WO2010084816A1 - 有機エレクトロルミネッセンス素子及びその製造方法 - Google Patents

有機エレクトロルミネッセンス素子及びその製造方法 Download PDF

Info

Publication number
WO2010084816A1
WO2010084816A1 PCT/JP2010/050327 JP2010050327W WO2010084816A1 WO 2010084816 A1 WO2010084816 A1 WO 2010084816A1 JP 2010050327 W JP2010050327 W JP 2010050327W WO 2010084816 A1 WO2010084816 A1 WO 2010084816A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
coating
temperature
substrate
Prior art date
Application number
PCT/JP2010/050327
Other languages
English (en)
French (fr)
Inventor
渉 石川
忠 関口
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2010547472A priority Critical patent/JPWO2010084816A1/ja
Publication of WO2010084816A1 publication Critical patent/WO2010084816A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/348Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising osmium

Definitions

  • the present invention relates to an organic electroluminescence (also referred to as organic EL) element and a manufacturing method thereof. Specifically, the present invention relates to an organic electroluminescence element that can be manufactured by a wet method, has high external quantum efficiency, and has improved coating unevenness, and a method for manufacturing the same.
  • Organic electroluminescence includes phosphorescent light-emitting compounds and fluorescent light compounds, and it is known that phosphorescent light-emitting compounds have higher external extraction quantum efficiencies. Furthermore, it is known that a high external extraction quantum efficiency can be obtained by providing functional layers such as a hole transport layer, a light-emitting layer, and an electron transport layer in order to cause the phosphorescent light-emitting material to emit light efficiently.
  • Patent Documents 1 and 2 Although it is described that a polymer material is applied with a solvent (see, for example, Patent Documents 1 and 2), there is no description of the problem of unevenness in the application of a low-molecular material, and the drying conditions are completely considered. Absent. Moreover, although there exists description about the high external extraction quantum efficiency improvement of the element by a wet method, it is a high molecular material, there is no description of a low molecular material, and there is no consideration about drying conditions (for example, refer patent document 3). .
  • the present invention has been made in view of the above problems, and an object thereof is to provide an organic electroluminescent device that can be stably manufactured by a wet method, has high external quantum efficiency, and has little coating unevenness, and a method for manufacturing the same. There is.
  • the formation of at least one layer is performed by a wet method having a step of removing the solvent by blowing after a step of applying a solution in which an organic material is dissolved in a solvent.
  • the substrate temperature and the coating environment temperature are the coating environment temperature ⁇ the coating liquid temperature ⁇ the substrate temperature, the liquid film thickness to be formed is 1 ⁇ m to 100 ⁇ m, and the blowing speed is 0.1 m / s to 5 m / s, after coating
  • the method for producing an organic electroluminescence element, wherein the time until the air is blown is 0 second to 60 seconds.
  • blowing method is an air knife method in which air blown in a plane is moved while moving in a certain direction, or a down blow method in which air is blown from the upper surface.
  • Device manufacturing method is an air knife method in which air blown in a plane is moved while moving in a certain direction, or a down blow method in which air is blown from the upper surface.
  • an organic electroluminescence device which can be stably manufactured by a wet method, has high external quantum efficiency, and has little coating unevenness, and a method for manufacturing the same.
  • the present invention relates to a method for producing an organic electroluminescent device, wherein the formation of at least one layer is a wet method having a step of applying a solution in which an organic material is dissolved in a solvent and then removing the solvent by blowing.
  • the coating liquid temperature, the substrate temperature, and the coating environmental temperature are the coating environmental temperature ⁇ the coating liquid temperature ⁇ the substrate temperature, the liquid film thickness to be formed is 1 ⁇ m to 100 ⁇ m, and the wind speed is 0.1 m / s to 5 m / s.
  • the time from application to blowing is 0 to 60 seconds.
  • the at least one layer examples include a hole transport layer, a light emitting layer, and an electron transport layer, and a light emitting layer is particularly preferable.
  • the coating liquid temperature, the substrate temperature, and the coating environmental temperature satisfy the relationship of coating environmental temperature ⁇ coating liquid temperature ⁇ substrate temperature. It is more preferable that the coating environment temperature is 15 ° C. to 40 ° C. and the substrate temperature is 0 ° C. to 30 ° C. after satisfying the above conditions. Here, any temperature is just before coating.
  • the application environment temperature refers to the temperature of the room where the application is performed.
  • the coating solution temperature, the substrate temperature, and the coating environment temperature are the coating environment temperature ⁇ the coating solution temperature ⁇ the substrate temperature, it is not preferable because drying unevenness is remarkably deteriorated and the luminous efficiency is also lowered.
  • the external extraction quantum efficiency decreases due to a decrease in the drying rate, which is not preferable.
  • the drying speed is too high, and thus drying unevenness deteriorates, which is not preferable.
  • the thickness of the liquid film produced by the wet method according to the present invention is 1 ⁇ m to 100 ⁇ m. More preferably, it is 1 ⁇ m to 20 ⁇ m. If it is less than 1 ⁇ m, it is too thin to control the drying, and if it exceeds 100 ⁇ m, it takes too much time for drying, which is not preferable because uneven coating is deteriorated.
  • the thickness of the liquid film can be adjusted by controlling the gap of the applicator and the amount of liquid.
  • the speed of the air blowing in the step of removing the solvent by the air blowing of the present invention is 0.1 m / s to 5 m / s. More preferably, it is 0.1 m / s to 3 m / s. Furthermore, 0.1 m / s to 2 m / s is preferable. If it is less than 0.1 m / s, the light emission efficiency is lowered by changing the morphology of the coating film, and if it is 5 m / s or more, the coating unevenness is deteriorated due to the wind speed unevenness, which is not preferable.
  • the air blowing speed here refers to the speed of the wind applied to the coating surface.
  • the time until the air is blown after coating in the present invention is 0 second to 60 seconds. More preferably, it is 1 second to 10 seconds. Furthermore, 1 to 5 seconds is preferable. If it is longer than 60 seconds, dissolution of the lower layer occurs, so that the external extraction quantum efficiency deteriorates.
  • boiling point of solvent The boiling point of the solvent used in the present invention is preferably less than 200 ° C. More preferably, it is 150 degrees C or less. At 200 ° C. or higher, the external extraction quantum efficiency may decrease due to an increase in residual solvent.
  • the temperature of the wind in the present invention is preferably equal to or lower than the coating environment temperature, and the coating environment temperature is preferably 15 ° C. to 40 ° C. in consideration of external extraction quantum efficiency, coating unevenness, and the like. If it is higher than the coating environment temperature, the external extraction quantum efficiency may deteriorate.
  • the organic compound used in the present invention is preferably a low-molecular compound in consideration of external extraction quantum efficiency, lifetime, and the like.
  • a low molecular weight compound having a molecular weight of less than 1600 an improvement in external extraction quantum efficiency is remarkably exhibited.
  • the low molecular weight compound means a compound having a molecular weight of 1600 to 300.
  • the layer to be formed is preferably a light emitting layer.
  • the drying in the present invention in the light emitting layer the external extraction quantum efficiency can be greatly improved.
  • the method for applying the solution is preferably a dip coating method, a spin coating method, a blade method, or a slit coating method. This is a coating method suitable for forming a uniform coating film over a large area. By applying the present invention by these methods, coating unevenness can be greatly improved.
  • Anode / light emitting layer / electron transport layer / cathode ii) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (iii) Anode / hole transport layer / light emitting layer / hole blocking layer / electron Transport layer / cathode (iv) Anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) Anode / anode buffer layer / hole transport layer / light emitting layer / hole Blocking layer / electron transport layer / cathode buffer layer / cathode.
  • the light emitting layer according to the method for producing the organic EL device of the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion emits light
  • the interface between the light emitting layer and the adjacent layer may be within the layer.
  • the film thickness of the light emitting layer is not particularly limited, but from 2 nm in consideration of the uniformity of the film to be formed and the application of unnecessary high voltage during light emission, and the improvement of the stability of the emission color with respect to the drive current. It is preferable to adjust to a range of 200 nm, and more preferably to a range of 5 nm to 100 nm.
  • the light emitting layer of the organic EL device of the present invention preferably contains at least one of a host compound and a light emitting dopant as a guest material, and more preferably contains a host compound and three or more light emitting dopants.
  • the host compound and light emitting dopant contained in the light emitting layer will be described below.
  • the host compound in the present invention is a phosphorescent quantum yield of phosphorescence emission at a room temperature (25 ° C.) having a mass ratio of 20% or more in the compound contained in the light emitting layer. Is a compound of less than 0.1.
  • the phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
  • known host compounds may be used alone or in combination of two or more.
  • the organic EL element can be taken out with high external quantum efficiency.
  • the host compound used in the present invention a conventionally known low molecular compound is preferable.
  • Luminescent dopant The light emitting dopant used in the present invention will be described.
