WO2010079763A1 - Method for producing indolylalkyl succinic acid amide compound - Google Patents

Method for producing indolylalkyl succinic acid amide compound Download PDF

Info

Publication number
WO2010079763A1
WO2010079763A1 PCT/JP2010/000089 JP2010000089W WO2010079763A1 WO 2010079763 A1 WO2010079763 A1 WO 2010079763A1 JP 2010000089 W JP2010000089 W JP 2010000089W WO 2010079763 A1 WO2010079763 A1 WO 2010079763A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacillus
strain
acid
iesa
mass
Prior art date
Application number
PCT/JP2010/000089
Other languages
French (fr)
Japanese (ja)
Inventor
亨 北村
洋 副島
寛司 上西
民二 杉山
Original Assignee
雪印種苗株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 雪印種苗株式会社 filed Critical 雪印種苗株式会社
Priority to JP2010545754A priority Critical patent/JP5395811B2/en
Publication of WO2010079763A1 publication Critical patent/WO2010079763A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/36Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings
    • A01N43/38Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • A01N63/22Bacillus
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • A01N63/22Bacillus
    • A01N63/23B. thuringiensis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/075Bacillus thuringiensis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/085Bacillus cereus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/11Bacillus megaterium

Definitions

  • the present invention relates to a process for producing an indolylalkyl succinamide compound useful as a plant growth regulator using a microorganism.
  • This succinic acid amide compound can be obtained by chemical synthesis as described in Patent Documents 1 and 2, and phenethyl succinic acid amide is known to be produced by microorganisms belonging to the genus Bacillus (non-patent). Reference 1).
  • an object of the present invention is to provide a novel method for producing an indolylalkylsuccinamide compound useful as a plant growth promoter by a microorganism.
  • the present inventor searched for a new microorganism capable of producing indolylalkylsuccinic acid amide, and microorganisms belonging to the genus Bacillus efficiently produced indolylalkylsuccinic acid amide compounds from tryptamine, tryptophan and serotonin hydrochloride.
  • the present invention has been completed.
  • the present invention has the general formula (1)
  • R 1 and R 2 each independently represents a hydrogen atom, a halogen atom, a hydroxyl group, an alkoxy group or an alkyl group, R 3 represents a hydrogen atom or a carboxyl group, and n represents a number of 0 to 3)
  • a microorganism belonging to the genus Bacillus having the ability to synthesize indolylalkylsuccinic acid amide is cultured in a medium containing the indolylalkylamines or salts thereof represented by the general formula (2)
  • an indolylalkylsuccinamide compound or a salt thereof useful as a plant growth regulator can be efficiently obtained by culturing a microorganism belonging to the genus Bacillus.
  • mass% means (wt / vol)%
  • volume% means (vol / vol)%
  • Microorganisms used in the method for producing an indolylalkylsuccinamide compound of the present invention include Bacillus thuringiensis , Bacillus cereus , Bacillus subtilis , Bacillus acidiceler. ), Bacillus Ashidikora (Bacillus acidicola), Bacillus Aeoriusu (Bacillus aeolius), Bacillus Aeriusu (Bacillus aerius), Bacillus Aerofirusu (Bacillus aerophilus), Bacillus Agaradoherensu (Bacillus agaradhaerens), Bacillus Akibai (Bacillus akibai) , Bacillus alkaline Filth (Bacillus alcalophilus), Bacillus Arugikora (Bacillus algicola), Bacillus alkaline diazo Toro Ficus (Bacillus alkalidiazotrophicus), Bacillus Arukariteruri Scan (Bacillus alkalitelluri
  • Bacillus badius Bacillus badius (Bacillus badius), Bacillus Babarikasu (Bacillus barbaricus), Bacillus Batabienshisu (Bacillus bataviensis), Bacillus Benzoboransu (Bacillus benzoevorans), Bacillus Bogorienshisu (Bacillus bogoriensis), Bacillus Boronifirusu (Bacillus boroniphilus), Bacillus Butanoriboransu (Bacillus butanolivorans), Bacillus Kabonifirusu (Bacillus carboniphilus), Bacillus Sesenbenshisu (Bacillus cecembensis), Bacillus cell Russia utility dregs (Bacillus cellulosilyticus), Bacillus Chaganorenshisu (Bacillus chagannorensis), Bacillus CB (Bacillus cibi) , Bacillus circulans , Bacillus
  • Bacillus Horikoshi Bacillus horikoshii
  • Bacillus Horuti Bacillus Horuti (Bacillus horti)
  • Bacillus Fumi Bacillus humi
  • Bacillus file Jin Po-ene-cis Bacillus hwajinpoensis
  • Bacillus Idorienshisu Bacillus idriensis
  • Bacillus Insoritasu Bacillus insolitus
  • Bacillus Isaberie Bacillus isabeliae
  • Bacillus Chokkari Bacillus jeotgali
  • Bacillus Korienshisu Bacillus koreensis
  • Bacillus krulwichiae Bacillus lehensis
  • Bacillus lentus Bacillus licheniformis
  • Bacillus pseudalcaliphilus Bacillus pseudofirmus , Bacillus pseudomycoides , Bacillus psychrodurans , Bacillus physaccharolyticus , Bacillus Fi black tolerance (Bacillus psychrotolerans), Bacillus pumilus (Bacillus pumilus), Bacillus Pikunasu (Bacillus pycnus), Bacillus King Dao Nene cis (Bacillus qingdaonensis), Bacillus Rurisu (Bacillus ruris), Bacillus Safenshisu ( Bacillus safensis), Bacillus Sarariusu (Bacillus salarius), Bacillus Sarifirusu (Bacillus saliphilus), Bacillus Sri Jerry (Bacillus schlegelii), Bacillus Serenatasena Office (Bacillus selenatarsenatis), Bacillus Serenity TOLED
  • Preferred examples of the above include Bacillus thuringiensis JCM20386, B-2 and B-3 (postal code 292-0818 2-5-8 Kazusa Kamashi, Kisarazu, Chiba, Japan) Product Evaluation Technology Board Organization Patent Microorganism Deposit Center NITE AP-689), B-9, B-10, B-18 (NITE ABP-858), B-21, B -22, B-24 (NITE AP-857), B-26, B-33, B-36, B-59; Bacillus cereus B-5, B -6 (NITE AP-690), B-7, B-8, B-11, B-12, B-14, B-15, B-16 Strain (NITE AP-856); Bacillus megaterium B-32 (NITE ABP-859) strain Bacillus subtilis JCM1465 strain and the like.
  • Bacillus thuringiensis JCM20386 strain, B-3 strain, B-18 strain, B-24 strain; Cereus B-6 strain, B-15 strain, B-16 strain; Bacillus subtilis JCM1465 strain is particularly preferable.
  • the deposit date is NITE AP-689 shares and NITE AP-690 shares are December 5, 2008, and the receipt numbers NITE AP-856, AP-857, ABP-858, ABP- 859 is December 25, 2009.
  • Bacillus thuringiensis JCM20386 strain and Bacillus subtilis JCM1465 strain are strains that can be purchased from RIKEN. Other strains were isolated from soil.
  • the medium contains an indolylalkylamine or a salt thereof represented by the general formula (1) Let me.
  • R 1 and R 2 include a hydrogen atom, a halogen atom, a hydroxyl group, a C 1-6 alkyl group, and a C 1-6 alkoxy group.
  • examples of the C 1-6 alkyl group include a methyl group, an ethyl group, an isopropyl group, and a t-butyl group.
  • examples of the C 1-6 alkoxy group include a methoxy group, an ethoxy group, and an isopropyloxy group.
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned.
  • n represents a number from 0 to 3, with 0 to 2, particularly 1 being preferred.
  • R 1 and R 2 are particularly preferably a hydrogen atom or a hydroxyl group, and n is particularly preferably 1.
  • examples of the salt of indolylalkylamines (1) include hydrochloride, nitrate, sulfate and the like, and hydrochloride is preferable.
  • the concentration of the indolylalkylamines (1) or a salt thereof in the medium is 0.001 to 10% by mass, more preferably 0.001 to 5% by mass, particularly 0 in terms of productivity of the indolylalkylsuccinic acid amide compound. 0.01 to 5% by mass is preferable.
  • the indolylalkylamines (1) can be added to the reaction system all at once or continuously.
  • manganese ions (Mn 2+ ) By containing manganese ions (Mn 2+ ) in the medium, an indolylalkyl succinamide compound can be produced more efficiently.
  • any of manganese sulfate, manganese hydrochloride, manganese carbonate, EDTA manganese, and the like can be used, and one or more of these can be used, and manganese sulfate is particularly preferable.
  • the content in the medium is preferably 1 to 2000 ppm, particularly 2 to 1000 ppm as manganese ions (Mn 2+ ).
  • Manganese ions (Mn 2+ ) can be added to the reaction system all at once or continuously.
  • an indolyl alkyl succinamide compound can be produced more efficiently by containing an organic acid or a salt thereof in the medium.
  • the organic acid include malic acid, fumaric acid, succinic acid, citric acid, isocitric acid, ⁇ -ketoglutaric acid, oxaloacetic acid, and the like, and one or more of these can be used.
  • malic acid, fumaric acid, and succinic acid are preferable, and L-malic acid, D-malic acid, and fumaric acid are more preferable in terms of production efficiency of indolylalkyl succinic acid amide compounds.
  • the concentration of these organic acids in the medium is preferably 0.1 to 10% by mass, more preferably 0.2 to 1% by mass.
  • the organic acid or a salt thereof can be added to the reaction system all at once or continuously.
  • the microorganism is cultured under the conditions under which normal microorganisms of the genus Bacillus grow, except that indolylalkylamines (1) or a salt thereof and, if necessary, other compounds described above are added to the medium. Just do it. It is preferable to add a carbon source, a nitrogen source, a vitamin source, a mineral source and the like necessary for the growth of Bacillus microorganisms to the medium.
  • a carbon source glucose, starch syrup, soluble starch and the like are used.
  • the nitrogen source tryptone, soyton, yeast extract, peptone, casein, casein digest, meat extract, corn steep liquor, amino acid solution, soybean cake, ammonium sulfate, ammonium chloride, etc. can be used, but casein with a high tryptophan content. Needless to say, casein digest, yeast extract, corn steep liquor and the like are preferable.
  • the mineral source magnesium salt, potassium salt, phosphate, iron salt and the like can be used.
  • whey such as milk; cheese whey, soybean whey, etc. can be used.
  • a shaking culture and a stirring culture may be performed using a liquid medium.
  • the culture conditions are aerobic conditions, preferably 8 to 45 ° C. and pH 3.2 to 9.5.
  • the culture time may be 24 to 720 hours.
  • the indolylalkyl succinamide compound (2) or a salt thereof may be collected by a conventional method.
  • This culture solution can also be used as a plant growth regulator or fertilizer as it is.
  • the indolylalkylsuccinic acid amide compound (2) or a salt thereof can be partially purified or purified and isolated by ion exchange resin, porous synthetic adsorbent, solvent extraction, or the like.
  • a partially purified product using an ion exchange resin is prepared by adjusting the pH of the culture medium to a neutral region (pH 5 to 8), adsorbing it on a strong basic ion exchange resin or a weak basic ion exchange resin, and then containing an acid. It can be obtained by elution with an aqueous alcohol solution. At this time, it is preferable to replace the ion exchange resin before adsorption with a formic acid type or an acetic acid type.
  • the acid concentration of the solution is preferably 0.01 to 4N, and more preferably 1 to 3N.
  • the acid include formic acid, acetic acid, hydrochloric acid, sulfuric acid and the like.
  • the alcohol concentration of the solution is preferably 0 to 80% by volume, more preferably 0 to 30% by volume. Examples of the alcohol include methanol, ethanol, butanol, isopropanol and the like.
  • a polystyrene synthetic adsorbent after adjusting the pH of the culture solution to an acidic to neutral range (pH 1 to 8), a polystyrene synthetic adsorbent, a styrene-divinylbenzene adsorbent, or a methacrylic adsorbent is used.
  • adsorbing to the system synthetic adsorbent it can be obtained by elution with an aqueous alcohol solution or an aqueous ketone solution.
  • the concentration of alcohol or ketone in the solution is preferably 5 to 99% by volume, more preferably 10 to 30% by volume.
  • the alcohol include methanol, ethanol, butanol, isopropanol and the like.
  • the ketone include acetone.
  • This culture solution may contain phenylacetic acid or indoleacetic acid having a plant growth regulating action (Kim et al. 2004. Current Microbiology 48, 312-317 and Willkinson et al. 1994. Plant and Soil, 159, 291). -295 pages).
  • the mixture may be used as it is, or each of them may be collected and used.
  • N- (phenethyl) succinamide may be contained, but in this case as well, the mixture may be used as it is depending on the purpose, or each of them may be used separately. .
  • plants can generally biosynthesize tryptophan, and that many plants can also biosynthesize tryptamine (Facchini et al. 2000. Phytochemistry, Vol. 54, pages 121-138). And it is known that some of them are secreted from the plant surface, especially from the root surface (Kamilova et al. 200. Molecular Plant-Microbe Interaction, Vol. 19, pages 250-256). For this reason, if these microbial strains are applied to or inoculated with these plants, their seeds, water for plant cultivation or soil, indolylalkyl succinic acid amide is biosynthesized in the plant body or on the plant body surface. Can be controlled.
  • an inoculation source a culture solution containing bacterial cells and / or spores obtained by culturing the strain under conditions in which normal Bacillus microorganisms are grown, centrifugation, membrane separation, etc. What concentrated the microbial cell and / or spore, or what wash
  • These inoculation sources can be used as they are, or dried or lyophilized products thereof. Further, it can be used by being supported on an inorganic substance carrier such as bentonite, zeolite, or clay, or an organic substance carrier such as peat moss or activated carbon.
  • the inoculation target can be used for whole plants, water and soil, but when utilizing the high rooting promoting activity of the compound, seeds, roots, cutting cross sections, etc. are preferable.
  • the inoculation concentration may be inoculated after the number of bacteria is 1 ⁇ 10 4 to 1 ⁇ 10 11 per gram of inoculation source.
  • R 4 represents a hydrogen atom, a halogen atom, a hydroxyl group, an alkoxy group or an alkyl group, and m represents a number of 0 to 3
  • the compound represented by the general formula (3) or a salt thereof can be used as a rooting promoter or a plant growth regulator, and for producing a rooting promoter or a plant growth regulator.
  • promoting rooting means promoting rooting of plants such as azuki bean and tomato
  • controlling plant growth means adjusting the growth of the plant.
  • R 4 and m are the same as R 1 and n, respectively, in terms of rooting promoting action.
  • bubutanoic acid is particularly preferable from the viewpoint of rooting promoting action.
  • Example 1 Tryptic Soy Broth (manufactured by Becton Dickinson & Company) with 0%, 0.01%, 0.03%, 0.1%, or 0.3% by weight tryptamine added to a 500 mL Erlenmeyer flask with baffle
  • the following TSB were prepared in an amount of 2 x 300 mL, autoclaved, and inoculated with Bacillus thuringiensis JCM20386 strain that had been pre-cultured with TSB in advance.
  • the cells were cultured with shaking at a temperature of 27 ° C. and a rotation speed of 80 rpm for 10 days.
  • the culture temperature was 27 ° C., and shaking culture was performed at a rotation speed of 80 rpm for 10 days.
  • the obtained culture broth was roughly purified as follows.
  • the culture solution was centrifuged at 6,500 rpm for 30 minutes, and the supernatant was adjusted to pH 3.0 with hydrochloric acid.
  • styrene-divinylbenzene synthetic adsorption resin Diaion HP-20 was washed with methanol, then packed in a column (inner diameter 20 mm ⁇ length 300 mm), and adjusted by passing pH 3.0 acetic acid solution through. By flowing the supernatant liquid through this column, N- [2- (3-indolyl) ethyl] succinamide (hereinafter, IESA) was adsorbed.
  • IESA N- [2- (3-indolyl) ethyl] succinamide
  • the column was washed with 500 mL of 10% by volume isopropanol, and IESA was eluted with 500 mL of 30% by volume isopropanol.
  • the eluate was concentrated to about 100 mL with an evaporator, adjusted to pH 8.0 using an aqueous sodium hydroxide solution, extracted three times with ethyl acetate, and the ethyl acetate layer was discarded.
  • the remaining aqueous phase was adjusted to pH 2.5 with hydrochloric acid and extracted three times with ethyl acetate.
  • the obtained ethyl acetate layer was dehydrated using anhydrous magnesium sulfate, and then the solvent was removed under reduced pressure.
  • the residue was dissolved in a small amount of 1N aqueous acetic acid, separately washed with methanol, and passed through a SepPak C18 cartridge (manufactured by Waters) prepared by passing through 1N aqueous acetic acid to adsorb IESA.
  • the cartridge was eluted with 20 mL of 60% by volume methanol, and the eluate was evaporated to dryness under reduced pressure.
  • This sample was purified using HPLC (column, YMC-Pack Phe inner diameter 10 mm ⁇ length 250 mm (manufactured by YMC); mobile phase, 50% methanol by volume containing 1% acetic acid; flow rate, 3.0 mL / min) The fraction corresponding to the IESA retention time (retention time 8.5 to 11.5 minutes) was collected. The fraction collected was purified using HPLC (column, ODS-A inner diameter 10 mm ⁇ length 250 mm (manufactured by YMC); mobile phase, 50% methanol containing 1% acetic acid; flow rate, 3.0 mL / min). The fraction corresponding to the IESA retention time (retention time 11 to 13 minutes) was collected.
  • HPLC columnumn, YMC-Pack Phe inner diameter 10 mm ⁇ length 250 mm (manufactured by YMC); mobile phase, 50% methanol by volume containing 1% acetic acid; flow rate, 3.0 mL / min
  • this strain produced IESA in the culture medium even when cultured with TSB alone. This is considered to be derived from the case where about 1% by mass of tryptophan derived from casein added as a medium raw material in TSB is contained. Furthermore, it was also proved that IESA production was dramatically improved in the area where tryptamine was added.
  • the fraction corresponding to the IESA retention time (retention time 13.5 to 15.5 minutes) was collected, concentrated for 5 samples into one sample, and further HPLC (column, XTerraRP inner diameter 10 mm ⁇ long). 250 mm (manufactured by Waters); mobile phase, 25% acetonitrile by volume containing 1% acetic acid; flow rate, 3.0 mL / min), and fraction corresponding to IESA retention time (retention time 15-19 minutes) was single Sorted as a peak. The obtained fraction was concentrated under reduced pressure and then dried under reduced pressure in a desiccator in the presence of diphosphorus pentoxide. As a result, 5.8 mg of IESA crystals were obtained.
  • Example 2 Two 500 mL Nutrient Broth (manufactured by Becton Dickinson & Company, NB) with 1% by mass tryptophan added to a 500 mL Erlenmeyer flask with baffle was prepared, and after Bacillus thuringiensis B precultured with NB after autoclaving. -3 strains (from Betsukai-cho soil in Hokkaido, (Germany) Product Evaluation Technology Board Organization Patent Microorganism Deposit Center NITE AP-689) and B. Cereus B-6 strain (derived from Betsukai-cho, Hokkaido, receipt number NITE AP-690) was inoculated and cultured in the same manner as in Example 1.
  • B-6 strain gene identification was performed using the 16s rDNA sequence according to the following procedure. Bacterial cells were collected from the culture solution of B6 strain aerobically cultured at 37 ° C. for 2 days with NB by centrifugation, and DNA was extracted with PrepMan Ultra (Applied Biosystems).
  • PCR was performed at 94 ° C for 4 minutes, followed by 35 cycles of 94 ° C for 30 seconds, 50 ° C for 30 seconds, 72 ° C for 1 minute, and finally 72 ° C for 5 minutes.
  • the amplified product was purified with MinElute PCR purification kit (QIAGEN), and the partial sequence analysis of the amplified fragment was requested to SIGMA Genosys. About 700 bp analyzed, FASTA search was performed on the DDBJ (DNA Data Bank of Japan) homepage (http://fasta.ddbj.nig.ac.jp/top-j.html), and the homology was highest. Identified as a bacterial species.
  • the culture solution was roughly purified in the same manner as in Example 1.
  • the crudely purified sample was purified using HPLC (column, YMC Pack C8 inner diameter 20 mm ⁇ length 250 mm (manufactured by YMC); mobile phase, 50% methanol containing 1% acetic acid; flow rate, 6.0 mL / min).
  • the fraction corresponding to the IESA retention time was collected.
  • Further fractions were collected using HPLC (column, YMC Pack C8 inner diameter 20 mm ⁇ length 250 mm (manufactured by YMC); mobile phase, 30% acetonitrile containing 1% acetic acid; flow rate, 6.0 mL / min).
  • IESA retention time Purified and fractions corresponding to IESA retention time (retention time 28 to 34 minutes) were collected. Further, the fractions used were HPLC (column, YMC-Pack Phe, inner diameter 10 mm ⁇ length 250 mm (manufactured by YMC); mobile phase, 50% methanol containing 1% acetic acid; flow rate, 3.0 mL / min). The fraction corresponding to the IESA retention time (retention time 9 to 11 minutes) was collected. Further, the fractions were collected using HPLC (column, ODS-A inner diameter 10 mm ⁇ length 250 mm (manufactured by YMC); mobile phase, 50% methanol containing 1% acetic acid; flow rate, 3.0 mL / min).
  • fraction collected was HPLC (column, Puresil C18, inner diameter 4.6 mm ⁇ length 250 mm (manufactured by Waters); column temperature, 40 ° C .; mobile phase, 25% acetonitrile containing 1% by volume acetic acid; 8 mL / min).
  • HPLC column temperature, 40 ° C .
  • mobile phase 25% acetonitrile containing 1% by volume acetic acid; 8 mL / min.
  • a peak was observed at 12.4 minutes, which almost coincided with chemically synthesized IESA.
  • an absorption maximum was observed at 281 nm, which was consistent with chemically synthesized IESA.
  • Example 3 Culture, rough purification, and analysis were performed in the same manner as in Example 2 except that the medium was TSB to which 3% by volume of corn steep liquor (manufactured by Wako Pure Chemical Industries, Ltd.) was added and the strain was B-3. As a result, 0.102 mg / L IESA was detected.
  • Example 4 The culture medium is NB, NB with 10 mM tryptamine added, NB with 10 mM tryptamine added with 3 mM phenethylamine, NB with 10 mM tryptamine and 10 mM phenethylamine added, and otherwise with Example 1. Similarly, culture and crude purification were performed, respectively.
  • the crudely purified sample was obtained using HPLC (column, YMC-Pack Phe inner diameter 10 mm ⁇ length 250 mm (manufactured by YMC); mobile phase, 50% methanol containing 1% acetic acid; flow rate, 3.0 mL / min).
  • HPLC column, YMC-Pack Phe inner diameter 10 mm ⁇ length 250 mm (manufactured by YMC); mobile phase, 50% methanol containing 1% acetic acid; flow rate, 3.0 mL / min).
  • fractions corresponding to retention times of IESA and N- (phenethyl) succinamide (hereinafter referred to as PESA) retention times of 8.5 to 11 minutes
  • the fraction collected was purified using HPLC (column, ODS-A inner diameter 10 mm ⁇ length 250 mm (manufactured by YMC); mobile phase, 50% methanol containing 1% acetic acid; flow rate, 3.0 mL / min).
  • the fraction corresponding to the retention time of IESA and PESA was collected.
  • Further fractions were analyzed by HPLC (column, Polar RP inner diameter 10 mm ⁇ length 250 mm (Phenomenex); mobile phase, 30% acetonitrile containing 1% by volume acetic acid; flow rate, 3.0 mL / min).
  • An IESA peak was observed at 14.0 minutes, which almost coincided with chemically synthesized IESA.
  • Example 5 Prepare NB containing 0.1% by mass of tryptamine in a 500 mL Erlenmeyer flask with baffle, and inoculate with Bacillus subtilis strain JCM1465 pre-cultured with NB after autoclaving and culture as in Example 1. Crude purification was performed. The crudely purified sample was purified and analyzed by HPLC in the same manner as in Example 4. As a result, 0.032 mg / L IESA was detected. Therefore, B. be added tryptamine appropriate concentrations in the medium It became clear that IESA could be produced using subtilis .
  • Example 6 Medium containing 1% by mass of tryptophan in NB, 1% by mass of tryptophan in NB, and 0.3% by mass of manganese sulfate pentahydrate (MnSO 4 .5H 2 O) (684 ppm as manganese ion concentration) Then, it was adjusted to pH 6.8 with an aqueous sodium hydroxide solution, and cultured, roughly purified and analyzed in the same manner as in Example 5 except that the strain was changed to the B-3 strain. As a result, IESA of 0.643 mg / L was detected in the manganese sulfate-free group and 3.704 mg / L in the manganese sulfate-added group. From this, it was confirmed that the addition of manganese ions increased IESA production by more than 5 times.
  • MnSO 4 .5H 2 O manganese sulfate pentahydrate
  • Example 7 The basic medium is 0.5% by mass of sodium chloride (NaCl), 0.25% by mass of dipotassium hydrogen phosphate (K 2 HPO 4 ), 0.25% by mass of glucose (glucose), manganese sulfate pentahydrate (0.3%). (Mass%, manganese ion concentration 684 ppm).
  • Yeast extract Yeast extracts, manufactured by Becton Dickinson & Company
  • Tryptone Tryptone, manufactured by Becton Dickinson & Company
  • Soyton Soytone, Becton -Dickinson & Company, Inc.
  • Example 3 except that 3% by mass, (4) 3% by mass of soyton and 1% by mass of glutamic acid were added to adjust the pH to 7.2, and the strain was B-3.
  • culture, crude purification, and analysis were performed. The results are shown in Table 4. From this result, it was confirmed that IESA can be produced from a wide range of nitrogen sources such as yeast extract, tryptone, and soyton by adding manganese ions to the medium.
  • Example 8 (1) Unadjusted milk (manufactured by Nippon Milk Community Co., Ltd.) itself, (2) 0.3% by mass of L-malic acid added to the milk, (3) Manganese sulfate pentahydrate added in an amount of 0.3% by mass (manganese ion concentration of 684 ppm), (4) 0.3% by mass of L-malic acid and manganese sulfate pentahydrate in the above milk Each was added with 0.3% by mass of the product, adjusted to pH 7.2, used as a medium, and cultured, roughly purified and analyzed in the same manner as in Example 5 except that the strain was B-3 strain. The results are shown in Table 5. From this result, it became clear that IESA can be produced using B-3 strain even when milk itself is used as a medium. It was also found that the production amount was further improved by adding manganese ions and malic acid.
  • Example 9 L-malic acid (L-malic acid) was added to whey UF membrane permeate (manufactured by Snow Brand Milk Products Co., Ltd., Nakashibetsu Factory), which is a permeate when protein is recovered from cheese whey using a UF membrane (Ultrafiltration Membrane).
  • IESA can be produced when whey UF membrane permeate itself is used as a medium and manganese ions and L-malic acid are added.
  • whey such as whey powder
  • IESA can be produced by the B-3 strain.
  • manganese ions and L-malic acid are added, the production can be dramatically improved. Became clear.
  • Example 10 Protein concentrated whey powder WPC34C (concentrated protein in whey, spray-dried; manufactured by Snow Brand Milk Products Co., Ltd.) 3% by mass, sodium chloride (NaCl) 0.5% by mass, dipotassium hydrogen phosphate (K 2 HPO) 4 ) Whey protein basal medium was prepared by dissolving 0.25% by mass and 0.25% by mass of glucose in distilled water.
  • IESA can be produced by using the B-3 strain even when the whey protein itself is used as a medium. Further, the production amount was further improved by adding manganese ions and organic acids, and it was found that D-malic acid and fumaric acid are effective as organic acids in addition to L-malic acid.
  • Example 11 (1) Semi-desalted whey powder FC10 (manufactured by Snow Brand Milk Products Co., Ltd.) 12% by mass aqueous solution, (2) Manganese sulfate pentahydrate is added to the 12% by mass semi-desalted whey powder aqueous solution in an amount of 0.3% by mass. (Manganese ion concentration 684 ppm) added, (3) manganese sulfate pentahydrate 0.3% by mass and D-malic acid 0.3% by mass added to the above aqueous solution, (4) sulfuric acid added to the above aqueous solution Manganese pentahydrate 0.3% by mass and L-malic acid 0.3% by mass added.
  • Example 12 Semi-desalted whey powder FC10 (manufactured by Snow Brand Milk Products Co., Ltd.) A medium adjusted to pH 7.2 by adding 0.3% by mass of manganese sulfate pentahydrate (684 ppm as manganese concentration) to a 12% by mass aqueous solution (implemented) 300 mL of Example 11 (2)) was prepared, put into a 500 mL Erlenmeyer flask with a baffle, and sterilized by autoclave.
  • Bacillus thuringiensis B-2 strain (derived from Hokkaido Betsukai-cho soil), B-9 strain (derived from Naganuma-cho soil in Hokkaido), B-10 strain (derived from Betsukai-cho soil in Hokkaido) B-18 strain (from Hokkaido Yuni-cho soil, (Germany) Product Evaluation Technology Board Organization Patent Microorganism Deposit Center NITE ABP-858), B-21 strain (from Hokkaido Yuni-cho soil), B-22 Shares (derived from Naganuma Town, Hokkaido), B-24 shares (derived from Betsukai Town, Hokkaido, (Japan) Product Evaluation Technology Board Organization Patent Microorganism Deposit Center NITE AP-857), B-26 shares (Shibetsu Town, Hokkaido) Soil origin), B-33 strain (derived from Naganuma-cho soil in Hokkaido), B-36 strain (derived from soil in Shibetsu-cho, Hokkaido), B-59 strain (derived from soil in
  • B-7 strain (Derived from Naganuma Town, Hokkaido), B-1 Ltd. (Hokkaido Naganuma-cho, derived from the soil), the B-16 share (Hokkaido Naganuma-cho, soil-derived, (Germany) Technology and Evaluation board mechanism, Patent Microorganisms Depositary receipt number NITE AP-856);
  • B. megaterium B-32 strain (Hokkaido Yuni-cho soil origin, (Germany) product evaluation technology substrate mechanism patent microorganism deposit center receipt number NITE ABP-859) was inoculated and cultured in the same manner as in Example 1. The above strains were identified by the same method as in Example 2.
  • the culture solution was roughly purified in the same manner as in Example 1.
  • the crudely purified sample was purified using HPLC (column, YMC ODS-A inner diameter 10 mm ⁇ length 250 mm (manufactured by YMC); mobile phase, 50% methanol containing 1% acetic acid; flow rate, 3.0 mL / min).
  • the fraction corresponding to the IESA retention time was collected.
  • the fraction collected was HPLC (column, Polar RP inner diameter 4.6 mm ⁇ length 250 mm (manufactured by Phenomenex)); column temperature, 40 ° C .; mobile phase, 25% acetonitrile by volume containing 1% by volume acetic acid; 8 mL / min).
  • a peak was observed at 14.4 minutes, which almost coincided with chemically synthesized IESA.
  • the IESA concentration was calculated in the same manner as in Example 1 using the peak area measured at 280 nm. The results are shown in Table 9. From this result, it was confirmed that IESA can be produced using B. thuringiensis , B. cereus , B. megaterium by using whey supplemented with manganese as a medium. In particular, the production capacity of B. thuringiensis B-18 strain (NITE ABP-858) was found to be extremely high.
  • N- [2- (5-hydroxyindol-3-yl) ethyl] succinic acid amide (Bufobutanoic acid, hereinafter referred to as BBA) was chemically synthesized as follows. Add 30 mL of acetone to 1.55 g of succinic anhydride and stir at room temperature with 3 g of 5-hydroxytryptamine hydrochloride (serotonin hydrochloride, Sigma-Aldrich Japan Co., Ltd.) and 1.97 mL of triethylamine in 50 mL of acetone.
  • the synthesized product was obtained using HPLC (column, YMC-Pack C8 inner diameter 20 mm ⁇ length 250 mm (manufactured by YMC); mobile phase, 50% methanol containing 1% acetic acid; flow rate, 6.0 mL / min). The eluate was purified and the retention time was 12-14 minutes. The fractions collected were dried under reduced pressure and dried under reduced pressure in a desiccator in the presence of diphosphorus pentoxide to obtain 1.1 g of BBA.
  • Production by culture was carried out as follows. Add 0.1% by mass of 5-hydroxytryptamine hydrochloride to NB and adjust to pH 6.8, then dispense 300 mL each into two 500 mL baffled Erlenmeyer flasks, sterilize by autoclave, and use NB in advance.
  • the pre-cultured Bacillus thuringiensis B-3 strain and B. cereus B-6 strain (from Betsukai-cho, Hokkaido, (Germany) Product Evaluation Technology Board Organization Patent Microorganism Deposit Center Accession Number NITE AP-690) were inoculated.
  • the culture temperature was 37 ° C., and shaking culture was performed at a rotation speed of 80 rpm for 10 days.
  • the obtained culture broth was centrifuged in the same manner as in Example 1 and then adsorbed onto a Diaion HP-20 column. This column was eluted with 500 mL of 10% by volume isopropanol, and the eluate was subjected to solvent extraction in the same manner as in Example 1.
  • the obtained sample was dissolved in a small amount of 20% by volume methanol, separately washed with methanol, passed through a SepPak tC18 cartridge (Waters) prepared by passing 20% by volume methanol, and further 20 mL 20% by volume methanol. Purified by eluting with
  • the crudely purified sample was purified using HPLC (column, YMC Phe inner diameter 10 mm ⁇ length 250 mm (manufactured by YMC); mobile phase, 30% methanol containing 1% acetic acid; flow rate, 3.0 mL / min)
  • HPLC columnumn, YMC Phe inner diameter 10 mm ⁇ length 250 mm (manufactured by YMC); mobile phase, 30% methanol containing 1% acetic acid; flow rate, 3.0 mL / min
  • the fraction corresponding to the BBA retention time was collected.
  • fractions collected were analyzed by HPLC (column, ODS-A inner diameter 10 mm ⁇ length 250 mm (manufactured by YMC); mobile phase, 20% acetonitrile containing 1% by volume acetic acid; flow rate, 3.0 mL / min). .
  • HPLC column, ODS-A inner diameter 10 mm ⁇ length 250 mm (manufactured by YMC); mobile phase, 20% acetonitrile containing 1% by volume acetic acid; flow rate, 3.0 mL / min).
  • a peak was observed at 9.5 minutes, which almost coincided with chemically synthesized BBA.
  • the absorption maximum of the peak coincided with 279 nm and chemically synthesized BBA, and the absorption spectrum of 235 to 400 nm almost coincided with chemically synthesized BBA.
  • BBA has root-promoting activity
  • a chemically synthesized BBA aqueous solution was prepared and adjusted to pH 7 with hydrochloric acid, and azuki root-promoting assay (Itagaki et al. 2003. Biological activities and structure-activity).
  • Azuki bean slices were immersed in the test solution for 72 hours, and the number of adventitious roots generated after 7 days was counted. The number of iterations was 5. The results are shown in Table 10. In the BBA-treated group, a marked increase in the number of roots was observed depending on the concentration. From this, it was confirmed that said BBA culture solution can be utilized as a rooting promoter or a plant growth regulator.
  • Example 14 Bacillus thuringiensis B-18 strain (reception number NITE ABP-858) was cultured in 10 mL of NB at 27 ° C. for 3 days, and the culture was centrifuged at 15,000 rpm for 10 minutes. After discarding the supernatant, 10 mL of sterilized water was added, suspended well, and centrifuged again to wash the cells. This washing was repeated two more times, and 10 mL of sterilized water was added and suspended sufficiently to obtain an inoculation source.
  • tomato variety House Momotaro (Takii seedling) seeds are immersed in 80% ethanol for 1 minute, then washed with sterile water, then immersed in 1% sodium hypochlorite for 5 minutes, and then twice with sterile water. After performing seed disinfection by washing, the seed was sown on the surface of a medium containing 1% by mass of pre-sterilized gellite (manufactured by Wako Pure Chemical Industries, Ltd.). After culturing at 27 ° C.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Disclosed is a novel method for producing an indolylalkyl succinic acid amide compound, which is useful as a plant growth accelerator, by microorganisms. Specifically disclosed is a method for producing an indolylalkyl succinic acid amide compound represented by general formula (2) (wherein R1, R2 and n are as defined below) or a salt thereof, which is characterized in that microorganisms belonging to the genus Bacillus and having the power of synthesizing an indolylalkyl succinic acid amide are cultured in a medium containing an indolylalkyl amine represented by general formula (1) (wherein R1 and R2 each independently represents a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group or an alkyl group; R3 represents a hydrogen atom or a carboxyl group; and n represents a number of 0-3) or a salt thereof.

Description

インドリルアルキルコハク酸アミド化合物の製造法Method for producing indolylalkyl succinamide compounds
 本発明は、植物成長調整剤として有用なインドリルアルキルコハク酸アミド化合物の微生物を利用した製造法に関する。 The present invention relates to a process for producing an indolylalkyl succinamide compound useful as a plant growth regulator using a microorganism.
 発根促進活性が高く、植物の成長を促進する成分は、農業及び林業分野において強く望まれており、数多くの研究がなされている。そのような状況下、下記一般式(a) Ingredients that have high rooting promoting activity and promote plant growth are strongly desired in the fields of agriculture and forestry, and many studies have been made. Under such circumstances, the following general formula (a)
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、Arは置換基を有していてもよいフェニル、ナフチル又はインドリル基を示し、nは0~3の数を示す)
で表されるコハク酸アミド化合物又はその塩が優れた発根促進作用を有し、植物成長調整剤として有用であることが知られている(特許文献1及び2)。
(In the formula, Ar represents an optionally substituted phenyl, naphthyl or indolyl group, and n represents a number of 0 to 3)
It is known that a succinamide compound represented by the formula (1) or a salt thereof has an excellent rooting promoting action and is useful as a plant growth regulator (Patent Documents 1 and 2).
 このコハク酸アミド化合物は特許文献1及び2記載のように化学合成によって得ることもできるが、このうちフェネチルコハク酸アミドはバチルス属に属する微生物によっても生産されることが知られている(非特許文献1)。 This succinic acid amide compound can be obtained by chemical synthesis as described in Patent Documents 1 and 2, and phenethyl succinic acid amide is known to be produced by microorganisms belonging to the genus Bacillus (non-patent). Reference 1).
特開平1-255607号公報JP-A-1-255607 特開2001-139405号公報JP 2001-139405 A
 現在、市場に流通している植物成長調整剤のほとんどは化学合成によって製造されているが、消費者の間には物質自体の安全性に疑念をもつ風潮も未だに強い。このことは、有機農産物や減農薬栽培農産物がもてはやされていることからも裏付けられる。この点を鑑みると、植物成長調整剤を含む農薬としては、天然由来のものが好ましく、化学合成により得られるものでなく、微生物によって生産されるものが望まれている。
 しかしながら、インドリルアルキルコハク酸アミドについての微生物による生産法についての報告はない。
 従って、本発明の課題は、植物成長促進剤として有用なインドリルアルキルコハク酸アミド化合物の微生物による新たな製造法を提供することにある。
Currently, most plant growth regulators on the market are produced by chemical synthesis, but there is still a strong tendency among consumers to question the safety of the substance itself. This is supported by the fact that organic agricultural products and agricultural products with reduced agricultural chemicals are being used. In view of this point, a pesticide containing a plant growth regulator is preferably derived from nature, and is not obtained by chemical synthesis but is produced by a microorganism.
However, there is no report about the production method by microorganisms about indolyl alkyl succinamide.
Accordingly, an object of the present invention is to provide a novel method for producing an indolylalkylsuccinamide compound useful as a plant growth promoter by a microorganism.
 そこで本発明者は、インドリルアルキルコハク酸アミドの生産能を有する新たな微生物を探索したところ、バチルス属に属する微生物がトリプタミン、トリプトファン及びセロトニン塩酸塩からインドリルアルキルコハク酸アミド化合物を効率良く生産することを見出し、本発明を完成した。 Therefore, the present inventor searched for a new microorganism capable of producing indolylalkylsuccinic acid amide, and microorganisms belonging to the genus Bacillus efficiently produced indolylalkylsuccinic acid amide compounds from tryptamine, tryptophan and serotonin hydrochloride. The present invention has been completed.
 すなわち、本発明は、一般式(1) That is, the present invention has the general formula (1)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、R1及びR2はそれぞれ独立して水素原子、ハロゲン原子、水酸基、アルコキシ基又はアルキル基を示し、R3は水素原子又はカルボキシル基を示し、nは0~3の数を示す)
で表されるインドリルアルキルアミン類又はその塩を含有する培地中で、インドリルアルキルコハク酸アミド合成能を有するバチルス属に属する微生物を培養することを特徴とする、一般式(2)
(Wherein R 1 and R 2 each independently represents a hydrogen atom, a halogen atom, a hydroxyl group, an alkoxy group or an alkyl group, R 3 represents a hydrogen atom or a carboxyl group, and n represents a number of 0 to 3) )
A microorganism belonging to the genus Bacillus having the ability to synthesize indolylalkylsuccinic acid amide is cultured in a medium containing the indolylalkylamines or salts thereof represented by the general formula (2)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、R1、R2及びnは前記と同じ)
で表されるインドリルアルキルコハク酸アミド化合物又はその塩の製造法を提供するものである。
(Wherein R 1 , R 2 and n are the same as above)
The manufacturing method of the indolyl alkyl succinic acid amide compound represented by these, or its salt is provided.
 本発明方法によれば、バチルス属に属する微生物の培養により、植物成長調整剤として有用なインドリルアルキルコハク酸アミド化合物又はその塩が効率良く得られる。 According to the method of the present invention, an indolylalkylsuccinamide compound or a salt thereof useful as a plant growth regulator can be efficiently obtained by culturing a microorganism belonging to the genus Bacillus.
 本明細書において、質量%とは(wt/vol)%を意味し、容量%とは(vol/vol)%を意味する。 In this specification, mass% means (wt / vol)%, and volume% means (vol / vol)%.
 本発明のインドリルアルキルコハク酸アミド化合物の製造法に用いられる微生物は、バチルス・チューリンゲンシス(Bacillus thuringiensis)、バチルス・セレウス(Bacillus cereus)、バチルス・ズブチリス(Bacillus subtilis)、バチルス・アシディセラー(Bacillus acidiceler)、バチルス・アシディコーラ(Bacillus acidicola)、バチルス・アエオリウス(Bacillus aeolius)、バチルス・アエリウス(Bacillus aerius)、バチルス・アエロフィルス(Bacillus aerophilus)、バチルス・アガラドヘレンス(Bacillus agaradhaerens)、バチルス・アキバイ(Bacillus akibai)、バチルス・アルカリフィルス(Bacillus alcalophilus)、バチルス・アルギコーラ(Bacillus algicola)、バチルス・アルカリジアゾトロフィカス(Bacillus alkalidiazotrophicus)、バチルス・アルカリテルリス(Bacillus alkalitelluris)、バチルス・アルティチュジニス(Bacillus altitudinis)、バチルス・アルベアユエンシス(Bacillus alveayuensis)、バチルス・アミロリクエファシエンス(Bacillus amyloliquefaciens)、バチルス・アンスラシス(Bacillus anthracis)、バチルス・アクイマリス(Bacillus aquimaris)、バチルス・アレノシイ(Bacillus arenosi)、バチルス・アルセニシセレナティス(Bacillus arseniciselenatis)、バチルス・アルセニカス(Bacillus arsenicus)、バチルス・アーヴァイ(Bacillus arvi)、バチルス・アサヒイ(Bacillus asahii)、バチルス・アトロファエウス(Bacillus atrophaeus)、バチルス・アウランティアカス(Bacillus aurantiacus)、バチルス・アキサクィエンシス(Bacillus axarquiensis)、バチルス・アゾトフォーマンス(Bacillus azotoformans)、 Microorganisms used in the method for producing an indolylalkylsuccinamide compound of the present invention include Bacillus thuringiensis , Bacillus cereus , Bacillus subtilis , Bacillus acidiceler. ), Bacillus Ashidikora (Bacillus acidicola), Bacillus Aeoriusu (Bacillus aeolius), Bacillus Aeriusu (Bacillus aerius), Bacillus Aerofirusu (Bacillus aerophilus), Bacillus Agaradoherensu (Bacillus agaradhaerens), Bacillus Akibai (Bacillus akibai) , Bacillus alkaline Filth (Bacillus alcalophilus), Bacillus Arugikora (Bacillus algicola), Bacillus alkaline diazo Toro Ficus (Bacillus alkalidiazotrophicus), Bacillus Arukariteruri Scan (Bacillus alkalitelluris), Bacillus Ultimatum Ju Hee scan (Bacillus altitudinis), Bacillus Al Bear Yuen cis (Bacillus alveayuensis), Bacillus amyloliquefaciens (Bacillus amyloliquefaciens), Bacillus anthracis (Bacillus anthracis), Bacillus Akuimarisu ( Bacillus aquimaris), Bacillus Arenoshii (Bacillus arenosi), Bacillus Arce Western Serena Sevilla (Bacillus arseniciselenatis), Bacillus Arusenikasu (Bacillus arsenicus), Bacillus Avai (Bacillus arvi), Bacillus Asahii (Bacillus asahii), Bacillus atrophaeus (Bacillus atrophaeus), Bacillus A uranium tier dregs (Bacillus aurantiacus), Bacillus Aki Saku I ene cis (Bacillus axarquiensis), Bacillus azo door performance (Bacillus azotoformans),
バチルス・バディウス(Bacillus badius)、バチルス・バーバリカス(Bacillus barbaricus)、バチルス・バタビエンシス(Bacillus bataviensis)、バチルス・ベンゾボランス(Bacillus benzoevorans)、バチルス・ボゴリエンシス(Bacillus bogoriensis)、バチルス・ボロニフィルス(Bacillus boroniphilus)、バチルス・ブタノリボランス(Bacillus butanolivorans)、バチルス・カーボニフィルス(Bacillus carboniphilus)、バチルス・セセンベンシス(Bacillus cecembensis)、バチルス・セルロシリティカス(Bacillus cellulosilyticus)、バチルス・チャガノレンシス(Bacillus chagannorensis)、バチルス・シービー(Bacillus cibi)、バチルス・サーキュランス(Bacillus circulans)、バチルス・クラーキー(Bacillus clarkii)、バチルス・クラウシー(Bacillus clausii)、バチルス・コアギュランス(Bacillus coagulans)、バチルス・コアウイレンシス(Bacillus coahuilensis)、バチルス・コーニー(Bacillus cohnii)、バチルス・デシシフロンディス(Bacillus decisifrondis)、バチルス・デコロラチオニス(Bacillus decolorationis)、バチルス・ドレンテンシス(Bacillus drentensis)、バチルス・エダフィカス(Bacillus edaphicus)、バチルス・エンドフィティカス(Bacillus endophyticus)、バチルス・ファラギニス(Bacillus farraginis)、バチルス・フォスティディオサス(Bacillus fastidiosus)、バチルス・ファルマス(Bacillus firmus)、バチルス・フレクサス(Bacillus flexus)、バチルス・ホラミニス(Bacillus foraminis)、バチルス・フォルディ(Bacillus fordii)、バチルス・フォルティス(Bacillus fortis)、バチルス・フマリオリィ(Bacillus fumarioli)、バチルス・フニクラス(Bacillus funiculus)、バチルス・ガラクトシディリティカス(Bacillus galactosidilyticus)、バチルス・ゲラティニ(Bacillus gelatini)、バチルス・ギブソニー(Bacillus gibsonii)、バチルス・ハルマパラス(Bacillus halmapalus)、バチルス・ハロデュランス(Bacillus halodurans)、バチルス・ハロフィルス(Bacillus halophilus)、バチルス・ヘミセルロシリティカス(Bacillus hemicellulosilyticus)、バチルス・ハーバーステイネンシス(Bacillus herbersteinensis)、 Bacillus badius (Bacillus badius), Bacillus Babarikasu (Bacillus barbaricus), Bacillus Batabienshisu (Bacillus bataviensis), Bacillus Benzoboransu (Bacillus benzoevorans), Bacillus Bogorienshisu (Bacillus bogoriensis), Bacillus Boronifirusu (Bacillus boroniphilus), Bacillus Butanoriboransu (Bacillus butanolivorans), Bacillus Kabonifirusu (Bacillus carboniphilus), Bacillus Sesenbenshisu (Bacillus cecembensis), Bacillus cell Russia utility dregs (Bacillus cellulosilyticus), Bacillus Chaganorenshisu (Bacillus chagannorensis), Bacillus CB (Bacillus cibi) , Bacillus circulans , Bacillus clarkii , Bacillus clausii, Bacillus colus Agyuransu (Bacillus coagulans), Bacillus Koauirenshisu (Bacillus coahuilensis), Bacillus Coney (Bacillus cohnii), Bacillus de Shishi CFC disk (Bacillus decisifrondis), Bacillus Dekororachionisu (Bacillus decolorationis), Bacillus Dorentenshisu (Bacillus drentensis), Bacillus · Edafikasu (Bacillus edaphicus), Bacillus end Fi Atlantica scan (Bacillus endophyticus), Bacillus Faraginisu (Bacillus farraginis), Bacillus follower stay Dio suspension (Bacillus fastidiosus), Bacillus Falmouth (Bacillus firmus), Bacillus Furekusasu (Bacillus flexus ), Bacillus foraminis , Bacillus fordii , Bacillus fortis , Bacillus fumariol i), Bacillus Funikurasu (Bacillus funiculus), Bacillus galactosyl di utility dregs (Bacillus galactosidilyticus), Bacillus Geratini (Bacillus gelatini), Bacillus Gibusoni (Bacillus gibsonii), Bacillus Harumaparasu (Bacillus halmapalus), Bacillus halodurans (Bacillus halodurans), Bacillus Harofirusu (Bacillus halophilus), Bacillus hemi-cell Russia utility dregs (Bacillus hemicellulosilyticus), Bacillus Harbor Stay Nene cis (Bacillus herbersteinensis),
バチルス・ホリコシー(Bacillus horikoshii)、バチルス・ホルティ(Bacillus horti)、バチルス・フミ(Bacillus humi)、バチルス・ファジンポエンシス(Bacillus hwajinpoensis)、バチルス・イドリエンシス(Bacillus idriensis)、バチルス・インディカス(Bacillus indicus)、バチルス・インファンティス(Bacillus infantis)、バチルス・インファーナス(Bacillus infernus)、バチルス・インソリタス(Bacillus insolitus)、バチルス・イサベリエ(Bacillus isabeliae)、バチルス・チョッカリ(Bacillus jeotgali)、バチルス・コリエンシス(Bacillus koreensis)、バチルス・クルーウィッチアエ(Bacillus krulwichiae)、バチルス・レヘンシス(Bacillus lehensis)、バチルス・レンタス(Bacillus lentus)、バチルス・リケニホルミス(Bacillus licheniformis)、バチルス・リトラリス(Bacillus litoralis)、バチルス・ルシフェレンシス(Bacillus luciferensis)、バチルス・マカウエンシス(Bacillus macauensis)、バチルス・マキアエ(Bacillus macyae)、バチルス・マラシテンシス(Bacillus malacitensis)、バチルス・マンナニリティカス(Bacillus mannanilyticus)、バチルス・マリナス(Bacillus marinus)、バチルス・マリスフラビィ(Bacillus marisflavi)、バチルス・マシリエンシス(Bacillus massiliensis)、バチルス・メガテリウム(Bacillus megaterium)、バチルス・メタノリカス(Bacillus methanolicus)、バチルス・モジャベンシス(Bacillus mojavensis)、バチルス・ムシラギノサス(Bacillus mucilaginosus)、バチルス・ムラリス(Bacillus muralis)、バチルス・ムリマルティニ(Bacillus murimartini)、バチルス・ミコイデス(Bacillus mycoides)、バチルス・ネールソニー(Bacillus nealsonii)、バチルス・ニアベンシス(Bacillus niabensis)、バチルス・ニアシニ(Bacillus niacini)、バチルス・ノバリス(Bacillus novalis)、バチルス・オデッセイ(Bacillus odysseyi)、バチルス・オクヘンシス(Bacillus okhensis)、バチルス・オクヒデンシス(Bacillus okuhidensis)、バチルス・オレロニウス(Bacillus oleronius)、バチルス・オシメンシス(Bacillus oshimensis)、バチルス・パリダス(Bacillus pallidus)、バチルス・パナシテラエ(Bacillus panaciterrae)、バチルス・パタゴニエンシス(Bacillus patagoniensis)、バチルス・プラコルチディス(Bacillus plakortidis)、バチルス・ポチェオネンシス(Bacillus pocheonensis)、バチルス・ポリゴニ(Bacillus polygoni)、 Bacillus Horikoshi (Bacillus horikoshii), Bacillus Horuti (Bacillus horti), Bacillus Fumi (Bacillus humi), Bacillus file Jin Po-ene-cis (Bacillus hwajinpoensis), Bacillus Idorienshisu (Bacillus idriensis), Bacillus indicus (Bacillus indicus) , Bacillus infantis (Bacillus infantis), Bacillus in the furnace (Bacillus infernus), Bacillus Insoritasu (Bacillus insolitus), Bacillus Isaberie (Bacillus isabeliae), Bacillus Chokkari (Bacillus jeotgali), Bacillus Korienshisu (Bacillus koreensis ), Bacillus krulwichiae , Bacillus lehensis , Bacillus lentus , Bacillus licheniformis , Bacillus licheniformis Torarisu (Bacillus litoralis), Bacillus Rushiferenshisu (Bacillus luciferensis), Bacillus Makauenshisu (Bacillus macauensis), Bacillus Makiae (Bacillus macyae), Bacillus Marashitenshisu (Bacillus malacitensis), Bacillus Man Nani utility dregs (Bacillus mannanilyticus) , Bacillus marinus (Bacillus marinus), Bacillus Marisufurabyi (Bacillus marisflavi), Bacillus Mashirienshisu (Bacillus massiliensis), Bacillus megaterium (Bacillus megaterium), Bacillus methanolicus (Bacillus methanolicus), Bacillus Mojabenshisu (Bacillus mojavensis), Bacillus · Mushiraginosasu (Bacillus mucilaginosus), Bacillus Murarisu (Bacillus muralis), Bacillus Muri Martini (Bacillus murimartini), Bacillus mycoides (Bacillus mycoides , Bacillus Nehru Sony (Bacillus nealsonii), Bacillus two Avensis (Bacillus niabensis), Bacillus Niashini (Bacillus niacini), Bacillus Novalis (Bacillus novalis), Bacillus Odyssey (Bacillus odysseyi), Bacillus Okuhenshisu (Bacillus okhensis) , Bacillus Okuhidenshisu (Bacillus okuhidensis), Bacillus Oreroniusu (Bacillus oleronius), Bacillus Oshimenshisu (Bacillus oshimensis), Bacillus Paridasu (Bacillus pallidus), Bacillus Panashiterae (Bacillus panaciterrae), Bacillus Patagonienshisu (Bacillus patagoniensis), Bacillus・Placortidis ( Bacillus plakortidis ), Bacillus pocheonensis ( Bacillus pocheonensis ), Bacillus polygoni ( Bacillus polygoni ),
