theorie; Reinheit ca. 99.8 % (HPLC).
Beispiel 2: Herstellung und Charakterisierung von organischen Elektrolumineszenzvorrichtungen
Die Herstellung von erfindungsgemäßen OLEDs erfolgt nach einem allgemeinen Verfahren gemäß WO 04/058911, das auf die hier beschriebenen Gegebenheiten (Schichtdickenvariation, verwendete Materialien) angepasst wird.
In den folgenden Beispielen 3 bis 8 werden die Ergebnisse verschiedener OLEDs vorgestellt. Glasplättchen, die mit strukturiertem ITO (Indium Zinn Oxid) beschichtet sind, bilden die Substrate der OLEDs. Zur verbesserten Prozessierung wird 20 nm PEDOT (aus Wasser aufgeschleudert; bezogen von H. C. Starck, Goslar, Deutschland; Poly(3,4-ethylendioxy-2,5- thiophen)) auf das Substrat aufgebracht. Die OLEDs bestehen aus folgender Schichtenfolge: Substrat / PEDOT 20 nm / Lochinjektionsschicht (HIL) 5 nm / Lochtransportschicht (HTL-1) 20 nm / Lochtransportschicht (HTL-2) 20 nm / Emissionschicht (EML) 30 nm / Elektronentransport- schicht (ETL) 20 nm und abschließend eine Kathode.
Die Materialien bis auf PEDOT werden in einer Vakuumkammer thermisch aufgedampft. Dabei besteht die Emissionsschicht immer aus einem Matrixmaterial (Host) und einem Dotierstoff (Dotand), der durch Coverdampfung dem Host beigemischt wird. In den unten aufgeführten Beispielen 3 bis 8 wird als Matrixmaterial die Verbindung H1 verwendet, welche jeweils mit 10 % D1 dotiert ist. Diese OLEDs zeigen grüne Emission. Als Lochtrans- portmaterial in der HTL-1 wird die Verbindung HTM-1 verwendet. Als Lochtransportmaterial in der HTL-2 wird NPB verwendet. Die Kathode wird durch eine 1 nm dicke LiF-Schicht und eine darauf abgeschiedene 100 nm dicke AI-Schicht gebildet. Tabelle 1 zeigt die chemischen Strukturen der zum Aufbau der OLEDs verwendeten Materialien.
Diese OLEDs werden standardmäßig charakterisiert; hierfür werden die
Elektrolumineszenzspektren, die Effizienz (gemessen in cd/A), die Leistungseffizienz (gemessen in Im/W) in Abhängigkeit der Helligkeit, berechnet aus Strom-Spannungs-Helligkeit-Kennlinien (IUL-Kennlinien), und die Lebensdauer bestimmt. Als Lebensdauer wird die Zeit definiert, nach der die Anfangshelligkeit von 25000 cd/m2 auf die Hälfte gesunken ist. Die Einsatzspannung ist definiert als diejenige Spannung, bei der die OLED eine Helligkeit von 1 cd/m2 erreicht.
In Tabelle 2 sind die Ergebnisse einiger OLEDs (Beispiele 3 bis 8) zusammengefasst. Als Lochinjektionsmaterial werden in der Lochinjektionsschicht (HIL) erfindungsgemäß HIM-1 (Tricyanoheptaaza- phenalen, aus Beispiel 1) oder HIM-2 (Hexacyanohexaazatriphenylen, gemäß dem Stand der Technik) verwendet. Verglichen mit dem Stand der Technik zeichnen sich OLEDs1 die HIM-1 in der Lochinjektionsschicht enthalten, durch eine verbesserte Effizienz, insbesondere eine verbesserte Leistungseffizienz, und Lebensdauer gegenüber HIM-2 gemäß dem Stand der Technik aus. Die Einsatzspannung und Farbkoordinaten beim erfindungsgemäßen Einsatz von HIM-1 sind sehr ähnlich wie beim Einsatz von HIM-2 gemäß dem Stand der Technik.
Als Elektronentransportmaterial wird in der Elektronentransportschicht (ETL) entweder AIQ3 gemäß dem Stand der Technik oder erfindungsgemäß Triphenylheptaazaphenalen (ETM-1) oder Trimesitylheptaaza- phenalen (ETM-2) eingesetzt.
Figure imgf000046_0001
Tabelle 2
Figure imgf000047_0001

