WO2010090032A1 - 電流検出回路および変圧器電流測定システム - Google Patents

電流検出回路および変圧器電流測定システム Download PDF

Info

Publication number
WO2010090032A1
WO2010090032A1 PCT/JP2010/000697 JP2010000697W WO2010090032A1 WO 2010090032 A1 WO2010090032 A1 WO 2010090032A1 JP 2010000697 W JP2010000697 W JP 2010000697W WO 2010090032 A1 WO2010090032 A1 WO 2010090032A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
transformer
primary
inductor
circuit
Prior art date
Application number
PCT/JP2010/000697
Other languages
English (en)
French (fr)
Inventor
箱田康徳
小林公禎
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to US13/061,964 priority Critical patent/US8988064B2/en
Priority to EP10738373.9A priority patent/EP2333944B1/en
Priority to CN201080001448.5A priority patent/CN102017380B/zh
Priority to KR1020107022950A priority patent/KR101155698B1/ko
Priority to JP2010549411A priority patent/JP5092023B2/ja
Publication of WO2010090032A1 publication Critical patent/WO2010090032A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/183Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core
    • G01R15/185Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core with compensation or feedback windings or interacting coils, e.g. 0-flux sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/18Arrangements for measuring currents or voltages or for indicating presence or sign thereof using conversion of DC into AC, e.g. with choppers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/40Means for preventing magnetic saturation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a technique for measuring a current (primary current or secondary current) flowing through a transformer having a large excitation inductance.
  • the power conversion device 8 includes a transformer 81, a switch circuit 82 connected to the primary winding 811 of the transformer 81, a rectifier circuit 83 connected to the secondary winding 812, and a rectifier circuit 83. And a smoothing circuit 84 provided on the output side.
  • the switch circuit 82 is composed of switching elements Q 1
  • the rectifier circuit 83 is constituted by two switching elements Q 21, Q 22.
  • the smoothing circuit 84 includes an inductor L O and a capacitor C O.
  • a transformer 81 having a small excitation inductance (a large excitation current Iex ) is intentionally used to enable the magnetic flux reset of the transformer, and a current sensor CT is provided in the primary winding 811. Is provided.
  • the power conversion device 8 is suitable when it is desired to avoid malfunction due to secondary current noise or to reduce measurement loss (power loss during measurement) when the turns ratio n is large.
  • FIG. 12 shows primary current I 1 , primary load current I 1Load , secondary current I 2 , and excitation current I ex, and the on / off states of switches Q 1 , Q 21 , and Q 22 . Show the relationship.
  • FIG. 13 shows a power conversion device 9 in which the switch circuit 92 provided on the primary side of the transformer 91 is configured by a semiconductor switch and performs power conversion by a ZVS (zero volt switching) system (see Patent Document 1).
  • the exciting inductance of the primary winding 911 is intentionally reduced.
  • the switch circuit 92 is configured by a bridge of switches (MOSFETs in the figure) Q 11 , Q 12 , Q 13 , Q 14 .
  • a DC voltage DC IN is applied to an input terminal of the switch circuit 92, and a primary winding 911 is connected to an output terminal via a resonance circuit 95 including an inductor L 1 and a capacitor C 1 .
  • the secondary side of the transformer 91 is provided with a rectifier circuit 93 including diodes D 21 , D 22 , D 23 , and D 24 .
  • the input side of the rectifier circuit 93 is connected to the secondary winding 912, and the load is connected to the output side via a smoothing circuit 94 (capacitor C 2 ).
  • the switch Q 11, Q 12, Q 13 , Q 14, a parasitic diode and a parasitic capacitance (capacitor) is formed, for example, Q 11, Q 14 is turned on, Q 12, Q 13 is Q 11 in the off, When Q 14 is turned off and resonates with the parasitic capacitance and the circuit inductance Q 12, Q 13, the terminal voltage of Q 12, Q 13 becomes zero. ZVS is realized by turning on Q 12 and Q 13 at the timing of this terminal voltage.
  • the excitation inductance of the primary winding is designed to be small (excitation current is increased), and the current (excitation current I ex ) resulting from the excitation inductance greatly contributes to the ZVS operation.
  • FIG. 12 As can be seen from the waveform of the primary current I 1 (indicated by the excitation current I ex and the primary load current I 1Load in FIG. 11), even if the primary current I 1 is detected by CT or the like, 1 it is impossible to measure the secondary current I 2 in order to include a large exciting current I ex to the next current I 1. A large excitation current (excitation inductance is small) is necessary to enable the magnetic flux reset of the transformer 81.
  • the detected value of the primary current I 1 (indicated by the excitation current I ex and the primary load current I 1Load ) in conjunction with the ZVS operation of the switches constituting the switch circuit 92.
  • the secondary current I 2 it is desired to measure the secondary current I 2 based on
  • the exciting current I ex transformer 91 of the power converter 9 is large, it is impossible to measure secondary current I 2 from the detected value of the primary current I 1.
  • the object of the present invention is to provide an element or circuit that cannot be operated without using a transformer with a small excitation inductance, even when a transformer with a large excitation inductance is used.
  • the present inventor in a transformer system in which elements and circuits that cannot be operated without using a transformer with a low excitation inductance are connected to the primary side, We studied repeatedly based on the idea that it could be realized with a vessel. As a result, when only the primary side current can be increased without affecting the secondary current, it has been concluded that the above problem can be achieved and the present invention has been made.
  • the gist of the current detection circuit of the present invention is (1) to (4).
  • a switching power supply including a transformer, a current detection circuit for detecting a current flowing on a primary side of the transformer, which is connected in series to a primary winding of the transformer, and connected to a primary side of the transformer
  • a current detecting means for detecting a flowing current a primary winding of the transformer; and an inductor connected in parallel to a series connection portion in which the current detecting means is connected in series. Detection circuit.
  • the current flowing through the winding of the transformer that is, the primary current and the secondary current can be measured.
  • the primary current is a current that actually flows through the primary winding, and includes an excitation current and a primary load current (a current obtained by removing the excitation current from the primary current).
  • the secondary current can theoretically be obtained from the primary load current according to the winding ratio n (secondary winding number N 2 / primary winding number N 1 ).
  • the current detection circuit of the present invention is suitable for measuring the transformer current of a transformer used in a power converter (DC / DC converter or the like).
  • the smaller the exciting current the higher the accuracy of measuring the secondary current.
  • the excitation inductance is positively small (that is, the excitation current is large).
  • Transformers may be used.
  • the secondary current cannot be measured by detecting the primary current.
  • a transformer equivalent to a transformer having a small excitation inductance can be realized by a transformer having a large excitation inductance, and the secondary current can be measured by detecting the primary current.
  • a switching power supply comprising a transformer and a first inductor connected in series to a primary winding of the transformer, a current detection circuit for detecting a current flowing on the primary side of the transformer, A current detection means connected in series to the primary winding of the transformer and detecting a current flowing on the primary side of the transformer; the primary winding of the transformer; the first inductor; and the current detection circuit; And a second inductor connected in parallel to a series connection portion connected in series.
  • the current flowing through the primary winding of the transformer is detected by the current detection means. Then, at least a part of the exciting current generated on the primary side of the transformer flows in the second inductor instead of the primary winding of the transformer. For this reason, since the exciting current included in the current detected by the current detecting means is reduced, it is possible to improve the detection accuracy of the resonance current flowing on the primary side of the transformer. In addition, the current flowing on the secondary side of the transformer can be measured with high accuracy while suppressing an increase in the number of components and complication of the circuit configuration.
