WO2010092890A1 - Coated particles and manufacturing method thereof - Google Patents

Coated particles and manufacturing method thereof Download PDF

Info

Publication number
WO2010092890A1
WO2010092890A1 PCT/JP2010/051508 JP2010051508W WO2010092890A1 WO 2010092890 A1 WO2010092890 A1 WO 2010092890A1 JP 2010051508 W JP2010051508 W JP 2010051508W WO 2010092890 A1 WO2010092890 A1 WO 2010092890A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
spherical core
coated
resin particles
core resin
Prior art date
Application number
PCT/JP2010/051508
Other languages
French (fr)
Japanese (ja)
Inventor
敏雄 関谷
武広 塚田
Original Assignee
綜研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 綜研化学株式会社 filed Critical 綜研化学株式会社
Priority to JP2010550491A priority Critical patent/JPWO2010092890A1/en
Publication of WO2010092890A1 publication Critical patent/WO2010092890A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8147Homopolymers or copolymers of acids; Metal or ammonium salts thereof, e.g. crotonic acid, (meth)acrylic acid; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/20Chemical, physico-chemical or functional or structural properties of the composition as a whole
    • A61K2800/26Optical properties
    • A61K2800/262Transparent; Translucent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/60Particulates further characterized by their structure or composition
    • A61K2800/61Surface treated
    • A61K2800/62Coated
    • A61K2800/624Coated by macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes

Definitions

  • the present invention relates to coated particles in which the surface of core resin particles is uniformly coated with an organosiloxane resin and a method for producing the same. More specifically, the present invention relates to coated particles having excellent optical properties, in particular, with the surface of spherical core resin particles having transparency coated with a dense and uniform coating layer made of an organosiloxane resin, and a method for producing the coated particles. About.
  • Resin particles are used in various fields. Since such resin particles generally do not have good fluidity as a powder, they are used with a silicone coating on the surface for the purpose of improving the fluidity.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-96815 discloses silicone fine particles obtained by coating a silicone spherical core fine particle having an average particle size of 0.1 to 100 ⁇ m with an organosiloxane resin.
  • An invention is disclosed in which an alkaline substance or an alkaline aqueous solution and an organotrialkoxysilane are added to a liquid, and a hydrolysis and condensation reaction is performed to coat the surface of the core material with a polyorganosiloxane resin.
  • the core material of the coated particles described in Patent Document 1 is a silicone rubber spherical fine particle, and such a core material does not have transparency, and uses such as improvement of the elastic properties of the resin. Is limited.
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-239396
  • spherical synthetic resin particles having an average particle diameter of 0.1 to 100 ⁇ m are made of an organosiloxane resin mainly composed of polyorganosilsesquioxane.
  • An invention of spherical particles characterized by coating is disclosed.
  • addition of an alkaline substance or an aqueous alkaline solution for the hydrolysis and condensation reaction in the invention disclosed in Patent Document 2 may be performed simultaneously with the addition of organoalkoxysilane.
  • organoalkoxysilane when the addition amount of the organoalkoxysilane is large, it is preferably dropped in advance into an aqueous dispersion of spherical synthetic resin powder. Furthermore, also in Example 1 described in paragraph [0023], ammonia water was added dropwise to a dispersion in which polystyrene powder having an average particle diameter of 6.0 ⁇ m or methyl methacryl resin having an average particle diameter of 9.9 ⁇ m was dispersed. An example of dropping methylmethoxysilane (see Examples 1 and 2) is shown, and organoalkoxysilane is added by dropping to a reaction liquid in which fine particles serving as a core material and an alkali component are blended. .
  • the reaction proceeds from the moment when the alkali component and the organoalkoxysilane come into contact with each other.
  • the hydrolysis and condensation reaction of the organoalkoxysilane proceed simultaneously, and the organoalkoxysilane which is not sufficiently hydrolyzed shifts to the condensation reaction. Therefore, the crosslinking density is low, the particle size distribution is relatively large, and the crosslinking density is low. After being precipitated in water as a granular material, it adheres to the particle surface that becomes the core material. As a result, it is difficult to efficiently coat the surface.
  • FIG. 4 shows an electron micrograph of particles in which polyorganosiloxane deposited as a granular material having a low crosslinking density, a relatively large particle size and a wide particle size distribution adheres to the particle surface.
  • Such a coated resin particle having a non-uniform coating layer is unlikely to be a stable optical member due to the non-uniformity, for example, when used for optical purposes.
  • coated particles may be used as cosmetic raw materials.
  • powder products such as foundation, various creams, deodorant powder, funny powder, shaving powder, dry shampoo, makeup cosmetic ingredients such as lipstick, eye shadow, mascara, eyeliner, shampoo, rinse, hair conditioner, Hair care cosmetic materials such as hair creams and hair sprays, cleaning materials such as makeup removers, and various antiperspirant materials such as roll-on and spray methods.
  • makeup cosmetic ingredients such as lipstick, eye shadow, mascara, eyeliner, shampoo, rinse, hair conditioner
  • Hair care cosmetic materials such as hair creams and hair sprays
  • cleaning materials such as makeup removers
  • various antiperspirant materials such as roll-on and spray methods.
  • An object of the present invention is to provide a coated particle having a coating made of a uniform and dense organosiloxane resin on the surface of a spherical core resin particle and a production method capable of producing the particle in high yield. .
  • the present invention provides a coated particle having a stable characteristic as an optical material, and a method for producing the same, because the surface of the spherical core resin particle has a uniform and dense coating made of an organosiloxane resin.
  • the purpose is that.
  • the present invention also aims to provide coated particles that are highly useful as cosmetic raw materials and a method for producing the same.
  • the coated particles of the present invention are coated particles obtained by coating the surface of spherical core resin particles having an average particle diameter in the range of 0.1 to 100 ⁇ m with an organosiloxane resin, A coating layer made of an organosiloxane resin formed on the surface of the coated particle is densely formed on the surface of the spherical core resin particle, and is incident on the coated particle from a direction of ⁇ 45 °, and has an angle of + 20 °.
  • the diffusion rate represented by the following formula [I] using the intensity of light reflected in the direction of angle +, the intensity of light reflected in the direction of angle + 70 °, and the intensity of light reflected in the direction of angle + 5 °
  • the difference between (B) and the diffusivity (A) of the spherical core resin particles having the same average particle diameter as that used for the formation of the coated particles (diffusivity (A) ⁇ diffusivity (B)) It is characterized by being in the range of 3 to 15%.
  • the method for producing coated particles of the present invention comprises adding an organoalkoxysilane to an aqueous dispersion in which spherical core resin particles are dispersed and stirring, and then adding an alkali component to the dispersion under stirring.
  • the coating obtained in this way is characterized by polymerizing organoalkoxysilane on the surface of the spherical core resin particles to form a coating layer made of an organosiloxane resin on the surface of the spherical core resin particles.
  • the particle is a coated particle obtained by coating the surface of a spherical core resin particle having an average particle diameter in the range of 0.1 to 100 ⁇ m with an organosiloxane resin, and the organosiloxane resin formed on the surface of the coated particle
  • the intensity of light incident on the coated particles from the direction of ⁇ 45 ° and reflected in the direction of an angle of + 20 °; Using the intensity of light reflected in the direction of angle + 70 ° and the intensity of light reflected in the direction of angle + 5 °, the diffusion rate (B) represented by the above formula [I] and the formation of the coated particles
  • the difference (diffusivity (A) ⁇ diffusivity (B)) from the diffusivity (A) of the spherical core resin particles having an average particle diameter equivalent to that used in the above is in the range of 3 to 15% .
  • the coated particles of the present invention are prepared by adding organoalkoxysilane to an aqueous dispersion in which spherical core resin particles are dispersed to promote hydrolysis, sufficiently silanolizing the organoalkoxysilane, and then adding an alkali component to add silanol.
  • the siloxane resin layer having a high crosslinking density is deposited in ultrafine particles in water and adhered to the surface of the spherical core resin particles to form a dense siloxane resin layer on the surface.
  • incident light from ⁇ 45 ° can be reflected with high uniformity in all directions. That is, it means that the light incident on the coated particles of the present invention can be uniformly diffused throughout the particles without being unevenly distributed.
  • the coated particle of the present invention has a coating layer made of an organosiloxane resin densely formed on the surface of the spherical core resin particles, and has no very convex portions or the like on the surface of the coating layer. Has a layer. By forming such a very smooth and dense coating layer, the light incident on the coated particles of the present invention becomes uniform diffused light from the entire coated particles.
  • the graph shown in FIG. 3 becomes closer to a circle.
  • such particles tend to have a reflected light intensity that decreases from an angle of ⁇ 20 ° to + 20 ° as compared to an reflected light intensity of an angle of + 45 °, but according to the present invention, from ⁇ 20 ° to + 20 °.
  • the reflected light intensity drops and the intensity of the reflected light is high.
  • the coated particles of the present invention Moreover, in the coated particles of the present invention, protrusions and the like are hardly formed on the surface of the coating layer formed on the surface of the spherical core resin particles, and the formation of the coating layer from the surface of the coated particles of the present invention is eliminated.
  • the properties of the coated particles of the present invention have the property that they do not easily change over time.
  • the coated particle of the present invention since it is a reaction in which polycondensation proceeds after hydrolyzing the organoalkoxysilane, it is possible to form a siloxane resin that is highly crosslinked and becomes ultrafine particles, and has an unreacted silanol group Alternatively, residues that are not hydrolyzed hardly remain, and according to the method of the present invention, it is possible to easily produce coated particles with very high density.
  • coated particles of the present invention having such properties can be used for various applications, but particularly suitable for optical applications by using resin particles having high light transmittance as spherical core material resin particles. can do.
  • the coated particles of the present invention by changing the kind of the spherical core resin particles, it can be used very effectively as a powder component of a powdery cosmetic.
  • FIG. 1 is an electron micrograph showing an example of spherical core resin particles used in the present invention.
  • FIG. 2 is an electron micrograph showing an example of the coated particle of the present invention.
  • FIG. 3 is a graph showing the optical characteristics of the coated particles, spherical core resin particles of the present invention, and coated particles produced by the prior art.
  • FIG. 4 is an electron micrograph showing the surface state of the coated particles produced by the prior art.
  • a coating layer made of an organosiloxane resin is densely formed on the surface of the spherical core resin particles.
  • the spherical core resin particles used here are resin particles having an average particle diameter in the range of 0.1 to 100 ⁇ m, preferably in the range of 3 to 50 ⁇ m.
  • the resin particles are spherical, and the flow coefficient (CV value) in the particle size distribution of such spherical core resin particles is usually in the range of 2 to 10.
  • CV value flow coefficient
  • the spherical core resin particles as described above are advantageous for using the coated particles of the present invention as an optical member, and the obtained coated particles have good optical properties.
  • the spherical core resin particles are used as optical members or cosmetic raw material particles in the present invention, the spherical core resin particles are preferably formed of a resin having transparency.
  • Examples of the resin that forms such spherical core resin particles include acrylic resins, styrene resins, polyalkylene terephthalates, polycarbonates, acrylic / styrene / acrylic-nylon / urethane resins.
  • acrylic resin or a styrene resin that easily produces spherical particles.
  • a vinyl monomer can be generally used as a monomer for forming such a resin.
  • the main monomer is not limited to the following, Examples of (meth) acrylic monomers include alkyl acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, octyl (meth) acrylate; (Meth) acrylic acid cycloalkyl such as cyclohexyl (meth) acrylate, ester of (meth) acrylic acid such as isobornyl acrylate and bicyclic alcohol; (Meth) acrylic acid aryl esters such as phenyl (meth) acrylate, benzyl (meth) acrylate, etc.
  • styrenic monomers examples include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, diethyl styrene, triethyl styrene, propyl styrene, butyl styrene, hexyl styrene, heptyl styrene and octyl styrene; Fluorostyrene, chlorostyrene, bromostyrene, dibromostyrene, chloromethylstyrene, nitrostyrene, acetylstyrene, methoxystyrene, ⁇ -methylstyrene, vinyltoluene, sodium p-styrenesulfonate, and the like.
  • a polyfunctional monomer can also be used, as a polyfunctional monomer, diacrylic acid ester of (poly) alkylene glycol, triacrylic acid ester, tetraacrylic acid ester; Or (Poly) alkylene glycol dimethacrylates, trimethacrylates, tetramethacrylates; Or Examples include divinylbenzene.
  • the functional group can be incorporated into the resin by copolymerizing a monomer having a functional group such as a carboxyl group, a hydroxyl group, an amide group, an epoxy group, a nitrile group, a thiol group, or an alkoxysilyl group.
  • a functional group such as a carboxyl group, a hydroxyl group, an amide group, an epoxy group, a nitrile group, a thiol group, or an alkoxysilyl group.
  • a spherical core resin formed from a resin having a visible light transmittance of usually 80% or more, preferably 90% or more. Use particles.
  • coated particles of the present invention are used as cosmetics, it is particularly preferable to use spherical core resin particles made of acrylic, styrene, acrylic-nylon, urethane resin, etc. as the spherical core resin particles.
  • the coated particles of the present invention have a coating layer made of an organosiloxane resin on the surface of the spherical core resin particles as described above, and the coating layer made of the organosiloxane resin has an outer peripheral surface of the spherical core resin particles.
  • the coating layer formed on the surface of the spherical core resin particles hardly has any protrusions or recesses, and the surface of the spherical core resin particles.
  • a very dense coating layer made of an organosiloxane resin is formed, and the coating layer does not have projections or recesses that impair the spherical shape of the spherical core resin particles.
  • organoalkoxysilane is added to the aqueous dispersion of core resin particles, the reaction by hydrolysis is sufficiently advanced, silanolized, and then an alkali component is added to perform polycondensation. Since the reaction can be carried out in a state where there are many condensation sites, a siloxane resin having a high crosslinking density can be produced on the surface of the spherical core resin particles and can be precipitated in water as ultrafine particles.
  • a highly uniform coating layer can be formed on the surface of the material resin particles.
  • FIG. 1 shows an electron micrograph of the spherical core resin particles used for the coated particles as described above.
  • FIG. 2 shows the surface of the spherical core resin particles coated with an organosiloxane resin.
  • the coated particles produced by the method described in Japanese Patent Application Laid-Open No. 2000-239396, which is Patent Document 2 form a coating layer having a large number of protrusions on the surface of the core resin particles as shown in FIG.
  • the surface state of the coated particle of the present invention is clearly different from that of the coated particle of the present invention.
  • the coated particles disclosed in Japanese Patent Application Laid-Open No. 2000-239396 which is Japanese Patent Application Laid-Open No. 2000-239396, is difficult to uniformly disperse light because the coating material is dropped due to a large number of protrusions on the surface. Therefore, it is not suitable as an optical member that requires uniform light dispersion.
  • the surface protrusions of the coating material may fall off due to mixing or contact with other particles, etc., and the characteristics of the coated particles are likely to vary due to such removal of the surface protrusions. .
  • the coating layer In order to form a coating layer by adhering to the surface of the spherical core resin particles, the coating layer has a rough adhesion state with the surface of the spherical core resin particles, and the spherical core resin particles Coating layer formed on the surface is from not densely formed on the surface of the spherical core resin particles. Furthermore, since the decomposition / condensation reaction proceeds in parallel, unreacted silanol groups or unhydrolyzed residues are likely to remain, and it is considered that the formed coating layer is not uniform.
  • the monomer for forming the organosiloxane resin that forms the coating layer on the surface of the spherical core resin particles is mainly composed of organoalkoxysilane.
  • the spherical core resin particles are closely attached to the surface, and the attached coating layer hardly falls off due to contact between particles or contact with other particles.
  • a compound represented by the formula R 1 Si (OR 2 ) 3 (wherein R 1 represents a hydrogen atom or a monovalent group) Or an organoalkoxysilane having an organic group of R 2 ; an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, or a butyl group).
  • Examples of such compounds include trimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltryptoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane, ⁇ -methacryloxytrimethoxysilane, 3,3,3-tri Examples include fluoropropyltrimethoxysilane, 3,3,4,4,5,5,6,6-nonafluorohexyltrimethoxysilane.
  • examples of the bifunctional system include dimethyldimethoxysilane; examples of the tetrafunctional system include tetraethoxysilane and tetramethoxysilane; examples of the chlorosilane system include dichlorodimethoxysilane. These can be used alone or in combination.
  • the organoalkoxysilane used preferably contains methyltrimethoxysilane.
  • methyltrimethoxysilane is usually used in an amount of 50% by weight or more, preferably 75% by weight or more based on the total weight of the organoalkoxysilane used.
  • an organosiloxane resin can be formed.
  • the reaction of the organoalkoxysilane proceeds by adding an alkali component to the organoalkoxysilane.
  • the organoalkoxysilane is preferably used in an amount in the range of 1 to 30 parts by weight with respect to 100 parts by weight of the spherical core resin particles dispersed in the aqueous medium.
  • the alkali component is preferably used in an amount in the range of 0.05 to 1% by weight with respect to 100% by weight of the spherical core resin particles.
  • spherical core resin particles and organoalkoxysilane are added to an aqueous medium and stirred to form a state in which hydrolysis of organoalkoxysilane has sufficiently proceeded.
  • the organoalkoxysilane present in the aqueous medium in a sufficiently advanced state is condensed by dealcoholization and brought into multidimensional crosslinking by contacting with the alkali component added to the dispersion.
  • a coating layer having high uniformity and high cross-linking density can be formed by the condensation reaction proceeding while depositing as an ultrafine granular material of organosiloxane resin and adhering to the surface of the spherical core resin particles.
  • the reaction temperature of the reaction liquid when adding the organoalkoxysilane is adjusted within the range of usually 5 to 40 ° C., preferably 10 to 30 ° C., and the condensation reaction of the organoalkoxysilane proceeds independently. Set the conditions that you do not want.
  • the organoalkoxysilane which is not planned by controlling the temperature of the reaction solution to a low temperature as described above. Suppresses the progress of the condensation reaction of silane.
  • the reaction solution of the spherical core resin particles and the organoalkoxysilane is usually stirred for 5 minutes to 24 hours, preferably 30 minutes to 1 hour in a low temperature state in which the condensation reaction of the organoalkoxysilane is suppressed.
  • the hydrolysis of the organoalkoxysilane proceeds sufficiently and almost no undecomposed organoalkoxysilane exists in the reaction solution.
  • organoalkoxysilane is hydrolyzed and silanolized, then collected on the surface of the spherical core resin particles, and the organoalkoxysilane is condensed in the vicinity of the surface of the spherical core resin particles.
  • the condensation reaction of this organoalkoxysilane is started by adding an alkali component to the reaction solution.
  • alkali component examples include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, and alkaline earth metal hydroxides such as calcium hydroxide. Alkali metals and alkaline earth metals in these components remain on the surface of the coated particles and may impair optical properties. Therefore, an aqueous ammonia solution that can be removed as a gas after completion of the reaction, an amine compound having a low melting point, or these It is preferable to use an aqueous solution of Particularly in the present invention, the organoalkoxysilane is prepared by adjusting the reaction system to a pH value within the range of 8 to 11, preferably 8.5 to 10.5, using an aqueous ammonia solution. A dense coating layer can be formed by reacting near the surface of the spherical core resin particles. In view of odor and cost, an alkali metal hydroxide such as sodium hydroxide can be preferably used.
  • the alkali component is usually introduced into the reaction solution as an aqueous solution of 0.5 to 10% by weight, and the addition of the aqueous solution of the alkali component causes the organoalkoxysilane to undergo a condensation reaction in a sufficiently high density state. It is desirable to set the conditions.
  • the reaction can be allowed to proceed under mild conditions by setting the pH value of the reaction solution to a range of usually 8 to 11, preferably 8.5 to 10.5.
  • the reaction temperature at this time is usually set in the range of 5 to 100 ° C., preferably 10 to 30 ° C., and is usually stirred for 5 minutes to 24 hours. That is, the reaction of the organoalkoxysilane in the present invention is an exothermic reaction, and proceeds by the addition of an alkali component. Therefore, in the normal case, it is not necessary to heat or warm the reaction solution. Moreover, a denser coating layer is formed when the reaction is allowed to proceed slowly.
  • the present invention it is desirable to react for a long time at a relatively low temperature as described above, but it is also possible to heat or heat as described above in consideration of the characteristics of the coated particles to be obtained. It is also possible to set the reaction time to a short time.
  • the organosiloxane monomer that is the raw material of the coating layer is sufficiently silanolated by hydrolysis.
  • the condensation reaction is caused only by the alkali component added to the reaction system, precipitates in the dispersion as ultrafine particles, adheres to the surface of the spherical core resin particles, and has a uniform and dense coating Form a layer. Therefore, in the present invention, it is necessary that organoalkoxysilane is blended in the dispersion in which the spherical core resin particles are dispersed before the alkali component.
  • organoalkoxysilane added prior to the alkali component is sufficiently hydrolyzed in an aqueous medium to silanol, and then the condensation reaction is caused only by adding the alkali component to this dispersion. It is necessary to form an organosiloxane resin to form a coating layer.
  • the average thickness of the coating layer made of the organosiloxane resin thus formed is usually in the range of 1 to 1000 nm, and the surface thereof has the same smoothness as the surface of the spherical core resin particles. And its uniformity is high.
  • the coated particles of the present invention have a uniform and smooth coating layer by measuring the reflection characteristics of the particles of the present invention.
  • an appropriate amount of particles obtained on the bioskin as a substrate as described above is taken, and the particles are uniformly arranged using a spatula or the like.
  • the vertical line perpendicular to the surface of the bioskin of the sample adjusted in this way is set to 0 degree, and light is incident from the left 45 ° ( ⁇ 45 °) as shown in FIG. Measure the reflectance.
  • the reflected light intensity of reflected light at ⁇ 35 ° adjacent to ⁇ 45 °, which is the incident angle of incident light, is highest, and the incident angle is ⁇ 45 °.
  • the reflected light intensity is a tendency for the reflected light intensity to fall from + 45 ° on the opposite side to ⁇ 35 °.
  • the drop in reflected light intensity tends to increase from an angle of + 20 ° to ⁇ 20 °.
  • the spherical core resin particles and the organoalkoxysilane are allowed to coexist in an aqueous medium, the organoalkoxysilane is sufficiently hydrolyzed and silanolized, and then the alkali component is added to the reaction solution. Is added to form a polysiloxane by condensation reaction of silanolated organoalkoxysilane to form a highly uniform dense coating layer on the surface of the spherical core resin particles.
  • the coated particles of the present invention in which a dense coating layer with high homogeneity formed by polycondensation of organoalkoxysilane is formed from ⁇ 20 ° to + 45 ° with respect to incident light from ⁇ 45 ° by the action of this coating layer. It is possible to reduce the fall of the incident light. In particular, the drop in reflected light intensity at an angle of 0 ° can be reduced, and the reflected light intensity at an angle of ⁇ 35 ° can be approached.
  • the reflected light intensity varies depending on the diameter of the spherical core resin particles and the material of the resin, but the diffusivity of the present invention coated with the spherical core resin particles as the base material and the organosiloxane resin is different. The difference shows almost the same tendency.
  • the diffusivity (B) represented by the following formula [I] using the intensity of the light reflected on the surface, and the diffusivity of the spherical core resin particles having an average particle diameter equivalent to that used for forming the coated particles
  • this diffusivity difference is within the range of 3 to 15%, preferably within the range of 5 to 15%, particularly preferably 8 Within 13% range.
  • the graph showing the reflection intensity shown in FIG. 3 becomes circular, which means that the incident light is uniformly diffused.
  • this diffusivity exceeds 100, it means that the graph showing the reflection intensity shown in FIG. 3 becomes a horizontally long ellipse, and when it is below 100, it means that it becomes a vertically long ellipse.
  • the coated particles produced by the method of the present invention have some differences depending on their particle diameters, the reflected light intensity tends to drop compared to the spherical core resin particles used as the core material at ⁇ 20 °.
  • the drop in the reflected light intensity at ⁇ + 45 ° can be raised, and the coated particles having a more uniform reflected light intensity can be obtained as the coated particles as a whole.
  • the drop in the diffused light intensity tends to increase at an angle of 0 ° (that is, the direction perpendicular to the reflective substrate because the incident angle is ⁇ 45 °).
  • the light incident on the coated particles from the position of ⁇ 45 ° shows the highest transmittance around ⁇ 35 °, so the relative intensity of the reflected light intensity at ⁇ 35 ° is 1.
  • the relative intensity of the reflected light intensity is low between ⁇ 35 ° and + 45 °, and the drop is particularly large near 0 °. Such a tendency is a phenomenon generally observed regardless of the particle diameter.
  • the drop width in the vicinity of ⁇ 20 ° to + 20 ° also increases.
  • the organoalkoxysilane and the spherical core resin particles are put in an aqueous medium in advance, and after the hydrolysis of the organoalkoxysilane is sufficiently advanced, an alkali component is added to cause a condensation reaction.
  • an alkali component is added to cause a condensation reaction.
  • the difference in relative intensity of reflected light at 0 ° C. with respect to incident light from ⁇ 45 ° of the spherical core resin particles used as the core material of the coated particles is usually 3% or more in many cases.
  • the coated particle of the present invention is a particle that can enable more uniform omnidirectional reflection.
  • the coated particle of the present invention is an optical material
  • Light can be uniformly diffused in all directions.
  • the coated particles of the present invention are used as a cosmetic raw material, they can be used as a powder with higher expressive power.
  • the properties of the coated particles of the present invention vary even when they are in contact with other components for a long period of time.
  • the coated particles obtained by the method of the present invention are used as cosmetics, although it is expected to be used for a long period of time in a mixed state, the coated particles produced by the method of the present invention can be obtained over time even by such long-term contact with other granular components. There is almost no deterioration.
  • the organoalkoxysilane proceeds after the condensation reaction only after the addition of the alkaline aqueous solution, whereby a uniform and dense coating layer is formed, and the diffusivity is close to 100. .
  • the coated particles of the present invention show very good light diffusibility by adding organoalkoxysilane to the reaction aqueous solution in which the spherical core resin particles are dispersed, and hydrolyzing silanol. After the formation of a state substantially free of undecomposed residues, the condensation reaction is not caused until an alkali component is added to the reaction solution, and the organosiloxane resin is spherical as an ultrafine particle.
  • the coating layer made of an organosiloxane resin on the surface of the spherical core resin particles.
  • the coated particles of the present invention which are spherical core resin particles having a coating layer made of a dense and homogeneous organosiloxane resin on the surface, can react the reaction of the organoalkoxysilane as described above with the spherical core resin particles.
  • the light diffusibility is improved, and in particular, it is possible to suppress a drop in the reflected light amount observed from ⁇ 45 ° to around ⁇ 20 ° to + 20 ° with respect to the incident light. This is apparent when the reflected light intensity at each angle is measured as shown in FIG.
  • the reflectance of the spherical core resin particle light at an angle of 0 ° where the amount of reflected light drops is large, and the coating It can be easily estimated by measuring the difference from the reflectance of light in the coated particles on which the layer is formed. That is, if the difference in light reflectivity at 0 ° is usually 3% or less by forming a coating layer, the diffusion of light in the vicinity of ⁇ 20 ° to + 20 ° regardless of the diameter of the spherical core resin particles. It can be considered that the decline in sex is sufficiently improved.
  • the effect exerted by the present invention is that the alkoxysilane is added to the dispersion in which the alkali component and the spherical core resin particles are dispersed, and the hydrolysis and condensation reaction are simultaneously performed in parallel.
  • the coated particles of the present invention can scatter light uniformly at a wide angle
  • the coated particles of the present invention are very suitable for use as an optical member, and as light-scattering resin particles.
  • a light scattering material in the optical field for example, it can be used by blending with a resin.
  • the coated particles of the present invention have a dense and highly uniform coating layer formed on the surface of the spherical core resin particles, and the surface of the coating layer is smooth and has almost no projections. Since it does not detach from the coating layer, it is not limited to optical applications as described above, but foundations, various creams, deodorant powders, white powders and shaving powders that are used while repeatedly contacting with other granular components for a long time.
  • Ingredients for powder products such as dry shampoo, makeup cosmetic ingredients such as lipstick, eye shadow, mascara, eyeliner, hair care cosmetic ingredients such as shampoo, rinse, hair conditioner, hair cream, hair spray, makeup remover, etc.
  • Example 1 Into a glass flask with a capacity of 1 liter, 100 g of ion-exchanged water is added, and 100 g of polyacrylic particles having an average particle diameter of 10 ⁇ m (MX1000H manufactured by Soken Chemical Co., Ltd.) are added and dispersed to obtain an aqueous dispersion of polyacrylic particles. Prepared. An electron micrograph of the acrylic particles is shown in FIG. The reflected light distribution (blank) of the polyacrylic particles is indicated by No. 1 in the graph shown in FIG.
  • This dispersion was stirred under the condition of a stirring blade speed of 200 rpm.
  • a cake-like product having a water content of 30% by weight was obtained from the reaction solution thus obtained using a pressure filter.
  • This cake was dried in a hot air circulating dryer until the loss on heating was 1% or less.
  • the dried product thus obtained was crushed with a jet mill to obtain coated particles of the present invention.
  • FIG. 2 An electron micrograph of the obtained coated particles is shown in FIG. As shown in FIG. 2, the formed coating layer was densely formed along the curved surface of the spherical core resin particles, and showed a smooth surface state with no protrusions or recesses. In addition, almost no homopolymer of methyltrimethoxysilane was produced in the reaction solution.
  • the average particle diameter of the coated particles obtained as described above is 10 ⁇ m
  • the average thickness of the coating layer formed on the surface of the spherical core resin particles is 80 nm
  • the average thickness of the coating layer is spherical. This corresponds to 1.6% of the diameter of the core resin particles.
  • coated particles produced as described above were taken on the bioskin and laid uniformly on the bioskin using a spatula.
  • the diffusivity was determined according to the following formula [I] based on the above measurement results.
  • the diffusivity When the diffusivity is closer to 100, the reflected light distribution becomes closer to a circle, and when the diffusivity exceeds 100, the reflected light distribution becomes a horizontally long ellipse.
  • Example 2 polyacryl particles having an average particle diameter of 10 ⁇ m (MX1000H manufactured by Soken Chemical Co., Ltd.) were changed to the core materials shown in Table 1 below, and the added alkaline components were changed as shown in Table 1 in the same manner. Thus, the coated particles of the present invention were obtained. Table 1 also shows the polyacryl particles and alkali components used in Example 1.
  • Example 1 The coated particles thus obtained were examined for optical characteristics in the same manner as in Example 1. The results are shown in Table 2 and Table 3.
  • Comparative Example 1 Into a glass flask with a capacity of 1 liter, 100 g of ion-exchanged water was added, and 100 g of polyacrylic particles (MX1000H, manufactured by Soken Chemical Co., Ltd.) having an average particle size of 10 ⁇ m used in Example 1 were added and dispersed therein. An aqueous dispersion of particles was prepared.
  • This dispersion was stirred under the condition of a stirring blade speed of 200 rpm.
  • a cake-like product having a water content of 30% by weight was obtained from the reaction solution thus obtained using a pressure filter.
  • This cake was dried in a hot air circulating dryer until the loss on heating was 1% or less.
  • the dried product thus obtained was crushed with a jet mill to obtain coated particles.
  • FIG. 4 shows an electron micrograph of the obtained coated particles. As shown in FIG. 4, since the coating layer formed has a coating layer having protrusions on the surface of the spherical core resin particles and is not uniform, the average thickness of the coating layer is accurately obtained. I could't. Moreover, the production
  • the coated particles of No. 1 manufactured in Example 1 can diffuse incident light uniformly in all directions. Moreover, after methyltrimethoxysilane is dispersed in an aqueous dispersion in advance and silanolated by hydrolysis, an aqueous ammonia solution, which is an alkali component, is added to cause a condensation reaction of the hydrolyzed silanol, resulting in a high crosslinking density. It can be seen that ultrafine particles of siloxane resin coat the surface of the spherical core resin particles, and a dense coating layer is formed on the surface of the coated particles, so that incident light is uniformly diffused throughout the coated particles. . This is considered to be due to the difference in the surface state of the coated particles. By forming the surface coating layer by the method of the present invention, a dense and uniform coating layer is formed.
  • the reflectance relative value of the coated particles of the present invention shows a value close to 1.00, and the graph showing this relative light intensity is No. 4 indicating the conventional coated particles. It can be seen that also has a shape close to a circle. In particular, the relative value of the reflectance of N0.1 at an angle of 0 ° is 0.06 (6%) different from that of an equivalent spherical core resin particle. It can be seen that there is a very large difference between the coated particles of the present invention in which the coating layer is formed by a specific method. The large difference between the two indicates that the intensity of the scattered light shown in FIG. 3 drawn by the coated particles of the present invention is uniform as a whole.
  • the coated particles of the present invention cause silanol group condensation reaction by adding an alkali component after hydrolyzing organoalkoxysilane in an aqueous medium to silanol in the presence of spherical core resin particles.
  • the produced organosiloxane resin can be made into finer particles, and as shown in FIG. 2, the coating layer made of the organosiloxane resin is densely and uniformly formed.
  • the formation of fine particles does not stabilize the dispersion as an organosiloxane resin in the dispersion, and the adhesion to the particle surface tends to be closely packed, making it difficult to form protrusions on the surface.
  • the siloxane resin deposit does not fall off. Therefore, the coated particles of the present invention have stable characteristics over time.
  • the coated particles of the present invention can be suitably used for optical applications by utilizing their stable optical characteristics and are stable over time, so that they can be used for a long time while being in contact with other components. It can be usefully used as a powder material for cosmetics to be used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)
  • Silicon Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