Claims

Patentansprüche
1. Organische elektronische Vorrichtung, enthaltend Kathode, Anode und mindestens eine organische Schicht, welche zwischen Kathode und Anode angeordnet ist und welche mindestens eine Verbindung gemäß Formel (1) oder Formel (2) enthält,
Figure imgf000048_0001
Formel (1)
Figure imgf000048_0002
Formel (2)
wobei für die verwendeten Symbole und Indizes gilt:
X ist bei jedem Auftreten gleich oder verschieden CR1 oder N;
Y ist bei jedem Auftreten gleich oder verschieden eine bivalente Gruppe, ausgewählt aus der Gruppe bestehend aus B(R1), C(R1)2, NR1, O, S, C(=O), C(=C(R1)2, S(O)1 S(O)2, P(=O)(R1)2, oder einem bivalenten aromatischen oder heteroaromatischen Ringsystem mit 5 bis 18 aromatischen Ringatomen, welches mit einem oder mehreren Resten R1 substituiert sein kann;
R ist bei jedem Auftreten gleich oder verschieden H, D1 F1 Cl1 Br, I1 CHO, N(R1)2l N(Ar)2, C(=O)Ar, P(O)(Ar)2, S(O)Ar, S(O)2Ar1
CR1OR1Ar, CN, NO2, Si(R1)3l B(OR1)2l B(R1)2l B(Ar)2, B(N(R1)2)2l OSO2R1, eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine geradkettige Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R1COR1, C=C , Si(R1)2, Ge(R1)2, Sn(R1)2, C=O, C=S, C=Se, C=NR1, P(O)(R1), SO, SO2, NR1, O, S oder CONR1 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F1 Cl1 Br, I1 CN oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen
Ringatomen, die jeweils durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Kombination dieser Systeme;
R1 ist bei jedem Auftreten gleich oder verschieden H, D1 F, Cl1 Br, I1 CHO1 N(R2)2l N(Ar)2, C(O)Ar1 P(O)(Ar)2, S(O)Ar1 S(O)2Ar1
CR2OR2Ar, CN, NO2, Si(R2)3, B(OR2)2, B(R2)2l B(N(R2)2)2, OSO2R2, eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine geradkettige Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R2 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R2C=CR2, C=C , Si(R2)2l Ge(R2)2l Sn(R2J2, C=O, C=S, C=Se, C=NR2, P(O)(R2), SO, SO2, NR2, O, S oder CONR2 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, Cl, Br, I, CN oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R2 substituiert sein kann, oder eine
Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R2 substitui sein kann, oder eine Kombination dieser Systeme;
Ar ist bei jedem Auftreten gleich oder verschieden ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 30 aromatischen
"10 Ringatomen, das mit einem oder mehreren nicht-aromatischen
Resten R1 substituiert sein kann; dabei können auch zwei Reste Ar, welche an dasselbe Stickstoff- oder Phosphoratom binden, durch eine Einfachbindung oder eine Brücke, ausgewählt aus B(R2), C(R2)2, Si(R2)2, C=O, C=NR2, C=C(R2)2, O, S, S=O, SO2,
15 N(R2), P(R2) und P(=O)R2, miteinander verknüpft sein;
R2 ist bei jedem Auftreten gleich oder verschieden H, D oder ein aliphatischer, aromatischer und/oder heteroaromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, in dem auch H-Atome 20 durch F ersetzt sein können; dabei können zwei oder mehrere benachbarte Substituenten R2 auch miteinander ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden; 5 n ist 0, 1 , 2, 3, 4, 5 oder 6;
m ist 0, 1 , 2 oder 3
p ist bei jedem Auftreten gleich oder verschieden 0, 1 , 2 oder 3. 30
2. Organische elektronische Vorrichtung nach Anspruch 1 , ausgewählt aus der Gruppe bestehend aus organischen Elektrolumineszenz- vorrichtungen (OLEDs), organischen integrierten Schaltungen (O-ICs), organischen Feld-Effekt-Transistoren (O-FETs), organischen Dünn- 35 filmtransistoren (O-TFTs), organischen lichtemittierenden Transistoren (0-LETs)1 organischen Solarzellen (O-SCs), organischen optischen Detektoren, organischen Photorezeptoren, organischen Feld-Quench- Devices (O-FQDs), lichtemittierenden elektrochemischen Zellen (LECs) und organischen Laserdioden (O-Laser).
3. Organische elektronische Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Verbindung der Formel (1) bzw. der Formel (2) ausgewählt ist aus den Verbindungen gemäß Formel (3), Formel (4), Formel (5) oder Formel (6),
Figure imgf000051_0001
Formel (3)
Figure imgf000051_0002
Formel (4)
Figure imgf000052_0001
Formel (5)
Figure imgf000052_0002
Formel (6)
wobei die verwendeten Symbole und Indizes dieselbe Bedeutung haben wie in Anspruch 1 beschrieben und bevorzugt R1 in Formel (4) und Formel (6) für Wasserstoff oder Deuterium steht.
4. Organische elektronische Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Index n in Verbindungen der Formel (1), (3) und (4) für 0, 1 oder 2, besonders bevorzugt für 0 oder 1 , ganz besonders bevorzugt für 0 steht und dass der Index m in den Verbindungen der Formel (2), (5) und (6) für 0, 1 oder 2, besonders bevorzugt für 1 steht.
5. Organische elektronische Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass R in den Verbindungen der Formeln (1) bis (6) gleich oder verschieden bei jedem Auftreten für F, N(R1)2, N(Ar)2, C(=O)Ar, P(=O)(Ar)2, CN, NO2, eine geradkettige Alkylgruppe mit 1 bis 10 C-Atomen oder eine
5 verzweigte oder cyclische Alkylgruppe mit 3 bis 10 C-Atomen, die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei ein oder mehrere H-Atome durch F oder CN ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 40 aromatischen Ringatomen, das jeweils durch einen oder
"10 mehrere Reste R1 substituiert sein kann, steht.
6. Organische elektronische Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass R in den Verbindungen der Formeln (1) bis (6) gleich oder verschieden bei jedem Auftreten für F, CN, CF3 oder ein
15 aromatisches oder heteroaromatisches Ringsystem mit 5 bis 30 aromatischen Ringatomen, welches jeweils durch einen oder mehrere Reste R1 substituiert sein kann, steht, wobei bevorzugte aromatische oder heteroaromatische Ringsysteme ausgewählt sind aus der Gruppe bestehend aus Phenyl, 2-, 3- oder 4-Pyridyl, Pyrazinyl, 2-, 4- oder 5-
20 Pyrimidinyl, 3- oder 4-Pyridazinyl, Ortho-, meta- oder para-Biphenyl, ortho-, meta- oder para-Terphenyl, 2-Fluorenyl, 2-Spirobifluorenyl, 1- Naphthyl, 2-Naphthyl, Anthracenyl, Phenylanthracenyl, 1- oder 2- Naphthylanthracenyl, Binaphthyl, Pyrenyl, Fluoranthenyl, 2-, 3-, 4-, 5-, 6- oder 7-Benzanthracenyl, N-Imidazolyl, N-Benzimidazolyl, Phenyl-N-
25 benzimidazolyl, N-Phenylbenzimidazolyl, Phenyl-N-phenylbenz- imidazolyl oder Kombinationen dieser Gruppen, welche jeweils durch einen oder mehrere Reste R1 substituiert sein können, bevorzugt aber unsubstituiert sind.
30 7. Organische elektronische Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass alle Reste R gleich gewählt sind.
8. Organische elektronische Vorrichtung nach einem oder mehreren der 35 Ansprüche 1 bis 7, dadurch gekennzeichnet, dass in Verbindungen der Formeln (1) bis (6) Y, wenn p ungleich 0 ist, gleich oder verschieden bei jedem Auftreten für eine bivalente Gruppe, ausgewählt aus der Gruppe bestehend aus C(R1)2, NR1 und einer bivalenten Aryl- oder Heteroarylgruppe mit 5 bis 14 aromatischen Ringatomen, welche mit einem oder mehreren Resten R1 substituiert sein kann, steht.
9. Organische elektronische Vorrichtung, enthaltend mindestens ein Oligomer, Polymer oder Dendrimer, welches eine oder mehrere Verbindungen gemäß Formel (1) bis (6) nach einem oder mehreren der Ansprüche 1 bis 8 enthät, wobei ein oder mehrere Reste R Bindungen der Verbindung gemäß Formel (1) bis (6) zum Polymer,
Oligomer oder Dendrimer darstellen.
10. Organische Elektrolumineszenzvorrichtung nach einem oder mehreren der Ansprüche 1 bis 9, enthaltend Anode, Kathode und eine oder mehrere emittierende Schichten, wobei mindestens eine organische
Schicht mindestens eine Verbindung gemäß Formel (1) bis (6) oder ein entsprechendes Oligomer, Polymer oder Dendrimer enthält, und weiterhin optional enthaltend weitere Schichten, ausgewählt aus jeweils einer oder mehreren Lochinjektionsschichten, Lochtransport- schichten, Lochblockierschichten, Elektronentransportschichten,
Elektroneninjektionsschichten, Elektronenblockierschichten, Exzitonenblockierschichten, Ladungserzeugungsschichten und/oder organischen oder anorganischen p/n-Übergängen, wobei diese Schichten auch dotiert sein können.
11. Organische Elektrolumineszenzvorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Verbindungen gemäß Formel (1) bis (6) als Lochinjektions- bzw. Lochtransportmaterial verwendet werden, insbesondere wenn mindestens ein Substituent R, bevorzugt mindestens zwei Substituenten R, besonders bevorzugt alle drei
Substituenten R für eine elektronenarme Gruppe stehen.
12. Organische Elektrolumineszenzvorrichtung nach Anspruch 11 , dadurch gekennzeichnet, dass die Substituenten R ausgewählt sind aus der Gruppe bestehend aus CN, F, NO2, CF3, und substituierten oder unsubstituierten elektronenarmen Heterocyclen, wobei die elektronenarmen Heterocyclen insbesondere ausgewählt sind aus der Gruppe bestehend aus Pyridin, Pyrazin, Pyrimidin, Pyridazin, Triazin, Pyrazol, Imidazol, Triazol, Benzimidazol, Chinolin, Isochinolin, Chinoxalin, Thiadiazol, Thiazol und Oxadiazol, welches jeweils durch eine oder mehrere Gruppen R1 substituiert sein kann.
13. Organische Elektrolumineszenzvorrichtung nach einem oder mehreren der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass die Verbindungen gemäß Formel (1) bis (6) als Elektronentransport- material bzw. als Lochblockiermaterial in einer Elektronentransport- schicht bzw. einer Lochblockierschicht eingesetzt werden, insbesondere wenn die Substituenten R gleich oder verschieden bei jedem Auftreten für ein aromatisches oder heteroaromatisches Ringsystem stehen, wobei die Elektronentransportschicht bzw. Lochblockierschicht auch dotiert sein kann.
14. Organische Elektrolumineszenzvorrichtung nach einem oder mehreren der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass die Verbindungen gemäß Formel (1) bis (6) als Ladungserzeugungs- material in einer Ladungserzeugungsschicht eingesetzt werden.
15. Verfahren zur Herstellung einer organischen elektronischen Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass eine oder mehrere Schichten mit einem Sublimationsverfahren beschichtet werden und/oder dass eine oder mehrere Schichten mit dem OVPD (Organic Vapour Phase Deposition) Verfahren oder mit Hilfe einer Trägergassublimation beschichtet werden und/oder dass eine oder mehrere Schichten aus Lösung und/oder mit einem Druckverfahren hergestellt werden.
PCT/EP2010/000330 2009-02-17 2010-01-20 Organische elektronische vorrichtung WO2010094378A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117021690A KR101751544B1 (ko) 2009-02-17 2010-01-20 유기 전자 소자
JP2011550439A JP5677983B2 (ja) 2009-02-17 2010-01-20 有機電子デバイス
CN201080008207.3A CN102317408B (zh) 2009-02-17 2010-01-20 有机电子器件
US13/201,981 US9066410B2 (en) 2009-02-17 2010-01-20 Organic electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009009277.3 2009-02-17
DE102009009277.3A DE102009009277B4 (de) 2009-02-17 2009-02-17 Organische elektronische Vorrichtung, Verfahren zu deren Herstellung und Verwendung von Verbindungen

Publications (1)

Publication Number Publication Date
WO2010094378A1 true WO2010094378A1 (de) 2010-08-26

Family

ID=42078039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/000330 WO2010094378A1 (de) 2009-02-17 2010-01-20 Organische elektronische vorrichtung

Country Status (7)