バチルス・シュードアルカリフィルス(Bacillus pseudalcaliphilus)、バチルス・シュードファーマス(Bacillus pseudofirmus)、バチルス・シュードミコイデス(Bacillus pseudomycoides)、バチルス・シクロデュランス(Bacillus psychrodurans)、バチルス・フィクロサッカロリティカス(Bacillus psychrosaccharolyticus)、バチルス・フィクロトレランス(Bacillus psychrotolerans)、バチルス・プミラス(Bacillus pumilus)、バチルス・ピクナス(Bacillus pycnus)、バチルス・キングダオネンシス(Bacillus qingdaonensis)、バチルス・ルリス(Bacillus ruris)、バチルス・サフェンシス(Bacillus safensis)、バチルス・サラリウス(Bacillus salarius)、バチルス・サリフィルス(Bacillus saliphilus)、バチルス・シュリジェリー(Bacillus schlegelii)、バチルス・セレナターセナティス(Bacillus selenatarsenatis)、バチルス・セレニティレドセンス(Bacillus selenitireducens)、バチルス・セオハエアネンシス(Bacillus seohaeanensis)、バチルス・サックレトニー(Bacillus shackletonii)、バチルス・シルベストリス(Bacillus silvestris)、バチルス・シンプレックス(Bacillus simplex)、バチルス・シラリス(Bacillus siralis)、バチルス・スミシー(Bacillus smithii)、バチルス・ソリ(Bacillus soli)、バチルス・ソノレンシス(Bacillus sonorensis)、バチルス・スフェリカス(Bacillus sphaericus)、バチルス・スポロサーモデュランス(Bacillus sporothermodurans)、バチルス・ストラトスフェリカス(Bacillus stratosphericus)、バチルス・サブテラネウス(Bacillus subterraneus)、バチルス・タエアネンシス(Bacillus taeanensis)、バチルス・テクィレンシス(Bacillus tequilensis)、バチルス・サーマンタルクティカス(Bacillus thermantarcticus)、バチルス・サーモアミロボランス(Bacillus thermoamylovorans)、バチルス・サーモクローカー(Bacillus thermocloacae)、バチルス・チオパランス(Bacillus thioparans)、バチルス・ツスシー(Bacillus tusciae)、バチルス・バリスモーチス(Bacillus vallismortis)、バチルス・ベデリ(Bacillus vedderi)、バチルス・ベレゼンシス(Bacillus velezensis)、バチルス・ビエトナメンシス(Bacillus vietnamensis)、バチルス・ビレティ(Bacillus vireti)、バチルス・ワコエンシス(Bacillus wakoensis)、バチルス・ヴェイヘンステファネンシス(Bacillus weihenstephanensis)に属し、インドリルアルキルコハク酸アミド合成能を有するものであれば特に制限されないが、インドリルアルキルコハク酸アミド化合物合成能の点で、バチルス・チューリンゲンシス、バチルス・セレウス、バチルス・ズブチリス、バチルス・メガテリウムに属するものが特に好ましい。 Bacillus pseudalcaliphilus , Bacillus pseudofirmus , Bacillus pseudomycoides , Bacillus psychrodurans , Bacillus physaccharolyticus , Bacillus Fi black tolerance (Bacillus psychrotolerans), Bacillus pumilus (Bacillus pumilus), Bacillus Pikunasu (Bacillus pycnus), Bacillus King Dao Nene cis (Bacillus qingdaonensis), Bacillus Rurisu (Bacillus ruris), Bacillus Safenshisu ( Bacillus safensis), Bacillus Sarariusu (Bacillus salarius), Bacillus Sarifirusu (Bacillus saliphilus), Bacillus Sri Jerry (Bacillus schlegelii), Bacillus Serenatasena Office (Bacillus selenatarsenatis), Bacillus Serenity TOLEDO sense (Bacillus selenitireducens), Bacillus Theo Ha air Nene cis (Bacillus seohaeanensis), Bacillus Sakkuretoni (Bacillus shackletonii), Bacillus sylvestris (Bacillus silvestris), Bacillus simplex ( Bacillus simplex ), Bacillus siralis , Bacillus smithii , Bacillus soli , Bacillus sonorensis , Bacillus sphaericus , Bacillus sphaericus (Bacillus sporothermodurans), Bacillus Stratos FeliCa scan (Bacillus stratosphericus), Bacillus Sabuteraneusu (Bacillus subterraneus), Bacillus Taeanenshisu (Bacillus taeanensis), Bacillus Tekui Nshisu (Bacillus tequilensis), Bacillus Thurman talc Atlantica scan (Bacillus thermantarcticus), Bacillus thermo-Ami Robo lance (Bacillus thermoamylovorans), Bacillus thermo-crore car (Bacillus thermocloacae), Bacillus Chioparansu (Bacillus thioparans), Bacillus Tsusushi (Bacillus tusciae), Bacillus Barisumochisu (Bacillus vallismortis), Bacillus Bederi (Bacillus vedderi), Bacillus Berezenshisu (Bacillus velezensis), Bacillus Bietonamenshisu (Bacillus vietnamensis), Bacillus Bireti (Bacillus vireti), Bacillus Wakoenshisu (Bacillus wakoensis) Is not particularly limited as long as it belongs to Bacillus weihenstephanensis and has the ability to synthesize indolylalkylsuccinic acid amides. Particularly preferred are those belonging to Bacillus thuringiensis, Bacillus cereus, Bacillus subtilis, Bacillus megaterium in terms of the ability to synthesize rualkylsuccinamide compounds.
 上記のうち好適な具体例としては、バチルス・チューリンゲンシスJCM20386株、同B-2株、同B-3(郵便番号292-0818 日本国 千葉県 木更津市 かずさ鎌足2-5-8(独)製品評価技術基板機構特許微生物寄託センター 受領番号NITE AP-689)株、同B-9株、同B-10株、同B-18(NITE ABP-858)株、同B-21株、同B-22株、同B-24株(NITE AP-857)、同B-26株、同B-33株、同B-36株、同B-59株;バチルス・セレウスB-5株、同B-6(NITE AP-690)株、同B-7株、同B-8株、同B-11株、同B-12株、同B-14株、同B-15株、同B-16株(NITE AP-856);バチルス・メガテリウムB-32(NITE ABP-859)株;バチルス・ズブチリスJCM1465株等が挙げられ、インドリルアルキルコハク酸アミド化合物合成能の点で、バチルス・チューリンゲンシスJCM20386株、同B-3株、同B-18株、同B-24株;バチルス・セレウスB-6株、同B-15株、同B-16株;バチルス・ズブチリスJCM1465株が特に好ましい。
  なお、寄託日は受領番号NITE AP-689株・NITE AP-690株は平成20年(2008)年12月5日であり、受領番号NITE AP-856・AP-857・ABP-858・ABP-859は平成21(2009)年12月25日である。
 上記のうち、バチルス・チューリンゲンシスJCM20386株及びバチルス・ズブチリスJCM1465株は、独立行政法人 理化学研究所から購入できる菌株である。またその他の菌株は、土壌から分離されたものである。
Preferred examples of the above include Bacillus thuringiensis JCM20386, B-2 and B-3 (postal code 292-0818 2-5-8 Kazusa Kamashi, Kisarazu, Chiba, Japan) Product Evaluation Technology Board Organization Patent Microorganism Deposit Center NITE AP-689), B-9, B-10, B-18 (NITE ABP-858), B-21, B -22, B-24 (NITE AP-857), B-26, B-33, B-36, B-59; Bacillus cereus B-5, B -6 (NITE AP-690), B-7, B-8, B-11, B-12, B-14, B-15, B-16 Strain (NITE AP-856); Bacillus megaterium B-32 (NITE ABP-859) strain Bacillus subtilis JCM1465 strain and the like. In terms of the ability to synthesize indolylalkylsuccinic acid amide compounds, Bacillus thuringiensis JCM20386 strain, B-3 strain, B-18 strain, B-24 strain; Cereus B-6 strain, B-15 strain, B-16 strain; Bacillus subtilis JCM1465 strain is particularly preferable.
The deposit date is NITE AP-689 shares and NITE AP-690 shares are December 5, 2008, and the receipt numbers NITE AP-856, AP-857, ABP-858, ABP- 859 is December 25, 2009.
Among the above, Bacillus thuringiensis JCM20386 strain and Bacillus subtilis JCM1465 strain are strains that can be purchased from RIKEN. Other strains were isolated from soil.
 これらの微生物を用いて一般式(2)のインドリルアルキルコハク酸アミド化合物又はその塩を製造するには、培地中に一般式(1)で表されるインドリルアルキルアミン類又はその塩を含有せしめる。 In order to produce an indolylalkylsuccinic acid amide compound of the general formula (2) or a salt thereof using these microorganisms, the medium contains an indolylalkylamine or a salt thereof represented by the general formula (1) Let me.
 R1及びR2としては、水素原子、ハロゲン原子、水酸基、C1-6アルキル基、C1-6アルコキシ基が挙げられる。ここでC1-6アルキル基としては、メチル基、エチル基、イソプロピル基、t-ブチル基等が挙げられる。C1-6アルコキシ基としては、メトキシ基、エトキシ基、イソプロピルオキシ基等が挙げられる。またハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 Examples of R 1 and R 2 include a hydrogen atom, a halogen atom, a hydroxyl group, a C 1-6 alkyl group, and a C 1-6 alkoxy group. Here, examples of the C 1-6 alkyl group include a methyl group, an ethyl group, an isopropyl group, and a t-butyl group. Examples of the C 1-6 alkoxy group include a methoxy group, an ethoxy group, and an isopropyloxy group. Moreover, as a halogen atom, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned.
 一般式(1)及び(2)中、nは0~3の数を示すが、0~2、特に1が好ましい。 In general formulas (1) and (2), n represents a number from 0 to 3, with 0 to 2, particularly 1 being preferred.
 一般式(1)及び(2)中、R1及びR2としては水素原子、水酸基が特に好ましく、nは1が特に好ましい。 In general formulas (1) and (2), R 1 and R 2 are particularly preferably a hydrogen atom or a hydroxyl group, and n is particularly preferably 1.
 インドリルアルキルアミン類(1)としては、インドリルアルキルアミン類(R3=H)でもよいし、インドリルアルキルカルボキシアミン類(R3=COOH)でもよいが、トリプタミン(R1=H、R2=H、n=1、R3=H)、トリプトファン(R1=H、R2=H、n=1、R3=COOH)、セロトニン(R1=OH、R2=H、n=1、R3=COOH,若しくはR1=H、R2=OH、n=1、R3=H)、あるいはこれらの塩が収率向上の点で特に好ましく、これらの化合物は2種以上を併用してもよい。
 なお、インドリルアルキルアミン類(1)の塩としては、塩酸塩、硝酸塩、硫酸塩等が挙げられるが、塩酸塩が好ましい。
Indolylalkylamines (1) may be indolylalkylamines (R 3 = H) or indolylalkylcarboxyamines (R 3 = COOH), but tryptamine (R 1 = H, R 2 = H, n = 1, R 3 = H), tryptophan (R 1 = H, R 2 = H, n = 1, R 3 = COOH), serotonin (R 1 = OH, R 2 = H, n = 1, R 3 = COOH, or R 1 = H, R 2 = OH, n = 1, R 3 = H), or a salt thereof is particularly preferable in terms of yield improvement. You may use together.
In addition, examples of the salt of indolylalkylamines (1) include hydrochloride, nitrate, sulfate and the like, and hydrochloride is preferable.
 培地中のインドリルアルキルアミン類(1)又はその塩の濃度は、インドリルアルキルコハク酸アミド化合物の生産性の点から0.001~10質量%、さらに0.001~5質量%、特に0.01~5質量%が好ましい。また、当該インドリルアルキルアミン類(1)は、反応系に一括又は連続的に加えることができる。 The concentration of the indolylalkylamines (1) or a salt thereof in the medium is 0.001 to 10% by mass, more preferably 0.001 to 5% by mass, particularly 0 in terms of productivity of the indolylalkylsuccinic acid amide compound. 0.01 to 5% by mass is preferable. The indolylalkylamines (1) can be added to the reaction system all at once or continuously.
 培地中にはマンガンイオン(Mn2+)を含有させることによりインドリルアルキルコハク酸アミド化合物をさらに効率よく生産させることができる。マンガンイオンを添加する場合は硫酸マンガン、塩酸マンガン、炭酸マンガン、EDTAマンガン等いずれでも可能であり、これらを1種又は2種以上用いることができるが、硫酸マンガンが特に好ましい。
 培地中の含有量はマンガンイオン(Mn2+)として1~2000ppm、特に2~1000ppmが好ましい。なお、マンガンイオン(Mn2+)は、反応系に一括又は連続的に加えることができる。
By containing manganese ions (Mn 2+ ) in the medium, an indolylalkyl succinamide compound can be produced more efficiently. When manganese ions are added, any of manganese sulfate, manganese hydrochloride, manganese carbonate, EDTA manganese, and the like can be used, and one or more of these can be used, and manganese sulfate is particularly preferable.
The content in the medium is preferably 1 to 2000 ppm, particularly 2 to 1000 ppm as manganese ions (Mn 2+ ). Manganese ions (Mn 2+ ) can be added to the reaction system all at once or continuously.
 また、培地中には有機酸又はその塩を含有させることによりインドリルアルキルコハク酸アミド化合物をさらに効率よく生産させることができる。有機酸としてはリンゴ酸、フマル酸、コハク酸、クエン酸、イソクエン酸、α-ケトグルタル酸、オキサロ酢酸等が挙げられ、これらを1種又は2種以上用いることができる。このうち、インドリルアルキルコハク酸アミド化合物産生効率の点で、リンゴ酸、フマル酸、コハク酸が好ましく、L-リンゴ酸、D-リンゴ酸、フマル酸がより好ましい。
 これらの有機酸の培地中の濃度は0.1~10質量%が好ましく、0.2~1質量%がより好ましい。なお、有機酸又はその塩は、反応系に一括又は連続的に加えることができる。
Moreover, an indolyl alkyl succinamide compound can be produced more efficiently by containing an organic acid or a salt thereof in the medium. Examples of the organic acid include malic acid, fumaric acid, succinic acid, citric acid, isocitric acid, α-ketoglutaric acid, oxaloacetic acid, and the like, and one or more of these can be used. Of these, malic acid, fumaric acid, and succinic acid are preferable, and L-malic acid, D-malic acid, and fumaric acid are more preferable in terms of production efficiency of indolylalkyl succinic acid amide compounds.
The concentration of these organic acids in the medium is preferably 0.1 to 10% by mass, more preferably 0.2 to 1% by mass. The organic acid or a salt thereof can be added to the reaction system all at once or continuously.
 本発明の製造法において、前記微生物の培養は、インドリルアルキルアミン類(1)又はその塩、必要に応じてその他上記の化合物を培地に添加する以外は、通常のバチルス属微生物が増殖する条件で行えばよい。
 培地には、バチルス属微生物の増殖に必要な炭素源、窒素源、ビタミン源、ミネラル源等を添加するのが好ましい。炭素源としては、グルコース、水飴、可溶性デンプンなどが用いられる。窒素源としては、トリプトン、ソイトン、酵母エキス、ペプトン、カゼイン、カゼイン消化物、肉エキス、コーンスチープリカー、アミノ酸液、大豆粕、硫酸アンモニウム、塩化アンモニウム等を用いることができるが、トリプトファン含量の高いカゼイン、カゼイン消化物、酵母エキス、コーンスチープリカー等が好ましいことは言うまでもない。
 ミネラル源としては、マグネシウム塩、カリウム塩、リン酸塩、鉄塩などを用いることができる。また、これらを総合的に含有する培地としては、牛乳;チーズホエイ、大豆ホエイ等のホエイ等を用いることができる。培養方法としては、液体培地を用いて、振盪培養、撹拌培養を行えばよい。
In the production method of the present invention, the microorganism is cultured under the conditions under which normal microorganisms of the genus Bacillus grow, except that indolylalkylamines (1) or a salt thereof and, if necessary, other compounds described above are added to the medium. Just do it.
It is preferable to add a carbon source, a nitrogen source, a vitamin source, a mineral source and the like necessary for the growth of Bacillus microorganisms to the medium. As the carbon source, glucose, starch syrup, soluble starch and the like are used. As the nitrogen source, tryptone, soyton, yeast extract, peptone, casein, casein digest, meat extract, corn steep liquor, amino acid solution, soybean cake, ammonium sulfate, ammonium chloride, etc. can be used, but casein with a high tryptophan content. Needless to say, casein digest, yeast extract, corn steep liquor and the like are preferable.
As the mineral source, magnesium salt, potassium salt, phosphate, iron salt and the like can be used. Moreover, as a culture medium containing these comprehensively, whey, such as milk; cheese whey, soybean whey, etc. can be used. As a culture method, a shaking culture and a stirring culture may be performed using a liquid medium.
 培養条件としては好気的条件で、8~45℃、pH3.2~9.5が好ましい。培養時間は、24~720時間でよい。 The culture conditions are aerobic conditions, preferably 8 to 45 ° C. and pH 3.2 to 9.5. The culture time may be 24 to 720 hours.
 前記培養により、培養液中にインドリルアルキルコハク酸アミド化合物(2)又はその塩が蓄積するので、常法によりインドリルアルキルコハク酸アミド化合物(2)又はその塩を採取すればよい。この培養液は、そのまま植物成長調整剤や肥料として用いることもできる。また、イオン交換樹脂、多孔性合成吸着剤、溶媒抽出等によってインドリルアルキルコハク酸アミド化合物(2)又はその塩を部分精製又は精製単離して利用することもできる。 Since the indolylalkyl succinamide compound (2) or a salt thereof accumulates in the culture medium by the culture, the indolylalkyl succinamide compound (2) or a salt thereof may be collected by a conventional method. This culture solution can also be used as a plant growth regulator or fertilizer as it is. The indolylalkylsuccinic acid amide compound (2) or a salt thereof can be partially purified or purified and isolated by ion exchange resin, porous synthetic adsorbent, solvent extraction, or the like.
 例えば、イオン交換樹脂による部分精製物は、上記培養液のpHを中性領域(pH5~8)に調整後、強塩基性イオン交換樹脂又は弱塩基性イオン交換樹脂に吸着させた後、酸含有アルコール水溶液で溶出して得ることができる。このとき、吸着前のイオン交換樹脂を蟻酸型又は酢酸型等に置換することが好ましい。
 当該溶液の酸濃度としては、0.01~4Nが好ましく、1~3Nがより好ましい。当該酸としては、蟻酸、酢酸、塩酸、硫酸等が挙げられる。
 当該溶液のアルコール濃度としては、0~80容量%が好ましく、0~30容量%がより好ましい。当該アルコールとしては、メタノール、エタノール、ブタノール、イソプロパノール等が挙げられる。
For example, a partially purified product using an ion exchange resin is prepared by adjusting the pH of the culture medium to a neutral region (pH 5 to 8), adsorbing it on a strong basic ion exchange resin or a weak basic ion exchange resin, and then containing an acid. It can be obtained by elution with an aqueous alcohol solution. At this time, it is preferable to replace the ion exchange resin before adsorption with a formic acid type or an acetic acid type.
The acid concentration of the solution is preferably 0.01 to 4N, and more preferably 1 to 3N. Examples of the acid include formic acid, acetic acid, hydrochloric acid, sulfuric acid and the like.
The alcohol concentration of the solution is preferably 0 to 80% by volume, more preferably 0 to 30% by volume. Examples of the alcohol include methanol, ethanol, butanol, isopropanol and the like.
 また、例えば、多孔性合成吸着剤による部分精製物は、上記培養液のpHを酸性~中性領域(pH1~8)に調整後、ポリスチレン系合成吸着剤、スチレン-ジビニルベンゼン系吸着剤又はメタクリル系合成吸着剤に吸着させた後、アルコール水溶液又はケトン水溶液で溶出して得ることができる。
 当該溶液のアルコール又はケトン濃度としては、5~99容量%が好ましく、10~30容量%がより好ましい。当該アルコールとしては、メタノール、エタノール、ブタノール、イソプロパノール等が挙げられる。当該ケトンとしてはアセトン等が挙げられる。
Further, for example, in a partially purified product using a porous synthetic adsorbent, after adjusting the pH of the culture solution to an acidic to neutral range (pH 1 to 8), a polystyrene synthetic adsorbent, a styrene-divinylbenzene adsorbent, or a methacrylic adsorbent is used. After adsorbing to the system synthetic adsorbent, it can be obtained by elution with an aqueous alcohol solution or an aqueous ketone solution.
The concentration of alcohol or ketone in the solution is preferably 5 to 99% by volume, more preferably 10 to 30% by volume. Examples of the alcohol include methanol, ethanol, butanol, isopropanol and the like. Examples of the ketone include acetone.
 さらに高度な精製を行うには、濃縮、沈殿化、有機溶媒による抽出、各種クロマトグラフィー等を採用することができる。 For further advanced purification, concentration, precipitation, extraction with an organic solvent, various chromatographies, and the like can be employed.
 なお、この培養液には植物成長調整作用をもつフェニル酢酸やインドール酢酸が含まれる場合がある(Kimら2004.Current Microbiology誌48巻312-317ページ及びWillkinsonら1994.Plant and Soil誌159巻291-295ページ)。その場合は、目的に応じて混合物のまま使用してもよいし、それぞれを分取して使用しても良い。
 また、培地条件によってはN-(フェネチル)コハク酸アミドが含まれる場合があるが、この場合も目的に応じて混合物のまま使用してもよいし、それぞれを分取して使用しても良い。
This culture solution may contain phenylacetic acid or indoleacetic acid having a plant growth regulating action (Kim et al. 2004. Current Microbiology 48, 312-317 and Willkinson et al. 1994. Plant and Soil, 159, 291). -295 pages). In that case, depending on the purpose, the mixture may be used as it is, or each of them may be collected and used.
Depending on the medium conditions, N- (phenethyl) succinamide may be contained, but in this case as well, the mixture may be used as it is depending on the purpose, or each of them may be used separately. .
 また、植物は一般にトリプトファンを生合成でき、多くの植物でトリプタミンも生合成できることが証明されている(Facchiniら2000.Phytochemistry誌54巻121-138ページ)。そしてそれらの一部は植物体表面、特に根面から分泌されていることが知られている(Kamilovaら200.Molecular Plant-Microbe Interaction誌19巻250-256ページ)。このため、これらの植物体、その種子、該植物体栽培用水又は土壌に、当該微生物株を施用又は接種すれば、植物体内乃至植物体表面でインドリルアルキルコハク酸アミドを生合成するので、植物の成長調節が可能になる。
