WO2010074148A1 - 光制御装置および光制御方法 - Google Patents

光制御装置および光制御方法 Download PDF

Info

Publication number
WO2010074148A1
WO2010074148A1 PCT/JP2009/071439 JP2009071439W WO2010074148A1 WO 2010074148 A1 WO2010074148 A1 WO 2010074148A1 JP 2009071439 W JP2009071439 W JP 2009071439W WO 2010074148 A1 WO2010074148 A1 WO 2010074148A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
light
pattern
distribution
phase modulation
Prior art date
Application number
PCT/JP2009/071439
Other languages
English (en)
French (fr)
Inventor
直也 松本
太郎 安藤
卓 井上
良幸 大竹
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to ES09834946.7T priority Critical patent/ES2608465T3/es
Priority to CN200980152900.5A priority patent/CN102265208B/zh
Priority to US13/141,104 priority patent/US8441709B2/en
Priority to EP09834946.7A priority patent/EP2381295B1/en
Publication of WO2010074148A1 publication Critical patent/WO2010074148A1/ja
Priority to US13/871,396 priority patent/US9001411B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/06Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/086Condensers for transillumination only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0808Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/12Function characteristic spatial light modulator

Definitions

  • the present invention relates to a light control device and a light control method.
  • the spatial light modulator can modulate the intensity or phase of input light in each of a plurality of two-dimensionally arranged pixels.
  • an intensity modulation type capable of modulating only the intensity a phase modulation type capable of modulating only the phase, and both intensity and phase can be modulated.
  • the light output with the intensity or phase modulated in each pixel of the spatial light modulator is condensed by, for example, a condensing optical system provided at the subsequent stage of the spatial light modulator, and exists at the condensing position.
  • the object can be processed.
  • the intensity modulation type spatial light modulator adjusts the transmittance of the input light for each pixel, and the light that is not transmitted cannot be used, so that the light use efficiency is poor.
  • An intensity phase modulation type spatial light modulator cannot easily control intensity modulation and phase modulation in each pixel independently of each other, and is difficult to handle.
  • the phase modulation type spatial light modulator adjusts the phase change of the input light for each pixel and can output almost all light, so that the light utilization efficiency is high.
  • the phase modulation type spatial light modulator exhibits a phase pattern created from a computer generated hologram or the like, thereby providing a high degree of freedom in phase distribution in the beam cross section of the output light, and collecting the output light by the condensing optical system. High degree of freedom in light position.
  • Applications of light control using such a phase modulation type spatial light modulator include processing of the surface and the inside of a workpiece, generation of Laguerre Gaussian mode light, and the like.
  • Non-Patent Document 1 It is also known that the intensity of output light that is phase-modulated for each pixel in a phase modulation type spatial light modulator can be modulated (see Non-Patent Document 1). This is to adjust the blazed grating pattern by causing a phase modulation type spatial light modulator to present a phase pattern formed by superimposing a blazed grating pattern for light diffraction and a phase pattern having a predetermined phase modulation distribution. Thus, the light diffraction efficiency in the spatial light modulator is adjusted. According to this, the light diffracted and output by the spatial light modulator can have a desired intensity distribution and phase distribution in its beam cross section.
  • phase ⁇ of the light wave is equal to the phase ( ⁇ + 2n ⁇ )
  • the optical phase modulation in each pixel of the spatial light modulator is considered to be sufficient if possible in the range of 2 ⁇ .
  • n is an arbitrary integer.
  • phase folding adding / subtracting 2n ⁇ to the phase modulation amount (referred to as “phase folding”) makes the phase modulation amount within a range from 0 to 2 ⁇ . Good. Even if the phase modulation amount after the phase folding is used as the phase modulation amount of each pixel of the spatial light modulator, there is no problem in principle.
  • the conventional spatial light modulator is set to have a phase modulation range of 2 ⁇ . This is because if the phase modulation range in the spatial light modulator is 2 ⁇ , in principle, phase modulation exceeding 2 ⁇ can be expressed by performing phase folding in the phase pattern. In addition, the fact that the spatial light modulator has a phase modulation range exceeding 2 ⁇ is not only redundant, but also causes a decrease in resolution and a decrease in response speed in the relationship between the input gradation value and the phase modulation amount. It is.
  • the present inventor causes a phase modulation type spatial light modulator to present a phase pattern formed by superimposing a blazed grating pattern and a phase pattern having a predetermined phase modulation distribution in the spatial light modulator.
  • Various research and development are being carried out by utilizing the ability to modulate the intensity of the output light that is phase-modulated every time.
  • the inventor has found that a phenomenon in which the intensity distribution and the phase distribution in the beam cross section of the light output from the spatial light modulator are different from the desired ones may occur. It has been found that there may be a phenomenon that the beam quality of the light output from the device is lowered. The inventor has found that the phenomenon is due to phase folding.
  • the present invention has been made to solve the above problems, and a phase pattern formed by superimposing a blazed grating pattern and a phase pattern having a predetermined phase modulation distribution on a phase modulation type spatial light modulator.
  • An object of the present invention is to provide a light control device and a light control method capable of obtaining light having a desired beam cross section in the technique of presenting.
  • the light control device is capable of phase modulation in each of (1) a light source that outputs fluorescent light and (2) a plurality of two-dimensionally arranged pixels in a range of 4 ⁇ or more, and the light output from the light source
  • a phase modulation type spatial light modulator that presents a phase pattern that modulates the phase of light in each of the plurality of pixels, and outputs the light after phase modulation by this phase pattern, and (3) optical diffraction
  • the blazed grating pattern by superimposing a phase pattern having a phase modulation range of 2 ⁇ or more on the spatial light modulator by superimposing the blazed grating pattern for the above and a phase pattern having a predetermined phase modulation distribution
  • a controller for adjusting the light diffraction efficiency in the spatial light modulator.
  • the control unit includes a blazed grating pattern having a light diffraction efficiency distribution according to an intensity distribution in a beam section of Laguerre Gaussian mode light having a specific index, and a phase in a beam section of Laguerre Gaussian mode light. It is preferable to present the phase pattern on which the phase pattern having the phase modulation distribution corresponding to the distribution is superimposed on the spatial light modulator.
  • the control unit includes a blazed grating pattern having a light diffraction efficiency distribution corresponding to the intensity distribution of light having a specific intensity distribution and phase distribution in the beam cross section, and a phase distribution. It is preferable that the spatial light modulator present a phase pattern on which a phase pattern having a corresponding phase modulation distribution is superimposed.
  • the light control method is capable of phase modulation in each of (1) a light source that outputs fluorescent light and (2) a plurality of two-dimensionally arranged pixels in a range of 4 ⁇ or more, and the light output from the light source
  • a phase modulation type spatial light modulator that presents a phase pattern that modulates the phase of light in each of the plurality of pixels, and outputs light after phase modulation by this phase pattern, using (3 )
  • a blazed grating pattern for light diffraction and a phase pattern having a predetermined phase modulation distribution are superimposed, and a phase pattern having a phase modulation range of 2 ⁇ or more is presented to the spatial light modulator, and the blazed grating pattern is By adjusting, the light diffraction efficiency in the spatial light modulator is adjusted.
  • the light control method includes a blazed grating pattern having a light diffraction efficiency distribution corresponding to an intensity distribution in a beam section of Laguerre Gaussian mode light having a specific index, and a phase distribution in a beam section of Laguerre Gaussian mode light. It is preferable that the spatial light modulator present a phase pattern on which a phase pattern having a phase modulation distribution is superimposed.
  • the light control method according to the present invention includes a blazed grating pattern having a light diffraction efficiency distribution corresponding to the intensity distribution of light having a specific intensity distribution and phase distribution in a beam cross section, and phase modulation corresponding to the phase distribution. It is preferable that the spatial light modulator present a phase pattern on which a phase pattern having a distribution is superimposed.
  • light having a desired beam cross section can be obtained in a technique in which a phase pattern formed by superimposing a blazed grating pattern and a phase pattern having a predetermined phase modulation distribution is presented to a phase modulation type spatial light modulator.
  • FIG. 1 is a configuration diagram of a light control device 1.