  • the light-emitting dopant used in the present invention a fluorescent dopant or a phosphorescent dopant can be used. From the viewpoint of obtaining an organic EL element with higher external extraction quantum efficiency, the light-emitting layer and light emission of the organic EL element of the present invention.
  • a light-emitting dopant used for the unit it is preferable to contain a phosphorescent dopant at the same time as containing the host compound.
  • the phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL device.
  • the phosphorescent dopant used in the present invention is preferably a complex compound containing a group 8 to group 10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex system). Compound) and rare earth complexes, and most preferred is an iridium compound. Further, the phosphorescent dopant is preferably a low molecular compound.
  • Injection layer electron injection layer, hole injection layer >> The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer. May be.
  • An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance.
  • Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) ) ", Chapter 2, Chapter 2," Electrode Materials “(pages 123 to 166), which has a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • anode buffer layer hole injection layer
  • copper phthalocyanine is used.
  • examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • ferrocene compounds described in JP-A-6-025658 starburst type compounds described in JP-A-10-233287, JP-A-2000-068058, JP-A-2004-6321 Triarylamine type compounds described in the publication, sulfur-containing ring-containing compounds described in JP-A No. 2002-117879, US Patent Application Publication No. 2002/0158242, US Patent Application Publication No. 2006 / Examples of the hole injection layer include hexaazatriphenylene compounds described in Japanese Patent No. 0251922, Japanese Patent Application Laid-Open No. 2006-49393, and the like.
  • the organic EL device manufacturing method of the present invention may be applied to any of the organic layers of the organic EL device, but is preferably applied to a layer adjacent to the electrode, particularly an anode buffer layer (hole injection). It is most preferable to apply to a layer or a hole injecting and transporting layer.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc.
  • Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc.
  • the buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m, depending on the material.
  • ⁇ Blocking layer hole blocking layer, electron blocking layer>
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning the manufacturing method of the organic EL element of this invention as needed.
  • the hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
  • the hole blocking layer preferably contains the azacarbazole derivative mentioned as the host compound described above.
  • the hole element layer preferably has an ionization potential of 0.3 eV or more larger than the host compound of the light emitting layer.
  • the ionization potential is preferably 0.3 eV or more larger than the host compound located closest to the cathode.
  • the ionization potential is defined by the energy required to emit electrons at the HOMO (highest occupied molecular orbital) level of the compound to the vacuum level, and can be obtained by, for example, the following method.
  • Gaussian 98 (Gaussian 98, Revision A.11.4, MJ Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002.), a molecular orbital calculation software manufactured by Gaussian, USA, is used as a keyword.
  • the ionization potential can be obtained as a value obtained by rounding off the second decimal place of a value (eV unit converted value) calculated by performing structural optimization using B3LYP / 6-31G *.
  • eV unit converted value eV unit converted value
  • the ionization potential can also be obtained by a method of directly measuring by photoelectron spectroscopy.
  • a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki, or a method known as ultraviolet photoelectron spectroscopy can be suitably used.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 nm to 100 nm, and more preferably 5 nm to 30 nm.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives and silazane derivatives.
  • the above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N ′′ — Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolyla
  • No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-308 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the like.
  • NPD 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • JP-A-4-308 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • JP-A-11-251067 J. Org. Huang et. al.
  • a so-called p-type hole transport material described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used.
  • the hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, or a casting method.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, or a casting method.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, or a casting method.
  • a hole transport layer having a high p property doped with impurities examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material also serving as a hole blocking material used for an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode.
  • any material can be selected and used from among conventionally known compounds. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives Thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
  • the electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, or a casting method. Although there is no restriction
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • n-type electron transport layer doped with impurities examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • an electron transport layer having such a high n property because an element with lower power consumption can be produced.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • a thin film may be formed by vapor deposition or sputtering of these electrode materials, and a pattern having a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 ⁇ m or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • wet film forming methods such as a printing system and a coating system, can also be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.
  • cathode As the cathode, a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • a transparent or translucent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode thereon, By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
  • the substrate that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, and the like, and may be transparent or opaque. When extracting light from the substrate side, the substrate is preferably transparent. Examples of the transparent substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyetherimide, polyether ketone imide, polyamide, fluorine resin, nylon, polymethyl methacrylate, acrylic or polyarylates, and cycloolefin resins such as ARTON (manufactured by J
  • An inorganic or organic film or a hybrid film of both may be formed on the surface of the resin film, and a barrier film having a water vapor permeability of 0.01 g / m 2 / day ⁇ atm or less is preferable. Further, a high barrier film having an oxygen permeability of 10 ⁇ 3 g / m 2 / day or less and a water vapor permeability of 10 ⁇ 5 g / m 2 / day or less is preferable.
  • the material for forming the barrier film may be any material that has a function of suppressing the intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization A plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
  • the external extraction quantum efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more.
  • external extraction quantum efficiency (%) (number of photons emitted to the outside of the organic EL element) / (number of electrons passed through the organic EL element) ⁇ 100.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • the ⁇ max of light emission of the organic EL element is preferably 480 nm or less.
  • the sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Further, transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the organic EL element can be thinned.
  • the polymer film is measured by the measured oxygen permeability by the method based on JIS K 7126-1987 is 1 ⁇ 10 -3 ml / m 2 / 24h ⁇ atm or less, in conformity with JIS K 7129-1992 method is water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) is preferably that of 1 ⁇ 10 -3 g / (m 2 / 24h) or less.
  • sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • an inorganic or organic layer as a sealing film by covering the electrode and the organic layer on the outer side of the electrode facing the substrate with the organic layer interposed therebetween, and in contact with the substrate.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • vacuum deposition sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma
  • a combination method a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil in the gas phase and the liquid phase.
  • a vacuum can also be used.
  • a hygroscopic compound can also be enclosed inside.
  • Examples of the hygroscopic compound include metal oxides (eg, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide), sulfates (eg, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • metal oxides eg, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates eg, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt
  • the organic EL device manufacturing method of the present invention is characterized in that a part or the whole of an organic layer sandwiched between an anode and a cathode is formed by a wet method.
  • the wet method referred to in the present invention is to form a layer by supplying a layer forming material in the form of a solution when forming a layer.
  • an organic EL device of the present invention a method for producing an organic EL device comprising an anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode will be described.
  • an anode is produced by forming a thin film made of a desired electrode material, for example, an anode material on a suitable substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably 10 nm to 200 nm.
  • a method for forming each of these layers there are a vapor deposition method, a wet method (a spin coating method, a casting method, an extrusion method, etc., a so-called die coating method) and the like as described above. Furthermore, in the present invention, formation by a spin coating method or an extrusion method is preferable from the viewpoint that a homogeneous film is easily obtained and pinholes are hardly generated.
  • Examples of the solvent for dissolving the organic EL material according to the method for producing the organic EL device of the present invention include nitriles such as acetonitrile and propionitrile, alcohols such as methanol, ethanol and butanol, acetone, methyl ethyl ketone, cyclohexanone and the like.
  • Ketone (carbonyl) s, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, amides such as DMF, sulfoxides such as DMSO, and organic solvents such as nitromethane can be used.
  • a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 50 nm to 200 nm, and a cathode is provided.
  • a desired organic EL element can be obtained.
  • a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 V to 40 V with the positive polarity of the anode and the negative polarity of the cathode.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the substrate with the organic layer interposed therebetween.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, and the like used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • the organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said. This is because the light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the element, or between the transparent electrode or the light emitting layer and the transparent substrate. This is because the light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.
  • a method of improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate and preventing total reflection at the transparent substrate and the air interface (US Pat. No. 4,774,435), A method for improving efficiency by providing light condensing property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on a side surface of an organic EL element (Japanese Patent Laid-Open No. 1-220394), a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter (Japanese Patent Laid-Open No.
  • a method of introducing a flat layer having a structure Japanese Patent Laid-Open No. 2001-202827, a method of forming a diffraction grating between any one of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside world) No. 283751) That.
  • these methods for improving the light extraction efficiency can be used in combination with the organic EL element according to the method for producing the organic EL element of the present invention.
  • a method of introducing a flat layer having a refractive index or a method of forming a diffraction grating between any one of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • an organic EL device having higher luminance or durability can be obtained by combining these means.
  • the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction.
  • Light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating in any layer or medium (in a transparent substrate or transparent electrode), and the light is removed. I want to take it out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased.
  • the position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction grating is preferably two-dimensionally repeated such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL device of the present invention is processed on the light extraction side of the substrate so as to provide, for example, a microlens array-like structure, or combined with a so-called condensing sheet, for example, with respect to a specific direction, for example, the device light emitting surface.
  • a specific direction for example, the device light emitting surface.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 ⁇ m to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the condensing sheet it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device.
  • a sheet for example, Sumitomo 3M brightness enhancement film (BEF) can be used.
  • BEF Sumitomo 3M brightness enhancement film
  • the shape of the prism sheet for example, a triangle stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m may be formed on the substrate, the vertex angle may be rounded, and the pitch may be changed randomly. Other shapes may be used.
  • a light diffusion plate / film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
  • lighting devices home lighting, interior lighting
  • clock and liquid crystal backlights billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light
  • the light source of a sensor etc. are mentioned, It is not limited to this, Especially, it can use effectively for the use as a backlight of a liquid crystal display device, and a light source for illumination.
  • FIG. 4 on page 108 of “New Color Science Handbook” shows the color of light emitted from the organic EL device of the present invention and the compound relating to the method for producing the organic EL device of the present invention. .16, the color measured when the spectral radiance meter CS-1000 (manufactured by Konica Minolta Sensing Co., Ltd.) is applied to the CIE chromaticity coordinates is determined.
  • the light emitting layer of the organic EL device according to the present invention preferably contains at least one of a host compound and a light emitting dopant as a guest material.
  • Example 1 (Production of substrate) On a commercially available non-alkali glass substrate, an ITO film having a thickness of 110 nm was provided as a transparent electrode by a sputtering apparatus. The substrate was fabricated by patterning ITO so that a 4 mm ⁇ 4 mm light-emitting portion was obtained by photolithography. The film thickness is a value measured with a laser interferometer.
  • the substrate was transferred to a glove box under a nitrogen atmosphere in accordance with ISO 14644-1, with a measured cleanliness of class 5, dew point temperature of ⁇ 80 ° C. or lower, and oxygen concentration of 0.8 ppm.
  • the oxygen concentration of the glove box indicates a value measured with a galvanocell oximeter.
  • ⁇ Hole transport layer coating solution The concentration of poly-triphenyldiamine (ADS254, manufactured by American Dye Source) was adjusted with chlorobenzene so that the film thickness was 20 nm.
  • the light emitting layer and the electron transport layer were formed by vapor deposition as follows.
  • the substrate provided up to the electron transport layer was moved to a vapor deposition machine without being exposed to the atmosphere, and the pressure was reduced to 4 ⁇ 10 ⁇ 4 Pa.
  • potassium fluoride was put into a resistance heating boat made of tantalum, and aluminum was put into a resistance heating boat made of tungsten, and was installed in the vapor deposition machine.
  • a resistance heating boat containing potassium fluoride was energized and heated to provide a 3 nm electron injection layer made of potassium fluoride on the substrate.
  • a resistance heating boat containing aluminum was heated by energization, and a cathode having a film thickness of 100 nm made of aluminum was attached at a deposition rate of 1 nm / second to 2 nm / second.
  • a film thickness shows the value measured with the laser interferometer.
  • the substrate attached to the cathode was transferred to a glove box with a measured cleanliness class 5 in accordance with ISO 14644-1, a dew point temperature of -80 ° C or less, and an oxygen concentration of 0.8 ppm in a nitrogen atmosphere. did.
  • the oxygen concentration is a value measured with a galvanocell oximeter.
  • the device was fabricated by sealing with a glass sealing can with barium oxide as a rehydrating agent.
  • Barium oxide which is a water replenisher, was made by sticking high-purity barium oxide powder made by Aldrich to a glass sealing can with a fluororesin semi-permeable membrane (Microtex S-NTF8031Q made by Nitto Denko) with an adhesive. Things were prepared and used in advance.
  • An ultraviolet curable adhesive was used for bonding the sealing can and the organic EL element, and both were bonded by irradiating an ultraviolet lamp to produce a sealing element.
  • a light emitting layer coating solution was prepared as follows, and the coating film thickness was adjusted to be as shown in Tables 2 and 3 with an applicator which is a blade method, and applied.
  • the coating solution concentration was adjusted according to the liquid film so that the film thickness was constant. Furthermore, it heated at 150 degreeC for 30 minutes, and provided the light emitting layer.
  • the film thickness was 40 nm when it apply
  • the coating conditions of the light emitting layers 2-1 to 2-37 are as shown in Tables 2 and 3.
  • a film thickness shows the value measured with the laser interferometer.
  • ⁇ Light emitting layer coating solution> In the solvents described in Tables 2 and 3, Ir-A is 20% by mass with respect to HA, Ir-1 is 2% by mass with respect to HA, and Ir-14 is with respect to HA. The concentration was adjusted to 0.1% by mass so that the film thickness was 40 nm. In addition, a film thickness shows the value measured with the laser interferometer.
  • an electron transport layer was provided by vapor deposition in the same manner as in the organic EL elements 1-1 to 1-12, and further, the sealing element was manufactured in the same manner as in the manufacture of the organic EL elements 1-1 to 1-12.
  • a hole transport layer and a light emitting layer were formed by vapor deposition in the same manner as described above.
  • an electron transport layer coating solution was prepared as follows, and the coating film thickness was adjusted so as to be as shown in Table 1 using an applicator that was a blade method.
  • the coating solution concentration was adjusted according to the liquid film so that the film thickness was constant. Furthermore, it heated at 150 degreeC for 30 minutes, and the object for electron carrying layers was provided.
  • the film thickness was 30 nm when it apply
  • the coating conditions for the electron transport layers 3-1 to 3-11 are as shown in Table 4.
  • the film thickness is a value measured with a laser interferometer.
  • Level where there is no unevenness and no problem 3 Level where slight unevenness is observed, but there is no problem in use 1: Level where unevenness is large and causes problems in use.
  • the organic EL devices 1-7 to 1-12, in which the hole transport layer was prepared by the manufacturing method of the present invention, are superior in comparison with the comparative device in both coating unevenness and external extraction quantum efficiency. I understand.
  • Tables 6 and 7 show that the light-emitting layer and the electron transport layer were prepared by the production method of the present invention, respectively. ing.
  • Table 8 shows an organic EL device in which two or more of the hole transport layer, the light emitting layer, and the electron transport layer are prepared by the production method of the present invention. It turns out that it is excellent.
  • the compounds used in the coating solution for the hole injection layer are described in ferrocene compounds described in JP-A-6-025658, JP-A-10-233287, and the like.
  • a starburst type compound, a triarylamine type compound described in JP-A-2000-068058, JP-A-2004-6321, and a sulfur-containing ring-containing compound described in JP-A-2002-1171979 The compound is changed to the hexaazatriphenylene compound described in US Patent Application Publication No. 2002/0158242, US Patent Application Publication No. 2006/0251922, JP-A-2006-49393, and the like.
  • Using a solvent having the same substituent corresponding to the compound otherwise the device was It was manufactured, as well as excellent effect was obtained.
  • the device was produced by changing the coating method to the dip coating method, the spin coating method, and the slit coating method, and the same results were obtained.
  • the element was produced by changing the air blowing method to an air knife method in which air blown in a flat shape was moved in a certain direction, but the same excellent results were obtained. It was.

Abstract

湿式法で安定に製造可能であり、高い外部取り出し量子効率で、且つ塗布ムラの少ない有機エレクトロルミネッセンス素子及びその製造方法を提供するため、 少なくとも一つの層の形成が有機物材料を溶媒に溶かした溶液を塗布する工程の後、送風により該溶媒を除去する工程を有する湿式法によるものである有機エレクトロルミネッセンス素子の製造方法において、塗布液温度、基板温度、塗布環境温度が塗布環境温度≧塗布液温度≧基板温度であり、形成される液膜厚が1μmから100μmであり、送風の速度が0.1m/sから5m/s、塗布後送風するまでの時間が0秒から60秒であることを特徴とする有機エレクトロルミネッセンス素子の製造方法。

Description

有機エレクトロルミネッセンス素子及びその製造方法
 本発明は有機エレクトロルミネッセンス(有機ELとも言う)素子及びその製造方法に関する。詳しくは湿式法により製造可能であり、高い外部取り出し量子効率で、且つ塗布ムラが改善された有機エレクトロルミネッセンス素子及びその製造方法に関する。
 有機エレクトロルミネッセンスには、リン光性発光化合物と蛍光性光化合物があるが、リン光発光化合物の方の外部取り出し量子効率が高いことが知られている。更にリン光性発光性材料を効率よく発光させるためには、正孔輸送層、発光層、電子輸送層などの機能層を設けると高い外部取り出し量子効率が得られることが知られている。
 一方、材料の高い利用効率などから、湿式法による有機ELの製造方法が着目されている。
 しかしながら、湿式法で素子を作製した場合、塗布ムラによる発光のムラといった問題が生じることがあった。更に、湿式法による素子は蒸着により作製された素子に比べ、外部取り出し量子効率が低くなることが新たに判った。
 高分子材料を溶媒で塗布することが記載されている(例えば、特許文献1、2参照)が、低分子材料の塗布におけるムラの問題については記載がなく、また乾燥条件については全く考察されていない。また、湿式法による素子の高い外部取り出し量子効率化について記載があるが、高分子材料についてであり、低分子材料の記載はなく、乾燥条件についての考察は一切ない(例えば、特許文献3参照)。
特開2006-244806号公報 特開2002-359072号公報 特開2008-140620号公報
 本発明は上記課題に鑑みなされたものであり、その目的は、湿式法で安定に製造可能であり、高い外部取り出し量子効率で、且つ塗布ムラが少ない有機エレクトロルミネッセンス素子及びその製造方法を提供することにある。
 本発明の上記目的は、下記の構成により達成される。
 1.少なくとも一つの層の形成が有機物材料を溶媒に溶かした溶液を塗布する工程の後、送風により該溶媒を除去する工程を有する湿式法によるものである有機エレクトロルミネッセンス素子の製造方法において、塗布液温度、基板温度、塗布環境温度が塗布環境温度≧塗布液温度≧基板温度であり、形成される液膜厚が1μmから100μmであり、送風の速度が0.1m/sから5m/s、塗布後送風するまでの時間が0秒から60秒であることを特徴とする有機エレクトロルミネッセンス素子の製造方法。
 2.前記塗布環境温度が15℃から40℃、基板温度が0℃から30℃であることを特徴とする前記1に記載の有機エレクトロルミネッセンス素子の製造方法。
 3.前記送風の方法が平面状に噴出させた空気を一定方向に移動させながら送風するエアナイフ方式、または上面から空気を吹き付けるダウンブロー方式であることを特徴とする前記1または2に記載の有機エレクトロルミネッセンス素子の製造方法。
 4.前記有機物材料が低分子化合物であることを特徴とする前記1から3のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
 5.前記少なくとも一つの層が発光層であることを特徴とする前記1から4のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
 6.前記溶液を塗布する工程ではディップコート法、スピンコート法、ブレード法またはスリットコート法が用いられることを特徴とする前記1から5のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
 7.前記1から6のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法で製造されたことを特徴とする有機エレクトロルミネッセンス素子。
 本発明により、湿式法で安定に製造が可能であり、高い外部取り出し量子効率で、塗布ムラの少ない有機エレクトロルミネッセンス素子及びその製造方法を提供することができた。
 以下、本発明について詳述する。
 本発明は、少なくとも一つの層の形成が有機物材料を溶媒に溶かした溶液を塗布する工程の後、送風により該溶媒を除去する工程を有する湿式法によるものである有機エレクトロルミネッセンス素子の製造方法おいて、塗布液温度、基板温度、塗布環境温度が塗布環境温度≧塗布液温度≧基板温度であり、形成される液膜厚が1μmから100μmであり、風速が0.1m/sから5m/s、塗布後送風するまでの時間が0秒から60秒であることを特徴とする。
 前記少なくとも一つの層としては、正孔輸送層、発光層、電子輸送層が挙げられ、特に発光層であることが好ましい。
 発明者らが鋭意検討を行った結果、本発明の製造方法にて塗布すると塗布ムラがなく、発光が均一で、且つ外部取り出し量子効率の高い素子を作製することができることがわかった。その理由は定かではないが、最適な塗布環境温度の選定及び乾燥条件を最適化することにより、結晶化が制限され均一なアモルファスの膜が形成されるものと推定している。
 (温度)
 本発明では、塗布液温度、基板温度、塗布環境温度が、塗布環境温度≧塗布液温度≧基板温度の関係を満たす。上記条件を満たした上で、塗布環境温度が15℃から40℃、基板温度が0℃から30℃であることが更に好ましい。ここで、いずれの温度は塗布直前のものである。なお、塗布環境温度とは塗布を行っている部屋の温度を言う。
 塗布液温度、基板温度、塗布環境温度が、塗布環境温度<塗布液温度<基板温度の場合、乾燥ムラが顕著に劣化し、且つ、発光効率も低下するため好ましくない。
 塗布環境温度が15℃未満の場合は、乾燥速度が低下することにより外部取り出し量子効率が低下するため好ましくない。
 塗布環境温度が40℃を超える場合は、乾燥速度が速すぎるために乾燥ムラが劣化するため好ましくない。
 基板温度が30℃を超える場合は、乾燥速度が速すぎるために乾燥ムラが劣化するため好ましくない。
 (液膜厚)
 本発明による湿式法にて作製される液膜の厚みは、1μmから100μmである。更に好ましくは1μmから20μmである。1μm未満では薄すぎるために乾燥をコントロールできず、100μmを超える場合は、乾燥に時間がかかり過ぎるために塗布ムラが劣化するので好ましくない。液膜の厚みは、アプリケーターのギャップ、液量をコントロールすることによって調整することができる。
 (送風の速度)
 本発明の送風による溶媒を除去する工程での送風の速度は、0.1m/sから5m/sである。更に好ましくは0.1m/sから3m/sである。更には0.1m/sから2m/sが好ましい。0.1m/s未満では塗布膜のモルフォロジーが変化することにより発光効率が低下し、5m/s以上では風速ムラのため塗布ムラが劣化するため好ましくない。ここで言う送風の速度とは、塗布面に当てる風の速度を指す。
 (塗布後送風するまでの時間(送風タイミング))
 本発明における塗布後送風するまでの時間が0秒から60秒である。更に好ましくは1秒から10秒である。更には、1秒から5秒が好ましい。60秒以上では下層の溶解が生じるため、外部取り出し量子効率が劣化するため好ましくない。
 (溶媒の沸点)
 本発明で使用される溶媒の沸点が、200℃未満であることが好ましい。更に好ましくは150℃以下である。200℃以上では残存溶媒が増えることにより外部取り出し量子効率が低下することがある。
 (送風温度)
 本発明での風の温度が塗布環境温度と同等かそれ以下であり、且つ該塗布環境温度は、外部取り出し量子効率、塗布ムラ等を考慮し、15℃から40℃であることが好ましい。塗布環境温度より高いと外部取り出し量子効率が劣化することがある。
 (低分子化合物)
 本発明に使用される有機化合物は外部取り出し量子効率、寿命等を考慮し、低分子化合物であることが好ましい。分子量が1600未満の低分子化合物を使用した場合に、外部取り出し量子効率の向上が顕著に発現する。本発明で、低分子化合物とは分子量が1600から300の化合物を言う。
 (形成される層)
 形成される層が発光層であることが好ましい。発光層において、本発明における乾燥コントロールをすることにより、外部取り出し量子効率を大幅に良化することができる。
 (塗布方法)
 溶液を塗布する方法がディップコート法、スピンコート法、ブレード法、スリットコート法であることが好ましい。大面積に均一な塗布膜を形成するのに適した塗布方法であり、これらの方法にて本発明を適用することにより、塗布ムラを大幅に良化することが可能となる。
 以下、本発明の有機EL素子の製造方法について詳述する。
 《有機EL素子の層構成》
 次に、本発明の有機EL素子の製造方法に係る有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
 (i)陽極/発光層/電子輸送層/陰極
 (ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
 (iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
 (iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 (v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極。
 《発光層》
 本発明の有機EL素子の製造方法に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
 発光層の膜厚は特に制限はないが、形成する膜の均質性や発光時に不必要な高電圧を印加するのを防止し、且つ駆動電流に対する発光色の安定性向上を考慮し、2nmから200nmの範囲に調整することが好ましく、更に好ましくは5nmから100nmの範囲に調整される。
 本発明の有機EL素子の発光層には、ホスト化合物とゲスト材料としての発光ドーパントの少なくとも一種を含有することが好ましく、ホスト化合物と3種以上の発光ドーパントを含有することが更に好ましい。以下に発光層に含まれるホスト化合物と発光ドーパントについて説明する。
 (ホスト化合物)
 本発明に用いられるホスト化合物について説明する。
 ここで、本発明においてホスト化合物とは、発光層に含有される化合物の内でその層中での質量比が20%以上であり、且つ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物である。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで電荷の移動を調整することが可能であり、有機EL素子を高い外部取り出し量子効率化することができる。また、後述する発光ドーパントを複数種用いることで異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
 また、本発明に用いられるホスト化合物としては、従来公知の低分子化合物が好ましい。
 公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。
 特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等。
 (発光ドーパント)
 本発明に用いられる発光ドーパントについて説明する。
 本発明に用いられる発光ドーパントとしては、蛍光ドーパント、リン光ドーパントを用いることができるが、より外部取り出し量子効率の高い有機EL素子を得る観点からは、本発明の有機EL素子の発光層や発光ユニットに使用される発光ドーパントとしては、上記のホスト化合物を含有すると同時に、リン光ドーパントを含有することが好ましい。
 リン光ドーパントは有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。
 本発明に用いられるリン光ドーパントとしては、好ましくは元素の周期表で8族から10族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。更にリン光ドーパントとしては、低分子化合物であることが好ましい。
 以下に、リン光ドーパントとして用いられる化合物の具体例を示すが、本発明はこれらに限定されない。これらの化合物は、例えば、Inorg.Chem.40巻、1704頁から1711頁に記載の方法等により合成できる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 次に、本発明の有機EL素子の構成層として用いられる、注入層、阻止層、電子輸送層等について説明する。
 《注入層:電子注入層、正孔注入層》
 注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123頁から166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
 また、特開平6-025658号公報に記載されているフェロセン化合物、特開平10-233287号公報等に記載されているスターバースト型の化合物、特開2000-068058号公報、特開2004-6321号公報に記載されているトリアリールアミン型の化合物、特開2002-117979号公報に記載されている含硫黄環含有化合物、米国特許出願公開第2002/0158242号明細書、米国特許出願公開第2006/0251922号明細書、特開2006-49393号公報等に記載されているヘキサアザトリフェニレン化合物等も正孔注入層として挙げられる。
 本発明の有機EL素子の製造方法の適用は、有機EL素子の有機層のいずれに適用してもよいが、好ましくは電極に隣接した層への適用が好ましく、特に陽極バッファー層(正孔注入層或いは正孔注入輸送層とも言う。)への適用が最も好ましい。
 陰極バッファー層(電子注入層)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nmから5μmの範囲が好ましい。
 《阻止層:正孔阻止層、電子阻止層》
 阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、本発明の有機EL素子の製造方法に係わる正孔阻止層として用いることができる。
 本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。
 正孔阻止層には、前述のホスト化合物として挙げたアザカルバゾール誘導体を含有することが好ましい。
 また、正孔素子層は発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。複数の発光層を有する場合、その最も陰極側に位置するホスト化合物に対し、そのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。
 イオン化ポテンシャルは化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば、下記に示すような方法により求めることができる。
 (1)米国Gaussian製の分子軌道計算用ソフトウェアであるGaussian98(Gaussian98、Revision A.11.4,M.J.Frisch,et al,Gaussian,Inc.,Pittsburgh PA,2002.)を用い、キーワードとしてB3LYP/6-31G*を用いて構造最適化を行うことにより算出した値(eV単位換算値)の小数点第2位を四捨五入した値としてイオン化ポテンシャルを求めることができる。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。
 (2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることもできる。例えば、理研計器製の低エネルギー電子分光装置「Model AC-1」を用いて、或いは紫外光電子分光として知られている方法を好適に用いることができる。
 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の膜厚としては、好ましくは3nmから100nmであり、更に好ましくは5nmから30nmである。
 《正孔輸送層》
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体が挙げられる。
 正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N″-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。本発明においては、より高い外部取り出し量子効率の発光素子が得られることからこれらの材料を用いることが好ましい。
 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nmから5μm程度、好ましくは5nmから200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
 また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 本発明においては、このようなp性の高い正孔輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。
 《電子輸送層》
 電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。
 更に上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
 その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
 電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nmから5μm程度、好ましくは5nmから200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
 また、不純物をゲスト材料としてドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。
 《陽極》
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
 陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、或いはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。或いは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式製膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが通常10nmから1000nm、好ましくは10nmから200nmの範囲で選ばれる。
 《陰極》
 陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
 これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
 また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nmから5μm、好ましくは50nmから200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば発光輝度が向上し好都合である。
 また、陰極に上記金属を1nmから20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
 《基板》
 本発明の有機EL素子に用いることのできる基板としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。基板側から光を取り出す場合には、基板は透明であることが好ましい。好ましく用いられる透明な基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル或いはポリアリレート類、アートン(JSR製)或いはアペル(三井化学製)といったシクロオレフィン系樹脂等を挙げられる。
 樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、水蒸気透過度が0.01g/m/日・atm以下のバリア性フィルムであることが好ましく、更には酸素透過度10-3g/m/日以下、水蒸気透過度10-5g/m/日以下の高バリア性フィルムであることが好ましい。
 バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
 不透明な基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
 本発明の有機EL素子の発光の室温における外部取り出し量子効率は、1%以上であることが好ましく、より好ましくは5%以上である。
 ここに、外部取り出し量子効率(%)=(有機EL素子外部に発光した光子数)/(有機EL素子に流した電子数)×100である。
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。
 《封止》
 本発明に用いられる有機EL素子の封止手段としては、例えば、封止部材と電極、基板とを接着剤で接着する方法を挙げることができる。
 封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また、透明性、電気絶縁性は特に問わない。
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。
 本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。更には、ポリマーフィルムは、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/m/24h・atm以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m/24h)以下のものであることが好ましい。
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 また、有機層を挟み基板と対向する側の電極の外側に該電極と有機層を被覆し、基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
 《有機EL素子の製造方法》
 本発明の有機EL素子の製造方法は、陽極と陰極に挟まれた有機層の一部または全部を湿式法で形成することを特徴とする。本発明で言う湿式法とは、層を形成する際に層形成材料を溶液の形態で供給し層形成を行うものである。
 本発明の有機EL素子の製造方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の製造方法を説明する。
 まず適当な基板上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10nmから200nmの膜厚になるように、蒸着やスパッタリング等の方法により形成させ陽極を作製する。
 次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、正孔阻止層の有機化合物薄膜(有機層)を形成させる。
 これら各層の形成方法としては、前記の如く蒸着法、湿式法(スピンコート法、キャスト法、エクストールジョン法等、所謂ダイを用いる塗布方法)等がある。更には均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、本発明においてはスピンコート法、エクストールジョン法の塗布法による形成が好ましい。
 本発明の有機EL素子の製造方法に係る有機EL材料を溶解する溶媒としては、例えば、アセトニトリル、プロピオニトリル等のニトリル類、メタノール、エタノール、ブタノール等のアルコール類、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン(カルボニル)類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、DMF等のアミド類、DMSO等のスルホキシド類、ニトロメタン等の有機溶媒を用いることができる。
 これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50nmから200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。
 また、製造順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の表示装置に、直流電圧を印加する場合には陽極を+、陰極を-の極性として電圧2Vから40V程度を印加すると発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。
 《保護膜、保護板》
 有機層を挟み基板と対向する側の前記封止膜、或いは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、或いは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量且つ薄膜化ということからポリマーフィルムを用いることが好ましい。
 《光取り出し》
 有機EL素子は空気よりも屈折率の高い(屈折率が1.7から2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63-314795号公報)、有機EL素子の側面等に反射面を形成する方法(特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)等がある。
 本発明においては、これらの光取り出しの効率を向上させる方法を本発明の有機EL素子の製造方法に係る有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、或いは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
 本発明はこれらの手段を組み合わせることにより、更に高輝度或いは耐久性に優れた有機EL素子を得ることができる。
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5から1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、更に1.35以下であることが好ましい。
 また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
 全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち層間での全反射等により外に出ることができない光を、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
 導入する回折格子は二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
 回折格子を導入する位置としては前述の通り、いずれかの層間もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。このとき、回折格子の周期は媒質中の光の波長の約1/2倍から3倍程度が好ましい。
 回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。
 《集光シート》
 本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、或いは所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10μmから100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。
 集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基板に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
 また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。
 《用途》
 本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
 本発明の有機EL素子や本発明の有機EL素子の製造方法に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタセンシング(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
 また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることを言う。本発明に係る有機EL素子の発光層には、ホスト化合物とゲスト材料としての発光ドーパントの少なくとも一種を含有することが好ましい。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。
 実施例1
 (基板の作製)
 市販の無アルカリ硝子基板上に、スパッタ装置により透明電極としてITO膜、厚さ110nmを設けた。フォトリソグラフィー法により、4mm×4mmの発光部位が得られるようにITOのパターニングを実施し、基板を作製した。膜厚はレーザー干渉計で測定した値を示す。
 《有機EL素子の作製》
 基板を洗浄後、大気下、ISO14644-1に準拠し、測定した清浄度がクラス5のクリーンブースへ移動した。この基板を市販のスピンコーターに取り付け、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer製、Baytron P Al 4083)を超純水にて2倍に希釈して、4000rpm、30秒の条件で塗布した。更にこの基板を大気下にて200℃で30分加熱し、正孔注入層を設けた。別途用意した基板にて、同条件にて塗布を行い測定をしたところ、膜厚は20nmであった。膜厚はレーザー干渉計で測定した値を示す。
 上記基板を、窒素雰囲気下、ISO14644-1に準拠し、測定した清浄度がクラス5で、露点温度が-80℃以下、酸素濃度0.8ppmのグローブボックスへ移した。グローブボックスの酸素濃度はガルバノ電池式酸素計で測定した値を示す。
 〔有機EL素子1-1から1-12の作製〕
 (正孔輸送層1-1から1-12の調製)
 次いで、正孔輸送層用塗布液を下記のように調製し、ブレード法であるアプリケーターにて、塗布時液膜厚が下表になるように調整して塗布した。乾燥は、上面から空気を吹き付けるダウンブロー方式で送風した。なお、膜厚が一定になるように、液膜にあわせて塗布液濃度を調整した。塗布乾燥後、更に120℃で30分加熱し正孔輸送層を設けた。別途用意した基板にて、同条件にて塗布を行い測定をしたところ、膜厚は20nmであった。正孔輸送層1-1から1-12の塗布条件は表1に示す通りである。なお、膜厚はレーザー干渉計で測定した値を示す。
 〈正孔輸送層塗布液〉
 クロロベンゼンにて、膜厚が20nmになるようにポリ-トリフェニルジアミン(American Dye Source製 ADS254)の濃度を調整した。
 正孔輸送層1-1から1-12を用いる素子については、発光層、電子輸送層はそれぞれ以下のように蒸着にて形成した。
Figure JPOXMLDOC01-appb-T000013
 (蒸着による発光層の調製)
 上記のように正孔輸送層を調製した後、大気暴露させずに蒸着機に移動し、4×10-4Paまで減圧した。なお、タンタル製抵抗加熱ボートにホスト化合物としてH-A、発光ドーパントとしてIr-A、Ir-1、Ir-14を入れ、蒸着機内に取り付けておいた。まず、H-Aと、Ir-A、Ir-1、Ir-14の入った抵抗加熱ボートに通電し加熱し、H-AとIr-AとIr-1とIr-14の蒸着速度比が、0.86対0.10対0.02対0.02になるように調整し、その速度比のまま基板に蒸着をしてIr-Aが10%ドープされたH-AとIr-AとIr-1、Ir-14からなる膜厚40nmの発光層を設けた。
 (蒸着による電子輸送層の調製)
 上記のように発光層を作製した後、大気暴露させずに、蒸着機に移動し、4×10-4Paまで減圧した。なお、タンタル製抵抗加熱ボートにET-Aを入れ、蒸着機内に取り付けておいた。ET-Aの入った抵抗加熱ボートを通電し加熱し、基板上にET-Aからなる膜厚30nmの正孔輸送層を設けた。なお、膜厚はレーザー干渉計で測定した値を示す。
 次いで、電子輸送層まで設けた基板を、大気暴露させずに蒸着機に移動し、4×10-4Paまで減圧した。
 なお、タンタル製抵抗加熱ボートにフッ化カリウムを入れ、またタングステン製抵抗加熱ボートにアルミニウムを入れ、蒸着機内に取り付けておいた。
 まず、フッ化カリウムの入った抵抗加熱ボートを通電し加熱し、基板上にフッ化カリウムからなる電子注入層を3nm設けた。続いて、アルミニウムの入った製抵抗熱ボートに通電加熱し、蒸着速度1nm/秒から2nm/秒でアルミニウムからなる膜厚100nmの陰極を付けた。なお、膜厚はレーザー干渉計で測定した値を示す。
 陰極までつけた基板を大気暴露させることなく、窒素雰囲気下、ISO14644-1に準拠し、測定した清浄度がクラス5で、露点温度が-80℃以下、酸素濃度0.8ppmのグローブボックスへ移した。酸素濃度はガルバノ電池式酸素計で測定した値を示す。
 補水剤である酸化バリウムを貼付したガラス製の封止缶にて封止を行い、素子を作製した。なお、補水剤である酸化バリウムは、アルドリッチ製の高純度酸化バリウム粉末を、粘着剤付きのフッ素樹脂系半透過膜(ミクロテックス S-NTF8031Q 日東電工製)でガラス製封止缶に貼り付けたものを予め準備して使用した。封止缶と有機EL素子の接着には紫外線硬化型の接着剤を用い、紫外線ランプを照射することで両者を接着し封止素子を作製した。
 《有機EL素子2-1から2-37の作製》
 上記正孔注入層まで設けた基板を、窒素雰囲気下、ISO14644-1に準拠し、測定した清浄度がクラス5で、露点温度が-80℃以下、酸素濃度0.8ppmのグローブボックスへ移した。なお、酸素濃度はガルバノ電池式酸素計で測定した値を示す。
 その後、下記のように蒸着による正孔輸送層の形成を行った。
 (蒸着による正孔輸送層の調製)
 大気暴露させずに、蒸着機に移動し、4×10-4Paまで減圧した。なお、タンタル製抵抗加熱ボートに、ポリ-トリフェニルジアミン(American Dye Source製 ADS254)を入れ、蒸着機内に取り付けておいた。ポリ-トリフェニルジアミンの入った抵抗加熱ボートを通電し加熱し、基板上にTPDからなる膜厚20nmの正孔輸送層を設けた。なお、膜厚はレーザー干渉計で測定した値を示す。
 (発光層2-1から2-37の調製)
 次いで、発光層塗布液を下記のように調製し、ブレード法であるアプリケーターにて、塗布時液膜厚が表2、表3になるように調整し、塗布した。なお、膜厚が一定になるように、液膜にあわせて、塗布液濃度を調整した。更に150℃で30分加熱し発光層を設けた。別途用意した基板にて、同条件にて塗布を行い測定をしたところ、膜厚は40nmであった。発光層2-1から2-37の塗布条件は表2、表3に示す通りである。なお、膜厚はレーザー干渉計で測定した値を示す。
 〈発光層塗布液〉
 表2、表3に記載の溶媒にて、Ir-AをH-Aに対して20質量%、Ir-1をH-Aに対して2質量%、Ir-14をH-Aに対して0.1質量%として、膜厚が40nmになるように濃度調整を行った。なお、膜厚はレーザー干渉計で測定した値を示す。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 次に有機EL素子1-1から1-12と同様に蒸着により電子輸送層を設け、更に有機EL素子1-1から1-12の作製と同様に行って、封止素子を作製した。
 〔有機EL素子3-1から3-11の作製〕
 上記正孔注入層まで設けた基板を、窒素雰囲気下、ISO14644-1に準拠し、測定した清浄度がクラス5で、露点温度が-80℃以下、酸素濃度0.8ppmのグローブボックスへ移した。なお、酸素濃度はガルバノ電池式酸素計で測定した値を示す。
 次に上記と同様に正孔輸送層、発光層を蒸着により形成した。
 (電子輸送層3-1から3-11の調製)
 次いで、電子輸送層塗布液を下記のように調製し、ブレード法であるアプリケーターにて、塗布時液膜厚が表1になるように調整し、塗布した。なお、膜厚が一定になるように、液膜にあわせて、塗布液濃度を調整した。更に150℃で30分加熱し電子輸送層用を設けた。別途用意した基板にて、同条件にて塗布を行い測定をしたところ、膜厚は30nmであった。電子輸送層3-1から3-11の塗布条件は表4に示す通りである。膜厚はレーザー干渉計で測定した値を示す。
 〈電子輸送層塗布液〉
 2,2,3,3-テトラフルオロプロパノロールにて、膜厚が30nmになるようにET-Aの濃度調整を行った。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-C000017
 《有機EL素子4-1から4-3の作製》
 表8に示すような構成の有機EL素子4-1から4-3を作製した。
 《評価》
 〔塗布ムラ〕
 直流電源(株式会社テクシオ製直流安定化電源PA13-B)を用いて、素子を発光させて、マイクロスコープ(株式会社モリテックス製MS-804、レンズA-1468)を用いて発光面の観察を行い、全発光面(4mm四方)の発光ムラを下記のように目視評価し、表5、6、7、8に表した。なお、評価4、2はそれぞれ評価5と3の中間、評価3と1の中間を表す。
 5:ムラがなく、問題がないレベル
 3:僅かにムラが見られるが、使用上は問題がないレベル
 1:ムラの発生が大きく、使用上問題となるレベル。
 〔外部取り出し量子効率〕
 作製した有機EL素子に対し、2.5mA/cm定電流を流したときの外部取り出し量子効率(%)を測定した。なお、測定には分光放射輝度計CS-1000(コニカミノルタセンシング(株)製)を用いた。得られた結果を、有機EL素子1-8の測定値を100としたときの相対値で表5、6、7に表した。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 表5より正孔輸送層が本発明の製造方法で調製された有機EL素子1-7から1-12は比較の素子に対して、塗布ムラ、外部取り出し量子効率のいずれにおいても優れていることがわかる。
 表6、7はそれぞれ発光層、電子輸送層を本発明の製造方法で調製されたものであるが、やはり比較対して、塗布ムラ、外部取り出し量子効率のいずれにおいても優れていることが示されている。
 表8は正孔輸送層、発光層、電子輸送層の内、2層以上が本発明の製造方法で調製された有機EL素子であるが、塗布ムラ、外部取り出し量子効率のいずれにおいても非常に優れていることがわかる。
 更に有機EL素子2-8の作製において、正孔注入層用塗布液に用いた化合物について特開平6-025658号公報に記載されているフェロセン化合物、特開平10-233287号公報等に記載されているスターバースト型の化合物、特開2000-068058号公報、特開2004-6321号公報に記載されているトリアリールアミン型の化合物、特開2002-117979号公報に記載されている含硫黄環含有化合物、米国特許出願公開第2002/0158242号明細書、米国特許出願公開第2006/0251922号明細書、特開2006-49393号公報等に記載されているヘキサアザトリフェニレン化合物に変更し、更に各々の化合物に対応して同じ置換基を有する溶媒を用い、それ以外は同様にして素子を作製したところ、同様に優れた効果が得られた。
 更に有機EL素子2-20の作製において、塗布方式をディップコート法、スピンコート法、スリットコート法でそれぞれに変えて素子作製を行ったが、同様の結果が得られた。
 更に有機EL素子3-10の作製において、送風方法を平面状に噴出させた空気を一定方向に移動させながら送風するエアナイフ方式に変えて素子作製を行ったが、同様の優れた結果が得られた。

Claims (7)

  1.  少なくとも一つの層の形成が有機物材料を溶媒に溶かした溶液を塗布する工程の後、送風により該溶媒を除去する工程を有する湿式法によるものである有機エレクトロルミネッセンス素子の製造方法において、塗布液温度、基板温度、塗布環境温度が塗布環境温度≧塗布液温度≧基板温度であり、形成される液膜厚が1μmから100μmであり、送風の速度が0.1m/sから5m/s、塗布後送風するまでの時間が0秒から60秒であることを特徴とする有機エレクトロルミネッセンス素子の製造方法。
  2.  前記塗布環境温度が15℃から40℃、基板温度が0℃から30℃であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子の製造方法。
  3.  前記送風の方法が平面状に噴出させた空気を一定方向に移動させながら送風するエアナイフ方式、または上面から空気を吹き付けるダウンブロー方式であることを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子の製造方法。
  4.  前記有機物材料が低分子化合物であることを特徴とする請求項1から3のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
  5.  前記少なくとも一つの層が発光層であることを特徴とする請求項1から4のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
  6.  前記溶液を塗布する工程ではディップコート法、スピンコート法、ブレード法またはスリットコート法が用いられることを特徴とする請求項1から5のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。
  7.  請求項1から6のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法で製造されたことを特徴とする有機エレクトロルミネッセンス素子。
PCT/JP2010/050327 2009-01-22 2010-01-14 有機エレクトロルミネッセンス素子及びその製造方法 WO2010084816A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010547472A JPWO2010084816A1 (ja) 2009-01-22 2010-01-14 有機エレクトロルミネッセンス素子及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009011753 2009-01-22
JP2009-011753 2009-01-22

Publications (1)

Publication Number Publication Date
WO2010084816A1 true WO2010084816A1 (ja) 2010-07-29

Family

ID=42355870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050327 WO2010084816A1 (ja) 2009-01-22 2010-01-14 有機エレクトロルミネッセンス素子及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2010084816A1 (ja)
WO (1) WO2010084816A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149812A (ja) * 2012-01-20 2013-08-01 Konica Minolta Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2013206865A (ja) * 2012-03-29 2013-10-07 Toppan Printing Co Ltd 塗布膜形成装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685237A (ja) * 1991-07-11 1994-03-25 Matsushita Giken Kk 有機物薄膜電子部品及び有機物薄膜の形成方法
JP2003138033A (ja) * 2001-11-01 2003-05-14 Mitsubishi Chemicals Corp 半導体結晶粒子を含有する薄膜状成形体、及びその用途
JP2003192499A (ja) * 2001-10-10 2003-07-09 Seiko Epson Corp 薄膜の形成方法、電子デバイスの形成方法
JP2004327357A (ja) * 2003-04-28 2004-11-18 Dainippon Printing Co Ltd 機能性素子の製造方法およびその製造装置
JP2005085731A (ja) * 2003-09-11 2005-03-31 Seiko Epson Corp 有機エレクトロルミネッセンス装置、及び有機エレクトロルミネッセンス装置の製造方法、並びに電子機器
JP2007280623A (ja) * 2006-04-03 2007-10-25 Seiko Epson Corp 熱処理装置、薄膜形成装置及び熱処理方法
WO2007134823A1 (en) * 2006-05-19 2007-11-29 Interuniversitair Microelektronica Centrum Vzw Method for the production of a layer of organic material
JP2008041302A (ja) * 2006-08-02 2008-02-21 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子用材料溶液の調製方法及び有機エレクトロルミネッセンス素子材料塗布液
JP2008140620A (ja) * 2006-11-30 2008-06-19 Optrex Corp 有機el発光装置の製造方法及びその有機el発光装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685237A (ja) * 1991-07-11 1994-03-25 Matsushita Giken Kk 有機物薄膜電子部品及び有機物薄膜の形成方法
JP2003192499A (ja) * 2001-10-10 2003-07-09 Seiko Epson Corp 薄膜の形成方法、電子デバイスの形成方法
JP2003138033A (ja) * 2001-11-01 2003-05-14 Mitsubishi Chemicals Corp 半導体結晶粒子を含有する薄膜状成形体、及びその用途
JP2004327357A (ja) * 2003-04-28 2004-11-18 Dainippon Printing Co Ltd 機能性素子の製造方法およびその製造装置
JP2005085731A (ja) * 2003-09-11 2005-03-31 Seiko Epson Corp 有機エレクトロルミネッセンス装置、及び有機エレクトロルミネッセンス装置の製造方法、並びに電子機器
JP2007280623A (ja) * 2006-04-03 2007-10-25 Seiko Epson Corp 熱処理装置、薄膜形成装置及び熱処理方法
WO2007134823A1 (en) * 2006-05-19 2007-11-29 Interuniversitair Microelektronica Centrum Vzw Method for the production of a layer of organic material
JP2008041302A (ja) * 2006-08-02 2008-02-21 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子用材料溶液の調製方法及び有機エレクトロルミネッセンス素子材料塗布液
JP2008140620A (ja) * 2006-11-30 2008-06-19 Optrex Corp 有機el発光装置の製造方法及びその有機el発光装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149812A (ja) * 2012-01-20 2013-08-01 Konica Minolta Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2013206865A (ja) * 2012-03-29 2013-10-07 Toppan Printing Co Ltd 塗布膜形成装置

Also Published As

Publication number Publication date
JPWO2010084816A1 (ja) 2012-07-19

Similar Documents

Publication Publication Date Title
WO2012029750A1 (ja) 有機エレクトロルミネッセンス素子、その製造方法、表示装置及び照明装置
JP6337883B2 (ja) 電子デバイス
JP5186757B2 (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2010192369A (ja) 有機エレクトロルミネセンス素子の製造方法及び該製造方法により製造された有機エレクトロルミネセンス素子
WO2011132550A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5589852B2 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP5181920B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5879737B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5505254B2 (ja) 有機エレクトロルミネッセンス素子の製造方法及び該製造方法により製造された有機エレクトロルミネッセンス素子
JPWO2009116414A1 (ja) 有機エレクトロルミネッセンス素子
JP2009252944A (ja) 有機エレクトロルミネセンス素子とその製造方法
JP4985602B2 (ja) 有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子
WO2012063656A1 (ja) 有機エレクトロルミネッセンス素子の製造方法
JPWO2007086216A1 (ja) 有機エレクトロルミネッセンス素子
JP5472107B2 (ja) 有機エレクトロルミネセンス素子の製造方法
JP2010177338A (ja) 有機エレクトロルミネッセンス素子及びその製造方法
WO2010084816A1 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP2008305613A (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2009289716A (ja) 有機エレクトロルミネセンス素子及びその製造方法
JP2009152033A (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5152331B2 (ja) 有機エレクトロルミネセンス素子およびその製造方法
JP2015156253A (ja) 有機エレクトロルミネッセンス素子およびその製造方法
JP2012234972A (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法
JP2010199021A (ja) 有機エレクトロルミネセンス素子の製造方法
JP2013246950A (ja) 有機エレクトロニクスデバイスおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733423

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010547472

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10733423

Country of ref document: EP

Kind code of ref document: A1