 具体的には、接種源としては、当該菌株を通常のバチルス属微生物が増殖する条件で培養することによって得られた菌体及び/又は芽胞を含む培養液そのものや、遠心分離・膜分離などによって菌体及び/又は芽胞を濃縮したもの、あるいはさらに菌体及び/又は芽胞を水又は通常用いられる緩衝液で洗浄したものを用いることができる。これらの接種源はそのまま使用することもできるし、その乾燥物、凍結乾燥物を使用することもできる。また、ベントナイト、ゼオライト、クレーなどの無機物質担体、ピートモス、活性炭などの有機物担体に保持させて使用することもできる。
 接種する対象としては植物体全般、水、土壌に使用することができるが、当該化合物の発根促進活性が高いことを利用する場合は、種子、根、挿し木の切り口断面などが好ましい。接種濃度としては接種源1gあたり菌数が1×104~1×1011個となるようにした上で接種すればよい。
In addition, it has been proved that plants can generally biosynthesize tryptophan, and that many plants can also biosynthesize tryptamine (Facchini et al. 2000. Phytochemistry, Vol. 54, pages 121-138). And it is known that some of them are secreted from the plant surface, especially from the root surface (Kamilova et al. 200. Molecular Plant-Microbe Interaction, Vol. 19, pages 250-256). For this reason, if these microbial strains are applied to or inoculated with these plants, their seeds, water for plant cultivation or soil, indolylalkyl succinic acid amide is biosynthesized in the plant body or on the plant body surface. Can be controlled.
Specifically, as an inoculation source, a culture solution containing bacterial cells and / or spores obtained by culturing the strain under conditions in which normal Bacillus microorganisms are grown, centrifugation, membrane separation, etc. What concentrated the microbial cell and / or spore, or what wash | cleaned the microbial cell and / or spore with water or the buffer solution normally used can be used. These inoculation sources can be used as they are, or dried or lyophilized products thereof. Further, it can be used by being supported on an inorganic substance carrier such as bentonite, zeolite, or clay, or an organic substance carrier such as peat moss or activated carbon.
The inoculation target can be used for whole plants, water and soil, but when utilizing the high rooting promoting activity of the compound, seeds, roots, cutting cross sections, etc. are preferable. The inoculation concentration may be inoculated after the number of bacteria is 1 × 10 4 to 1 × 10 11 per gram of inoculation source.
 また、本発明者は、後記実施例に示すように、一般式(3) In addition, as shown in Examples described later, the present inventor has the general formula (3)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、Rは水素原子、ハロゲン原子、水酸基、アルコキシ基又はアルキル基を示し、mは0~3の数を示す)
で表されるヒドロキシインドリルアルキルコハク酸アミド化合物又はその塩が発根促進作用を有することを見出している。
(Wherein R 4 represents a hydrogen atom, a halogen atom, a hydroxyl group, an alkoxy group or an alkyl group, and m represents a number of 0 to 3)
It has been found that a hydroxyindolylalkyl succinic acid amide compound represented by the formula:
 従って、上記一般式(3)で表される化合物又はその塩は、発根促進剤や植物成長調整剤として使用することができ、また、発根促進剤や植物成長調整剤を製造するために使用することができる。なお、「発根促進」とは、アズキ、トマト等の植物の発根を促進することをいい、「植物成長調整」は、当該植物の成長を調整することをいう。 Therefore, the compound represented by the general formula (3) or a salt thereof can be used as a rooting promoter or a plant growth regulator, and for producing a rooting promoter or a plant growth regulator. Can be used. Note that “promoting rooting” means promoting rooting of plants such as azuki bean and tomato, and “controlling plant growth” means adjusting the growth of the plant.
 上記R、mの好適な具体例としては、発根促進作用の点で、それぞれR、nと同様である。また、一般式(3)で表される化合物又はその塩としては、発根促進作用の点で、ブホブタン酸が特に好ましい。 Preferred examples of R 4 and m are the same as R 1 and n, respectively, in terms of rooting promoting action. In addition, as the compound represented by the general formula (3) or a salt thereof, bubutanoic acid is particularly preferable from the viewpoint of rooting promoting action.
 次に実施例を挙げて本発明を詳細に説明するが、本発明はこれに限定されるものではない。 Next, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.
実施例1
 500mL容バッフル付き三角フラスコに0質量%、0.01質量%、0.03質量%、0.1質量%又は0.3質量%のトリプタミンを添加したTryptic Soy Broth(ベクトン・ディッキンソンアンドカンパニー社製、以下TSB)を各300mL×2本準備し、オートクレーブ滅菌後、あらかじめTSBで前培養したBacillus thuringiensis JCM20386株を接種した。温度27℃、回転数80rpmで10日間振とう培養した。培養温度は27℃とし、回転数80rpmで10日間振とう培養した。
Example 1
Tryptic Soy Broth (manufactured by Becton Dickinson & Company) with 0%, 0.01%, 0.03%, 0.1%, or 0.3% by weight tryptamine added to a 500 mL Erlenmeyer flask with baffle The following TSB) were prepared in an amount of 2 x 300 mL, autoclaved, and inoculated with Bacillus thuringiensis JCM20386 strain that had been pre-cultured with TSB in advance. The cells were cultured with shaking at a temperature of 27 ° C. and a rotation speed of 80 rpm for 10 days. The culture temperature was 27 ° C., and shaking culture was performed at a rotation speed of 80 rpm for 10 days.
 得られた培養液は以下の通り粗精製した。培養液を6,500rpm、30分で遠心分離し、上澄みを塩酸でpH3.0に調整した。別途、スチレン-ジビニルベンゼン系合成吸着樹脂ダイヤイオンHP-20をメタノールで洗浄した後、カラム(内径20mm×長さ300mm)に充填し、pH3.0酢酸水を通液して調整した。本カラムに上記上澄み液を流すことによって、N- [2-(3-インドリル)エチル]コハク酸アミド(以下IESA)を吸着した。カラムは10容量%イソプロパノール500mLで洗浄した後、30容量%イソプロパノール500mLでIESAを溶出した。溶出液はエバポレータで約100mLに濃縮し、水酸化ナトリウム水溶液を用いてpH8.0に調整して、酢酸エチルで3回抽出を行い、酢酸エチル層は棄却した。残った水相は塩酸を用いてpH2.5とし、酢酸エチル抽出を3回行った。得られた酢酸エチル層は無水硫酸マグネシウムを用いて脱水した後、溶媒を減圧下で除去した。残渣は少量の1N酢酸水で溶解し、別途メタノールで洗浄後、1N酢酸水を通液して調整したSepPak C18カートリッジ(Waters社製)に通過させることにより、IESAを吸着した。カートリッジは60容量%メタノール20mLで溶出し、溶出液は減圧下、乾固した。 The obtained culture broth was roughly purified as follows. The culture solution was centrifuged at 6,500 rpm for 30 minutes, and the supernatant was adjusted to pH 3.0 with hydrochloric acid. Separately, styrene-divinylbenzene synthetic adsorption resin Diaion HP-20 was washed with methanol, then packed in a column (inner diameter 20 mm × length 300 mm), and adjusted by passing pH 3.0 acetic acid solution through. By flowing the supernatant liquid through this column, N- [2- (3-indolyl) ethyl] succinamide (hereinafter, IESA) was adsorbed. The column was washed with 500 mL of 10% by volume isopropanol, and IESA was eluted with 500 mL of 30% by volume isopropanol. The eluate was concentrated to about 100 mL with an evaporator, adjusted to pH 8.0 using an aqueous sodium hydroxide solution, extracted three times with ethyl acetate, and the ethyl acetate layer was discarded. The remaining aqueous phase was adjusted to pH 2.5 with hydrochloric acid and extracted three times with ethyl acetate. The obtained ethyl acetate layer was dehydrated using anhydrous magnesium sulfate, and then the solvent was removed under reduced pressure. The residue was dissolved in a small amount of 1N aqueous acetic acid, separately washed with methanol, and passed through a SepPak C18 cartridge (manufactured by Waters) prepared by passing through 1N aqueous acetic acid to adsorb IESA. The cartridge was eluted with 20 mL of 60% by volume methanol, and the eluate was evaporated to dryness under reduced pressure.
 このサンプルはHPLC(カラム、YMC-Pack Phe 内径10mm×長さ250mm(YMC社製);移動相、1容量%酢酸含有50容量%メタノール;流速、3.0mL/分)を用いて精製し、IESA保持時間相当画分(保持時間8.5~11.5分)を分取した。分取した画分はHPLC(カラム、ODS-A 内径10mm×長さ250mm(YMC社製);移動相、1容量%酢酸含有50容量%メタノール;流速、3.0mL/分)を用いて精製し、IESA保持時間相当画分(保持時間11~13分)を分取した。さらに分取した画分はHPLC(カラム、Polar RP 内径10mm×長さ250mm(Phenomenex社製);移動相、1容量%酢酸含有30容量%アセトニトリル;流速、3.0mL/分)で分析した。ピークは14.3分に認められ、これは化学合成したIESAとほぼ一致した。このピークの紫外部吸光スペクトルを測定したところ、281nmに吸光極大が認められ、化学合成したIESAとほぼ一致した。280nmで測定したピーク面積を化学合成したIESAによって作成した検量線と比較し、培養液中から得られたIESA濃度を算出した。結果は表1に示した。
 この結果から、本菌株はTSBのみで培養しても培養液中にIESAを生産していたことが証明された。これはTSB中に培地原料として添加されているカゼイン由来のトリプトファンが約1質量%含まれるものに由来すると考えられる。さらに、トリプタミンの添加区ではIESA生産量が飛躍的に向上することも同時に証明された。
This sample was purified using HPLC (column, YMC-Pack Phe inner diameter 10 mm × length 250 mm (manufactured by YMC); mobile phase, 50% methanol by volume containing 1% acetic acid; flow rate, 3.0 mL / min) The fraction corresponding to the IESA retention time (retention time 8.5 to 11.5 minutes) was collected. The fraction collected was purified using HPLC (column, ODS-A inner diameter 10 mm × length 250 mm (manufactured by YMC); mobile phase, 50% methanol containing 1% acetic acid; flow rate, 3.0 mL / min). The fraction corresponding to the IESA retention time (retention time 11 to 13 minutes) was collected. Further fractions were analyzed by HPLC (column, Polar RP inner diameter 10 mm × length 250 mm (Phenomenex); mobile phase, 30% acetonitrile containing 1% by volume acetic acid; flow rate, 3.0 mL / min). A peak was observed at 14.3 minutes, which almost coincided with chemically synthesized IESA. When the ultraviolet absorption spectrum of this peak was measured, an absorption maximum was observed at 281 nm, which almost coincided with chemically synthesized IESA. The peak area measured at 280 nm was compared with a calibration curve prepared by chemically synthesized IESA, and the IESA concentration obtained from the culture solution was calculated. The results are shown in Table 1.
From this result, it was proved that this strain produced IESA in the culture medium even when cultured with TSB alone. This is considered to be derived from the case where about 1% by mass of tryptophan derived from casein added as a medium raw material in TSB is contained. Furthermore, it was also proved that IESA production was dramatically improved in the area where tryptamine was added.
 また、上記分析時にIESA保持時間相当画分(保持時間13.5-15.5分)を分取し、5検体分を1サンプルにまとめて濃縮し、さらにHPLC(カラム、XTerraRP 内径10mm×長さ250mm(Waters社製);移動相、1容量%酢酸含有25容量%アセトニトリル;流速、3.0mL/分)で精製し、IESA保持時間相当画分(保持時間15~19分)を単一ピークとして分取した。得られた画分は減圧下で濃縮後、五酸化二リン存在下、デシケータ内で減圧乾燥した結果、IESAの結晶5.8mgを得た。この結晶についてグリセロールを用いた質量分析(MS-FAB)によって分析したところ、(M+H)+が261として検出され、さらにNaClを添加して分析したところ(M+Na)+が283として検出され、化学合成品と一致した。さらに、1H-NMRでの帰属も化学合成品と一致した(表2)。
 これらの結果から、表1のIESAは物理化学的な構造解析によってもIESAであることが証明された。
At the time of the above analysis, the fraction corresponding to the IESA retention time (retention time 13.5 to 15.5 minutes) was collected, concentrated for 5 samples into one sample, and further HPLC (column, XTerraRP inner diameter 10 mm × long). 250 mm (manufactured by Waters); mobile phase, 25% acetonitrile by volume containing 1% acetic acid; flow rate, 3.0 mL / min), and fraction corresponding to IESA retention time (retention time 15-19 minutes) was single Sorted as a peak. The obtained fraction was concentrated under reduced pressure and then dried under reduced pressure in a desiccator in the presence of diphosphorus pentoxide. As a result, 5.8 mg of IESA crystals were obtained. This crystal was analyzed by mass spectrometry using glycerol (MS-FAB). As a result, (M + H) + was detected as 261, and further analyzed by adding NaCl, (M + Na) + was detected as 283. Matched the goods. Furthermore, the assignment by 1 H-NMR was also consistent with the chemically synthesized product (Table 2).
From these results, the IESA in Table 1 was proved to be IESA by physicochemical structural analysis.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例2
 500mL容バッフル付き三角フラスコにトリプトファンを1質量%添加したNutrient Broth(ベクトン・ディッキンソンアンドカンパニー社製、以下NB)を各300mL×2本準備し、オートクレーブ滅菌後、あらかじめNBで前培養したBacillus thuringiensisB-3株(北海道別海町土壌由来、(独)製品評価技術基板機構特許微生物寄託センター受領番号NITE AP-689)及びB. cereusB-6株(北海道別海町由来、同受領番号NITE AP-690)のうちいずれかを接種し、実施例1と同様に培養を行った。
Example 2
Two 500 mL Nutrient Broth (manufactured by Becton Dickinson & Company, NB) with 1% by mass tryptophan added to a 500 mL Erlenmeyer flask with baffle was prepared, and after Bacillus thuringiensis B precultured with NB after autoclaving. -3 strains (from Betsukai-cho soil in Hokkaido, (Germany) Product Evaluation Technology Board Organization Patent Microorganism Deposit Center NITE AP-689) and B. Cereus B-6 strain (derived from Betsukai-cho, Hokkaido, receipt number NITE AP-690) was inoculated and cultured in the same manner as in Example 1.
 なお、B-6株については、以下の手順で16s rDNA配列による遺伝子同定を行った。NBにて37℃・2日間、好気培養したB6株培養液から遠心分離で菌体を回収し、PrepMan Ultra(Applied Biosystems)にてDNAを抽出した。DNA溶液5μL、16s rDNA内部配列より作成したプライマー8F(AGAGTTTGATCCTGGCTC:配列番号1)及び1492R(GTTACCTTGTTACGACTT:配列番号2)の10pmol/μL溶液を各1μL、滅菌水5μL、Premix Taq(TaKara)12.5μLを0.2mLマイクロチューブにて混和し、GeneAmpTM PCR System9700(Applied Biosystems)にてPCR反応を行った。PCRは94℃・4分反応後、94℃・30秒、50℃・30秒、72℃・1分を35サイクル行い、最後に72℃・5分反応した。MinElute PCR purification kit(QIAGEN)にて増幅物を精製し、増幅断片の部分シーケンス解析をSIGMA Genosysに依頼した。解析された約700bpについて、DDBJ(DNA Data Bank of Japan)ホームページ(http://fasta.ddbj.nig.ac.jp/top-j.html)にてFASTA検索を行い、相同性が最も高かった菌種と同定した。 For the B-6 strain, gene identification was performed using the 16s rDNA sequence according to the following procedure. Bacterial cells were collected from the culture solution of B6 strain aerobically cultured at 37 ° C. for 2 days with NB by centrifugation, and DNA was extracted with PrepMan Ultra (Applied Biosystems). 1 μL each of 10 μmol / μL solutions of primers 8F (AGAGTTTGATCCCTGCTCTC: SEQ ID NO: 1) and 1492R (GTTACCTTTGTACCACTACT: SEQ ID NO: 2) prepared from the internal sequence of 16s rDNA, 5 μL of DNA solution, 5 μL of sterilized water, 2.5 μL of Premix Taq (TaKara) 1 Were mixed in a 0.2 mL microtube, and a PCR reaction was performed using GeneAmp PCR System 9700 (Applied Biosystems). PCR was performed at 94 ° C for 4 minutes, followed by 35 cycles of 94 ° C for 30 seconds, 50 ° C for 30 seconds, 72 ° C for 1 minute, and finally 72 ° C for 5 minutes. The amplified product was purified with MinElute PCR purification kit (QIAGEN), and the partial sequence analysis of the amplified fragment was requested to SIGMA Genosys. About 700 bp analyzed, FASTA search was performed on the DDBJ (DNA Data Bank of Japan) homepage (http://fasta.ddbj.nig.ac.jp/top-j.html), and the homology was highest. Identified as a bacterial species.
 培養液は実施例1と同様に粗精製を行った。粗精製したサンプルはHPLC(カラム、YMC Pack C8内径20mm×長さ250mm(YMC社製);移動相、1容量%酢酸含有50容量%メタノール;流速、6.0mL/分)を用いて精製し、IESA保持時間相当画分(保持時間21~28分)を分取した。さらに分取した画分はHPLC(カラム、YMC Pack C8内径20mm×長さ250mm(YMC社製);移動相、1容量%酢酸含有30容量%アセトニトリル;流速、6.0mL/分)を用いて精製し、IESA保持時間相当画分(保持時間28~34分)を分取した。さらに分取した画分はHPLC(カラム、YMC-Pack Phe 内径10mm×長さ250mm(YMC社製);移動相、1容量%酢酸含有50容量%メタノール;流速、3.0mL/分)を用いて精製し、IESA保持時間相当画分(保持時間9~11分)を分取した。さらに分取した画分はHPLC(カラム、ODS-A 内径10mm×長さ250mm(YMC社製);移動相、1容量%酢酸含有50容量%メタノール;流速、3.0mL/分)を用いて精製し、IESA保持時間相当画分(保持時間11~13分)を分取した。さらに分取した画分はHPLC(カラム、Polar RP 内径10mm×長さ250mm(Phenomenex社製);移動相、1容量%酢酸含有30容量%アセトニトリル;流速、3.0mL/分)で精製し、IESA保持時間相当画分(保持時間13~15分)を分取した。さらに分取した画分はHPLC(カラム、Puresil C18 内径4.6mm×長さ250mm(Waters社製);カラム温度、40℃;移動相、1容量%酢酸含有25容量%アセトニトリル;流速、0.8mL/分)で分析した。ピークは12.4分に認められ、これは化学合成したIESAとほぼ一致した。このピークの紫外部吸光スペクトルを測定したところ、281nmに吸光極大が認められ、化学合成したIESAと一致した。280nmで測定したピーク面積に基づいて実施例1と同様にIESAを定量した結果、B-3株由来の培養液中で0.039mg/L、B-6株由来の培養液中で0.038mg/Lであることが判明した。本結果から、これらの菌株はIESAを生産することが証明された。 The culture solution was roughly purified in the same manner as in Example 1. The crudely purified sample was purified using HPLC (column, YMC Pack C8 inner diameter 20 mm × length 250 mm (manufactured by YMC); mobile phase, 50% methanol containing 1% acetic acid; flow rate, 6.0 mL / min). The fraction corresponding to the IESA retention time (retention time of 21 to 28 minutes) was collected. Further fractions were collected using HPLC (column, YMC Pack C8 inner diameter 20 mm × length 250 mm (manufactured by YMC); mobile phase, 30% acetonitrile containing 1% acetic acid; flow rate, 6.0 mL / min). Purified and fractions corresponding to IESA retention time (retention time 28 to 34 minutes) were collected. Further, the fractions used were HPLC (column, YMC-Pack Phe, inner diameter 10 mm × length 250 mm (manufactured by YMC); mobile phase, 50% methanol containing 1% acetic acid; flow rate, 3.0 mL / min). The fraction corresponding to the IESA retention time (retention time 9 to 11 minutes) was collected. Further, the fractions were collected using HPLC (column, ODS-A inner diameter 10 mm × length 250 mm (manufactured by YMC); mobile phase, 50% methanol containing 1% acetic acid; flow rate, 3.0 mL / min). Purified and fractions corresponding to IESA retention time (retention time 11 to 13 minutes) were collected. Further, the fraction collected was purified by HPLC (column, Polar® RP inner diameter 10 mm × length 250 mm (manufactured by Phenomenex); mobile phase, 30% acetonitrile containing 1% by volume acetic acid; flow rate, 3.0 mL / min) The fraction corresponding to the IESA retention time (retention time 13 to 15 minutes) was collected. Further, the fraction collected was HPLC (column, Puresil C18, inner diameter 4.6 mm × length 250 mm (manufactured by Waters); column temperature, 40 ° C .; mobile phase, 25% acetonitrile containing 1% by volume acetic acid; 8 mL / min). A peak was observed at 12.4 minutes, which almost coincided with chemically synthesized IESA. When the ultraviolet absorption spectrum of this peak was measured, an absorption maximum was observed at 281 nm, which was consistent with chemically synthesized IESA. As a result of quantifying IESA based on the peak area measured at 280 nm in the same manner as in Example 1, 0.039 mg / L in the culture solution derived from the B-3 strain and 0.038 mg in the culture solution derived from the B-6 strain. / L. These results proved that these strains produced IESA.
実施例3
 培地をコーンスチープリカー(和光純薬社製)を3容量%添加したTSBとし、菌株をB-3株とした以外は実施例2と同様に培養、粗精製、分析を行った。
 その結果、0.102mg/LのIESAが検出された。
Example 3
Culture, rough purification, and analysis were performed in the same manner as in Example 2 except that the medium was TSB to which 3% by volume of corn steep liquor (manufactured by Wako Pure Chemical Industries, Ltd.) was added and the strain was B-3.
As a result, 0.102 mg / L IESA was detected.
実施例4
 培地を、NB、NBにトリプタミンを10mM添加したもの、NBにトリプタミンを10mM添加とフェネチルアミンを3mM添加したもの、NBにトリプタミンを10mM添加とフェネチルアミンを10mM添加したものとし、それ以外は実施例1と同様にそれぞれ培養、粗精製を行った。
Example 4
The culture medium is NB, NB with 10 mM tryptamine added, NB with 10 mM tryptamine added with 3 mM phenethylamine, NB with 10 mM tryptamine and 10 mM phenethylamine added, and otherwise with Example 1. Similarly, culture and crude purification were performed, respectively.
 粗精製後のサンプルはHPLC(カラム、YMC-Pack Phe 内径10mm×長さ250mm(YMC社製);移動相、1容量%酢酸含有50容量%メタノール;流速、3.0mL/分)を用いて精製し、IESA及びN-(フェネチル)コハク酸アミド(以下、PESA)保持時間相当画分(保持時間8.5~11分)を分取した。分取した画分はHPLC(カラム、ODS-A 内径10mm×長さ250mm(YMC社製);移動相、1容量%酢酸含有50容量%メタノール;流速、3.0mL/分)を用いて精製し、IESA及びPESA保持時間相当画分(保持時間10.5~14.0分)を分取した。さらに分取した画分はHPLC(カラム、Polar RP 内径10mm×長さ250mm(Phenomenex社製);移動相、1容量%酢酸含有30容量%アセトニトリル;流速、3.0mL/分)で分析した。IESAのピークは14.0分に認められ、これは化学合成したIESAとほぼ一致した。このピークの紫外部吸光スペクトルを測定したところ、282nmに吸光極大が認められ、化学合成したIESAとほぼ一致した。280nmで測定したピーク面積を化学合成したIESAによって作成した検量線と比較し、培養液中から得られたIESA濃度を算出した。また、PESAのピークは11.9分に認められ、これは化学合成したPESAとほぼ一致した。このピークの紫外部吸光スペクトルを測定したところ、259nmに吸光極大が認められ、化学合成したPESAとほぼ一致した。260nmで測定したピーク面積を化学合成したPESAによって作成した検量線と比較し、培養液中から得られたPESA濃度を算出した。結果は表4に示した。
 この結果から、本発明の方法によればIESAとPESAを同時に生産させることも可能であることが証明された。また、IESAを優先的に生産させたい場合はフェネチルアミン添加量を少なくした方が有利であることが判明した。また、双方の基質濃度と生産物との関係は競合阻害と考えられるため、IESA生合成酵素とPESA生合成酵素は同一である可能性が推察される。
The crudely purified sample was obtained using HPLC (column, YMC-Pack Phe inner diameter 10 mm × length 250 mm (manufactured by YMC); mobile phase, 50% methanol containing 1% acetic acid; flow rate, 3.0 mL / min). After purification, fractions corresponding to retention times of IESA and N- (phenethyl) succinamide (hereinafter referred to as PESA) (retention times of 8.5 to 11 minutes) were collected. The fraction collected was purified using HPLC (column, ODS-A inner diameter 10 mm × length 250 mm (manufactured by YMC); mobile phase, 50% methanol containing 1% acetic acid; flow rate, 3.0 mL / min). The fraction corresponding to the retention time of IESA and PESA (retention time of 10.5 to 14.0 minutes) was collected. Further fractions were analyzed by HPLC (column, Polar RP inner diameter 10 mm × length 250 mm (Phenomenex); mobile phase, 30% acetonitrile containing 1% by volume acetic acid; flow rate, 3.0 mL / min). An IESA peak was observed at 14.0 minutes, which almost coincided with chemically synthesized IESA. When the ultraviolet absorption spectrum of this peak was measured, an absorption maximum was observed at 282 nm, which almost coincided with chemically synthesized IESA. The peak area measured at 280 nm was compared with a calibration curve prepared by chemically synthesized IESA, and the IESA concentration obtained from the culture solution was calculated. The PESA peak was observed at 11.9 minutes, which almost coincided with the chemically synthesized PESA. When the ultraviolet absorption spectrum of this peak was measured, an absorption maximum was observed at 259 nm, which almost coincided with chemically synthesized PESA. The peak area measured at 260 nm was compared with a calibration curve prepared by chemically synthesized PESA, and the concentration of PESA obtained from the culture solution was calculated. The results are shown in Table 4.
From this result, it was proved that IESA and PESA can be produced simultaneously according to the method of the present invention. In addition, it was found that it is advantageous to reduce the amount of phenethylamine added when it is desired to produce IESA preferentially. Moreover, since the relationship between both substrate concentrations and products is considered to be competitive inhibition, it is assumed that IESA biosynthesis enzyme and PESA biosynthesis enzyme may be the same.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例5
 500mL容バッフル付き三角フラスコにトリプタミンを0.1質量%添加したNBを300mL×2本準備し、オートクレーブ滅菌後、あらかじめNBで前培養したBacillus subtilisJCM1465株を接種し、実施例1と同様に培養、粗精製を行った。粗精製後のサンプルは実施例4と同様にHPLCによる精製、分析を行った。その結果、0.032mg/LのIESAが検出された。
 このことから、適当な濃度のトリプタミンを培地に添加すればB. subtilisを用いてもIESAを生産できることが明らかとなった。
Example 5
Prepare NB containing 0.1% by mass of tryptamine in a 500 mL Erlenmeyer flask with baffle, and inoculate with Bacillus subtilis strain JCM1465 pre-cultured with NB after autoclaving and culture as in Example 1. Crude purification was performed. The crudely purified sample was purified and analyzed by HPLC in the same manner as in Example 4. As a result, 0.032 mg / L IESA was detected.
Therefore, B. be added tryptamine appropriate concentrations in the medium It became clear that IESA could be produced using subtilis .
実施例6
 培地を、NBにトリプトファンを1質量%添加したもの、NBにトリプトファンを1質量%、硫酸マンガン5水和物(MnSO4・5H2O)を0.3質量%(マンガンイオン濃度として684ppm)添加し、水酸化ナトリウム水溶液でpH6.8に調整したものとし、菌株をB-3株とした以外は実施例5と同様にそれぞれ培養、粗精製、分析を行った。その結果、硫酸マンガン無添加区で0.643mg/L、硫酸マンガン添加区で3.704mg/LのIESAが検出された。
 このことから、マンガンイオンの添加によりIESA生産量は5倍以上高まったことが確認された。
Example 6
Medium containing 1% by mass of tryptophan in NB, 1% by mass of tryptophan in NB, and 0.3% by mass of manganese sulfate pentahydrate (MnSO 4 .5H 2 O) (684 ppm as manganese ion concentration) Then, it was adjusted to pH 6.8 with an aqueous sodium hydroxide solution, and cultured, roughly purified and analyzed in the same manner as in Example 5 except that the strain was changed to the B-3 strain. As a result, IESA of 0.643 mg / L was detected in the manganese sulfate-free group and 3.704 mg / L in the manganese sulfate-added group.
From this, it was confirmed that the addition of manganese ions increased IESA production by more than 5 times.
実施例7
 基本培地を食塩(NaCl)0.5質量%、リン酸水素二カリウム(K2HPO4)0.25質量%、ブドウ糖(glucose)0.25質量%、硫酸マンガン五水和物(0.3質量%,マンガンイオン濃度として684ppm)水溶液とした。これに(1)酵母エキス(Yeast extracts、ベクトン・ディッキンソンアンドカンパニー社製)3容量%、(2)トリプトン(Tryptone、ベクトン・ディッキンソンアンドカンパニー社製)3質量%、(3)ソイトン(Soytone、ベクトン・ディッキンソンアンドカンパニー社製)3質量%、(4)ソイトン3質量%およびグルタミン酸1質量%をそれぞれ加え、pH7.2に調整したものを培地とし、菌株をB-3株とした以外は実施例5と同様に培養、粗精製、分析を行った。結果は表4に示した。
 本結果から、培地にマンガンイオンを添加しておくことで、酵母エキス、トリプトン、ソイトンなど広範な窒素源からIESAを生産できることが確認された。
Example 7
The basic medium is 0.5% by mass of sodium chloride (NaCl), 0.25% by mass of dipotassium hydrogen phosphate (K 2 HPO 4 ), 0.25% by mass of glucose (glucose), manganese sulfate pentahydrate (0.3%). (Mass%, manganese ion concentration 684 ppm). (1) Yeast extract (Yeast extracts, manufactured by Becton Dickinson & Company) 3% by volume, (2) Tryptone (Tryptone, manufactured by Becton Dickinson & Company) 3% by mass, (3) Soyton (Soytone, Becton) -Dickinson & Company, Inc.) Example 3 except that 3% by mass, (4) 3% by mass of soyton and 1% by mass of glutamic acid were added to adjust the pH to 7.2, and the strain was B-3. In the same manner as in No. 5, culture, crude purification, and analysis were performed. The results are shown in Table 4.
From this result, it was confirmed that IESA can be produced from a wide range of nitrogen sources such as yeast extract, tryptone, and soyton by adding manganese ions to the medium.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実施例8
 (1)成分無調整牛乳(日本ミルクコミュニティ(株)製)そのもの、(2)当該牛乳にL-リンゴ酸(L-malic acid)を0.3質量%添加したもの、(3)上記牛乳に硫酸マンガン五水和物を0.3質量%(マンガンイオン濃度として684ppm)添加したもの、(4)上記牛乳にL-リンゴ酸(L-malic acid)0.3質量%と硫酸マンガン五水和物0.3質量%添加したものをそれぞれ調製し、pH7.2に調整して培地とし、菌株をB-3株とした以外は実施例5と同様に培養、粗精製、分析を行った。結果は表5に示した。
 本結果よりB-3株により牛乳そのものを培地としてもIESAを生産することが可能であることが明らかとなった。また、その生産量はマンガンイオンやリンゴ酸を添加することによりさらに向上することが判明した。
Example 8
(1) Unadjusted milk (manufactured by Nippon Milk Community Co., Ltd.) itself, (2) 0.3% by mass of L-malic acid added to the milk, (3) Manganese sulfate pentahydrate added in an amount of 0.3% by mass (manganese ion concentration of 684 ppm), (4) 0.3% by mass of L-malic acid and manganese sulfate pentahydrate in the above milk Each was added with 0.3% by mass of the product, adjusted to pH 7.2, used as a medium, and cultured, roughly purified and analyzed in the same manner as in Example 5 except that the strain was B-3 strain. The results are shown in Table 5.
From this result, it became clear that IESA can be produced using B-3 strain even when milk itself is used as a medium. It was also found that the production amount was further improved by adding manganese ions and malic acid.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
実施例9
 (1)チーズホエイからUF膜(Ultrafiltration Membrane)を用いてタンパク質を回収した際の透過液であるホエイUF膜パーミエイト(雪印乳業(株)なかしべつ工場製)にL-リンゴ酸(L-malic acid)0.3質量%と硫酸マンガン五水和物を0.3質量%(マンガンイオン濃度として684ppm)添加したもの、(2)乳清パウダーFC06(雪印乳業(株)製)12質量%水溶液、(3)当該乳清パウダー12質量%水溶液にL-リンゴ酸0.3質量%と硫酸マンガン五水和物を0.3質量%添加したものをそれぞれ調製し、pH7.2に調整して培地とした。これにB-3株を接種し、実施例5と同様に培養、粗精製、分析を行った。結果は表6に示した。
 本結果から、ホエイUF膜パーミエイトそのものを培地とし、マンガンイオンとL-リンゴ酸を添加した場合に、IESAを生産することができることが判明した。また、乳清パウダーといったホエイを培地とした場合、B-3株によってIESAを生産することができるが、マンガンイオンとL-リンゴ酸を添加すればその生産量を飛躍的に向上させることができることが明らかとなった。
Example 9
(1) L-malic acid (L-malic acid) was added to whey UF membrane permeate (manufactured by Snow Brand Milk Products Co., Ltd., Nakashibetsu Factory), which is a permeate when protein is recovered from cheese whey using a UF membrane (Ultrafiltration Membrane). ) 0.3 mass% and manganese sulfate pentahydrate added 0.3 mass% (manganese ion concentration 684 ppm), (2) 12 mass% aqueous solution of whey powder FC06 (manufactured by Snow Brand Milk Products Co., Ltd.), (3) Preparation of each whey powder 12% by weight aqueous solution containing 0.3% by weight of L-malic acid and 0.3% by weight of manganese sulfate pentahydrate, adjusted to pH 7.2 It was. This was inoculated with the B-3 strain, and cultured, roughly purified and analyzed in the same manner as in Example 5. The results are shown in Table 6.
From these results, it was found that IESA can be produced when whey UF membrane permeate itself is used as a medium and manganese ions and L-malic acid are added. In addition, when whey such as whey powder is used as a medium, IESA can be produced by the B-3 strain. However, if manganese ions and L-malic acid are added, the production can be dramatically improved. Became clear.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
実施例10
 タンパク質濃縮ホエイパウダーWPC34C(ホエイ中タンパク質を膜濃縮後、スプレードライ乾燥したもの;雪印乳業(株)製)3質量%、食塩(NaCl)0.5質量%、リン酸水素二カリウム(K2HPO4)0.25質量%、ブドウ糖0.25質量%を蒸留水に溶解したものをホエイタンパク質基礎培地とした。
 (1)この基礎培地そのもの、(2)基礎培地にL-リンゴ酸0.3質量%を添加したもの、(3)基礎培地にL-リンゴ酸0.3質量%および硫酸マンガン五水和物0.3質量%(マンガンイオン濃度として684ppm)を添加したもの、(4)基礎培地にD-リンゴ酸0.3質量%および硫酸マンガン五水和物0.3%を添加したもの、(5)基礎培地にフマル酸0.3質量%および硫酸マンガン五水和物0.3質量%を添加したものを、それぞれ調製し、すべてpH 7.2とした。これにB-3株を接種し、実施例5と同様に培養、粗精製、分析を行った。結果は表7に示した。
 本結果から、B-3株を用いることによって、ホエイタンパク質そのものを培地としてもIESAを生産することができることが確認された。また、その生産量はマンガンイオンと有機酸を添加することによりさらに向上し、有機酸としてはL-リンゴ酸以外にもD-リンゴ酸、フマル酸でも効果的であることが判明した。
Example 10
Protein concentrated whey powder WPC34C (concentrated protein in whey, spray-dried; manufactured by Snow Brand Milk Products Co., Ltd.) 3% by mass, sodium chloride (NaCl) 0.5% by mass, dipotassium hydrogen phosphate (K 2 HPO) 4 ) Whey protein basal medium was prepared by dissolving 0.25% by mass and 0.25% by mass of glucose in distilled water.
(1) This basal medium itself, (2) basal medium supplemented with 0.3% by mass of L-malic acid, (3) basal medium with 0.3% by mass of L-malic acid and manganese sulfate pentahydrate 0.3 mass% (manganese ion concentration 684 ppm) added, (4) basal medium with D-malic acid 0.3 mass% and manganese sulfate pentahydrate 0.3% added, (5 ) A basal medium prepared by adding 0.3% by mass of fumaric acid and 0.3% by mass of manganese sulfate pentahydrate was prepared and adjusted to pH 7.2. This was inoculated with the B-3 strain, and cultured, roughly purified and analyzed in the same manner as in Example 5. The results are shown in Table 7.
From these results, it was confirmed that IESA can be produced by using the B-3 strain even when the whey protein itself is used as a medium. Further, the production amount was further improved by adding manganese ions and organic acids, and it was found that D-malic acid and fumaric acid are effective as organic acids in addition to L-malic acid.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
実施例11
 (1)セミ脱塩乳清パウダーFC10(雪印乳業(株)製)12質量%水溶液、(2)当該セミ脱塩乳清パウダー12質量%水溶液に硫酸マンガン五水和物を0.3質量%(マンガンイオン濃度として684ppm)添加したもの、(3)上記水溶液に硫酸マンガン五水和物0.3質量%とD-リンゴ酸0.3質量%を添加したもの、(4)上記水溶液に硫酸マンガン五水和物0.3質量%とL-リンゴ酸0.3質量%を添加したもの、(5)上記水溶液に硫酸マンガン五水和物0.3質量%とフマル酸0.3質量%を添加したものを、それぞれ調製し、pH7.2に調整して培地とした。これにB-3株を接種し、実施例5と同様に培養、粗精製、分析を行った。結果は表8に示した。
 本結果から、B-3株を用いることによって、ホエイそのものを培地としてもIESAを生産することができることが確認された。また、その生産量はマンガンイオンと有機酸を添加することによりさらに向上し、有機酸としてはL-リンゴ酸以外にもD-リンゴ酸、フマル酸でも効果的であることが判明した。
Example 11
(1) Semi-desalted whey powder FC10 (manufactured by Snow Brand Milk Products Co., Ltd.) 12% by mass aqueous solution, (2) Manganese sulfate pentahydrate is added to the 12% by mass semi-desalted whey powder aqueous solution in an amount of 0.3% by mass. (Manganese ion concentration 684 ppm) added, (3) manganese sulfate pentahydrate 0.3% by mass and D-malic acid 0.3% by mass added to the above aqueous solution, (4) sulfuric acid added to the above aqueous solution Manganese pentahydrate 0.3% by mass and L-malic acid 0.3% by mass added. (5) Manganese sulfate pentahydrate 0.3% by mass and fumaric acid 0.3% by mass in the above aqueous solution. Were added, adjusted to pH 7.2, and used as a medium. This was inoculated with the B-3 strain, and cultured, roughly purified and analyzed in the same manner as in Example 5. The results are shown in Table 8.
From these results, it was confirmed that IESA can be produced by using the B-3 strain even when whey itself is used as a medium. Further, the production amount was further improved by adding manganese ions and organic acids, and it was found that D-malic acid and fumaric acid are effective as organic acids in addition to L-malic acid.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
実施例12
  セミ脱塩乳清パウダーFC10(雪印乳業(株)製)12質量%水溶液に硫酸マンガン五水和物を0.3質量%(マンガン濃度として684ppm)添加し、pH7.2に調整した培地(実施例11の(2)に相当)を300mL調製し、500mL用バッフル付き三角フラスコに入れ、オートクレーブ滅菌した。
 上記の培地に、あらかじめNBで前培養したBacillus thuringiensis B-2株(北海道別海町土壌由来)、同B-9株(北海道長沼町土壌由来)、同B-10株(北海道別海町土壌由来)、同B-18株(北海道由仁町土壌由来、(独)製品評価技術基板機構特許微生物寄託センター受領番号NITE ABP-858)、同B-21株(北海道由仁町土壌由来)、同B-22株(北海道長沼町土壌由来)、同B-24株(北海道別海町土壌由来、(独)製品評価技術基板機構特許微生物寄託センター受領番号NITE AP-857)、同B-26株(北海道標津町土壌由来)、同B-33株(北海道長沼町土壌由来)、同B-36株(北海道標津町土壌由来)、同B-59株(北海道標津町土壌由来);B. cereus B-7株(北海道長沼町土壌由来)、同B-15株(北海道長沼町土壌由来)、同B-16株(北海道長沼町土壌由来、(独)製品評価技術基板機構特許微生物寄託センター受領番号NITE AP-856);B. megaterium B-32株(北海道由仁町土壌由来、(独)製品評価技術基板機構特許微生物寄託センター受領番号NITE ABP-859)をそれぞれ接種し、実施例1と同様に培養した。
 なお、上記菌株は実施例2と同様の方法で遺伝子同定を行った。
Example 12
Semi-desalted whey powder FC10 (manufactured by Snow Brand Milk Products Co., Ltd.) A medium adjusted to pH 7.2 by adding 0.3% by mass of manganese sulfate pentahydrate (684 ppm as manganese concentration) to a 12% by mass aqueous solution (implemented) 300 mL of Example 11 (2)) was prepared, put into a 500 mL Erlenmeyer flask with a baffle, and sterilized by autoclave.
Bacillus thuringiensis B-2 strain (derived from Hokkaido Betsukai-cho soil), B-9 strain (derived from Naganuma-cho soil in Hokkaido), B-10 strain (derived from Betsukai-cho soil in Hokkaido) B-18 strain (from Hokkaido Yuni-cho soil, (Germany) Product Evaluation Technology Board Organization Patent Microorganism Deposit Center NITE ABP-858), B-21 strain (from Hokkaido Yuni-cho soil), B-22 Shares (derived from Naganuma Town, Hokkaido), B-24 shares (derived from Betsukai Town, Hokkaido, (Japan) Product Evaluation Technology Board Organization Patent Microorganism Deposit Center NITE AP-857), B-26 shares (Shibetsu Town, Hokkaido) Soil origin), B-33 strain (derived from Naganuma-cho soil in Hokkaido), B-36 strain (derived from soil in Shibetsu-cho, Hokkaido), B-59 strain (derived from soil in Shibetsu-cho, Hokkaido); B. cereus B-7 strain (Derived from Naganuma Town, Hokkaido), B-1 Ltd. (Hokkaido Naganuma-cho, derived from the soil), the B-16 share (Hokkaido Naganuma-cho, soil-derived, (Germany) Technology and Evaluation board mechanism, Patent Microorganisms Depositary receipt number NITE AP-856); B. megaterium B-32 strain (Hokkaido Yuni-cho soil origin, (Germany) product evaluation technology substrate mechanism patent microorganism deposit center receipt number NITE ABP-859) was inoculated and cultured in the same manner as in Example 1.
The above strains were identified by the same method as in Example 2.
  培養液は実施例1と同様に粗精製を行った。粗精製したサンプルはHPLC(カラム、YMC  ODS-A 内径10mm×長さ250mm(YMC社製);移動相、1容量%酢酸含有50容量%メタノール;流速、3.0mL/分)を用いて精製し、IESA保持時間相当画分(保持時間11.5~14分)を分取した。さらに分取した画分はHPLC(カラム、Polar RP 内径4.6mm×長さ250mm(Phenomenex社製);カラム温度、40℃;移動相、1容量%酢酸含有25容量%アセトニトリル;流速、0.8mL/分)で分析した。ピークは14.4分に認められ、これは化学合成したIESAとほぼ一致した。280nmで測定したピーク面積を用いて実施例1と同様にIESA濃度を算出した。結果は表9に示した。
  本結果から、マンガンを添加したホエイを培地として用いることによってB. thuringiensisB. cereusB. megateriumを用いてIESAを生産することが出来ることが確認された。特にB. thuringiensisB-18株(NITE ABP-858)の生産能力が極めて高いことが明らかとなった。
The culture solution was roughly purified in the same manner as in Example 1. The crudely purified sample was purified using HPLC (column, YMC ODS-A inner diameter 10 mm × length 250 mm (manufactured by YMC); mobile phase, 50% methanol containing 1% acetic acid; flow rate, 3.0 mL / min). The fraction corresponding to the IESA retention time (retention time 11.5 to 14 minutes) was collected. Further, the fraction collected was HPLC (column, Polar RP inner diameter 4.6 mm × length 250 mm (manufactured by Phenomenex)); column temperature, 40 ° C .; mobile phase, 25% acetonitrile by volume containing 1% by volume acetic acid; 8 mL / min). A peak was observed at 14.4 minutes, which almost coincided with chemically synthesized IESA. The IESA concentration was calculated in the same manner as in Example 1 using the peak area measured at 280 nm. The results are shown in Table 9.
From this result, it was confirmed that IESA can be produced using B. thuringiensis , B. cereus , B. megaterium by using whey supplemented with manganese as a medium. In particular, the production capacity of B. thuringiensis B-18 strain (NITE ABP-858) was found to be extremely high.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
実施例13 N-[2-(5-水酸化インドール-3-イル)エチル]コハク酸アミド(Bufobutanoic acid)の生産
 まず、標品となるN-[2-(5-水酸化インドール-3-イル)エチル]コハク酸アミド(Bufobutanoic acid、以下BBA)を下記の通り化学合成した。
 無水コハク酸1.55gにアセトン30mLを加え、室温にて撹拌しながら、5-水酸化トリプタミン塩酸塩(セロトニン塩酸塩、シグマアルドリッチジャパン(株)社製)3gとトリエチルアミン1.97mLをアセトン50mLに溶解したものをゆっくりと加え、さらに30分撹拌を続けた。反応後、溶媒は減圧下で留去し、残滓を5%炭酸水素ナトリウム水溶液と酢酸エチルとで溶解し、分液ロート中で分液した。酢酸エチル相を棄却した後、水相は濃塩酸を用いてpH2.5に調整し、酢酸エチルで抽出を行った。酢酸エチル相は無水硫酸マグネシウムを用いて脱水した後、溶媒を減圧下にて留去した。得られた合成物はHPLC(カラム、YMC-Pack C8 内径20mm×長さ250mm(YMC社製);移動相、1容量%酢酸含有50容量%メタノール;流速、6.0mL/分)を用いて精製し、保持時間12~14分の溶出液を分取した。分取した画分は減圧乾固し、五酸化二燐共存下のデシケータ内で減圧乾燥し、1.1gのBBAを得た。
Example 13 Production of N- [2- (5-hydroxyindol-3-yl) ethyl] succinic acid amide First, N- [2- (5-hydroxyindole-3- Yl) ethyl] succinamide (Bufobutanoic acid, hereinafter referred to as BBA) was chemically synthesized as follows.
Add 30 mL of acetone to 1.55 g of succinic anhydride and stir at room temperature with 3 g of 5-hydroxytryptamine hydrochloride (serotonin hydrochloride, Sigma-Aldrich Japan Co., Ltd.) and 1.97 mL of triethylamine in 50 mL of acetone. The dissolved one was added slowly and stirring was continued for another 30 minutes. After the reaction, the solvent was distilled off under reduced pressure, and the residue was dissolved in 5% aqueous sodium hydrogen carbonate solution and ethyl acetate and separated in a separatory funnel. After discarding the ethyl acetate phase, the aqueous phase was adjusted to pH 2.5 with concentrated hydrochloric acid and extracted with ethyl acetate. The ethyl acetate phase was dehydrated using anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The synthesized product was obtained using HPLC (column, YMC-Pack C8 inner diameter 20 mm × length 250 mm (manufactured by YMC); mobile phase, 50% methanol containing 1% acetic acid; flow rate, 6.0 mL / min). The eluate was purified and the retention time was 12-14 minutes. The fractions collected were dried under reduced pressure and dried under reduced pressure in a desiccator in the presence of diphosphorus pentoxide to obtain 1.1 g of BBA.
 培養による製造は以下の通り行った。NBに0.1質量%の5-水酸化トリプタミン塩酸塩を添加し、pH6.8に調整した上で、500mL容バッフル付き三角フラスコ2本に300mLずつ分注し、オートクレーブ滅菌後、あらかじめNBで前培養したBacillus thuringiensis B-3株、及びB. cereus B-6株(北海道別海町由来、(独)製品評価技術基板機構特許微生物寄託センター受領番号NITE AP-690)をそれぞれ接種した。培養温度は37℃とし、回転数80rpmで10日間振とう培養した。
  得られた培養液は実施例1と同様に遠心分離後、ダイヤイオンHP-20カラムへの吸着を行った。このカラムは10容量%イソプロパノール500mLでBBAを溶出し、溶出液は実施例1と同様に溶媒抽出を行った。得られたサンプルは少量の20容量%メタノールに溶解し、別途メタノールで洗浄後、20容量%メタノールを通液して調製したSepPak tC18カートリッジ(Waters社製)を通過させ、さらに20容量%メタノール20mLで溶出することにより精製した。
Production by culture was carried out as follows. Add 0.1% by mass of 5-hydroxytryptamine hydrochloride to NB and adjust to pH 6.8, then dispense 300 mL each into two 500 mL baffled Erlenmeyer flasks, sterilize by autoclave, and use NB in advance. The pre-cultured Bacillus thuringiensis B-3 strain and B. cereus B-6 strain (from Betsukai-cho, Hokkaido, (Germany) Product Evaluation Technology Board Organization Patent Microorganism Deposit Center Accession Number NITE AP-690) were inoculated. The culture temperature was 37 ° C., and shaking culture was performed at a rotation speed of 80 rpm for 10 days.
The obtained culture broth was centrifuged in the same manner as in Example 1 and then adsorbed onto a Diaion HP-20 column. This column was eluted with 500 mL of 10% by volume isopropanol, and the eluate was subjected to solvent extraction in the same manner as in Example 1. The obtained sample was dissolved in a small amount of 20% by volume methanol, separately washed with methanol, passed through a SepPak tC18 cartridge (Waters) prepared by passing 20% by volume methanol, and further 20 mL 20% by volume methanol. Purified by eluting with
 粗精製したサンプルはHPLC(カラム、YMC  Phe 内径10mm×長さ250mm(YMC社製);移動相、1容量%酢酸含有30容量%メタノール;流速、3.0mL/分)を用いて精製し、BBA保持時間相当画分(保持時間11~14分)を分取した。さらに分取した画分はHPLC(カラム、YMC  ODS-A 内径10mm×長さ250mm(YMC社製);移動相、1容量%酢酸含有30容量%メタノール;流速、3.0mL/分)を用いて精製し、BBA保持時間相当画分(保持時間9.5~12.5分)を分取した。さらに分取した画分はHPLC(カラム、ODS-A 内径10mm×長さ250mm(YMC社製);移動相、1容量%酢酸含有20容量%アセトニトリル;流速、3.0mL/分)で分析した。ピークは9.5分に認められ、これは化学合成したBBAとほぼ一致した。また、ピークの吸光極大は279nmと化学合成したBBAと一致しており、235~400nmの吸光スペクトルも化学合成したBBAとほぼ一致した。280nmで測定したピーク面積を用いて実施例1と同様にBBA濃度を算出した結果、B-3株は5.514mg/L、B-6株は4.609mg/LのBBAを生産したことが明らかとなった。
 このことから、基質のインドリル基に水酸基を有していても、当該微生物によって対応するコハク酸アミド体を生産させることができることが明らかとなった。
The crudely purified sample was purified using HPLC (column, YMC Phe inner diameter 10 mm × length 250 mm (manufactured by YMC); mobile phase, 30% methanol containing 1% acetic acid; flow rate, 3.0 mL / min) The fraction corresponding to the BBA retention time (retention time 11 to 14 minutes) was collected. Further, the fraction was collected by HPLC (column, YMC ODS-A inner diameter 10 mm × length 250 mm (manufactured by YMC); mobile phase, 30% methanol containing 1% acetic acid; flow rate, 3.0 mL / min). The fraction corresponding to the BBA retention time (retention time 9.5 to 12.5 minutes) was collected. Further, the fractions collected were analyzed by HPLC (column, ODS-A inner diameter 10 mm × length 250 mm (manufactured by YMC); mobile phase, 20% acetonitrile containing 1% by volume acetic acid; flow rate, 3.0 mL / min). . A peak was observed at 9.5 minutes, which almost coincided with chemically synthesized BBA. In addition, the absorption maximum of the peak coincided with 279 nm and chemically synthesized BBA, and the absorption spectrum of 235 to 400 nm almost coincided with chemically synthesized BBA. As a result of calculating the BBA concentration using the peak area measured at 280 nm in the same manner as in Example 1, the B-3 strain produced 5.514 mg / L and the B-6 strain produced 4.609 mg / L BBA. It became clear.
From this, it became clear that even if the indolyl group of the substrate has a hydroxyl group, the corresponding succinic acid amide can be produced by the microorganism.
  なお、BBAについて発根促進活性があることを確認するため、化学合成したBBA水溶液を調製し、塩酸を用いてpH7とし、アズキ発根促進アッセイ(Itagaki et al. 2003. Biological activities and structure-activity relationship of substitution compounds of N-[2-(3-indolyl)ethyl]succinamic acid and N-[2-(1-naphthyl)ethyl]succinamic acid、 derived from a new category of root-promoting substance、 N-(phenethyl)succinamic acid analogs. Plant Soil 255:67-75.)に供した。アズキ切片は基部を72時間被検液に浸漬し、7日後に発生した不定根数を数えた。反復数は5本とした。その結果を表10に示す。
 BBA処理区では濃度依存的に顕著な発根数の増加が認められた。このことから、上記のBBA培養液を発根促進剤や植物成長調整剤として利用することが可能であることが確認された。
In order to confirm that BBA has root-promoting activity, a chemically synthesized BBA aqueous solution was prepared and adjusted to pH 7 with hydrochloric acid, and azuki root-promoting assay (Itagaki et al. 2003. Biological activities and structure-activity). relationship of substitution compounds of N- [2- (3-indolyl) ethyl] succinamic acid and N- [2- (1-naphthyl) ethyl] succinamic acid, derived from a new category of root-promoting substance, N- (phenethyl ) succinamic acid analogs. Plant Soil 255: 67-75.). Azuki bean slices were immersed in the test solution for 72 hours, and the number of adventitious roots generated after 7 days was counted. The number of iterations was 5. The results are shown in Table 10.
In the BBA-treated group, a marked increase in the number of roots was observed depending on the concentration. From this, it was confirmed that said BBA culture solution can be utilized as a rooting promoter or a plant growth regulator.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
実施例14
 Bacillus thuringiensis B-18株(受領番号NITE ABP-858)をNB10mL中、27℃、3日間培養し、培養液を15,000rpm、10分遠心分離した。上澄を棄却した後、10mLの滅菌水を加え、よく懸濁し、再度遠心分離することにより菌体の洗浄を行った。この洗浄をさらに2回繰り返したものに、滅菌水10mLを加え、十分懸濁し、接種源とした。
 一方、トマト品種ハウス桃太郎(タキイ種苗)種子を80容量%エタノールに1分浸漬し、ついで滅菌水で洗浄し、ついで1容量%次亜塩素酸ナトリウムに5分浸漬し、ついで滅菌水で2回洗浄することで種子消毒を行ったのち、あらかじめ滅菌したゲルライト(和光純薬社製)1質量%を含む培地表面に播種した。
 27℃で3日間培養した後、発芽が確認された種子3粒を接種源に10秒間浸漬した後、あらかじめゲルライト1質量%培地100mLを外径40mm×高さ130mmの植物培養試験管(旭テクノグラス社製)に入れて滅菌、固化したものに置床した(2反復)。蛍光灯による連続光下(2200ルックス、20℃)で14日間栽培したのち、総根長をルートスキャナー(Comair社製)で測定した。結果は表11に示した。B-18株の処理によって総根長が明らかに増加しているほか、目視による観察でも側根数の増加が認められた。
Example 14
Bacillus thuringiensis B-18 strain (reception number NITE ABP-858) was cultured in 10 mL of NB at 27 ° C. for 3 days, and the culture was centrifuged at 15,000 rpm for 10 minutes. After discarding the supernatant, 10 mL of sterilized water was added, suspended well, and centrifuged again to wash the cells. This washing was repeated two more times, and 10 mL of sterilized water was added and suspended sufficiently to obtain an inoculation source.
On the other hand, tomato variety House Momotaro (Takii seedling) seeds are immersed in 80% ethanol for 1 minute, then washed with sterile water, then immersed in 1% sodium hypochlorite for 5 minutes, and then twice with sterile water. After performing seed disinfection by washing, the seed was sown on the surface of a medium containing 1% by mass of pre-sterilized gellite (manufactured by Wako Pure Chemical Industries, Ltd.).
After culturing at 27 ° C. for 3 days, 3 seeds confirmed to germinate were immersed in the inoculation source for 10 seconds, and then 100 mL of gellite 1% by mass medium was preliminarily placed in a plant culture test tube (Asahi Techno) having an outer diameter of 40 mm × height of 130 mm. (Made by Glass Co., Ltd.) and placed on a sterilized and solidified product (two repetitions). After 14 days of cultivation under continuous light (2200 lux, 20 ° C.) with a fluorescent lamp, the total root length was measured with a root scanner (manufactured by Comair). The results are shown in Table 11. The total root length was clearly increased by the treatment with the B-18 strain, and an increase in the number of lateral roots was also observed by visual observation.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011

Claims (6)

  1.  一般式(1)
    Figure JPOXMLDOC01-appb-C000005
    (式中、R1及びR2はそれぞれ独立して水素原子、ハロゲン原子、水酸基、アルコキシ基又はアルキル基を示し、R3は水素原子又はカルボキシル基を示し、nは0~3の数を示す)
    で表されるインドリルアルキルアミン類又はその塩を含有する培地中で、インドリルアルキルコハク酸アミド合成能を有するバチルス属に属する微生物を培養することを特徴とする、一般式(2)
    Figure JPOXMLDOC01-appb-C000006
    (式中、R1、R2及びnは前記と同じ)
    で表されるインドリルアルキルコハク酸アミド化合物又はその塩の製造法。
    General formula (1)
    Figure JPOXMLDOC01-appb-C000005
    (Wherein R 1 and R 2 each independently represents a hydrogen atom, a halogen atom, a hydroxyl group, an alkoxy group or an alkyl group, R 3 represents a hydrogen atom or a carboxyl group, and n represents a number of 0 to 3) )
    A microorganism belonging to the genus Bacillus having the ability to synthesize indolylalkylsuccinic acid amide is cultured in a medium containing the indolylalkylamines or salts thereof represented by the general formula (2)
    Figure JPOXMLDOC01-appb-C000006
    (Wherein R 1 , R 2 and n are the same as above)
    The manufacturing method of the indolyl alkyl succinamide compound or its salt represented by these.
  2.  R1及びR2がそれぞれ独立して水素原子又は水酸基であり、nが1である請求項1記載の製造法。 The process according to claim 1, wherein R 1 and R 2 are each independently a hydrogen atom or a hydroxyl group, and n is 1.
  3.  培地中にマンガンイオン(Mn2+)を1~2000ppm含有せしめることを特徴とする請求項1又は2記載の製造法。 The production method according to claim 1 or 2, wherein the medium contains 1 to 2000 ppm of manganese ions (Mn 2+ ).
  4.  培地中に有機酸又はその塩を含有せしめることを特徴とする請求項1~3いずれかに記載の製造法。 4. The production method according to claim 1, wherein the medium contains an organic acid or a salt thereof.
  5.  請求項1記載の一般式(1)で表されるインドリルアルキルアミン類又はその塩を生合成する植物体、種子、該植物体栽培用水又は土壌に、インドリルアルキルコハク酸アミド合成能を有するバチルス属に属する微生物を施用し、インドリルアルキルコハク酸アミドを合成させることを特徴とする植物成長調整方法。 A plant body, seeds, water for plant cultivation, or soil that biosynthesizes the indolylalkylamines represented by the general formula (1) according to claim 1 or a salt thereof has an ability to synthesize indolylalkylsuccinic acid amides. A plant growth control method comprising applying a microorganism belonging to the genus Bacillus to synthesize indolylalkylsuccinic acid amide.
  6.  バチルス・チューリンゲンシス(Bacillus thuringiensis)B-18(受領番号NITE ABP-858)株、バチルス・チューリンゲンシスB-24(NITE AP-857)株、バチルス・セレウス(Bacillus cereus)B-16(NITE AP-856)株、又はバチルス・メガテリウム(Bacillus megaterium)B-32(受領番号NITE ABP-859)株。 Bacillus thuringiensis B-18 (reception number NITE ABP-858) strain, Bacillus thuringiensis B-24 (NITE AP-857) strain, Bacillus cereus B-16 (NITE AP- 856) strain, or Bacillus megaterium B-32 (reception number NITE ABP-859) strain.
PCT/JP2010/000089 2009-01-09 2010-01-08 Method for producing indolylalkyl succinic acid amide compound WO2010079763A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010545754A JP5395811B2 (en) 2009-01-09 2010-01-08 Method for producing indolylalkyl succinamide compounds

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009003151 2009-01-09
JP2009-003151 2009-01-09
JP2009-248763 2009-10-29
JP2009248763 2009-10-29

Publications (1)

Publication Number Publication Date
WO2010079763A1 true WO2010079763A1 (en) 2010-07-15

Family

ID=42316529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000089 WO2010079763A1 (en) 2009-01-09 2010-01-08 Method for producing indolylalkyl succinic acid amide compound

Country Status (2)

Country Link
JP (1) JP5395811B2 (en)
WO (1) WO2010079763A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2885399A4 (en) * 2012-08-14 2015-12-30 Marrone Bio Innovations Inc Bacillus megaterium bioactive compositions and metabolites
JP2017171566A (en) * 2016-03-18 2017-09-28 アドバンスト グリーン バイオテクノロジー インコーポレイテッド Fertilizer and method of using the same
JP2021165282A (en) * 2017-03-27 2021-10-14 テンフォールド テクノロジーズ リミティッド ライアビリティ カンパニー Methods and Agricultural Compositions for Preventing or Controlling Plant Diseases

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5769333B2 (en) * 2010-07-09 2015-08-26 雪印種苗株式会社 Serotonin metabolizing Bacillus
CN104630088B (en) * 2014-12-13 2017-10-24 河南农业大学 A kind of peanut plant growth-promoting rhizobacteria HS4 and its application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045774A1 (en) * 1998-03-11 1999-09-16 Snow Brand Seed Co., Ltd. Plant growth regulating agents
JP2001139405A (en) * 1999-09-03 2001-05-22 Yukijirushi Shubyo Kk Plant growth regulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045774A1 (en) * 1998-03-11 1999-09-16 Snow Brand Seed Co., Ltd. Plant growth regulating agents
JP2001139405A (en) * 1999-09-03 2001-05-22 Yukijirushi Shubyo Kk Plant growth regulator

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HIROSHI FUKUSHIMA ET AL.: "Hakkon Sokushin Busshitsu N-(phenethyl)succinamide no Seisei to Tanri", CROP SCIENCE SOCIETY OF JAPAN KOENKAI YOSHISHU, vol. 69, no. SUPPL., 2000, pages 186 - 187 *
HIROSHI FUKUSHIMA ET AL.: "N-(phenethyl) succinamide Ruien Kagobutsu no Kozo Kassei Sokan", CROP SCIENCE SOCIETY OF JAPAN KOENKAI YOSHISHU, vol. 69, no. SUPPL., 2000, pages 190 - 191 *
HIROSHI FUKUSHIMA ET AL.: "N-(phenethyl) succinamide Ruien Kagobutsu no Kozo Kassei Sokan", JAPANESE SOCIETY FOR CHEMICAL REGULATION OF PLANTS KENKYU HAPPYO KIROKUSHU, vol. 34, 1999, pages 79 - 80 *
HIROSHI FUKUSHIMA ET AL.: "Shinki Hakkon Sokushin Busshitsu N-(phenethyl)succinamide no Seisei to Tanri", JAPANESE SOCIETY FOR CHEMICAL REGULATION OF PLANTS KENKYU HAPPYO KIROKUSHU, vol. 34, 1999, pages 75 - 76 *
MIHOKO ITAGAKI ET AL.: "N-(phenethyl)succinamide Ruien Kagobutsu no Indole Oyobi Naphthalene Chikantai wa Doyo no Hakkon Sokushin Kassei o Yusuru", CROP SCIENCE SOCIETY OF JAPAN KOENKAI YOSHISHU, vol. 70, no. SUPPL., 2001, pages 190 - 191 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2885399A4 (en) * 2012-08-14 2015-12-30 Marrone Bio Innovations Inc Bacillus megaterium bioactive compositions and metabolites
US9801386B2 (en) 2012-08-14 2017-10-31 Marrone Bio Innovations, Inc. Bacillus megaterium bioactive compositions and metabolites
US10645936B2 (en) 2012-08-14 2020-05-12 Marrone Bio Innovations, Inc. Bacillus megaterium bioactive compositions and metabolites
US11384332B2 (en) 2012-08-14 2022-07-12 Marrone Bio Innovations, Inc. Bacillus megaterium bioactive compositions and metabolites
US11959065B2 (en) 2012-08-14 2024-04-16 Pro Farm Group, Inc. Bacillus megaterium bioactive compositions and metabolites
JP2017171566A (en) * 2016-03-18 2017-09-28 アドバンスト グリーン バイオテクノロジー インコーポレイテッド Fertilizer and method of using the same
JP2021165282A (en) * 2017-03-27 2021-10-14 テンフォールド テクノロジーズ リミティッド ライアビリティ カンパニー Methods and Agricultural Compositions for Preventing or Controlling Plant Diseases
JP7222032B2 (en) 2017-03-27 2023-02-14 バイエル クロップサイエンス エルピー Methods and agricultural compositions for preventing or controlling plant diseases

Also Published As

Publication number Publication date
JPWO2010079763A1 (en) 2012-06-21
JP5395811B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP4417998B2 (en) Plant disease control method using Bacillus subtilis strain having antagonistic action
RU2325442C2 (en) Method of indole-3-pyruvic acid and its derivatives production
JP5395811B2 (en) Method for producing indolylalkyl succinamide compounds
WO2009093675A1 (en) Method and bacterium for promoting the growth of racomitrium canescens and seed plants
CN114410526B (en) Bacillus licheniformis XNRB-3 and application thereof
KR20150071011A (en) Process for producing gougerotin employing streptomyces microflavus strains
WO2016050654A1 (en) Process for converting ferulic acid into vanillin
US11795120B2 (en) Rhizobacteria and uses thereof
Kumari et al. ACC-deaminase and EPS production by salt tolerant rhizobacteria augment growth in chickpea under salinity stress
CN100519573C (en) Novel chemical substance having morphogenetic and growth-accelerating activities
KR101720658B1 (en) Novel plant growth-promoting bacteria and use thereof
KR20090088630A (en) Amino acid deaminase gene of proteus mirabilis, protein, recombinant vector and transformant, and method for manufacturing functional organic acids using the same
JP2015192665A (en) Microorganisms having cellulose and starch resolution
JP4338080B2 (en) Method for producing iturin A and its homologs
KR102508900B1 (en) Microorganism having plant growth promoting activities and ainst plant diseases and customized microorganism culture material using the same
RU2413707C2 (en) STRAIN OF Sinorhizobium fredii KB-11 TYPE LEGUME BACTERIA FOR PRODUCING BACTERIAL FERTILISER FOR SOYA BEAN
Hussein et al. The role of bacteria Bacillus subtilisin improving rooting response of Mung bean (Vigna ratiata) cuttings
JP5758127B2 (en) Method for producing phenylalkyl succinamide compound
KR20060000730A (en) Microbial fertilizer containing the mixture of pseudomonas fluorescens mc07 and bacillus megaterium
KR20220126123A (en) Ignatzschineria strain producing auxin and promoting plant growth and uses thereof
KR20140007425A (en) Method for preparing cyclic lipopeptide compound
Kantha et al. Synergistic growth of lactic acid bacteria and photosynthetic bacteria for possible use as a bio-fertilizer
US10986842B2 (en) Microbial pesticidal composition and production thereof
KR20200107631A (en) Novel Pseudomonas parafulva PpaJBC1880 strain and uses thereof
CN114437963B (en) Streptomyces olive and application thereof in biosynthesis of vanillin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10729183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010545754

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10729183

Country of ref document: EP

Kind code of ref document: A1