  • the exciting currents generated on the primary side of the transformer it is possible to increase the current flowing in the second inductor instead of the primary winding of the transformer. For this reason, the detection accuracy of the resonance current flowing on the primary side of the transformer can be further improved.
  • transformer current measurement system of the present invention is summarized as (5) and (6).
  • Transformer current measurement characterized in that a current detector is connected in series to the primary winding of the transformer, and an inductor is connected in parallel to the series connection of the primary winding and the current detector. system.
  • the current flowing through the winding of the transformer that is, the primary current and the secondary current can be measured.
  • the primary current is a current that actually flows through the primary winding, and includes an excitation current and a primary load current (a current obtained by removing the excitation current from the primary current).
  • the secondary current can theoretically be obtained from the primary load current according to the winding ratio n (secondary winding number N 2 / primary winding number N 1 ).
  • the transformer current measurement system of the present invention is suitable for measuring the transformer current of a transformer used in a power converter (DC / DC converter or the like).
  • the smaller the exciting current the higher the accuracy of measuring the secondary current.
  • the excitation inductance is positively small (that is, the excitation current is large).
  • Transformers may be used.
  • the secondary current cannot be measured by detecting the primary current.
  • a transformer equivalent to a transformer having a small excitation inductance can be realized by a transformer having a large excitation inductance, and the secondary current can be measured by detecting the primary current.
  • a transformer with a small excitation inductance for example, a switch for performing ZVS
  • a transformer with a large excitation inductance is used.
  • the transformer current primary current and secondary current
  • the secondary current can be measured based on the detection result of the primary current without being influenced by the exciting current. For example, when the winding ratio is large (when the secondary current is larger than the primary current), since the secondary side current is not actually detected, malfunction due to secondary side noise can be reduced, and the secondary side In the case where a rectifying switch is provided on the secondary side, synchronous rectification driving of the switch can be performed with high accuracy.
  • the resistance loss of the primary winding can be reduced by the amount that the excitation inductance is large (the amount that the excitation current is small). Further, since the degree of coupling between the windings is increased, loss (such as eddy current loss) due to the low degree of coupling can be reduced.
  • the present invention it is possible to measure the secondary current with a simple circuit configuration without creating a pseudo excitation current. As a result, the manufacturing cost can be reduced by reducing the number of parts, and the products can be made uniform because the number of parts is small.
  • the excitation current included in the current detected by the current detection means can be reduced to improve the detection accuracy of the resonance current flowing on the primary side of the transformer.
  • the current flowing on the secondary side of the transformer can be measured with high accuracy while suppressing an increase in the number of components and a complicated circuit configuration.
  • FIG. 1 is a circuit diagram showing a full-bridge resonant DC / DC converter to which a transformer current measurement system of the present invention is applied.
  • FIG. 1 is a circuit diagram showing a full-bridge resonant DC / DC converter to which a transformer current measurement system of the present invention is applied.
  • this invention it is a figure which shows the example which measures a transformer current with the resistance for a detection connected in series with the primary winding. It is a circuit diagram of a switching power supply provided with the current detection circuit which concerns on 2nd Embodiment of this invention. It is a timing chart of the switching power supply. It is a circuit diagram of a switching power supply provided with the current detection circuit which concerns on 3rd Embodiment of this invention. It is a circuit diagram which shows the prior art example of the transformer current measurement system which enables the magnetic flux reset of a transformer. It is a figure which shows the waveform of each part of the power converter device of FIG. It is a circuit diagram which shows the power converter device which performs switching of the ZVS system to which the conventional transformer current measurement system was applied.
  • FIG. 1 is a diagram showing a basic mode in which the transformer current measurement system according to the first embodiment of the present invention is applied to a DC / DC converter using a transformer.
  • the DC / DC converter 1 includes a transformer 11, a switch circuit 12, a rectifier circuit 13, and a smoothing circuit 14.
  • a DC voltage DC IN is input to the input terminal of the DC / DC converter 1, and a DC voltage DC OUT is output from the output terminal.
  • a rectifier circuit 13 is connected to the secondary winding 112 of the transformer 11, and a smoothing circuit 14 is connected to the output side of the rectifier circuit 13.
  • the switch circuit 12 is constituted by a switch Q 1.
  • Q shown 1 formed parasitic diode and a parasitic capacitance (the capacitor) Dx, with Cx.
  • the current supplied to the transformer from the input terminal DC IN branches to the inductor L a primary winding 111.
  • Transformer current I T consists exciting current I ex and primary load current I 1Load.
  • Inductance of the inductor L a, the current flowing through the inductor L a (inductor current) I La is designed to be sufficiently larger than the excitation current I ex.
  • FIG. 2 shows a primary current I 1 , a transformer current I T ⁇ primary load current I 1Load , a secondary current I 2 , an inductor current I La ⁇ excitation current I ex, and switches Q 1 and Q 21 and 22 show the relationship with the on / off state of Q22.
  • a detection signal from a current detector (CT) connected to the primary winding is sent to a control circuit (not shown).
  • the DC / DC converter 1 of FIG. 1 when resetting the magnetic flux of the transformer by generating a counter electromotive force in the transformer 11, and the counter electromotive force is compensated by the inductor L a.
  • the excitation current I ex is small, and therefore the characteristics of the CT detection current (I T ) and the secondary current I 2 are substantially the same.
  • FIG. 3 is a diagram showing an embodiment of the present invention specifically showing the transformer current measurement system of FIG.
  • the DC / DC converter 1 includes a switch circuit 12 (a half bridge formed by connecting input switches Q 11 and Q 12 in series), a transformer 11, a low-inductance inductor La, a rectifier circuit 13, and a smoothing circuit.
  • a circuit 14 output capacitor C O
  • a resonance circuit 15 series connection of an inductor L r and a capacitor C r ) are provided.
  • Q 11 side end of the series circuit of Q 12 (a 1) is connected to the positive terminal of the DC power supply (E i) 18, Q 12 side end of the series circuit (a 2) is of the DC power source 18 Connected to the negative terminal.
  • a connection point between Q 11 and Q 12 is connected to one terminal of the primary winding 111 of the transformer 11 via the resonance circuit 15. Incidentally, the other terminal of the primary winding 111 is connected to a 2 terminal.
  • Current detector CT is connected in series to the primary winding 111 of the transformer 11, in parallel with the series connection of the primary winding 111 and the current detector CT, inductor L a is connected.
  • Current I a flowing through the inductor L a is greater than the exciting current I ex, therefore, the current I a flowing through the inductor L a is, to compensate for the ZVS operation of the switch circuit 12.
  • the center tap c of the secondary winding 112 of the transformer 11 is connected to the output terminal b 1 , and the output capacitor C O is connected between the output terminals b 1 and b 2 .
  • a resistance load R Load is connected to the output terminals b 1 and b 2 .
  • a control circuit 2 is connected to the detection signal of the current detector CT and the output voltage DC OUT (voltages of the output terminals b 1 and b 1 ), and the control circuit 2 switches the drive signal to the switches Q 11 , Q 12 , and Q 21. , and sends it to the Q 22.