  • FIG. It is a figure which shows a blazed grating pattern. It is a figure which shows an example of the phase modulation distribution in a blazed grating pattern. It is a graph which shows the relationship between k value in the blazed grating pattern shown by the actual spatial light modulator, and diffraction efficiency. It is a figure which shows an example of the phase modulation distribution in a blazed grating pattern. It is a graph which shows an example of the phase modulation amount of each pixel in a blazed grating pattern. It is a figure which shows an example of the phase modulation distribution in a phase pattern.
  • FIG. 12 is a diagram showing a blazed grating pattern ⁇ grating for obtaining an intensity distribution (FIG.
  • SYMBOLS 1 Light control apparatus, 2 ... Imaging device, 10 ... Light source, 20 ... Prism, 30 ... Spatial light modulator, 31 ... Drive part, 32 ... Control part, 41 ... Lens, 42 ... Aperture, 43 ... Lens.
  • FIG. 1 is a configuration diagram of the light control device 1.
  • the light control device 1 shown in this figure includes a light source 10, a prism 20, a spatial light modulator 30, a drive unit 31, a control unit 32, a lens 41, an aperture 42, and a lens 43.
  • an imaging device 2 is also shown in this figure.
  • the phase modulation type spatial light modulator used in the present invention may be a reflection type or a transmission type.
  • the reflection type spatial light modulator may be any of LCOS (Liquid Crystal on Silicon) type, MEMS (Micro Electro Mechanical Systems) type and optical address type.
  • the transmission type spatial light modulator may be an LCD (Liquid Crystal Display) or the like. In FIG. 1, a reflective type is shown as the spatial light modulator 30.
  • the light source 10 outputs light to be phase-modulated by the spatial light modulator 30 and is preferably a laser light source, and may be a pulse laser light source such as a femtosecond laser light source or an Nd: YAG laser light source. Alternatively, a CW laser light source such as He—Ne may be used.
  • the light output from the light source 10 is preferably collimated by a collimating lens after passing through a spatial filter.
  • the prism 20 has a first reflecting surface 21 and a second reflecting surface 22.
  • the first reflecting surface 21 of the prism 20 receives light output from the light source 10 and reflects the light to the spatial light modulator 30.
  • the second reflection surface 22 of the prism 20 receives light output from the spatial light modulator 30 and reflects the light to the lens 41.
  • the spatial light modulator 30 is of a phase modulation type and has a plurality of pixels arranged two-dimensionally, and phase modulation in each of the plurality of pixels is possible in a range of 4 ⁇ or more, and each of the plurality of pixels Can present a phase pattern that modulates the phase of the light.
  • the spatial light modulator 30 receives the light output from the light source 10 and reflected by the first reflection surface 21 of the prism 20 and reaches the second reflection surface 22 of the prism 20 after phase modulation using this phase pattern. Output to.
  • the phase pattern presented in the spatial light modulator 30 includes, for example, a computer generated hologram (CGH: Computer Generated Hologram) obtained by numerical calculation.
  • CGH Computer Generated Hologram
  • the drive unit 31 sets a phase modulation amount in each of a plurality of pixels arranged two-dimensionally in the spatial light modulator 30, and a signal for setting the phase modulation amount for each pixel is sent to the spatial light modulator 30. give.
  • the drive unit 31 causes the spatial light modulator 30 to present a phase pattern by setting the amount of phase modulation in each of the plurality of pixels that are two-dimensionally arranged in the spatial light modulator 30.
  • the control unit 32 is configured by a computer, for example, and controls the operation of the drive unit 31 to write the phase pattern from the drive unit 31 to the spatial light modulator 30. That is, the phase pattern A to be presented to the spatial light modulator 30 is stored, or the phase pattern A is created, and the phase pattern A is written from the drive unit 31 to the spatial light modulator 30.
  • the phase pattern A is formed by superposing a blazed grating pattern for light diffraction and a phase pattern having a predetermined phase modulation distribution.
  • the phase pattern having the predetermined phase modulation distribution includes a component for realizing a desired phase distribution in the light beam cross section, and further includes a component for correcting phase distortion of the optical system in the light control apparatus 1. It is also suitable. Further, this phase pattern A has a phase modulation range of 2 ⁇ or more.
  • the light diffraction efficiency in the spatial light modulator 30 can be adjusted by adjusting the blazed grating pattern.
  • the lens 41 inputs light output from the spatial light modulator 30 and reflected by the second reflecting surface 22 of the prism 20.
  • the lens 41 and the lens 43 constitute a 4f optical system, and an aperture 42 is disposed at a focal position between them. This aperture is arranged so as to pass only a desired order of diffracted light among the light diffracted by the spatial light modulator 30.
  • the imaging device 2 receives the light B output from the lens 43 of the light control device 1 and acquires the intensity distribution in the beam cross section of the light B.
  • the imaging device 2 is for observing the quality of light output from the light control device 1.
  • a lens is newly arrange
  • this light control device 1 The general operation of this light control device 1 is as follows.
  • the phase pattern formed by superimposing the blazed grating pattern and the phase pattern is presented to the spatial light modulator 30 by the drive unit 31 controlled by the control unit 32.
  • the light output from the light source 10 is reflected by the first reflecting surface 21 of the prism 20 and input to the spatial light modulator 30.
  • the light input to the spatial light modulator 30 is diffracted by the blazed grating pattern in the phase pattern presented to the spatial light modulator 30 and output.
  • the diffraction efficiency during the light diffraction varies depending on the shape of the blazed grating pattern, and may vary depending on the position on the incident surface of the spatial light modulator 30.
  • the light diffracted and output from the spatial light modulator 30 is phase-modulated by a phase pattern having a predetermined phase modulation distribution among the phase patterns presented to the spatial light modulator 30.
  • the light output from the spatial light modulator 30 is reflected by the second reflecting surface 22 of the prism 20, passes through the lens 41, the aperture 42, and the lens 43, and is received by the imaging device 2 to obtain an intensity distribution in the light beam cross section. Is done.
  • the lens 41, the aperture 42, and the lens 43 are configured to selectively pass diffracted light of a desired diffraction order out of the light output from the spatial light modulator 30. Therefore, the light B output from the lens 43 to the imaging device 2 is light having a desired intensity distribution and phase distribution.
  • FIG. 2 is a diagram showing a blazed grating pattern.
  • the phase modulation amount (modulation width 2 ⁇ ) of each pixel is shown by shading.
  • a blazed grating pattern ⁇ grating having one period of N pixels along a specific direction on the light incident surface of the spatial light modulator 30 is expressed by the following equation (1).
  • n represents a pixel position within a cycle along a specific direction.
  • k may take a value of 0 or more and 1 or less. Therefore, the phase modulation range of the blazed grating pattern phi grating is 2k ⁇ is 2 ⁇ or less.
  • the theoretical diffraction efficiency I + 1th of the blazed grating pattern phi grating is expressed by the following equation (2) varies depending on the k value.
  • the theoretical diffraction efficiency I + 1th is a maximum value 1.
  • FIG. 3 is a diagram illustrating an example of a phase modulation distribution in the blazed grating pattern ⁇ grating .
  • the horizontal axis represents the pixel position.
  • FIG. 4 is a graph showing the relationship between the k value and the diffraction efficiency in the blazed grating pattern ⁇ grating presented in an actual spatial light modulator. As shown in this figure, the larger the k value, the higher the diffraction efficiency. The diffraction angle does not depend on the k value.
  • the phase pattern ⁇ result presented to the spatial light modulator 30 is a superposition of the blazed grating pattern ⁇ grating as described above and the desired phase pattern ⁇ desire as a phase pattern, It is expressed by a formula.
  • the phase pattern ⁇ result presented in the spatial light modulator 30 is obtained by superimposing the blazed grating pattern ⁇ grating as described above on the desired phase pattern ⁇ desire and the distortion correction pattern ⁇ correction as the phase pattern. And it is represented by the following formula (4).
  • the desired phase pattern ⁇ desire is a pattern for realizing a desired phase distribution in the light beam cross section, and its phase modulation range is 2 ⁇ or less.
  • the distortion correction pattern ⁇ correction is a pattern for correcting the phase distortion of the optical system in the light control apparatus 1, and generally has a phase modulation range of about several ⁇ .
  • the phase distortion of the optical system in the light control device 1 may exist in the first reflection surface 21 and the second reflection surface 22 of the prism 20, the spatial light modulator 30, and the lenses 41 and 43.
  • the light diffracted and output from the spatial light modulator 30 on which such a phase pattern ⁇ result is presented has a desired intensity distribution and phase distribution in the beam cross section.
  • the phase pattern ⁇ phase in the equation (5) is the desired phase pattern ⁇ desire in the equation (3), or the sum of the desired phase pattern ⁇ desire and the distortion correction pattern ⁇ correction in the equation (4). is there.
  • the phase pattern ⁇ result presented to the spatial light modulator 30 has a phase modulation range of 2 ⁇ or more.
  • the blazed grating pattern ⁇ grating included in the phase pattern ⁇ result the one shown in FIGS. 5 and 6 is considered.
  • FIG. 5 is a diagram illustrating an example of a phase modulation distribution in a blazed grating pattern. In this figure, the horizontal axis represents the pixel position.
  • FIG. 6 is a chart showing an example of the phase modulation amount of each pixel in the blazed grating pattern.
  • FIG. 5 shows approximately six periods of the blazed grating pattern ⁇ grating .
  • FIG. 7 is a diagram illustrating an example of the phase modulation distribution in the phase pattern.
  • the horizontal axis represents the pixel position.
  • This phase pattern ⁇ phase includes a portion where the phase modulation amount is 0 and a portion where the phase modulation amount is 1.25 ⁇ .
  • FIG. 8 is a diagram showing a phase modulation distribution in the phase pattern ⁇ result in which the blazed grating pattern ⁇ grating (FIGS. 5 and 6) and the phase pattern ⁇ phase (FIG. 7) are superimposed.
  • the horizontal axis represents the pixel position.
  • the phase modulation range is 2 ⁇ or more.
  • FIG. 9 is a diagram illustrating a phase modulation distribution in the phase pattern after the phase folding is performed on the phase pattern ⁇ result (FIG. 8). Also in this figure, the horizontal axis represents the pixel position.
  • 2 ⁇ is subtracted from the phase modulation amount for pixels whose phase modulation amount exceeds 2 ⁇ in the phase pattern ⁇ result (FIG. 8) before phase folding.
  • the phase modulation amount in each pixel is in the range from 0 to 2 ⁇ .
  • a phase pattern before phase folding (FIG. 8) is presented on the spatial light modulator 30.
  • a phase pattern after phase folding (FIG. 9) is presented to the spatial light modulator.
  • phase pattern before phase folding (FIG. 8) and the phase pattern after phase folding (FIG. 9) have the same effect in principle.
  • a foldable region (flyback region) that is not correctly displayed due to a phase shift, in a portion where the difference in phase modulation amount between two adjacent pixels is large. That is, compared with the phase pattern before phase folding (FIG. 8), in the phase pattern after phase folding (FIG. 9), the folding region exists at the position indicated by the arrow in the figure. Light having an intensity distribution and a phase distribution cannot be obtained.
  • phase modulation amount difference between two adjacent pixels becomes approximately 2 ⁇ after phase folding.
  • phase modulation amount changes sharply in a portion where the difference in phase modulation amount between two adjacent pixels is large in the spatial light modulator. The crosstalk occurs between the two adjacent pixels.
  • Such a crosstalk-existing portion is particularly prominent when there is a step of approximately 2 ⁇ of the phase modulation amount between two adjacent pixels and the folding region is present in the periodic structure of the blazed grating pattern. It is thought to have an effect.
  • the folding area is small, and the intensity distribution and phase distribution in the beam cross section of the light output from the spatial light modulator The effect of the folding area can be largely ignored.
  • FIG. 10 is a diagram illustrating an example of an intensity distribution in a beam section of light output from the spatial light modulator as another example of the comparative example.
  • the phase pattern presented to the spatial light modulator is a superposition of the blazed grating pattern ⁇ grating and the desired phase pattern ⁇ desire, and the intensity distribution in the beam cross section of the light output from the spatial light modulator is It is intended to be uniform.
  • the intensity distribution in the intended beam cross section should be that the black area in the figure covers the entire surface.
  • the intensity distribution in the beam cross section of the actually obtained light has a region having a high intensity (white region in the figure) contrary to the above intention. This is on the blazed grating pattern phi grating has many folded region, which in the desired phase pattern phi desire and distortion correction pattern phi correction is to have a phase pattern phi result is more folded regions formed by superimposed It is.
  • the part where the defect is actually seen in the beam cross section of the output light coincides with the place where the phase modulation amount changes sharply in the phase pattern.
  • a decrease in the quality of the output light cannot be ignored.
  • light having a desired intensity distribution and phase distribution cannot be obtained due to the influence of the folding region.
  • a phase pattern (for example, FIG. 8) having a phase modulation range exceeding 2 ⁇ is presented to the spatial light modulator 30 whose phase modulation range is 4 ⁇ or more in each pixel. Therefore, it is not necessary to perform phase folding, and light having a desired intensity distribution and phase distribution in the beam cross section can be obtained.
  • Laguerre Gaussian mode light has an intensity distribution and a phase distribution specified by a radial index and a declination index in the beam cross section.
  • LG 1,3 light Laguerre Gaussian mode light having a radial index of 1 and a declination index of 3
  • FIG. 11 is a diagram showing the intensity distribution in the beam cross section of LG 1,3 light.
  • the blazed grating pattern ⁇ grating is set so that the intensity distribution in the beam cross section becomes a distribution as shown in FIG.
  • FIG. 12 is a diagram showing a blazed grating pattern ⁇ grating for obtaining an intensity distribution (FIG. 11) in the beam cross section of LG 1,3 light.
  • FIG. 13 is a diagram showing a desired phase pattern ⁇ desire for obtaining a phase distribution in the beam cross section of LG 1,3 light. In each of FIG. 12 and FIG. 13, the phase modulation amount of each pixel is shown by shading.
  • phase pattern ⁇ result for generating LG 1,3 light by the spatial light modulator 30 is superimposed with the blazed grating pattern ⁇ grating and the desired phase pattern ⁇ desire, and further with the distortion correction pattern ⁇ correction. It is a thing.
  • This phase pattern ⁇ result is presented to the spatial light modulator 30.
  • This phase pattern ⁇ result usually has a phase modulation range exceeding 2 ⁇ .
  • the spatial light modulator 30 having a phase modulation range of 4 ⁇ or more since the spatial light modulator 30 having a phase modulation range of 4 ⁇ or more is used, there is no need to perform phase folding on the phase pattern ⁇ result , and LG 1 having a desired intensity distribution and phase distribution is obtained . 3 light can be obtained.
  • a spatial light modulator having a phase modulation range of 2 ⁇ since a spatial light modulator having a phase modulation range of 2 ⁇ is used, the phase pattern after phase folding is presented in the spatial light modulator, and therefore, a desired intensity distribution and LG 1,3 light having a phase distribution cannot be obtained.
  • FIG. 14 is a diagram showing an intensity distribution in a beam cross section of LG 1,3 light generated according to the present embodiment.
  • FIG. 15 is a diagram showing the intensity distribution in the beam cross section of the LG 1,3 light generated by the comparative example. As can be seen by comparing the two, as compared to LG 1, 3 light produced by Comparative Example, LG 1, 3 light generated by the present embodiment, has an intensity distribution close to a desired one Yes.
  • the Laguerre Gaussian mode light generated by the light control apparatus 1 according to the present embodiment has not only a phase distribution but also an intensity distribution close to a desired one in the beam cross section, and has high mode purity. Therefore, this Laguerre Gaussian mode light can be suitably used in optical tweezers and quantum computation.
  • Beam shaping is a technique for converting input light having a nonuniform intensity distribution in the beam cross section into output light having a desired intensity distribution in the beam cross section.
  • FIG. 16 is a diagram illustrating an example of an intensity distribution before beam shaping and an intensity distribution after beam shaping.
  • a solid line indicates the intensity distribution before beam shaping, and a broken line indicates the intensity distribution after beam shaping. It is assumed that the intensity distribution (solid line) before beam shaping is stronger as it is closer to the center, and the intensity distribution (dashed line) after beam shaping is uniform.
  • the blazed grating pattern ⁇ grating used for beam shaping has a k-value distribution that has a diffraction efficiency distribution according to the ratio of the intensity distribution before beam shaping and the intensity distribution after beam shaping in the beam cross section. Is done.
  • the phase pattern ⁇ result presented in the spatial light modulator 30 is obtained by superimposing the desired phase pattern ⁇ desire and the distortion correction pattern ⁇ correction on the blazed grating pattern ⁇ grating . In some cases, the phase modulation range in the phase pattern ⁇ result exceeds 2 ⁇ .
  • the spatial light modulator 30 having a phase modulation range of 4 ⁇ or more since the spatial light modulator 30 having a phase modulation range of 4 ⁇ or more is used, it is not necessary to perform phase folding on the phase pattern ⁇ result , and after beam shaping having a desired intensity distribution and phase distribution. Can get the light.
  • a spatial light modulator having a phase modulation range of 2 ⁇ since a spatial light modulator having a phase modulation range of 2 ⁇ is used, the phase pattern after phase folding is presented in the spatial light modulator, and therefore, a desired intensity distribution and Light after beam shaping having a phase distribution cannot be obtained.
  • the present invention provides light having a desired beam cross section in a technique of presenting a phase pattern formed by superimposing a blazed grating pattern and a phase pattern having a predetermined phase modulation distribution on a phase modulation spatial light modulator.
  • a light control device capable of

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

 光制御装置1は、光源10、プリズム20、空間光変調器30、駆動部31、制御部32、レンズ41、アパーチャ42、レンズ43を備える。空間光変調器30は、位相変調型のものであって、2次元配列された複数の画素を有し、これら複数の画素それぞれにおける位相変調が4π以上の範囲で可能であり、複数の画素それぞれにおいて光の位相を変調する位相パターンを呈示する。この位相パターンは、光回折の為のブレーズドグレーティングパターンと、所定の位相変調分布を有する位相パターンとが重畳されてなり、位相変調範囲が2π以上である。

Description

光制御装置および光制御方法
 本発明は、光制御装置および光制御方法に関するものである。
 空間光変調器は、2次元配列された複数の画素それぞれにおいて入力光の強度または位相を変調することができる。このような空間光変調器として、強度のみを変調することができる強度変調型のものと、位相のみを変調することができる位相変調型のものと、強度および位相の双方を変調することができる強度位相変調型のものとがある。空間光変調器の各画素において強度または位相が変調されて出力された光は、例えば、空間光変調器の後段に設けられた集光光学系により集光されて、その集光位置に存在する対象物を加工することができる。
 強度変調型の空間光変調器は、画素毎に入力光の透過率を調整するものであり、透過させなかった部分の光を利用することができないので、光の利用効率が悪い。強度位相変調型の空間光変調器は、各画素における強度変調と位相変調とを互いに独立に制御することが容易でなく、取り扱いが困難である。
 一方、位相変調型の空間光変調器は、画素毎に入力光の位相変化を調整するものであり、殆ど全ての光を出力することができるので、光の利用効率が高い。また、位相変調型の空間光変調器は、計算機ホログラムなどから作成される位相パターンを呈示することにより、出力光のビーム断面における位相分布の自由度が高く、集光光学系による出力光の集光位置の自由度が高い。このような位相変調型の空間光変調器を用いた光制御の用途としては、加工対象物の表面や内部の加工や、ラゲールガウシアンモード光の生成などが挙げられる。
 また、位相変調型の空間光変調器において画素ごとに位相変調される出力される光の強度を変調できることが知られている(非特許文献1を参照)。これは、光回折の為のブレーズドグレーティングパターンと所定の位相変調分布を有する位相パターンとが重畳されてなる位相パターンを位相変調型の空間光変調器に呈示させ、ブレーズドグレーティングパターンを調整することにより空間光変調器における光回折効率を調整するものである。これによれば、空間光変調器により回折されて出力される光は、そのビーム断面において所望の強度分布および位相分布を有することができるとされている。
 また、一般に、光波の位相αと位相(α+2nπ)とは同等であるので、空間光変調器の各画素における光位相変調は2πの範囲で可能であれば充分であるとされている。ここで、nは任意の整数である。例えば、位相変調量が2πを超える場合には、その位相変調量に対して2nπを加減算すること(「位相折りたたみ」という。)で位相変調量を0から2πまでの範囲内の値とすればよい。このように位相折りたたみされた後の位相変調量が空間光変調器の各画素の位相変調量とされても、原理的には何ら問題が生じることはないとされている。
 従来の空間光変調器は位相変調範囲2πを有するように設定されている。これは、空間光変調器における位相変調範囲が2πであれば、位相パターンにおいて位相折りたたみを行うことで原理的には2π超の位相変調をも表現できるからである。また、空間光変調器が2π超の位相変調範囲を有することは、冗長であるだけでなく、入力階調値と位相変調量との間の関係における分解能の低下や応答速度の低下が起こるからである。
Joseph P. Kirk and Alan L. Jones, "Phase-only complex-value spatialfilter", Journal of the optical society of America, Vol.61, No.8, 1971
 ところで、本発明者は、ブレーズドグレーティングパターンと所定の位相変調分布を有する位相パターンとが重畳されてなる位相パターンを位相変調型の空間光変調器に呈示させて、この空間光変調器において画素ごとに位相変調される出力される光の強度を変調できることを利用して、様々な研究開発を行っている。本発明者は、その研究開発の際に、空間光変調器から出力される光のビーム断面における強度分布および位相分布が所望のものとは異なる現象が生じる場合があること、すなわち、空間光変調器から出力される光のビーム品質が低下する現象が生じる場合があることを見出した。そして、本発明者は、その現象が位相折りたたみに因るものであることを見出した。
 本発明は、上記問題点を解消する為になされたものであり、ブレーズドグレーティングパターンと所定の位相変調分布を有する位相パターンとが重畳されてなる位相パターンを位相変調型の空間光変調器に呈示させる技術において所望のビーム断面を有する光を得ることができる光制御装置および光制御方法を提供することを目的とする。
 本発明に係る光制御装置は、(1) 光を出力する光源と、(2) 2次元配列された複数の画素それぞれにおける位相変調が4π以上の範囲で可能であり、光源から出力された光を入力し、複数の画素それぞれにおいて光の位相を変調する位相パターンを呈示して、この位相パターンにより位相変調した後の光を出力する位相変調型の空間光変調器と、(3)光回折の為のブレーズドグレーティングパターンと所定の位相変調分布を有する位相パターンとが重畳されて位相変調範囲が2π以上である位相パターンを空間光変調器に呈示させ、ブレーズドグレーティングパターンを調整することにより空間光変調器における光回折効率を調整する制御部と、を備えることを特徴とする。
 本発明に係る光制御装置では、制御部は、特定指数のラゲールガウシアンモード光のビーム断面における強度分布に応じた光回折効率分布を有するブレーズドグレーティングパターンと、ラゲールガウシアンモード光のビーム断面における位相分布に応じた位相変調分布を有する位相パターンとが重畳された位相パターンを、空間光変調器に呈示させるのが好適である。
 また、本発明に係る光制御装置では、制御部は、ビーム断面において特定の強度分布および位相分布を有する光の該強度分布に応じた光回折効率分布を有するブレーズドグレーティングパターンと、位相分布に応じた位相変調分布を有する位相パターンとが重畳された位相パターンを、空間光変調器に呈示させるのが好適である。
 本発明に係る光制御方法は、(1) 光を出力する光源と、(2) 2次元配列された複数の画素それぞれにおける位相変調が4π以上の範囲で可能であり、光源から出力された光を入力し、複数の画素それぞれにおいて光の位相を変調する位相パターンを呈示して、この位相パターンにより位相変調した後の光を出力する位相変調型の空間光変調器と、を用い、 (3)光回折の為のブレーズドグレーティングパターンと所定の位相変調分布を有する位相パターンとが重畳されてなり位相変調範囲が2π以上である位相パターンを空間光変調器に呈示させ、ブレーズドグレーティングパターンを調整することにより空間光変調器における光回折効率を調整することを特徴とする。
 本発明に係る光制御方法は、特定指数のラゲールガウシアンモード光のビーム断面における強度分布に応じた光回折効率分布を有するブレーズドグレーティングパターンと、ラゲールガウシアンモード光のビーム断面における位相分布に応じた位相変調分布を有する位相パターンとが重畳された位相パターンを、空間光変調器に呈示させるのが好適である。
 また、本発明に係る光制御方法は、ビーム断面において特定の強度分布および位相分布を有する光の該強度分布に応じた光回折効率分布を有するブレーズドグレーティングパターンと、位相分布に応じた位相変調分布を有する位相パターンとが重畳された位相パターンを、空間光変調器に呈示させるのが好適である。
 本発明によれば、ブレーズドグレーティングパターンと所定の位相変調分布を有する位相パターンとが重畳されてなる位相パターンを位相変調型の空間光変調器に呈示させる技術において所望のビーム断面を有する光を得ることができる。
光制御装置1の構成図である。 ブレーズドグレーティングパターンを示す図である。 ブレーズドグレーティングパターンにおける位相変調分布の一例を示す図である。 実際の空間光変調器に呈示されたブレーズドグレーティングパターンにおけるk値と回折効率との関係を示すグラフである。 ブレーズドグレーティングパターンにおける位相変調分布の一例を示す図である。 ブレーズドグレーティングパターンにおける各画素の位相変調量の一例を示す図表である。 位相パターンにおける位相変調分布の一例を示す図である。 ブレーズドグレーティングパターン(図5,図6)と所定の位相変調分布を有する位相パターン(図7)とが重畳された位相パターンにおける位相変調分布を示す図である。 位相パターンφresult(図8)に対して位相折りたたみを行った後の位相パターンにおける位相変調分布を示す図である。 比較例の場合に空間光変調器から出力された光のビーム断面における強度分布の一例を示す図である。 LG1,3光のビーム断面における強度分布を示す図である。 LG1,3光のビーム断面における強度分布(図11)を得るためのブレーズドグレーティングパターンφgratingを示す図である。 LG1,3光のビーム断面における位相分布を得るための所望位相パターンφdesireを示す図である。 本実施形態により生成されたLG1,3光のビーム断面における強度分布を示す図である。 比較例により生成されたLG1,3光のビーム断面における強度分布を示す図である。 ビーム整形前の強度分布およびビーム整形後の強度分布の一例を示す図である。
 1…光制御装置、2…撮像装置、10…光源、20…プリズム、30…空間光変調器、31…駆動部、32…制御部、41…レンズ、42…アパーチャ、43…レンズ。
 以下、添付図面を参照して、本発明を実施するための最良の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 図1は、光制御装置1の構成図である。この図に示される光制御装置1は、光源10、プリズム20、空間光変調器30、駆動部31、制御部32、レンズ41、アパーチャ42およびレンズ43を備える。なお、この図には光制御装置1に加えて撮像装置2も示されている。
 本発明において用いられる位相変調型の空間光変調器は、反射型のものであってもよいし、透過型のものであってもよい。反射型の空間光変調器としては、LCOS(Liquid Crystal on Silicon)型、MEMS(Micro Electro Mechanical Systems)型および光アドレス型の何れであってもよい。また、透過型の空間光変調器としてはLCD(LiquidCrystal Display)等であってもよい。図1では、空間光変調器30として反射型のものが示されている。
 光源10は、空間光変調器30により位相変調されるべき光を出力するものであり、好適にはレーザ光源であり、フェムト秒レーザ光源やNd:YAGレーザ光源などのパルスレーザ光源であってもよいし、He-NeなどのCWレーザ光源であってもよい。光源10から出力された光は、スペイシャルフィルタを経た後にコリメートレンズによりコリメートされるのが好ましい。
 プリズム20は、第1反射面21および第2反射面22を有する。プリズム20の第1反射面21は、光源10から出力された光を入力して、その光を空間光変調器30へ反射させる。プリズム20の第2反射面22は、空間光変調器30から出力された光を入力して、その光をレンズ41へ反射させる。
 空間光変調器30は、位相変調型のものであって、2次元配列された複数の画素を有し、これら複数の画素それぞれにおける位相変調が4π以上の範囲で可能であり、複数の画素それぞれにおいて光の位相を変調する位相パターンを呈示することができる。空間光変調器30は、光源10から出力されプリズム20の第1反射面21で反射されて到達した光を入力し、この位相パターンにより位相変調した後の光をプリズム20の第2反射面22へ出力する。この空間光変調器30において呈示される位相パターンは、例えば数値計算により求められた計算機ホログラム(CGH: Computer Generated Hologram)などがある。
 駆動部31は、空間光変調器30の2次元配列された複数の画素それぞれにおける位相変調量を設定するものであり、その画素毎の位相変調量設定のための信号を空間光変調器30に与える。駆動部31は、空間光変調器30の2次元配列された複数の画素それぞれにおける位相変調量を設定することで、空間光変調器30に位相パターンを呈示させる。
 制御部32は、例えばコンピュータで構成され、駆動部31の動作を制御することで、駆動部31から空間光変調器30へ位相パターンを書き込ませる。すなわち、空間光変調器30に呈示させるべき位相パターンAを記憶し、或いは、その位相パターンAを作成して、その位相パターンAを駆動部31から空間光変調器30へ書き込ませる。
 この位相パターンAは、光回折の為のブレーズドグレーティングパターンと、所定の位相変調分布を有する位相パターンと、が重畳されてなる。この所定の位相変調分布を有する位相パターンは、光ビーム断面において所望の位相分布を実現するための成分を含み、また、光制御装置1における光学系の位相歪みを補正するための成分を更に含むのも好適である。また、この位相パターンAは、位相変調範囲が2π以上である。ブレーズドグレーティングパターンを調整することにより空間光変調器30における光回折効率を調整することができる。
 レンズ41は、空間光変調器30から出力されプリズム20の第2反射面22で反射された光を入力する。レンズ41とレンズ43とは4f光学系を構成していて、両者の間の焦点位置にアパーチャ42の開口が配置されている。このアパーチャは空間光変調器30によって回折した光のうち所望の次数の回折光のみを通過するように配置されている。
 撮像装置2は、光制御装置1のレンズ43から出力された光Bを受光し、その光Bのビーム断面における強度分布を取得する。撮像装置2は、光制御装置1から出力される光の品質を観察するためのものである。なお、加工などに用いる際には、レンズ43の後段に新たにレンズを配置し、その集光点位置に加工対象物を配置する。
 この光制御装置1の概略動作は以下のとおりである。制御部32により制御された駆動部31により、ブレーズドグレーティングパターンと位相パターンとが重畳されてなる位相パターンが空間光変調器30に呈示される。光源10から出力された光は、プリズム20の第1反射面21で反射されて、空間光変調器30に入力される。
 空間光変調器30に入力された光は、空間光変調器30に呈示された位相パターンのうちブレーズドグレーティングパターンにより回折されて出力される。その光回折の際の回折効率は、ブレーズドグレーティングパターンの形状によって異なり、また、空間光変調器30の入射面上の位置によって異なる場合がある。また、空間光変調器30から回折されて出力された光は、空間光変調器30に呈示された位相パターンのうち所定の位相変調分布を有する位相パターンにより位相変調されたものとなっている。
 空間光変調器30から出力された光は、プリズム20の第2反射面22で反射され、レンズ41,アパーチャ42およびレンズ43を経て、撮像装置2により受光されて光ビーム断面における強度分布が取得される。このとき、レンズ41,アパーチャ42およびレンズ43は、空間光変調器30から出力される光のうち所望の回折次数の回折光を選択的に通過させる構成とされている。したがって、レンズ43から撮像装置2へ出力される光Bは、所望の強度分布および位相分布を有する光となっている。
 次に、空間光変調器30に呈示される位相パターンについて詳細に説明する。この位相パターンは、光回折の為のブレーズドグレーティングパターンと、所定の位相変調分布を有する位相パターンと、が重畳されてなる。図2は、ブレーズドグレーティングパターンを示す図である。この図では、各画素の位相変調量(変調幅2π)が濃淡で示されている。このようなブレーズドグレーティングパターンが呈示された空間光変調器30に対して光が入力されると、その光は回折される。その光回折の際の回折効率は、ブレーズドグレーティングパターンの形状によって異なる。
 空間光変調器30の光入射面上の特定方向に沿ったN画素を1周期とするブレーズドグレーティングパターンφgratingは、下記(1)式で表される。ここで、nは、特定方向に沿った周期内の画素位置を表す。kは、0以上1以下の値をとり得る。したがって、ブレーズドグレーティングパターンφgratingの位相変調範囲は、2π以下である2kπである。
Figure JPOXMLDOC01-appb-M000001
 このブレーズドグレーティングパターンφgratingの理論的な回折効率I+1thは、下記(2)式で表され、k値によって異なる。kが値1であるときに、理論的な回折効率I+1thは最大値1となる。
Figure JPOXMLDOC01-appb-M000002
 したがって、空間光変調器30の光入射面においてk値が一様ではなく分布していれば、空間光変調器30の光入射面における光回折効率も分布したものとなる。図3は、ブレーズドグレーティングパターンφgratingにおける位相変調分布の一例を示す図である。この図において、横軸は画素位置を表す。この図に示される例のように、右に向うほどk値が大きい場合には、右に向うほど回折効率が高くなる。図4は、実際の空間光変調器に呈示されたブレーズドグレーティングパターンφgratingにおけるk値と回折効率との関係を示すグラフである。この図に示されるように、k値が大きいほど回折効率は高い。なお、回折角はk値に依存しない。
 空間光変調器30に呈示される位相パターンφresultは、上記のようなブレーズドグレーティングパターンφgratingと、位相パターンとしての所望位相パターンφdesireとが重畳されたものであって、下記(3)式で表される。或いは、空間光変調器30に呈示される位相パターンφresultは、上記のようなブレーズドグレーティングパターンφgratingと、位相パターンとしての所望位相パターンφdesireおよび歪み補正パターンφcorrectionとが重畳されたものであって、下記(4)式で表される。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 所望位相パターンφdesireは、光ビーム断面において所望の位相分布を実現するためのパターンであり、その位相変調範囲が2π以下である。また、歪み補正パターンφcorrectionは、光制御装置1における光学系の位相歪みを補正するためのパターンであり、一般に位相変調範囲が数π程度である。光制御装置1における光学系の位相歪みは、プリズム20の第1反射面21および第2反射面22、空間光変調器30ならびにレンズ41,43に存在し得る。このような位相パターンφresultが呈示された空間光変調器30から回折されて出力された光は、そのビーム断面において所望の強度分布および位相分布を有するものとなる。
 以下では、説明を簡便化するために、上記(3)式および(4)式を下記(5)式で表すことにする。この(5)式中の位相パターンφphaseは、(3)式中の所望位相パターンφdesireであり、或いは、(4)式中の所望位相パターンφdesireと歪み補正パターンφcorrectionとの和である。
Figure JPOXMLDOC01-appb-M000005
 本実施形態においては空間光変調器30に呈示される位相パターンφresultは、位相変調範囲が2π以上である。この位相パターンφresultに含まれるブレーズドグレーティングパターンφgratingの一例として、図5および図6に示されるものを考える。図5は、ブレーズドグレーティングパターンにおける位相変調分布の一例を示す図である。この図において、横軸は画素位置を表す。また、図6は、ブレーズドグレーティングパターンにおける各画素の位相変調量の一例を示す図表である。このブレーズドグレーティングパターンφgratingでは、k値が0.5であり、N値が8であり、隣接する2画素の間の位相変調量の差が0.125πである。図5では、ブレーズドグレーティングパターンφgratingの略6周期分が示されている。
 また、位相パターンφresultに含まれる位相パターンφphaseの一例として、図7に示されるものを考える。図7は、位相パターンにおける位相変調分布の一例を示す図である。この図において、横軸は画素位置を表す。この位相パターンφphaseは、位相変調量が0である部分と、位相変調量が1.25πである部分とを含む。
 図8は、ブレーズドグレーティングパターンφgrating(図5,図6)と位相パターンφphase(図7)とが重畳された位相パターンφresultにおける位相変調分布を示す図である。この図において、横軸は画素位置を表す。この図に示される位相パターンφresultでは、位相変調範囲が2π以上となっている。
 図9は、位相パターンφresult(図8)に対して位相折りたたみを行った後の位相パターンにおける位相変調分布を示す図である。この図においても、横軸は画素位置を表す。位相折りたたみ後の位相パターン(図9)における位相変調分布では、位相折りたたみ前の位相パターンφresult(図8)のうち位相変調量が2πを超える画素について該位相変調量から2πが減じられたものとなっていて、各画素における位相変調量が0から2πまでの範囲にある。
 位相変調範囲が4π以上である空間光変調器30が用いられる本実施形態の場合、その空間光変調器30には位相折りたたみ前の位相パターン(図8)が呈示される。これに対して、位相変調範囲が2πである空間光変調器が用いられる比較例の場合、その空間光変調器には位相折りたたみ後の位相パターン(図9)が呈示される。
 位相折りたたみ前の位相パターン(図8)と位相折りたたみ後の位相パターン(図9)とは、原理的には互いに同等の効果を有する。しかし、実際の空間光変調器においては、隣接する2画素の間で位相変調量の差が大きい部分には、折りたたみ領域(flyback region)と呼ばれる位相がなまって正しく表示されない領域が存在する。すなわち、位相折りたたみ前の位相パターン(図8)と比べて、位相折りたたみ後の位相パターン(図9)では、図中で矢印により示される位置に折りたたみ領域が存在することになり、これにより所望の強度分布および位相分布を有する光を得ることができない。
 位相変調範囲が2πである空間光変調器に位相折りたたみ後の位相パターン(図9)が呈示される比較例の場合に、位相折りたたみ前には隣接する2画素の間で位相変調量の差が僅かであったものが、位相折りたたみ後には該2画素の間の位相変調量の差が略2πになる。このような位相折りたたみ後の位相パターンを現実の空間光変調器に呈示させると、その空間光変調器において隣接2画素間で位相変調量の差が大きい部分で、その位相変調量が急峻に変化しきれず、隣接2画素間でクロストークが生じる。このようなクロストークが存在する部分(折りたたみ領域)は、隣接2画素間で位相変調量の略2πの段差があり且つ折りたたみ領域がブレーズドグレーティングパターンの周期構造内に存在する場合において特に顕著な影響を及ぼすと考えられる。
 空間光変調器に呈示される位相パターンにおける位相変調量変化が比較的滑らかな場合には、折りたたみ領域が少なく、空間光変調器から出力される光のビーム断面における強度分布および位相分布に対して折りたたみ領域が与える影響はおおむね無視できる。
 図10は、比較例の別の一例として空間光変調器から出力された光のビーム断面における強度分布の一例を示す図である。ここで空間光変調器に呈示される位相パターンは、ブレーズドグレーティングパターンφgratingと所望位相パターンφdesireとが重畳されたもので、空間光変調器から出力される光のビーム断面における強度分布が均一になることを意図したものである。意図した光のビーム断面における強度分布は、図中の黒い領域が全面に亘る筈である。しかし、実際に得られた光のビーム断面における強度分布は、上記の意図に反して、強度が強い領域(図中の白い領域)が存在する。これは、ブレーズドグレーティングパターンφgratingが多くの折りたたみ領域を有する上に、これに所望位相パターンφdesireおよび歪み補正パターンφcorrectionが重畳されてなる位相パターンφresultが更に多くの折りたたみ領域を有するためである。
 比較例において、出力光のビーム断面において実際に不具合が見られた部分は、位相パターンで位相変調量が急峻に変化している場所と一致している。現実の空間光変調器では出力光の品質低下が無視できない問題となる。このように、比較例では、折りたたみ領域の影響により、所望の強度分布および位相分布を有する光を得ることができない。
 これに対して、本実施形態では、各画素で位相変調範囲が4π以上である空間光変調器30に、位相変調範囲が2πを超える位相パターン(例えば図8)を呈示する。したがって、位相折りたたみを行う必要がなく、ビーム断面において所望の強度分布および位相分布を有する光を得ることができる。
 次に、本実施形態に係る光制御装置1を用いてラゲールガウシアンモード光を生成する場合について説明する。ラゲールガウシアンモード光は、ビーム断面において動径指数および偏角指数により特定される強度分布および位相分布を有している。以下では、動径指数が1であって偏角指数が3であるラゲールガウシアンモード光(以下「LG1,3光」と記す。)を生成する場合について説明する。
 図11は、LG1,3光のビーム断面における強度分布を示す図である。ビーム断面における強度分布が同図に示されるような分布となるように、ブレーズドグレーティングパターンφgratingが設定される。図12は、LG1,3光のビーム断面における強度分布(図11)を得るためのブレーズドグレーティングパターンφgratingを示す図である。また、図13は、LG1,3光のビーム断面における位相分布を得るための所望位相パターンφdesireを示す図である。図12および図13それぞれにおいて、各画素の位相変調量が濃淡で示されている。
 空間光変調器30によりLG1,3光を生成するための位相パターンφresultは、上記のブレーズドグレーティングパターンφgratingと所望位相パターンφdesireとが重畳され、さらに歪み補正パターンφcorrectionが重畳されたものである。この位相パターンφresultが空間光変調器30に呈示される。この位相パターンφresultは通常は2πを超える位相変調範囲となっている。
 本実施形態では、位相変調範囲が4π以上である空間光変調器30が用いられるので、位相パターンφresultに対して位相折りたたみを行う必要がなく、所望の強度分布および位相分布を有するLG1,3光を得ることができる。これに対して、比較例では、位相変調範囲が2πである空間光変調器が用いられるので、その空間光変調器には位相折りたたみ後の位相パターンが呈示され、それ故、所望の強度分布および位相分布を有するLG1,3光を得ることができない。
 図14は、本実施形態により生成されたLG1,3光のビーム断面における強度分布を示す図である。また、図15は、比較例により生成されたLG1,3光のビーム断面における強度分布を示す図である。両者を対比して判るように、比較例により生成されたLG1,3光と比較して、本実施形態により生成されたLG1,3光は、所望のものに近い強度分布を有している。
 このように本実施形態に係る光制御装置1により生成されるラゲールガウシアンモード光は、ビーム断面において位相分布だけでなく強度分布も所望のものに近いものであり、モード純度が高いものとなる。したがって、このラゲールガウシアンモード光は、光ピンセットや量子演算において好適に利用され得る。
 次に、本実施形態に係る光制御装置1を用いたビーム整形について説明する。ビーム整形は、ビーム断面における強度分布が不均一である入力光を、ビーム断面における強度分布が所望のものである出力光に変換する技術である。図16は、ビーム整形前の強度分布およびビーム整形後の強度分布の一例を示す図である。実線はビーム整形前の強度分布を示し、破線はビーム整形後の強度分布を示す。ビーム整形前の強度分布(実線)は中心に近いほど強度が強いものとし、ビーム整形後の強度分布(破線)は均一であるとする。
 このビーム整形のために用いられるブレーズドグレーティングパターンφgratingは、ビーム断面におけるビーム整形前の強度分布とビーム整形後の強度分布との比に応じた回折効率分布を有するようk値の分布が設定される。また、空間光変調器30に呈示される位相パターンφresultは、このブレーズドグレーティングパターンφgratingに所望位相パターンφdesireおよび歪み補正パターンφcorrectionが重畳されたものとされる。この位相パターンφresultにおける位相変調範囲が2πを超える場合がある。
 本実施形態では、位相変調範囲が4π以上である空間光変調器30が用いられるので、位相パターンφresultに対して位相折りたたみを行う必要がなく、所望の強度分布および位相分布を有するビーム整形後の光を得ることができる。これに対して、比較例では、位相変調範囲が2πである空間光変調器が用いられるので、その空間光変調器には位相折りたたみ後の位相パターンが呈示され、それ故、所望の強度分布および位相分布を有するビーム整形後の光を得ることができない。
 このように本実施形態に係る光制御装置1によりビーム整形することにより、ビーム断面における強度分布が不均一である入力光を、ビーム断面における強度分布が所望のものである出力光に変換することができる。例えば、ガウシアン分布のビーム光を、トップフラットと呼ばれる均一分布のビーム光に整形することができる。このようなビーム整形技術は、加工用途や顕微鏡用の照明などに有用である。
 本発明は、ブレーズドグレーティングパターンと所定の位相変調分布を有する位相パターンとが重畳されてなる位相パターンを位相変調型の空間光変調器に呈示させる技術において所望のビーム断面を有する光を得ることができる光制御装置を提供する。

Claims (6)

  1.  光を出力する光源と、
     2次元配列された複数の画素それぞれにおける位相変調が4π以上の範囲で可能であり、前記光源から出力された光を入力し、前記複数の画素それぞれにおいて光の位相を変調する位相パターンを呈示して、この位相パターンにより位相変調した後の光を出力する位相変調型の空間光変調器と、
     光回折の為のブレーズドグレーティングパターンと所定の位相変調分布を有する位相パターンとが重畳されてなり位相変調範囲が2π以上である位相パターンを前記空間光変調器に呈示させ、前記ブレーズドグレーティングパターンを調整することにより前記空間光変調器における光回折効率を調整する制御部と、
     を備えることを特徴とする光制御装置。
  2.  前記制御部が、特定指数のラゲールガウシアンモード光のビーム断面における強度分布に応じた光回折効率分布を有する前記ブレーズドグレーティングパターンと、前記ラゲールガウシアンモード光のビーム断面における位相分布に応じた位相変調分布を有する前記位相パターンとが重畳された位相パターンを、前記空間光変調器に呈示させる、
     ことを特徴とする請求項1に記載の光制御装置。
  3.  前記制御部が、ビーム断面において特定の強度分布および位相分布を有する光の該強度分布に応じた光回折効率分布を有する前記ブレーズドグレーティングパターンと、前記位相分布に応じた位相変調分布を有する前記位相パターンとが重畳された位相パターンを、前記空間光変調器に呈示させる、
     ことを特徴とする請求項1に記載の光制御装置。
  4.  光を出力する光源と、
     2次元配列された複数の画素それぞれにおける位相変調が4π以上の範囲で可能であり、前記光源から出力された光を入力し、前記複数の画素それぞれにおいて光の位相を変調する位相パターン呈示して、この位相パターンにより位相変調した後の光を出力する位相変調型の空間光変調器と、
     を用い、
     光回折の為のブレーズドグレーティングパターンと所定の位相変調分布を有する位相パターンとが重畳されてなり位相変調範囲が2π以上である位相パターンを前記空間光変調器に呈示させ、前記ブレーズドグレーティングパターンを調整することにより前記空間光変調器における光回折効率を調整する、
     ことを特徴とする光制御方法。
  5.  特定指数のラゲールガウシアンモード光のビーム断面における強度分布に応じた光回折効率分布を有する前記ブレーズドグレーティングパターンと、前記ラゲールガウシアンモード光のビーム断面における位相分布に応じた位相変調分布を有する前記位相パターンとが重畳された位相パターンを、前記空間光変調器に呈示させる、ことを特徴とする請求項4に記載の光制御方法。
  6.  ビーム断面において特定の強度分布および位相分布を有する光の該強度分布に応じた光回折効率分布を有する前記ブレーズドグレーティングパターンと、前記位相分布に応じた位相変調分布を有する前記位相パターンとが重畳された位相パターンを、前記空間光変調器に呈示させる、ことを特徴とする請求項4に記載の光制御方法。
PCT/JP2009/071439 2008-12-25 2009-12-24 光制御装置および光制御方法 WO2010074148A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES09834946.7T ES2608465T3 (es) 2008-12-25 2009-12-24 Dispositivo de control de luz y procedimiento de control de luz
CN200980152900.5A CN102265208B (zh) 2008-12-25 2009-12-24 光控制装置以及光控制方法
US13/141,104 US8441709B2 (en) 2008-12-25 2009-12-24 Light control device and light control method
EP09834946.7A EP2381295B1 (en) 2008-12-25 2009-12-24 Light control device and light control method
US13/871,396 US9001411B2 (en) 2008-12-25 2013-04-26 Light control device and light control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008330343A JP5599563B2 (ja) 2008-12-25 2008-12-25 光制御装置および光制御方法
JP2008-330343 2008-12-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/141,104 A-371-Of-International US8441709B2 (en) 2008-12-25 2009-12-24 Light control device and light control method
US13/871,396 Continuation US9001411B2 (en) 2008-12-25 2013-04-26 Light control device and light control method

Publications (1)

Publication Number Publication Date
WO2010074148A1 true WO2010074148A1 (ja) 2010-07-01

Family

ID=42287755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071439 WO2010074148A1 (ja) 2008-12-25 2009-12-24 光制御装置および光制御方法

Country Status (7)

Country Link
US (2) US8441709B2 (ja)
EP (1) EP2381295B1 (ja)
JP (1) JP5599563B2 (ja)
KR (1) KR101577096B1 (ja)
CN (1) CN102265208B (ja)
ES (1) ES2608465T3 (ja)
WO (1) WO2010074148A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103917914A (zh) * 2011-10-26 2014-07-09 浜松光子学株式会社 光调制控制方法、控制程序、控制装置以及激光照射装置
CN103917914B (zh) * 2011-10-26 2016-11-30 浜松光子学株式会社 光调制控制方法、控制程序、控制装置以及激光照射装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8749463B2 (en) * 2007-01-19 2014-06-10 Hamamatsu Photonics K.K. Phase-modulating apparatus
JP5802109B2 (ja) * 2011-10-26 2015-10-28 浜松ホトニクス株式会社 光変調制御方法、制御プログラム、制御装置、及びレーザ光照射装置
JP6000554B2 (ja) * 2012-01-24 2016-09-28 オリンパス株式会社 顕微鏡システム
CN102896421B (zh) * 2012-07-30 2015-12-02 沈明亚 采用lcos的激光微加工***及其加工方法
KR102128642B1 (ko) * 2013-06-06 2020-06-30 하마마츠 포토닉스 가부시키가이샤 보상 광학 시스템의 조정 방법, 보상 광학 시스템, 및 보상 광학 시스템용 프로그램을 기억하는 기록 매체
US9927608B2 (en) 2013-06-06 2018-03-27 Hamamatsu Photonics K.K. Correspondence relation specifying method for adaptive optics system, wavefront distortion compensation method, adaptive optics system, and storage medium storing program for adaptive optics system
JP6630120B2 (ja) * 2015-11-06 2020-01-15 浜松ホトニクス株式会社 画像取得装置、画像取得方法、及び空間光変調ユニット

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000010058A (ja) * 1998-06-18 2000-01-14 Hamamatsu Photonics Kk 空間光変調装置
JP2006113185A (ja) * 2004-10-13 2006-04-27 Ricoh Co Ltd レーザ加工装置
JP2008176150A (ja) * 2007-01-19 2008-07-31 Hamamatsu Photonics Kk 反射型位相変装置及び反射型位相変調装置の設定方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04163529A (ja) * 1990-10-29 1992-06-09 Seiko Epson Corp 光学的位相変調装置
KR100688737B1 (ko) * 2004-10-01 2007-02-28 삼성전기주식회사 가변형 블레이즈 회절격자 광변조기
WO2006072581A1 (en) * 2005-01-10 2006-07-13 Medizinische Universität Innsbruck Spiral phase contrast imaging in microscopy
US7633671B2 (en) * 2005-04-08 2009-12-15 The Boeing Company High speed beam steering
US7283291B2 (en) * 2005-04-08 2007-10-16 The Boeing Company High speed beam steering/field of view adjustment
US7170669B1 (en) * 2005-09-28 2007-01-30 Anvik Corporation Spatial light modulator array with heat minimization and image enhancement features

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000010058A (ja) * 1998-06-18 2000-01-14 Hamamatsu Photonics Kk 空間光変調装置
JP2006113185A (ja) * 2004-10-13 2006-04-27 Ricoh Co Ltd レーザ加工装置
JP2008176150A (ja) * 2007-01-19 2008-07-31 Hamamatsu Photonics Kk 反射型位相変装置及び反射型位相変調装置の設定方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOSEPH P. KIRK, ALAN L. JONES: "Phase-only complex-valued spatial filter", JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, vol. 61, no. 8, 1971, XP007908513, DOI: doi:10.1364/JOSA.61.001023
See also references of EP2381295A4 *
TAKASHI INOUE ET AL.: "Hamen Seigyo ni Tekishita Kukan Hikari Henchoki to Sore o Mochiita Laguerre-Gaussian Beam Seisei", OPTICS & PHOTONICS JAPAN KOEN YOKOSHU, vol. 2008, 4 November 2008 (2008-11-04), pages 416 - 417, XP008167841 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103917914A (zh) * 2011-10-26 2014-07-09 浜松光子学株式会社 光调制控制方法、控制程序、控制装置以及激光照射装置
CN103917914B (zh) * 2011-10-26 2016-11-30 浜松光子学株式会社 光调制控制方法、控制程序、控制装置以及激光照射装置

Also Published As

Publication number Publication date
CN102265208A (zh) 2011-11-30
US20110273759A1 (en) 2011-11-10
EP2381295A4 (en) 2015-05-20
JP5599563B2 (ja) 2014-10-01
CN102265208B (zh) 2014-03-12
US9001411B2 (en) 2015-04-07
EP2381295B1 (en) 2016-10-12
US8441709B2 (en) 2013-05-14
US20130242373A1 (en) 2013-09-19
JP2010152094A (ja) 2010-07-08
KR20110104941A (ko) 2011-09-23
EP2381295A1 (en) 2011-10-26
KR101577096B1 (ko) 2015-12-11
ES2608465T3 (es) 2017-04-11

Similar Documents

Publication Publication Date Title
WO2010074149A1 (ja) 光制御装置および光制御方法
JP5599563B2 (ja) 光制御装置および光制御方法
JP4664031B2 (ja) 光パターン形成方法および装置、ならびに光ピンセット装置
US9488831B2 (en) Aberration-correcting method, laser processing method using said aberration-correcting method, laser irradiation method using said aberration-correcting method, aberration-correcting device and aberration-correcting program
WO2014017289A1 (ja) 光変調方法、光変調プログラム、光変調装置、及び光照射装置
US20180161923A1 (en) Light modulation control method, control program, control device and laser beam irradiation device
US20150226950A1 (en) Stimulated emission depletion microscopy
US8867113B2 (en) Laser processing device and laser processing method
JPH11504129A (ja) 位相コントラスト画像形成
KR100919537B1 (ko) 스펙클을 저감하기 위한 복수의 광원을 구비하는 회절형광변조기를 이용한 디스플레이 장치
KR20150072151A (ko) Slm을 이용하여 홀로그램 엘리먼트 이미지들을 기록하는 홀로그램 기록 장치 및 방법
US20150049376A1 (en) Beam-shaping device
JP2010058128A (ja) レーザ光照射装置およびレーザ光照射方法
Egge et al. Sinusoidal rotating grating for speckle reduction in laser projectors: feasibility study
EP1630588B1 (en) Method of forming an optical pattern, optical pattern formation system, and optical tweezer
JPWO2009057210A1 (ja) ホログラム記録装置
Aguilar et al. Super-resolution with a complex-amplitude pupil mask encoded in the first diffraction order of a phase grating
WO2016174262A1 (en) 3d light projection device
KR20030082775A (ko) 멀티 코팅 미러를 이용한 홀로그래픽 디지털 저장 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980152900.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117015532

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2009834946

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009834946

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13141104

Country of ref document: US