WO2010079212A2 - Procédé et dispositif de réalisation de pièces moulées à partir de mousses particulaires - Google Patents

Procédé et dispositif de réalisation de pièces moulées à partir de mousses particulaires Download PDF

Info

Publication number
WO2010079212A2
WO2010079212A2 PCT/EP2010/050151 EP2010050151W WO2010079212A2 WO 2010079212 A2 WO2010079212 A2 WO 2010079212A2 EP 2010050151 W EP2010050151 W EP 2010050151W WO 2010079212 A2 WO2010079212 A2 WO 2010079212A2
Authority
WO
WIPO (PCT)
Prior art keywords
foam particles
steam
cavity
mold
thermoplastic
Prior art date
Application number
PCT/EP2010/050151
Other languages
German (de)
English (en)
Other versions
WO2010079212A3 (fr
Inventor
Jürgen BRUNING
Original Assignee
Fagerdala Capital Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fagerdala Capital Ab filed Critical Fagerdala Capital Ab
Priority to EP10701486A priority Critical patent/EP2376268A2/fr
Publication of WO2010079212A2 publication Critical patent/WO2010079212A2/fr
Publication of WO2010079212A3 publication Critical patent/WO2010079212A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/0011Moulds or cores; Details thereof or accessories therefor thin-walled moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/04Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using liquids, gas or steam
    • B29C33/048Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using liquids, gas or steam using steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3415Heating or cooling
    • B29C44/3426Heating by introducing steam in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/42Feeding the material to be shaped into a closed space, i.e. to make articles of definite length using pressure difference, e.g. by injection or by vacuum
    • B29C44/424Details of machines
    • B29C44/425Valve or nozzle constructions; Details of injection devices
    • B29C44/427Valve or nozzle constructions; Details of injection devices having several injection gates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/44Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
    • B29C44/445Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form in the form of expandable granules, particles or beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/58Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous

Definitions

  • the invention relates to a method for producing a molded part, in which a cavity of a molding tool is filled with foam particles formed from a thermoplastic material, wherein the filled cavity is subjected to pressurized hot steam to cause expansion of the foam particles, the foam particles to soften and weld together thermoplastic and form a thermoplastic surface of the molding formed from the welded foam particles on a wall of the cavity.
  • Such a construction offers the possibility of fastening different molding tools in the steam chamber by means of a clamping frame within the scope of a staggered machine size. Milled or cast molds are used.
  • EPS is processed at temperatures around 110 C and pressures around 1, 5 bar, while EPP is processed according to the higher melting point at about 160 0 C and at up to 7.5 bar.
  • the technique in use usually uses the described tool design within a steam chamber. The molds must be adapted to the steam chamber dimensions.
  • the invention is therefore based on the object to specify an improved method with lower energy consumption and an improved apparatus for producing a molded part.
  • the object is achieved by a method having the features of claim 1 and a device having the features of claim 14.
  • At least one cavity of a molding tool is filled with foam particles formed from a thermoplastic material.
  • the mold may comprise one or more cavities.
  • the filled cavity is subjected to pressurized hot water vapor to cause expansion of the foam particles, to cause thermoplasticity of a surface of the foam particles, thermoplastic bonding of the foam particles to each other by expansion pressure, and a thermoplastic surface of the molded article formed from the welded foam particles form a wall of the cavity.
  • Thermoplasticity is a soft, sticky state that some substances reach when they reach a softening point.
  • the application of water vapor is timed via at least one valve, in particular at an uncontrolled maximum pressure at least once performed so that the water vapor as largely uncondensed, dry water vapor within a short evaporation time reaches a majority of the particles before the thermoplastic surface of the molding is formed.
  • dry steam is meant such water vapor which contains little condensate and consists to a large part of gaseous water.
  • the particles are supplied with energy from the steam so quickly that the particles first become superficially thermoplastic and only then expand.
  • a supply line between the valve and the cavity must be as short as possible, so that no condensation of the steam occurs.
  • this supply line is shorter than 500 mm.
  • the supply of pressure is unregulated over a short vaporization period instead of pressure-controlled, as known from the prior art. While at controlled pressure by interval-like opening and closing of the valve the pressure conditions in the supply lead to a location and time-dependent condensation and evaporation again in the water vapor and thus escapes energy from the water vapor is used with rapid energy input into the foam particles, as in the process according to the invention, a much larger proportion of energy to form the molding.
  • the time for annealing can be shortened without the shaped body shrinking too much.
  • the largely dry water vapor on the foam particles causes the energy to penetrate into the interior of the foam particles less rapidly, as a result of which the foam particles initially become thermoplastic on the surface and only subsequently expand. This avoids that at too early expansion of the water vapor does not reach all foam particles.
  • the supply of the steam takes place in particular so briefly that the thermoplastic material of the foam particles is not destroyed by overheating.
  • Foam particles of expandable polystyrene (EPS) and / or of expandable polypropylene (EPP) and / or of expandable polyethylene (EPE) and / or of another expandable polyolefin are preferably used. Furthermore, foam particles of at least one bioplastic material, in particular starch, corn starch or other renewable raw materials or thermolastic coated materials.
  • EPP has a higher rate of expansion than EPS.
  • the comparatively high pressure of the steam causes the EPP particles to not expand too much when their surface is thermoplastic.
  • the maximum pressure used for the vapor deposition is preferably in a range of 5 bar to 10 bar, in particular about 7 bar and corresponds to the unregulated form from a device for the production of steam. Thus eliminates otherwise required effort for the pressure reduction.
  • the steaming time is preferably between 0.2 s and 3 s, in particular at about 1.5 s.
  • the foam particles are preferably steamed several times from different sides (transverse evaporation). This has the advantage that substantially all foam particles are reached by the water vapor even if a thermoplastic surface has already formed on one of the sides and the inflow of water vapor from this side is impeded accordingly.
  • a plurality of steam supply lines with corresponding valves are preferably provided on different sides of the mold.
  • the cavity and / or provided for steaming steam supply lines are flushed by means of compressed air to remove condensate.
  • the steam supply lines and / or the cavity should be rinsed, for example, after the steaming with compressed air, that is dried, so that the advantages of the process remain in a subsequent cycle.
  • foam particles provided with a blowing agent are used.
  • pentane is used as the blowing agent. This expands upon heating and provides for the expansion of the softened by the heating thermoplastic material. At least part of the propellant is absorbed by the water vapor.
  • the introduction of the foam particles in the cavity is preferably carried out by blowing, in particular under pressure so that the foam particles are compressed.
  • the precompression increases the degree of expansion of the foam particles on later exposure to water vapor.
  • the foam particles can be poured.
  • a steam chamber accommodating the mold may be provided with heat insulation so that heat transfer from the water vapor to the mold part and to the cavity is concentrated and reduced to an environment. In this way the energy demand and the steam consumption are further reduced.
  • a vapor line disposed between the valve and the mold may be thermally insulated on an inner side, particularly if the valve is too far away from the mold, to otherwise ensure that the water vapor enters the cavity as dry water vapor.
  • the steam can be fed directly to the mold.
  • the mold may be arranged in a steam chamber.
  • the steam chamber is preferably as small as possible in relation to the size of the cavity in order to prevent the water vapor from condensing and to keep the energy losses low.
  • the mold is preferably cooled after the steaming with water. After evaporation, cooling of the molded part can be carried out with vacuum. In this case, any remaining condensate is evaporated and used its evaporative cooling for cooling the mold.
  • FIG. 1 shows an apparatus for producing a molded part with an open mold and a storage container for foam particles
  • FIG. 2 shows the device with closed mold
  • FIG. 3 shows the device during the filling of the mold with steam
  • FIG. 4 shows the device with the reservoir filled with compressed air
  • FIG. 5 shows the device with an open valve on a filling cylinder
  • FIG. 6 shows the device during filling of the molding tool with the foam particles from the reservoir
  • FIG. 7 shows the device during the blowing back of foam particles still in the hoses
  • FIG. 8 shows the device when lowering the pressure in the mold
  • FIG. 9 shows the device during rinsing of the mold with steam
  • FIG. 10 shows the device during a transverse evaporation from a first direction
  • FIG. 11 shows the device during a transverse evaporation from another direction
  • FIG. 12 shows the device during an autoclave vapor deposition
  • FIG. 14 shows the device during stabilization of the formed part by vacuum
  • FIG. 15 shows the device during demoulding of the molded part from one of the mold parts
  • FIG. 16 shows the device during demoulding of the molded part from the other of the mold parts
  • FIG. 17 shows the device with the mold open and mold ejected
  • Figure 18 is a vapor state diagram illustrating the term "dry vapor.
  • FIG. 1 shows a device 1 for producing a molded part.
  • the device 1 comprises a steam chamber 2, which is formed from two steam chamber parts 2.1, 2.2.
  • a mold 3 is arranged, which also comprises two mold parts 3.1, 3.2, each of which is associated with one of the steam chamber parts 2.1, 2.2.
  • the mold parts 3.1, 3.2 are perforated so that water vapor and air, but no larger particles can enter and exit.
  • the steam chamber 2 can be supplied via valves 4.1 to 4.8 with steam, compressed air, water or vacuum.
  • a reservoir 5 is provided, are stored in the foam particles 6 made of a thermoplastic material.
  • the reservoir is also provided with valves 4.9, 4.10.
  • Foam particles 6 can be supplied from the storage container 5 to the mold 3 via hoses 7 and filling cylinders 8.
  • a connection between the reservoir 5 and the hoses 7 can be produced or interrupted by a slide 9.
  • the filling cylinder also has two valves 4.11, 4.12.
  • the mold 1 is shown at the beginning of a cycle for the production of the molded part in a state in which the steam chamber parts 2.1, 2.2 are opened with the mold parts 3.1, 3.2.
  • the steam chamber parts 2.1, 2.2 and the mold parts 3.1, 3.2 are brought together and closed, as shown in Figure 2.
  • the mold parts 3.1, 3.2 now include a cavity which has the shape of the molded part to be produced.
  • valves 4.2 to 4.7 are closed while the valves 4.1 and 4.8 are open in order to infiltrate the steam chamber 2 and the mold 3 with compressed air L in order to build up a back pressure of, for example, 2 bar.
  • valve 4.9 is opened on the storage container 5 while the valve 4.10 is closed.
  • the reservoir is pressurized with compressed air L and at a slightly higher pressure, for example, 2.5 bar, brought as the steam chamber 2 with the mold.
  • the valve 4.11 is opened at the filling cylinders 8 while the valve 4.12 is closed.
  • filling piston 10 in the filling cylinders 8 are moved by compressed air in such a way that a filling pressure, for example of 5 bar, is created in the filling cylinders 8.
  • the pressure in the reservoir 5 is for this purpose higher than the pressure in the cavity of the mold. 3
  • valve 4.9 is closed and the valves 4.10 and 4.12 are opened.
  • the filling pressure in the filling cylinders 8 now causes the foam particles 6 still in the hoses to be blown back into the storage container 5, since there the pressure can escape via the valve 4.10.
  • the case falling filling pressure in the filling cylinders 8 causes a reset of the filling piston 10, so that the mold 3 is closed.
  • valves 4.1, 4.8 are opened for the supply of water vapor which escapes again via the valves 4.4, 4.5 which are also open.
  • the mold 3 is rinsed with steam. As a result, air is displaced from the mold 3, which would otherwise act as a heat insulator.
  • a so-called transverse evaporation is performed.
  • water vapor D is supplied in a timed manner over a short period of time via the opened valve 4.1 only to the steam chamber part 2.1 under high pressure not regulated by the valve 4.1.
  • the valves 4.2 to 4.8 are closed.
  • the water vapor D flows through the foam particles 6 located in the mold 3 to the pressure medium. following cases in the direction of the steam chamber part 2.2.
  • the valve 4.1 is closed and the steam supply is interrupted.
  • the pressure in the steam chamber 2 is reduced by opening the valve 4.5.
  • transverse evaporation takes place in the same way from the other direction by applying pressurized steam via the valve 4.8. Subsequently, the pressure escapes by opening the valve 4.4.
  • a softening and expansion of the foam particles 6 is effected.
  • the foam particles 6 melt together thermoplasticly and form the molded part 11 with a thermoplastic surface on a wall of the cavity of the molding tool 3.
  • the vapor deposition in FIGS. 10 and 11 is time-controlled so that the water vapor D is present as substantially uncondensed, dry water vapor within reaches a short steaming time, a plurality of the foam particles 6 before the thermoplastic surface of the molding 11 is formed.
  • the foam particles 6 from the steam D energy is supplied so quickly that the foam particles 6 are first superficially thermoplastic and then expand.
  • a so-called autoclave vaporization takes place by opening the valves 4.1, 4.8 and again applying steam to the entire steam chamber 2.
  • the cavity is heated with steam so that the surface of the formed body is baked.
  • the pressure is then released via the valves 4.4, 4.5.
  • valves 4.3 and 4.6 are opened and the mold 3 is sprayed from the outside with water in order to cool it, for example from about 140 ° C. to about 80 ° C.
  • FIG. 14 a vacuum is generated in the steam chamber 2 via the open valves 4.4, 4.5. In this case, the molding 11 is stabilized. At the same time still existing condensate is evaporated and its evaporation cooling used for cooling the mold 3.
  • the valve 4.1 is opened and compressed air is introduced, which causes the mold part 11 to be removed from the mold part 3.1. In the same way, demoulding takes place from the mold part 3.2 by opening the valve 4.8 and applying compressed air in FIG. 16.
  • the device 1 is now ready for a new cycle, beginning with FIG. 1.
  • the supply of the steam D takes place in particular so briefly that the thermoplastic material of the foam particles 6 is not destroyed by overheating.
  • foam particles 6 of expandable polystyrene (EPS) and / or of expandable polypropylene (EPP) and / or of expandable polyethylene (EPE) and / or of another expandable polyolefin are used. It is also possible to use mixtures of several of the substances mentioned.
  • the maximum pressure used for the vapor deposition is preferably in a range of 5 bar to 10 bar, in particular about 7 bar and corresponds to the unregulated form from a device for the generation of steam D.
  • the steaming time is preferably between 0.2 s and 3 s, in particular at about 1.5 s.
  • the cavity and / or provided for steaming steam supply lines can be flushed by means of compressed air L to remove condensate.
  • foam particles 6 provided with a blowing agent are used.
  • pentane is used as the blowing agent.
  • the mold 3 may be provided with a thermal insulation so that a heat transfer from the water vapor D and / or the foam particles 6 on the mold 3 and / or is reduced to an environment.
  • the steam D can be fed directly to the mold 3 without a steam chamber 2.
  • FIG. 18 shows a vapor state diagram (Mollier (h, s) diagram).
  • the abscissa shows the entropy s of the steam with the unit kJ / (kg * K) and the ordinate the corresponding enthalpy h with the unit kJ / kg applied.
  • the pressure p in bar, the temperature T in 0 C and the specific volume v in m / kg are given.
  • Isobars that is lines of equal pressure p, run essentially diagonally from bottom left to top right and are shown throughout.
  • Isochores that is, lines of the same specific volume v, are similar to the isobars and are shown in dashed lines. The value indications of the specific volume are shown framed for distinction.
  • a so-called saturated steam line SDL is drawn. From the saturated steam line SDL and above, the steam is dry to superheated. Below the saturated steam line SDL one speaks of wet steam.
  • the parameters pressure p and temperature T are preferably conducted so that the vapor state is above the saturated steam line SDL.
  • a pressure p in a pressure range BpI of about 0.5 bar to 1.5 bar is preferably selected.
  • a pressure p in a pressure range Bp2 of about 2 to 5 bar and in the case of an extrusion material in a pressure range Bp3 of about 5 to 8 bar is preferably selected for autoclave material.
  • FIG. 18 also shows a relationship between a flow velocity c of the vapor and an enthalpy difference Ah of the vapor.
  • the aim is the highest possible flow velocity c and thus a correspondingly high enthalpy difference Ah.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

La présente invention concerne un procédé de réalisation d'une pièce moulée (11), la cavité d'un outil de moulage (3) étant remplie de particules de mousse (6) formées de matière thermoplastique. La cavité remplie est soumise à de la vapeur d'eau (D) à haute température sous pression afin de produire l'expansion des particules de mousse (6), de ramollir les particules de mousse (6) et de réaliser leur soudage thermoplastique mutuel, et de former la surface thermoplastique de la pièce moulées (11) constituée des particules de mousses (6) soudées, sur une paroi de la cavité. L'application de vapeur d'eau (D) est réalisée au moins une fois en étant régulée dans le temps par l'intermédiaire d'au moins une soupape (4.1, 4.8) de sorte qu'au cours d'un temps d'application de vapeur court, la vapeur d'eau (D) atteint une pluralité des particules de mousse (6) sous la forme de vapeur d'eau (D) sèche dans une large mesure non condensée, avant formation de la surface thermoplastique de la pièce moulée (11). De l'énergie issue de la vapeur d'eau (D) est apportée aux particules de mousse (6) avec une rapidité telle que le particules de mousse (6) deviennent tout d'abord thermoplastique en surface, puis subissent une expansion.
PCT/EP2010/050151 2009-01-12 2010-01-08 Procédé et dispositif de réalisation de pièces moulées à partir de mousses particulaires WO2010079212A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10701486A EP2376268A2 (fr) 2009-01-12 2010-01-08 Procédé et dispositif de réalisation de pièces moulées à partir de mousses particulaires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009004386.1 2009-01-12
DE200910004386 DE102009004386A1 (de) 2009-01-12 2009-01-12 Verfahren und Vorrichtung zur Herstellung von Formteilen aus Partikelschäumen

Publications (2)

Publication Number Publication Date
WO2010079212A2 true WO2010079212A2 (fr) 2010-07-15
WO2010079212A3 WO2010079212A3 (fr) 2011-02-03

Family

ID=42237413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/050151 WO2010079212A2 (fr) 2009-01-12 2010-01-08 Procédé et dispositif de réalisation de pièces moulées à partir de mousses particulaires

Country Status (3)

Country Link
EP (1) EP2376268A2 (fr)
DE (1) DE102009004386A1 (fr)
WO (1) WO2010079212A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102352115A (zh) * 2011-07-07 2012-02-15 中山市中健包装有限公司 植物纤维及植物粉体发泡材料的制作方法
US9457499B2 (en) 2013-03-15 2016-10-04 Herman Miller, Inc. Particle foam component having a textured surface and method and mold for the manufacture thereof

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012206094B4 (de) 2012-04-13 2019-12-05 Adidas Ag Sohlen für Sportschuhe, Schuhe und Verfahren zur Herstellung einer Schuhsohle
DE102013202291B4 (de) 2013-02-13 2020-06-18 Adidas Ag Dämpfungselement für Sportbekleidung und Schuh mit einem solchen Dämpfungselement
DE102013202306B4 (de) 2013-02-13 2014-12-18 Adidas Ag Sohle für einen Schuh
DE102013022415B4 (de) 2013-02-13 2024-05-16 Adidas Ag Herstellungsverfahren für Dämpfungselemente für Sportbekleidung
US9930928B2 (en) 2013-02-13 2018-04-03 Adidas Ag Sole for a shoe
DE102013002519B4 (de) 2013-02-13 2016-08-18 Adidas Ag Herstellungsverfahren für Dämpfungselemente für Sportbekleidung
US9610746B2 (en) 2013-02-13 2017-04-04 Adidas Ag Methods for manufacturing cushioning elements for sports apparel
USD776410S1 (en) 2013-04-12 2017-01-17 Adidas Ag Shoe
DE102014215897B4 (de) 2014-08-11 2016-12-22 Adidas Ag adistar boost
DE102014216115B4 (de) 2014-08-13 2022-03-31 Adidas Ag Gemeinsam gegossene 3D Elemente
DE102015202013B4 (de) 2015-02-05 2019-05-09 Adidas Ag Verfahren zur Herstellung eines Kunststoffformteils, Kunststoffformteil und Schuh
JP6679363B2 (ja) 2015-03-23 2020-04-15 アディダス アーゲー ソールおよびシューズ
DE102015206486B4 (de) 2015-04-10 2023-06-01 Adidas Ag Schuh, insbesondere Sportschuh, und Verfahren zur Herstellung desselben
DE102015206900B4 (de) 2015-04-16 2023-07-27 Adidas Ag Sportschuh
DE102015209795B4 (de) 2015-05-28 2024-03-21 Adidas Ag Ball und Verfahren zu dessen Herstellung
USD783264S1 (en) 2015-09-15 2017-04-11 Adidas Ag Shoe
DE102016209044B4 (de) 2016-05-24 2019-08-29 Adidas Ag Sohlenform zum Herstellen einer Sohle und Anordnung einer Vielzahl von Sohlenformen
DE102016209045B4 (de) 2016-05-24 2022-05-25 Adidas Ag Verfahren und vorrichtung zum automatischen herstellen von schuhsohlen, sohlen und schuhe
DE102016209046B4 (de) 2016-05-24 2019-08-08 Adidas Ag Verfahren zur herstellung einer schuhsohle, schuhsohle, schuh und vorgefertigte tpu-gegenstände
USD840136S1 (en) 2016-08-03 2019-02-12 Adidas Ag Shoe midsole
USD840137S1 (en) 2016-08-03 2019-02-12 Adidas Ag Shoe midsole
USD852475S1 (en) 2016-08-17 2019-07-02 Adidas Ag Shoe
JP1582717S (fr) 2016-09-02 2017-07-31
DE102016223980B4 (de) 2016-12-01 2022-09-22 Adidas Ag Verfahren zur Herstellung eines Kunststoffformteils
DE102017205830B4 (de) 2017-04-05 2020-09-24 Adidas Ag Verfahren für die Nachbehandlung einer Vielzahl einzelner expandierter Partikel für die Herstellung mindestens eines Teils eines gegossenen Sportartikels, Sportartikel und Sportschuh
USD899061S1 (en) 2017-10-05 2020-10-20 Adidas Ag Shoe
FR3098436B1 (fr) * 2019-07-08 2022-10-07 Psa Automobiles Sa Moule d’injection de polystyrene expanse pour la realisation d’un element creux

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992005935A1 (fr) 1990-10-09 1992-04-16 Szubelick, Theresa, Ann +Ef Systeme d'apport de vapeur de grande qualite pour des machines demoulage
EP0666796A1 (fr) 1992-10-26 1995-08-16 Ph Kurtz Eisenhammer Gmbh & Co Procede pour la fabrication de pieces moulees en plastique expanse et moule pour la mise en uvre de ce procede.
US5858288A (en) 1996-07-18 1999-01-12 Bullard; Calvin P. Method for molding expandable polystyrene foam articles
EP1329298A2 (fr) 2002-01-18 2003-07-23 Basf Aktiengesellschaft Appareil de fabrication d'articles en matière mousse
DE102004004657A1 (de) 2004-01-29 2005-08-25 Wacker & Ziegler Gmbh Energieeffizienter Formteilautomat mit integrierter Dampferzeugung

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800227B1 (en) * 1998-03-31 2004-10-05 Daisen Industry Co., Ltd. Material bead charging method, synthetic resin mold foam forming method using this method, and mold foam formed product obtained by this method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992005935A1 (fr) 1990-10-09 1992-04-16 Szubelick, Theresa, Ann +Ef Systeme d'apport de vapeur de grande qualite pour des machines demoulage
EP0666796A1 (fr) 1992-10-26 1995-08-16 Ph Kurtz Eisenhammer Gmbh & Co Procede pour la fabrication de pieces moulees en plastique expanse et moule pour la mise en uvre de ce procede.
US5858288A (en) 1996-07-18 1999-01-12 Bullard; Calvin P. Method for molding expandable polystyrene foam articles
EP1329298A2 (fr) 2002-01-18 2003-07-23 Basf Aktiengesellschaft Appareil de fabrication d'articles en matière mousse
DE102004004657A1 (de) 2004-01-29 2005-08-25 Wacker & Ziegler Gmbh Energieeffizienter Formteilautomat mit integrierter Dampferzeugung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102352115A (zh) * 2011-07-07 2012-02-15 中山市中健包装有限公司 植物纤维及植物粉体发泡材料的制作方法
US9457499B2 (en) 2013-03-15 2016-10-04 Herman Miller, Inc. Particle foam component having a textured surface and method and mold for the manufacture thereof

Also Published As

Publication number Publication date
WO2010079212A3 (fr) 2011-02-03
DE102009004386A1 (de) 2010-07-15
EP2376268A2 (fr) 2011-10-19

Similar Documents

Publication Publication Date Title
WO2010079212A2 (fr) Procédé et dispositif de réalisation de pièces moulées à partir de mousses particulaires
EP3086916B1 (fr) Dispositif et procédé de production d'une pièce en mousse particulaire
EP3362245B1 (fr) Dispositif et procédé pour la fabrication de pièces moulées constituées par une mousse particulaire
DE60008135T2 (de) Blasformverfahren und blasformvorrichtung zum herstellen von pasteurisierbaren behältern
EP1259365B1 (fr) Procede et dispositif pour lier thermiquement des particules de mousse polymere
EP2227366B1 (fr) Procédé de fabrication d'un corps moulé en matière plastique moussée, et dispositif pour la mise en oeuvre du procédé
EP0336225A2 (fr) Procédé et dispositif de fabrication de pièces moulées à partir de particules en matière synthétique expansible
DE102009028987B9 (de) Vorrichtung und Verfahren zum Herstellen von Schaumstoffblöcken
DE3902002C2 (fr)
EP2113368A2 (fr) Dispositif de formage par soufflage
WO2018095571A1 (fr) Procédé et dispositif de production d'une pièce moulée constituée d'une mousse de particules
DE102009053272B4 (de) Vorrichtung zur Herstellung von Formteilen aus Partikelschäumen
DE4325559C1 (de) Verfahren und Vorrichtung zur Herstellung von Blasformteilen aus Kunststoff
DE10065487A1 (de) IM-Formschäumverfahren für synthetisches Polyolefinharz und IM-Formschäumteile
DE102004004657A1 (de) Energieeffizienter Formteilautomat mit integrierter Dampferzeugung
DE102016106972B4 (de) Formteilprozess und Vorrichtung zum Herstellen von Formteilen
DE2236771C3 (de) Verfahren und Vorrichtung zum Herstellen eines Formteils aus geschäumtem Polystyrol
EP4168240A1 (fr) Procédé et dispositif de production de récipients à partir de préformes à température régulée en matière thermoplastique
DE102016113201B4 (de) Verfahren zur Herstellung eines porösen Faservliesformkörpers mittels eines thermischen Formgebungsverfahrens sowie dafür geeignete Vorrichtung
DE2940815A1 (de) Verfahren und vorrichtung zum herstellen von formlingen aus aufgeschaeumten, thermoplastischem kunststoff
DE1729058A1 (de) Verfahren und Vorrichtung zum Verformen von aufgeschaeumter Folie aus thermoplastischem Material,beispielsweise aufgeschaeumtem Polystyrol
DE2903495C2 (de) Verfahren zum Herstellen von Formkörpern aus geschäumtem Kunststoff, insbesondere aus geschäumten Polystyrol
AT398940B (de) Verfahren und vorrichtung zum herstellen von formkörpern aus geschäumtem kunststoff
CH642903A5 (de) Verfahren zum herstellen von formkoerpern aus geschaeumtem kunststoff, wie z.b. geschaeumtem polystyrol.
DE1779662B2 (de) Verfahren und vorrichtung zum herstellen eines schaumstoffgegenstandes aus einem thermoplastischen treibmittelhaltigen kunststoff

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10701486

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2010701486

Country of ref document: EP