  • DC / control terminal (gate) signal VGS Q11 switches Q 11, Q 12 in the DC converter 1, VGS Q12, switch Q 11, 1 primary current flowing through Q 12 I Q11, I Q12, an inductor L a A current I La flowing, an excitation current I ex , a transformer current I T , a current (primary current) I 1 flowing through the resonance circuit 15, currents I Q21 , I Q22 flowing through the switches Q 21 , Q 22, and a secondary current I 2 Show.
  • FIG. 5 is an enlarged view of I ex , I T , VGS Q21 , and VGS Q22 in FIG.
  • the control circuit 2 resemble the primary current I T of the transformer 11 to the secondary current I 2 (except for amplitude, the shape is the same), VGS generates Q21, VGS Q22, is carried out on-off switch Q 21, Q 22 these VGS Q21, VGS Q22.
  • the ON period of VGS Q21, VGS Q22, the threshold I THU of I T is detected by I thB.
  • the transformer current measurement system of the present invention can be applied to a full-bridge DC / DC converter as shown in FIG.
  • the transformer current I T was measured by the current transformer (CT), it may be provided a detection resistor r D in series with the primary winding 111 as shown in FIG. 7, the detection resistor the voltage drop may be measured primary current I T.
  • FIG. 8 is a circuit diagram of a switching power supply 1A including the current detection circuit 10 according to the second embodiment of the present invention.
  • the switching power supply 1 ⁇ / b> A is a so-called current resonance type switching power supply, and supplies a DC voltage to the load 200.
  • This switching power supply 1A includes a transformer T, a DC power supply Vin, switch elements Q5, Q6, Q7, and Q8, an inductor Lr and a capacitor Cr that form a resonance circuit, a capacitor Co, and a current detection circuit 10.
  • the current detection circuit 10 includes a current detection unit 101 and an inductor Lma, and indirectly measures the current flowing on the secondary side of the transformer by detecting the current flowing on the primary side of the transformer.
  • the configuration of the switching power supply 1A on the primary side of the transformer T will be described.
  • a so-called half-bridge circuit is provided on the primary side of the transformer T.
  • the switch elements Q5 and Q6 are composed of N-channel MOSFETs, the positive electrode of the DC power supply Vin is connected to the drain of the switch element Q5, and the negative electrode of the DC power supply Vin is connected to the source of the switch element Q6.
  • a control unit (not shown) is connected to each gate of the switch elements Q5 and Q6.
  • One end of the primary winding T1 of the transformer T is connected to the source of the switch element Q5 and the drain of the switch element Q6 via the inductor Lr and the current detection unit 101.
  • the other end of the primary winding T1 of the transformer T is connected to the negative electrode of the DC power source Vin via a capacitor Cr.
  • Lm represents the excitation inductance of the primary winding T1 of the transformer T.
  • the inductor Lma is connected in parallel to a series connection unit in which the inductor Lr, the current detection unit 101, and the primary winding T1 of the transformer T are connected in series.
  • the inductance of the inductor Lma is 1 of the transformer T. It is smaller than the excitation inductance Lm of the next winding T1. For this reason, at least a part of the exciting current I mag generated on the primary side of the transformer T flows not to the primary winding T1 of the transformer T but to the inductor Lma.
  • the resonance current flowing on the primary side of the transformer T is I r
  • the primary current flowing on the primary side of the transformer T is I 1
  • the secondary current flowing on the secondary side of the transformer T is I 2
  • the detected current detected by the current detection unit 101 is I am .
  • the exciting current I mag generated on the primary side of the transformer T the current flowing through the inductor Lma is referred to as a bypass exciting current I mag1
  • the current flowing through the primary winding T1 of the transformer T is referred to as a detected exciting current I mag2 .
  • the following formulas (1) and (2) hold.
  • the switch elements Q7 and Q8 are composed of P-channel MOSFETs, one end of the secondary winding T2 of the transformer T is connected to the source of the switch element Q8, and the secondary winding of the transformer T is connected to the source of the switch element Q7.
  • the other end of the line T2 is connected.
  • One electrode of the capacitor Co and one end of the load 200 are connected to the center tap A of the secondary winding T2 of the transformer T.
  • the other electrodes of the capacitor Co and the other end of the load 200 are connected to the drains of the switch elements Q7 and Q8, respectively.
  • FIG. 9 is a timing chart of the switching power supply 1A.
  • the peak of the detection excitation current I mag2 is significantly smaller than the peak of the bypass excitation current I mag1 and is substantially equal to “0”. That is, most of the exciting current I mag generated on the primary side of the transformer T flows through the inductor Lma and hardly flows through the primary winding T1 of the transformer T. Therefore, the detection current I am detected by the current detection unit 101, and the resonance current I r flowing in the primary side of the transformer T, is substantially equal.
  • An inductor Lma is connected in parallel to a series connection portion in which an inductor Lr that forms a resonance circuit with the capacitor Cr, the current detection unit 101, and the primary winding T1 of the transformer T are connected in series.
  • the inductance of the inductor Lma is smaller than the excitation inductance Lm of the primary winding T1 of the transformer T. According to this, most of the exciting current I mag generated on the primary side of the transformer T flows to the inductor Lma and hardly flows to the primary winding T1 of the transformer T. Therefore, it is possible to reduce the exciting current I mag included in the detection current I am to be detected by the current detecting section 101, to improve the detection accuracy of the resonance current I r flowing in the primary side of the transformer T. Therefore, it is possible to measure the secondary current I 2 flowing on the secondary side of the transformer T with high accuracy while suppressing an increase in the number of components and a complicated circuit configuration.
  • FIG. 10 is a circuit diagram of a switching power supply 1B including the current detection circuit 10 according to the third embodiment of the present invention.
  • the switching power supply 1B is different from the switching power supply 1A according to the second embodiment of the present invention shown in FIG. 8 in that the inductors constituting the resonance circuit together with the capacitor Cr are two inductors Lr1 and Lr2, and a current detection circuit. 10 positions to be connected are different.
  • symbol is attached
  • One end of the inductor Lr1 is connected to the source of the switch element Q5 and the drain of the switch element Q6.
  • the other end of the inductor Lr1 is connected to one end of the primary winding T1 of the transformer T via the current detection unit 101. Is connected.
  • One end of the inductor Lr2 is connected to the other end of the primary winding T1 of the transformer T, and the other end of the inductor Lr2 is connected to the negative electrode of the DC power source Vin via the capacitor Cr.
  • the inductor Lma is connected in parallel to a series connection portion in which the inductor Lr1, the current detection unit 101, the primary winding T1 of the transformer T, and the inductor Lr2 are connected in series.
  • the inductor Lma is directly connected to the source of the switch element Q5 and the drain of the switch element Q6, but is not limited thereto.
  • the connection point between the source of the switch element Q5 and the drain of the switch element Q6 is a point P and the connection point between the inductor Lr and the inductor Lma is a point Q
  • the point P is between the point P and the point Q.
  • An inductor may be provided, and the point P and the point Q may be connected via the inductor. Also, for example, in FIG.
  • connection point between the source of the switch element Q5 and the drain of the switch element Q6 is a point X
  • the connection point between the inductor Lr1 and the inductor Lma is a point Y
  • the point X and the point Y An inductor may be provided between the points, and the point X and the point Y may be connected via the inductor.
  • the switching power supplies 1A and 1B are assumed to be current resonance type, but the present invention is not limited to this.
  • the switching power supplies 1A and 1B which are current resonance type switching power supplies, the inductor Lr and the capacitor Cr constitute a resonance circuit.
  • the inductor Lr has zero volt switching ( ZVS) is provided.
  • the switching power supplies 1A and 1B are provided with the half bridge circuit.
  • the present invention is not limited to this.
  • a full bridge circuit or a forward circuit is used. May be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