Country Link
US (1) US9066410B2 (de)
JP (1) JP5677983B2 (de)
KR (1) KR101751544B1 (de)
CN (1) CN102317408B (de)
DE (1) DE102009009277B4 (de)
TW (1) TW201042001A (de)
WO (1) WO2010094378A1 (de)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013083216A1 (de) 2011-11-17 2013-06-13 Merck Patent Gmbh Spiro -dihydroacridinderivate und ihre verwendung als materialien für organische elektrolumineszenzvorrichtungen
WO2013120577A1 (en) 2012-02-14 2013-08-22 Merck Patent Gmbh Spirobifluorene compounds for organic electroluminescent devices
WO2013133359A1 (ja) * 2012-03-09 2013-09-12 国立大学法人九州大学 発光材料および有機発光素子
WO2013135352A1 (de) 2012-03-15 2013-09-19 Merck Patent Gmbh Elektronische vorrichtungen
WO2013182263A1 (de) 2012-06-06 2013-12-12 Merck Patent Gmbh Phenanthrenverbindungen für organische elektronische vorrichtungen
WO2014044344A1 (de) 2012-09-18 2014-03-27 Merck Patent Gmbh Materialien für elektronische vorrichtungen
US20140091264A1 (en) * 2011-05-27 2014-04-03 Merck Patent Gmbh Organic electronic device
WO2014067614A1 (de) 2012-10-31 2014-05-08 Merck Patent Gmbh Elektronische vorrichtung
WO2014106522A1 (de) 2013-01-03 2014-07-10 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015036080A1 (de) 2013-09-11 2015-03-19 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2015139808A1 (de) 2014-03-18 2015-09-24 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2016091353A1 (de) 2014-12-12 2016-06-16 Merck Patent Gmbh Organische verbindungen mit löslichen gruppen
DE102014019432A1 (de) 2014-12-22 2016-06-23 Technische Universität Bergakademie Freiberg Arylthiocyamelurate, Verfahren zu deren Herstellung und deren Verwendung
WO2017012687A1 (en) 2015-07-22 2017-01-26 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017028940A1 (en) 2015-08-14 2017-02-23 Merck Patent Gmbh Phenoxazine derivatives for organic electroluminescent devices
WO2017133829A1 (de) 2016-02-05 2017-08-10 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2017207596A1 (en) 2016-06-03 2017-12-07 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2018069167A1 (de) 2016-10-10 2018-04-19 Merck Patent Gmbh Elektronische vorrichtung
DE102017008794A1 (de) 2016-10-17 2018-04-19 Merck Patent Gmbh Materialien zur Verwendung in elektronischen Vorrichtungen
WO2018083053A1 (de) 2016-11-02 2018-05-11 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2018087020A1 (en) 2016-11-08 2018-05-17 Merck Patent Gmbh Compounds for electronic devices
WO2018095888A1 (en) 2016-11-25 2018-05-31 Merck Patent Gmbh Bisbenzofuran-fused 2,8-diaminoindeno[1,2-b]fluorene derivatives and related compounds as materials for organic electroluminescent devices (oled)
WO2018095940A1 (en) 2016-11-25 2018-05-31 Merck Patent Gmbh Bisbenzofuran-fused indeno[1,2-b]fluorene derivatives and related compounds as materials for organic electroluminescent devices (oled)
WO2018141706A1 (de) 2017-02-02 2018-08-09 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2018157981A1 (de) 2017-03-02 2018-09-07 Merck Patent Gmbh Materialien für organische elektronische vorrichtungen
EP3378857A1 (de) 2012-11-12 2018-09-26 Merck Patent GmbH Materialien für elektronische vorrichtungen
WO2018234346A1 (en) 2017-06-23 2018-12-27 Merck Patent Gmbh MATERIALS FOR ORGANIC ELECTROLUMINESCENT DEVICES
WO2019002190A1 (en) 2017-06-28 2019-01-03 Merck Patent Gmbh MATERIALS FOR ELECTRONIC DEVICES
WO2019020654A1 (en) 2017-07-28 2019-01-31 Merck Patent Gmbh SPIROBIFLUORENE DERIVATIVES FOR USE IN ELECTRONIC DEVICES
WO2019048443A1 (de) 2017-09-08 2019-03-14 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2019076789A1 (en) 2017-10-17 2019-04-25 Merck Patent Gmbh MATERIALS FOR ORGANIC ELECTROLUMINESCENT DEVICES
WO2019101833A1 (en) 2017-11-24 2019-05-31 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019101835A1 (en) 2017-11-24 2019-05-31 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019101719A1 (de) 2017-11-23 2019-05-31 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2019115577A1 (en) 2017-12-15 2019-06-20 Merck Patent Gmbh Substituted aromatic amines for use in organic electroluminescent devices
WO2019121483A1 (en) 2017-12-20 2019-06-27 Merck Patent Gmbh Heteroaromatic compounds
WO2019170572A1 (en) 2018-03-06 2019-09-12 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019170578A1 (en) 2018-03-06 2019-09-12 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019175149A1 (en) 2018-03-16 2019-09-19 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020043646A1 (en) 2018-08-28 2020-03-05 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020043657A1 (en) 2018-08-28 2020-03-05 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020043640A1 (en) 2018-08-28 2020-03-05 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020053150A1 (en) 2018-09-12 2020-03-19 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020089138A1 (en) 2018-10-31 2020-05-07 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021110741A1 (en) 2019-12-04 2021-06-10 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2022017997A1 (en) 2020-07-22 2022-01-27 Merck Patent Gmbh Materials for organic electroluminescent devices
US11581487B2 (en) 2017-04-26 2023-02-14 Oti Lumionics Inc. Patterned conductive coating for surface of an opto-electronic device
WO2023052314A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052275A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052313A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052272A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023094412A1 (de) 2021-11-25 2023-06-01 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023117836A1 (en) 2021-12-21 2023-06-29 Merck Patent Gmbh Electronic devices
WO2023117835A1 (en) 2021-12-21 2023-06-29 Merck Patent Gmbh Electronic devices
WO2023117837A1 (de) 2021-12-21 2023-06-29 Merck Patent Gmbh Verfahren zur herstellung von deuterierten organischen verbindungen
US11730012B2 (en) 2019-03-07 2023-08-15 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
WO2023152346A1 (de) 2022-02-14 2023-08-17 Merck Patent Gmbh Materialien für elektronische vorrichtungen
EP4236652A2 (de) 2015-07-29 2023-08-30 Merck Patent GmbH Materialien für organische elektrolumineszenzvorrichtungen
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
WO2023222559A1 (de) 2022-05-18 2023-11-23 Merck Patent Gmbh Verfahren zur herstellung von deuterierten organischen verbindungen
WO2024013004A1 (de) 2022-07-11 2024-01-18 Merck Patent Gmbh Materialien für elektronische vorrichtungen
US11985841B2 (en) 2020-12-07 2024-05-14 Oti Lumionics Inc. Patterning a conductive deposited layer using a nucleation inhibiting coating and an underlying metallic coating

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010132953A1 (en) * 2009-05-22 2010-11-25 Commonwealth Scientific And Industrial Research Organisation Heptaazaphenalene derivatives and use thereof in organic electroluminescent device
JP5521753B2 (ja) * 2010-05-12 2014-06-18 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
CN103718321B (zh) * 2011-08-03 2016-03-30 株式会社日本有机雷特显示器 有机发光元件
DE102012007529B4 (de) * 2012-04-17 2016-03-31 Technische Universität Bergakademie Freiberg Imido-s-heptazinderivate - Verfahren zu deren Herstellung und deren Verwendungen
JP6034600B2 (ja) * 2012-06-12 2016-11-30 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子
WO2014166586A1 (de) * 2013-04-08 2014-10-16 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
CN105102582B (zh) 2013-04-08 2018-10-12 默克专利有限公司 有机电致发光器件
EP2984692B1 (de) 2013-04-08 2018-01-31 Merck Patent GmbH Organische elektrolumineszenzvorrichtung mit thermisch aktiviertem verzögertem fluoreszenzmaterial
WO2014166572A1 (de) 2013-04-08 2014-10-16 Merck Patent Gmbh Organische lichtemittierende vorrichtung mit verzögerter fluoreszenz
CN103755711B (zh) * 2013-12-23 2016-08-17 中节能万润股份有限公司 一种多氮杂环化合物及其制备方法和应用
CN106463630B (zh) * 2014-04-18 2019-01-11 九州有机光材股份有限公司 有机发光元件
TWI564294B (zh) 2015-08-24 2017-01-01 國立清華大學 載子產生材料與有機發光二極體
US10003026B2 (en) 2016-06-09 2018-06-19 International Business Machines Corporation Ladder tetrazine polymers
CN106883240A (zh) * 2017-01-20 2017-06-23 瑞声科技(南京)有限公司 三均三嗪化合物及发光器件
CN108101928B (zh) * 2017-12-13 2019-12-03 华南协同创新研究院 一类庚嗪-酰亚胺衍生物及其制备方法与应用
CN108948027A (zh) * 2018-08-02 2018-12-07 瑞声科技(南京)有限公司 一种含有庚嗪环-吩噁嗪单元的化合物及其应用
CN108929327A (zh) * 2018-08-02 2018-12-04 瑞声科技(南京)有限公司 一种含有咪唑单元的化合物及其在器件中的应用
CN110591697A (zh) * 2019-09-02 2019-12-20 武汉华星光电半导体显示技术有限公司 热活化延迟荧光材料及其制备方法、电致发光器件
CN111848635B (zh) * 2020-07-28 2021-07-16 吉林奥来德光电材料股份有限公司 一种六元杂环类有机发光化合物及其制备方法和光电器件
CN116162090A (zh) * 2023-01-04 2023-05-26 福州大学 七嗪基聚合物光催化剂的制备及其在光催化分解水产氧中的应用

Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3089875A (en) * 1961-02-23 1963-05-14 Olin Mathieson Alkyl, aryl substituted melems
GB1333128A (en) * 1971-07-07 1973-10-10 Vnii Protivopozharnoi Oborony Fire-retardant composition
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
US4780536A (en) 1986-09-05 1988-10-25 The Ohio State University Research Foundation Hexaazatriphenylene hexanitrile and its derivatives and their preparations
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
SU1747448A1 (ru) 1990-08-16 1992-07-15 Нижегородский политехнический институт Способ получени мелона
US5151629A (en) 1991-08-01 1992-09-29 Eastman Kodak Company Blue emitting internal junction organic electroluminescent device (I)
WO1992018552A1 (de) 1991-04-11 1992-10-29 Wacker-Chemie Gmbh Leiterpolymere mit konjugierten doppelbindungen
JPH061973A (ja) 1992-06-18 1994-01-11 Konica Corp 有機エレクトロルミネッセンス素子
WO1995009147A1 (fr) 1993-09-29 1995-04-06 Idemitsu Kosan Co., Ltd. Element electroluminescent organique et derive d'arylenediamine
EP0650955A1 (de) 1993-11-01 1995-05-03 Hodogaya Chemical Co., Ltd. Aminverbindung und sie enthaltende Elektrolumineszenzvorrichtung
EP0676461A2 (de) 1994-04-07 1995-10-11 Hoechst Aktiengesellschaft Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
EP0681019A2 (de) 1994-04-26 1995-11-08 TDK Corporation Phenylanthracenderivat und organisches EL-Element
EP0707020A2 (de) 1994-10-14 1996-04-17 Hoechst Aktiengesellschaft Konjugierte Polymere mit Spirozentren und ihre Verwendung als Elektrolumineszenzmaterialien
EP0842208A1 (de) 1995-07-28 1998-05-20 The Dow Chemical Company 2,7-aryl-9-substituierte fluorene und 9-substituierte fluorenoligomere und polymere
WO1998027136A1 (de) 1996-12-16 1998-06-25 Aventis Research & Technologies Gmbh & Co Kg ARYLSUBSTITUIERTE POLY(p-ARYLENVINYLENE), VERFAHREN ZUR HERSTELLUNG UND DEREN VERWENDUNG IN ELEKTROLUMINESZENZBAUELEMENTEN
WO1998030071A1 (fr) 1996-12-28 1998-07-09 Tdk Corporation Elements electroluminescents organiques
EP0894107A1 (de) 1996-04-17 1999-02-03 Hoechst Research & Technology Deutschland GmbH & Co. KG Polymere mit spiroatomen und ihre verwendung als elektrolumineszenzmaterialien
US5935721A (en) 1998-03-20 1999-08-10 Eastman Kodak Company Organic electroluminescent elements for stable electroluminescent
JP2000053957A (ja) 1998-06-23 2000-02-22 Koto Gijutsu Kenkyuin Kenkyu Kumiai 新規な有機金属発光物質およびそれを含む有機電気発光素子
WO2000022026A1 (de) 1998-10-10 2000-04-20 Celanese Ventures Gmbh Konjugierte polymere, enthaltend spezielle fluoren-bausteine mit verbesserten eigenschaften
EP1028136A2 (de) 1999-02-10 2000-08-16 Carnegie-Mellon University Ein Verfahren zur Herstellung von Poly(3-substituierten)thiophenen
JP2000273056A (ja) 1999-01-19 2000-10-03 Idemitsu Kosan Co Ltd アミノ又はスチリル化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2000070655A2 (en) 1999-05-13 2000-11-23 The Trustees Of Princeton University Very high efficiency organic light emitting devices based on electrophosphorescence
WO2001021698A1 (en) 1999-09-21 2001-03-29 Dsm N.V. Flame-retardant mixture
WO2001041512A1 (en) 1999-12-01 2001-06-07 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds
WO2001049806A1 (en) 1999-12-31 2001-07-12 Lg Chemical Co., Ltd Electronic device comprising organic compound having p-type semiconducting characteristics
JP2001226331A (ja) 2000-02-14 2001-08-21 Mitsui Chemicals Inc アミン化合物および該化合物を含有する有機電界発光素子
WO2002002714A2 (en) 2000-06-30 2002-01-10 E.I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
WO2002015645A1 (en) 2000-08-11 2002-02-21 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
EP1191614A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung und dafür verwendete Metallkoordinationsverbindung
EP1191612A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung, Bildanzeigevorrichtung und Metallkoordinationsverbindung
EP1191613A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung, Bildanzeigevorrichtung und Metallkoordinationsverbindung
EP1205527A1 (de) 2000-03-27 2002-05-15 Idemitsu Kosan Co., Ltd. Organische elektrolumineszierende vorrichtung
WO2003060956A2 (en) 2002-01-18 2003-07-24 Lg Chem, Ltd. New material for transporting electrons and organic electroluminescent display using the same
WO2004013080A1 (en) 2002-08-01 2004-02-12 Covion Organic Semiconductors Gmbh Spirobifluorene derivatives, their preparation and uses thereof
WO2004018587A1 (ja) 2002-08-23 2004-03-04 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子及びアントラセン誘導体
WO2004028217A1 (ja) 2002-09-20 2004-04-01 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2004041901A1 (en) 2002-11-08 2004-05-21 Covion Organic Semiconductors Gmbh Aryl-substituted polyindenofluorenes for use in organic electroluminiscent devices
WO2004047499A1 (ja) 2002-11-18 2004-06-03 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2004058911A2 (de) 2002-12-23 2004-07-15 Covion Organic Semiconductors Gmbh Organisches elektrolumineszenzelement
WO2004070772A2 (de) 2003-02-06 2004-08-19 Covion Organic Semiconductors Gmbh Carbazol-enthaltende konjugierte polymere und blends, deren darstellung und verwendung
WO2004080975A1 (ja) 2003-03-13 2004-09-23 Idemitsu Kosan Co., Ltd. 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2004081017A1 (de) 2003-03-11 2004-09-23 Covion Organic Semiconductors Gmbh Metallkomplexe
JP2004288381A (ja) 2003-03-19 2004-10-14 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子
WO2004093207A2 (de) 2003-04-15 2004-10-28 Covion Organic Semiconductors Gmbh Mischungen von organischen zur emission befähigten halbleitern und matrixmaterialien, deren verwendung und elektronikbauteile enthaltend diese mischungen
WO2004092111A1 (ja) 2003-04-10 2004-10-28 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US20040247937A1 (en) 2003-06-03 2004-12-09 Chin-Hsin Chen Organic electroluminescent devices with a doped co-host emitter
WO2004113468A1 (de) 2003-06-26 2004-12-29 Covion Organic Semiconductors Gmbh Neue materialien für die elektrolumineszenz
WO2004113412A2 (en) 2003-06-23 2004-12-29 Covion Organic Semiconductors Gmbh Polymer
WO2005011013A1 (de) 2003-07-21 2005-02-03 Covion Organic Semiconductors Gmbh Organisches elektrolumineszenzelement
WO2005014689A2 (de) 2003-08-12 2005-02-17 Covion Organic Semiconductors Gmbh Konjugierte polymere enthaltend dihydrophenanthren-einheiten und deren verwendung
US20050069729A1 (en) 2003-09-30 2005-03-31 Konica Minolta Holdings, Inc. Organic electroluminescent element, illuminator, display and compound
WO2005033244A1 (de) 2003-09-29 2005-04-14 Covion Organic Semiconductors Gmbh Metallkomplexe
WO2005040302A1 (de) 2003-10-22 2005-05-06 Merck Patent Gmbh Neue materialien für die elektrolumineszenz und deren verwendung
WO2005042550A1 (de) 2003-10-30 2005-05-12 Merck Patent Gmbh Metallkomplexe mit bipodalen liganden
US20050181232A1 (en) 2004-02-17 2005-08-18 Eastman Kodak Company Anthracene derivative host having ranges of dopants
WO2005084082A1 (de) 2004-02-20 2005-09-09 Merck Patent Gmbh Organische elektronische vorrichtungen
US20050211958A1 (en) 2004-03-25 2005-09-29 Eastman Kodak Company Electroluminescent device with anthracene derivative host
WO2005104264A1 (de) 2004-04-26 2005-11-03 Merck Patent Gmbh Elektrolumineszierende polymere und deren verwendung
WO2005111172A2 (de) 2004-05-11 2005-11-24 Merck Patent Gmbh Neue materialmischungen für die elektrolumineszenz
US20050260442A1 (en) 2004-05-24 2005-11-24 Chen-Ping Yu Anthracene compound for organic electroluminescent device
WO2005113563A1 (de) 2004-05-19 2005-12-01 Merck Patent Gmbh Metallkomplexe
JP2005347160A (ja) 2004-06-04 2005-12-15 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2006000388A1 (de) 2004-06-26 2006-01-05 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2006000389A1 (de) 2004-06-26 2006-01-05 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
WO2006003000A1 (de) 2004-07-06 2006-01-12 Merck Patent Gmbh Elektrolumineszierende polymere
EP1617710A1 (de) 2003-04-23 2006-01-18 Konica Minolta Holdings, Inc. Material für ein organisches elektrolumineszenzgerät, organisches elektrolumineszenzgerät, beleuchtungsvorrichtung und anzeige
WO2006005627A1 (en) 2004-07-15 2006-01-19 Merck Patent Gmbh Oligomeric derivatives of spirobifluorene, their preparation and use
WO2006008069A1 (de) 2004-07-16 2006-01-26 Merck Patent Gmbh Metallkomplexe
DE102004047257A1 (de) * 2004-09-29 2006-04-06 Universität Konstanz Phosphor-haltige Heptazinderivate, Verfahren zu deren Herstellung und deren Verwendung
WO2006048268A1 (de) 2004-11-06 2006-05-11 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
EP1661888A1 (de) 2004-11-29 2006-05-31 Samsung SDI Co., Ltd. Phenylcarbazole basierte Verbindungen und deren Verwendung als organische Elektroluminiszierende Vorrichtung
WO2006058737A1 (de) 2004-12-01 2006-06-08 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
WO2006061181A1 (de) 2004-12-06 2006-06-15 Merck Patent Gmbh Teilkonjugierte polymere, deren darstellung und verwendung
WO2006061182A1 (de) 2004-12-09 2006-06-15 Merck Patent Gmbh Metallkomplexe und deren verwendung als die emittierende komponente in elektronischen bauteilen, besonders in elektrolumineszenten anzeigevorrichtungen
WO2006073054A1 (ja) 2005-01-05 2006-07-13 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006081973A1 (de) 2005-02-03 2006-08-10 Merck Patent Gmbh Metallkomplexe
JP2006253445A (ja) 2005-03-11 2006-09-21 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子
WO2006098080A1 (ja) 2005-03-15 2006-09-21 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006100896A1 (ja) 2005-03-18 2006-09-28 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006117052A1 (de) 2005-05-03 2006-11-09 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung und in deren herstellung verwendete boronsäure- und borinsäure-derivate
WO2006122630A1 (de) 2005-05-20 2006-11-23 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
EP1731584A1 (de) 2004-03-31 2006-12-13 Konica Minolta Holdings, Inc. Organischer elektrolumineszenzvorrichtungsstoff, organische elektrolumineszenzvorrichtung, display und beleuchtungsvorrichtung
WO2007006807A1 (en) 2005-07-13 2007-01-18 Isdin, S.A. New derivatives of heptaazaphenalene, methods for obtaining them, and their use as protecting agents against uv radiation
WO2007017066A1 (de) 2005-08-10 2007-02-15 Merck Patent Gmbh Elektrolumineszierende polymere und ihre verwendung
WO2007063754A1 (ja) 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2007065549A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen
WO2007065678A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Neue materialien für organische elektroluminieszenzvorrichtungen
WO2007068325A1 (de) 2005-12-17 2007-06-21 Merck Patent Gmbh Konjugierte polymere enthaltend triarylamin-arylvinylen-einheiten, deren darstellung und verwendung
WO2007115610A1 (de) 2006-04-01 2007-10-18 Merck Patent Gmbh Materialen für organische elektrolumineszenzvorrichtungen
EP1854797A1 (de) 2006-05-02 2007-11-14 Isdin, S.A. Verfahren zur Herstellung von Cyamelurtrichlorid
WO2007137725A1 (de) 2006-05-31 2007-12-06 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2007140847A1 (de) 2006-06-02 2007-12-13 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2008006449A1 (de) 2006-07-11 2008-01-17 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
WO2008083975A1 (en) * 2007-01-12 2008-07-17 Isdin S.A. Light-stabilized composition
WO2008086851A1 (de) 2007-01-18 2008-07-24 Merck Patent Gmbh Carbazol-derivate für organische elektrolumineszenzvorrichtungen
WO2008145239A2 (de) 2007-05-29 2008-12-04 Merck Patent Gmbh Benzanthracen-derivate für organische elektrolumineszenzvorrichtungen
WO2009062578A1 (de) 2007-11-12 2009-05-22 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen enthaltend azomethin-metall-komplexe