The coated particles are made by coating surfaces of spherical core resin particles that have an average grain size of 0.1‑100 µm, with an organosiloxane resin. The coated particles are characterized in that the organosiloxane resin coating layer formed on the surfaces of said coated particles is formed densely on the surfaces of the spherical core resin particles; and in that the difference (diffusion rate (A) - diffusion rate (B)) between the diffusion rate (B) defined by formula (I) using the intensity of light incident on said coated particle in the direction of a -45° angle and reflected in the direction of a +20° angle, the intensity of light reflected in the direction of a +70° angle, and the intensity of light reflected in the direction of a +5° angle, and the diffusion rate (A) of spherical core resin particles having an average grain size equivalent to that used for the formation of said coated particles is in the range of 3‑15%.

Description

被覆粒子およびその製造方法Coated particles and method for producing the same
 本発明は、芯材樹脂粒子の表面をオルガノシロキサン樹脂で均一に被覆した被覆粒子およびその製造方法に関する。さらに詳しくは、本発明は、透明性を有する球状芯材樹脂粒子の表面を、緻密で、かつ均一なオルガノシロキサン樹脂からなる被覆層で被覆した、特に光学特性に優れた被覆粒子およびその製造方法に関する。 The present invention relates to coated particles in which the surface of core resin particles is uniformly coated with an organosiloxane resin and a method for producing the same. More specifically, the present invention relates to coated particles having excellent optical properties, in particular, with the surface of spherical core resin particles having transparency coated with a dense and uniform coating layer made of an organosiloxane resin, and a method for producing the coated particles. About.
 各種分野において、樹脂粒子が使用されている。このような樹脂粒子は、一般に粉体としての流動性が良好ではないので、これの流動性の改善などを目的として表面にシリコーンコーティングして用いられている。たとえば特許文献1(特開平7-196815号公報)には、平均粒子径が0.1~100μmのシリコーン球状芯材微粒子にオルガノシロキサン樹脂を被覆して成るシリコーン微粒子が開示されており、水分散液にアルカリ性物質またはアルカリ性水溶液とオルガノトリアルコキシシランを添加し、加水分解、縮合反応を行って芯材の表面をポリオルガノシロキサン樹脂で被覆する発明が開示されている。 Resin particles are used in various fields. Since such resin particles generally do not have good fluidity as a powder, they are used with a silicone coating on the surface for the purpose of improving the fluidity. For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 7-96815) discloses silicone fine particles obtained by coating a silicone spherical core fine particle having an average particle size of 0.1 to 100 μm with an organosiloxane resin. An invention is disclosed in which an alkaline substance or an alkaline aqueous solution and an organotrialkoxysilane are added to a liquid, and a hydrolysis and condensation reaction is performed to coat the surface of the core material with a polyorganosiloxane resin.
 しかしながら、この特許文献1に記載されている被覆粒子の芯材は、シリコーンゴム球状微粒子であり、このような芯材は、透明性を有しておらず、樹脂の弾性特性の改善などその用途は限られている。 However, the core material of the coated particles described in Patent Document 1 is a silicone rubber spherical fine particle, and such a core material does not have transparency, and uses such as improvement of the elastic properties of the resin. Is limited.
 また、特許文献2(特開2000-239396号公報)の請求項1には、平均粒径0.1~100μmの球状合成樹脂粒子を、ポリオルガノシルセスキオキサンを主体とするオルガノシロキサン樹脂で被覆することを特徴とする球状粒子の発明が開示されている。また、段落〔0017〕には、この特許文献2に開示されている発明における加水分解、縮合反応のためのアルカリ性物質またはアルカリ性水溶液の添加は、オルガノアルコキシシランの添加時と同時に行っても、オルガノアルコキシシラン添加後に行ってもよいが、オルガノアルコキシシランの添加量が多い場合には、予め球状合成樹脂粉末の水分散液に滴下しておくのがよいと記載されている。さらに、段落〔0023〕に記載の実施例1においても平均粒子径6.0μmのポリスチレンパウダーあるいは平均粒径9.9μmのメチルメタクリル樹脂が分散している分散液にアンモニア水を滴下し、これにメチルメトキシシランを滴下する例(実施例1、2参照)が示されており、オルガノアルコキシシランは、芯材となる微粒子とアルカリ成分が配合された反応液に、滴下することにより添加されている。 Further, in claim 1 of Patent Document 2 (Japanese Patent Laid-Open No. 2000-239396), spherical synthetic resin particles having an average particle diameter of 0.1 to 100 μm are made of an organosiloxane resin mainly composed of polyorganosilsesquioxane. An invention of spherical particles characterized by coating is disclosed. In addition, in paragraph [0017], addition of an alkaline substance or an aqueous alkaline solution for the hydrolysis and condensation reaction in the invention disclosed in Patent Document 2 may be performed simultaneously with the addition of organoalkoxysilane. Although it may be performed after the addition of alkoxysilane, it is described that when the addition amount of the organoalkoxysilane is large, it is preferably dropped in advance into an aqueous dispersion of spherical synthetic resin powder. Furthermore, also in Example 1 described in paragraph [0023], ammonia water was added dropwise to a dispersion in which polystyrene powder having an average particle diameter of 6.0 μm or methyl methacryl resin having an average particle diameter of 9.9 μm was dispersed. An example of dropping methylmethoxysilane (see Examples 1 and 2) is shown, and organoalkoxysilane is added by dropping to a reaction liquid in which fine particles serving as a core material and an alkali component are blended. .
 このようにしてオルガノアルコキシシランをアルカリ成分と芯材となる粒子が含有されている反応液に滴下すると、アルカリ成分とオルガノアルコキシシランとが接触した瞬間から反応が進行する。このとき、オルガノアルコキシシランの加水分解と縮合反応が同時に進行し、充分に加水分解していないオルガノアルコキシシランが縮合反応に移行する為、架橋密度が低く、比較的大粒径かつ粒度分布が広い粒状物として水中に析出した後、芯材となる粒子表面に付着する。その結果、表面を効率よく被覆することが難しい。 Thus, when the organoalkoxysilane is dropped into the reaction liquid containing the alkali component and the particles serving as the core material, the reaction proceeds from the moment when the alkali component and the organoalkoxysilane come into contact with each other. At this time, the hydrolysis and condensation reaction of the organoalkoxysilane proceed simultaneously, and the organoalkoxysilane which is not sufficiently hydrolyzed shifts to the condensation reaction. Therefore, the crosslinking density is low, the particle size distribution is relatively large, and the crosslinking density is low. After being precipitated in water as a granular material, it adheres to the particle surface that becomes the core material. As a result, it is difficult to efficiently coat the surface.
 このように、架橋密度が低く、比較的大粒径かつ粒度分布が広い粒状物として析出したポリオルガノシロキサンが粒子表面に付着した粒子の電子顕微鏡写真を図4に示す。 FIG. 4 shows an electron micrograph of particles in which polyorganosiloxane deposited as a granular material having a low crosslinking density, a relatively large particle size and a wide particle size distribution adheres to the particle surface.
 図4から明らかなように、オルガノアルコキシシランの加水分解と縮合反応が同時進行しながら粒子表面に付着するため、芯材粒子表面に形成された被覆層の表面に微細な凸凹が形成され、均一な被覆層が形成されていないことが判明した。 As is apparent from FIG. 4, since the hydrolysis and condensation reaction of the organoalkoxysilane proceed at the same time and adhere to the particle surface, fine irregularities are formed on the surface of the coating layer formed on the surface of the core particle, and uniform It has been found that a proper coating layer is not formed.
 このような不均一な被覆層を有する被覆樹脂粒子は、例えば光学用途とした場合、その不均一さに起因して安定な光学部材とはなりにくい。 Such a coated resin particle having a non-uniform coating layer is unlikely to be a stable optical member due to the non-uniformity, for example, when used for optical purposes.
 また、このような被覆粒子は、化粧品原料として使用される場合がある。例えばファンデーション、各種クリーム類、防臭パウダー、おしろいパウダー、ひげそりパウダー、ドライシャンプーなどのパウダー製品原料、口紅、アイシャドウ、マスカラ、アイライナーなどのメイクアップ化粧用原料、シャンプー、リンス、ヘアーコンンディショナー、ヘアークリーム、ヘアースプレーなどのヘアケア化粧品原料、化粧落としなどの洗浄料原料、ロールオン方式あるいはスプレー方式などの各種発汗防止剤原料などである。このように化粧品原料として使用する場合には、表面に突起などが存在すると、別物質(例えば、樹脂、粉体)との混合によって、シロキサン樹脂が粒子表面から脱落して表面の状態が経時的に変化してしまうという問題がある。 Also, such coated particles may be used as cosmetic raw materials. For example, powder products such as foundation, various creams, deodorant powder, funny powder, shaving powder, dry shampoo, makeup cosmetic ingredients such as lipstick, eye shadow, mascara, eyeliner, shampoo, rinse, hair conditioner, Hair care cosmetic materials such as hair creams and hair sprays, cleaning materials such as makeup removers, and various antiperspirant materials such as roll-on and spray methods. Thus, when used as a cosmetic raw material, if there are protrusions or the like on the surface, mixing with another substance (for example, resin, powder) causes the siloxane resin to fall off the particle surface and the surface condition changes over time. There is a problem that it will change.
特開平7-196815号公報Japanese Laid-Open Patent Publication No.7-196815 特開2000-239396号公報JP 2000-239396 A
 本発明は、均一で、緻密なオルガノシロキサン樹脂からなる被膜を球状芯材樹脂粒子の表面に有する被覆粒子およびその粒子を高収率で製造することができる製造方法を提供することを目的としている。 An object of the present invention is to provide a coated particle having a coating made of a uniform and dense organosiloxane resin on the surface of a spherical core resin particle and a production method capable of producing the particle in high yield. .
 さらに詳しくは、本発明は、均一で、緻密なオルガノシロキサン樹脂からなる被膜を球状芯材樹脂粒子の表面に有することから、特に光学材料として安定した特性を有する被覆粒子およびその製造方法を提供することを目的としている。 More specifically, the present invention provides a coated particle having a stable characteristic as an optical material, and a method for producing the same, because the surface of the spherical core resin particle has a uniform and dense coating made of an organosiloxane resin. The purpose is that.
 また、本発明は、化粧品原料として有用性の高い被覆粒子およびその製造方法を提供することを目的としている。 The present invention also aims to provide coated particles that are highly useful as cosmetic raw materials and a method for producing the same.
 本発明の被覆粒子は、平均粒子径が0.1~100μmの範囲内にある球状芯材樹脂粒子の表面を、オルガノシロキサン樹脂で被覆した被覆粒子であって、
 該被覆粒子の表面に形成されたオルガノシロキサン樹脂からなる被覆層が、球状芯材樹脂粒子の表面に密に形成されており、かつ該被覆粒子に-45°の方向から入射し、角度+20°の方向に反射する光の強さ、角度+70°の方向に反射する光の強さ、及び、角度+5°の方向に反射する光の強さを用いて下記式[I]で表わされる拡散率(B)と、該被覆粒子の形成に用いたのと同等の平均粒子径を有する球状芯材樹脂粒子の拡散率(A)との差(拡散率(A)-拡散率(B))が、3~15%の範囲内にあることを特徴としている。
The coated particles of the present invention are coated particles obtained by coating the surface of spherical core resin particles having an average particle diameter in the range of 0.1 to 100 μm with an organosiloxane resin,
A coating layer made of an organosiloxane resin formed on the surface of the coated particle is densely formed on the surface of the spherical core resin particle, and is incident on the coated particle from a direction of −45 °, and has an angle of + 20 °. The diffusion rate represented by the following formula [I] using the intensity of light reflected in the direction of angle +, the intensity of light reflected in the direction of angle + 70 °, and the intensity of light reflected in the direction of angle + 5 ° The difference between (B) and the diffusivity (A) of the spherical core resin particles having the same average particle diameter as that used for the formation of the coated particles (diffusivity (A) −diffusivity (B)) It is characterized by being in the range of 3 to 15%.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、本発明の被覆粒子の製造方法は、球状芯材樹脂粒子が分散された水性分散液に、オルガノアルコキシシランを添加して攪拌した後、攪拌下に、該分散液にアルカリ成分を添加して、球状芯材樹脂粒子の表面でオルガノアルコキシシランを重合させて、オルガノシロキサン樹脂からなる被覆層を球状芯材樹脂粒子の表面に形成することを特徴としており、このようにして得られた被覆粒子は、平均粒子径が0.1~100μmの範囲内にある球状芯材樹脂粒子の表面を、オルガノシロキサン樹脂で被覆した被覆粒子であって、該被覆粒子の表面に形成されたオルガノシロキサン樹脂からなる被覆層が、球状芯材樹脂粒子の表面に密に形成されており、かつ該被覆粒子に-45°の方向から入射し、角度+20°の方向に反射する光の強さ、角度+70°の方向に反射する光の強さ、及び、角度+5°の方向に反射する光の強さを用いて上記式[I]で表わされる拡散率(B)と、該被覆粒子の形成に用いたのと同等の平均粒子径を有する球状芯材樹脂粒子の拡散率(A)との差(拡散率(A)-拡散率(B))が、3~15%の範囲内になる。 Further, the method for producing coated particles of the present invention comprises adding an organoalkoxysilane to an aqueous dispersion in which spherical core resin particles are dispersed and stirring, and then adding an alkali component to the dispersion under stirring. The coating obtained in this way is characterized by polymerizing organoalkoxysilane on the surface of the spherical core resin particles to form a coating layer made of an organosiloxane resin on the surface of the spherical core resin particles. The particle is a coated particle obtained by coating the surface of a spherical core resin particle having an average particle diameter in the range of 0.1 to 100 μm with an organosiloxane resin, and the organosiloxane resin formed on the surface of the coated particle The intensity of light incident on the coated particles from the direction of −45 ° and reflected in the direction of an angle of + 20 °; Using the intensity of light reflected in the direction of angle + 70 ° and the intensity of light reflected in the direction of angle + 5 °, the diffusion rate (B) represented by the above formula [I] and the formation of the coated particles The difference (diffusivity (A) −diffusivity (B)) from the diffusivity (A) of the spherical core resin particles having an average particle diameter equivalent to that used in the above is in the range of 3 to 15% .
 本発明の被覆粒子は、球状芯材樹脂粒子が分散された水性分散液にオルガノアルコキシシランを加えて加水分解を促進させ、該オルガノアルコキシシランを充分にシラノール化させた後、アルカリ成分を加えシラノール基の縮合反応を進行させることで、架橋密度の高いシロキサン樹脂として水中に超微細粒状で析出させ、球状芯材樹脂粒子の表面に付着させることで、表面に密にシロキサン樹脂層を形成することができる。このように球状芯材樹脂粒子の表面に密に被覆層を形成することにより、-45°からの入射光を全方向に高い均一性で反射させることができる。即ち、本発明の被覆粒子に入射した光を偏在させることなく粒子全体に均一に拡散させることができることを意味する。 The coated particles of the present invention are prepared by adding organoalkoxysilane to an aqueous dispersion in which spherical core resin particles are dispersed to promote hydrolysis, sufficiently silanolizing the organoalkoxysilane, and then adding an alkali component to add silanol. By proceeding with the group condensation reaction, the siloxane resin layer having a high crosslinking density is deposited in ultrafine particles in water and adhered to the surface of the spherical core resin particles to form a dense siloxane resin layer on the surface. Can do. Thus, by densely forming the coating layer on the surface of the spherical core resin particles, incident light from −45 ° can be reflected with high uniformity in all directions. That is, it means that the light incident on the coated particles of the present invention can be uniformly diffused throughout the particles without being unevenly distributed.
 本発明の被覆粒子は、球状芯材樹脂粒子の表面にオルガノシロキサン樹脂からなる被覆層が密に形成されており、被覆層の表面に凸部等が形成されておらず、非常に平滑な被覆層を有する。このように非常に平滑で密な被覆層を形成することにより、本発明の被覆粒子に入射した光が被覆粒子全体から均一な拡散光となる。 The coated particle of the present invention has a coating layer made of an organosiloxane resin densely formed on the surface of the spherical core resin particles, and has no very convex portions or the like on the surface of the coating layer. Has a layer. By forming such a very smooth and dense coating layer, the light incident on the coated particles of the present invention becomes uniform diffused light from the entire coated particles.
 すなわち、反射光強度が均一になれば、図3に示すグラフがより円に近くなる。一般には、こうした粒子には、角度+45°の反射光強度に比し角度-20°~+20°にかけて反射光強度が低くなる傾向があるが、本発明によれば、-20°~+20°にかけての反射光強度の落ち込みが少なくなり、全体として、高い反射光の強度を示す。 That is, when the reflected light intensity becomes uniform, the graph shown in FIG. 3 becomes closer to a circle. In general, such particles tend to have a reflected light intensity that decreases from an angle of −20 ° to + 20 ° as compared to an reflected light intensity of an angle of + 45 °, but according to the present invention, from −20 ° to + 20 °. As a whole, the reflected light intensity drops and the intensity of the reflected light is high.
 しかも本発明の被覆粒子は、球状芯材樹脂粒子の表面に形成された被覆層の表面に突起状物などが形成されにくく、本発明の被覆粒子の表面から被覆層の形成成分の脱離により、本発明の被覆粒子の特性が経時的に変動しにくいという特性を有するようになる。また、本発明の被覆粒子では、オルガノアルコキシシランを加水分解した後に重縮合を進行させる反応であることから、高架橋で且つ超微細粒状となるシロキサン樹脂の形成が可能であり、未反応のシラノール基又は加水分解していない残基が残り難く、本発明の方法によれば、非常に密度の高い被覆粒子を容易に製造する事ができる。 Moreover, in the coated particles of the present invention, protrusions and the like are hardly formed on the surface of the coating layer formed on the surface of the spherical core resin particles, and the formation of the coating layer from the surface of the coated particles of the present invention is eliminated. The properties of the coated particles of the present invention have the property that they do not easily change over time. Further, in the coated particle of the present invention, since it is a reaction in which polycondensation proceeds after hydrolyzing the organoalkoxysilane, it is possible to form a siloxane resin that is highly crosslinked and becomes ultrafine particles, and has an unreacted silanol group Alternatively, residues that are not hydrolyzed hardly remain, and according to the method of the present invention, it is possible to easily produce coated particles with very high density.
 このような特性を有する本発明の被覆粒子は、種々の用途に使用することができるが、球状芯材樹脂粒子として光透過率が高い樹脂粒子を使用することにより、光学用途に特に好適に使用することができる。 The coated particles of the present invention having such properties can be used for various applications, but particularly suitable for optical applications by using resin particles having high light transmittance as spherical core material resin particles. can do.
 また、球状芯材樹脂粒子の種類を変えて本発明の被覆粒子を製造することにより、特にパウダー状の化粧料の粉体成分として非常に有効に使用することができる。 In addition, by producing the coated particles of the present invention by changing the kind of the spherical core resin particles, it can be used very effectively as a powder component of a powdery cosmetic.
図1は、本発明で使用される球状芯材樹脂粒子の例を示す電子顕微鏡写真である。FIG. 1 is an electron micrograph showing an example of spherical core resin particles used in the present invention. 図2は、本発明の被覆粒子の例を示す電子顕微鏡写真である。FIG. 2 is an electron micrograph showing an example of the coated particle of the present invention. 図3は、本発明の被覆粒子、球状芯材樹脂粒子、従来技術によって製造された被覆粒子の光学的特性を示すグラフである。FIG. 3 is a graph showing the optical characteristics of the coated particles, spherical core resin particles of the present invention, and coated particles produced by the prior art. 図4は、従来技術によって製造された被覆粒子の表面状態を示す電子顕微鏡写真である。FIG. 4 is an electron micrograph showing the surface state of the coated particles produced by the prior art.
 次に本発明の被覆粒子およびこの被覆粒子を製造する方法について図面を参照しながら詳細に説明する。 Next, the coated particles of the present invention and the method for producing the coated particles will be described in detail with reference to the drawings.
 本発明の被覆粒子は、球状芯材樹脂粒子の表面に、オルガノシロキサン樹脂からなる被覆層が密に形成されている。 In the coated particles of the present invention, a coating layer made of an organosiloxane resin is densely formed on the surface of the spherical core resin particles.
 ここで使用する球状芯材樹脂粒子は、平均粒子径が0.1~100μmの範囲内、好ましくは、3~50μmの範囲内にある樹脂粒子である。この樹脂粒子は、球状であり、このような球状芯材樹脂粒子の粒度分布における流動係数(CV値)は、通常は、2~10の範囲内にある。より真球度の高い樹脂粒子を用いることにより、光を均一に拡散することが容易になる。また、上記のような球状芯材樹脂粒子は、本発明の被覆粒子を光学用部材として使用するのに有利であるとともに、得られる被覆粒子の光学特性が良好になる。 The spherical core resin particles used here are resin particles having an average particle diameter in the range of 0.1 to 100 μm, preferably in the range of 3 to 50 μm. The resin particles are spherical, and the flow coefficient (CV value) in the particle size distribution of such spherical core resin particles is usually in the range of 2 to 10. By using resin particles having higher sphericity, it becomes easier to diffuse light uniformly. The spherical core resin particles as described above are advantageous for using the coated particles of the present invention as an optical member, and the obtained coated particles have good optical properties.
 また、本発明で球状芯材樹脂粒子を光学部材あるいは化粧料原料粒子として使用する場合には、この球状芯材樹脂粒子は、透明性を有している樹脂で形成されていることが好ましい。 Further, when the spherical core resin particles are used as optical members or cosmetic raw material particles in the present invention, the spherical core resin particles are preferably formed of a resin having transparency.
 このような球状芯材樹脂粒子を形成する樹脂の例としては、アクリル系樹脂、スチレン系樹脂、ポリアルキレンテレフタレート、ポリカーボネート、アクリル・スチレン・アクリル-ナイロン・ウレタン樹脂を挙げることができる。特に本発明では容易に球状粒子を製造し易いアクリル系樹脂あるいはスチレン系樹脂を使用することが好ましい。 Examples of the resin that forms such spherical core resin particles include acrylic resins, styrene resins, polyalkylene terephthalates, polycarbonates, acrylic / styrene / acrylic-nylon / urethane resins. In particular, in the present invention, it is preferable to use an acrylic resin or a styrene resin that easily produces spherical particles.
 このような樹脂を形成するモノマーとしては一般にビニル系モノマーを用いることができる。主モノマーとして下記に限定はされないが、
 (メタ)アクリル系モノマーの例としては、(メタ)アクリル酸メチル,(メタ)アクリル酸エチル,(メタ)アクリル酸ブチル,(メタ)アクリル酸オクチル等のアクリル酸アルキルエステル;
(メタ)アクリル酸シクロヘキシル等の(メタ)アクリル酸シクロアルキル、アクリル酸イソボルニル等の(メタ)アクリル酸と2環式アルコールとのエステル;
 (メタ)アクリル酸フェニル,(メタ)アクリル酸ベンジル等の(メタ)アクリル酸アリールエステル類等が挙げられ、
 スチレン系モノマーの例としては、スチレン,メチルスチレン,ジメチルスチレン,トリメチルスチレン,エチルスチレン,ジエチルスチレン,トリエチルスチレン,プロピルスチレン,ブチルスチレン,ヘキシルスチレン,ヘプチルスチレン及びオクチルスチレン;
 フロロスチレン,クロルスチレン,ブロモスチレン,ジブロモスチレン,クロルメチルスチレン、ニトロスチレン,アセチルスチレン,メトキシスチレン,α-メチルスチレン,ビニルトルエン,p-スチレンスルホン酸ナトリウム等が挙げられる。
As a monomer for forming such a resin, a vinyl monomer can be generally used. The main monomer is not limited to the following,
Examples of (meth) acrylic monomers include alkyl acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, octyl (meth) acrylate;
(Meth) acrylic acid cycloalkyl such as cyclohexyl (meth) acrylate, ester of (meth) acrylic acid such as isobornyl acrylate and bicyclic alcohol;
(Meth) acrylic acid aryl esters such as phenyl (meth) acrylate, benzyl (meth) acrylate, etc.
Examples of styrenic monomers include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, diethyl styrene, triethyl styrene, propyl styrene, butyl styrene, hexyl styrene, heptyl styrene and octyl styrene;
Fluorostyrene, chlorostyrene, bromostyrene, dibromostyrene, chloromethylstyrene, nitrostyrene, acetylstyrene, methoxystyrene, α-methylstyrene, vinyltoluene, sodium p-styrenesulfonate, and the like.
 また、架橋構造とするために、多官能モノマーを用いることもでき、多官能モノマーとしては、(ポリ)アルキレングリコールのジアクリル酸エステル類、トリアクリル酸エステル類、テトラアクリル酸エステル類;
 または、
 (ポリ)アルキレングリコールのジメタクリル酸エステル類、トリメタクリル酸エステル類、テトラメタクリル酸エステル類;
 または、
 ジビニルベンゼン等が挙げられる。
Moreover, in order to set it as a crosslinked structure, a polyfunctional monomer can also be used, As a polyfunctional monomer, diacrylic acid ester of (poly) alkylene glycol, triacrylic acid ester, tetraacrylic acid ester;
Or
(Poly) alkylene glycol dimethacrylates, trimethacrylates, tetramethacrylates;
Or
Examples include divinylbenzene.
 さらに、カルボキシル基、ヒドロキシル基、アミド基、エポキシ基、ニトリル基、チオール基、アルコキシシリル基等の官能基をもつモノマーを共重合することで、樹脂に官能基を含有させることもできる。 Furthermore, the functional group can be incorporated into the resin by copolymerizing a monomer having a functional group such as a carboxyl group, a hydroxyl group, an amide group, an epoxy group, a nitrile group, a thiol group, or an alkoxysilyl group.
 特に本発明では、得られる被覆粒子が光学部材としての使用に適していることから、可視光線の透過率が、通常は80%以上、好ましくは90%以上の樹脂から形成された球状芯材樹脂粒子を使用する。 In particular, in the present invention, since the resulting coated particles are suitable for use as an optical member, a spherical core resin formed from a resin having a visible light transmittance of usually 80% or more, preferably 90% or more. Use particles.
 また、本発明の被覆粒子を化粧料として使用する場合には、球状芯材樹脂粒子として、特に、アクリル・スチレン・アクリル-ナイロン・ウレタン樹脂などからなる球状芯材樹脂粒子を用いることが好ましい。 Further, when the coated particles of the present invention are used as cosmetics, it is particularly preferable to use spherical core resin particles made of acrylic, styrene, acrylic-nylon, urethane resin, etc. as the spherical core resin particles.
 本発明の被覆粒子は、上記のような球状芯材樹脂粒子の表面にオルガノシロキサン樹脂からなる被覆層を有しており、このオルガノシロキサン樹脂からなる被覆層は、球状芯材樹脂粒子の外周表面に沿って、均一に形成されているとともに、非常に密に形成されている。すなわち、従来のオルガノシロキサン樹脂で被覆された粒子のように、球状芯材樹脂粒子の表面に形成された被覆層に突起あるいは凹部などが形成されることがほとんどなく、球状芯材樹脂粒子表面に、オルガノシロキサン樹脂からなる非常に緻密な被覆層が形成されており、しかもこの被覆層には、球状芯材樹脂粒子の球状の形状を損なうような突起あるいは凹部などは形成されていない。これは、本発明においては、芯材樹脂粒子の水分散体中にオルガノアルコキシシランを加え、加水分解による反応を充分に進行させ、シラノール化した後、アルカリ成分を加えて重縮合を行うことで、縮合拠点が多い状態で反応させることができるため、球状芯材樹脂粒子の表面に架橋密度の高いシロキサン樹脂を生成することができ、且つ超微細粒状として水中に析出させることが可能となり、芯材樹脂粒子の表面により均質性の高い被覆層の形成が可能となる。 The coated particles of the present invention have a coating layer made of an organosiloxane resin on the surface of the spherical core resin particles as described above, and the coating layer made of the organosiloxane resin has an outer peripheral surface of the spherical core resin particles. Are formed uniformly and very densely. That is, unlike the particles coated with the conventional organosiloxane resin, the coating layer formed on the surface of the spherical core resin particles hardly has any protrusions or recesses, and the surface of the spherical core resin particles. In addition, a very dense coating layer made of an organosiloxane resin is formed, and the coating layer does not have projections or recesses that impair the spherical shape of the spherical core resin particles. This is because in the present invention, organoalkoxysilane is added to the aqueous dispersion of core resin particles, the reaction by hydrolysis is sufficiently advanced, silanolized, and then an alkali component is added to perform polycondensation. Since the reaction can be carried out in a state where there are many condensation sites, a siloxane resin having a high crosslinking density can be produced on the surface of the spherical core resin particles and can be precipitated in water as ultrafine particles. A highly uniform coating layer can be formed on the surface of the material resin particles.
 図1には、上記のような被覆粒子に用いられる球状芯材樹脂粒子の電子顕微鏡写真が示されており、図2には、この球状芯材樹脂粒子の表面がオルガノシロキサン樹脂で被覆された本発明の被覆粒子の電子顕微鏡写真が示されているが、図2の被覆粒子の表面状態は、図1に示される球状芯材樹脂粒子の表面状態とほとんど変わらない。これに対して特許文献2である特開2000-239396号公報に記載の方法で製造した被覆粒子は、図4に示すように、芯材樹脂粒子の表面に多数の突起を有する被覆層が形成されており、本発明の被覆粒子の表面状態とは明らかに、その表面状態が異なる。このような特許文献2である特開2000-239396号公報に開示されている被覆粒子は、表面にある多数の突起のために、被覆素材の脱落が発生するために光の均一な分散が困難になり、均一な光分散を必要とする光学用部材としては適していない。特に他の粒子などとの混合あるいは接触などにより、被覆素材の表面突起が脱落することがあり、このような表面突起の脱落によって、この被覆粒子の特性が変動しやすいという特性を有している。特許文献2である特開2000-239396号公報に開示されている被覆粒子が、その表面に多数の突起を有して均一性に欠ける原因は、球状芯材樹脂が分散している水性分散液にアルカリ成分を予め投入して分散液をアルカリ性にした後に、オルガノアルコキシシランをこのアルカリ性に調整された分散液に投入するために、オルガノアルコキシシランの加水分解と縮合反応とが、同時並行的に進行し、このように二種類の異なる反応が同時並行して進行することにより比較的大きなオルガノシロキサン樹脂の粒子が生成し、このように比較的大きなオルガノシロキサン樹脂粒子が、水性分散液中に分散している球状芯材樹脂粒子の表面に付着して被覆層を形成するために、被覆層が球状芯材樹脂粒子の表面との付着状態が粗となり、球状芯材樹脂粒子表面に形成される被覆層が球状芯材樹脂粒子の表面に緻密に形成されないからである。さらに、分解・縮合反応が同時並行的に進行することから、未反応のシラノール基又は加水分解していない残基が残りやすく、形成される被覆層が均一ではなくなると考えられる。 FIG. 1 shows an electron micrograph of the spherical core resin particles used for the coated particles as described above. FIG. 2 shows the surface of the spherical core resin particles coated with an organosiloxane resin. Although an electron micrograph of the coated particles of the present invention is shown, the surface state of the coated particles in FIG. 2 is almost the same as the surface state of the spherical core resin particles shown in FIG. On the other hand, the coated particles produced by the method described in Japanese Patent Application Laid-Open No. 2000-239396, which is Patent Document 2, form a coating layer having a large number of protrusions on the surface of the core resin particles as shown in FIG. The surface state of the coated particle of the present invention is clearly different from that of the coated particle of the present invention. The coated particles disclosed in Japanese Patent Application Laid-Open No. 2000-239396, which is Japanese Patent Application Laid-Open No. 2000-239396, is difficult to uniformly disperse light because the coating material is dropped due to a large number of protrusions on the surface. Therefore, it is not suitable as an optical member that requires uniform light dispersion. In particular, the surface protrusions of the coating material may fall off due to mixing or contact with other particles, etc., and the characteristics of the coated particles are likely to vary due to such removal of the surface protrusions. . The reason why the coated particles disclosed in Japanese Patent Application Laid-Open No. 2000-239396, which is Patent Document 2, has a large number of protrusions on the surface and lacks uniformity is the aqueous dispersion in which the spherical core resin is dispersed In order to inject the organoalkoxysilane into the dispersion adjusted to be alkaline after the alkali component is added to the alkali in advance, the hydrolysis and condensation reaction of the organoalkoxysilane are performed simultaneously in parallel. As the two different reactions proceed in parallel, relatively large organosiloxane resin particles are generated, and the relatively large organosiloxane resin particles are dispersed in the aqueous dispersion. In order to form a coating layer by adhering to the surface of the spherical core resin particles, the coating layer has a rough adhesion state with the surface of the spherical core resin particles, and the spherical core resin particles Coating layer formed on the surface is from not densely formed on the surface of the spherical core resin particles. Furthermore, since the decomposition / condensation reaction proceeds in parallel, unreacted silanol groups or unhydrolyzed residues are likely to remain, and it is considered that the formed coating layer is not uniform.
 これに対して本発明の被覆粒子においては、球状芯材樹脂粒子の表面に被覆層を形成するオルガノシロキサン樹脂を形成するモノマーは、オルガノアルコキシシランを主成分とするものであり、この被覆層は、球状芯材樹脂粒子の表面に密に付着しており、粒子相互の接触あるいは他の粒子との接触などによって、付着した被覆層が脱落することはほとんどない。 On the other hand, in the coated particles of the present invention, the monomer for forming the organosiloxane resin that forms the coating layer on the surface of the spherical core resin particles is mainly composed of organoalkoxysilane. The spherical core resin particles are closely attached to the surface, and the attached coating layer hardly falls off due to contact between particles or contact with other particles.
 本発明の被覆粒子において、上記のような被覆層を形成するために、本発明では、式R1Si(OR2)3で示される化合物(ただし上記式において、R1;水素原子または一価の有機基、R2;メチル基、エチル基、プロピル基、ブチル基などの炭素数1~6のアルキル基)であるオルガノアルコキシシランを使用することが可能である。このような化合物の例としては、単官能系として、トリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリプトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、ブチルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシラン、γ-メタクリロキシトリメトキシシラン、3,3,3-トリフロロプロピルトリメトキシシラン、3,3,4,4,5,5,6,6-ノナフロロヘキシルトリメトキシシランなどを挙げることができる。前記式で表される化合物以外に、二官能系として、ジメチルジメトキシシラン;四官能系として、テトラエトキシシラン、テトラメトキシシラン;クロロシラン系として、ジクロロジメトキシシランも挙げることができる。これらは単独であるいは組み合わせて使用することができる。 In the coated particles of the present invention, in order to form the coating layer as described above, in the present invention, a compound represented by the formula R 1 Si (OR 2 ) 3 (wherein R 1 represents a hydrogen atom or a monovalent group) Or an organoalkoxysilane having an organic group of R 2 ; an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, or a butyl group). Examples of such compounds include trimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltryptoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, N- (Β-aminoethyl) -γ-aminopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane, γ-methacryloxytrimethoxysilane, 3,3,3-tri Examples include fluoropropyltrimethoxysilane, 3,3,4,4,5,5,6,6-nonafluorohexyltrimethoxysilane. In addition to the compound represented by the above formula, examples of the bifunctional system include dimethyldimethoxysilane; examples of the tetrafunctional system include tetraethoxysilane and tetramethoxysilane; examples of the chlorosilane system include dichlorodimethoxysilane. These can be used alone or in combination.
 特に本発明では使用するオルガノアルコキシシランが、メチルトリメトキシシランを含むものであることが好ましい。 In particular, in the present invention, the organoalkoxysilane used preferably contains methyltrimethoxysilane.
 この場合、メチルトリメトキシシランは、使用するオルガノアルコキシシランの総重量に対して通常は50重量%以上、好ましくは75重量%以上の量で使用する。このようなオルガノアルコキシシランが(共)重合することにより、オルガノシロキサン樹脂を形成することができる。 In this case, methyltrimethoxysilane is usually used in an amount of 50% by weight or more, preferably 75% by weight or more based on the total weight of the organoalkoxysilane used. When such an organoalkoxysilane is (co) polymerized, an organosiloxane resin can be formed.
 このオルガノアルコキシシランの反応は、上記オルガノアルコキシシランにアルカリ成分を添加することにより進行する。上記オルガノアルコキシシランは、水性媒体中に分散されている球状芯材樹脂粒子100重量部に対して、1~30重量部の範囲内の量で用いることが好ましい。また、上記アルカリ成分は、球状芯材樹脂粒子100重量%に対して、0.05~1重量%の範囲内の量で用いることが好ましい。 The reaction of the organoalkoxysilane proceeds by adding an alkali component to the organoalkoxysilane. The organoalkoxysilane is preferably used in an amount in the range of 1 to 30 parts by weight with respect to 100 parts by weight of the spherical core resin particles dispersed in the aqueous medium. The alkali component is preferably used in an amount in the range of 0.05 to 1% by weight with respect to 100% by weight of the spherical core resin particles.
 すなわち、本発明では水性媒体中に球状芯材樹脂粒子とオルガノアルコキシシランとを投入して攪拌することにより、オルガノアルコキシシランの加水分解を充分に進行させた状態を形成する。このように水性媒体中に加水分解が充分に進んだ状態で存在するオルガノアルコキシシランが、この分散液に添加されるアルカリ成分と接触することにより、脱アルコールにより縮合して、多次元架橋されたオルガノシロキサン樹脂の超微細粒状物として析出し、球状芯材樹脂粒子の表面に付着しながら、さらに縮合反応が進行することで、均一性が高く架橋密度の高い被覆層を形成することができる。 That is, in the present invention, spherical core resin particles and organoalkoxysilane are added to an aqueous medium and stirred to form a state in which hydrolysis of organoalkoxysilane has sufficiently proceeded. In this way, the organoalkoxysilane present in the aqueous medium in a sufficiently advanced state is condensed by dealcoholization and brought into multidimensional crosslinking by contacting with the alkali component added to the dispersion. A coating layer having high uniformity and high cross-linking density can be formed by the condensation reaction proceeding while depositing as an ultrafine granular material of organosiloxane resin and adhering to the surface of the spherical core resin particles.
 従って、本発明の方法では、上記のようなオルガノアルコキシシランが水中に浮遊している状態では反応せずに、加水分解が充分に進行した状態で反応が開始されることが望ましい。このために本発明では、オルガノアルコキシシランを添加する際の反応液の温度を通常は5~40℃、好ましくは10~30℃の範囲内に調整してオルガノアルコキシシランの縮合反応が独自に進行しない条件を設定する。すなわち、オルガノアルコキシシランは、温度が高くなればアルカリ成分が存在しなくても縮合反応が進行することがあるので、反応液の温度を上記のように低温に制御して予定していないオルガノアルコキシシランの縮合反応の進行を抑制する。このようにオルガノアルコキシシランの縮合反応が抑制される低温状態で、球状芯材樹脂粒子とオルガノアルコキシシランとの反応液を、通常は5分間~24時間、好ましくは30分間~1時間攪拌することにより、オルガノアルコキシシランの加水分解のみが充分に進行し、反応液中には未分解のオルガノアルコキシシランはほとんど存在しなくなる。 Therefore, in the method of the present invention, it is desirable that the reaction is started in a state in which hydrolysis proceeds sufficiently without reacting when the organoalkoxysilane as described above is suspended in water. For this reason, in the present invention, the reaction temperature of the reaction liquid when adding the organoalkoxysilane is adjusted within the range of usually 5 to 40 ° C., preferably 10 to 30 ° C., and the condensation reaction of the organoalkoxysilane proceeds independently. Set the conditions that you do not want. In other words, since the condensation reaction of organoalkoxysilane may proceed even in the absence of an alkali component if the temperature is increased, the organoalkoxysilane which is not planned by controlling the temperature of the reaction solution to a low temperature as described above. Suppresses the progress of the condensation reaction of silane. In this way, the reaction solution of the spherical core resin particles and the organoalkoxysilane is usually stirred for 5 minutes to 24 hours, preferably 30 minutes to 1 hour in a low temperature state in which the condensation reaction of the organoalkoxysilane is suppressed. Thus, only the hydrolysis of the organoalkoxysilane proceeds sufficiently and almost no undecomposed organoalkoxysilane exists in the reaction solution.
 このように本発明では、オルガノアルコキシシランの大部分を加水分解させシラノール化した後、球状芯材樹脂粒子の表面に集めて、この球状芯材樹脂粒子の表面近傍でオルガノアルコキシシランを縮合反応させる。 Thus, in the present invention, most of the organoalkoxysilane is hydrolyzed and silanolized, then collected on the surface of the spherical core resin particles, and the organoalkoxysilane is condensed in the vicinity of the surface of the spherical core resin particles. .
 このオルガノアルコキシシランの縮合反応は、反応液にアルカリ成分を添加することにより開始する。 The condensation reaction of this organoalkoxysilane is started by adding an alkali component to the reaction solution.
 ここで使用することができるアルカリ成分としては、水酸化カリウム、水酸化ナトリウム等のアルカリ金属の水酸化物、水酸化カルシウムのようなアルカリ土類金属の水酸化物などを用いることもできるが、これらの成分中のアルカリ金属、アルカリ土類金属は、被覆粒子の表面に残存し、光学的特性を損なう虞があることから、反応終了後に気体として除去できるアンモニア水溶液、低融点のアミン化合物あるいはこれらの水溶液を使用することが好ましい。特に本発明では、アンモニア水溶液を使用して反応系を8~11の範囲内のpH値、好ましくは8.5~10.5の範囲内のpH値に調整することにより、上記オルガノアルコキシシランは、球状芯材樹脂粒子表面近傍で反応して密な被覆層を形成することができる。なお、臭気およびコストの問題を考慮すると、水酸化ナトリウムのような水酸化アルカリ金属を好ましく使用することができる。 Examples of the alkali component that can be used here include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, and alkaline earth metal hydroxides such as calcium hydroxide. Alkali metals and alkaline earth metals in these components remain on the surface of the coated particles and may impair optical properties. Therefore, an aqueous ammonia solution that can be removed as a gas after completion of the reaction, an amine compound having a low melting point, or these It is preferable to use an aqueous solution of Particularly in the present invention, the organoalkoxysilane is prepared by adjusting the reaction system to a pH value within the range of 8 to 11, preferably 8.5 to 10.5, using an aqueous ammonia solution. A dense coating layer can be formed by reacting near the surface of the spherical core resin particles. In view of odor and cost, an alkali metal hydroxide such as sodium hydroxide can be preferably used.
 この際、アルカリ成分は、通常は0.5~10重量%の水溶液として反応液中に投入され、このアルカリ成分の水溶液の添加には、オルガノアルコキシシランが充分高密度な状態で縮合反応するように条件を設定することが望ましい。例えば反応液のpH値を通常は8~11、好ましくは8.5~10.5の範囲に設定することにより穏和な条件で反応を進行させることができる。 At this time, the alkali component is usually introduced into the reaction solution as an aqueous solution of 0.5 to 10% by weight, and the addition of the aqueous solution of the alkali component causes the organoalkoxysilane to undergo a condensation reaction in a sufficiently high density state. It is desirable to set the conditions. For example, the reaction can be allowed to proceed under mild conditions by setting the pH value of the reaction solution to a range of usually 8 to 11, preferably 8.5 to 10.5.
 通常の場合、攪拌下におけるアルカリ成分の添加には、一括添加・逐次添加・滴下添加といくつかの添加方法が存在するが、いずれの方法も用いることが可能である。このときの反応温度は通常は5~100℃、好ましくは10~30℃の範囲内に設定され、通常は5分間~24時間攪拌する。すなわち、本発明におけるオルガノアルコキシシランの反応は、発熱反応であり、アルカリ成分の添加によって進行するので、通常の場合、反応液を特に加熱あるいは加温する必要はない。また、反応をゆっくり進行させた方がより緻密な被覆層が形成される。従って、本発明においては、上記のように比較的低い温度で長時間反応させることが望ましいが、得ようとする被覆粒子の特性を考慮して上記のように加熱あるいは加温することも可能であり、また、反応時間を短時間に設定することも可能である。 Usually, there are several addition methods such as batch addition, sequential addition, and dropwise addition for adding the alkali component under stirring, but any of these methods can be used. The reaction temperature at this time is usually set in the range of 5 to 100 ° C., preferably 10 to 30 ° C., and is usually stirred for 5 minutes to 24 hours. That is, the reaction of the organoalkoxysilane in the present invention is an exothermic reaction, and proceeds by the addition of an alkali component. Therefore, in the normal case, it is not necessary to heat or warm the reaction solution. Moreover, a denser coating layer is formed when the reaction is allowed to proceed slowly. Accordingly, in the present invention, it is desirable to react for a long time at a relatively low temperature as described above, but it is also possible to heat or heat as described above in consideration of the characteristics of the coated particles to be obtained. It is also possible to set the reaction time to a short time.
 このような条件で反応を行うことにより、本発明では、球状芯材樹脂粒子が分散している分散液中で、被覆層の原料であるオルガノシロキサンモノマーが加水分解により充分にシラノール化した状態で分散しており、反応系に添加されたアルカリ成分によってのみ、縮合反応が引き起こされ、超微細粒状物として分散液中へ析出し、球状芯材樹脂粒子の表面に付着し、均一で緻密な被覆層を形成する。従って、本発明では、球状芯材樹脂粒子が分散されている分散液に、アルカリ成分より先にオルガノアルコキシシランが配合されていることが必要である。そして、アルカリ成分より先に添加されたオルガノアルコキシシランを水性媒体中で加水分解を充分に進行させ、シラノール化させた後、この分散液にアルカリ成分を添加することで初めて、縮合反応を引き起こさせ、オルガノシロキサン樹脂を形成させて被覆層とする必要がある。 By carrying out the reaction under such conditions, in the present invention, in the dispersion in which the spherical core resin particles are dispersed, the organosiloxane monomer that is the raw material of the coating layer is sufficiently silanolated by hydrolysis. Dispersed, the condensation reaction is caused only by the alkali component added to the reaction system, precipitates in the dispersion as ultrafine particles, adheres to the surface of the spherical core resin particles, and has a uniform and dense coating Form a layer. Therefore, in the present invention, it is necessary that organoalkoxysilane is blended in the dispersion in which the spherical core resin particles are dispersed before the alkali component. The organoalkoxysilane added prior to the alkali component is sufficiently hydrolyzed in an aqueous medium to silanol, and then the condensation reaction is caused only by adding the alkali component to this dispersion. It is necessary to form an organosiloxane resin to form a coating layer.
 このようにして形成されるオルガノシロキサン樹脂からなる被覆層の平均厚さは、通常は1~1000nmの範囲内にあり、しかもその表面は、球状芯材樹脂粒子の表面と同等の平滑性を有しており、かつその均一性が高い。 The average thickness of the coating layer made of the organosiloxane resin thus formed is usually in the range of 1 to 1000 nm, and the surface thereof has the same smoothness as the surface of the spherical core resin particles. And its uniformity is high.
 このように本発明の被覆粒子が均一で平滑な被覆層を有していることは、本発明の粒子についての反射特性を測定することにより、確認することができる。 Thus, it can be confirmed that the coated particles of the present invention have a uniform and smooth coating layer by measuring the reflection characteristics of the particles of the present invention.
 この本発明の被覆粒子の光学的な特性の測定は、上記のようにして基板であるバイオスキン上に得られた粒子を適量採り、これをスパチュラなどを用いて粒子を均一に配置する。 In the measurement of the optical characteristics of the coated particles of the present invention, an appropriate amount of particles obtained on the bioskin as a substrate as described above is taken, and the particles are uniformly arranged using a spatula or the like.
 このように調整されたサンプルのバイオスキンの表面に対して直角な垂直線を0度として、図3に示すように、左45°(-45°)から光を入射させて、各角度における光の反射率を測定する。 The vertical line perpendicular to the surface of the bioskin of the sample adjusted in this way is set to 0 degree, and light is incident from the left 45 ° (−45 °) as shown in FIG. Measure the reflectance.
 反射光がもっとも強く観測される角度-35°付近における最大反射光強度を1.00として、各角度における相対反射光強度を測定すると、図3に例示するような反射光強度の分布曲線を得ることができ、この反射光強度の分布が真円に近いほどより均一に光を拡散したことになる。 When the relative reflected light intensity at each angle is measured with the maximum reflected light intensity near -35 ° where the reflected light is observed most strongly at 1.00, a distribution curve of the reflected light intensity as illustrated in FIG. 3 is obtained. In other words, the closer the distribution of reflected light intensity is to a perfect circle, the more uniformly the light is diffused.
 図3に示すように、通常の樹脂粒子では、入射光の入射角度である-45°に隣接する-35°における反射光の反射光強度がもっとも高くなり、入射角度である-45°とは反対側の+45°から上記-35°にかけて反射光強度が落ち込む傾向が見られる。特に角度+20°から-20°にかけての反射光強度の落ち込みが大きくなる傾向があり、この部分の反射光強度を引き上げることにより、全体として均一な光が反射する粒子とすることができる。 As shown in FIG. 3, with ordinary resin particles, the reflected light intensity of reflected light at −35 ° adjacent to −45 °, which is the incident angle of incident light, is highest, and the incident angle is −45 °. There is a tendency for the reflected light intensity to fall from + 45 ° on the opposite side to −35 °. In particular, the drop in reflected light intensity tends to increase from an angle of + 20 ° to −20 °. By increasing the reflected light intensity at this portion, particles that reflect uniform light as a whole can be obtained.
 本発明の被覆粒子の製造方法では、球状芯材樹脂粒子とオルガノアルコキシシランとを水性媒体中に共存させて、オルガノアルコキシシランを充分に加水分解させてシラノール化した後に、反応液中にアルカリ成分を添加して、シラノール化したオルガノアルコキシシランを縮合反応させポリシロキサン化することにより、均質性の高い緻密な被覆層を球状芯材樹脂粒子の表面に形成しており、表面に上記のようなオルガノアルコキシシランが重縮合した均質性の高い緻密な被覆層が形成された本発明の被覆粒子は、この被覆層の作用によって、-45°からの入射光に対する-20°~+45°にかけての出射光の落ち込みを低減することができる。特に角度0°における反射光強度の落ち込みを低減して、角度-35°における反射光強度に近づけることができる。このような反射光強度は、球状芯材樹脂粒子の直径及び樹脂の素材によってその落ち込み状態は異なるが、母材となる球状芯材樹脂粒子とオルガノシロキサン樹脂を被覆した本発明粒子における拡散率の差は、概ね同等の傾向を示す。 In the method for producing coated particles of the present invention, the spherical core resin particles and the organoalkoxysilane are allowed to coexist in an aqueous medium, the organoalkoxysilane is sufficiently hydrolyzed and silanolized, and then the alkali component is added to the reaction solution. Is added to form a polysiloxane by condensation reaction of silanolated organoalkoxysilane to form a highly uniform dense coating layer on the surface of the spherical core resin particles. The coated particles of the present invention in which a dense coating layer with high homogeneity formed by polycondensation of organoalkoxysilane is formed from −20 ° to + 45 ° with respect to incident light from −45 ° by the action of this coating layer. It is possible to reduce the fall of the incident light. In particular, the drop in reflected light intensity at an angle of 0 ° can be reduced, and the reflected light intensity at an angle of −35 ° can be approached. The reflected light intensity varies depending on the diameter of the spherical core resin particles and the material of the resin, but the diffusivity of the present invention coated with the spherical core resin particles as the base material and the organosiloxane resin is different. The difference shows almost the same tendency.
 即ち、下記式に従って被覆粒子に-45°の方向から入射し、角度+20°の方向に反射する光の強さ、角度+70°の方向に反射する光の強さ、及び、角度+5°の方向に反射する光の強さを用いて下記式[I]で表わされる拡散率(B)と、該被覆粒子の形成に用いたのと同等の平均粒子径を有する球状芯材樹脂粒子の拡散率(A)とを測定すると、この拡散率の差(拡散率(A)-拡散率(B))が、3~15%の範囲内、好ましくは5~15%の範囲内、特に好ましくは8~13%の範囲内にある。 That is, the intensity of light incident on the coated particles from the direction of −45 ° and reflected in the direction of angle + 20 °, the intensity of light reflected in the direction of angle + 70 °, and the direction of angle + 5 ° according to the following formula The diffusivity (B) represented by the following formula [I] using the intensity of the light reflected on the surface, and the diffusivity of the spherical core resin particles having an average particle diameter equivalent to that used for forming the coated particles When (A) is measured, this diffusivity difference (diffusivity (A) −diffusivity (B)) is within the range of 3 to 15%, preferably within the range of 5 to 15%, particularly preferably 8 Within 13% range.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記式[I]で表わされる拡散率が100になれば、図3で表わされる反射強度を示すグラフが円形になり、入射光が均一に拡散したことを意味する。この拡散率が100を超えることは、図3で表わされる反射強度を示すグラフが横長の楕円形になることを意味し、100を下回る場合には、縦長の楕円形になることを意味する。 When the diffusivity represented by the above formula [I] is 100, the graph showing the reflection intensity shown in FIG. 3 becomes circular, which means that the incident light is uniformly diffused. When this diffusivity exceeds 100, it means that the graph showing the reflection intensity shown in FIG. 3 becomes a horizontally long ellipse, and when it is below 100, it means that it becomes a vertically long ellipse.
 本発明の方法により製造された被覆粒子は、その粒子径により多少の差異は生ずるものの、芯材として使用されている球状芯材樹脂粒子と比較すると、反射光強度の落ち込みが生じやすい-20°~+45°における反射光強度の落ち込みを引き上げることができ、被覆粒子全体としてみれば、より均一性の高い反射光強度を有する被覆粒子とすることができる。 Although the coated particles produced by the method of the present invention have some differences depending on their particle diameters, the reflected light intensity tends to drop compared to the spherical core resin particles used as the core material at −20 °. The drop in the reflected light intensity at ˜ + 45 ° can be raised, and the coated particles having a more uniform reflected light intensity can be obtained as the coated particles as a whole.
 一般に、上記のようにして反射光強度を測定すると、角度0°(即ち、入射角度が-45°であるから、反射基板に対して垂直な方向)における拡散光強度の落ち込みは大きくなる傾向があるが、本発明の被覆粒子によれば、この角度0°における反射光の落ち込みを低減することができる。 In general, when the reflected light intensity is measured as described above, the drop in the diffused light intensity tends to increase at an angle of 0 ° (that is, the direction perpendicular to the reflective substrate because the incident angle is −45 °). However, according to the coated particles of the present invention, it is possible to reduce the drop of reflected light at this angle of 0 °.
 即ち、図3に示すように、-45°の位置から被覆粒子に入射した光は、-35°付近で最も高い透過率を示すので、この-35°における反射光強度の相対強度を1.00とすると、-35°~+45°の間でその反射光強度の相対強度が低くなり、特に0°付近でその落ち込みが相当大きくなる。このような傾向は、粒子径に関わりなく一般に見られる現象である。そして、この0°における反射光強度の落ち込みにつれて、-20°~+20°近傍における落ち込み幅も大きくなる。従って、角度0°における反射光強度を高くすれば、-20°~+20°近傍における反射光強度の落ち込み幅を低減して、図3に示すような各角度における反射光の相対強度曲線をより円形に近くすることが可能になる。 That is, as shown in FIG. 3, the light incident on the coated particles from the position of −45 ° shows the highest transmittance around −35 °, so the relative intensity of the reflected light intensity at −35 ° is 1. Assuming 00, the relative intensity of the reflected light intensity is low between −35 ° and + 45 °, and the drop is particularly large near 0 °. Such a tendency is a phenomenon generally observed regardless of the particle diameter. As the reflected light intensity drops at 0 °, the drop width in the vicinity of −20 ° to + 20 ° also increases. Therefore, if the reflected light intensity at an angle of 0 ° is increased, the drop width of the reflected light intensity in the vicinity of −20 ° to + 20 ° is reduced, and the relative intensity curve of the reflected light at each angle as shown in FIG. It becomes possible to make it close to a circle.
 本発明では、オルガノアルコキシシランと球状芯材樹脂粒子とを水性媒体中に予め投入して、オルガノアルコキシシランの加水分解を充分に進めた後、アルカリ成分を添加することで、縮合反応を引き起こさせ、超微細粒状物としてオルガノシロキサン樹脂を析出させることで、球状芯材樹脂粒子の表面に緻密で均質性の高いオルガノシロキサン樹脂層を形成することができる。このようにして表面に緻密で均質性の高いオルガノシロキサン樹脂層が形成された本発明の被覆粒子は、-45°からの入射光に対して0°の方向への反射光強度を高くすることができ、結果として、-20°~+20°の間の反射光強度の落ち込みを低減することが可能になる。この傾向は、本発明で使用する球状芯材樹脂粒子の粒子径および樹脂の素材によって多少のぶれが生ずるが、本発明の被覆粒子の-45°からの入射光に対する0°における反射光の相対強度から、この被覆粒子の芯材として使用された球状芯材樹脂粒子の-45°からの入射光に対する0℃における反射光の相対強度の差が、通常は3%以上になることが多い。 In the present invention, the organoalkoxysilane and the spherical core resin particles are put in an aqueous medium in advance, and after the hydrolysis of the organoalkoxysilane is sufficiently advanced, an alkali component is added to cause a condensation reaction. By depositing the organosiloxane resin as ultrafine particles, a dense and highly homogeneous organosiloxane resin layer can be formed on the surface of the spherical core resin particles. The coated particles of the present invention having a dense and highly homogenous organosiloxane resin layer formed on the surface in this way increase the reflected light intensity in the direction of 0 ° with respect to incident light from −45 °. As a result, it is possible to reduce a drop in reflected light intensity between −20 ° and + 20 °. This tendency is somewhat blurred depending on the particle diameter of the spherical core resin particles used in the present invention and the material of the resin, but the relative light reflected at 0 ° with respect to the incident light from −45 ° of the coated particles of the present invention. From the viewpoint of strength, the difference in relative intensity of reflected light at 0 ° C. with respect to incident light from −45 ° of the spherical core resin particles used as the core material of the coated particles is usually 3% or more in many cases.
 従って、図3に示す反射光強度を表すグラフにおいて、-20°~+20°にかけての反射光強度の落ち込みが少なくなり、このグラフがより円形に近くなる。 Therefore, in the graph showing the reflected light intensity shown in FIG. 3, the drop in the reflected light intensity from −20 ° to + 20 ° is reduced, and this graph becomes more circular.
 このことは、本発明の被覆粒子が、より均一な全方向反射を可能にすることができる粒子であることを意味するものであり、例えば、本発明の被覆粒子を光学材料とした場合に、全方向に均一に光を拡散させることができる。また、本発明の被覆粒子を化粧料原料として使用した場合、より表現力の高い粉体として使用することができる。しかも、本発明の被覆粒子の特性は、長期間他の成分と接触したとしても変動すること、例えば、本発明の方法で得られた被覆粒子を化粧料として使用する場合、他の粒状成分と混合された状態で長期間接触を続けるという使用態様が予想されるが、このような他の粒状成分などとの長期間の接触によっても、本発明の方法で製造された被覆粒子は、経時的に劣化することがほとんどない。 This means that the coated particle of the present invention is a particle that can enable more uniform omnidirectional reflection. For example, when the coated particle of the present invention is an optical material, Light can be uniformly diffused in all directions. Moreover, when the coated particles of the present invention are used as a cosmetic raw material, they can be used as a powder with higher expressive power. In addition, the properties of the coated particles of the present invention vary even when they are in contact with other components for a long period of time. For example, when the coated particles obtained by the method of the present invention are used as cosmetics, Although it is expected to be used for a long period of time in a mixed state, the coated particles produced by the method of the present invention can be obtained over time even by such long-term contact with other granular components. There is almost no deterioration.
 本発明の被覆粒子では、上述のようにオルガノアルコキシシランがアルカリ水溶液を添加して初めて縮合反応後に進行することにより、均一で緻密な被覆層が形成され、上記拡散率が100に近い値を示す。 In the coated particles of the present invention, as described above, the organoalkoxysilane proceeds after the condensation reaction only after the addition of the alkaline aqueous solution, whereby a uniform and dense coating layer is formed, and the diffusivity is close to 100. .
 このように本発明の被覆粒子が、非常に良好な光拡散性を示すようになるのは、球状芯材樹脂粒子が分散している反応水溶液にオルガノアルコキシシランを添加して、加水分解によるシラノール化を充分に進め、未分解の残基が実質的に含有されない状態を作り上げた後に、この反応液へアルカリ成分を添加して初めて縮合反応が引き起こされ、オルガノシロキサン樹脂が超微細粒状物として球状芯材樹脂粒子の表面に析出することにより、球状芯材樹脂粒子の表面に緻密で且つ均質なオルガノシロキサン樹脂からなる被覆層を形成することができる。こうして表面に緻密で且つ均質なオルガノシロキサン樹脂からなる被覆層が形成された球状芯材樹脂粒子である本発明の被覆粒子は、上述のようにしてオルガノアルコキシシランの反応を球状芯材樹脂粒子の表面で行われることにより、光の拡散性が良好になり、特に-45°から入光した光に対する-20°~+20°付近にかけて観察される反射する光量の落ち込みを抑制することができる。このことは、図3に示すように各角度における反射光強度を測定してみれば明らかであるが、反射光量の落ち込みが大きい角度0°における球状芯樹脂粒子光の反射率と、これに被覆層が形成された被覆粒子における光の反射率との差を測定することにより、容易に推定することができる。即ち、被覆層を形成することにより0°における光の反射率の差が通常は3%以下であれば、球状芯材樹脂粒子の直径に拘わらず、-20°~+20°付近における光の拡散性の落ち込みが充分に改善されているとみることができる。 Thus, the coated particles of the present invention show very good light diffusibility by adding organoalkoxysilane to the reaction aqueous solution in which the spherical core resin particles are dispersed, and hydrolyzing silanol. After the formation of a state substantially free of undecomposed residues, the condensation reaction is not caused until an alkali component is added to the reaction solution, and the organosiloxane resin is spherical as an ultrafine particle. By depositing on the surface of the core resin particles, it is possible to form a dense and homogeneous coating layer made of an organosiloxane resin on the surface of the spherical core resin particles. Thus, the coated particles of the present invention, which are spherical core resin particles having a coating layer made of a dense and homogeneous organosiloxane resin on the surface, can react the reaction of the organoalkoxysilane as described above with the spherical core resin particles. By being performed on the surface, the light diffusibility is improved, and in particular, it is possible to suppress a drop in the reflected light amount observed from −45 ° to around −20 ° to + 20 ° with respect to the incident light. This is apparent when the reflected light intensity at each angle is measured as shown in FIG. 3, but the reflectance of the spherical core resin particle light at an angle of 0 ° where the amount of reflected light drops is large, and the coating It can be easily estimated by measuring the difference from the reflectance of light in the coated particles on which the layer is formed. That is, if the difference in light reflectivity at 0 ° is usually 3% or less by forming a coating layer, the diffusion of light in the vicinity of −20 ° to + 20 ° regardless of the diameter of the spherical core resin particles. It can be considered that the decline in sex is sufficiently improved.
 このような本発明によって奏される効果は、アルカリ成分と球状芯材樹脂粒子とが分散している分散液に、アルコキシシランを添加して加水分解と縮合反応とを同時並行的に行い、球状芯材樹脂粒子の周囲に反応したアルコキシシランを巻き付けるように被覆する従来の方法によっては達成することはできない。即ち、このような従来の方法では、被覆層の均質性が低いので、光の拡散の均一性が低くなり、本発明の方法により得られる被覆粒子によって奏される効果は奏し得ないのである。 The effect exerted by the present invention is that the alkoxysilane is added to the dispersion in which the alkali component and the spherical core resin particles are dispersed, and the hydrolysis and condensation reaction are simultaneously performed in parallel. This cannot be achieved by a conventional method in which the alkoxysilane that has reacted is wound around the core resin particles. That is, in such a conventional method, since the uniformity of the coating layer is low, the uniformity of light diffusion is low, and the effect exhibited by the coated particles obtained by the method of the present invention cannot be achieved.
 このように本発明の被覆粒子は、広角にしかも均一に光を散乱することができることから、本発明の被覆粒子は光学部材として使用するのに非常に適しており、光散乱性の樹脂粒子としての光学分野における光散乱性素材として、例えば樹脂に配合して使用することができる。 Thus, since the coated particles of the present invention can scatter light uniformly at a wide angle, the coated particles of the present invention are very suitable for use as an optical member, and as light-scattering resin particles. As a light scattering material in the optical field, for example, it can be used by blending with a resin.
 さらに本発明の被覆粒子は、球状芯材樹脂粒子の表面に緻密で均一性の高い被覆層が形成されており、この被覆層の表面が平滑で突起状物がほとんどないことから、突起状が被覆層から脱離することがないので、上述のような光学用途に限らず、長期間他の粒状成分などと接触を繰り返しながら使用されるファンデーション、各種クリーム類、防臭パウダー、おしろいパウダー、ひげそりパウダー、ドライシャンプーなどのパウダー製品原料、口紅、アイシャドウ、マスカラ、アイライナーなどのメイクアップ化粧用原料、シャンプー、リンス、ヘアーコンンディショナー、へークリーム、ヘアースプレーなどのヘアケア化粧品原料、化粧落としなどの洗浄料原料、ロールオン方式あるいはスプレー方式などによる各種発汗防止剤原料などとしても使用することができる。 Furthermore, the coated particles of the present invention have a dense and highly uniform coating layer formed on the surface of the spherical core resin particles, and the surface of the coating layer is smooth and has almost no projections. Since it does not detach from the coating layer, it is not limited to optical applications as described above, but foundations, various creams, deodorant powders, white powders and shaving powders that are used while repeatedly contacting with other granular components for a long time. Ingredients for powder products such as dry shampoo, makeup cosmetic ingredients such as lipstick, eye shadow, mascara, eyeliner, hair care cosmetic ingredients such as shampoo, rinse, hair conditioner, hair cream, hair spray, makeup remover, etc. Raw materials for cleaning, various antiperspirant materials by roll-on method or spray method, etc. It can also be used to.
 次に本発明の被覆粒子およびその製造方法について実施例および比較例を示して具体的に説明するが、本発明はこれらによって限定されるものではない。
〔実施例1〕
 容量1リットルのガラスフラスコに、イオン交換水100gを入れ、ここに平均粒子径が10μmのポリアクリル粒子(綜研化学(株)製MX1000H)100gを加えて分散してポリアクリル粒子の水分散液を調製した。このアクリル粒子の電子顕微鏡写真を図1に示す。このポリアクリル粒子の反射光分布(ブランク)は図3に示すグラフのNo.1で示されている。
Next, the coated particles and the method for producing the same according to the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
[Example 1]
Into a glass flask with a capacity of 1 liter, 100 g of ion-exchanged water is added, and 100 g of polyacrylic particles having an average particle diameter of 10 μm (MX1000H manufactured by Soken Chemical Co., Ltd.) are added and dispersed to obtain an aqueous dispersion of polyacrylic particles. Prepared. An electron micrograph of the acrylic particles is shown in FIG. The reflected light distribution (blank) of the polyacrylic particles is indicated by No. 1 in the graph shown in FIG.
 この分散液を攪拌翼回転数200rpmの条件で攪拌した。 This dispersion was stirred under the condition of a stirring blade speed of 200 rpm.
 この分散液に、攪拌下に、オルガノアルコキシシランであるメチルトリメトキシシラン5g(アクリル粒子に対して5重量%)を投入して室温で1時間30分間攪拌した。 Into this dispersion, 5 g of methyltrimethoxysilane (5% by weight with respect to acrylic particles), which is an organoalkoxysilane, was added with stirring and stirred at room temperature for 1 hour and 30 minutes.
 その後、この分散液に4.0%アンモニア水溶液を4.0gを添加し、メチルトリメトキシシランを反応させ、さらに3時間攪拌を続けた。 Thereafter, 4.0 g of a 4.0% aqueous ammonia solution was added to the dispersion to react with methyltrimethoxysilane, and stirring was continued for another 3 hours.
 こうして得られた反応液を加圧濾過器を用いて水分30重量%のケーキ状物を得た。 A cake-like product having a water content of 30% by weight was obtained from the reaction solution thus obtained using a pressure filter.
 このケーキ状物を熱風循環乾燥機中で加熱減量が1%以下になるまで乾燥した。 This cake was dried in a hot air circulating dryer until the loss on heating was 1% or less.
 こうして得られた乾燥物をジェットミルで解砕して本発明の被覆粒子を得た。 The dried product thus obtained was crushed with a jet mill to obtain coated particles of the present invention.
 得られた被覆粒子の電子顕微鏡写真を図2に示す。図2に示すように、形成された被覆層は球状芯材樹脂粒子の曲面に沿って密に形成されており、突起あるいは凹部などがなく平滑な表面状態を示した。また、反応溶液中にメチルトリメトキシシランの単独重合体はほとんど生成していなかった。 An electron micrograph of the obtained coated particles is shown in FIG. As shown in FIG. 2, the formed coating layer was densely formed along the curved surface of the spherical core resin particles, and showed a smooth surface state with no protrusions or recesses. In addition, almost no homopolymer of methyltrimethoxysilane was produced in the reaction solution.
 上記のようにして得られた被覆粒子の平均粒子径は10μmであり、球状芯材樹脂粒子の表面に形成された被覆層の平均厚さは80nmであり、被覆層の平均厚さは、球状芯材樹脂粒子の直径の1.6%に相当する。 The average particle diameter of the coated particles obtained as described above is 10 μm, the average thickness of the coating layer formed on the surface of the spherical core resin particles is 80 nm, and the average thickness of the coating layer is spherical. This corresponds to 1.6% of the diameter of the core resin particles.
 上記のようにして製造した被覆粒子をバイオスキン上に採り、スパチュラを用いてバイオスキン上に均一に敷設した。 The coated particles produced as described above were taken on the bioskin and laid uniformly on the bioskin using a spatula.
 こうして形成した試料に角度が-45°の位置(バイオスキン面に直角な線を0℃として、一方の側に45°傾いた位置)から光を入射して、この光の反射光を変角光度計を用いて測定して、測定した反射光光度の-35°における反射光強度を1とした場合の各角度における反射光の相対強度を求めて、これを図3に示すグラフに表し、この実施例1における反射光分布は図3に示すグラフのNo.1で示されている。 Light is incident on the sample thus formed from a position at an angle of −45 ° (a position perpendicular to the bioskin surface is 0 ° C. and a position inclined at 45 ° to one side), and the reflected light of this light is changed in angle. Measured using a photometer, the relative intensity of the reflected light at each angle when the reflected light intensity at -35 ° of the measured reflected light intensity is set to 1, and this is represented in the graph shown in FIG. The reflected light distribution in Example 1 is indicated by No. 1 in the graph shown in FIG.
 また、上記の測定結果に基づいて次式〔I〕に従って拡散率を求めた。 Also, the diffusivity was determined according to the following formula [I] based on the above measurement results.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 この拡散率が100に近いほど反射光分布は円に近くなり、拡散率が100を超えると、反射光分布は横長の楕円になり、また100を下回ると縦長の楕円となることを意味する。 When the diffusivity is closer to 100, the reflected light distribution becomes closer to a circle, and when the diffusivity exceeds 100, the reflected light distribution becomes a horizontally long ellipse.
 より均一な反射光分布を得るには、この拡散率ができるだけ100に近づくようにして、反射光分布を円に近づけるのが望ましい。 In order to obtain a more uniform reflected light distribution, it is desirable to make the reflected light distribution close to a circle by making the diffusivity as close to 100 as possible.
 結果を表2に示す。
〔実施例2~4〕
 実施例1において、平均粒子径10μmのポリアクリル粒子(綜研化学(株)製MX1000H)を下記表1に記載の芯材にかえると共に添加したアルカリ成分を表1のように変えた以外は同様にして、本発明の被覆粒子を得た。なお、表1には実施例1で、用いたポリアクリル粒子およびアルカリ成分も併せて記載してある。
The results are shown in Table 2.
[Examples 2 to 4]
In Example 1, polyacryl particles having an average particle diameter of 10 μm (MX1000H manufactured by Soken Chemical Co., Ltd.) were changed to the core materials shown in Table 1 below, and the added alkaline components were changed as shown in Table 1 in the same manner. Thus, the coated particles of the present invention were obtained. Table 1 also shows the polyacryl particles and alkali components used in Example 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 こうして得られた被覆粒子について、実施例1と同様に光学的特性を調べた。結果を表2および表3に示す。
〔比較例1〕
 容量1リットルのガラスフラスコに、イオン交換水100gを入れ、ここに実施例1で使用した平均粒子径が10μmのポリアクリル粒子(綜研化学(株)製MX1000H)100gを加えて分散してポリアクリル粒子の水分散液を調製した。
The coated particles thus obtained were examined for optical characteristics in the same manner as in Example 1. The results are shown in Table 2 and Table 3.
[Comparative Example 1]
Into a glass flask with a capacity of 1 liter, 100 g of ion-exchanged water was added, and 100 g of polyacrylic particles (MX1000H, manufactured by Soken Chemical Co., Ltd.) having an average particle size of 10 μm used in Example 1 were added and dispersed therein. An aqueous dispersion of particles was prepared.
 この分散液を攪拌翼回転数200rpmの条件で攪拌した。 This dispersion was stirred under the condition of a stirring blade speed of 200 rpm.
 この分散液に、攪拌下に、4.0%アンモニア水を4.0gを加えて充分攪拌した。 To this dispersion, 4.0 g of 4.0% ammonia water was added and stirred well under stirring.
 この分散液を攪拌翼回転数200rpmの速度で攪拌しながら、オルガノアルコキシシランであるメチルトリメトキシシラン5g(アクリル粒子に対して5重量%)を添加して室温で4.5時間攪拌を続けた。 While stirring this dispersion at a stirring blade speed of 200 rpm, 5 g of methyltrimethoxysilane (5% by weight based on acrylic particles) as organoalkoxysilane was added and stirring was continued for 4.5 hours at room temperature. .
 こうして得られた反応液を加圧濾過器を用いて水分30重量%のケーキ状物を得た。 A cake-like product having a water content of 30% by weight was obtained from the reaction solution thus obtained using a pressure filter.
 このケーキ状物を熱風循環乾燥機中で加熱減量が1%以下になるまで乾燥した。 This cake was dried in a hot air circulating dryer until the loss on heating was 1% or less.
 こうして得られた乾燥物をジェットミルで解砕しての被覆粒子を得た。 The dried product thus obtained was crushed with a jet mill to obtain coated particles.
 得られた被覆粒子の電子顕微鏡写真を図4に示す。図4に示すように、形成された被覆層は球状芯材樹脂粒子の表面には突起状物を有する被膜層が形成されており、均一ではないので、被覆層の平均厚さを正確に求めることはできなかった。また、反応液中にメチルトリメトキシシランの単独重合体の生成が確認された。 FIG. 4 shows an electron micrograph of the obtained coated particles. As shown in FIG. 4, since the coating layer formed has a coating layer having protrusions on the surface of the spherical core resin particles and is not uniform, the average thickness of the coating layer is accurately obtained. I couldn't. Moreover, the production | generation of the homopolymer of methyltrimethoxysilane was confirmed in the reaction liquid.
 こうして得られた被覆粒子について、実施例1と同様に光学的特性を調べた。結果を図3のNo.3で示すとともに、表2にその結果を記載した。 The optical characteristics of the coated particles thus obtained were examined in the same manner as in Example 1. The results are shown as No. 3 in FIG. 3 and the results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 なお、各粒子の各角度における反射率相対値を以下の表3に示す。 The relative reflectance values at each angle of each particle are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 上記の表2に示す結果および図3から、実施例1で製造したNo.1の被覆粒子が入射光を全方向に均一に拡散させることができるものであることが判る。しかも、メチルトリメトキシシランを予め水性分散液に分散させ、加水分解によるシラノール化を行った後、アルカリ成分であるアンモニア水溶液を添加することにより、加水分解したシラノールの縮合反応が引き起こされ、高架橋密度なシロキサン樹脂の超微細粒状物が球状芯材樹脂粒子の表面を被覆し、被覆粒子の表面に密な被覆層が形成されて、入射光が、被覆粒子全体に均一に拡散されることが判る。これは、被覆粒子の表面状態の相違によるものであると考えられ、本発明の方法で表面の被覆層を形成することにより、密でかつ均一な被覆層が形成される。 From the results shown in Table 2 above and FIG. 3, it can be seen that the coated particles of No. 1 manufactured in Example 1 can diffuse incident light uniformly in all directions. Moreover, after methyltrimethoxysilane is dispersed in an aqueous dispersion in advance and silanolated by hydrolysis, an aqueous ammonia solution, which is an alkali component, is added to cause a condensation reaction of the hydrolyzed silanol, resulting in a high crosslinking density. It can be seen that ultrafine particles of siloxane resin coat the surface of the spherical core resin particles, and a dense coating layer is formed on the surface of the coated particles, so that incident light is uniformly diffused throughout the coated particles. . This is considered to be due to the difference in the surface state of the coated particles. By forming the surface coating layer by the method of the present invention, a dense and uniform coating layer is formed.
 特に、角度-20°~+20°にかけて、本発明の被覆粒子の反射率相対値は、1.00に近い値を示し、この相対光強度を示すグラフが従来の被覆粒子を示すNo.4よりも円形に近い形状を有していることがわかる。特に角度0°におけるN0.1の反射率の相対値は、同等の球状芯材樹脂粒子と比較すると0.06(6%)の差があり、角度0°における球状樹脂芯材粒子と、これに特定の方法で被覆層を形成した本発明の被覆粒子との間で大変大きな差が生じていることがわかる。このように両者の差が大きいことは、本発明の被覆粒子によって描かれる図3に示される散乱光の強度が、全体として均一であることを表している。 In particular, from the angle −20 ° to + 20 °, the reflectance relative value of the coated particles of the present invention shows a value close to 1.00, and the graph showing this relative light intensity is No. 4 indicating the conventional coated particles. It can be seen that also has a shape close to a circle. In particular, the relative value of the reflectance of N0.1 at an angle of 0 ° is 0.06 (6%) different from that of an equivalent spherical core resin particle. It can be seen that there is a very large difference between the coated particles of the present invention in which the coating layer is formed by a specific method. The large difference between the two indicates that the intensity of the scattered light shown in FIG. 3 drawn by the coated particles of the present invention is uniform as a whole.
 本発明の被覆粒子は、球状芯材樹脂粒子の存在下で、オルガノアルコキシシランを水性媒体中で加水分解を進行させシラノール化させた後、アルカリ成分を添加して、シラノール基の縮合反応を引き起こさせることで、生成するオルガノシロキサン樹脂をより微細な粒状物とすることができ、図2に示すように、オルガノシロキサン樹脂からなる被覆層が緻密で且つ均一に形成される。特に、微細粒状を形成することでオルガノシロキサン樹脂として分散液中で安定化せず、粒子表面への付着が細密充填されやすくなり、表面に突起を形成しにくく、使用中にこうした突起状のオルガノシロキサン樹脂の付着物が脱落することもない。従って、本発明の被覆粒子においては、経時的に安定した特性を有する。 The coated particles of the present invention cause silanol group condensation reaction by adding an alkali component after hydrolyzing organoalkoxysilane in an aqueous medium to silanol in the presence of spherical core resin particles. As a result, the produced organosiloxane resin can be made into finer particles, and as shown in FIG. 2, the coating layer made of the organosiloxane resin is densely and uniformly formed. In particular, the formation of fine particles does not stabilize the dispersion as an organosiloxane resin in the dispersion, and the adhesion to the particle surface tends to be closely packed, making it difficult to form protrusions on the surface. The siloxane resin deposit does not fall off. Therefore, the coated particles of the present invention have stable characteristics over time.
 従って、本発明の被覆粒子は、その安定した光学的特性を利用して光学用途に好適に使用することができるとともに、経時的に安定していることから、他の成分と接触しながら長期間使用される化粧品用の粉体材料としても有用に使用することができる。 Therefore, the coated particles of the present invention can be suitably used for optical applications by utilizing their stable optical characteristics and are stable over time, so that they can be used for a long time while being in contact with other components. It can be usefully used as a powder material for cosmetics to be used.
1・・・角度0度
2・・・角度85度
3・・・角度-85度
4・・・No.1:本願発明の被覆粒子の光学的特性を示すグラフ
5・・・No.3:従来技術によって製造された被覆粒子の光学液特性を示すグラフ
6・・・No.4:被覆層を形成する前の球状芯材樹脂粒子の光学的特性を示すグラフ
DESCRIPTION OF SYMBOLS 1 ... Angle 0 degree 2 ... Angle 85 degree 3 ... Angle-85 degree 4 ... No.1: Graph 5 which shows the optical characteristic of the coated particle | grains of this invention ... No.3: Graph 6 showing optical liquid characteristics of coated particles produced by the prior art No. 4: Graph showing optical characteristics of spherical core resin particles before forming a coating layer

Claims (11)

  1.  平均粒子径が0.1~100μmの範囲内にある球状芯材樹脂粒子の表面を、オルガノシロキサン樹脂で被覆した被覆粒子であって、
     該被覆粒子の表面に形成されたオルガノシロキサン樹脂からなる被覆層が、球状芯材樹脂粒子の表面に密に形成されており、かつ該被覆粒子に-45°の方向から入射し、角度+20°の方向に反射する光の強さ、角度+70°の方向に反射する光の強さ、及び、角度+5°の方向に反射する光の強さを用いて下記式[I]で表わされる拡散率(B)と、該被覆粒子の形成に用いたのと同等の平均粒子径を有する球状芯材樹脂粒子の拡散率(A)との差(拡散率(A)-拡散率(B))が、3~15%の範囲内にあることを特徴とする被覆粒子;
    Figure JPOXMLDOC01-appb-M000001
    Coated particles obtained by coating the surfaces of spherical core resin particles having an average particle diameter in the range of 0.1 to 100 μm with an organosiloxane resin,
    A coating layer made of an organosiloxane resin formed on the surface of the coated particle is densely formed on the surface of the spherical core resin particle, and is incident on the coated particle from a direction of −45 °, and has an angle of + 20 °. The diffusion rate represented by the following formula [I] using the intensity of light reflected in the direction of angle +, the intensity of light reflected in the direction of angle + 70 °, and the intensity of light reflected in the direction of angle + 5 ° The difference between (B) and the diffusivity (A) of the spherical core resin particles having the same average particle diameter as that used for the formation of the coated particles (diffusivity (A) −diffusivity (B)) Coated particles characterized by being in the range of 3-15%;
    Figure JPOXMLDOC01-appb-M000001
  2.  上記オルガノシロキサン樹脂からなる被覆層の厚さが、1~1000nmの範囲内にあることを特徴とする請求項第1項記載の被覆粒子。 The coated particle according to claim 1, wherein the thickness of the coating layer made of the organosiloxane resin is in the range of 1 to 1000 nm.
  3.  上記球状芯材樹脂粒子の光透過率が、80%以上であることを特徴とする請求項第1項記載の被覆粒子。 The coated particles according to claim 1, wherein the spherical core resin particles have a light transmittance of 80% or more.
  4.  上記球状芯材樹脂粒子の表面に形成される被覆層が、球状芯材表面の曲面に沿って該球状芯材樹脂粒子の表面を覆うように平滑に形成されており、該被覆層の表面に凸状の突起部が形成されていないことを特徴とする請求項第1項記載の被覆粒子。 The coating layer formed on the surface of the spherical core material resin particles is smoothly formed so as to cover the surface of the spherical core material resin particles along the curved surface of the spherical core material surface. 2. The coated particle according to claim 1, wherein a convex protrusion is not formed.
  5.  球状芯材樹脂粒子が分散された水性分散液に、オルガノアルコキシシランを添加して攪拌した後、攪拌下に、該分散液にアルカリ成分を添加して、球状芯材樹脂粒子の表面でオルガノアルコキシシランを重合させて、オルガノシロキサン樹脂からなる被覆層を球状芯材樹脂粒子の表面に形成することを特徴とする被覆粒子の製造方法。 The organoalkoxysilane is added to the aqueous dispersion in which the spherical core resin particles are dispersed and stirred. Then, an alkali component is added to the dispersion under stirring, and the organoalkoxysilane is added to the surface of the spherical core resin particles. A method for producing coated particles, comprising polymerizing silane to form a coating layer made of an organosiloxane resin on the surface of spherical core resin particles.
  6.  上記分散液に添加するアルカリ成分の添加量が、球状芯材樹脂粒子100重量%に対し、0.05~1重量%の範囲にあることを特徴とする請求項第5項記載の被覆粒子の製造方法。 6. The coated particle according to claim 5, wherein the amount of the alkali component added to the dispersion is in the range of 0.05 to 1% by weight with respect to 100% by weight of the spherical core resin particles. Production method.
  7.  上記アルカリ成分を、球状芯材樹脂粒子およびオルガノアルコキシシランが分散された水性分散液を5~40℃に調整して、5分間~24時間攪拌・混合後に添加することを特徴とする請求項第5項記載の被覆粒子の製造方法。 The alkali component is added after stirring and mixing for 5 minutes to 24 hours after adjusting an aqueous dispersion in which spherical core resin particles and organoalkoxysilane are dispersed to 5 to 40 ° C. 6. A method for producing coated particles according to item 5.
  8.  上記アルカリ成分を添加した後、5~100℃の温度で、5分間~24時間攪拌を続けることを特徴とする請求項第5項記載の被覆粒子の製造方法。 6. The method for producing coated particles according to claim 5, wherein after the alkali component is added, stirring is continued at a temperature of 5 to 100 ° C. for 5 minutes to 24 hours.
  9.  上記オルガノアルコキシシランが、メチルトリメトキシシランを含むことを特徴とする請求項第5項記載の被覆粒子の製造方法。 The method for producing coated particles according to claim 5, wherein the organoalkoxysilane contains methyltrimethoxysilane.
  10.  上記オルガノアルコキシシランを、水性媒体中に分散されている球状芯材樹脂粒子100重量部に対して1~30重量部の範囲内の量で用いることを特徴とする請求項第5項記載の被覆粒子の製造方法。 6. The coating according to claim 5, wherein the organoalkoxysilane is used in an amount in the range of 1 to 30 parts by weight with respect to 100 parts by weight of the spherical core resin particles dispersed in the aqueous medium. Particle production method.
  11.  上記アルカリ成分を添加してオルガノアルコキシシランを反応させて球状芯材樹脂粒子の表面に被覆層を形成した後、被覆粒子と分散溶媒とを分離し、次いで被覆粒子を乾燥させ、さらに得られた乾燥物を解砕することを特徴とする請求項第5項記載の被覆粒子の製造方法。 After the alkali component was added and the organoalkoxysilane reacted to form a coating layer on the surface of the spherical core resin particles, the coating particles and the dispersion solvent were separated, and then the coating particles were dried to obtain further The method for producing coated particles according to claim 5, wherein the dried product is crushed.
PCT/JP2010/051508 2009-02-10 2010-02-03 Coated particles and manufacturing method thereof WO2010092890A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010550491A JPWO2010092890A1 (en) 2009-02-10 2010-02-03 Coated particles and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009028855 2009-02-10
JP2009-028855 2009-12-11

Publications (1)

Publication Number Publication Date
WO2010092890A1 true WO2010092890A1 (en) 2010-08-19

Family

ID=42561732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051508 WO2010092890A1 (en) 2009-02-10 2010-02-03 Coated particles and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JPWO2010092890A1 (en)
WO (1) WO2010092890A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151486A1 (en) 2018-02-01 2019-08-08 日産化学株式会社 Functional polysaccharide particle
WO2020054810A1 (en) 2018-09-12 2020-03-19 日産化学株式会社 Functional complex polysaccharide particle
WO2021020560A1 (en) 2019-07-31 2021-02-04 日産化学株式会社 Pigment including cellulose

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0488023A (en) * 1990-07-30 1992-03-19 Toray Ind Inc Production of spherical fine silicone particle
WO1998011865A1 (en) * 1996-09-17 1998-03-26 Pola Chemical Industries Inc. Coated powder and cosmetic prepared by blending said powder
JP2000204352A (en) * 1999-01-18 2000-07-25 Toshiba Corp Composite particles for polishing chemical machine to be used in manufacturing semiconductor device, production thereof and aqueous dispersion
JP2000212442A (en) * 1999-01-20 2000-08-02 Catalysts & Chem Ind Co Ltd Polyorganosiloxane coated elastic fine particle, its manufacture and liquid crystal display
JP2000239396A (en) * 1999-02-24 2000-09-05 Shin Etsu Chem Co Ltd Spherical powder, its production and cosmetic obtained by formulating the same
JP2009091466A (en) * 2007-10-09 2009-04-30 Nikko Rika Kk Spherical core-shell composite particulates and their production method
WO2009130745A1 (en) * 2008-04-25 2009-10-29 日興リカ株式会社 Process for producing sugar-plum-shaped particle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0488023A (en) * 1990-07-30 1992-03-19 Toray Ind Inc Production of spherical fine silicone particle
WO1998011865A1 (en) * 1996-09-17 1998-03-26 Pola Chemical Industries Inc. Coated powder and cosmetic prepared by blending said powder
JP2000204352A (en) * 1999-01-18 2000-07-25 Toshiba Corp Composite particles for polishing chemical machine to be used in manufacturing semiconductor device, production thereof and aqueous dispersion
JP2000212442A (en) * 1999-01-20 2000-08-02 Catalysts & Chem Ind Co Ltd Polyorganosiloxane coated elastic fine particle, its manufacture and liquid crystal display
JP2000239396A (en) * 1999-02-24 2000-09-05 Shin Etsu Chem Co Ltd Spherical powder, its production and cosmetic obtained by formulating the same
JP2009091466A (en) * 2007-10-09 2009-04-30 Nikko Rika Kk Spherical core-shell composite particulates and their production method
WO2009130745A1 (en) * 2008-04-25 2009-10-29 日興リカ株式会社 Process for producing sugar-plum-shaped particle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151486A1 (en) 2018-02-01 2019-08-08 日産化学株式会社 Functional polysaccharide particle
KR20200116478A (en) 2018-02-01 2020-10-12 닛산 가가쿠 가부시키가이샤 Functional polysaccharide particles
WO2020054810A1 (en) 2018-09-12 2020-03-19 日産化学株式会社 Functional complex polysaccharide particle
KR20210060506A (en) 2018-09-12 2021-05-26 닛산 가가쿠 가부시키가이샤 Functional Complex Polysaccharide Particles
WO2021020560A1 (en) 2019-07-31 2021-02-04 日産化学株式会社 Pigment including cellulose

Also Published As

Publication number Publication date
JPWO2010092890A1 (en) 2012-08-16

Similar Documents

Publication Publication Date Title
US8758854B2 (en) Process for producing sugar-plum-shaped particle
KR101204963B1 (en) Composite resin particles and use of the same
KR101365382B1 (en) Hollow silica microparticle, composition for transparent coating formation containing the same, and substrate with transparent coating
JP6217818B2 (en) MOLDING MATERIAL, COATING COMPOSITION, AND METHOD FOR PRODUCING MOLDING MATERIAL
JP5901799B2 (en) Surface treated powder for cosmetics and solid powder cosmetic containing the same
JP5000613B2 (en) Organic particle-containing composition
Janowicz et al. Fluorine-free transparent superhydrophobic nanocomposite coatings from mesoporous silica
JP2014159550A (en) Silsesquioxane copolymer microsphere, production method thereof and use thereof
JP5985773B2 (en) Surface treated powder for cosmetics and solid powder cosmetic containing the same
EP3296326A1 (en) Flat elliptical polymer particles, and use thereof
JP6116818B2 (en) POLYMER PARTICLE AND POLYMER PARTICLE-CONTAINING COMPOSITION
WO2010092890A1 (en) Coated particles and manufacturing method thereof
JP2004204131A (en) Water repellent coating agent composition
JP2010248275A (en) Polymer particle and polymer particle-containing composition using the same
JP5108417B2 (en) Base material with antireflection film
JP5860689B2 (en) Organic particles for light diffusion media
US20150030833A1 (en) Process for Preparing an Optically Clear Superhydrophobic Coating Solution
JP7258709B2 (en) Hollow particles and their uses
JP3773464B2 (en) Water repellent treatment
JP5450316B2 (en) POLYMER PARTICLE AND POLYMER PARTICLE-CONTAINING COMPOSITION USING THE SAME
US20200325283A1 (en) Metal-coated irregularly-shaped resin particles and method for producing same, aligned film of metal-coated irregularly-shaped resin particles and method for producing same, particles, and method for producing particle-aligned film
JP5269453B2 (en) Functional glaze
JP4283026B2 (en) Optical resin additive, process for producing the same, and optical resin composition
WO2006115150A1 (en) Gold-microparticle-containing pigment and article containing the same
JP4271725B1 (en) Method for producing confetti particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741167

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010550491

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10741167

Country of ref document: EP

Kind code of ref document: A1