 本来、励磁インダクタンスが小さい変圧器を使用しないと動作できない素子や回路が1次側に接続されている場合に、励磁インダクタンスが大きい変圧器を使用しても、前記素子や回路の動作を損なうことなく変圧器電流(1次電流や2次電流)を測定できる、電流検出回路および変圧器電流測定システムを提供する。 変圧器11の1次巻線111に直列に電流検出器CT(カレントトランス)を接続し、1次巻線111と電流検出器CTとの直列接続に並列に、インダクタLを接続する。そして電流検出器CTにより検出した1次電流Iの値に基づき、変圧器11の2次電流Iを測定する。

Description

電流検出回路および変圧器電流測定システム
 本発明は、大励磁インダクタンスの変圧器を流れる電流(1次電流または2次電流)の測定技術に関する。
 従来、変圧器の励磁電流により、変圧器の磁化飽和を回避するための技術が知られている。
 図11において、電力変換装置8は、変圧器81と、変圧器81の1次巻線811に接続されたスイッチ回路82と、2次巻線812に接続された整流回路83と、整流回路83の出力側に設けられた平滑回路84とを備えている。図11では、スイッチ回路82は、スイッチ素子Qから構成され、整流回路83は2つのスイッチ素子Q21,Q22から構成されている。また、平滑回路84は、インダクタLとキャパシタCとから構成されている。
 この電力変換装置8では、変圧器の磁束リセットを可能にするため、故意に励磁インダクタンスの小さい(励磁電流Iexが大きい)変圧器81を使用しており、1次巻線811に電流センサCTが設けられている。変圧器81の1次負荷電流I1Loadは、2次電流Iに反映される。すなわち、巻線比をn(1次巻線数N/2次巻線数N)とすると、I=n×I1Loadとなるので、1次電流Iを検出することで、2次電流Iを直接検出することなくその値を測定することができる。
 電力変換装置8は、巻線比nが大きい場合において、2次電流のノイズによる誤動作を回避したい場合や、測定損失(測定時の電力損失)を低減したいときに好適である。図12に、1次電流I・1次負荷電流I1Loadと、2次電流Iと、励磁電流Iexとを示すとともに、スイッチQ,Q21,Q22のオン・オフ状態との関係を示す。
 一方、変圧器の励磁電流を、当該変圧器の1次側に設けた回路や装置を動作させるために用いる技術も知られている。
 図13は変圧器91の1次側に設けたスイッチ回路92を半導体スイッチにより構成し、ZVS(ゼロボルトスイッチング)方式により電力変換を行う電力変換装置9を示している(特許文献1参照)。この変圧器91では、1次巻線911の励磁インダクタンスを、故意に小さくしてある。
 図13において、スイッチ回路92は、スイッチ(図ではMOSFET)Q11,Q12,Q13,Q14のブリッジにより構成されている。スイッチ回路92の入力端子には直流電圧DCINが与えられ、出力端子にはインダクタL,キャパシタCからなる共振回路95を介して1次巻線911が接続されている。
 また、変圧器91の2次側は、ダイオードD21,D22,D23,D24から構成された整流回路93が設けられている。整流回路93の入力側は2次巻線912に接続され、出力側は平滑回路94(キャパシタC)を介して負荷が接続されている。
 スイッチQ11,Q12,Q13,Q14には、寄生ダイオードおよび寄生キャパシタンス(キャパシタ)が形成され、例えば、Q11,Q14がオン、Q12,Q13がオフのときにQ11,Q14がオフすると、Q12,Q13の寄生キャパシタンスと回路インダクタンスとが共振して、Q12,Q13の端子電圧がゼロになる。この端子電圧のタイミングでQ12,Q13をオンすることでZVSが実現される。
 図13における変圧器91では、1次巻線の励磁インダクタンスを小さく(励磁電流を大きく)設計してあり、励磁インダクタンスに起因する電流(励磁電流Iex)がZVS動作に大きく寄与する。
特開平7-322613号 WO2005/025043
 図11の電力変換装置8では、1次電流(励磁電流Iexと1次負荷電流I1Loadとで示す)の検出値に基づいて2次電流を測定するという動作を行おうとする場合、図12の1次電流I(図11では、励磁電流Iexと1次負荷電流I1Loadとで示す)の波形からわかるように、仮にCTなどにより、1次電流Iを検出したとしても、1次電流Iには大きな励磁電流Iexが含まれるために2次電流Iを測定することができない。大きな励磁電流(励磁インダクタンスが小さい)となっているのは、変圧器81の磁束リセットを可能にするために必要となる。
 また、図13の電力変換装置9では、スイッチ回路92を構成するスイッチについてのZVS動作に併せて、1次電流I(励磁電流Iexと1次負荷電流I1Loadとで示す)の検出値に基づいて2次電流Iを測定したい場合がある。しかし、この場合には、電力変換装置9の変圧器91の励磁電流Iexが大きいので、1次電流Iの検出値から2次電流Iを測定することができない。
 なお、変圧器の2次電流を間接的に測定するために、励磁電流に相当する電流(擬似励磁電流)を実際に作り、実際の1次電流から擬似励磁電流を除去することで、2次電流に比例する1次側電流を求める技術も提案されている(特許文献2参照)。しかし、特許文献2の技術では、擬似励磁電流の生成回路が複雑となるし、しかも精度の高い擬似励磁電流を生成できるとは限らない。
 本発明の目的は、本来、励磁インダクタンスが小さい変圧器を使用しないと動作できない素子や回路が1次側に接続されている場合に、励磁インダクタンスが大きい変圧器を使用しても、前記素子や回路の動作を損なうことなく変圧器電流(1次電流や2次電流)を測定できる、電流検出回路および変圧器電流測定システムを提供することである。
 本発明者は、本来低励磁インダクタンスの変圧器を使用しないと動作できない素子や回路が1次側に接続されている変圧器システムにおいて、当該低励磁インダクタンスの変圧器の機能を高励磁インダクタンスの変圧器で実現できるのではないかとの着想のもとに検討を重ねた。その結果、2次電流に影響を与えずに1次側電流のみを増加させることができれば、上記の課題を達成できるとの結論に達し、本発明をなすに至った。
 本発明の電流検出回路は(1)から(4)を要旨とする。
(1) トランスを備えたスイッチング電源において、当該トランスの1次側に流れる電流を検出する電流検出回路であって、前記トランスの1次巻線に直列に接続され、当該トランスの1次側に流れる電流を検出する電流検出手段と、前記トランスの1次巻線と、前記電流検出手段と、が直列に接続された直列接続部に並列接続されたインダクタと、を備えることを特徴とする電流検出回路。
 本発明の電流検出回路では、変圧器の巻線を流れる電流、すなわち1次電流や2次電流を測定することができる。
 1次電流は、実際に1次巻線を流れる電流であり、励磁電流と1次負荷電流(1次電流のうち励磁電流を除いた電流)とを含む。2次電流は、理論上は、巻線比n(2次巻線数N/1次巻線数N)に応じて、1次負荷電流から求めることができる。
 本発明の電流検出回路は、電力変換装置(DC/DCコンバータなど)に用いられる変圧器の変圧器電流の測定に好適である。
(2) 前記インダクタのインダクタンスは、前記トランスの1次巻線の励磁インダクタンスより小さいことを特徴とする(1)に記載の電流検出回路。
 1次電流の検出値に基づき2次電流を測定する場合には、励磁電流が小さければ小さいほど2次電流の測定精度が高くなる。
 例えば電力変換装置などの変圧器を使用した装置の中には、ZVS動作,変圧器の磁束リセット動作などの動作を行うために、積極的に、励磁インダクタンスが小さい(すなわち、励磁電流が大きい)変圧器を使用することがある。このような装置では、1次電流を検出することで2次電流を測定することができない。本発明によれば、励磁インダクタンスが小さい変圧器と等価な変圧器を、励磁インダクタンスが大きい変圧器で実現でき、かつ、1次電流を検出することで2次電流を測定することができる。
(3) トランスと、当該トランスの1次巻線に直列接続された第1インダクタと、を備えたスイッチング電源において、当該トランスの1次側に流れる電流を検出する電流検出回路であって、前記トランスの1次巻線に直列に接続され、当該トランスの1次側に流れる電流を検出する電流検出手段と、前記トランスの1次巻線と、前記第1インダクタと、前記電流検出回路と、が直列に接続された直列接続部に並列接続された第2インダクタと、を備えることを特徴とする電流検出回路。
 本発明の電流検出回路では、トランスの1次巻線に流れる電流が電流検出手段により検出される。そして、トランスの1次側に発生する励磁電流のうち少なくとも一部は、トランスの1次巻線ではなく、第2インダクタに流れることになる。このため、電流検出手段により検出される電流に含まれる励磁電流が減少するので、トランスの1次側に流れる共振電流の検出精度を向上させることができる。また、構成部品の増加や回路構成の複雑化を抑制しつつ、トランスの2次側に流れる電流を高精度に測定できる。
(4) 前記第2インダクタのインダクタンスは、前記トランスの1次巻線の励磁インダクタンスより小さいことを特徴とする(3)に記載の電流検出回路。
