WO2010092781A1 - 半導体発光素子およびその製造方法 - Google Patents

半導体発光素子およびその製造方法 Download PDF

Info

Publication number
WO2010092781A1
WO2010092781A1 PCT/JP2010/000736 JP2010000736W WO2010092781A1 WO 2010092781 A1 WO2010092781 A1 WO 2010092781A1 JP 2010000736 W JP2010000736 W JP 2010000736W WO 2010092781 A1 WO2010092781 A1 WO 2010092781A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode portion
layer
electrode part
light emitting
upper electrode
Prior art date
Application number
PCT/JP2010/000736
Other languages
English (en)
French (fr)
Inventor
博行 十川
中野 雅之
秀高 山田
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to CN201080016160.5A priority Critical patent/CN102388471B/zh
Priority to US13/148,777 priority patent/US9287458B2/en
Priority to EP10741061.5A priority patent/EP2398077B1/en
Publication of WO2010092781A1 publication Critical patent/WO2010092781A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate

Definitions

  • the present invention relates to a semiconductor light emitting device and a method for manufacturing the same, and more particularly to a semiconductor light emitting device having an improved light emission output and a method for manufacturing the same.
  • LEDs semiconductor light emitting devices
  • an LED is configured by sandwiching a semiconductor laminate including, for example, an n-type semiconductor layer, an active layer, and a p-type semiconductor layer between a pair of electrodes.
  • a voltage is applied to such an LED, light is generated in the active layer, and this light isotropically travels in all directions.
  • light directed to the electrode portion on the light extraction side is known to be absorbed and / or reflected by this electrode portion and not emitted to the outside of the LED, thereby affecting the light extraction efficiency. Yes.
  • Patent Document 1 discloses that an intermediate energy gap layer made of an InGaP material is appropriately disposed on the electrode portion on the light extraction side, so that the activity other than the position directly below the electrode portion is active.
  • a technique for expanding a light emitting region to a layer and thereby improving light extraction efficiency is disclosed.
  • Patent Document 2 discloses a technique for forming a contact portion only in a portion other than directly below an electrode portion on the light extraction side to improve internal quantum efficiency by current confinement and to improve light extraction efficiency of generated light. Is disclosed.
  • the light extraction efficiency of the LED is improved by increasing the distance between the position immediately below the electrode portion and the electrode portion paired with the electrode portion.
  • An object of the present invention is to provide a low forward voltage by disposing an upper electrode portion that is an electrode portion on the light extraction side and an intermediate electrode portion that is an electrode portion that is paired with this electrode portion in an appropriate positional relationship.
  • An object of the present invention is to provide a semiconductor light emitting device with improved light emission output while maintaining the above, and a method for manufacturing the same.
  • the gist of the present invention is as follows. (1) An intermediate layer including an intermediate electrode portion, a second conductive type semiconductor layer, an active layer, a first conductive type semiconductor layer, and an upper electrode portion are sequentially provided on the upper surface side of the support substrate, and are provided on the lower surface side of the support substrate.
  • a semiconductor light emitting device comprising a side electrode layer, wherein the intermediate layer has at least one intermediate electrode portion extending in a line shape or an island shape, and supports the upper electrode portion and the intermediate electrode portion When projected onto a virtual plane parallel to the upper surface of the substrate, the upper electrode portion and the intermediate electrode portion are in a positional relationship shifted from each other, and at least one contour of the upper electrode portion and the intermediate electrode portion
  • a semiconductor light emission characterized by extending a line with a predetermined swing width and partially shortening a distance between contour lines between the upper electrode part and the intermediate electrode part facing the upper electrode part element.
  • a step of sequentially forming a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer above the growth substrate, and forming an intermediate layer including an intermediate electrode portion on the second conductivity type semiconductor layer A step of bonding a support substrate above the intermediate layer, a step of removing the growth substrate to expose the first conductive type semiconductor layer, and an upper surface of the exposed first conductive type semiconductor layer.
  • the semiconductor light emitting device of the present invention can improve the light emission output while maintaining the low forward voltage by arranging the upper electrode portion and the intermediate electrode portion in an appropriate positional relationship.
  • the semiconductor light emitting device manufacturing method of the present invention is a semiconductor that can improve light emission output while maintaining a low forward voltage by arranging the upper electrode portion and the intermediate electrode portion in an appropriate positional relationship.
  • a light emitting element can be manufactured.
  • FIG. 1A and FIG. 1B schematically show a cross-sectional structure of a semiconductor light emitting device according to the present invention before dicing and a plan view of a predetermined chip after dicing, respectively.
  • the semiconductor light emitting device 1 of the present invention includes an intermediate layer 3 including an intermediate electrode portion 3a, a second conductive semiconductor layer 4, an active layer 5, and a first layer on the upper surface side of a support substrate 2.
  • 1 conductive type semiconductor layer 6 and upper electrode part 7 are provided in order
  • lower electrode layer 8 is provided on the lower surface side of support substrate 2
  • intermediate layer 3 is at least one intermediate electrode part extending in a linear or island shape 3a.
  • the upper electrode portion 7 and the intermediate electrode portion 3a are projected onto a virtual plane parallel to the upper surface of the support substrate 2, the upper electrode portion 7 and the intermediate electrode portion 3a are in a positional relationship shifted from each other.
  • at least one contour line of the upper electrode portion 7 and the intermediate electrode portion 3a (in FIG. 1B, the contour line of the upper electrode portion 7) is extended with a predetermined swing width, 7 and the inter-contour line distance d between the intermediate electrode part 3a facing the upper electrode part 7 are partially shortened.
  • “extends with a predetermined deflection width” means, for example, as shown in FIG. 1B and FIG. 2A, at least one contour line of the upper electrode portion 7 and the intermediate electrode portion 3a (see FIG. In FIG.
  • FIG. 1 (b) and FIG. 2 (a) it means a state in which the contour line of the upper electrode portion 7) extends so as to become a wavy line, for example, FIG. 2 (b) and FIG. 2 (c). It means that the state as shown in is not included.
  • the example shown in FIGS. 1B and 2A is a portion where the distance d between the contours is shorter.
  • the area of the upper electrode portion is reduced, so that the light emission output of the semiconductor light emitting element is increased.
  • the difference d2-d1 between the maximum value d2 and the minimum value d1 of the distance d between contour lines is preferably in the range of 5 to 50 ⁇ m. If the difference d2-d1 is less than 5 ⁇ m, the shape is similar to the example shown in FIG. 2 (b) or FIG. By shortening, the current density in the vicinity of the portion where d is short increases, and there is a possibility that the effect of the present application that the recombination probability increases due to concentration of carriers cannot be sufficiently obtained.
  • Examples of materials constituting the second conductive type semiconductor layer 4, the active layer 5, and the first conductive type semiconductor layer 6 include AlGaAs-based materials and AlGaInP-based materials.
  • the material of the support substrate 2 depends on these materials. It can be selected appropriately.
  • the thicknesses of these layers 4, 5, 6 and the support substrate 2 can be 1 to 10 ⁇ m, 10 to 500 nm (total thickness), 1 to 10 ⁇ m, and 100 to 400 ⁇ m, respectively.
  • the first conductive semiconductor layer 6 is a p-type layer
  • the second conductive semiconductor layer 4 is an n-type layer, and vice versa.
  • the upper electrode portion 7 can have a structure having, for example, an ohmic contact layer (50 to 500 nm) made of an AuGe alloy material and a wire bonding pad layer (1 to 3 ⁇ m) in which an Au material is laminated on a Ti material.
  • the material of the lower electrode layer 8 can be appropriately selected according to the material of the support substrate 2.
  • the material of the intermediate electrode portion 3a can be, for example, an AuZn-based alloy material, and the portion other than the intermediate electrode portion 3a of the intermediate layer 3 can be formed of an insulating material made of, for example, SiO2 or Si3N4 material. Since it is desirable that the surface irregularity is small during wafer bonding, it is preferable that the intermediate electrode portion 3a and the insulating material layer have the same thickness, and the thickness of the intermediate layer 3 is preferably 50 to 500 nm. If the thickness is less than 50 nm, insulation may be insufficient, and if the thickness exceeds 500 nm, the effect of the present application can be obtained, but if the thickness exceeds 500 nm, the influence of light by the insulating material cannot be ignored. In addition, the effect of increasing the thickness may not be expected, and it may be uneconomical.
  • the metal layer 9 can be a bonding metal material such as Au, Al, Cu, or a solder material.
  • Au gold
  • Al aluminum
  • Cu copper
  • solder material a bonding metal material
  • An Au material having a reflectivity of 10 nm is preferable, and the thickness is preferably 100 to 1000 nm. If the thickness is less than 100 nm, the light reflectivity may be inferior, and even if the thickness exceeds 1000 nm, the effect of the present application can be obtained, but the effect of increasing the light reflectivity cannot be expected, which is uneconomical. .
  • the first conductive semiconductor layer 6, the active layer 5, and the second conductive semiconductor layer 4 are sequentially formed above the growth substrate 10.
  • These layers 6, 5, and 4 can be formed by epitaxial growth using, for example, the MOCVD method.
  • the growth substrate 10 can be, for example, a GaAs substrate, and the thickness is not particularly limited, but can be 200 to 400 ⁇ m.
  • the intermediate layer 3 including the intermediate electrode portion 3 a is formed on the second conductivity type semiconductor layer 4.
  • the intermediate electrode portion 3a is deposited on the second conductive semiconductor layer 4 by, for example, sputtering, electron beam vapor deposition, or resistance heating vapor deposition, and then etched into a predetermined shape as shown in FIG. Thereafter, the contact resistance with the second conductivity type semiconductor layer 4 can be lowered by applying a predetermined heat treatment.
  • an insulating film is formed on the intermediate electrode portion 3a and the second conductivity type semiconductor layer 4 by, for example, sputtering or plasma CVD, and an insulating film above the intermediate electrode portion 3a is formed by, for example, wet etching or dry etching. By removing, an intermediate layer 3 as shown in FIG. 3C is formed.
  • the support substrate 2 is bonded above the intermediate layer 3.
  • a metal layer 9 as a reflective layer on the intermediate layer 3.
  • the metal layer 9 can be formed by evaporating a metal material for bonding such as Au, Al, Cu, or a solder material, for example, and can be bonded at a low temperature and has little oxidation and corrosion. More preferably, it is made of an Au material. Further, a diffusion prevention layer (50 to 200 nm) made of, for example, a Pt material and a bonding layer (1 to 2 ⁇ m) made of, for example, an Au material may be formed on the metal layer 9.
  • an ohmic contact layer (50 to 500 nm) made of, for example, an AuGe-based alloy material, an adhesion layer (50 to 200 nm) made of, for example, a Ti material, and a bonding layer made of, for example, an Au material (1) ( ⁇ 2 ⁇ m) is preferably formed.
  • the support substrate 2 is preferably bonded by thermocompression bonding at a temperature in the range of 250 to 400 ° C. for 15 to 120 minutes, for example. By bonding through the metal layer, substrate bonding can be performed at a low temperature, and bonding can be performed without deteriorating the characteristics and structure of the semiconductor layer.
  • the growth substrate 10 is removed to expose the first conductivity type semiconductor layer 6.
  • the removal of the growth substrate 10 can be performed by, for example, polishing or wet etching, and the etching solution can be appropriately selected according to the material of the growth substrate 10.
  • the upper electrode portion 7 is formed as shown in FIG.
  • the upper electrode portion 7 is seen as a reflection from the upper side of the upper electrode portion 7 onto the upper surface of the support substrate 2 by depositing a pad layer on the ohmic contact layer and performing wet etching after photolithography, for example.
  • the upper electrode portion 7 and the intermediate electrode portion 3a are formed so as to have a mutually shifted positional relationship.
  • at least one contour line of the upper electrode part 7 and the intermediate electrode part 3 a extends with a predetermined swing width, and is a contour line between the upper electrode part 7 and the intermediate electrode part 3 a facing the upper electrode part 7.
  • the etching is performed in a shape as shown in FIG.
  • the distance d is partially shortened.
  • the upper electrode portion 7 and the intermediate electrode portion 3a in a mutually shifted positional relationship, the light emitting region of the active layer 5 is shifted with respect to the upper electrode portion 7, and the light extraction efficiency and the light output are increased.
  • the current density in this region is increased, the carriers are concentrated, the recombination probability is increased, and the light emission output is increased. It is something that can be done.
  • the contact resistance with the first conductivity type semiconductor layer 6 can be lowered by applying a predetermined heat treatment.
  • the lower electrode layer 8 is formed by vapor deposition on the lower surface side of the support substrate 2, and dicing is performed as shown in FIG. 3 (h).
  • the semiconductor light emitting device according to the present invention can be manufactured using the method as described above.
  • the embodiment has a cross-sectional structure shown in FIG. 1 (a), and an n-type semiconductor layer (Al0.4Ga0.6As material made of Al0.4Ga0.6As material) using a MOCVD method on a growth substrate (thickness: 280 ⁇ m) made of GaAs material.
  • Thickness 5 ⁇ m, dopant: Te, concentration: 5 ⁇ 1017 / cm3), InGaAs / AlGaAs multiple quantum well structure active layer (thickness: 8 / 5nm, 3 pairs, total thickness: about 50nm) and AlGaAs material
  • a p-type semiconductor layer (thickness: 2 ⁇ m, dopant: C, concentration: 1 ⁇ 1018 / cm3) is sequentially formed by one epitaxial growth, and consists of an AuZn alloy (Zn content: 5 mass%) by resistance heating vapor deposition.
  • the intermediate electrode part material was deposited and the intermediate electrode part (thickness: 100 nm) was formed by etching after a predetermined photolithography, a heat treatment at 400 ° C. was performed to make ohmic contact.
  • a Si3N4 material is formed on the intermediate electrode and the p-type semiconductor layer by plasma CVD, and the Si3N4 material above the intermediate electrode is removed by wet etching using a BHF etchant. Formed.
  • a metal layer thinness: 500 nm
  • a diffusion prevention layer is formed on this metal layer.
  • a support substrate (thickness: 280 ⁇ m, dopant: Si, concentration: 2 ⁇ 1018 / cm3) made of GaAs material is prepared for bonding, and an AuGe alloy (Ge content: 12 mass%) is preliminarily formed thereon.
  • An ohmic contact layer (thickness: 200 nm) made of a material, an adhesion layer (thickness: 100 nm) made of a Ti material, and a bonding layer (thickness 1 ⁇ m) made of an Au material were formed.
  • the bonding layer of the intermediate layer and the bonding layer of the support substrate were thermocompression bonded at 350 ° C.
  • an Au material is formed on the ohmic contact layer (thickness: 200 nm) made of an AuGe-based alloy (Ge content: 12% by mass) material and a Ti material by a low temperature heating vapor deposition method.
  • the pad layer (Ti thickness: 100 nm, Au thickness: 2 ⁇ m) was deposited and evaporated, and wet etching was performed after photolithography, so that it was seen from above the upper electrode part to the upper surface of the support substrate.
  • FIG. 1 (b), FIG. 4 or FIG. 2 (c) in Table 1, these are referred to as the upper wavy line, the lower wavy line, or the vertical line). Then, heat treatment at 380 ° C. was performed.
  • the portion formed at the corner of the chip is a wire bonding pad portion (100 ⁇ m square), and an upper electrode having a width of 20 ⁇ m extends from this portion. It has a structure.
  • a mesa was formed by etching using a mixed solution of phosphoric acid and hydrogen peroxide water, and dicing was performed using a dicer, thereby producing a 500 ⁇ m square chip.
  • the chip manufactured in this manner was placed on an integrating sphere, and the forward voltage Vf (V) and the light emission output Po (mW) when the current was applied to a current of 20 mA were measured. These results are shown in Table 1.
  • the light output was measured using a total luminous flux spectrometry system (SLMS-1021-S manufactured by Labshere).
  • Examples 1 to 5 can improve the light emission output while maintaining a low forward voltage as compared with Comparative Examples 1 and 2.
  • a clear correlation with the minimum value d1 of the distance between the contour lines was observed, but conversely, when d1 was the same, there was almost no difference due to the electrode shape.
  • the minimum value d1 of the distance between contour lines is set to 30 to 50 ⁇ m as in the above-mentioned examples and comparative examples in order to keep the forward voltage low, the maximum value of the distance between contour lines-minimum.
  • the maximum output was obtained when the value (d2-d1) was 15 ⁇ m, and conversely, the output decreased when the extended swing width was further increased.
  • the maximum value d2 of the distance between the contour lines increases. Since the current density is considered to decrease as the distance between the electrodes increases, a region where almost no current flows is formed. The increase in the area with low current density (area where the light emission output is considerably low) in the light emission area is considered to be the cause of the decrease in output.
  • the value between the maximum and minimum values (d2-d1) of the distance between contour lines is too large, carriers are concentrated in the portion where the distance between contour lines d is short, and there is also an effect of improving the output by improving the recombination probability.
  • the output reduction effect is also increased, and as a result, the light output of the light emitting element may be smaller than the case where the value of the maximum distance between the contour lines-the minimum value (d2-d1) is appropriate. is there.
  • the output of the upper wavy line is higher for the same extended deflection width.
  • a semiconductor light emitting device capable of improving light emission output while maintaining a low forward voltage by arranging an upper electrode portion and an intermediate electrode portion in an appropriate positional relationship. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

 光取出し側の電極部である上側電極部と、この電極部と対になる電極部である中間電極部とを適切な位置関係で配設することにより、低順方向電圧を維持したままで、発光出力を向上させた半導体発光素子およびその製造方法を提供する。支持基板2の上面側に、中間電極部3aを含む中間層3、第2導電型半導体層4、活性層5、第1導電型半導体層6および上側電極部7を順次具え、前記支持基板2の下面側に下側電極層8を具える半導体発光素子1であって、前記中間層3は、線状または島状に延在する少なくとも1つの中間電極部3aを有し、前記上側電極部7と前記中間電極部3aとを前記支持基板2の上面と平行な仮想面上に投影したとき、前記上側電極部7と前記中間電極部3aとは、相互にずれた位置関係にあり、かつ前記上側電極部7および前記中間電極部3aの少なくとも一方の輪郭線を、所定の振れ幅で延在させて、前記上側電極部7と該上側電極部7に対向する前記中間電極部3aとの間の輪郭線間距離dを部分的に短くすることを特徴とする。

Description

半導体発光素子およびその製造方法
 本発明は、半導体発光素子およびその製造方法に関し、特に、発光出力を向上させた半導体発光素子およびその製造方法に関する。
 近年、LED(半導体発光素子)の用途の多様化と共に、LEDの高出力化が望まれている。
 一般に、LEDは、例えばn型半導体層、活性層およびp型半導体層を含む半導体積層体を一対の電極で挟んで構成される。このようなLEDに電圧を印加すると、活性層において光が発生し、この光は全方位に等方的に向かうこととなる。このような光のうち、光取出し側の電極部に向かった光は、この電極部に吸収および/または反射され、LEDの外部に放出されず、光取出し効率に影響を与えることが知られている。
 特に、MOCVD法等により積層された薄膜の半導体層においては、光取出し側の電極部の直下位置の活性層において発生した光の大部分が、この電極部に吸収および/または反射されてしまい、光取出し効率が大幅に低下するという問題があった。
 このような問題を解決するため、特許文献1には、光取出し側の電極部に対して、InGaP材料からなる中間エネルギーギャップ層を適正に配置することにより、この電極部の直下位置以外の活性層にも発光領域を広げ、これにより、光取出し効率を向上させる技術が開示されている。
 また、特許文献2には、光取出し側の電極部の直下以外の一部分にのみコンタクト部を形成し、電流狭窄による内部量子効率の向上と、発生した光の光取出し効率の向上とを図る技術が開示されている。
 加えて、従来は、活性層の発光領域が、光取出し側の電極部の直下位置から離れた位置にあるほど、光取出し側の電極部による光の遮蔽の影響は少ないとされ、光取出し側の電極部の直下位置と、この電極部と対になる電極部との間の距離を大きくすることにより、LEDの光取出し効率を向上させるのが一般的であった。
 しかしながら、単に上記距離を大きくした場合、光取出し側の電極部とこの電極部と対になる電極部との間の距離も大きくなり、これらの間を電流が流れる際の抵抗が増加するという問題があるにも関わらず、従来技術においては、この抵抗による順方向電圧の増加については考慮されていなかった。また、光取出し側の電極部の直下位置およびこの電極部と対になる電極部の間の距離と発光出力との関係についても、何ら考慮されてはいなかった。
特開平3-3373号公報 特開2007-221029号公報
 本発明の目的は、光取出し側の電極部である上側電極部と、この電極部と対になる電極部である中間電極部とを適切な位置関係で配設することにより、低順方向電圧を維持したままで、発光出力を向上させた半導体発光素子およびその製造方法を提供することにある。
 上記目的を達成するため、本発明の要旨構成は以下のとおりである。
 (1)支持基板の上面側に、中間電極部を含む中間層、第2導電型半導体層、活性層、第1導電型半導体層および上側電極部を順次具え、前記支持基板の下面側に下側電極層を具える半導体発光素子であって、前記中間層は、線状または島状に延在する少なくとも1つの中間電極部を有し、前記上側電極部と前記中間電極部とを前記支持基板の上面と平行な仮想面上に投影したとき、前記上側電極部と前記中間電極部とは、相互にずれた位置関係にあり、かつ前記上側電極部および前記中間電極部の少なくとも一方の輪郭線を、所定の振れ幅で延在させて、前記上側電極部と該上側電極部に対向する前記中間電極部との間の輪郭線間距離を部分的に短くすることを特徴とする半導体発光素子。
 (2)前記輪郭線間距離の最大値と最小値との差は、5~50μmの範囲である上記(1)に記載の半導体発光素子。
 (3)前記支持基板と前記中間層との間に、反射層としての金属層をさらに設ける上記(1)または(2)に記載の半導体発光素子。
 (4)成長基板の上方に、第1導電型半導体層、活性層および第2導電型半導体層を順次形成する工程と、該第2導電型半導体層上に中間電極部を含む中間層を形成する工程と、該中間層の上方に、支持基板を接合する工程と、前記成長基板を除去して前記第1導電型半導体層を露出する工程と、該露出した第1導電型半導体層上に、上側電極部を形成する工程とを具え、前記上側電極部と前記中間電極部とを前記支持基板の上面と平行な仮想面上に投影したとき、前記上側電極部と前記中間電極部とは、相互にずれた位置関係にあり、かつ前記上側電極部および前記中間電極部の少なくとも一方の輪郭線を、所定の振れ幅で延在させて、前記上側電極部と該上側電極部に対向する前記中間電極部との間の輪郭線間距離を部分的に短くすることを特徴とする半導体発光素子の製造方法。
 (5)前記輪郭線間距離の最大値と最小値との差は、5~50μmの範囲である上記(4)に記載の半導体発光素子の製造方法。
 (6)前記中間層上に、反射層としての金属層を形成する工程をさらに具える上記(4)または(5)に記載の半導体発光素子の製造方法。
 本発明の半導体発光素子は、上側電極部と中間電極部とを適切な位置関係で配設することにより、低順方向電圧を維持したままで、発光出力を向上させることができる。
 本発明の半導体発光素子の製造方法は、上側電極部と中間電極部とを適切な位置関係で配設することにより、低順方向電圧を維持したままで、発光出力を向上させることができる半導体発光素子を製造することができる。
本発明に従う半導体発光素子を示す模式図である。 半導体発光素子の上側電極部の例を示す平面図である。 本発明に従う半導体発光素子の製造工程を示す模式図である。 半導体発光素子の上側電極部の例を示す平面図である。
 次に、本発明の半導体発光素子の実施形態について図面を参照しながら説明する。
 図1(a)および図1(b)は、本発明に従う半導体発光素子のダイシング前の断面構造およびダイシング後の所定のチップの平面図をそれぞれ模式的に示したものである。
 図1(a)に示すように、本発明の半導体発光素子1は、支持基板2の上面側に、中間電極部3aを含む中間層3、第2導電型半導体層4、活性層5、第1導電型半導体層6および上側電極部7を順次具え、支持基板2の下面側に下側電極層8を具え、中間層3は、線状または島状に延在する少なくとも1つの中間電極部3aを有する。
 また、これら上側電極部7と前記中間電極部3aとを支持基板2の上面と平行な仮想面上に投影したとき、上側電極部7と中間電極部3aとは、相互にずれた位置関係にあり、かつ上側電極部7および中間電極部3aの少なくとも一方の輪郭線(図1(b)においては、上側電極部7の輪郭線)を、所定の振れ幅で延在させて、上側電極部7と上側電極部7に対向する中間電極部3aとの間の輪郭線間距離dを部分的に短くする。ここで、「所定の振れ幅で延在する」とは、例えば図1(b)および図2(a)に示すように、上側電極部7および中間電極部3aの少なくとも一方の輪郭線(図1(b)および図2(a)においては、上側電極部7の輪郭線)が波線となるように延在している状態のことをいい、例えば図2(b)および図2(c)に示すような状態は含まないことを意味する。
 このように、上側電極部7と中間電極部3aとを相互にずれた位置関係に配設することにより、活性層5の発光領域が上側電極部7に対してずれ、光取出し効率および発光出力を向上させることができ、また、輪郭線間距離dを部分的に短くすることにより、この領域での電流密度が高くなり、キャリアが集中するために再結合確率が上がり、発光出力を向上させることができるものである。また、輪郭線間距離dの最小値d1は、順方向電圧に影響を与えるものであるが、例えば図1(b)と図2(c)、図2(a)と図2(b)をそれぞれ比較してわかるように、輪郭線間距離dの最小値d1を同じにした場合、図1(b)および図2(a)に示す例の方が、輪郭線間距離dが短い部分でキャリアが集中するために再結合確率が高くなっているのに加え、上側電極部の面積が小さくなることにより、半導体発光素子の発光出力は大きくなる。
 輪郭線間距離dの最大値d2と最小値d1との差d2-d1は、5~50μmの範囲とするのが好ましい。差d2-d1を5μm未満とすると、図2(b)あるいは図2(c)に示す例に近い形状となり、上述した延在配置の効果が得られず、輪郭線間距離dを部分的に短くすることにより、このdが短い部分付近での電流密度が高くなり、キャリアが集中するために再結合確率が上がるという本願の効果が十分得られないおそれがある。一方、差d2-d1を50μm超えとすると、輪郭線間距離dの離れた領域ではほとんど電流が流れない場合があり、実質的な発光面積が減少するため、発光出力の向上効果が得られないおそれがある。
 第2導電型半導体層4、活性層5、第1導電型半導体層6を構成する材料としては、例えばAlGaAs系材料およびAlGaInP系材料が挙げられ、支持基板2の材料はこれらの材料に応じて適宜選択することができる。これらの層4,5,6および支持基板2の厚さは、それぞれ1~10μm,10~500nm(総厚),1~10μmおよび100~400μmとすることができる。なお、第1導電型半導体層6をp型層とした場合には第2導電型半導体層4をn型層とし、その逆も同様である。
 上側電極部7は、例えばAuGe系合金材料からなるオーミックコンタクト層(50~500nm)およびTi材料上にAu材料を積層したワイヤボンディング用のパッド層(1~3μm)を有する構造とすることができ、下側電極層8の材料は、支持基板2の材料に応じて適宜選択することができる。
 中間電極部3aの材料は、例えばAuZn系合金材料とすることができ、中間層3の中間電極部3a以外の部分は、例えばSiO2またはSi3N4材料からなる絶縁材料で形成することができる。ウエハ接合時に表面の凹凸が少ないことが望ましいため、中間電極部3aと絶縁材料層とは同等の厚さであることが好ましく、中間層3の厚さは50~500nmとするのが好ましい。これは、厚さが50nm未満では、絶縁不十分になるおそれがあり、また、500nmを超えても本願の効果は得られるが、500nmを超えて厚くすると絶縁材料による光の影響が無視できなくなることがあり、また、厚くすることによる効果も期待できず不経済となることが考えられるためである。
 また、支持基板2と中間層3との間に、反射層としての金属層9をさらに設けるのが好ましい。活性層5で発生した光のうち、支持基板2側に向かった光を上側電極部7側から効率的に取り出すためである。金属層9は、例えばAu,Al,Cuまたははんだ材料等の接合用金属材料とすることができ、赤~赤外の波長の光を発光層で発生させる場合には、同波長範囲において高い光の反射率を有するAu材料が好ましく、その厚さは100~1000nmの厚さとするのが好ましい。100nm未満の場合には、光の反射率が劣る場合があり、1000nmを超える厚さとしても本願の効果は得られるが、光の反射率を高くする効果が期待できず不経済となることによる。
 次に、本発明の半導体発光素子の製造方法の実施形態について図面を参照しながら説明する。図3(a)~図3(h)は、本発明に従う半導体発光素子の製造工程を模式的に示したものである。
 本発明の半導体発光素子1の製造方法は、図3(a)に示すように、成長基板10の上方に、第1導電型半導体層6、活性層5および第2導電型半導体層4を順次形成する。これら層6,5,4は例えばMOCVD法を用いてエピタキシャル成長により形成することができる。成長基板10は、例えばGaAs基板とすることができ、その厚さは、特に限定されないが、200~400μmとすることができる。
 次に、図3(b)および図3(c)に示すように、第2導電型半導体層4上に中間電極部3aを含む中間層3を形成する。中間電極部3aは、例えばスパッタリング法、電子ビーム蒸着法または抵抗加熱蒸着法により第2導電型半導体層4上に蒸着した後、図3(b)に示すように、所定の形状にエッチングする。その後、所定の熱処理を施すことにより第2導電型半導体層4との間のコンタクト抵抗を下げることができる。次いで、中間電極部3aおよび第2導電型半導体層4上に、例えばスパッタリング法またはプラズマCVD法により絶縁膜を成膜し、例えばウェットエッチングまたはドライエッチングにより中間電極部3aよりも上方の絶縁膜を除去して図3(c)に示すような中間層3を形成する。
 次に、図3(d)および図3(e)に示すように、中間層3の上方に支持基板2を接合する。このとき、予め中間層3上に反射層としての金属層9を形成しておくのが好ましい。金属層9は、例えばAu,Al,Cuまたははんだ材料等の接合用金属材料を蒸着することにより形成することができ、特に、低温での接合が可能であり、また酸化や腐食が少ないため、Au材料で形成するのがより好ましい。また、この金属層9上に、例えばPt材料からなる拡散防止層(50~200nm)および例えばAu材料からなる接合層(1~2μm)を形成してもよい。これに対し、支持基板2上には、予め例えばAuGe系合金材料からなるオーミックコンタクト層(50~500nm)、例えばTi材料からなる密着層(50~200nm)および例えばAu材料からなる接合層(1~2μm)を形成しておくのが好ましい。また、支持基板2の接合は、例えば250~400℃の範囲の温度で15~120分間加熱圧着することによるのが好ましい。金属層を介して接合することで、低温での基板接合が可能になり、半導体層の特性や構造を劣化させることなく接合することができる。
 その後、図3(f)に示すように、成長基板10を除去して第1導電型半導体層6を露出する。成長基板10の除去は、例えば研磨またはウェットエッチングにより行うことができ、エッチング液は、成長基板10の材料に応じて適宜選択することができる。
 露出した第1導電型半導体層6上には、図3(g)に示すように、上側電極部7を形成する。この上側電極部7は、例えばオーミックコンタクト層上にパッド層を蒸着し、フォトリソグラフィ後にウェットエッチングを施すことにより、上側電極部7の上方側から支持基板2の上面に透影して見たとき、上側電極部7と中間電極部3aとが、相互にずれた位置関係にあるように形成される。また、上側電極部7および中間電極部3aの少なくとも一方の輪郭線が、所定の振れ幅で延在し、上側電極部7と上側電極部7に対向する中間電極部3aとの間の輪郭線間距離dが部分的に短くなるよう、例えば図1(b)または図2(a)に示すような形状にエッチングする。このように、上側電極部7と中間電極部3aとを相互にずれた位置関係に配設することにより、活性層5の発光領域が上側電極部7に対してずれ、光取出し効率および発光出力を向上させることができ、また、輪郭線間距離dを部分的に短くすることにより、この領域での電流密度が高くなり、キャリアが集中するために再結合確率が上がり、発光出力を増加させることができるものである。
 その後、所定の熱処理を施すことにより、第1導電型半導体層6との間のコンタクト抵抗を下げることができる。
 また、支持基板2の下面側に下側電極層8を蒸着して形成し、図3(h)に示されるようにダイシングが行われる。
 本発明に従う半導体発光素子は、上述したような方法を用いて製造することができる。
 上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲において種々の変更を加えることができる。
 次に、本発明の半導体型発光素子を試作し、性能を評価したので、以下で説明する。
 実施例は、図1(a)に示す断面構造を有し、GaAs材料からなる成長基板(厚さ:280μm)上に、MOCVD法を用いてAl0.4Ga0.6As材料からなるn型半導体層(厚さ:5μm,ドーパント:Te,濃度:5×1017/cm3)、InGaAs/AlGaAs多重量子井戸構造の活性層(厚さ:8/5nm,3組,総厚:約50nm)およびAlGaAs材料からなるp型半導体層(厚さ:2μm,ドーパント:C,濃度:1×1018/cm3)を1回のエピタキシャル成長で順次形成し、抵抗加熱蒸着法によりAuZn合金(Zn含有率:5質量%)からなる中間電極部材料を蒸着して、所定のフォトリソグラフィ後のエッチングにより中間電極部(厚さ:100nm)を形成した後、オーミックコンタクトをとるために、400℃の熱処理を施した。
 次に、プラズマCVD法により、中間電極部およびp型半導体層上にSi3N4材料を成膜し、BHFエッチング液を用いたウェットエッチングにより、中間電極部よりも上方のSi3N4材料を除去して中間層を形成した。
 中間層上には、反射層として、電子ビーム蒸着法により、Au材料からなる金属層(厚さ:500nm)を形成し、この金属層上に、Pt材料からなる拡散防止層(厚さ:100nm)およびAu材料からなる接合層(厚さ:1μm)を形成した。また、接合用にGaAs材料からなる支持基板(厚さ:280μm,ドーパント:Si,濃度:2×1018/cm3)を用意し、この上には、予めAuGe系合金(Ge含有率:12質量%)材料からなるオーミックコンタクト層(厚さ:200nm)、Ti材料からなる密着層(厚さ:100nm)およびAu材料からなる接合層(厚さ1μm)を形成しておいた。これら中間層の接合層と支持基板の接合層とを、350℃で30分間加熱圧着し、支持基板の接合を行った。このようにして得られた構造物に対し、室温のアンモニア水:過酸化水素水:水=1:12:18(体積比)の液中において2時間揺動させることによりウェットエッチングを行い、成長基板の除去を行った。
 次に、露出したn型半導体層上に、低温加熱蒸着法により、AuGe系合金(Ge含有率:12質量%)材料からなるオーミックコンタクト層(厚さ:200nm)およびTi材料上にAu材料を積層してパッド層(Ti厚さ:100nm,Au厚さ:2μm)を蒸着し、フォトリソグラフィ後にウェットエッチングを施すことにより、上側電極部の上方側から支持基板の上面に透影して見たとき、上側電極部と中間電極部とが、図1(b),図4または図2(c)に示す位置関係(表1において、これらは上側波線、下側波線または上下直線と呼ぶ。)となるよう形成した後、380℃の熱処理を施した。なお、図1(b),図4または図2(c)において、チップの隅に形成された部分はワイヤボンディング用のパッド部(100μm角)であり、この部分から幅20μmの上側電極が延びた構造となっている。
 最後に、リン酸および過酸化水素水の混合液を用いてエッチングによりメサを形成し、ダイサーを用いてダイシングすることにより、500μm角の正方形チップを作製した。
 このようにして作製したチップを積分球に設置し、電流20mAとなるように通電したときの順方向電圧Vf(V)および発光出力Po(mW)を測定した。これらの結果を表1に示す。なお、光出力は全光束分光測定システム(Labshere社製SLMS-1021-S)を用いて測定した。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、実施例1~5は、比較例1および2と比較して、低順方向電圧を維持したままで、発光出力を向上させることができていることがわかる。
 特に、順方向電圧に関しては、輪郭線間距離の最小値d1との明確な相関が見られたが、逆にd1が同じであれば、電極形状による差異はほとんど見られなかった。
 また、発光出力に関しては、順方向電圧を低く維持するために輪郭線間距離の最小値d1を上記実施例および比較例のように30~50μmとした場合、輪郭線間距離の最大値-最小値(d2-d1)の値が15μmのときに最大の出力が得られ、逆にそれ以上延在の振れ幅を広げていった際には出力が低下する傾向が見られた。これに関しては以下の理由が考えられる。
 延在の振れ幅を広げた場合、輪郭線間距離の最大値d2が増加する。電極間距離が大きくなるにつれ、電流密度が減少すると考えられるため、ほとんど電流が流れない領域ができることになる。発光領域内において電流密度の低い領域(発光出力がかなり低い領域)が増加したことが出力低下の要因と考えられる。輪郭線間距離の最大値-最小値(d2-d1)の値が大きすぎる場合には、輪郭線間距離dが短い部分でキャリアが集中し、再結合確率向上による出力が向上する効果もあるものの、前記の出力低下効果も大きくなり、結果として、輪郭線間距離の最大値-最小値(d2-d1)の値が適切な場合と比較して、発光素子の光出力が小さくなる場合がある。
 さらに上側を波線にしたものと下側を波線にしたものを比較すると、同一の延在振れ幅のものでは上側波線のほうが、出力が高くなる結果となった。電極間距離が離れるほど電流密度が低くなるとすると、延在電極の振れ幅方向の中央(dが最大となる箇所)に最も電流密度の低い領域ができることになる。上側波線のほうでは、上記低電流密度領域が、光の取り出しに不利な上面電極下にくるため、下側波線のものと比較して出力が高くなったと考えられる。
 本発明によれば、上側電極部と中間電極部とを適切な位置関係で配設することにより、低順方向電圧を維持したままで、発光出力を向上させることができる半導体発光素子を提供することができる。
1  半導体発光素子
2  支持基板
3  中間層
3a 中間電極部
4  第2導電型半導体
5  活性層
6  第1導電型半導体
7  上側電極部
8  下側電極層
9  金属層
10 成長基板

Claims (6)

  1.  支持基板の上面側に、中間電極部を含む中間層、第2導電型半導体層、活性層、第1導電型半導体層および上側電極部を順次具え、前記支持基板の下面側に下側電極層を具える半導体発光素子であって、
     前記中間層は、線状または島状に延在する少なくとも1つの中間電極部を有し、
     前記上側電極部と前記中間電極部とを前記支持基板の上面と平行な仮想面上に投影したとき、
     前記上側電極部と前記中間電極部とは、相互にずれた位置関係にあり、
     かつ前記上側電極部および前記中間電極部の少なくとも一方の輪郭線を、所定の振れ幅で延在させて、前記上側電極部と該上側電極部に対向する前記中間電極部との間の輪郭線間距離を部分的に短くすることを特徴とする半導体発光素子。
  2.  前記輪郭線間距離の最大値と最小値との差は、5~50μmの範囲である請求項1に記載の半導体発光素子。
  3.  前記支持基板と前記中間層との間に、反射層としての金属層をさらに設ける請求項1または2に記載の半導体発光素子。
  4.  成長基板の上方に、第1導電型半導体層、活性層および第2導電型半導体層を順次形成する工程と、
     該第2導電型半導体層上に中間電極部を含む中間層を形成する工程と、
     該中間層の上方に、支持基板を接合する工程と、
     前記成長基板を除去して前記第1導電型半導体層を露出する工程と、
     該露出した第1導電型半導体層上に、上側電極部を形成する工程とを具え、
     前記上側電極部と前記中間電極部とを前記支持基板の上面と平行な仮想面上に投影したとき、
     前記上側電極部と前記中間電極部とは、相互にずれた位置関係にあり、かつ
     前記上側電極部および前記中間電極部の少なくとも一方の輪郭線を、所定の振れ幅で延在させて、前記上側電極部と該上側電極部に対向する前記中間電極部との間の輪郭線間距離を部分的に短くすることを特徴とする半導体発光素子の製造方法。
  5.  前記輪郭線間距離の最大値と最小値との差は、5~50μmの範囲である請求項4に記載の半導体発光素子の製造方法。
  6.  前記中間層上に、反射層としての金属層を形成する工程をさらに具える請求項4または5に記載の半導体発光素子の製造方法。
PCT/JP2010/000736 2009-02-10 2010-02-08 半導体発光素子およびその製造方法 WO2010092781A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080016160.5A CN102388471B (zh) 2009-02-10 2010-02-08 半导体发光二极管及其制造方法
US13/148,777 US9287458B2 (en) 2009-02-10 2010-02-08 Semiconductor light emitting diode and method of producing the same
EP10741061.5A EP2398077B1 (en) 2009-02-10 2010-02-08 Semiconductor light emitting diode and method of producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-028455 2009-02-10
JP2009028455A JP4583487B2 (ja) 2009-02-10 2009-02-10 半導体発光素子およびその製造方法

Publications (1)

Publication Number Publication Date
WO2010092781A1 true WO2010092781A1 (ja) 2010-08-19

Family

ID=42561631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000736 WO2010092781A1 (ja) 2009-02-10 2010-02-08 半導体発光素子およびその製造方法

Country Status (7)

Country Link
US (1) US9287458B2 (ja)
EP (1) EP2398077B1 (ja)
JP (1) JP4583487B2 (ja)
KR (1) KR101605223B1 (ja)
CN (1) CN102388471B (ja)
TW (1) TWI502774B (ja)
WO (1) WO2010092781A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103283045A (zh) * 2010-12-28 2013-09-04 首尔Opto仪器股份有限公司 高效发光二极管

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5727271B2 (ja) * 2011-03-24 2015-06-03 スタンレー電気株式会社 半導体発光素子
JP5398892B2 (ja) * 2012-09-14 2014-01-29 株式会社東芝 半導体発光素子
WO2015074353A1 (zh) * 2013-11-25 2015-05-28 扬州中科半导体照明有限公司 一种半导体发光二极管芯片
KR102623615B1 (ko) * 2015-09-25 2024-01-11 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자, 발광소자 패키지 및 발광장치
CN112993108B (zh) * 2019-12-13 2022-09-02 深圳第三代半导体研究院 一种发光二极管

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033373A (ja) 1989-05-31 1991-01-09 Toshiba Corp 半導体発光装置
JP2004172217A (ja) * 2002-11-18 2004-06-17 Matsushita Electric Works Ltd 半導体発光素子
JP2007221029A (ja) 2006-02-20 2007-08-30 Sony Corp 半導体発光素子およびその製造方法
JP2007258326A (ja) * 2006-03-22 2007-10-04 Matsushita Electric Ind Co Ltd 発光素子
JP2008263015A (ja) * 2007-04-11 2008-10-30 Hitachi Cable Ltd 半導体発光素子

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812380A (ja) * 1981-07-15 1983-01-24 Toshiba Corp 発光ダイオ−ド装置
US5578839A (en) * 1992-11-20 1996-11-26 Nichia Chemical Industries, Ltd. Light-emitting gallium nitride-based compound semiconductor device
US7511314B2 (en) 2003-10-16 2009-03-31 Shin-Etsu Handotai Co., Ltd. Light emitting device and method of fabricating the same
US7998884B2 (en) 2004-03-15 2011-08-16 Sharp Laboratories Of America, Inc. Method of forming a light emitting device with a nanocrystalline silicon embedded insulator film
DE102004021175B4 (de) 2004-04-30 2023-06-29 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Halbleiterchips für die Optoelektronik und Verfahren zu deren Herstellung
KR100593931B1 (ko) * 2005-02-21 2006-06-30 삼성전기주식회사 반도체 레이저 소자 및 그 제조 방법
CN100388515C (zh) 2005-09-30 2008-05-14 晶能光电(江西)有限公司 半导体发光器件及其制造方法
US8097892B2 (en) * 2006-02-14 2012-01-17 Showa Denko K.K. Light-emitting diode
DE102007020291A1 (de) 2007-01-31 2008-08-07 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zur Herstellung einer Kontaktstruktur für einen derartigen Chip
TWI475716B (zh) 2007-03-19 2015-03-01 Epistar Corp 光電元件
US8410510B2 (en) 2007-07-03 2013-04-02 Nichia Corporation Semiconductor light emitting device and method for fabricating the same
JP5211887B2 (ja) 2007-07-03 2013-06-12 日亜化学工業株式会社 半導体発光素子およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033373A (ja) 1989-05-31 1991-01-09 Toshiba Corp 半導体発光装置
JP2004172217A (ja) * 2002-11-18 2004-06-17 Matsushita Electric Works Ltd 半導体発光素子
JP2007221029A (ja) 2006-02-20 2007-08-30 Sony Corp 半導体発光素子およびその製造方法
JP2007258326A (ja) * 2006-03-22 2007-10-04 Matsushita Electric Ind Co Ltd 発光素子
JP2008263015A (ja) * 2007-04-11 2008-10-30 Hitachi Cable Ltd 半導体発光素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103283045A (zh) * 2010-12-28 2013-09-04 首尔Opto仪器股份有限公司 高效发光二极管

Also Published As

Publication number Publication date
CN102388471A (zh) 2012-03-21
EP2398077B1 (en) 2019-08-07
CN102388471B (zh) 2014-10-22
TWI502774B (zh) 2015-10-01
KR101605223B1 (ko) 2016-03-21
EP2398077A1 (en) 2011-12-21
US9287458B2 (en) 2016-03-15
JP4583487B2 (ja) 2010-11-17
TW201034247A (en) 2010-09-16
EP2398077A4 (en) 2014-01-01
KR20110120906A (ko) 2011-11-04
US20110316030A1 (en) 2011-12-29
JP2010186798A (ja) 2010-08-26

Similar Documents

Publication Publication Date Title
WO2010092783A1 (ja) 半導体発光素子およびその製造方法
TWI781317B (zh) 發光二極體、其製作方法及發光裝置
JP5953155B2 (ja) 半導体発光装置
JP5312988B2 (ja) 光半導体装置及びその製造方法
WO2010092781A1 (ja) 半導体発光素子およびその製造方法
JP5377725B1 (ja) 半導体発光素子
JP2004503096A (ja) InGaNベースの発光ダイオードチップ及びその製造方法
JP5405039B2 (ja) 電流狭窄型発光素子およびその製造方法
WO2004097948A1 (ja) 発光素子及び発光素子の製造方法
JP6617218B1 (ja) 赤外led素子
JP2011129724A (ja) 半導体発光素子およびその製造方法
JP2017069282A (ja) 半導体発光素子及びその製造方法
JP2012175052A (ja) 半導体発光装置の製造方法
CN104681678A (zh) 一种双反射镜结构的发光二极管及其制造方法
JP2020065041A (ja) 半導体発光装置および半導体発光装置の製造方法
JP2013179227A (ja) 半導体発光素子
JP2017139298A (ja) 半導体発光素子及びその製造方法
JPH08148716A (ja) 半導体発光素子とその製造方法
JP2017005157A (ja) 半導体発光素子及びその製造方法
JP5690395B2 (ja) 半導体発光素子の製造方法
CN114388673A (zh) 微型发光二极管芯片及其制备方法
JP2014107475A (ja) 半導体発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016160.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13148777

Country of ref document: US

Ref document number: 2010741061

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117019646

Country of ref document: KR

Kind code of ref document: A