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3202659A (en) * 1960-02-29 1965-08-24 Minnesota Mining & Mfg 2, 5, 8-trihydrazino-tri-s-triazine and process therefor
US7560175B2 (en) * 1999-12-31 2009-07-14 Lg Chem, Ltd. Electroluminescent devices with low work function anode
JP4434460B2 (ja) * 2000-09-20 2010-03-17 京セラ株式会社 有機エレクトロルミネッセンス素子
TWI314947B (en) * 2002-04-24 2009-09-21 Eastman Kodak Compan Organic light emitting diode devices with improved operational stability
JP4795634B2 (ja) * 2003-10-31 2011-10-19 出光興産株式会社 有機薄膜トランジスタ
JP2005281136A (ja) * 2004-03-26 2005-10-13 Chemiprokasei Kaisha Ltd 新規なテトラアザトリフェニレン誘導体、それよりなる電子輸送材料、ホスト材料およびそれを用いた有機el素子
JP2006001973A (ja) 2004-06-15 2006-01-05 Fujitsu Ltd ポリ乳酸樹脂組成物、並びに、成型体及びその製造方法、及びoa機器
JP2006135145A (ja) * 2004-11-08 2006-05-25 Sony Corp 表示素子用有機材料および表示素子
JP4867169B2 (ja) * 2005-01-11 2012-02-01 セイコーエプソン株式会社 導電性高分子、導電層、電子デバイスおよび電子機器
DE102005043163A1 (de) 2005-09-12 2007-03-15 Merck Patent Gmbh Verbindungen für organische elektronische Vorrichtungen
KR100730190B1 (ko) * 2005-12-20 2007-06-19 삼성에스디아이 주식회사 유기 발광 표시 소자 및 이의 제조방법
DE102008024182A1 (de) 2008-05-19 2009-11-26 Merck Patent Gmbh Verbindungen für organische elektronische Vorrichtung
DE102008027005A1 (de) 2008-06-05 2009-12-10 Merck Patent Gmbh Organische elektronische Vorrichtung enthaltend Metallkomplexe
DE102008033943A1 (de) 2008-07-18 2010-01-21 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102008035413A1 (de) 2008-07-29 2010-02-04 Merck Patent Gmbh Verbindungen für organische elektronische Vorrichtungen
DE102008036982A1 (de) 2008-08-08 2010-02-11 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
DE102009005746A1 (de) 2009-01-23 2010-07-29 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen

Patent Citations (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3089875A (en) * 1961-02-23 1963-05-14 Olin Mathieson Alkyl, aryl substituted melems
GB1333128A (en) * 1971-07-07 1973-10-10 Vnii Protivopozharnoi Oborony Fire-retardant composition
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
US4780536A (en) 1986-09-05 1988-10-25 The Ohio State University Research Foundation Hexaazatriphenylene hexanitrile and its derivatives and their preparations
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
SU1747448A1 (ru) 1990-08-16 1992-07-15 Нижегородский политехнический институт Способ получени мелона
WO1992018552A1 (de) 1991-04-11 1992-10-29 Wacker-Chemie Gmbh Leiterpolymere mit konjugierten doppelbindungen
US5151629A (en) 1991-08-01 1992-09-29 Eastman Kodak Company Blue emitting internal junction organic electroluminescent device (I)
JPH061973A (ja) 1992-06-18 1994-01-11 Konica Corp 有機エレクトロルミネッセンス素子
WO1995009147A1 (fr) 1993-09-29 1995-04-06 Idemitsu Kosan Co., Ltd. Element electroluminescent organique et derive d'arylenediamine
EP0650955A1 (de) 1993-11-01 1995-05-03 Hodogaya Chemical Co., Ltd. Aminverbindung und sie enthaltende Elektrolumineszenzvorrichtung
EP0676461A2 (de) 1994-04-07 1995-10-11 Hoechst Aktiengesellschaft Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
EP0681019A2 (de) 1994-04-26 1995-11-08 TDK Corporation Phenylanthracenderivat und organisches EL-Element
EP0707020A2 (de) 1994-10-14 1996-04-17 Hoechst Aktiengesellschaft Konjugierte Polymere mit Spirozentren und ihre Verwendung als Elektrolumineszenzmaterialien
EP0842208A1 (de) 1995-07-28 1998-05-20 The Dow Chemical Company 2,7-aryl-9-substituierte fluorene und 9-substituierte fluorenoligomere und polymere
EP0894107A1 (de) 1996-04-17 1999-02-03 Hoechst Research & Technology Deutschland GmbH & Co. KG Polymere mit spiroatomen und ihre verwendung als elektrolumineszenzmaterialien
WO1998027136A1 (de) 1996-12-16 1998-06-25 Aventis Research & Technologies Gmbh & Co Kg ARYLSUBSTITUIERTE POLY(p-ARYLENVINYLENE), VERFAHREN ZUR HERSTELLUNG UND DEREN VERWENDUNG IN ELEKTROLUMINESZENZBAUELEMENTEN
WO1998030071A1 (fr) 1996-12-28 1998-07-09 Tdk Corporation Elements electroluminescents organiques
EP0891121A1 (de) 1996-12-28 1999-01-13 TDK Corporation Organische elektrolumineszente elementen
US5935721A (en) 1998-03-20 1999-08-10 Eastman Kodak Company Organic electroluminescent elements for stable electroluminescent
JP2000053957A (ja) 1998-06-23 2000-02-22 Koto Gijutsu Kenkyuin Kenkyu Kumiai 新規な有機金属発光物質およびそれを含む有機電気発光素子
WO2000022026A1 (de) 1998-10-10 2000-04-20 Celanese Ventures Gmbh Konjugierte polymere, enthaltend spezielle fluoren-bausteine mit verbesserten eigenschaften
JP2000273056A (ja) 1999-01-19 2000-10-03 Idemitsu Kosan Co Ltd アミノ又はスチリル化合物及びそれを用いた有機エレクトロルミネッセンス素子
EP1028136A2 (de) 1999-02-10 2000-08-16 Carnegie-Mellon University Ein Verfahren zur Herstellung von Poly(3-substituierten)thiophenen
WO2000070655A2 (en) 1999-05-13 2000-11-23 The Trustees Of Princeton University Very high efficiency organic light emitting devices based on electrophosphorescence
WO2001021698A1 (en) 1999-09-21 2001-03-29 Dsm N.V. Flame-retardant mixture
WO2001041512A1 (en) 1999-12-01 2001-06-07 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds
WO2001049806A1 (en) 1999-12-31 2001-07-12 Lg Chemical Co., Ltd Electronic device comprising organic compound having p-type semiconducting characteristics
JP2001226331A (ja) 2000-02-14 2001-08-21 Mitsui Chemicals Inc アミン化合物および該化合物を含有する有機電界発光素子
EP1205527A1 (de) 2000-03-27 2002-05-15 Idemitsu Kosan Co., Ltd. Organische elektrolumineszierende vorrichtung
WO2002002714A2 (en) 2000-06-30 2002-01-10 E.I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
WO2002015645A1 (en) 2000-08-11 2002-02-21 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
EP1191614A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung und dafür verwendete Metallkoordinationsverbindung
EP1191612A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung, Bildanzeigevorrichtung und Metallkoordinationsverbindung
EP1191613A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung, Bildanzeigevorrichtung und Metallkoordinationsverbindung
WO2003060956A2 (en) 2002-01-18 2003-07-24 Lg Chem, Ltd. New material for transporting electrons and organic electroluminescent display using the same
WO2004013080A1 (en) 2002-08-01 2004-02-12 Covion Organic Semiconductors Gmbh Spirobifluorene derivatives, their preparation and uses thereof
WO2004018587A1 (ja) 2002-08-23 2004-03-04 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子及びアントラセン誘導体
WO2004028217A1 (ja) 2002-09-20 2004-04-01 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2004041901A1 (en) 2002-11-08 2004-05-21 Covion Organic Semiconductors Gmbh Aryl-substituted polyindenofluorenes for use in organic electroluminiscent devices
WO2004047499A1 (ja) 2002-11-18 2004-06-03 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2004058911A2 (de) 2002-12-23 2004-07-15 Covion Organic Semiconductors Gmbh Organisches elektrolumineszenzelement
WO2004070772A2 (de) 2003-02-06 2004-08-19 Covion Organic Semiconductors Gmbh Carbazol-enthaltende konjugierte polymere und blends, deren darstellung und verwendung
WO2004081017A1 (de) 2003-03-11 2004-09-23 Covion Organic Semiconductors Gmbh Metallkomplexe
WO2004080975A1 (ja) 2003-03-13 2004-09-23 Idemitsu Kosan Co., Ltd. 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2004288381A (ja) 2003-03-19 2004-10-14 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子
WO2004092111A1 (ja) 2003-04-10 2004-10-28 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2004093207A2 (de) 2003-04-15 2004-10-28 Covion Organic Semiconductors Gmbh Mischungen von organischen zur emission befähigten halbleitern und matrixmaterialien, deren verwendung und elektronikbauteile enthaltend diese mischungen
EP1617710A1 (de) 2003-04-23 2006-01-18 Konica Minolta Holdings, Inc. Material für ein organisches elektrolumineszenzgerät, organisches elektrolumineszenzgerät, beleuchtungsvorrichtung und anzeige
EP1617711A1 (de) 2003-04-23 2006-01-18 Konica Minolta Holdings, Inc. Organisches elektrolumineszenzbauelement und anzeige
US20040247937A1 (en) 2003-06-03 2004-12-09 Chin-Hsin Chen Organic electroluminescent devices with a doped co-host emitter
WO2004113412A2 (en) 2003-06-23 2004-12-29 Covion Organic Semiconductors Gmbh Polymer
WO2004113468A1 (de) 2003-06-26 2004-12-29 Covion Organic Semiconductors Gmbh Neue materialien für die elektrolumineszenz
WO2005011013A1 (de) 2003-07-21 2005-02-03 Covion Organic Semiconductors Gmbh Organisches elektrolumineszenzelement
WO2005014689A2 (de) 2003-08-12 2005-02-17 Covion Organic Semiconductors Gmbh Konjugierte polymere enthaltend dihydrophenanthren-einheiten und deren verwendung
WO2005033244A1 (de) 2003-09-29 2005-04-14 Covion Organic Semiconductors Gmbh Metallkomplexe
WO2005039246A1 (ja) 2003-09-30 2005-04-28 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、照明装置、表示装置
US20050069729A1 (en) 2003-09-30 2005-03-31 Konica Minolta Holdings, Inc. Organic electroluminescent element, illuminator, display and compound
WO2005040302A1 (de) 2003-10-22 2005-05-06 Merck Patent Gmbh Neue materialien für die elektrolumineszenz und deren verwendung
WO2005042550A1 (de) 2003-10-30 2005-05-12 Merck Patent Gmbh Metallkomplexe mit bipodalen liganden
US20050181232A1 (en) 2004-02-17 2005-08-18 Eastman Kodak Company Anthracene derivative host having ranges of dopants
WO2005084082A1 (de) 2004-02-20 2005-09-09 Merck Patent Gmbh Organische elektronische vorrichtungen
WO2005084081A1 (de) 2004-02-20 2005-09-09 Merck Patent Gmbh Organische elektronische vorrichtungen
US20050211958A1 (en) 2004-03-25 2005-09-29 Eastman Kodak Company Electroluminescent device with anthracene derivative host
EP1731584A1 (de) 2004-03-31 2006-12-13 Konica Minolta Holdings, Inc. Organischer elektrolumineszenzvorrichtungsstoff, organische elektrolumineszenzvorrichtung, display und beleuchtungsvorrichtung
WO2005104264A1 (de) 2004-04-26 2005-11-03 Merck Patent Gmbh Elektrolumineszierende polymere und deren verwendung
WO2005111172A2 (de) 2004-05-11 2005-11-24 Merck Patent Gmbh Neue materialmischungen für die elektrolumineszenz
WO2005113563A1 (de) 2004-05-19 2005-12-01 Merck Patent Gmbh Metallkomplexe
US20050260442A1 (en) 2004-05-24 2005-11-24 Chen-Ping Yu Anthracene compound for organic electroluminescent device
JP2005347160A (ja) 2004-06-04 2005-12-15 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2006000388A1 (de) 2004-06-26 2006-01-05 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2006000389A1 (de) 2004-06-26 2006-01-05 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
WO2006003000A1 (de) 2004-07-06 2006-01-12 Merck Patent Gmbh Elektrolumineszierende polymere
WO2006005627A1 (en) 2004-07-15 2006-01-19 Merck Patent Gmbh Oligomeric derivatives of spirobifluorene, their preparation and use
WO2006008069A1 (de) 2004-07-16 2006-01-26 Merck Patent Gmbh Metallkomplexe
DE102004047257A1 (de) * 2004-09-29 2006-04-06 Universität Konstanz Phosphor-haltige Heptazinderivate, Verfahren zu deren Herstellung und deren Verwendung
WO2006048268A1 (de) 2004-11-06 2006-05-11 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
EP1661888A1 (de) 2004-11-29 2006-05-31 Samsung SDI Co., Ltd. Phenylcarbazole basierte Verbindungen und deren Verwendung als organische Elektroluminiszierende Vorrichtung
WO2006058737A1 (de) 2004-12-01 2006-06-08 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
WO2006061181A1 (de) 2004-12-06 2006-06-15 Merck Patent Gmbh Teilkonjugierte polymere, deren darstellung und verwendung
WO2006061182A1 (de) 2004-12-09 2006-06-15 Merck Patent Gmbh Metallkomplexe und deren verwendung als die emittierende komponente in elektronischen bauteilen, besonders in elektrolumineszenten anzeigevorrichtungen
WO2006073054A1 (ja) 2005-01-05 2006-07-13 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006081973A1 (de) 2005-02-03 2006-08-10 Merck Patent Gmbh Metallkomplexe
JP2006253445A (ja) 2005-03-11 2006-09-21 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子
WO2006098080A1 (ja) 2005-03-15 2006-09-21 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006100896A1 (ja) 2005-03-18 2006-09-28 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006117052A1 (de) 2005-05-03 2006-11-09 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung und in deren herstellung verwendete boronsäure- und borinsäure-derivate
WO2006122630A1 (de) 2005-05-20 2006-11-23 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
WO2007006807A1 (en) 2005-07-13 2007-01-18 Isdin, S.A. New derivatives of heptaazaphenalene, methods for obtaining them, and their use as protecting agents against uv radiation
WO2007017066A1 (de) 2005-08-10 2007-02-15 Merck Patent Gmbh Elektrolumineszierende polymere und ihre verwendung
WO2007063754A1 (ja) 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2007065549A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen
WO2007065678A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Neue materialien für organische elektroluminieszenzvorrichtungen
WO2007068325A1 (de) 2005-12-17 2007-06-21 Merck Patent Gmbh Konjugierte polymere enthaltend triarylamin-arylvinylen-einheiten, deren darstellung und verwendung
WO2007115610A1 (de) 2006-04-01 2007-10-18 Merck Patent Gmbh Materialen für organische elektrolumineszenzvorrichtungen
EP1854797A1 (de) 2006-05-02 2007-11-14 Isdin, S.A. Verfahren zur Herstellung von Cyamelurtrichlorid
WO2007137725A1 (de) 2006-05-31 2007-12-06 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2007140847A1 (de) 2006-06-02 2007-12-13 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2008006449A1 (de) 2006-07-11 2008-01-17 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
WO2008083975A1 (en) * 2007-01-12 2008-07-17 Isdin S.A. Light-stabilized composition
WO2008086851A1 (de) 2007-01-18 2008-07-24 Merck Patent Gmbh Carbazol-derivate für organische elektrolumineszenzvorrichtungen
WO2008145239A2 (de) 2007-05-29 2008-12-04 Merck Patent Gmbh Benzanthracen-derivate für organische elektrolumineszenzvorrichtungen
WO2009062578A1 (de) 2007-11-12 2009-05-22 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen enthaltend azomethin-metall-komplexe

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
AYUMI ISHII: "Novel emission properties of melem caused by the heavy metal effect of lanthanides(III) in a OB film", POTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, vol. 6, 23 May 2007 (2007-05-23), London, pages 804 - 809, XP002578030, DOI: 10.1039/b703751c *
BOUDOU J P ET AL: "Organic nitrogen chemistry during low-grade metamorphism", GEOCHIMICA ET COSMOCHIMICA ACTA, PERGAMON PRESS, NEW YORK, NY, US LNKD- DOI:10.1016/J.GCA.2007.12.004, vol. 72, no. 4, 15 February 2008 (2008-02-15), pages 1199 - 1221, XP023782887, ISSN: 0016-7037, [retrieved on 20080115] *
D. M. KOLLER ET AL., NATURE PHOTONICS, 2008, pages 1 - 4
H. MAY, J. APPLIED CHEMISTRY, vol. 9, 1959, pages 340 - 344
H. SCHRÖDER ET AL., J. ORG. CHEM., vol. 27, 1962, pages 4262 - 4266
HASEGAWA M ET AL: "Excitation energy transfer between D3h melamines and Pr(III) in the solid state", SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, ELSEVIER, OXFORD, GB LNKD- DOI:10.1016/J.STAM.2005.11.006, vol. 7, no. 1, 1 January 2006 (2006-01-01), pages 72 - 76, XP025228469, ISSN: 1468-6996, [retrieved on 20060101] *
HORVATH-BORDON ELISABETA ET AL: "Alkalicyamelurates, M3[C6N7O3].cntdot.xH2O, M = Li, Na, K, Rb, Cs: UV- luminescent and thermally very stable ionic tri-s-triazine derivatives", DALTON TRANSACTIONS, RSC PUBLISHING, CAMBRIDGE, GB LNKD- DOI:10.1039/B412517G, no. 22, 1 January 2004 (2004-01-01), pages 3900, XP008121497, ISSN: 1477-9226 *
LOTSCH BETTINA V ET AL: "New light on an old story: Formation of melam during thermal condensation of melamine", CHEMISTRY - A EUROPEAN JOURNAL, WILEY - V C H VERLAG GMBH & CO. KGAA, WEINHEIM, DE LNKD- DOI:10.1002/CHEM.200601291, vol. 13, no. 17, 1 January 2007 (2007-01-01), pages 4956 - 4968, XP002493551, ISSN: 0947-6539 *
M. S. ARNOLD ET AL., APPL. PHYS. LETT., vol. 92, 2008, pages 053301
R. J. WNDGASSEN: "Cyclazines. A New Class of Aromatic Heterocycles", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 81, 6, 20 March 1959 (1959-03-20), pages 1459 - 1465, XP002578029, DOI: 10.1021/ja01515a045 *
SCHROEDER H ET AL: "Some reactions of cyameluric chloride", JOURNAL OF ORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, EASTON.; US LNKD- DOI:10.1021/JO01059A032, vol. 27, 1 January 1962 (1962-01-01), pages 4262 - 4266, XP002401728, ISSN: 0022-3263 *
TRABER B ET AL: "Donor-substituted heptaazaphenalene as a nonlinear optically active molecule with multiple charge-transfer transitions", EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, WILEY-VCH, WEINHEIM; DE LNKD- DOI:10.1002/EJOC.200400308, no. 21, 1 January 2004 (2004-01-01), pages 4387 - 4390, XP002401729, ISSN: 1434-193X *
Y. SHIROTA ET AL., CHEM. REV., vol. 107, no. 4, 2007, pages 953 - 1010

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140091264A1 (en) * 2011-05-27 2014-04-03 Merck Patent Gmbh Organic electronic device
WO2013083216A1 (de) 2011-11-17 2013-06-13 Merck Patent Gmbh Spiro -dihydroacridinderivate und ihre verwendung als materialien für organische elektrolumineszenzvorrichtungen
EP3235892A1 (de) 2012-02-14 2017-10-25 Merck Patent GmbH Materialien für organische elektrolumineszenzvorrichtungen
WO2013120577A1 (en) 2012-02-14 2013-08-22 Merck Patent Gmbh Spirobifluorene compounds for organic electroluminescent devices
EP3101088A1 (de) 2012-02-14 2016-12-07 Merck Patent GmbH Materialien für organische elektrolumineszenzvorrichtungen
WO2013133359A1 (ja) * 2012-03-09 2013-09-12 国立大学法人九州大学 発光材料および有機発光素子
US9985215B2 (en) 2012-03-09 2018-05-29 Kyulux, Inc. Light-emitting material, and organic light-emitting element
JPWO2013133359A1 (ja) * 2012-03-09 2015-07-30 国立大学法人九州大学 発光材料および有機発光素子
WO2013135352A1 (de) 2012-03-15 2013-09-19 Merck Patent Gmbh Elektronische vorrichtungen
EP3460864A1 (de) 2012-03-15 2019-03-27 Merck Patent GmbH Elektronische vorrichtungen
WO2013182263A1 (de) 2012-06-06 2013-12-12 Merck Patent Gmbh Phenanthrenverbindungen für organische elektronische vorrichtungen
WO2014044344A1 (de) 2012-09-18 2014-03-27 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2014067614A1 (de) 2012-10-31 2014-05-08 Merck Patent Gmbh Elektronische vorrichtung
EP3806176A1 (de) 2012-10-31 2021-04-14 Merck Patent GmbH Elektronische vorrichtung
EP3378857A1 (de) 2012-11-12 2018-09-26 Merck Patent GmbH Materialien für elektronische vorrichtungen
WO2014106522A1 (de) 2013-01-03 2014-07-10 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015036080A1 (de) 2013-09-11 2015-03-19 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2015139808A1 (de) 2014-03-18 2015-09-24 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2016091353A1 (de) 2014-12-12 2016-06-16 Merck Patent Gmbh Organische verbindungen mit löslichen gruppen
DE102014019432A1 (de) 2014-12-22 2016-06-23 Technische Universität Bergakademie Freiberg Arylthiocyamelurate, Verfahren zu deren Herstellung und deren Verwendung
DE102014019432B4 (de) 2014-12-22 2021-12-30 Technische Universität Bergakademie Freiberg Arylthiocyamelurate, Verfahren zu deren Herstellung und deren Verwendung
WO2017012687A1 (en) 2015-07-22 2017-01-26 Merck Patent Gmbh Materials for organic electroluminescent devices
EP4236652A2 (de) 2015-07-29 2023-08-30 Merck Patent GmbH Materialien für organische elektrolumineszenzvorrichtungen
WO2017028940A1 (en) 2015-08-14 2017-02-23 Merck Patent Gmbh Phenoxazine derivatives for organic electroluminescent devices
WO2017133829A1 (de) 2016-02-05 2017-08-10 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2017207596A1 (en) 2016-06-03 2017-12-07 Merck Patent Gmbh Materials for organic electroluminescent devices
EP3978477A2 (de) 2016-06-03 2022-04-06 Merck Patent GmbH Materialien für organische elektrolumineszente vorrichtungen
EP4113643A1 (de) 2016-10-10 2023-01-04 Merck Patent GmbH Elektronische vorrichtung
WO2018069167A1 (de) 2016-10-10 2018-04-19 Merck Patent Gmbh Elektronische vorrichtung
EP4255151A2 (de) 2016-10-10 2023-10-04 Merck Patent GmbH Spiro[fluoren-9,9'-(thio)xanthen] verbindungen
DE102017008794A1 (de) 2016-10-17 2018-04-19 Merck Patent Gmbh Materialien zur Verwendung in elektronischen Vorrichtungen
WO2018083053A1 (de) 2016-11-02 2018-05-11 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2018087020A1 (en) 2016-11-08 2018-05-17 Merck Patent Gmbh Compounds for electronic devices
WO2018095940A1 (en) 2016-11-25 2018-05-31 Merck Patent Gmbh Bisbenzofuran-fused indeno[1,2-b]fluorene derivatives and related compounds as materials for organic electroluminescent devices (oled)
WO2018095888A1 (en) 2016-11-25 2018-05-31 Merck Patent Gmbh Bisbenzofuran-fused 2,8-diaminoindeno[1,2-b]fluorene derivatives and related compounds as materials for organic electroluminescent devices (oled)
WO2018141706A1 (de) 2017-02-02 2018-08-09 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2018157981A1 (de) 2017-03-02 2018-09-07 Merck Patent Gmbh Materialien für organische elektronische vorrichtungen
US11581487B2 (en) 2017-04-26 2023-02-14 Oti Lumionics Inc. Patterned conductive coating for surface of an opto-electronic device
WO2018234346A1 (en) 2017-06-23 2018-12-27 Merck Patent Gmbh MATERIALS FOR ORGANIC ELECTROLUMINESCENT DEVICES
WO2019002190A1 (en) 2017-06-28 2019-01-03 Merck Patent Gmbh MATERIALS FOR ELECTRONIC DEVICES
WO2019020654A1 (en) 2017-07-28 2019-01-31 Merck Patent Gmbh SPIROBIFLUORENE DERIVATIVES FOR USE IN ELECTRONIC DEVICES
WO2019048443A1 (de) 2017-09-08 2019-03-14 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2019076789A1 (en) 2017-10-17 2019-04-25 Merck Patent Gmbh MATERIALS FOR ORGANIC ELECTROLUMINESCENT DEVICES
EP4242286A2 (de) 2017-11-23 2023-09-13 Merck Patent GmbH Materialien für elektronische vorrichtungen
WO2019101719A1 (de) 2017-11-23 2019-05-31 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2019101833A1 (en) 2017-11-24 2019-05-31 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019101835A1 (en) 2017-11-24 2019-05-31 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019115577A1 (en) 2017-12-15 2019-06-20 Merck Patent Gmbh Substituted aromatic amines for use in organic electroluminescent devices
WO2019121483A1 (en) 2017-12-20 2019-06-27 Merck Patent Gmbh Heteroaromatic compounds
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
WO2019170578A1 (en) 2018-03-06 2019-09-12 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019170572A1 (en) 2018-03-06 2019-09-12 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019175149A1 (en) 2018-03-16 2019-09-19 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020043640A1 (en) 2018-08-28 2020-03-05 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020043657A1 (en) 2018-08-28 2020-03-05 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020043646A1 (en) 2018-08-28 2020-03-05 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020053150A1 (en) 2018-09-12 2020-03-19 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020089138A1 (en) 2018-10-31 2020-05-07 Merck Patent Gmbh Materials for organic electroluminescent devices
US11730012B2 (en) 2019-03-07 2023-08-15 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
WO2021110741A1 (en) 2019-12-04 2021-06-10 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2022017997A1 (en) 2020-07-22 2022-01-27 Merck Patent Gmbh Materials for organic electroluminescent devices
US11985841B2 (en) 2020-12-07 2024-05-14 Oti Lumionics Inc. Patterning a conductive deposited layer using a nucleation inhibiting coating and an underlying metallic coating
WO2023052313A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052272A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052275A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052314A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023094412A1 (de) 2021-11-25 2023-06-01 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023117837A1 (de) 2021-12-21 2023-06-29 Merck Patent Gmbh Verfahren zur herstellung von deuterierten organischen verbindungen
WO2023117835A1 (en) 2021-12-21 2023-06-29 Merck Patent Gmbh Electronic devices
WO2023117836A1 (en) 2021-12-21 2023-06-29 Merck Patent Gmbh Electronic devices
WO2023152346A1 (de) 2022-02-14 2023-08-17 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023222559A1 (de) 2022-05-18 2023-11-23 Merck Patent Gmbh Verfahren zur herstellung von deuterierten organischen verbindungen
WO2024013004A1 (de) 2022-07-11 2024-01-18 Merck Patent Gmbh Materialien für elektronische vorrichtungen

Also Published As

Publication number Publication date
KR20110134411A (ko) 2011-12-14
CN102317408A (zh) 2012-01-11
DE102009009277B4 (de) 2023-12-07
KR101751544B1 (ko) 2017-06-27
US20110297925A1 (en) 2011-12-08
CN102317408B (zh) 2015-03-04
DE102009009277A1 (de) 2010-08-19
JP5677983B2 (ja) 2015-02-25
JP2012518285A (ja) 2012-08-09
US9066410B2 (en) 2015-06-23
TW201042001A (en) 2010-12-01

Similar Documents

Publication Publication Date Title
DE102009009277B4 (de) Organische elektronische Vorrichtung, Verfahren zu deren Herstellung und Verwendung von Verbindungen
EP2663567B1 (de) Verbindungen für organische elektrolumineszenzvorrichtungen
DE102009053644B4 (de) Materialien für organische Elektrolumineszenzvorrichtungen
DE102009005289B4 (de) Materialien für organische Elektrolumineszenzvorrichtungen, Verfahren zu deren Herstellung und elektronische Vorrichtungen, enthaltend diese
EP1999226B1 (de) Neue materialien für organische elektrolumineszenzvorrichtungen
DE102009012346B4 (de) Organische Elektrolumineszenzvorrichtung und Verfahren zu deren Herstellung
DE112009004294B4 (de) Materialien für organische Elektrolumineszenzvorrichtungen, deren Verwendung, Verfahren zu deren Herstellung und elektronische Vorrichtung
EP2344609B1 (de) Materialien für organische elektrolumineszenzvorrichtungen
DE112010004304B4 (de) Materialien für elektronische Vorrichtungen
DE112011103450B4 (de) Materialien auf Basis von Triphenylen für organische Elektrolumineszenzvorrichtungen, Verfahren zu deren Herstellung, deren Verwendung sowie organische elektronische Vorrichtungen
EP2303814B1 (de) Verbindungen für elektronische vorrichtungen
EP2024310B1 (de) Materialien für organische elektrolumineszenzvorrichtungen
EP2340290B1 (de) Neue materialien für organische elektrolumineszenzvorrichtungen
DE102005040411A1 (de) Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102010048607A1 (de) Verbindungen für elektronische Vorrichtungen
DE102010024542A1 (de) Materialien für elektronische Vorrichtungen
DE102009032922A1 (de) Materialien für organische Elektrolumineszenzvorrichtungen
EP2764558B1 (de) Organische elektrolumineszenzvorrichtung
DE102010005697A1 (de) Verbindungen für elektronische Vorrichtungen
DE102009031021A1 (de) Materialien für organische Elektrolumineszenzvorrichtungen
DE102009023155A1 (de) Materialien für organische Elektrolumineszenzvorrichtungen
DE102009005746A1 (de) Materialien für organische Elektrolumineszenzvorrichtungen
DE102009053645A1 (de) Materialien für organische Elektrolumineszenzvorrichtung
WO2011157346A1 (de) Verbindungen für elektronische vorrichtungen
DE102008050841B4 (de) Neue Materialien für organische Elektrolumineszenzvorrichtungen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080008207.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10701467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011550439

Country of ref document: JP

Ref document number: 13201981

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117021690

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10701467

Country of ref document: EP

Kind code of ref document: A1