 トランスの1次側に発生する励磁電流のうち、トランスの1次巻線ではなく第2インダクタに流れるものを増加させることができる。このため、トランスの1次側に流れる共振電流の検出精度をさらに向上させることができる。
 本発明の変圧器電流測定システムは(5)および(6)を要旨とする。
(5) 変圧器の1次巻線に直列に電流検出器を接続し、前記1次巻線と電流検出器との直列接続に並列に、インダクタを接続したことを特徴とする変圧器電流測定システム。
 本発明の変圧器電流測定システムでは、変圧器の巻線を流れる電流、すなわち1次電流や2次電流を測定することができる。
 1次電流は、実際に1次巻線を流れる電流であり、励磁電流と1次負荷電流(1次電流のうち励磁電流を除いた電流)とを含む。2次電流は、理論上は、巻線比n(2次巻線数N/1次巻線数N)に応じて、1次負荷電流から求めることができる。
 本発明の変圧器電流測定システムは、電力変換装置(DC/DCコンバータなど)に用いられる変圧器の変圧器電流の測定に好適である。
(6) 前記インダクタは、前記1次巻線の励磁インダクタンスよりも小さいインダクタンスを有することを特徴とする(5)に記載の変圧器電流測定システム。
 1次電流の検出値に基づき2次電流を測定する場合には、励磁電流が小さければ小さいほど2次電流の測定精度が高くなる。
 例えば電力変換装置などの変圧器を使用した装置の中には、ZVS動作,変圧器の磁束リセット動作などの動作を行うために、積極的に、励磁インダクタンスが小さい(すなわち、励磁電流が大きい)変圧器を使用することがある。このような装置では、1次電流を検出することで2次電流を測定することができない。本発明によれば、励磁インダクタンスが小さい変圧器と等価な変圧器を、励磁インダクタンスが大きい変圧器で実現でき、かつ、1次電流を検出することで2次電流を測定することができる。
 本発明では、本来、励磁インダクタンスが小さい変圧器を使用しないと動作できない素子や回路(例えば、ZVSを行うスイッチ)が1次側に接続される場合に、励磁インダクタンスが大きい変圧器を使用しても、前記素子や回路の動作を損なうことなく変圧器電流(1次電流や2次電流)を測定できる。
 本発明では、励磁インダクタンスが大きい変圧器が使用できるので、励磁電流の影響を受けることなく、1次電流の検出結果に基づいて2次電流を測定することができる。例えば、巻線比が大きい場合(2次電流が1次電流よりも大きい場合)に、実際には2次側電流の検出をしていないので2次側ノイズによる誤動作を低減できるし、2次側の過電流に即応することもできるし、2次側に整流スイッチが備えられる場合には、当該スイッチの同期整流駆動を高精度で行うことができる。
 また、本発明では、励磁インダクタンスが大きい分(励磁電流が小さい分)、1次巻線の抵抗損を小さくできる。さらに、巻線間の結合度が高くなるので、低結合度に起因する損失(渦電流損など)を低減することもできる。
 本発明では、擬似的に励磁電流を作ることはせずに、簡単な回路構成で2次電流を測定できる。結果として、部品点数を削減することによる、製造コストの引き下げができるし、部品点数が少ない分、製品の均一化を図ることができる。
 本発明では、電流検出手段により検出される電流に含まれる励磁電流を減少させて、トランスの1次側に流れる共振電流の検出精度を向上させることができる。また、構成部品の増加や回路構成の複雑化を抑制しつつ、トランスの2次側に流れる電流を高精度に測定できる。
本発明の第1実施形態に係る変圧器電流測定システムの基本態様を示す図である。 図1のシステム図における各部の動作を示す波形図である。 図1の変圧器電流測定システムを具体的に示した本発明の実施態様を示す図である。 図3のシステム図における各部の動作を示す波形図である。 図3のDC/DCコンバータの動作を詳細に説明するための波形図である。 本発明の変圧器電流測定システムが適用されたフルブリッジの共振型DC/DCコンバータを示す回路図である。 本発明において、トランス電流を1次巻線に直列に接続した検出用抵抗により測定する例を示す図である。 本発明の第2実施形態に係る電流検出回路を備えるスイッチング電源の回路図である。 前記スイッチング電源のタイミングチャートである。 本発明の第3実施形態に係る電流検出回路を備えるスイッチング電源の回路図である。 変圧器の磁束リセットを可能にする変圧器電流測定システムの従来例を示す回路図である。 図11の電力変換装置の各部の波形を示す図である。 従来の変圧器電流測定システムが適用されたZVS方式のスイッチングを行う電力変換装置を示す回路図である。
 以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の実施形態における構成要素は適宜、既存の構成要素などとの置き換えが可能であり、また、他の既存の構成要素との組合せを含む様々なバリエーションが可能である。したがって、以下の実施形態の記載をもって、特許請求の範囲に記載された発明の内容を限定するものではない。
<第1実施形態>
 図1は本発明の第1実施形態に係る変圧器電流測定システムを、変圧器を使用したDC/DCコンバータに適用した基本態様を示す図である。
 図1において、DC/DCコンバータ1は、変圧器11と、スイッチ回路12と、整流回路13と、平滑回路14とを備えている。DC/DCコンバータ1の入力端子には直流電圧DCINが入力され、出力端子からは直流電圧DCOUTが出力されている。
 変圧器11の1次巻線111には、直列に電流検出器CTが接続され、1次巻線111と電流検出器CTとの直列接続に並列にインダクタLが接続されている。変圧器11の2次巻線112には、整流回路13が接続され、整流回路13の出力側には平滑回路14が接続されている。
 なお、図1では、スイッチ回路12はスイッチQにより構成されている。Qに形成された寄生ダイオードおよび寄生キャパシタンス(キャパシタ)をDx,Cxで示す。
 図1では、入力端子DCINから変圧器に供給される電流(以下、「1次電流」という)Iは、インダクタLと1次巻線111とに分岐する。インダクタLを流れる電流をILaで示し、1次巻線111を流れる電流(トランス電流)をIで示す。
 トランス電流Iは、励磁電流Iexと1次負荷電流I1Loadからなる。インダクタLのインダクタンスは、当該インダクタLを流れる電流(インダクタ電流)ILaが励磁電流Iexより十分に大きくなるように設計されている。
 図2に、1次電流Iと、トランス電流I・1次負荷電流I1Loadと、2次電流Iと、インダクタ電流ILa・励磁電流Iexとを示すとともに、スイッチQ,Q21,Q22のオン・オフ状態との関係を示す。
 1次巻線に接続された電流検出器(CT)からの検出信号は、図示しない制御回路に送られ、制御回路では、スイッチ回路12を構成するスイッチ(図1ではスイッチQ)の駆動信号を生成する。
 図1のDC/DCコンバータ1では、変圧器11に逆起電力を発生させて変圧器の磁束をリセットする際に、逆起電力をインダクタLにより補償している。
 図2からわかるように、励磁電流Iexは小さく、したがって、CTの検出電流(I)と、2次電流Iの特性は実質上同じとなっている。
 図3は、図1の変圧器電流測定システムを具体的に示した本発明の実施態様を示す図である。
 図3において、DC/DCコンバータ1は、スイッチ回路12(入力スイッチQ11,Q12の直列接続からなるハーフブリッジ)と、変圧器11と、低インダクタンスのインダクタLと、整流回路13と平滑回路14(出力キャパシタC)と、共振回路15(インダクタLおよびキャパシタCの直列接続)とを備えている。
 Q11,Q12の直列回路のQ11側端(a)は、直流電源(E)18の正端子に接続され、当該直列回路のQ12側端(a)は直流電源18の負端子に接続されている。Q11とQ12との接続点は共振回路15を介して変圧器11の1次巻線111の一方の端子に接続されている。なお、1次巻線111の他方の端子はa端子に接続されている。
 変圧器11の1次巻線111に直列に電流検出器CTが接続され、1次巻線111と電流検出器CTとの直列接続に並列に、インダクタLが接続されている。
 インダクタLを流れる電流Iは、励磁電流Iexよりも大きく、したがって、インダクタLを流れる電流Iが、スイッチ回路12のZVS動作を補償する。
 1次巻線111に供給される電流Iは2次電流Iに反映されるので、電流検出器CTにより検出された1次電流Iは、実質上2次電流Iと等価である。
 変圧器11の2次巻線112の一方端子は出力スイッチQ22を介して、他方端子は出力スイッチQ21を介して出力端子(GND端子)bに接続されている。
 また、変圧器11の2次巻線112のセンタータップcは出力端子bに接続され、出力キャパシタCは出力端子bとbとの間に接続されている。図3では出力端子b,bには、抵抗負荷RLoadが接続されている。
 電流検出器CTの検出信号および出力電圧DCOUT(出力端子b,bの電圧)には、制御回路2が接続され、制御回路2は、駆動信号をスイッチQ11,Q12,Q21,Q22に送出する。
 図4に、DC/DCコンバータ1におけるスイッチQ11,Q12の制御端子(ゲート)信号VGSQ11,VGSQ12、スイッチQ11,Q12を流れる1次電流IQ11,IQ12、インダクタLを流れる電流ILa、励磁電流Iex、トランス電流I、共振回路15を流れる電流(1次電流)I、スイッチQ21,Q22を流れる電流IQ21,IQ22、2次電流Iを示す。
 図5は、図4における、Iex、I、VGSQ21,VGSQ22を拡大して示す図である。
 図5に示すように、本実施形態では、制御回路2は、変圧器11の1次電流Iを2次電流Iにみたてて(振幅を除き、形状が同じであるとして)、VGSQ21,VGSQ22を生成し、これらのVGSQ21,VGSQ22によりスイッチQ21,Q22のオン・オフを行っている。
 なお、図5のIの波形図に示すように、VGSQ21,VGSQ22のオン期間は、Iのしきい値IthU,IthBにより検出している。
 本発明の変圧器電流測定システムは、図6に示すように、フルブリッジのDC/DCコンバータに適用することができる。
 上記の実施形態では、トランス電流Iを、カレントトランス(CT)により測定したが、図7に示すように1次巻線111に直列に検出用抵抗rを設けておき、当該検出用抵抗の電圧降下により1次電流Iを測定するようにしてもよい。
<第2実施形態>
[スイッチング電源1Aの構成]
 図8は、本発明の第2実施形態に係る電流検出回路10を備えるスイッチング電源1Aの回路図である。スイッチング電源1Aは、いわゆる電流共振型のスイッチング電源であり、負荷200に直流電圧を供給する。このスイッチング電源1Aは、トランスTと、直流電源Vinと、スイッチ素子Q5、Q6、Q7、Q8と、共振回路を構成するインダクタLrおよびキャパシタCrと、キャパシタCoと、電流検出回路10と、を備える。電流検出回路10は、電流検出部101およびインダクタLmaを備え、トランスの1次側に流れる電流を検出することで、トランスの2次側に流れる電流を間接的に測定する。
 まず、トランスTの1次側におけるスイッチング電源1Aの構成について説明する。トランスTの1次側には、いわゆるハーフブリッジ回路が設けられる。具体的には、スイッチ素子Q5、Q6は、NチャネルMOSFETで構成され、スイッチ素子Q5のドレインには、直流電源Vinの正極が接続され、スイッチ素子Q6のソースには、直流電源Vinの負極が接続される。スイッチ素子Q5、Q6のそれぞれのゲートには、図示しない制御部が接続される。
 スイッチ素子Q5のソースとスイッチ素子Q6のドレインとには、インダクタLrおよび電流検出部101を介して、トランスTの1次巻線T1の一端が接続される。トランスTの1次巻線T1の他端には、キャパシタCrを介して、直流電源Vinの負極が接続される。なお、Lmは、トランスTの1次巻線T1の励磁インダクタンスを示すものとする。
 インダクタLmaは、インダクタLrと、電流検出部101と、トランスTの1次巻線T1と、を直列に接続した直列接続部に、並列接続されており、インダクタLmaのインダクタンスは、トランスTの1次巻線T1の励磁インダクタンスLmより小さい。このため、トランスTの1次側に発生する励磁電流Imagのうち少なくとも一部は、トランスTの1次巻線T1ではなく、インダクタLmaに流れる。
 ここで、トランスTの1次側に流れる共振電流をIとし、トランスTの1次側に流れる1次電流をIとし、トランスTの2次側に流れる2次電流をIとし、電流検出部101により検出される検出電流をIamとする。また、トランスTの1次側に発生する励磁電流Imagのうち、インダクタLmaに流れるものをバイパス励磁電流Imag1とし、トランスTの1次巻線T1に流れるものを検出励磁電流Imag2とする。すると、以下の式(1)および式(2)が成り立つ。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 次に、トランスTの2次側におけるスイッチング電源1Aの構成について説明する。スイッチ素子Q7、Q8は、PチャネルMOSFETで構成され、スイッチ素子Q8のソースには、トランスTの2次巻線T2の一端が接続され、スイッチ素子Q7のソースには、トランスTの2次巻線T2の他端が接続される。トランスTの2次巻線T2のセンタータップAには、キャパシタCoの一方の電極が接続されるとともに、負荷200の一端が接続される。スイッチ素子Q7、Q8のそれぞれのドレインには、キャパシタCoの他方の電極が接続されるとともに、負荷200の他端が接続される。
[スイッチング電源1Aの動作]
 図9は、スイッチング電源1Aのタイミングチャートである。図9に示すように、検出励磁電流Imag2のピークは、バイパス励磁電流Imag1のピークより大幅に小さく、略「0」に等しい。すなわち、トランスTの1次側に発生する励磁電流Imagのうち、大部分がインダクタLmaに流れ、トランスTの1次巻線T1にはほとんど流れなくなっている。このため、電流検出部101により検出される検出電流Iamと、トランスTの1次側に流れる共振電流Iとは、略等しくなる。
 以上のスイッチング電源1Aによれば、以下の効果を奏することができる。
 キャパシタCrとともに共振回路を構成するインダクタLrと、電流検出部101と、トランスTの1次巻線T1と、を直列に接続した直列接続部に、インダクタLmaが並列接続される。そして、インダクタLmaのインダクタンスは、トランスTの1次巻線T1の励磁インダクタンスLmより小さい。これによれば、トランスTの1次側に発生する励磁電流Imagのうち、大部分がインダクタLmaに流れ、トランスTの1次巻線T1にはほとんど流れなくなる。このため、電流検出部101により検出される検出電流Iamに含まれる励磁電流Imagを減少させて、トランスTの1次側に流れる共振電流Iの検出精度を向上させることができる。したがって、構成部品の増加や回路構成の複雑化を抑制しつつ、トランスTの2次側に流れる2次電流Iを高精度に測定できる。
<第3実施形態>
[スイッチング電源1Bの構成]
 図10は、本発明の第3実施形態に係る電流検出回路10を備えるスイッチング電源1Bの回路図である。スイッチング電源1Bは、図8に示した本発明の第2実施形態に係るスイッチング電源1Aとは、キャパシタCrとともに共振回路を構成するインダクタがインダクタLr1、Lr2の2つであることと、電流検出回路10の接続される位置と、が異なる。なお、スイッチング電源1Bについて、スイッチング電源1Aと同一構成要件については、同一符号を付し、その説明を省略する。
 インダクタLr1の一端には、スイッチ素子Q5のソースと、スイッチ素子Q6のドレインと、が接続され、インダクタLr1の他端には、電流検出部101を介してトランスTの1次巻線T1の一端が接続される。インダクタLr2の一端には、トランスTの1次巻線T1の他端が接続され、インダクタLr2の他端には、キャパシタCrを介して直流電源Vinの負極が接続される。
 インダクタLmaは、インダクタLr1と、電流検出部101と、トランスTの1次巻線T1と、インダクタLr2と、を直列に接続した直列接続部に、並列接続されている。
 以上のスイッチング電源1Bによれば、スイッチング電源1Aと同様の効果を奏することができる。
 本発明は、上述の実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。
 例えば、上述の第2実施形態および第3実施形態では、インダクタLmaは、スイッチ素子Q5のソースと、スイッチ素子Q6のドレインと、に直接接続されているが、これに限らない。例えば、図8において、スイッチ素子Q5のソースとスイッチ素子Q6のドレインとの接続点を点Pとし、インダクタLrとインダクタLmaとの接続点を点Qとすると、点Pと点Qとの間にインダクタを設け、このインダクタを介して点Pと点Qとを接続してもよい。また、例えば、図10において、スイッチ素子Q5のソースとスイッチ素子Q6のドレインとの接続点を点Xとし、インダクタLr1とインダクタLmaとの接続点を点Yとすると、点Xと点Yとの間にインダクタを設け、このインダクタを介して点Xと点Yとを接続してもよい。
 また、上述の第2実施形態および第3実施形態では、スイッチング電源1A、1Bは、電流共振型であるものとしたが、これに限らない。なお、電流共振型のスイッチング電源であるスイッチング電源1A、1Bでは、インダクタLrは、キャパシタCrとともに共振回路を構成するものとしたが、電流共振型以外のスイッチング電源では、インダクタLrは、ゼロボルトスイッチング(ZVS)を行うために設けられる。
 また、上述の第2実施形態および第3実施形態では、スイッチング電源1A、1Bには、ハーフブリッジ回路が設けられるものとしたが、これに限らず、例えば、フルブリッジ回路や、フォワード型の回路が設けられるものとしてもよい。
 1;DC/DCコンバータ
 1A,1B;スイッチング電源
 10;電流検出回路
 11;変圧器
 12;スイッチ回路
 13;整流回路
 14;平滑回路
 15;共振回路
 18;直流電源
 101;電流検出部
 111;1次巻線
 112;2次巻線
 C,C,C,C;キャパシタ
 CT;電流検出器(カレントトランス)
 L,L,Lm,Lma,L,L,Lr1,Lr2;インダクタ
 Q,Q11,Q12,Q13,Q14,Q21,Q22;スイッチ
 Q5,Q6,Q7,Q8;スイッチ素子
 T;トランス

Claims (6)

  1.  トランスを備えたスイッチング電源において、当該トランスの1次側に流れる電流を検出する電流検出回路であって、
     前記トランスの1次巻線に直列に接続され、当該トランスの1次側に流れる電流を検出する電流検出手段と、
     前記トランスの1次巻線と、前記電流検出手段と、が直列に接続された直列接続部に並列接続されたインダクタと、を備えることを特徴とする電流検出回路。
  2.  前記インダクタのインダクタンスは、前記トランスの1次巻線の励磁インダクタンスより小さいことを特徴とする請求項1に記載の電流検出回路。
  3.  トランスと、当該トランスの1次巻線に直列接続された第1インダクタと、を備えたスイッチング電源において、当該トランスの1次側に流れる電流を検出する電流検出回路であって、
     前記トランスの1次巻線に直列に接続され、当該トランスの1次側に流れる電流を検出する電流検出手段と、
     前記トランスの1次巻線と、前記第1インダクタと、前記電流検出回路と、が直列に接続された直列接続部に並列接続された第2インダクタと、を備えることを特徴とする電流検出回路。
  4.  前記第2インダクタのインダクタンスは、前記トランスの1次巻線の励磁インダクタンスより小さいことを特徴とする請求項3に記載の電流検出回路。
  5.  変圧器の1次巻線に直列に電流検出器を接続し、前記1次巻線と前記電流検出器との直列接続に並列に、インダクタを接続したことを特徴とする変圧器電流測定システム。
  6.  前記インダクタは、前記1次巻線の励磁インダクタンスよりも小さいインダクタンスを有することを特徴とする請求項5に記載の変圧器電流測定システム。
PCT/JP2010/000697 2009-02-06 2010-02-05 電流検出回路および変圧器電流測定システム WO2010090032A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/061,964 US8988064B2 (en) 2009-02-06 2010-02-05 Current detection circuit and transformer current measuring system
EP10738373.9A EP2333944B1 (en) 2009-02-06 2010-02-05 Current detecting circuit and transformer current measuring system
CN201080001448.5A CN102017380B (zh) 2009-02-06 2010-02-05 电流检测电路及变压器电流测定***
KR1020107022950A KR101155698B1 (ko) 2009-02-06 2010-02-05 전류 검출 회로 및 변압기 전류 측정 시스템
JP2010549411A JP5092023B2 (ja) 2009-02-06 2010-02-05 電流検出回路および変圧器電流測定システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009026813 2009-02-06
JP2009-026813 2009-02-06
JP2009-176386 2009-07-29
JP2009176386 2009-07-29

Publications (1)

Publication Number Publication Date
WO2010090032A1 true WO2010090032A1 (ja) 2010-08-12

Family

ID=42541941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000697 WO2010090032A1 (ja) 2009-02-06 2010-02-05 電流検出回路および変圧器電流測定システム

Country Status (6)

Country Link
US (1) US8988064B2 (ja)
EP (1) EP2333944B1 (ja)
JP (1) JP5092023B2 (ja)
KR (1) KR101155698B1 (ja)
CN (1) CN102017380B (ja)
WO (1) WO2010090032A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102141583A (zh) * 2010-12-29 2011-08-03 深圳市火天光电科技有限公司 Led电流检测电路
CN103166468A (zh) * 2011-12-07 2013-06-19 康舒科技股份有限公司 具低感测电流的交换式电源供应器及其电流感测模块
EP2528218A3 (en) * 2011-05-25 2015-09-09 Hitachi Ltd. DC power supply
JP2017041997A (ja) * 2015-08-21 2017-02-23 矢崎総業株式会社 電力変換装置
KR20200035834A (ko) * 2018-09-26 2020-04-06 페가트론 코포레이션 다중 입력 전압 컨버터

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10022813B2 (en) 2010-05-28 2018-07-17 Esab Ab Short arc welding system
US10189107B2 (en) * 2010-05-28 2019-01-29 Esab Ab Short arc welding system
CN102411084B (zh) * 2011-07-26 2014-02-12 东北电力科学研究院有限公司 变压器铁芯接地电流在线监测装置及其监测方法
US8823370B2 (en) * 2011-08-31 2014-09-02 Virginia Tech Intellectual Properties, Inc. High frequency loss measurement apparatus and methods for inductors and transformers
DE102012104103A1 (de) * 2012-05-10 2013-11-14 Sma Solar Technology Ag Schaltungsanordnung und Verfahren zur Ansteuerung mindestens eines Schaltorgans eines Spannungswandlers
TWI454031B (zh) * 2012-06-04 2014-09-21 Darfon Electronics Corp 三埠單相單極微換流器及其操作方法
TWI478477B (zh) * 2012-12-25 2015-03-21 Darfon Electronics Corp 三埠單相單級換流器及其操作方法
KR101398224B1 (ko) * 2012-12-26 2014-05-23 현대모비스 주식회사 전기 자동차용 저전압 직류 컨버터의 전류 검출 장치
DE102013207475B4 (de) * 2013-04-24 2022-08-11 Robert Bosch Gmbh Spannungswandler mit einer Phase-Shifted-Full-Bridge
US9444346B2 (en) * 2013-10-17 2016-09-13 Futurewei Technologies, Inc. Apparatus and efficiency point tracking method for high efficiency resonant converters
KR20150071575A (ko) * 2013-12-18 2015-06-26 엘에스산전 주식회사 Ldc의 입력 전류 정보를 이용한 ldc 제어 장치
CN104796028B (zh) * 2014-01-21 2018-10-23 北京动力源科技股份有限公司 一种全桥电路及含有该电路的大功率直流电源
EP3400643A4 (en) * 2016-01-05 2019-08-28 Redisem Ltd. POWER CONTROL CIRCUIT
CN105527522A (zh) * 2016-01-14 2016-04-27 苏州成科自控设备有限公司 一种变压器检测装置
US10008938B2 (en) * 2016-05-09 2018-06-26 Omron Corporation Power conversion device
JP6913599B2 (ja) * 2017-10-17 2021-08-04 日立Astemo株式会社 制御装置
TWI722905B (zh) * 2020-05-22 2021-03-21 茂達電子股份有限公司 電感電流偵測電路
DE102022210963A1 (de) 2022-10-18 2024-04-18 Zf Friedrichshafen Ag Verfahren zur Bestimmung eines Sekundärstroms in einem Rotor einer elektrischen Maschine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05260741A (ja) * 1992-03-10 1993-10-08 Nemitsuku Ramuda Kk スイッチング電源装置の電流検出回路
JPH07322613A (ja) 1994-05-26 1995-12-08 Murata Mfg Co Ltd 電圧共振コンバータ
JPH10271817A (ja) * 1997-03-28 1998-10-09 Oki Electric Ind Co Ltd 過電流保護回路
WO2005025043A1 (ja) 2003-09-02 2005-03-17 Sanken Electric Co., Ltd. 同期整流型dc−dcコンバータ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717994A (en) * 1986-12-11 1988-01-05 Zenith Electronics Corporation Current mode control for DC converters operating over 50% duty cycle
US4769754A (en) * 1987-07-27 1988-09-06 Miller Electric Mfg., Co. Stabilized welding power source including a series-resonant current-regulated converter using a transformer having an air-gapped core
US5068776A (en) * 1990-11-29 1991-11-26 International Business Machines Corporation Switched-mode DC-DC power converter for reducing effects of magnetization current
US6590787B2 (en) * 2000-12-07 2003-07-08 Sony Corporation Wide range zero voltage switching resonance type converter
JP3494223B2 (ja) * 2001-12-03 2004-02-09 サンケン電気株式会社 Dc−dcコンバ−タ
DE10257578A1 (de) * 2001-12-21 2003-07-03 Fuji Electric Co Ltd Schaltnetzteil
EP1560323A1 (en) * 2002-10-21 2005-08-03 Sanken Electric Co., Ltd. Dc converter
JP2004201385A (ja) * 2002-12-17 2004-07-15 Shindengen Electric Mfg Co Ltd Dc/dcコンバータ回路
JP4044861B2 (ja) 2003-04-03 2008-02-06 三菱電機株式会社 電力変換装置およびその電力変換装置を備える電力変換システム装置
DE112006002299T5 (de) * 2005-09-01 2008-06-26 National University Corporation Saitama University Kontaktfreie Stromzuführvorrichtung
US7615989B2 (en) * 2006-10-06 2009-11-10 Honeywell International Inc. Method and apparatus for DC integrated current sensor
WO2008104919A1 (en) * 2007-02-27 2008-09-04 Nxp B.V. Load current detection in electrical power converters
JP4320787B2 (ja) * 2007-05-21 2009-08-26 株式会社村田製作所 スイッチング電源装置
CN101425751B (zh) 2007-11-02 2010-09-08 台达电子工业股份有限公司 一种谐振转换器***及其控制方法
KR101145637B1 (ko) * 2010-06-23 2012-05-23 현대자동차주식회사 전압변환기의 진단장치 및 방법
JP2014089061A (ja) * 2012-10-29 2014-05-15 Sanken Electric Co Ltd 電流検出回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05260741A (ja) * 1992-03-10 1993-10-08 Nemitsuku Ramuda Kk スイッチング電源装置の電流検出回路
JPH07322613A (ja) 1994-05-26 1995-12-08 Murata Mfg Co Ltd 電圧共振コンバータ
JPH10271817A (ja) * 1997-03-28 1998-10-09 Oki Electric Ind Co Ltd 過電流保護回路
WO2005025043A1 (ja) 2003-09-02 2005-03-17 Sanken Electric Co., Ltd. 同期整流型dc−dcコンバータ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102141583A (zh) * 2010-12-29 2011-08-03 深圳市火天光电科技有限公司 Led电流检测电路
EP2528218A3 (en) * 2011-05-25 2015-09-09 Hitachi Ltd. DC power supply
CN103166468A (zh) * 2011-12-07 2013-06-19 康舒科技股份有限公司 具低感测电流的交换式电源供应器及其电流感测模块
JP2017041997A (ja) * 2015-08-21 2017-02-23 矢崎総業株式会社 電力変換装置
KR20200035834A (ko) * 2018-09-26 2020-04-06 페가트론 코포레이션 다중 입력 전압 컨버터
KR102278571B1 (ko) * 2018-09-26 2021-07-19 페가트론 코포레이션 다중 입력 전압 컨버터
US11121548B2 (en) 2018-09-26 2021-09-14 Pegatron Corporation Multi-input voltage converter

Also Published As

Publication number Publication date
CN102017380A (zh) 2011-04-13
US8988064B2 (en) 2015-03-24
EP2333944B1 (en) 2018-12-19
CN102017380B (zh) 2014-05-28
JP5092023B2 (ja) 2012-12-05
EP2333944A1 (en) 2011-06-15
JPWO2010090032A1 (ja) 2012-08-09
EP2333944A4 (en) 2016-03-02
US20110163738A1 (en) 2011-07-07
KR20100124818A (ko) 2010-11-29
KR101155698B1 (ko) 2012-06-12

Similar Documents

Publication Publication Date Title
JP5092023B2 (ja) 電流検出回路および変圧器電流測定システム
Ortiz et al. Flux balancing of isolation transformers and application of “the magnetic ear” for closed-loop volt–second compensation
JP4485337B2 (ja) 電流検出回路、電源制御回路、電源装置、電源システム、および電子装置
US9214869B2 (en) Multiple use of a current transformer
US20070115700A1 (en) Transformer with current sensing means
US20070133239A1 (en) Switching power supply unit and voltage detection circuit
US10491136B2 (en) Bridge-less type electric power conversion device having current detection circuit of current transformer type
JP5552949B2 (ja) アクティブクランプ型dcdcコンバータ
JP6607495B2 (ja) 電力変換装置
US9768701B2 (en) Synchronous rectifier control using sensing of alternating current component
EP1783788A2 (en) Transformer with current sensing means
JP2007519385A (ja) 電流検知のための方法及び装置
Ortiz et al. Application of the magnetic ear for flux balancing of a 160kW/20kHz DC-DC converter transformer
JP4271673B2 (ja) スイッチング電源装置
JP4720514B2 (ja) 共振コンバータにおける電流検出方式
JP5510846B2 (ja) 共振型dcdcコンバータ
CN113162421A (zh) 一种电源电路及电源设备
CN117294117B (zh) 多绕组串联高压反激电源原边电流检测电路及检测方法
JP2010093937A (ja) 絶縁型コンバータ
JP2010093938A (ja) 絶縁型コンバータ
JP3557385B2 (ja) スイッチング電源装置
JP5917319B2 (ja) 電源装置
JP2017028784A (ja) スイッチング電源回路
JPH0819253A (ja) 1石電流複合共振型コンバーター回路
JP2003017339A (ja) チョークコイル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001448.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738373

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010549411

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107022950

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13061964

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010738373

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE