WO2010092845A1 - Micro-flow passage structure and micropump - Google Patents

Micro-flow passage structure and micropump Download PDF

Info

Publication number
WO2010092845A1
WO2010092845A1 PCT/JP2010/050216 JP2010050216W WO2010092845A1 WO 2010092845 A1 WO2010092845 A1 WO 2010092845A1 JP 2010050216 W JP2010050216 W JP 2010050216W WO 2010092845 A1 WO2010092845 A1 WO 2010092845A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
liquid
main member
interface energy
upper lid
Prior art date
Application number
PCT/JP2010/050216
Other languages
French (fr)
Japanese (ja)
Inventor
豪 柳原
孝裕 毛利
達夫 高部
良治 立川
康博 山東
楠 東野
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Publication of WO2010092845A1 publication Critical patent/WO2010092845A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0605Metering of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0684Venting, avoiding backpressure, avoid gas bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0481Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0688Valves, specific forms thereof surface tension valves, capillary stop, capillary break

Definitions

  • the present invention relates to a microchannel structure and a micropump, in particular, a microchannel structure having a microchannel for sending a minute amount of liquid, and a micropump for feeding a minute amount of liquid with high accuracy.
  • a microchannel structure having a microchannel for sending a minute amount of liquid, and a micropump for feeding a minute amount of liquid with high accuracy.
  • microchips umps, valves, flow paths, sensors, etc. have been miniaturized and integrated on one chip by making full use of micromachine technology and ultra-fine processing technology in fields such as biotests, chemical analysis, and drug discovery (A typical example is ⁇ -TAS) (see Patent Document 1).
  • the applicant then injects a specimen such as blood into a microchip enclosing a reagent, etc., and feeds the driving liquid (usually water) into the microchannel by a micropump to move the specimen etc. through the microchannel.
  • a reaction detector capable of measuring the result by reacting during movement (see Patent Document 2).
  • microchips are diagnosed by mixing, reacting, and detecting a predetermined amount of specimen and reagent at a predetermined ratio required for the reaction, and a minute amount of liquid can be quantitatively analyzed with high accuracy.
  • a micropump that can deliver liquids.
  • a general micropump is configured by superposing an upper lid material on a main member having a fine channel formed on the surface, and by driving (vibrating) a diaphragm with a piezoelectric element, liquid is sucked from an inlet, It discharges from the outlet via a fine channel.
  • a resin substrate can be used as the main member, a silicon substrate capable of easily forming a fine flow path by a photolithography method is usually used, and a glass substrate is used as the upper lid member.
  • Patent Document 3 proposes discharging bubbles by hydrophilizing (grafting) the surface of the channel.
  • Patent Document 4 proposes preventing bubbles from staying by making the flow path ascending and making the inner surface hydrophilic.
  • Patent Document 5 proposes discharging bubbles in a hybrid configuration including a main pump and a sub pump (pressurizing mechanism, heating unit) that applies pressure to the main pump.
  • Patent Document 6 proposes that the liquid head is depressurized from the upstream side during liquid filling to suppress the retention of bubbles.
  • an object of the present invention is to provide a microchannel structure and a micropump that can prevent the generation of bubbles during liquid filling or the retention of bubbles in a microchannel with a simple configuration and can stably supply liquid. There is to do.
  • the microchannel structure according to the first aspect of the present invention includes: In a microchannel structure comprising a main member having a fine channel formed on the surface and an upper lid material covering the surface of the main member,
  • the fine channel has a portion for imparting resistance to the flow of liquid,
  • the solid-liquid interface energy of the surface of the fine channel is smaller than the solid-liquid interface energy of the surface facing the fine channel of the upper lid member, or the solid-gas interface energy of the surface of the fine channel is smaller than that of the upper lid member. Is larger than the solid-gas interface energy of the surface facing the flow path, It is characterized by.
  • Bubbles are generated and stay mainly in the part where resistance to flow occurs.
  • the liquid easily flows, and when the solid-gas interface energy is relatively large, the liquid easily flows. Therefore, even if it is a part that gives resistance to the flow of liquid provided in the fine flow path, the liquid flow is easier on the surface where the fine flow path is formed than the upper lid material, so that the generation of bubbles is suppressed, and bubbles are temporarily generated. However, it flows downstream and is discharged.
  • the micropump according to the second aspect of the present invention is A main member having a fine channel formed on the surface and an upper cover material covering the surface of the main member, and is driven by a piezoelectric element between the pair of throttle channels and the throttle channel in the fine channel.
  • the solid-liquid interface energy of the surface of the fine channel is smaller than the solid-liquid interface energy of the surface facing the fine channel of the upper lid member, or the solid-gas interface energy of the surface of the fine channel is smaller than that of the upper lid member. Is larger than the solid-gas interface energy of the surface facing the flow path, It is characterized by.
  • the throttle channel provided in the fine channel provides resistance to the flow of the liquid, but since the fine channel forming surface is more liable to flow the liquid than the upper lid material, the generation of bubbles is suppressed, Even if bubbles are generated, they flow downstream and are discharged.
  • FIG. 2 shows an initial stage of filling the driving liquid in one embodiment of the micropump according to the present invention
  • (A) is a plan view of a fine flow path
  • (B) is a cross-sectional view.
  • the stage which filled the drive liquid in one Example of the micropump which concerns on this invention is shown,
  • (A) is a top view of a microchannel,
  • (B) is sectional drawing.
  • FIG. 1 In the conventional example of the micropump, an initial stage of filling the driving liquid is shown, (A) is a plan view of the fine flow path, and (B) is a sectional view.
  • the stage which filled the drive liquid in the prior art example of a micropump is shown, (A) is a top view of a microchannel, (B) is sectional drawing. It is explanatory drawing which shows the relationship between surface energy and a contact angle.
  • the micro pump is configured by joining the upper lid member 11 and the main member 20.
  • a chamber 21 and throttle channels 22 and 23 are formed in the main member 20 by etching.
  • the throttle channel 22 has a shorter channel length than the throttle channel 23.
  • a piezoelectric element 30 as an actuator is attached to the back surface of the chamber 21, and a thin film portion constituting the chamber 21 functions as a diaphragm.
  • the thickness of the main member 20 is 200 ⁇ m
  • the thickness of the thin film diaphragm constituting the chamber 21 is 30 ⁇ m
  • the gap between the throttle channels 22 and 23 is 25 ⁇ m.
  • the chamber 21, the throttle channels 22, 23 and the channels 24, 25 shown in FIGS. 3 to 6 are collectively referred to as a fine channel.
  • this micropump has throttle channels 22 and 23 whose channel resistances change in accordance with the differential pressure at both ends of the chamber 21, respectively, and the rate of change in channel resistance of the throttle channel 22 Is repeatedly pressurized and depressurized in a first pattern that is larger than the rate of change in the channel resistance of the throttle channel 23 and shorter than the time for depressurizing the liquid in the chamber 21 by the piezoelectric element 30.
  • the liquid is fed from the throttle channel 22 toward the throttle channel 23 (forward feeding, see FIG. 1).
  • the piezoelectric element 30 in a second pattern longer than the time for depressurizing, the liquid is directed from the throttle channel 23 toward the throttle channel 22.
  • Liquid feeding reverse liquid feeding, see FIG. 2.
  • FIG. 1 shows a forward liquid feeding state (first pattern), and the voltage in the waveform shown in FIG. 1A is applied to the piezoelectric element 30 to quickly pressurize the liquid in the chamber 21. Then, a turbulent flow is generated in the throttle channel 22 to increase the channel resistance, and the liquid is discharged from the chamber 21 through the throttle channel 23. Then, the liquid in the chamber 21 is slowly decompressed, whereby the liquid is introduced into the chamber 21 through the throttle channel 22 having a small channel resistance.
  • FIG. 2 shows a liquid feeding state in the reverse direction (second pattern).
  • the liquid is discharged from the chamber 21 through the narrowed flow path 22. Then, by rapidly depressurizing the liquid in the chamber 21, a turbulent flow is generated in the throttle channel 22 and the channel resistance is increased, and the liquid is introduced into the chamber 21 through the throttle channel 23.
  • the upper lid member 11 is made of a glass substrate, and the main member 20 is made of a silicon substrate.
  • gamma] s of the glass 73mNm -1, ⁇ sL is 4.4mNm -1, ⁇ s of silicon 24mNm -1, ⁇ sL the 24MNm -1 It is. That is, the upper lid material 11 is more hydrophilic than the main member 20. In other words, the main member 20 has higher water repellency than the upper lid member 11.
  • the surface energy ratio of water is 73 mNm ⁇ 1 and the surface energy ⁇ s of silicon is 24 mNm ⁇ 1 , so the solid-liquid interface energy ⁇ sL is 24 mNm. -1 .
  • the surface energy ratio of the glass substrate is such that the surface energy ⁇ L of water is 73 mNm ⁇ 1 and the surface energy ⁇ s of glass is 73 mNm ⁇ 1. Is 4.4 mNm ⁇ 1 .
  • the upper cover material 11 has higher hydrophilicity than the main member 20.
  • the driving liquid introduced into the flow path 24 from the inlet portion 12 of the upper lid member 11 (water, a portion indicated by cross-hatching) is along the lower surface of the upper lid member 11 having a small solid-liquid interface energy ⁇ sL.
  • the progress along the main member 20 (flow path forming surface) having a large solid-liquid interface energy ⁇ sL is slow.
  • the driving liquid is introduced by sucking the air in the fine channel formed in the main member 20 from the outlet portion 13 of the upper lid member 11.
  • the wall portion 22a of the throttle channel 22 exists as a portion that imparts resistance to the flow of the driving liquid, and the driving liquid runs ahead along the back surface of the upper lid member 11 and flows on the upstream side of the wall section 22a. Since the disturbance is generated, the bubble X is generated as shown in FIG. This bubble X stays in a state where it adheres to the wall portion 22a after the driving fluid is filled in the fine channel. If the bubbles X stay in the fine flow path, then when the piezoelectric element 30 is driven and fed, the stable feeding of the driving liquid is impaired.
  • the upper lid 11 is made of polytetrafluoroethylene (generally called Teflon (registered trademark)).
  • Teflon registered trademark
  • a silicon substrate is used as the main member 20.
  • the main member 20 is formed with a chamber 21, throttle channels 22, 23 and channels 24, 25 as fine channels.
  • the upper lid member 11 is formed with an inlet portion 12 for introducing the driving liquid and an outlet portion 13 for discharging the driving liquid.
  • the solid-gas interface energy ⁇ s of the upper lid member 11 is 18.5 mNm ⁇ 1
  • the solid-liquid interface energy ⁇ sL is 43.5 mNm ⁇ 1
  • the solid-gas interface energy ⁇ s of the main member 20 is 24 mNm ⁇ 1
  • the solid-liquid interface energy ⁇ sL is 24 mNm ⁇ 1 . Therefore, the main member 20 is more easily wetted by the liquid than the upper lid member 11, and as shown in FIG. 3, the driving liquid (water, cross-hatched) introduced into the flow path 24 from the inlet portion 12 of the upper lid member 11. ) Proceeds along the flow path 24 having a small solid-liquid interface energy ⁇ sL, and the progress along the lower surface of the upper lid member 11 having a large solid-liquid interface energy ⁇ sL is slow.
  • the wall portion 22a of the throttle channel 22 exists as a portion that imparts resistance to the flow of the driving liquid.
  • the driving liquid runs ahead and wets the wall section 22a, thereby suppressing the generation of bubbles.
  • the driving liquid runs ahead and wets the wall section 22a, thereby suppressing the generation of bubbles.
  • the driving liquid is filled in the entire fine channel without bubbles remaining in the fine channel.
  • the back surface of the upper lid member 11 is flat and has a small force to prevent the movement of the bubbles. 13 is discharged. Since there is no retention of bubbles in the fine channel, the liquid feeding performance is not adversely affected when the piezoelectric element 30 is driven and fed thereafter, and the quantitative performance and reliability are excellent.
  • FIGS. 3 and 4 show a micropump as an embodiment of the present invention
  • the present invention is not limited to a micropump, and the present invention is not limited to a micropump having a microchannel having a portion for imparting resistance to a liquid flow.
  • the present invention can be widely applied to flow channel structures (for example, microchips used for biotests).
  • the solid-liquid interface energy of the surface of the fine channel is smaller than the solid-liquid interface energy of the surface facing the fine channel of the upper lid member, or the solid-gas interface energy of the surface of the fine channel is smaller than the fine flow of the upper lid member. It is only necessary to satisfy either of the solid-gas interface energy of the surface facing the road.
  • the main member is a material (for example, glass) whose solid-gas interface energy is larger than the solid-liquid interface energy. Since the wettability of the main member is good, the liquid is filled in a state where it crawls the flow path surface, and bubbles are not easily generated.
  • glass it is preferable to use polytetrafluoroethylene as the upper lid material.
  • the upper cover material itself may be made of a material having higher water repellency than the main member material itself, or the main member material itself may be made of a material that is more hydrophilic than the upper cover material itself. Good.
  • the water repellency means that the angle ⁇ (see FIG. 7) of the gas-liquid interface energy ⁇ L is 90 ° or more, and the hydrophilic property means that the angle ⁇ of the gas-liquid interface energy ⁇ L is 90 ° or less.
  • a conventionally known water repellent treatment may be applied to at least the surface of the upper cover material facing the fine flow path, or the main member
  • Conventionally known hydrophilic treatment may be applied to at least the fine channel surface.
  • microchannel structure and the micropump according to the present invention are not limited to the above-described embodiments, and can be variously modified within the scope of the gist thereof.
  • the present invention is useful for a microchannel structure and a micropump, and is particularly excellent in that it can prevent generation of bubbles or retention of bubbles in a microchannel with a simple configuration.

Abstract

Provided are a micro-flow passage structure and a micropump capable of stably feeding liquid by preventing air bubbles from occurring when the liquid is charged or air bubbles from remaining in a micro-flow passage by a simple configuration. The micropump comprises a main member (20) in the front surface of which the micro-flow passage (a chamber (21), restricted flow passages (22), (23), flow passages (24), (25)) is formed and an upper cover (11) for covering the front surface of the main member (20).  The bottom of the chamber (21) is driven by a piezoelectric element (30) to feed liquid in the forward and reverse directions.  The charge of the drive liquid into the micro-flow passage is performed by sucking the air in the micro-flow passage through an outlet (13) and introducing the air thereinto through an inlet (12).  The solid-liquid surface energy of the main member (20) is smaller than that of the upper cover (11).  The solid-air surface energy of the main member (20) is larger than that of the upper cover (11).

Description

マイクロ流路構造体及びマイクロポンプMicrochannel structure and micropump
 本発明は、マイクロ流路構造体及びマイクロポンプ、特に、微少量の液体を送るための微細流路を備えたマイクロ流路構造体、及び、微少量の液体を高精度に送るためのマイクロポンプに関する。 The present invention relates to a microchannel structure and a micropump, in particular, a microchannel structure having a microchannel for sending a minute amount of liquid, and a micropump for feeding a minute amount of liquid with high accuracy. About.
 近年、バイオ検査や化学分析、創薬などの分野において、マイクロマシン技術及び超微細加工技術を駆使することにより、ポンプ、バルブ、流路、センサなどを微細化して1チップ上に集積したマイクロチップ(代表的なものとしてμ-TAS)が開発されている(特許文献1参照)。そして、本出願人は、試薬などを封入したマイクロチップに、血液などの検体を注入し、マイクロポンプによって微細流路に駆動液(通常は水)を送り込んで検体などを微細流路中を移動させ、移動中に反応させて結果を測定することのできる反応検出装置を提案している(特許文献2参照)。このようなマイクロチップには、所定量の検体と試薬とを反応に必要な決められた比率で混合、反応させ、検出する診断が行われており、微少量の液体を高精度で定量的に送液できるマイクロポンプが必要とされている。 In recent years, microchips (pumps, valves, flow paths, sensors, etc. have been miniaturized and integrated on one chip by making full use of micromachine technology and ultra-fine processing technology in fields such as biotests, chemical analysis, and drug discovery ( A typical example is μ-TAS) (see Patent Document 1). The applicant then injects a specimen such as blood into a microchip enclosing a reagent, etc., and feeds the driving liquid (usually water) into the microchannel by a micropump to move the specimen etc. through the microchannel. And a reaction detector capable of measuring the result by reacting during movement (see Patent Document 2). Such microchips are diagnosed by mixing, reacting, and detecting a predetermined amount of specimen and reagent at a predetermined ratio required for the reaction, and a minute amount of liquid can be quantitatively analyzed with high accuracy. There is a need for a micropump that can deliver liquids.
 一般的なマイクロポンプは、表面に微細流路を形成した主部材に上蓋材を重ね合わせて構成されており、圧電素子にてダイヤフラムを駆動(振動)することにより、液体を入口から吸入し、微細流路を経由して出口から吐出している。主部材としては樹脂基板を使用することも可能であるが、通常、フォトリソグラフィ法で微細流路を容易に形成可能なシリコン基板が用いられ、上蓋材としてはガラス基板が用いられている。 A general micropump is configured by superposing an upper lid material on a main member having a fine channel formed on the surface, and by driving (vibrating) a diaphragm with a piezoelectric element, liquid is sucked from an inlet, It discharges from the outlet via a fine channel. Although a resin substrate can be used as the main member, a silicon substrate capable of easily forming a fine flow path by a photolithography method is usually used, and a glass substrate is used as the upper lid member.
 しかしながら、駆動液(水)を事前に微細流路に充填する際、これらの材料を用いたマイクロポンプでは、微細流路の全部又は一部は材料自体が疎水性のために濡れにくく、空気で充填されている微細流路に駆動液を入口から充填していくと、乱流にて発生する気泡が流路壁面に付着し滞留するという問題点を有している。気泡が微細流路に滞留すると駆動液の安定した供給が損なわれ、試薬などの定量や混合ができなくなる。 However, when filling the microfluidic channel with the driving fluid (water) in advance, in a micropump using these materials, all or part of the microfluidic channel is not easily wet because the material itself is hydrophobic, When the driving liquid is filled into the filled fine channel from the inlet, there is a problem that bubbles generated by turbulent flow adhere to the channel wall surface and stay. If the bubbles stay in the fine channel, the stable supply of the driving liquid is impaired, and the reagent and the like cannot be quantified or mixed.
 そこで、微細流路に関する先行例としては、特許文献3に、流路表面を親水化(グラフト処理)することにより気泡を排出することが提案されている。特許文献4には、流路を登り勾配とし、かつ、内面を親水処理することで気泡の滞留を防止することが提案されている。特許文献5には、主ポンプと該主ポンプに圧力を与える副ポンプ(加圧機構、加熱部)を備えたハイブリッド構成で気泡を排出することが提案されている。特許文献6には、液充填時に液先頭部を上流側よりも減圧させて気泡の滞留を抑制することが提案されている。 Therefore, as a prior example regarding the fine channel, Patent Document 3 proposes discharging bubbles by hydrophilizing (grafting) the surface of the channel. Patent Document 4 proposes preventing bubbles from staying by making the flow path ascending and making the inner surface hydrophilic. Patent Document 5 proposes discharging bubbles in a hybrid configuration including a main pump and a sub pump (pressurizing mechanism, heating unit) that applies pressure to the main pump. Patent Document 6 proposes that the liquid head is depressurized from the upstream side during liquid filling to suppress the retention of bubbles.
特開2004-28589号公報JP 2004-28589 A 特開2006-149379号公報JP 2006-149379 A 特開平5-312153号公報JP-A-5-312153 特開2002-236043号公報JP 2002-236043 A 特開2005-133704号公報JP 2005-133704 A 特開2007-38058号公報JP 2007-38058 A
 そこで、本発明の目的は、簡単な構成で液充填時の気泡の発生ないし気泡が微細流路に滞留することを防止でき、安定した送液が可能なマイクロ流路構造体及びマイクロポンプを提供することにある。 Accordingly, an object of the present invention is to provide a microchannel structure and a micropump that can prevent the generation of bubbles during liquid filling or the retention of bubbles in a microchannel with a simple configuration and can stably supply liquid. There is to do.
 以上の目的を達成するため、本発明の第1の形態であるマイクロ流路構造体は、
 表面に微細流路を形成した主部材と、該主部材の表面を覆う上蓋材とからなるマイクロ流路構造体において、
 前記微細流路には液体の流れに抵抗を付与する部分を有し、
 前記微細流路面の固液界面エネルギーが前記上蓋材の前記微細流路に対向した面の固液界面エネルギーよりも小さいこと、または、前記微細流路面の固気界面エネルギーが前記上蓋材の前記微細流路に対向した面の固気界面エネルギーよりも大きいこと、
 を特徴とする。
In order to achieve the above object, the microchannel structure according to the first aspect of the present invention includes:
In a microchannel structure comprising a main member having a fine channel formed on the surface and an upper lid material covering the surface of the main member,
The fine channel has a portion for imparting resistance to the flow of liquid,
The solid-liquid interface energy of the surface of the fine channel is smaller than the solid-liquid interface energy of the surface facing the fine channel of the upper lid member, or the solid-gas interface energy of the surface of the fine channel is smaller than that of the upper lid member. Is larger than the solid-gas interface energy of the surface facing the flow path,
It is characterized by.
 気泡は主に流れに対する抵抗が生じる部分で発生し、滞留する。固液界面エネルギーが相対的に小さいと液体は流れやすくなり、また、固気界面エネルギーが相対的に大きいと液体は流れやすくなる。それゆえ、微細流路に設けられた液体の流れに抵抗を付与する部分であっても微細流路形成面は上蓋材よりも液体が流れやすいので気泡の発生が抑えられ、仮に気泡が発生したとしても下流側に流れて排出される。 Bubbles are generated and stay mainly in the part where resistance to flow occurs. When the solid-liquid interface energy is relatively small, the liquid easily flows, and when the solid-gas interface energy is relatively large, the liquid easily flows. Therefore, even if it is a part that gives resistance to the flow of liquid provided in the fine flow path, the liquid flow is easier on the surface where the fine flow path is formed than the upper lid material, so that the generation of bubbles is suppressed, and bubbles are temporarily generated. However, it flows downstream and is discharged.
 本発明の第2の形態であるマイクロポンプは、
 表面に微細流路を形成した主部材と、該主部材の表面を覆う上蓋材とからなり、前記微細流路に一対の絞り流路と該絞り流路の間に圧電素子にて駆動されるダイヤフラムを設けたマイクロポンプにおいて、
 前記微細流路面の固液界面エネルギーが前記上蓋材の前記微細流路に対向した面の固液界面エネルギーよりも小さいこと、または、前記微細流路面の固気界面エネルギーが前記上蓋材の前記微細流路に対向した面の固気界面エネルギーよりも大きいこと、
 を特徴とする。
The micropump according to the second aspect of the present invention is
A main member having a fine channel formed on the surface and an upper cover material covering the surface of the main member, and is driven by a piezoelectric element between the pair of throttle channels and the throttle channel in the fine channel. In a micro pump with a diaphragm,
The solid-liquid interface energy of the surface of the fine channel is smaller than the solid-liquid interface energy of the surface facing the fine channel of the upper lid member, or the solid-gas interface energy of the surface of the fine channel is smaller than that of the upper lid member. Is larger than the solid-gas interface energy of the surface facing the flow path,
It is characterized by.
 本発明によれば、微細流路に設けられた絞り流路が液体の流れに抵抗を付与するが、微細流路形成面は上蓋材よりも液体が流れやすいので気泡の発生が抑えられ、仮に気泡が発生したとしても下流側に流れて排出される。 According to the present invention, the throttle channel provided in the fine channel provides resistance to the flow of the liquid, but since the fine channel forming surface is more liable to flow the liquid than the upper lid material, the generation of bubbles is suppressed, Even if bubbles are generated, they flow downstream and are discharged.
マイクロポンプの一例における順方向送液の動作原理を示す説明図である。It is explanatory drawing which shows the operation | movement principle of the forward direction liquid feeding in an example of a micropump. マイクロポンプの一例における逆方向送液の動作原理を示す説明図である。It is explanatory drawing which shows the operation | movement principle of the reverse direction liquid feeding in an example of a micropump. 本発明に係るマイクロポンプの一実施例において駆動液を充填する初期段階を示し、(A)は微細流路の平面図、(B)は断面図である。FIG. 2 shows an initial stage of filling the driving liquid in one embodiment of the micropump according to the present invention, (A) is a plan view of a fine flow path, and (B) is a cross-sectional view. 本発明に係るマイクロポンプの一実施例において駆動液を充填し終わった段階を示し、(A)は微細流路の平面図、(B)は断面図である。The stage which filled the drive liquid in one Example of the micropump which concerns on this invention is shown, (A) is a top view of a microchannel, (B) is sectional drawing. マイクロポンプの従来例において駆動液を充填する初期段階を示し、(A)は微細流路の平面図、(B)は断面図である。In the conventional example of the micropump, an initial stage of filling the driving liquid is shown, (A) is a plan view of the fine flow path, and (B) is a sectional view. マイクロポンプの従来例において駆動液を充填し終わった段階を示し、(A)は微細流路の平面図、(B)は断面図である。The stage which filled the drive liquid in the prior art example of a micropump is shown, (A) is a top view of a microchannel, (B) is sectional drawing. 表面エネルギーと接触角との関係を示す説明図である。It is explanatory drawing which shows the relationship between surface energy and a contact angle.
 以下、本発明に係るマイクロ流路構造体及びマイクロポンプの実施例について、添付図面を参照して説明する。 Hereinafter, embodiments of a microchannel structure and a micropump according to the present invention will be described with reference to the accompanying drawings.
 (マイクロポンプの基本構成と動作原理)
 まず、本発明に係るマイクロポンプの一実施例の基本構成とその動作原理について図1及び図2を参照して説明する。
(Basic configuration and operating principle of micropump)
First, a basic configuration and an operation principle of an embodiment of a micropump according to the present invention will be described with reference to FIGS.
 マイクロポンプは、上蓋材11と主部材20とを接合して構成されている。主部材20にはエッチングによってチャンバ21、絞り流路22,23が形成されている。絞り流路22は絞り流路23よりも流路長が短い。チャンバ21の裏面にはアクチュエータとしての圧電素子30が貼り付けられており、チャンバ21を構成する薄膜部分がダイヤフラムとして機能する。 The micro pump is configured by joining the upper lid member 11 and the main member 20. A chamber 21 and throttle channels 22 and 23 are formed in the main member 20 by etching. The throttle channel 22 has a shorter channel length than the throttle channel 23. A piezoelectric element 30 as an actuator is attached to the back surface of the chamber 21, and a thin film portion constituting the chamber 21 functions as a diaphragm.
 具体的な寸法の一例を示すと、主部材20の厚さは200μm、チャンバ21を構成する薄膜ダイヤフラムの厚さは30μm、絞り流路22,23の隙間は25μmである。チャンバ21、絞り流路22,23及び図3~図6に記載の流路24,25を合わせて微細流路と称する。 As an example of specific dimensions, the thickness of the main member 20 is 200 μm, the thickness of the thin film diaphragm constituting the chamber 21 is 30 μm, and the gap between the throttle channels 22 and 23 is 25 μm. The chamber 21, the throttle channels 22, 23 and the channels 24, 25 shown in FIGS. 3 to 6 are collectively referred to as a fine channel.
 このマイクロポンプは、概念的には、チャンバ21の両端部にそれぞれ流路抵抗が差圧に応じて変化する絞り流路22,23を有し、絞り流路22の流路抵抗の変化の割合は絞り流路23の流路抵抗の変化の割合よりも大きく、圧電素子30によってチャンバ21内の液体を加圧する時間が減圧する時間よりも短い第1のパターンで繰り返して加圧、減圧することによって液体を絞り流路22から絞り流路23に向かって送液する(順方向送液、図1参照)。また、圧電素子30によってチャンバ21内の液体を加圧する時間が減圧する時間よりも長い第2のパターンで繰り返して加圧、減圧することによって液体を絞り流路23から絞り流路22に向かって送液する(逆方向送液、図2参照)。 Conceptually, this micropump has throttle channels 22 and 23 whose channel resistances change in accordance with the differential pressure at both ends of the chamber 21, respectively, and the rate of change in channel resistance of the throttle channel 22 Is repeatedly pressurized and depressurized in a first pattern that is larger than the rate of change in the channel resistance of the throttle channel 23 and shorter than the time for depressurizing the liquid in the chamber 21 by the piezoelectric element 30. As a result, the liquid is fed from the throttle channel 22 toward the throttle channel 23 (forward feeding, see FIG. 1). Further, by repeatedly pressurizing and depressurizing the liquid in the chamber 21 by the piezoelectric element 30 in a second pattern longer than the time for depressurizing, the liquid is directed from the throttle channel 23 toward the throttle channel 22. Liquid feeding (reverse liquid feeding, see FIG. 2).
 具体的には、図1は順方向の送液状態(第1のパターン)を示し、(A)に示す波形の電圧を圧電素子30に印加することにより、チャンバ21内の液体を速く加圧すると、絞り流路22では乱流が発生して流路抵抗が大きくなり、液体はチャンバ21から絞り流路23を通じて排出される。そして、チャンバ21内の液体を遅く減圧することにより、流路抵抗が小さい絞り流路22を通じて液体がチャンバ21内に導入される。 Specifically, FIG. 1 shows a forward liquid feeding state (first pattern), and the voltage in the waveform shown in FIG. 1A is applied to the piezoelectric element 30 to quickly pressurize the liquid in the chamber 21. Then, a turbulent flow is generated in the throttle channel 22 to increase the channel resistance, and the liquid is discharged from the chamber 21 through the throttle channel 23. Then, the liquid in the chamber 21 is slowly decompressed, whereby the liquid is introduced into the chamber 21 through the throttle channel 22 having a small channel resistance.
 図2は逆方向の送液状態(第2のパターン)を示し、(A)に示す波形の電圧を圧電素子30に印加することにより、チャンバ21内の液体を遅く加圧すると、流路抵抗が小さい絞り流路22を通じて液体がチャンバ21から排出される。そして、チャンバ21内の液体を速く減圧することにより、絞り流路22では乱流が発生して流路抵抗が大きくなり、液体は絞り流路23を通じてチャンバ21内に導入される。 FIG. 2 shows a liquid feeding state in the reverse direction (second pattern). When the voltage in the waveform shown in FIG. The liquid is discharged from the chamber 21 through the narrowed flow path 22. Then, by rapidly depressurizing the liquid in the chamber 21, a turbulent flow is generated in the throttle channel 22 and the channel resistance is increased, and the liquid is introduced into the chamber 21 through the throttle channel 23.
 (気泡の発生とその防止対策)
 ところで、従来、上蓋材11はガラス基板で構成され、主部材20はシリコン基板で構成されていた。これらの材料の固気界面エネルギーγsと固液界面エネルギーγsLに関して説明すると、ガラスのγsは73mNm-1、γsLは4.4mNm-1であり、シリコンのγsは24mNm-1、γsLは24mNm-1である。即ち、上蓋材11のほうが主部材20よりも親水性が高い。換言すると、主部材20のほうが上蓋材11よりも撥水性が高い。
(Generation of bubbles and measures to prevent them)
By the way, conventionally, the upper lid member 11 is made of a glass substrate, and the main member 20 is made of a silicon substrate. To explain with respect to the solid-gas interfacial energy gamma] s and the solid-liquid interfacial energy GanmasL of these materials, gamma] s of the glass 73mNm -1, γsL is 4.4mNm -1, γs of silicon 24mNm -1, γsL the 24MNm -1 It is. That is, the upper lid material 11 is more hydrophilic than the main member 20. In other words, the main member 20 has higher water repellency than the upper lid member 11.
 ちなみに、表面エネルギーと接触角の関係はヤング-デュプレ式に基づいて示される。ヤング-デュプレ式は、図7(A)を参照すると以下のとおりである。
 conθ=(γs-γsL)/γL
 γs=γsL+γLconθ
 γs:固気界面エネルギー
 γsL:固液界面エネルギー
 γL:気液界面エネルギー
Incidentally, the relationship between the surface energy and the contact angle is shown based on the Young-Dupre equation. The Young-Dupre formula is as follows with reference to FIG.
conθ = (γs−γsL) / γL
γs = γsL + γLconθ
γs: solid-gas interface energy γsL: solid-liquid interface energy γL: gas-liquid interface energy
 シリコン基板での表面エネルギー比は、図7(B)を参照すると、水の表面エネルギーγLは73mNm-1であり、シリコンの表面エネルギーγsは24mNm-1であるから、固液界面エネルギーγsLは24mNm-1である。一方、ガラス基板での表面エネルギー比は、図7(C)を参照すると、水の表面エネルギーγLは73mNm-1であり、ガラスの表面エネルギーγsは73mNm-1であるから、固液界面エネルギーγsLは4.4mNm-1である。 7B, the surface energy ratio of water is 73 mNm −1 and the surface energy γs of silicon is 24 mNm −1 , so the solid-liquid interface energy γsL is 24 mNm. -1 . On the other hand, referring to FIG. 7C, the surface energy ratio of the glass substrate is such that the surface energy γL of water is 73 mNm −1 and the surface energy γs of glass is 73 mNm −1. Is 4.4 mNm −1 .
 このように、ガラス基板(上蓋材11)の固液界面エネルギーγsLはシリコン基板(主部材20)のそれよりも小さいため、換言すれば、上蓋材11は主部材20に比べて親水性が高く、図5に示すように、上蓋材11の入口部12から流路24に導入された駆動液(水、クロスハッチングで示す部分)は、固液界面エネルギーγsLの小さい上蓋材11の下面に沿って進行し、固液界面エネルギーγsLの大きい主部材20(流路形成面)に沿った進行は遅い。なお、駆動液の導入は、上蓋材11の出口部13から主部材20に形成した微細流路の空気を吸引することにより行われる。 Thus, since the solid-liquid interfacial energy γsL of the glass substrate (upper cover material 11) is smaller than that of the silicon substrate (main member 20), in other words, the upper cover material 11 has higher hydrophilicity than the main member 20. As shown in FIG. 5, the driving liquid introduced into the flow path 24 from the inlet portion 12 of the upper lid member 11 (water, a portion indicated by cross-hatching) is along the lower surface of the upper lid member 11 having a small solid-liquid interface energy γsL. The progress along the main member 20 (flow path forming surface) having a large solid-liquid interface energy γsL is slow. The driving liquid is introduced by sucking the air in the fine channel formed in the main member 20 from the outlet portion 13 of the upper lid member 11.
 そして、絞り流路22の壁部22aが駆動液の流れに抵抗を付与する部分として存在し、駆動液は上蓋材11の裏面に沿って先走りすることと、壁部22aの上流側で流れに乱れを生じるため、図6に示すように、気泡Xが発生する。この気泡Xは、微細流路に駆動液が充填された後に壁部22aに付着した状態で滞留することになる。気泡Xが微細流路に滞留すると、その後、圧電素子30を駆動して送液する際、駆動液の安定した送液が損なわれる。 The wall portion 22a of the throttle channel 22 exists as a portion that imparts resistance to the flow of the driving liquid, and the driving liquid runs ahead along the back surface of the upper lid member 11 and flows on the upstream side of the wall section 22a. Since the disturbance is generated, the bubble X is generated as shown in FIG. This bubble X stays in a state where it adheres to the wall portion 22a after the driving fluid is filled in the fine channel. If the bubbles X stay in the fine flow path, then when the piezoelectric element 30 is driven and fed, the stable feeding of the driving liquid is impaired.
 これに対して、本願発明の一実施例であるマイクロポンプは、図3及び図4に示すように、上蓋材11をポリテトラフルオロエチレン(一般にテフロン(登録商標)と称されている)で形成し、主部材20としてシリコン基板を用いている。主部材20には微細流路として、チャンバ21、絞り流路22,23及び流路24,25が形成されている。また、上蓋材11には、駆動液を導入する入口部12及び駆動液を吐出する出口部13が形成されている。チャンバ21の裏面に設けた圧電素子30を駆動することにより、図1及び図2で説明した原理によりマイクロポンプとして動作する。 On the other hand, in the micropump as an embodiment of the present invention, as shown in FIGS. 3 and 4, the upper lid 11 is made of polytetrafluoroethylene (generally called Teflon (registered trademark)). In addition, a silicon substrate is used as the main member 20. The main member 20 is formed with a chamber 21, throttle channels 22, 23 and channels 24, 25 as fine channels. Further, the upper lid member 11 is formed with an inlet portion 12 for introducing the driving liquid and an outlet portion 13 for discharging the driving liquid. By driving the piezoelectric element 30 provided on the back surface of the chamber 21, it operates as a micropump according to the principle described with reference to FIGS.
 マイクロポンプとして動作させる準備段階として、駆動液を微細流路に充填させる必要がある。その際には、出口部13から微細流路の空気を吸引し、入口部12から駆動液を微細流路に導入する。 駆 動 As a preparation stage to operate as a micropump, it is necessary to fill the microfluidic channel with the driving liquid. At that time, the air in the fine channel is sucked from the outlet 13 and the driving liquid is introduced into the fine channel from the inlet 12.
 ここで、上蓋材11の固気界面エネルギーγsは18.5mNm-1であり、固液界面エネルギーγsLは43.5mNm-1である。また、主部材20の固気界面エネルギーγsは24mNm-1であり、固液界面エネルギーγsLは24mNm-1である。それゆえ、主部材20のほうが上蓋材11よりも液体に対しては濡れやすく、図3に示すように、上蓋材11の入口部12から流路24に導入された駆動液(水、クロスハッチングで示す部分)は、固液界面エネルギーγsLの小さい流路24に沿って進行し、固液界面エネルギーγsLの大きい上蓋材11の下面に沿った進行は遅くなる。 Here, the solid-gas interface energy γs of the upper lid member 11 is 18.5 mNm −1 , and the solid-liquid interface energy γsL is 43.5 mNm −1 . The solid-gas interface energy γs of the main member 20 is 24 mNm −1 , and the solid-liquid interface energy γsL is 24 mNm −1 . Therefore, the main member 20 is more easily wetted by the liquid than the upper lid member 11, and as shown in FIG. 3, the driving liquid (water, cross-hatched) introduced into the flow path 24 from the inlet portion 12 of the upper lid member 11. ) Proceeds along the flow path 24 having a small solid-liquid interface energy γsL, and the progress along the lower surface of the upper lid member 11 having a large solid-liquid interface energy γsL is slow.
 そして、絞り流路22の壁部22aが駆動液の流れに抵抗を付与する部分として存在するが、駆動液は先走りして壁部22aを濡れ上がり、気泡の発生が抑制される。仮に壁部22aの上流側で気泡が発生したとしても、該気泡は壁部22aに付着することなく下流側へ移動し、出口部13から容易に排出される。従って、図4に示すように、微細流路に気泡が滞留することなく微細流路の全体に駆動液が充填されることになる。また、上蓋材11の裏面側で気泡が発生したとしても、上蓋材11の裏面は平坦であって気泡の移動を阻止する力は小さく、出口部13からの吸引によって該気泡は容易に出口部13から排出される。微細流路に気泡の滞留がないので、その後、圧電素子30を駆動して送液する際、送液性能に悪影響を及ぼすことがなく、定量性、信頼性に優れている。 The wall portion 22a of the throttle channel 22 exists as a portion that imparts resistance to the flow of the driving liquid. However, the driving liquid runs ahead and wets the wall section 22a, thereby suppressing the generation of bubbles. Even if bubbles are generated on the upstream side of the wall portion 22a, the bubbles move downstream without adhering to the wall portion 22a and are easily discharged from the outlet portion 13. Therefore, as shown in FIG. 4, the driving liquid is filled in the entire fine channel without bubbles remaining in the fine channel. Even if bubbles are generated on the back surface side of the upper lid member 11, the back surface of the upper lid member 11 is flat and has a small force to prevent the movement of the bubbles. 13 is discharged. Since there is no retention of bubbles in the fine channel, the liquid feeding performance is not adversely affected when the piezoelectric element 30 is driven and fed thereafter, and the quantitative performance and reliability are excellent.
 (実施例のまとめ)
 なお、図3及び図4には本発明の一実施例としてマイクロポンプを示したが、本発明はマイクロポンプ以外にも、液体の流れに抵抗を付与する部分を有する微細流路を備えたマイクロ流路構造体(例えば、バイオ検査に用いられるマイクロチップ)に広く適用することができる。
(Summary of Examples)
3 and 4 show a micropump as an embodiment of the present invention, the present invention is not limited to a micropump, and the present invention is not limited to a micropump having a microchannel having a portion for imparting resistance to a liquid flow. The present invention can be widely applied to flow channel structures (for example, microchips used for biotests).
 本発明においては、微細流路面の固液界面エネルギーが上蓋材の微細流路に対向した面の固液界面エネルギーよりも小さいこと、または、微細流路面の固気界面エネルギーが上蓋材の微細流路に対向した面の固気界面エネルギーよりも大きいこと、のいずれかを満足していればよい。 In the present invention, the solid-liquid interface energy of the surface of the fine channel is smaller than the solid-liquid interface energy of the surface facing the fine channel of the upper lid member, or the solid-gas interface energy of the surface of the fine channel is smaller than the fine flow of the upper lid member. It is only necessary to satisfy either of the solid-gas interface energy of the surface facing the road.
 主部材の固気界面エネルギーが固液界面エネルギーよりも大きい材料(例えば、ガラス)であることが好ましい。主部材の濡れ性が良好なので、液体が流路面を這う状態で充填されていき、気泡が発生しにくい。主部材としてガラスを用いる場合、上蓋材としてはポリテトラフルオロエチレンを用いることが好ましい。上蓋材の素材自体を主部材の素材自体よりも撥水性の高い素材から構成してもよく、あるいは、主部材の素材自体を上蓋材の素材自体よりも親水性の高い素材から構成してもよい。撥水性とは気液界面エネルギーγLの角度θ(図7参照)が90°以上をいい、親水性とは気液界面エネルギーγLの角度θが90°以下をいう。 It is preferable that the main member is a material (for example, glass) whose solid-gas interface energy is larger than the solid-liquid interface energy. Since the wettability of the main member is good, the liquid is filled in a state where it crawls the flow path surface, and bubbles are not easily generated. When glass is used as the main member, it is preferable to use polytetrafluoroethylene as the upper lid material. The upper cover material itself may be made of a material having higher water repellency than the main member material itself, or the main member material itself may be made of a material that is more hydrophilic than the upper cover material itself. Good. The water repellency means that the angle θ (see FIG. 7) of the gas-liquid interface energy γL is 90 ° or more, and the hydrophilic property means that the angle θ of the gas-liquid interface energy γL is 90 ° or less.
 また、素材自体の界面エネルギーの大小を問うことなく、例えば、上蓋材の少なくとも微細流路に対向した面に従来から知られている撥水処理が施されていてもよく、あるいは、主部材の少なくとも微細流路面に従来から知られている親水処理が施されていてもよい。 Further, regardless of the magnitude of the interfacial energy of the material itself, for example, a conventionally known water repellent treatment may be applied to at least the surface of the upper cover material facing the fine flow path, or the main member Conventionally known hydrophilic treatment may be applied to at least the fine channel surface.
 (他の実施例)
 なお、本発明に係るマイクロ流路構造体及びマイクロポンプは前記実施例に限定するものではなく、その要旨の範囲内で種々に変更できることは勿論である。
(Other examples)
It should be noted that the microchannel structure and the micropump according to the present invention are not limited to the above-described embodiments, and can be variously modified within the scope of the gist thereof.
 特に、マイクロポンプにあっては、必ずしも圧電素子を駆動源とするものである必要はなく、その細部の構造や形状は任意である。 Especially, in the case of a micro pump, it is not always necessary to use a piezoelectric element as a drive source, and the structure and shape of the details are arbitrary.
 以上のように、本発明は、マイクロ流路構造体及びマイクロポンプに有用であり、特に、簡単な構成で気泡の発生ないし気泡が微細流路に滞留することを防止できる点で優れている。 As described above, the present invention is useful for a microchannel structure and a micropump, and is particularly excellent in that it can prevent generation of bubbles or retention of bubbles in a microchannel with a simple configuration.
 11…上蓋材
 12…入口部
 13…出口部
 20…主部材
 21…チャンバ
 22,23…絞り流路
 22a…壁部
 24,25…流路
 30…圧電素子
DESCRIPTION OF SYMBOLS 11 ... Upper cover material 12 ... Inlet part 13 ... Outlet part 20 ... Main member 21 ... Chamber 22, 23 ... Restriction flow path 22a ... Wall part 24, 25 ... Flow path 30 ... Piezoelectric element

Claims (12)

  1.  表面に微細流路を形成した主部材と、該主部材の表面を覆う上蓋材とからなるマイクロ流路構造体において、
     前記微細流路には液体の流れに抵抗を付与する部分を有し、
     前記微細流路面の固液界面エネルギーが前記上蓋材の前記微細流路に対向した面の固液界面エネルギーよりも小さいこと、または、前記微細流路面の固気界面エネルギーが前記上蓋材の前記微細流路に対向した面の固気界面エネルギーよりも大きいこと、
     を特徴とするマイクロ流路構造体。
    In a microchannel structure comprising a main member having a fine channel formed on the surface and an upper lid material covering the surface of the main member,
    The fine channel has a portion for imparting resistance to the flow of liquid,
    The solid-liquid interface energy of the surface of the fine channel is smaller than the solid-liquid interface energy of the surface facing the fine channel of the upper lid member, or the solid-gas interface energy of the surface of the fine channel is smaller than that of the upper lid member. Is larger than the solid-gas interface energy of the surface facing the flow path,
    A microchannel structure characterized by the above.
  2.  前記主部材は固気界面エネルギーが固液界面エネルギーよりも大きい材料からなることを特徴とする請求項1に記載のマイクロ流路構造体。 The microchannel structure according to claim 1, wherein the main member is made of a material having a solid-gas interface energy larger than a solid-liquid interface energy.
  3.  前記上蓋材の素材は前記主部材の素材よりも撥水性の高い素材からなることを特徴とする請求項1又は請求項2に記載のマイクロ流路構造体。 3. The microchannel structure according to claim 1, wherein the material of the upper lid member is made of a material having higher water repellency than the material of the main member.
  4.  前記上蓋材の少なくとも前記微細流路に対向した面に撥水処理が施されていることを特徴とする請求項1又は請求項2に記載のマイクロ流路構造体。 The microchannel structure according to claim 1 or 2, wherein a water repellent treatment is applied to at least a surface of the upper lid material facing the fine channel.
  5.  前記主部材の素材は前記上蓋材の素材よりも親水性の高い素材からなることを特徴とする請求項1又は請求項2に記載のマイクロ流路構造体。 3. The microchannel structure according to claim 1, wherein the material of the main member is made of a material having higher hydrophilicity than the material of the upper lid material.
  6.  前記主部材の少なくとも前記微細流路面に親水処理が施されていることを特徴とする請求項1又は請求項2に記載のマイクロ流路構造体。 The microchannel structure according to claim 1 or 2, wherein at least the fine channel surface of the main member is subjected to a hydrophilic treatment.
  7.  表面に微細流路を形成した主部材と、該主部材の表面を覆う上蓋材とからなり、前記微細流路に一対の絞り流路と該絞り流路の間に圧電素子にて駆動されるダイヤフラムを設けたマイクロポンプにおいて、
     前記微細流路面の固液界面エネルギーが前記上蓋材の前記微細流路に対向した面の固液界面エネルギーよりも小さいこと、または、前記微細流路面の固気界面エネルギーが前記上蓋材の前記微細流路に対向した面の固気界面エネルギーよりも大きいこと、
     を特徴とするマイクロポンプ。
    A main member having a fine channel formed on the surface and an upper cover material covering the surface of the main member, and is driven by a piezoelectric element between the pair of throttle channels and the throttle channel in the fine channel. In a micro pump with a diaphragm,
    The solid-liquid interface energy of the surface of the fine channel is smaller than the solid-liquid interface energy of the surface facing the fine channel of the upper lid member, or the solid-gas interface energy of the surface of the fine channel is smaller than that of the upper lid member. Is larger than the solid-gas interface energy of the surface facing the flow path,
    A micro pump characterized by.
  8.  前記主部材は固気界面エネルギーが固液界面エネルギーよりも大きい材料からなることを特徴とする請求項7に記載のマイクロポンプ。 The micro pump according to claim 7, wherein the main member is made of a material having a solid-gas interface energy larger than a solid-liquid interface energy.
  9.  前記上蓋材の素材は前記主部材の素材よりも撥水性の高い素材からなることを特徴とする請求項7又は請求項8に記載のマイクロポンプ。 The micropump according to claim 7 or 8, wherein the material of the upper lid member is made of a material having higher water repellency than the material of the main member.
  10.  前記上蓋材の少なくとも前記微細流路に対向した面に撥水処理が施されていることを特徴とする請求項7又は請求項8に記載のマイクロポンプ。 The micropump according to claim 7 or 8, wherein a water repellent treatment is applied to at least a surface of the upper cover material facing the fine flow path.
  11.  前記主部材の素材は前記上蓋材の素材よりも親水性の高い素材からなることを特徴とする請求項7又は請求項8に記載のマイクロポンプ。 9. The micropump according to claim 7, wherein the material of the main member is made of a material having higher hydrophilicity than the material of the upper lid material.
  12.  前記主部材の少なくとも前記微細流路面に親水処理が施されていることを特徴とする請求項7又は請求項8に記載のマイクロポンプ。 The micropump according to claim 7 or 8, wherein at least the fine channel surface of the main member is subjected to a hydrophilic treatment.
PCT/JP2010/050216 2009-02-13 2010-01-12 Micro-flow passage structure and micropump WO2010092845A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009031757 2009-02-13
JP2009-031757 2009-02-13

Publications (1)

Publication Number Publication Date
WO2010092845A1 true WO2010092845A1 (en) 2010-08-19

Family

ID=42561692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050216 WO2010092845A1 (en) 2009-02-13 2010-01-12 Micro-flow passage structure and micropump

Country Status (1)

Country Link
WO (1) WO2010092845A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059061A (en) * 2009-01-30 2014-04-03 Univ Leiden Phase guide pattern for liquid operation
JP2015508705A (en) * 2012-02-09 2015-03-23 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Fast on-demand droplet generation and single-cell encapsulation driven by induced cavitation
GB2555892A (en) * 2016-07-12 2018-05-16 Emulate Inc Removing bubbles in a microfluidic device
US10071359B2 (en) 2013-03-15 2018-09-11 The Regents Of The University Of California High-speed on demand microfluidic droplet generation and manipulation
US10226768B2 (en) 2009-08-08 2019-03-12 The Regents Of The University Of California Pulsed laser triggered high speed microfluidic switch and applications in fluorescent activated cell sorting

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476279A (en) * 1990-07-18 1992-03-11 Seiko Epson Corp Manufacture of micropump
JPH06264870A (en) * 1993-03-15 1994-09-20 Toshiba Corp Micro-pump
JP2003094395A (en) * 2001-09-26 2003-04-03 Olympus Optical Co Ltd Arrayed micro fluid control device
JP2006055837A (en) * 2004-06-30 2006-03-02 Lifescan Scotland Ltd Flow modulation device
JP2006349558A (en) * 2005-06-17 2006-12-28 Toppan Printing Co Ltd Container
JP2007224844A (en) * 2006-02-24 2007-09-06 Konica Minolta Medical & Graphic Inc Micropump, liquid feeding method and liquid feeding system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476279A (en) * 1990-07-18 1992-03-11 Seiko Epson Corp Manufacture of micropump
JPH06264870A (en) * 1993-03-15 1994-09-20 Toshiba Corp Micro-pump
JP2003094395A (en) * 2001-09-26 2003-04-03 Olympus Optical Co Ltd Arrayed micro fluid control device
JP2006055837A (en) * 2004-06-30 2006-03-02 Lifescan Scotland Ltd Flow modulation device
JP2006349558A (en) * 2005-06-17 2006-12-28 Toppan Printing Co Ltd Container
JP2007224844A (en) * 2006-02-24 2007-09-06 Konica Minolta Medical & Graphic Inc Micropump, liquid feeding method and liquid feeding system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059061A (en) * 2009-01-30 2014-04-03 Univ Leiden Phase guide pattern for liquid operation
US10226768B2 (en) 2009-08-08 2019-03-12 The Regents Of The University Of California Pulsed laser triggered high speed microfluidic switch and applications in fluorescent activated cell sorting
US10232368B2 (en) 2011-02-11 2019-03-19 The Regents Of The University Of California High-speed on demand droplet generation and single cell encapsulation driven by induced cavitation
JP2015508705A (en) * 2012-02-09 2015-03-23 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Fast on-demand droplet generation and single-cell encapsulation driven by induced cavitation
US10780413B2 (en) 2013-03-15 2020-09-22 The Regents Of The University Of California High-speed on demand microfluidic droplet generation and manipulation
US10071359B2 (en) 2013-03-15 2018-09-11 The Regents Of The University Of California High-speed on demand microfluidic droplet generation and manipulation
US10335788B2 (en) 2016-07-12 2019-07-02 EMULATE, Inc. Removing bubbles in a microfluidic device
US10661275B2 (en) 2016-07-12 2020-05-26 EMULATE, Inc. Removing bubbles in a microfluidic device
GB2555892A (en) * 2016-07-12 2018-05-16 Emulate Inc Removing bubbles in a microfluidic device
US10913063B2 (en) 2016-07-12 2021-02-09 EMULATE, Inc. Removing bubbles in a microfluidic device
GB2555892B (en) * 2016-07-12 2021-03-31 Emulate Inc Removing bubbles in a microfluidic device
US10974242B2 (en) 2016-07-12 2021-04-13 EMULATE, Inc. Removing bubbles in a microfluidic device
US11065620B2 (en) 2016-07-12 2021-07-20 EMULATE, Inc. Removing bubbles in a microfluidic device
US11141727B2 (en) 2016-07-12 2021-10-12 EMULATE, Inc. Removing bubbles in a microfluidic device

Similar Documents

Publication Publication Date Title
US6851846B2 (en) Mixing method, mixing structure, micromixer and microchip having the mixing structure
JP4403000B2 (en) Microchip and micropump
JP4543986B2 (en) Micro total analysis system
JPWO2009008236A1 (en) Micro inspection chip liquid mixing method and inspection apparatus
KR100509254B1 (en) Micro-fluidic device to control flow time of micro-fluid
JP3775305B2 (en) Liquid mixing mechanism and liquid mixing method
WO2010092845A1 (en) Micro-flow passage structure and micropump
JP2007225438A (en) Microfluid chip
JP4683066B2 (en) Liquid mixing mechanism
JP2015166707A (en) microchannel device
JP2007224844A (en) Micropump, liquid feeding method and liquid feeding system
US20080112849A1 (en) Micro total analysis chip and micro total analysis system
US20130000764A1 (en) Multi-layer micro/nanofluid devices with bio-nanovalves
JP5104316B2 (en) Passive one-way valve and microfluidic device
JP2010203349A (en) Micropump unit
EP1927401A1 (en) Micro total analysis chip and micro total analysis system
JP5476514B2 (en) Method for uniformly mixing a plurality of fluids in a mixing channel
JP4415944B2 (en) Liquid mixing mechanism
JP2007322284A (en) Microchip and filling method of reagent in microchip
JP2010203779A (en) Inspecting microchip
WO2007055151A1 (en) Microreactor and microanalysis system
KR100444751B1 (en) Device of Controlling Fluid using Surface Tension
KR100471377B1 (en) Microfluidic Devices Controlled by Surface Tension
KR100826584B1 (en) Fluidic channeling actuator for the biochip analysis
US20080112851A1 (en) Micro total analysis chip and micro total analysis system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10741125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP