WO2010089264A1 - Verfahren zur herstellung von biscarbonaten - Google Patents

Verfahren zur herstellung von biscarbonaten Download PDF

Info

Publication number
WO2010089264A1
WO2010089264A1 PCT/EP2010/051141 EP2010051141W WO2010089264A1 WO 2010089264 A1 WO2010089264 A1 WO 2010089264A1 EP 2010051141 W EP2010051141 W EP 2010051141W WO 2010089264 A1 WO2010089264 A1 WO 2010089264A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
alkylene
compound
groups
alkylene carbonate
Prior art date
Application number
PCT/EP2010/051141
Other languages
English (en)
French (fr)
Inventor
Rainer Klopsch
Jan Philipp Weyrauch
Kai Gumlich
Joaquim Henrique Teles
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2010089264A1 publication Critical patent/WO2010089264A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen

Definitions

  • the invention relates to a process for preparing compounds having at least two alkylene carbonate groups (abbreviated to alkylene carbonate) by reacting a compound having at least two alkylene oxide groups (abbreviated to alkylene oxide) with carbon dioxide, in which the reaction is carried out at a pressure of 12 to 40 bar.
  • Bisalkylencarbonates such as the biscarbonate of bisphenol A bisglycidyl ether, are important as starting materials for the preparation of polyurethanes. In particular, they can be used after reaction with an excess of amine compounds as amine hardeners for epoxides, as described in EP-A 661 363.
  • WO 84/03701, DE-A 3 529 263, DE-A 3600602 and DE-A 26 11 087 may be mentioned as state of the art for the production.
  • DE-A 3 529 263 and DE-A 3600602 describe the preparation of biscarbonates. According to DE-A 3529 263, the reaction of the alkylene oxide, e.g. carried out with carbon dioxide at atmospheric pressure or slightly elevated pressure.
  • DE-A 36 00 602 discloses a pressure of 1 to 98 bar, preferably a pressure of 1 to 10, in particular 1 to 3, bar.
  • WO 84/03701 and DE-A 26 11 087 describe the preparation of monoalkylene carbonates, such as ethylene carbonate or propylene carbonate. In the examples of WO 84/03701 takes place at 21 bar, DE-A 26 11 087 discloses a preferred range of 1 to 30 atmospheres.
  • the object of the present invention was to provide such a method.
  • a compound having at least two alkylene oxide groups is reacted with carbon dioxide to form a compound having at least two alkylene carbonate groups.
  • the carbon dioxide is added to the alkylene oxide group to form the cyclic alkylene carbonate group.
  • compounds having 2 to 4 alkylene oxide groups are suitable.
  • Particularly preferred is a compound having two Glyidylethergrup- pen, which to the corresponding Bisalkylencarbonat of formula I.
  • the radical R in formula I stands for any organic group having 2 to 30 C atoms, preferably 6 to 30 C atoms and in particular 12 to 24 C atoms.
  • the radical R can also contain heteroatoms such as oxygen, nitrogen and sulfur.
  • the radical R is a hydrocarbon group which contains no heteroatoms.
  • R is a hydrocarbon group which contains at least one, preferably one or two, more preferably two aromatic ring systems.
  • the aromatic ring system may be mentioned in particular the phenyl ring.
  • the bisalkylene carbonate is the
  • Bisphenol A bisglycerol carbonyl ethers of the formula II (4,4 '- ((1-methylethylidenes) bis (4,1-phenyleneoxymethylene)) bis (1,3-dioxolan-2-ones):
  • the starting compound is the bisphenol A bisglycidyl ether.
  • the reaction is carried out according to the invention at a pressure of 12 to 40 bar, preferably at a pressure of 12 to 35 bar and more preferably from 15 to 30 bar, in particular 20 to 30 bar.
  • the reaction is preferably carried out at a temperature of 50 to 150 0 C, more preferably at 60 to 100 0 C and most preferably at 70 to 90 ° C.
  • the reaction preferably takes place in the presence of a solvent.
  • the solvent is chosen so that the product of the reaction, for example the bisalkylene carbonate in the solvent is not or only slightly soluble and therefore can be separated as a solid from the reaction solution.
  • the alkylene carbonate is preferably at 20 0 C a solubility in the solvent used of not more than 20 parts by weight alkylene carbonate, especially a maximum of 10 parts by weight, more preferably at most 5 parts by weight of alkylene carbonate in 100 parts by weight of solvent.
  • Suitable solvents are, in particular, polar, aprotic solvents, for example tetrahydrofuran or dialkyl carbonates. Particularly preferred solvents are dialkyl carbonates, most preferably dimethyl carbonate.
  • the reaction is carried out in the presence of a catalyst.
  • catalysts are e.g. Phosphorus compounds having a trivalent phosphorus atom, e.g. tertiary phosphines such as trialkyl or triarylphosphine, or salts of quaternary ammonium compounds into consideration.
  • Phosphorus compounds having a trivalent phosphorus atom e.g. tertiary phosphines such as trialkyl or triarylphosphine, or salts of quaternary ammonium compounds into consideration.
  • Preferred salts of the quaternary ammonium compounds are those of the formula
  • R a , Rb, Rc and Rd independently represent a hydrocarbon group having 1 to 12 C-atoms, for example an alkyl or aryl group, and Y "is an anion, in particular a halide, particularly preferably a chloride.
  • Preferred salts of the quaternary ammonium compounds are the halides, especially chlorides and bromides.
  • Examples include benzyltrimethylammonium chloride or tetraethylammonium bromide.
  • the above salt of the quaternary ammonium compound may be used in combination with a metal salt.
  • a metal salt for example, metal halides such as alkali metal chlorides, alkali bromides, Alkaliiodi- de, zinc halides considered. Examples include potassium iodide and ZnBr2.
  • the amount of the catalysts used is preferably at least 0.1 part by weight, more preferably at least 0.3 part by weight and most preferably at least 0.5 part by weight per 100 parts by weight of alkylene oxide.
  • the amount of the catalysts used is preferably not more than 20 parts by weight, more preferably not more than 15 parts by weight per 100 parts by weight of alkylene oxide. In general, a content of between 0.5 and 10 parts by weight per 100 parts by weight of alkylene oxide is sufficient.
  • the implementation of the reaction can be carried out in a conventional manner in an autoclave.
  • the starting compounds i. the alkylene oxide, solvent and catalyst can be placed in the autoclave and then the desired pressure is set by introducing the gaseous carbon dioxide.
  • the resulting alkylene carbonate precipitates out of the reaction solution as a solid and can be easily separated after completion of the reaction.
  • the product obtained may optionally contain compounds in which not all alkylene oxide groups have been converted to alkylene carbonate groups.
  • the reaction is very simple and almost complete, so that more than 70 mol%, in particular more than 85 mol%, very particularly preferably more than 90 mol% of all alkylene oxide groups are converted into alkylene carbonate groups.
  • the epoxy number of the product obtained is preferably greater than 2000 and more preferably greater than 3000.
  • the epoxy number is the quotient of the mass of the product in grams and the number of moles of epoxy groups present. The lower the number of remaining epoxy groups, the greater the epoxy number.
  • the resulting alkylene carbonate, in particular bisalkylene carbonate is suitable as part of a two-component (2-K) system.
  • the one component (1st component) is the alkylene carbonate, in particular bisalkylene carbonate, alone or optionally in admixture with other compounds, the other (2.) component is preferably an amino compound or mixture of amino compounds.
  • the 2-component system can be used, for example, as a paint or adhesive system or for the production of composites.
  • amino compounds having at least two amino groups which may be secondary or primary amino groups, are suitable as the second component.
  • Preferred compounds having two secondary amino groups are in particular cyclic compounds such as piperazine.
  • Particularly preferred are amino compounds having at least two primary amino groups.
  • the two components are usually combined just before use. For amino compounds having more than two primary amino groups and a bisalkylene carbonate, crosslinked polymer systems are obtained.
  • Such a 2-component system represents an alternative to epoxy or PU systems.
  • the alkylene carbonate in particular bisalkylene carbonate
  • an amino compound having at least two primary or secondary amino groups Preferred compounds having two secondary amino groups are in turn cyclic compounds such as piperazine. Particularly preferred are amino compounds having at least two primary amino groups.
  • the amino groups are preferably present in excess in relation to the carbonate groups.
  • the molar ratio of the primary amino groups to the carbonate groups is 2: 1; e.g. Two moles of diamine are used per mole of bisalkylene carbonate.
  • the resulting reaction product then has the corresponding number of free, reactive amino groups and is suitable as an amine hardener for epoxy resins.
  • BGE carbonate is obtained as a colorless solid (melting point 148 to 150 ° C.), if appropriate mixed with unreacted educt.
  • a measure of the conversion of glycidyl groups into carbonate groups is the epoxy number (mass of products / mole of epoxy groups); the higher the epoxy number, the lower the content of epoxy groups. The epoxy number was determined according to DIN standard ASTM D 1652.
  • the examples marked V are comparative examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Verfahren zur Herstellung von Verbindungen mit mindestens zwei Alkylencarbonatgruppen (kurz Alkylencarbonat genannt) durch Umsetzung einer Verbindung mit mindestens zwei Alkylenoxidgruppen (kurz Alkylenoxid genannt) mit Kohlendioxid, dadurch gekennzeichnet, dass die Umsetzung bei einem Druck von 12 bis 40 bar erfolgt.

Description

Verfahren zur Herstellung von Biscarbonaten
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung von Verbindungen mit mindestens zwei Alkylencarbonatgruppen (kurz Alkylencarbonat genannt) durch Umsetzung einer Verbindung mit mindestens zwei Alkylenoxidgruppen (kurz Alkylenoxid genannt) mit Kohlendioxid, bei dem die Umsetzung bei einem Druck von 12 bis 40 bar erfolgt.
Bisalkylencarbonate wie das Biscarbonat des Bisphenol-A-bisglycidylether sind als Ausgangstoffe für die Herstellung von Polyurethanen von Bedeutung. Insbesondere können sie nach Umsetzung mit einem Überschuss an Aminverbindungen als Amin- härter für Epoxide eingesetzt werden, wie in EP-A 661 363 beschrieben ist. Als Stand der Technik zur Herstellung seien WO 84/03701 , DE-A 3 529 263, DE-A 3600602 und DE-A 26 11 087 genannt.
DE-A 3 529 263 und DE-A 3600602 beschreiben die Herstellung von Biscarbonaten. Gemäß DE-A 3529 263 wird die Umsetzung des Alkylenoxids, z.B. mit Kohlendioxid bei Normaldruck oder geringfügig erhöhtem Druck durchgeführt. DE-A 36 00 602 of- fenbart einen Druck von 1 bis 98 bar, bevorzugt ist ein Druck von 1 bis 10, insbesondere 1 bis 3 bar.
WO 84/03701 und DE-A 26 11 087 beschreiben die Herstellung von Monoalkylencar- bonaten, wie Ethylencarbonat oder Propylencarbonat. In den Beispielen der WO 84/03701 erfolgt bei 21 bar, DE-A 26 11 087 offenbart einen bevorzugten Bereich von 1 bis 30 Atmosphären.
Gegenüber dem Stand der Technik ist ein Verfahren gewünscht, durch das bei einfacher Durchführung eine möglichst hohe Umsetzung der Alkylenoxidgruppen zu Alky- lencarbonatgruppen erreicht wird.
Aufgabe der vorliegenden Erfindung war, ein derartiges Verfahren zur Verfügung zu stellen.
Demgemäß wurde das eingangs definierte Verfahren gefunden.
Bei dem erfindungsgemäßen Verfahren wird eine Verbindung mit mindestens zwei Alkylenoxidgruppen mit Kohlendioxid zu einer Verbindung mit mindestens zwei Alkylencarbonatgruppen umgesetzt. Das Kohlendioxid addiert sich dabei an die Alkyleno- xidgrupe unter Ausbildung der cyclischen Alkylencarbonatgruppe.
Es kommen insbesondere Verbindungen mit 2 bis 4 Alkylenoxidgruppen in Betracht. Vorzugsweise handelt es sich um eine Verbindung mit zwei Alkylenoxidgruppen (kurz Bisalkylenoxid genannt), welche zu der entsprechenden Verbindung mit zwei Alkylen- carbonatgruppen (kurz Bisalkylencarbonat genannt) umgesetzt wird.
Besonders bevorzugt handelt es sich um eine Verbindung mit zwei Glyidylethergrup- pen, welche zu dem entsprechenden Bisalkylencarbonat der Formel I
Figure imgf000003_0001
umgesetzt wird.
Der Rest R in Formel I steht dabei für eine beliebige organische Gruppe mit 2 bis 30 C- Atomen, vorzugsweise 6 bis 30 C-Atomen und insbesondere 12 bis 24 C-Atomen.
Der Rest R kann neben Kohlenstoff- und Wasserstoffatomen auch Heteroatome wie Sauerstoff, Stickstoff und Schwefel enthalten. In einer bevorzugten Ausführungsform handelt es sich bei dem Rest R um eine Kohlenwasserstoffgruppe, welche keine Heteroatome enthält.
In einer besonders bevorzugten Ausführungsform steht R für eine Kohlenwasserstoffgruppe, welche mindestens eins, vorzugsweise ein oder zwei, besonders bevorzugt zwei aromatische Ringsysteme enthält. Als aromatisches Ringsystem sei insbesondere der Phenylring genannt.
In einer besonderen Ausführungsform handelt es sich um zwei Phenylringe, die über eine Einfachbindung oder eine Kohlenwasserstoffgruppe verbunden sind; die Phenylringe können durch weitere Kohlenwasserstoffgruppen, insbesondere Alkylgruppen substituiert sein.
Ganz besonders bevorzugt handelt es sich bei dem Bisalkylencarbonat um den
Bisphenol-A-bisglycerincarbonatylether der Formel Il (4,4'-((1-methylethylidene)bis(4,1- phenyleneoxymethylene))bis(1 ,3-dioxolan-2-one):
Figure imgf000003_0002
Entsprechend handelt es sich bei der Ausgangsverbindung um den Bisphenol-A- bisglycidylether.
Die Umsetzung erfolgt erfindungsgemäß bei einem Druck von 12 bis 40 bar, vorzugsweise bei einem Druck von 12 bis 35 bar und besonders bevorzugt von 15 bis 30 bar, insbesondere 20 bis 30 bar.
Die Umsetzung erfolgt vorzugsweise bei einer Temperatur von 50 bis 1500C, besonders bevorzugt bei 60 bis 1000C und ganz besonders bevorzugt bei 70 bis 90°C.
Vorzugsweise erfolgt die Umsetzung in Gegenwart eines Lösemittels. Vorzugsweise wird das Lösemittel so gewählt, dass das Produkt der Umsetzung, z.B. das Bisalkylen- carbonat in dem Lösemittel nicht oder nur wenig löslich ist und daher als Feststoff aus der Reaktionslösung abgetrennt werden kann. Das Alkylencarbonat hat vorzugsweise bei 200C eine Löslichkeit in dem verwendeten Lösemittel von maximal 20 Gew.-Teile Alkylencarbonat, insbesondere maximal 10 Gew.-Teilen, besonders bevorzugt maximal 5 Gew.-Teilen Alkylencarbonat in 100 Gew.-Teilen Lösemittel. Geeignete Lösemittel sind insbesondere polare, aprotische Lösemittel z.B. Tetrahydro- furan oder Dialkylcarbonate. Besonders bevorzugte Lösemittel sind Dialkylcarbonate, ganz besonders bevorzugt Dimethylcarbonat.
Vorzugsweise wird die Umsetzung in Gegenwart eines Katalysators durchgeführt.
Als Katalysatoren kommen z.B. Phosphorverbindungen mit einem dreiwertigen Phosphoratom, z.B. tertiäre Phosphine wie Trialkyl- oder Triarylphosphin, oder Salze von quaternären Ammoniumverbindungen in Betracht.
Als Salze der quaternäre Ammoniumverbindungen bevorzugt sind solche der Formel
RaRbRcRd N+ Y-,
worin Ra , Rb, Rc und Rd unabhängig voneinander für eine Kohlenwasserstoffgruppe mit 1 bis 12 C-Atomen, z.B. eine Alkyl- oder Arylgruppe, stehen und Y" für ein Anion, insbesondere ein Halogenid, besonders bevorzugt ein Chlorid steht.
Bevorzugte Salze der quaternären Ammoniumverbindungen sind die Halogenide, insbesondere Chloride und Bromide.
Genannt seien z.B. Benzyltrimethylammoniumchlorid oder Tetraethylammoniumbro- mid. In einer besonderen Ausführungsform kann das vorstehende Salz der quaternären Ammoniumverbindung in Kombination mit einem Metallsalz verwendet werden. Als Metallsalz kommen z.B. Metallhalogenide wie Alkalichloride, Alkalibromide, Alkaliiodi- de, Zinkhalogenide in betracht. Genannt seien z.B. Kaliumjodid und ZnBr2.
Die Menge der verwendeten Katalysatoren beträgt vorzugsweise mindestens 0,1 Gewichtsteil, besonders bevorzugt mindestens 0,3 Gewichtsteile und ganz besonders bevorzugt mindestens 0,5 Gewichtsteile auf 100 Gewichtsteile Alkylenoxid. Die Menge der verwendeten Katalysatoren beträgt vorzugsweise nicht mehr als 20 Gewichtsteile, besonders bevorzugt nicht mehr als 15 Gewichtsteile auf 100 Gewichtsteile Alkylenoxid. Im Allgemeinen ist ein Gehalt zwischen 0,5 und 10 Gewichtsteilen auf 100 Gewichtsteile Alkylenoxid ausreichend.
Die Durchführung der Umsetzung kann in üblicher weise in einem Autoklaven erfolgen.
Die Ausgangsverbindungen, d.h. das Alkylenoxid, Lösemittel und Katalysator können im Autoklaven vorgelegt werden und anschließend wird durch Einleiten des gasförmigen Kohlendioxid der gewünschte Druck eingestellt.
Das entstehende Alkylencarbonat fällt aus der Reaktionslösung als Feststoff aus und kann nach beendeter Reaktion in einfacher Weise abgetrennt werden.
Das erhaltene Produkt kann gegebenenfalls Verbindungen enthalten, in denen nicht alle Alkylenoxidgruppen in Alkylencarbonatgruppen umgewandelt wurden. Es ist jedoch ein Vorteil der Erfindung, dass die Umsetzung sehr einfach und nahezu vollständig verläuft, so dass mehr als 70 mol%, insbesondere mehr als 85 mol % ganz besonders bevorzugt mehr als 90 mol % aller Alkylenoxidgruppen in Alkylencarbonatgruppen umgewandelt sind.
Die Epoxyzahl des erhaltenen Produkts ist vorzugsweise größer 2000 und besonders bevorzugt größer 3000. Die Epoxyzahl ist der Quotient aus der Masse des Produkts in Gramm und der Molzahl der vorhandenen Epoxygruppen. Die Epoxyzahl ist umso größer, je geringer die Anzahl der noch verbliebenen Epoxygrupen ist.
Das erhaltene Alkylencarbonat, insbesondere Bisalkylencarbonat, eignet sich als Bestandteil eines zweikomponentigen (2-K) Systems. Die eine Komponente (1. Komponente) ist das Alkylencarbonat, insbesondere Bisalkylencarbonat, allein oder gegebenenfalls im Gemisch mit weiteren Verbindungen, die andere (2.) Komponente ist vorzugsweise eine Aminoverbindung oder Gemisch von Aminoverbindungen. Das 2- K-system kann z.B. als Lack- oder Klebstoff System oder zur Herstellung von Composi- tes verwendet werden. Als 2. Komponente in Betracht kommen insbesondere Aminoverbindungen mit mindestens zwei Aminogruppen, wobei es sich um sekundäre oder primäre Aminogruppen handeln kann. Bevorzugte Verbindungen mit zwei sekundären Aminogruppen sind ins- besondere cyclische Verbindungen wie Piperazin. Besonders bevorzugt sind Aminoverbindungen mit mindestens zwei primären Aminogruppen. Die beiden Komponenten werden üblicherweise erst kurz vor ihrer Verwendung zusammengegeben. Bei Aminoverbindungen mit mehr zwei primären Aminogruppen und einem Bisalkylencarbonat werden vernetzte Polymersysteme erhalten. Ein derartiges 2-K-System stellt eine Al- ternative zu Epoxy- oder PU-Systemen dar.
In einer weiteren Verwendungsform kann das Alkylencarbonat, insbesondere Bisalkylencarbonat zunächst mit einer Aminoverbindung mit mindestens zwei primären oder sekundären Aminogruppen umgesetzt werden. Bevorzugte Verbindungen mit zwei sekundären Aminogruppen sind wiederum cyclische Verbindungen wie Piperazin. Besonders bevorzugt sind Aminoverbindungen mit mindestens zwei primären Aminogruppen. Bevorzugt liegen die Aminogruppen im Verhältnis zu den Carbonatgruppen im Überschuss vor. Vorzugsweise beträgt das Molverhältnis der primären Aminogruppen zu den Carbonatgruppen 2 : 1 ; z.B. werden auf 1 Mol Bisalkylencarbonat zwei Mol Diamin eingesetzt. Das erhaltene Reaktionsprodukt hat dann die entsprechende Anzahl von freien, reaktiven Aminogruppen und eignet sich als Aminhärter für Epoxyhar- ze.
Beispiele
In einem Metallautoklaven (270 Milliliter) wurden 40 g (1 18 mmol) Bisphenol-A- bisglyidylether (BGE) in 80 Milliliter Dimethylcarbonat (DMC) vorgelegt und mit 2,16 g (1 1 ,0 mmol) Benzyltrimethylammoniumchlorid (BTMACI, 98%-ig) sowie 3,41 g (15 mmol) Zinkbromid (ZnBr2 , 98%-ig) oder 2,5 g (15 mmol) KJ versetzt. Das Reaktionsgemisch wurde auf 800C erhitzt und der Druck durch Aufpressen von CO2 eingestellt. Der nach der Umsetzung entstandene farblose, wasserunlösliche Feststoff wurde mit Wasser gewaschen und im Vakuum getrocknet. Man erhält BGE-Carbonat als farblosen Feststoff (Schmelzpunkt 148 bis 1500C), gegebenenfalls im Gemisch mit nicht - umgesetztem Edukt. Maß für die Überführung von Glycidylgruppen in Carbonatgruppen ist die Epoxyzahl (Masse Produkte/Mol Epoxygruppen); je höher die Epoxyzahl, desto geringer ist der Gehalt an Epoxygruppen. Die Epoxyzahl wurde gemäß DIN Norm ASTM D 1652 bestimmt.
Figure imgf000007_0001
ie mit V gekennzeichneten Beispiele sind Vergleichsbeispiele.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Verbindungen mit mindestens zwei Alkylencarbo- natgruppen (kurz Alkylencarbonat genannt) durch Umsetzung einer Verbindung mit mindestens zwei Alkylenoxidgruppen (kurz Alkylenoxid genannt) mit Kohlendioxid, dadurch gekennzeichnet, dass die Umsetzung bei einem Druck von 12 bis 40 bar erfolgt.
2. Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass eine Verbindung mit zwei Alkylenoxidgruppen (kurz Bisalkylenoxid genannt) zur entsprechenden
Verbindung mit zwei Alkylencarbonatgruppen (kurz Bisalkylencarbonat genannt) umgesetzt wird.
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass es sich bei dem Bisalkylencarbonat um eine Verbindung der Formel I
Figure imgf000008_0001
handelt, worin R für eine organische Gruppe mit 2 bis 30 C-Atomen steht.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es sich bei dem Alkylencarbonat um den Bisphenol-A-bisglycerincarbonatylether der Formel Il
Figure imgf000008_0002
handelt.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Umsetzung in einem Lösemittel durchgeführt wird, in dem bei 200C maximal 20 Gew.-Teile Alkylencarbonat in 100 Gew.-Teilen Lösemittel löslich sind.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Umsetzung in einem Dialkylcarbonat, vorzugsweise Dimethylcarbonat, als Lösemittel durchgeführt wird.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Alkylencarbonat als Feststoff aus der Reaktionslösung abgetrennt wird.
8. Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Reaktionsprodukt eine Epoxyzahl größer 2000 hat.
9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das erhaltene Alkylencarbonat, insbesondere Bisalkylencarbonat, als Bestandteil eines zweikomponentigen (2-K) Systems verwendet wird, wobei die
2. Komponente eine Aminoverbindung ist.
10. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das erhaltene Alkylencarbonat als Bestandteil eines zweikomponentigen Lackoder Klebstoffsystems (2-K-System) oder eines 2 K-Systems zur Herstellung von Composites verwendet wird.
1 1. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das erhaltene Alkylencarbonat anschließend mit einem Überschuss einer Aminoverbindung umgesetzt wird und die erhaltene Verbindung als Aminhärter in 2-K- Systemen verwendet wird.
PCT/EP2010/051141 2009-02-05 2010-02-01 Verfahren zur herstellung von biscarbonaten WO2010089264A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09152139.3 2009-02-05
EP09152139 2009-02-05

Publications (1)

Publication Number Publication Date
WO2010089264A1 true WO2010089264A1 (de) 2010-08-12

Family

ID=42110199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/051141 WO2010089264A1 (de) 2009-02-05 2010-02-01 Verfahren zur herstellung von biscarbonaten

Country Status (1)

Country Link
WO (1) WO2010089264A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013050311A1 (de) * 2011-10-04 2013-04-11 Basf Se Epoxidharz-zusammensetzungen, enthaltend ein 2-oxo-[1,3]dioxolanderivat
WO2017156132A1 (en) * 2016-03-08 2017-09-14 3D Systems, Incorporated Non-isocyanate polyurethane inks for 3d printing
US10501572B2 (en) 2015-12-22 2019-12-10 Carbon, Inc. Cyclic ester dual cure resins for additive manufacturing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2611087A1 (de) 1975-03-17 1976-09-23 Anic Spa Verfahren zur herstellung von alkylencarbonaten
EP0069494A1 (de) * 1981-06-29 1983-01-12 The Standard Oil Company Katalytische Synthese von cyclischen Karbonaten
WO1984003701A1 (en) 1983-03-18 1984-09-27 Bp Chem Int Ltd Preparation of carbonates
DE3529263A1 (de) 1985-08-16 1987-02-19 Hoechst Ag Verfahren zur herstellung von 2-oxo-1,3-dioxolanen
DE3600602A1 (de) 1986-01-11 1987-07-16 Hoechst Ag Verfahren zur herstellung von 2-oxo-1,3-dioxolanen
DE4344510A1 (de) * 1993-12-24 1995-06-29 Hoechst Ag Flüssige Zweikomponenten-Überzugsmittel
GB2432160A (en) * 2005-11-14 2007-05-16 Sun Chemical Ltd Energy curable cyclic carbonate compositions
WO2008139315A2 (en) * 2007-05-11 2008-11-20 Sun Chemical Limited Sensitizer for cationic photoinitiators

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2611087A1 (de) 1975-03-17 1976-09-23 Anic Spa Verfahren zur herstellung von alkylencarbonaten
EP0069494A1 (de) * 1981-06-29 1983-01-12 The Standard Oil Company Katalytische Synthese von cyclischen Karbonaten
WO1984003701A1 (en) 1983-03-18 1984-09-27 Bp Chem Int Ltd Preparation of carbonates
DE3529263A1 (de) 1985-08-16 1987-02-19 Hoechst Ag Verfahren zur herstellung von 2-oxo-1,3-dioxolanen
DE3600602A1 (de) 1986-01-11 1987-07-16 Hoechst Ag Verfahren zur herstellung von 2-oxo-1,3-dioxolanen
DE4344510A1 (de) * 1993-12-24 1995-06-29 Hoechst Ag Flüssige Zweikomponenten-Überzugsmittel
EP0661363A1 (de) 1993-12-24 1995-07-05 Hoechst Aktiengesellschaft Flüssige Zweikomponenten-Überzugsmittel
GB2432160A (en) * 2005-11-14 2007-05-16 Sun Chemical Ltd Energy curable cyclic carbonate compositions
WO2008139315A2 (en) * 2007-05-11 2008-11-20 Sun Chemical Limited Sensitizer for cationic photoinitiators

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BOBYLEVA L I ET AL: "Condensation of olefin oxides with carbon dioxide in the presence of metal chloride-dimethylformamide catalyst", NEFTEHIMIA, MOSCOW, RU, vol. 36, no. 3, 1 January 1996 (1996-01-01), pages 209 - 213, XP009132962, ISSN: 0028-2421 *
GABRIEL ROKICKI, CZAJKOWSKA J: "Studies on the synthesis of poly(hydroxyurethanes)s from diepoxides carbon dioxide and diamines", POLIMERY, INSTYTUT CHEMII PRZEMYSOWEJ, WARSAW, PL, vol. 34, no. 4, 1 January 1989 (1989-01-01), pages 140/141 - 147, XP009132957, ISSN: 0032-2725 *
ONDRUSCHKA B ET AL: "Incorporation of CO2 into various terminal and internal Epoxides", COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, vol. 73, no. 1, 2008, pages 88 - 96, XP002581705 *
ROKICKI G, KURAN W: "Cyclic Carbonates Obtained by Reactions of Alkali Metal Carbonates with Epihalohydrins", BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 57, no. 6, 1984, pages 1662 - 1666, XP002581706 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013050311A1 (de) * 2011-10-04 2013-04-11 Basf Se Epoxidharz-zusammensetzungen, enthaltend ein 2-oxo-[1,3]dioxolanderivat
US10501572B2 (en) 2015-12-22 2019-12-10 Carbon, Inc. Cyclic ester dual cure resins for additive manufacturing
US10774177B2 (en) 2015-12-22 2020-09-15 Carbon, Inc. Cyclic ester dual cure resins for additive manufacturing
WO2017156132A1 (en) * 2016-03-08 2017-09-14 3D Systems, Incorporated Non-isocyanate polyurethane inks for 3d printing
US20170260418A1 (en) * 2016-03-08 2017-09-14 3D Systems, Incorporated Non-Isocyanate Polyurethane Inks for 3D Printing
US10316214B2 (en) 2016-03-08 2019-06-11 3D Systems, Incorporated Non-isocyanate polyurethane inks for 3D printing
US10487238B2 (en) * 2016-03-08 2019-11-26 3D Systems, Inc. Non-isocyanate polyurethane inks for 3D printing
EP3426737B1 (de) 2016-03-08 2021-11-24 3D Systems, Incorporated Nicht-isocyanat-polyurethantinten für den 3d-druck
EP3950855A1 (de) * 2016-03-08 2022-02-09 3D Systems, Incorporated Nicht-isocyanat-polyurethantinten für den 3d-druck

Similar Documents

Publication Publication Date Title
DE60313213T2 (de) Selektive reaktion von hexafluorpropylenoxid mit perfluoracylfluoriden
EP1076654B1 (de) Verfahren zur kontinuierlichen herstellung von 1,3-dioxolan-2-onen
EP0229622A2 (de) Verfahren zur Herstellung von 2-Oxo-1,3-dioxolanen
DE3529263A1 (de) Verfahren zur herstellung von 2-oxo-1,3-dioxolanen
DE2639564A1 (de) Verfahren zur herstellung eines reaktionsproduktes aus einer reaktiven wasserstoff enthaltenden organischen verbindung und einem epoxid
DE2615665B2 (de) Verfahren zur Herstellung von Dimethyl- oder Diäthylcarbonat
EP0477472B1 (de) Verfahren zur Herstellung cyclischer Carbonate
DE69002081T2 (de) Verfahren zur Herstellung von aromatischen Harnstoffen.
EP2675780B1 (de) Verfahren zur herstellung von divinylethern
EP1599459B1 (de) Verfahren zur herstellung von 4-fluor-1,3-dioxolan-2-on
WO2010089264A1 (de) Verfahren zur herstellung von biscarbonaten
DE10005792A1 (de) Verfahren zur Herstellung von Bisphenolalkoxylaten
DE69102254T2 (de) Produktion von Glycidylverbindungen.
DE69807700T2 (de) Herstehhung von alkalimetal diarylphosphid und cycloalkyldiarylphosphine
DE4129752C2 (de) Verfahren zur Herstellung von 2-Oxo-1,3-dioxolanen
EP0772602B1 (de) Verfahren zur herstellung 1,3-disubstituierter imidazolidinone
EP0949256B1 (de) Verfahren zur Herstellung von Isochroman-3-onen
EP1620484B1 (de) Verfahren zur herstellung von präpolymeren auf der basis von polysulfiden und polyepoxiden
WO2009115537A1 (de) Metallcarbamate aus diaminophenylmethan
EP0190568B1 (de) Verfahren zur Herstellung von Spiroorthocarbonaten
EP0411415B1 (de) Polyethercarbonsäureester und ihre Herstellung
EP0648756A1 (de) Verfahren zur Herstellung von Hydroxyoxaalkylmelaminen
EP0067361A2 (de) Verfahren zur Herstellung von 2-Alkoxy-(1,3)-dioxolanen
DE602004009458T2 (de) Verfahren zur herstellung von n-glycidylaminen
DE69015551T2 (de) Verfahren zur Herstellung von Disekundär- oder Ditertiäralkyldicarbonat.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10701551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10701551

Country of ref document: EP

Kind code of ref document: A1