WO2010073867A1 - Railroad vehicle drive unit - Google Patents

Railroad vehicle drive unit Download PDF

Info

Publication number
WO2010073867A1
WO2010073867A1 PCT/JP2009/069911 JP2009069911W WO2010073867A1 WO 2010073867 A1 WO2010073867 A1 WO 2010073867A1 JP 2009069911 W JP2009069911 W JP 2009069911W WO 2010073867 A1 WO2010073867 A1 WO 2010073867A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
drive unit
railway vehicle
vehicle drive
oil supply
Prior art date
Application number
PCT/JP2009/069911
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 三木
幸浩 片岡
真裕 山田
貴弥 安達
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2010073867A1 publication Critical patent/WO2010073867A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C9/00Locomotives or motor railcars characterised by the type of transmission system used; Transmission systems specially adapted for locomotives or motor railcars
    • B61C9/38Transmission systems in or for locomotives or motor railcars with electric motor propulsion
    • B61C9/46Transmission systems in or for locomotives or motor railcars with electric motor propulsion with motors forming parts of wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • F16H57/043Guidance of lubricant within rotary parts, e.g. axial channels or radial openings in shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • F16H57/0482Gearings with gears having orbital motion

Definitions

  • the present invention relates to a railway vehicle drive unit, and more particularly to a railway vehicle drive unit capable of independently driving left and right wheels.
  • a conventional railcar drive unit is disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-230508 (Patent Document 1).
  • the railway vehicle drive unit disclosed in the publication includes a motor and a speed reducer that decelerates the rotation of the motor and transmits it to the wheels.
  • This railway vehicle drive unit employs a cycloid reducer that is small in size and has a high reduction ratio in order to generate torque necessary for the operation of the railway vehicle and to obtain a large cabin space.
  • a cycloid reducer that is small in size and has a high reduction ratio in order to generate torque necessary for the operation of the railway vehicle and to obtain a large cabin space.
  • an input shaft that rotates integrally with the motor
  • a curved plate that is rotatably supported by an eccentric portion provided on the input shaft
  • an outer periphery of the curved plate that engages with each other to cause the curved plate to rotate. It comprises an outer pin and an inner pin that converts the rotational motion of the curved plate into rotational motion and transmits it to the wheel.
  • an object of the present invention is to provide a railway vehicle drive unit that reduces torque loss and improves lubrication performance.
  • the railway vehicle drive unit is a drive unit that rotationally drives the wheels of the railway vehicle.
  • a reduction gear housing that is held on the inner diameter surface of the wheel and rotates integrally with the wheel, an input side rotation member connected to a drive source, and a rotation of the input side rotation member that decelerates rotation to the reduction gear housing
  • a speed reduction mechanism for transmission, a fixing member disposed inside the speed reducer housing and connected and fixed to the vehicle body, and a lubricating oil circulation mechanism for lubricating the lubricating oil in the drive unit are provided.
  • the lubricating oil circulation mechanism includes an axial oil passage extending in the axial direction inside the input-side rotating member, a lubricating oil supply port extending from the axial oil passage toward the outer diameter surface of the input-side rotating member, and a fixed member And a circulating oil passage for connecting the lubricating oil outlet and the shaft center oil passage and returning the lubricating oil discharged from the lubricant oil outlet to the shaft center oil passage.
  • the railcar drive unit having the above configuration eliminates the shortage of lubricating oil around the input side rotating member due to uneven distribution of the lubricating oil radially outward because the lubricating oil is continuously supplied from the input side rotating member to the speed reduction mechanism. can do. Further, since the lubricating oil biased radially outward is discharged from the lubricating oil discharge port, an increase in torque loss due to an increase in the amount of lubricating oil in the speed reduction mechanism can be prevented.
  • the input side rotating member has an eccentric portion.
  • the speed reduction mechanism is held by the eccentric part so as to be relatively rotatable, and a revolving member that performs a revolving motion around the rotation axis of the input side rotating member and a revolving motion of the revolving member while allowing the revolving motion to be prevented.
  • a rotation restricting member and an outer peripheral engagement member fixed to the reduction gear housing and engaged with the outer periphery of the revolution member to decelerate and rotate the reduction gear housing with respect to the input side rotation member.
  • the lubricating oil supply port is provided in the eccentric part.
  • lubricating oil can be positively supplied between an eccentric part and a revolution member, a revolution member can rotate smoothly.
  • the lubricating oil supply port is provided at a position 180 ° different from the maximum eccentric position of the eccentric portion.
  • a lubricating oil supply port can be provided avoiding the part which requires a heavy load.
  • peeling or the like starting from the lubricating oil supply port can be prevented appropriately.
  • the revolution member has a through hole
  • the drive unit is an inner ring member that is fitted to the outer diameter surface of the eccentric portion and has an inner raceway surface formed radially outward, and the inner diameter surface of the through hole of the revolution member.
  • the outer raceway surface formed on the inner raceway surface, a plurality of rollers disposed between the inner raceway surface and the outer raceway surface, and a cage that holds the spacing between adjacent rollers, and the revolving member is rotatable with respect to the eccentric portion.
  • the bearing has an eccentric bearing to be supported, and the lubricating oil supply port is provided on the raceway surface of the inner ring member.
  • the revolution member has a through hole
  • the drive unit is an inner ring member that is fitted to the outer diameter surface of the eccentric portion and has an inner raceway surface formed radially outward, and the inner diameter surface of the through hole of the revolution member.
  • the outer raceway surface formed on the inner raceway surface, a plurality of rollers disposed between the inner raceway surface and the outer raceway surface, and a cage that holds the spacing between adjacent rollers, and the revolving member is rotatable with respect to the eccentric portion.
  • the drive unit has a main shaft bearing that rotatably supports the input side rotating member with respect to the fixed member, and the lubricating oil supply port is provided in the vicinity of the main shaft bearing in order to supply the lubricating oil to the main shaft bearing. Is provided. Thereby, lubricating oil can be actively supplied to a main shaft bearing, and the temperature rise of a main shaft bearing can be prevented appropriately.
  • the lubricating oil supply ports are provided at a plurality of locations on the input side rotating member so as to be directed in different directions. Thereby, lubricating oil can be supplied uniformly.
  • the axial center oil passage supplies the lubricating oil in the axial direction from the circulating oil passage side
  • the lubricating oil supply ports are provided at a plurality of locations on the input side rotating member so that the diameter increases in order from the circulating oil passage side. It has been. Thereby, lubricating oil can be supplied uniformly in an axial direction.
  • the axial center oil passage supplies lubricating oil in the axial direction from the circulating oil passage side
  • the lubricating oil supply port has a first position close to the circulating oil passage and a second position far from the circulating oil passage.
  • the number of lubricating oil supply ports provided at the second position is greater than the number of lubricating oil supply ports provided at the first position.
  • the drive unit includes an inner ring fixed to the outer diameter surface of the fixing member, an outer ring fixed to the inner diameter surface of the speed reducer housing, and a plurality of tapered rollers disposed between the inner ring and the outer ring, and the speed reducer
  • An axle bearing that rotatably supports the housing with respect to the fixed member, and a sealing member that seals the inside of the speed reducer housing at a position facing the large-diameter end of the tapered roller between the speed reducer housing and the fixed member; It has further.
  • the lubricating oil discharge port is provided between the axle bearing and the sealing member.
  • Lubricating oil is discharged from the small-diameter end of the tapered roller through the inside of the bearing to the large-diameter end. Therefore, the lubricating oil can be smoothly discharged by providing the lubricating oil discharge port in the space between the axle bearing and the sealing member.
  • the lubricating oil discharge port is disposed in a lower region of the fixing member. Accordingly, the lubricating oil can be discharged using the force of gravity, so that the lubricating oil is smoothly circulated.
  • the lubricating oil circulation mechanism further includes a pump for forcibly circulating the lubricating oil.
  • circulation of lubricating oil becomes still smoother.
  • the lubricating oil circulation mechanism further includes a lubricating oil reservoir that temporarily stores the lubricating oil discharged from the lubricating oil discharge port.
  • a lubricating oil reservoir that temporarily stores the lubricating oil discharged from the lubricating oil discharge port.
  • the lubricating oil circulation mechanism further includes a filtering device that filters the lubricating oil stored in the lubricating oil storage section.
  • a filtering device that filters the lubricating oil stored in the lubricating oil storage section.
  • the lubricating oil can be stably supplied to the entire speed reducing mechanism by circulating the lubricating oil to the speed reducing mechanism using the rotational force of the input side rotating member or the like.
  • a railway vehicle drive unit having excellent durability and high reliability can be obtained.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. It is an enlarged view of the eccentric part periphery of FIG. It is an enlarged view of the periphery of both-ends internal pins. It is an enlarged view around a cantilever inner pin. It is sectional drawing at the time of cut
  • FIGS. 1 to 5 a railway vehicle wheel drive unit 10 including a railway vehicle drive unit 12 and a railway vehicle drive unit 12 according to an embodiment of the present invention will be described.
  • 1 is a schematic cross-sectional view of the wheel drive device 10 for a railway vehicle
  • FIG. 2 is a cross-sectional view taken along II-II in FIG. 1
  • FIG. 3 is an enlarged view around the eccentric portions 16a and 16b
  • FIG. FIG. 5 is an enlarged view of the inner pin 20.
  • a railway vehicle wheel drive device 10 is held on a railway vehicle wheel 11 (hereinafter referred to as “wheel 11”) and an inner diameter surface of the wheel 11 to drive a drive source (not shown). It is comprised with the drive unit 12 (henceforth “the rail vehicle drive unit 12") which decelerates and transmits to the wheel 11, and is arrange
  • the railway vehicle drive unit 12 includes a speed reducer housing 13, an input side rotation member 14, a speed reduction mechanism 15, first and second carriers 24 and 25 as fixed members, and first and second axle bearings 26. , 27 and a lubricating oil circulation mechanism that lubricates the lubricating oil in the railway vehicle drive unit 12.
  • the reduction gear housing 13 is held on the inner diameter surface of the wheel 11 and holds the reduction mechanism 15 inside.
  • the speed reduction mechanism 15 includes an eccentric member 16, curved plates 17 and 18 as revolution members, a plurality of inner pins 19 and 20 as rotation restricting members, a plurality of outer pins 21 as outer peripheral engagement members, and the like. It is comprised by the member which accompanies, The rotation of the input side rotation member 14 is decelerated, and it transmits to the reduction gear housing 13.
  • first and second axle bearings 26 and 27 are arranged between the inner diameter surface of the reduction gear housing 13 and the outer diameter surfaces of the first and second carriers 24 and 25.
  • the reduction gear housing 13 is rotatable with respect to the first and second carriers 24 and 25 and also functions as an output side rotation member (axle) that rotates integrally with the wheel 11.
  • the first axle bearing 26 is disposed between an inner ring 26a fixed to the outer diameter surface of the first carrier 24, an outer ring 26b fixed to the inner diameter surface of the reduction gear housing 13, and the inner ring 26a and the outer ring 26b.
  • This is a tapered roller bearing including a plurality of tapered rollers 26c and a retainer 26d that holds a distance between adjacent tapered rollers 26c. Since the 2nd rolling bearing 27 is also the same structure, description is abbreviate
  • the first axle bearing 26 has one axial direction of the fitting position of the wheel 11 (more specifically, “the fitting width center of the wheel 11”, which indicates the position indicated by the one-dot chain line 1 in FIG. 1).
  • the second axle bearing 27 is connected to the reduction gear housing 13 on the other side (left side in FIG. 2) in the axial direction of the fitting position of the wheel 11, respectively.
  • 25 are rotatably supported.
  • the distance (offset) from the fitting width center of the wheel 11 of each of the first and second axle bearings 26 and 27 is set equal.
  • first and second axle bearings 26, 27 are arranged with their small diameter side ends facing each other (rear combination). Thereby, the moment load which acts on the wheel 11 can be supported appropriately.
  • sealing members 28 and 29 for enclosing lubricating oil inside the reduction gear housing 13 are provided at both ends in the axial direction of the reduction gear housing 13.
  • the sealing members 28 and 29 have lip portions that are in sliding contact with the outer diameter surfaces of the first and second carriers 24 and 25, are fixed to the inner diameter surface of the speed reducer housing 13, and rotate integrally with the speed reducer housing 13. To do.
  • the input side rotation member 14 is connected to a drive source (for example, a motor) and rotates as the drive source rotates. Further, both sides of the curved plates 17 and 18 are supported at both ends by rolling bearings 30a and 30b, and are held rotatably with respect to the first and second carriers 24 and 25. That is, the rolling bearings 30a and 30b are spindle bearings that support the input-side rotating member 14 so as to be rotatable with respect to the first and second carriers 24 and 25. In this embodiment, cylindrical roller bearings are employed as the rolling bearings 30a and 30b. Further, on the further outer side (the right side in FIG. 1) of the rolling bearing 30 a, a sealing member 31 that encloses lubricating oil is disposed inside the reduction gear housing 13.
  • a drive source for example, a motor
  • the eccentric member 16 has first and second eccentric portions 16 a and 16 b and is fitted and fixed to the input-side rotating member 14.
  • the first and second eccentric portions 16a and 16b are arranged with different phases, i.e., 180 [deg.] Phases, that cancel out the centrifugal force due to the eccentric motion. That is, the first and second eccentric portions 16a and 16b also function as a balance adjustment mechanism that absorbs a non-uniform load caused by the eccentric motion.
  • the curved plate 17 is held by the first eccentric portion 16a by a rolling bearing 32 so as to be relatively rotatable. That is, the rolling bearing 32 is an eccentric bearing that supports the curved plate 17 rotatably with respect to the first eccentric portion 16a. And the revolving motion centering on the rotating shaft center of the input side rotation member 14 is performed.
  • the curved plate 17 includes first and second through holes 17 a and 17 b that penetrate in the thickness direction, and a plurality of waveforms 17 c that are constituted by trochoidal curves such as epitrochoid on the outer periphery.
  • the oil passage 17d extends in the radial direction inside, and the lubricating oil holding space 17e that temporarily holds the lubricating oil in the middle of the oil passage 17d.
  • the first through hole 17a is formed at the center of the curved plate 17, and receives the first eccentric portion 16a and the rolling bearing 32.
  • a plurality of second through holes 17b are provided at equal intervals on the circumference centered on the rotation axis of the curved plate 17, and the inner pins 19 held by the first and second carriers 24, 25 are provided. , 20.
  • the waveform 17 c engages with the outer pin 21 held by the speed reducer housing 13 and transmits the rotation of the curved plate 17 to the speed reducer housing 13.
  • the curved plate 18 has the same configuration, and is rotatably held by the second eccentric portion 16b by the rolling bearing 33.
  • the oil passage 17 d extends from the first through hole 17 a toward the outer peripheral surface of the curved plate 17.
  • the position of the oil passage 17d is not particularly limited, it is desirable to provide the oil passage 17d so as to pass through the second through hole 17b as shown in FIG. Thereby, lubricating oil can be positively supplied to the contact part between the curved plate 17 and the inner pins 19 and 20. Further, it is desirable that the radially outer end of the oil passage 17d be formed in a valley portion of the waveform 17c. This is to prevent damage or the like when the curved plate 17 and the outer pin 21 are engaged.
  • the lubricating oil holding space 17e branched from the oil passage 17d the lubricating oil is held in the curved plate 17 when a sufficient amount of lubricating oil is supplied, and the supply amount of the lubricating oil decreases.
  • the lubricating oil retained in the lubricating oil retaining space 17e can be discharged to the oil passage 17d. Thereby, lubricating oil can be supplied more stably.
  • the rolling bearing 32 is fitted to the outer diameter surface of the eccentric portion 16a and has an inner race member 32a having an inner raceway surface on the outer diameter surface, and an outer raceway surface formed directly on the inner diameter surface of the through hole 17a of the curved plate 17. And a plurality of cylindrical rollers 32b disposed between the inner raceway surface and the outer raceway surface, and a retainer 32c that holds the interval between the adjacent cylindrical rollers 32b. Since the rolling bearing 33 has the same configuration, the description thereof is omitted.
  • the center point of the two curved plates 17 and 18 is G
  • the center point G coincides with the center position of the wheel 11, but the moment load applied from the wheel 11 to the railway vehicle drive unit 12 is minimized.
  • it is better to offset the center point G and the wheel center position.
  • the component parts pointing to “curve plates 17 and 18, inner pins 19 and 20, outer pins 21 and the like”
  • a circumscribed ring 36 that circumscribes the plurality of inner pins 19 and 20 is disposed between the two curved plates 17 and 18. As a result, the amount of movement of the curved plates 17 and 18 in the axial direction is restricted. Since the curved plates 17 and 18 and the circumscribed ring 36 are in sliding contact with each other, it is desirable to grind the wall surfaces in contact with each other.
  • the function of the circumscribed ring 36 can be replaced by an inscribed ring inscribed in the plurality of inner pins 19 and 20 or an inscribed ring inscribed in the plurality of outer pins 21.
  • a plurality of inner pins 19 and 20 are provided at equal intervals on a circumferential track centering on the rotation axis of the input side rotation member 14. Further, inner pin bearings 19e and 20e are attached to positions where the curved plates 17 and 18 are in contact with the inner wall surfaces of the second through holes 17b and 18b (the position of the large diameter portion 19a in the both-end inner pin 19). ing. Thereby, the frictional resistance between the curved plates 17 and 18 and the inner pins 19 and 20 can be reduced.
  • the inner pin bearings 19e and 20e in this embodiment are sliding bearings.
  • the inner pin 19 includes a large diameter portion 19 a at the center in the axial direction, first and second small diameter portions 19 b and 19 c having a diameter smaller than the large diameter portion 19 a at both ends in the axial direction, A guide portion 19d is included between the diameter portion 19a and the first and second small diameter portions 19b and 19c. Male screws are formed on the outer peripheral surfaces of the first and second small diameter portions 19b and 19c, respectively.
  • the outer diameter of the guide portion 19d is set to coincide with the inner diameters of the holes 24a and 25a for receiving the both-end inner pins 19, and the radial direction of the inner pins 19 with respect to the first and second carriers 24 and 25 It is used for positioning.
  • the inner pin 19 is a both-end supported pin that is supported by the first and second carriers 24 and 25 at both ends. More specifically, the first small-diameter portion 19b is directly fixed to the first carrier 24, and the second small-diameter portion 19c has the second carrier 25 having a large diameter by pressing and fixing means (described later). It is pressed and fixed to the end surface of the part 19a.
  • the inner pin 20 has a simple cylindrical shape having the same diameter in the entire longitudinal direction, and is cantilevered in which only one end in the axial direction is cantilevered by the first carrier 24. It is a pin.
  • the cantilevered inner pin 20 is provided with a lubricating oil holding space 20a and a through hole 20b extending in the radial direction from the lubricating oil holding space 20a.
  • the inner pin bearing 20e is also provided with a through hole 20f penetrating in the radial direction.
  • the positions of the through holes 20b and 20f are not particularly limited, but are desirably provided at positions facing the space between the curved plates 17 and 18, as shown in FIG.
  • Lubricating oil is held in the lubricating oil holding space 20a, and the lubricating oil is mainly supplied between the inner pin 20 and the inner pin bearing 20e and the contact portion between the inner pin bearing 20e and the curved plates 17 and 18. To do. Specifically, the lubricating oil is held in the lubricating oil holding space 20a when a sufficient amount of lubricating oil is supplied, and is held in the lubricating oil holding space 20a when the supply amount of the lubricating oil decreases. The lubricating oil is discharged through the through holes 20b and 20f. Thereby, lubricating oil can be supplied more stably.
  • a porous member (not shown) impregnated with lubricating oil may be stored in the lubricating oil holding space 20a. Thereby, since the lubricating oil oozes out through the through holes 20b and 20f, the lubricating oil can be stably supplied over a long period of time.
  • the porous member include sintered metal and foamed grease.
  • the lubricant holding space 20a and the through hole 20b are provided only in the cantilever inner pin 20, and the through hole 20f is provided only in the inner pin bearing 20e.
  • 19 and the inner pin bearing 19e can also have the same configuration. Further, not only the inner pins 19 and 20 but also the outer pin 21 and the outer pin bearing 21a can be configured similarly.
  • the diameters of the second through holes 17b and 18b are set to be larger by a predetermined amount than the diameters of the inner pins 19 and 20 (referring to “the maximum outer diameter including the inner pin bearings 19e and 20e”).
  • the inner pin 19 is a rotation restricting member that prevents the rotation movement while allowing the revolution movement of the curved plate when the curved plates 17 and 18 are about to rotate as the input side rotation member 14 rotates. Function.
  • a plurality of outer pins 21 are provided at equal intervals on a circumferential track centering on the rotation axis of the input side rotating member 14.
  • the center portion of the outer pin 21 is held by the reduction gear housing, and both end portions thereof are fixed in contact with the axle bearings 26 and 27.
  • the outer pin 21 engages with the waveforms 17 c and 18 c of the curved plates 17 and 18 to cause the speed reducer housing 13 to rotate at a reduced speed with respect to the input side rotation member 14.
  • an outer pin bearing 21a is attached at a position where the curved plates 17 and 18 come into contact with the waveforms 17c and 18c. Thereby, the frictional resistance between the curved plates 17 and 18 and the outer pin 21 can be reduced.
  • the outer pin bearing 21a according to this embodiment is a sliding bearing.
  • the counterweight 22 has a through-hole that receives the input side rotation member 14 at a position different from the center of gravity, and changes the phase that cancels the unbalanced inertia couple due to the eccentric movement of the eccentric portion 16a, that is, changes the phase by 180 ° from the eccentric portion 16a.
  • the input side rotating member 14 is fixedly fitted. That is, the counterweight 22 functions as a balance adjustment mechanism that absorbs a non-uniform load generated by the eccentric motion of the eccentric portion 16a.
  • the counterweight 23 has the same configuration, and is fitted and fixed to the input-side rotating member 14 at a phase that cancels the unbalanced inertia couple caused by the eccentric motion of the eccentric portion 16b.
  • the distance between the center point G and the center of the curved plate 17 is L 1 , the curved plate 17, the rolling bearing 32, and the eccentric portion.
  • the sum of the mass of 16a is m 1
  • the amount of eccentricity of the center of gravity of the curved plate 17 from the rotational axis is ⁇ 1
  • the distance between the center point G and the counter weight 22 is L 2
  • the mass of the counter weight 22 is m 2
  • a similar relationship is established between the curved plate 18 on the left side of the center point G and the counterweight 23 in FIG.
  • the first and second carriers 24 and 25 are connected and fixed to the railway vehicle body, hold the inner pins 19 and 20 on the wall surfaces facing the curved plates 17 and 18, and are fitted and fixed to the outer diameter surface.
  • the reduction gear housing 13 is rotatably supported by the first and second axle bearings 26 and 27, and the input side rotating member 14 is rotatably supported by the rolling bearings 30a and 30b fitted and fixed to the inner diameter surface.
  • the first carrier 24 has a hole 24a for receiving the first small-diameter portion 19b of the both-end inner pin 19, and a hole 24b for receiving one end portion in the axial direction of the cantilever inner pin 20.
  • the hole 24a is a screw hole in which an internal thread is formed on the inner wall surface.
  • the hole 24b is a simple hole (a hole in which no screw is formed).
  • the second carrier 25 has a through hole 25a that receives the second small-diameter portion 19c of the both-end inner pin 19, and a hole 25b that receives the other end portion in the axial direction of the cantilever inner pin 20.
  • the diameter of the through hole 25a is set larger than that of the second small diameter portion 19c, and the diameter of the hole 25b is set larger than that of the cantilever inner pin 20.
  • the inner pins 19 and 20 are fixed to the first carrier 24.
  • the first small-diameter portion 19b of the both-end inner pin 19 is screwed and fixed to the hole 24a, and one end portion in the axial direction of the cantilever inner pin 20 is press-fitted and fixed to the hole 24b.
  • the fixing method of the inner pins 19 and 20 and the first carrier 24 is not limited to the above example.
  • one end of the both-end inner pin 19 is press-fitted into the hole 24a, and the cantilever inner pin is fixed.
  • a screw may be formed on one side end of 20 and the hole 24b, and both may be screwed together.
  • the second carrier 25 is fitted so that the second small diameter portion 19c of the both-end inner pin 19 fits into the through hole 25a and the other axial end of the cantilevered inner pin 20 fits into the hole 25b. .
  • a gap is provided between the inner pins 19 and 20 and the through holes 25a and 25b, a certain amount of manufacturing error and mounting error can be allowed.
  • the pressing and fixing means in this embodiment includes a male screw provided in the second small diameter portion 19c and a nut 37 that is screwed into the male screw. That is, when the nut 37 is screwed into the second small diameter portion 19c, the second carrier 25 is pressed against the large diameter portion 19a, so that the both-end inner pin 19 is against the first and second carriers 24, 25. It is firmly fixed.
  • the doubly-supported inner pin 19 is positioned in the radial direction by the guide portion 19d.
  • the guide part 19d shown in FIG. 4 is cylindrical, not only this but arbitrary shapes are employable.
  • the guide portion has a conical shape whose diameter gradually decreases toward the end of the both-end inner pin 19, and the openings on the side of the holes 24a and 25a facing the both-end inner pin 19 also correspond to the shape of the guide portion. If a conical surface is used, positioning can be performed more easily.
  • the assembly of the railway vehicle drive unit 12 is improved. It should be noted that it is desirable that the number of both-end supported pins 19 be smaller than that of the cantilevered inner pins 20 from the viewpoint of improving assemblability and reducing the number of parts. However, since loads are applied to the inner pins 19 and 20 from the curved plates 17 and 18, it is desirable that the both-end inner pins 19 and the cantilevered inner pins 20 are arranged at equal intervals.
  • the lubricating oil circulation mechanism includes an axial oil passage 14a that extends in the axial direction inside the input-side rotating member 14, and extends from the axial oil passage 14a toward the outer diameter surface of the input-side rotating member 14, and is provided at a plurality of locations.
  • the lubricating oil supply ports 14b to 14e, the lubricating oil discharge port 25c provided in the second carrier 25, the lubricating oil discharge port 25c and the shaft center oil passage 14a are connected, and the lubricating oil discharged from the lubricating oil discharge port 25c is connected.
  • a circulating oil passage 34 for returning the oil to the shaft center oil passage 14a and a lubricating oil reservoir 35 for temporarily storing the lubricating oil discharged from the lubricating oil outlet 25c are mainly provided.
  • Lubricating oil supply ports 14 b and 14 e are provided at positions where the eccentric member 16 is held.
  • the lubricating oil supply ports 14b and 14e are disposed so as to be directed in different directions (one is directed upward and the other is directed downward).
  • the eccentric member 16 and the inner rings 32a, 33a of the rolling bearings 32, 33 are provided with through holes 16c, 32d, 33d communicating with the lubricating oil supply ports 14b, 14e.
  • the through holes 32d and 33d are located on the raceway surfaces of the inner rings 32a and 32b.
  • the lubricating oil is supplied into the railway vehicle drive unit 12 through the lubricating oil supply ports 14b, 14e and the through holes 16c, 32d, 33d.
  • the lubricating oil supply ports 14b and 14e are provided at positions that are 180 ° different from the maximum eccentric positions of the first eccentric portion 16a and the second eccentric portion 16b, that is, in the same phase as the counterweights 22 and 23. Is preferred. Since the eccentric member 16 is eccentric, a large load is applied to the maximum eccentric position. If the lubricating oil supply ports 14b and 14e are provided at such maximum eccentric position, there is a risk of peeling or the like starting from the holes on the raceways of the inner rings 32a and 32b.
  • the lubricating oil supply ports 14b and 14e are provided at positions different from the maximum eccentric positions of the first eccentric portion 16a and the second eccentric portion 16b by 180 °, a portion of the eccentric member 16 that is heavily loaded.
  • the lubricating oil supply ports 14b and 14e are provided. As a result, it is possible to appropriately prevent peeling and the like starting from the lubricating oil supply ports 14b and 14e.
  • the lubricating oil supply ports 14c and 14d are provided in the vicinity of the rolling bearings 30a and 30b that support the input-side rotating member 14. Specifically, the lubricating oil supply ports 14c and 14d are provided on the eccentric member 16 side of the rolling bearings 30a and 30b. The lubricating oil supply ports 14c and 14d are disposed so as to be directed in different directions (one is directed upward and the other is directed downward). The lubricating oil is supplied into the railway vehicle drive unit 12 through the lubricating oil supply ports 14c and 14d.
  • the lubricating oil supply ports 14b to 14e are positioned in the order of the lubricating oil supply port 14d, the lubricating oil supply port 14b, the lubricating oil supply port 14e, and the lubricating oil supply port 14c in the axial direction from the circulating oil passage 34 side. That is, the lubricating oil supply port 14d and the lubricating oil supply port 14b are provided at a first position close to the circulating oil passage 34, and the lubricating oil supply port 14e and the lubricating oil supply port 14c are far from the circulating oil passage 34. It is provided at the second position.
  • the diameters of the lubricating oil supply ports 14b to 14e are provided so as to increase in order from the circulating oil passage 34 side.
  • the diameter of the lubricating oil supply port 14d is 2 mm
  • the diameter of the lubricating oil supply port 14b is 3 mm
  • the diameter of the lubricating oil supply port 14e is 4 mm
  • the diameter of the lubricating oil supply port 14c is The diameter is 5 mm.
  • the lubricating oil discharge port 25c in this embodiment discharges the lubricating oil from between the second axle bearing 27 and the sealing member 29 to the outside of the railway vehicle drive unit 12 through the inside of the second carrier 25. To do.
  • the input side rotation member 14 and the eccentric member 16 rotate integrally with the rotation of the drive source.
  • the curved plates 17 and 18 also try to rotate, but the inner pins 19 and 20 inserted through the second through holes 17b and 18b are prevented from rotating, and only revolving motion is performed.
  • the curved plates 17 and 18 move in parallel on a circumferential path around the rotation axis of the input side rotating member 14.
  • a compact and high reduction ratio railway vehicle drive unit 12 can be obtained. Further, by providing the inner pin bearings 19e, 20e and the outer pin bearing 21a at positions where they contact the curved plates 17, 18 of the inner pins 19, 20 and the outer pin 21, the frictional resistance of the contact portion is reduced. As a result, the transmission efficiency of the railway vehicle drive unit 12 is improved.
  • the flow of lubricating oil in the railway vehicle drive unit 12 having the above configuration will be described in detail.
  • the lubricating oil flowing in the axial center oil passage 14a in the axial direction from the circulating oil passage 34 flows out from the lubricating oil supply ports 14b to 14e due to the centrifugal force accompanying the rotation of the input side rotating member 14.
  • the lubricating oil supply port 14b and the lubricating oil supply port 14e and the lubricating oil supply port 14d and the lubricating oil supply port 14c are directed in different directions (one is upward) , The other is directed downward), so that the lubricating oil can be supplied evenly.
  • the lubricating oil supply ports 14b and 14e are provided at positions where the eccentric member 16 is held, the lubricating oil can be positively supplied to the rolling bearings 32 and 33. Further, since the lubricating oil supply ports 14d and 14c are provided in the vicinity of the rolling bearings 30a and 30b, the lubricating oil can be positively supplied to the rolling bearings 30a and 30b. Further, since the diameters of the lubricating oil supply ports 14b to 14e are provided so as to increase in order from the circulating oil passage 34 side, the lubricating oil supply ports 14c and 14c provided at the second position far from the circulating oil passage 34 are provided. Even if it is 14e, an appropriate quantity of lubricating oil can be made to flow out. As a result, the lubricating oil can be uniformly supplied in the axial direction, and even the rolling bearings 32 and 30a located far from the circulating oil passage 34 can appropriately prevent temperature rise.
  • the lubricating oil that has reached the space between the axle bearings 26, 27 and the sealing members 28, 29 is discharged from the lubricating oil discharge port 25 c to the outside of the railway vehicle drive unit 12 and temporarily stored in the lubricating oil reservoir 35. And then recirculates to the axial oil passage 14a via the circulation oil passage 34.
  • the lubricating oil discharge port 25c in the lower region of the first or second carrier 24, 25, the lubricating oil can be discharged using the force of gravity. Smooth.
  • a pump (not shown) may be provided in the lubricating oil circulation mechanism to forcibly circulate the lubricating oil. Thereby, circulation of lubricating oil becomes still smoother.
  • the lubricating oil that cannot be discharged can be temporarily stored in the lubricating oil reservoir 35. As a result, an increase in torque loss of the railway vehicle drive unit 12 can be prevented.
  • the lubricating oil stored in the lubricating oil reservoir 35 is transferred to the shaft center oil passage 14a. It can be refluxed. As a result, the lubricating oil can be stably supplied to the railway vehicle drive unit 12.
  • the amount of lubricating oil returning to the shaft center oil passage 14a is changed according to the rotational speed of the input side rotating member 14, it is possible to appropriately prevent the temperature rise of each part constituting the railway vehicle drive unit 12. it can. Specifically, the amount of lubricating oil returning to the shaft center oil passage 14a is increased during high speed rotation, and the amount of lubricating oil returning to the shaft center oil passage 14a is decreased during low speed rotation. As a result, the service life of the railway vehicle drive unit 12 can be extended.
  • a lubricating device is provided in the lubricating oil reservoir 35, foreign matter such as abrasion powder can be removed from the lubricating oil discharged from the railway vehicle drive unit 12 and circulated, so that high lubricating performance can be achieved over a long period of time. Can be maintained.
  • the lubricating oil is uniformly supplied in the axial direction by providing the diameters of the plurality of lubricating oil supply ports 14b to 14e so as to increase in order from the circulating oil passage 34 side.
  • the number of the lubricating oil supply ports 14e and 14c provided in the second position is not limited to this, and the number of the lubricating oil supply ports 14d and 14b provided in the first position is increased. May be supplied evenly in the axial direction.
  • FIGS. 6 to 9 are cross-sectional views when the input side rotating member 14 is cut in a direction perpendicular to the axial direction, showing the lubricating oil supply ports 14b to 14e.
  • the number of lubricating oil supply ports 14d and 14b provided at the first position close to circulating oil passage 34 is one.
  • the number of lubricating oil supply ports 14e and 14c provided at the second position far from the circulating oil passage 34 is two.
  • the lubricating oil supply ports 14b to 14e have been described as being provided at positions where the eccentric member 16 is held and in the vicinity of the rolling bearings 30a and 30b which support the input side rotating member 14.
  • the present invention is not limited to this, and it may be provided only at the position where the eccentric member 16 is held, or only near the rolling bearings 30a, 30b that support the input side rotating member 14, depending on the supply state of the lubricating oil. Also good.
  • FIG. 10 is a view showing another embodiment in which a lubricating oil supply port is provided, and corresponds to FIG.
  • inner rings 32a and 33a of rolling bearings 32 and 33 are formed with flange portions 32e and 33e protruding radially outward at both axial ends.
  • the lubricating oil supply ports 14f to 14i are positions that hold the eccentric member 16, and are provided at axial positions where the flanges 32e and 33e of the inner rings 32a and 33a of the rolling bearings 32 and 33 are disposed. .
  • the eccentric member 16 is provided with a through hole 16d communicating with the lubricating oil supply ports 14f to 14i, and the lubricating oil supply port is provided in the flanges 32e and 33e of the inner rings 32a and 33a of the rolling bearings 32 and 33. Through holes 32f and 33f communicating with 14f to 14i are provided.
  • the lubricating oil supply ports 14f to 14i are provided at positions different from the maximum eccentric positions of the first eccentric portion 16a and the second eccentric portion 16b by 180 °.
  • lubricating oil can be positively supplied into the inside of the rolling bearings 32 and 33 from the flanges 32e and 33e.
  • the cages 32c and 33c are guided in the collar portions 32e and 33e of the inner rings 32a and 33a, the cages 32e and 33e are provided with the collar portions 32e and 33e, so that they are brought into contact with the cages 32c and 33c during high-speed rotation. It is possible to appropriately prevent seizure and the like.
  • the through holes 16d, 32f, 33f may be provided so as to extend from the lubricating oil supply ports 14e, 14b to the raceway surfaces of the inner rings 32a, 33a and the flanges 32e, 33e without providing the lubricating oil supply ports 14f-14i. Good.
  • both of the lubricating oil supply ports 14h and 14i may be provided so as to be directed in different directions without being provided at positions different from the maximum eccentric position of the first eccentric portion 16a by 180 °. By carrying out like this, lubricating oil can be supplied uniformly in the circumferential direction.
  • two curved plates 17 and 18 are provided with a 180 ° phase change.
  • the number of curved plates can be arbitrarily set. For example, when three curved plates are provided. May be provided by changing the phase by 120 °.
  • the eccentric member 16 having the eccentric portions 16a and 16b is fitted and fixed to the input-side rotating member 14 is shown.
  • the eccentric portions 16a and 16b may be directly formed.
  • the rolling bearings 26, 27, 30a, 30b, 32, and 33 in the above-described embodiment are not limited to the form shown in FIG. 1, and are, for example, a plain bearing, a cylindrical roller bearing, a tapered roller bearing, and a needle roller bearing.
  • the inner pin bearings 19e and 20e and the outer pin bearing 21a are sliding bearings.
  • the present invention is not limited to this, and a rolling bearing may be adopted. In this case, it is desirable to employ a needle roller bearing from the viewpoint of making it compact in the thickness direction.
  • This invention is advantageously used for a railway vehicle drive unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Retarders (AREA)
  • General Details Of Gearings (AREA)

Abstract

A railroad vehicle drive unit (12) is provided with a reduction gear housing (13), an input-side rotating member (14), a reduction gear mechanism (15), fixation members (24, 25) which are arranged within the reduction gear housing (13) and are connected and fixed to a vehicle body, and a lubricating oil circulating mechanism which circulates in the drive unit a lubricating oil.  The lubricating oil circulating mechanism is provided with an axis oil path (14a) which extends within the input-side rotating member (14) in the axis direction, lubricating oil supply openings (14b-14e) which extend from the axis oil path (14a) to the outer-diameter surface of the input-side rotating member (14), a lubricating oil discharge opening (25c) which is provided in the fixation member (25), and a circulation oil path (34) which connects the lubricating oil discharge opening (25c) and the axis oil path (14a) and recirculates the lubricating oil, which has been discharged from the lubricating oil discharge opening (25c), to the axis oil path (14a).

Description

鉄道車両駆動ユニットRailway vehicle drive unit
 この発明は、鉄道車両駆動ユニット、特に左右の車輪を独立して駆動可能な鉄道車両駆動ユニットに関するものである。 The present invention relates to a railway vehicle drive unit, and more particularly to a railway vehicle drive unit capable of independently driving left and right wheels.
 従来の鉄道車両駆動ユニットは、例えば、特開2007-230508号公報(特許文献1)に開示されている。同公報に開示されている鉄道車両駆動ユニットは、モータと、モータの回転を減速して車輪に伝達する減速機とを備える。 A conventional railcar drive unit is disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-230508 (Patent Document 1). The railway vehicle drive unit disclosed in the publication includes a motor and a speed reducer that decelerates the rotation of the motor and transmits it to the wheels.
 この鉄道車両駆動ユニットには、鉄道車両の運行に必要なトルクを発生させると共に、広い客室スペースを得るために、小型で高減速比が得られるサイクロイド減速機が採用されている。具体的には、モータと一体回転する入力軸と、入力軸に設けられた偏心部に回転自在に支持される曲線板と、曲線板の外周に係合して曲線板に自転運動を生じさせる外ピンと、曲線板の自転運動を回転運動に変換して車輪に伝達する内ピンとで構成される。 This railway vehicle drive unit employs a cycloid reducer that is small in size and has a high reduction ratio in order to generate torque necessary for the operation of the railway vehicle and to obtain a large cabin space. Specifically, an input shaft that rotates integrally with the motor, a curved plate that is rotatably supported by an eccentric portion provided on the input shaft, and an outer periphery of the curved plate that engages with each other to cause the curved plate to rotate. It comprises an outer pin and an inner pin that converts the rotational motion of the curved plate into rotational motion and transmits it to the wheel.
特開2007-230508号公報JP 2007-230508 A

 上記構成の減速機は、各構成部品が相互に接触しながら回転するので、接触部分を潤滑する潤滑油が必要になる。しかし、減速機内部の潤滑油は、回転に伴う遠心力によって径方向外側に偏るので、入力軸周辺(径方向内側)で潤滑油が不足しがちになる。一方、入力軸周辺の潤滑油量を確保するために、減速機内部に封入する潤滑油量を増加すれば、攪拌抵抗によって減速機のトルク損失が増大する。 そこで、この発明の目的は、トルク損失を低減すると共に、潤滑性能を向上させた鉄道車両駆動ユニットを提供することである。

Since the speed reducer having the above configuration rotates while the respective components are in contact with each other, lubricating oil for lubricating the contact portion is required. However, since the lubricating oil inside the reduction gear is biased radially outward due to the centrifugal force accompanying rotation, the lubricating oil tends to be insufficient around the input shaft (inward in the radial direction). On the other hand, if the amount of lubricating oil enclosed in the reducer is increased in order to ensure the amount of lubricating oil around the input shaft, the torque loss of the reducer increases due to the stirring resistance. Accordingly, an object of the present invention is to provide a railway vehicle drive unit that reduces torque loss and improves lubrication performance.
 この発明に係る鉄道車両駆動ユニットは、鉄道車両の車輪を回転駆動する駆動ユニットである。具体的には、車輪の内径面に保持されて車輪と一体回転する減速機ハウジングと、駆動源に接続されている入力側回転部材と、入力側回転部材の回転を減速して減速機ハウジングに伝達する減速機構と、減速機ハウジングの内部に配置され、車両本体に連結固定される固定部材と、駆動ユニット内で潤滑油を潤滑させる潤滑油循環機構とを備える。そして、潤滑油循環機構は、入力側回転部材の内部を軸方向に延びる軸心油路と、軸心油路から入力側回転部材の外径面に向かって延びる潤滑油供給口と、固定部材に設けられた潤滑油排出口と、潤滑油排出口および軸心油路を接続し、潤滑油排出口から排出された潤滑油を軸心油路に還流する循環油路とを含む。 The railway vehicle drive unit according to the present invention is a drive unit that rotationally drives the wheels of the railway vehicle. Specifically, a reduction gear housing that is held on the inner diameter surface of the wheel and rotates integrally with the wheel, an input side rotation member connected to a drive source, and a rotation of the input side rotation member that decelerates rotation to the reduction gear housing A speed reduction mechanism for transmission, a fixing member disposed inside the speed reducer housing and connected and fixed to the vehicle body, and a lubricating oil circulation mechanism for lubricating the lubricating oil in the drive unit are provided. The lubricating oil circulation mechanism includes an axial oil passage extending in the axial direction inside the input-side rotating member, a lubricating oil supply port extending from the axial oil passage toward the outer diameter surface of the input-side rotating member, and a fixed member And a circulating oil passage for connecting the lubricating oil outlet and the shaft center oil passage and returning the lubricating oil discharged from the lubricant oil outlet to the shaft center oil passage.
 上記構成の鉄道車両駆動ユニットは、入力側回転部材から減速機構に対して潤滑油が供給され続けるので、潤滑油が径方向外側に偏在することによる入力側回転部材周辺での潤滑油不足を解消することができる。また、径方向外側に偏った潤滑油は潤滑油排出口から排出されるので、減速機構内の潤滑油量の増加によるトルク損失の増大を防止することができる。 The railcar drive unit having the above configuration eliminates the shortage of lubricating oil around the input side rotating member due to uneven distribution of the lubricating oil radially outward because the lubricating oil is continuously supplied from the input side rotating member to the speed reduction mechanism. can do. Further, since the lubricating oil biased radially outward is discharged from the lubricating oil discharge port, an increase in torque loss due to an increase in the amount of lubricating oil in the speed reduction mechanism can be prevented.
 一実施形態として、入力側回転部材は、偏心部を有する。減速機構は、偏心部に相対回転自在に保持されて、入力側回転部材の回転軸心を中心とする公転運動を行う公転部材と、公転部材の公転運動を許容しつつ、自転運動を阻止する自転規制部材と、減速機ハウジングに固定され、公転部材の外周に係合して減速機ハウジングを入力側回転部材に対して減速回転させる外周係合部材とを含む。 As an embodiment, the input side rotating member has an eccentric portion. The speed reduction mechanism is held by the eccentric part so as to be relatively rotatable, and a revolving member that performs a revolving motion around the rotation axis of the input side rotating member and a revolving motion of the revolving member while allowing the revolving motion to be prevented. A rotation restricting member and an outer peripheral engagement member fixed to the reduction gear housing and engaged with the outer periphery of the revolution member to decelerate and rotate the reduction gear housing with respect to the input side rotation member.
 サイクロイド減速機を採用することにより、小型で高減速比を得ることができる。また、車輪を減速機ハウジングの外径面に嵌合固定したので、車輪の荷重作用点を適切な位置に配置することができる。その結果、信頼性の高い鉄道車両駆動ユニットを得ることができる。 By adopting a cycloid reducer, it is possible to obtain a small reduction ratio and a high reduction ratio. Further, since the wheel is fitted and fixed to the outer diameter surface of the reduction gear housing, the load application point of the wheel can be arranged at an appropriate position. As a result, a highly reliable railway vehicle drive unit can be obtained.
 好ましくは、潤滑油供給口は、偏心部に設けられている。これにより、偏心部と公転部材との間に積極的に潤滑油を供給することができるので、公転部材がスムーズに回転可能となる。 Preferably, the lubricating oil supply port is provided in the eccentric part. Thereby, since lubricating oil can be positively supplied between an eccentric part and a revolution member, a revolution member can rotate smoothly.
 好ましくは、潤滑油供給口は、偏心部の最大偏心位置と180°異なる位置に設けられている。これにより、偏心部において、負荷の大きくかかる部分を避けて、潤滑油供給口を設けることができる。その結果、潤滑油供給口を起点とした剥離等を適切に防止することができる。 Preferably, the lubricating oil supply port is provided at a position 180 ° different from the maximum eccentric position of the eccentric portion. Thereby, in an eccentric part, a lubricating oil supply port can be provided avoiding the part which requires a heavy load. As a result, peeling or the like starting from the lubricating oil supply port can be prevented appropriately.
 好ましくは、公転部材は、貫通穴を有し、駆動ユニットは、偏心部の外径面に嵌合して径方向外側に内側軌道面が形成された内輪部材、公転部材の貫通穴の内径面に形成された外側軌道面、内側軌道面および外側軌道面の間に配置される複数のころ、および隣接するころの間隔を保持する保持器を含み、公転部材を偏心部に対して回転自在に支持する偏心軸受を有し、潤滑油供給口は、内輪部材の軌道面に設けられている。 Preferably, the revolution member has a through hole, and the drive unit is an inner ring member that is fitted to the outer diameter surface of the eccentric portion and has an inner raceway surface formed radially outward, and the inner diameter surface of the through hole of the revolution member. The outer raceway surface formed on the inner raceway surface, a plurality of rollers disposed between the inner raceway surface and the outer raceway surface, and a cage that holds the spacing between adjacent rollers, and the revolving member is rotatable with respect to the eccentric portion. The bearing has an eccentric bearing to be supported, and the lubricating oil supply port is provided on the raceway surface of the inner ring member.
 好ましくは、公転部材は、貫通穴を有し、駆動ユニットは、偏心部の外径面に嵌合して径方向外側に内側軌道面が形成された内輪部材、公転部材の貫通穴の内径面に形成された外側軌道面、内側軌道面および外側軌道面の間に配置される複数のころ、および隣接するころの間隔を保持する保持器を含み、公転部材を偏心部に対して回転自在に支持する偏心軸受を有し、内輪部材の軸方向端部には、径方向外側に突出する鍔部が形成されており、潤滑油供給口は、鍔部に設けられている。これにより、鍔部から偏心軸受の内部に積極的に潤滑油を供給することができる。その結果、偏心軸受の温度上昇を適切に防止することができる。 Preferably, the revolution member has a through hole, and the drive unit is an inner ring member that is fitted to the outer diameter surface of the eccentric portion and has an inner raceway surface formed radially outward, and the inner diameter surface of the through hole of the revolution member. The outer raceway surface formed on the inner raceway surface, a plurality of rollers disposed between the inner raceway surface and the outer raceway surface, and a cage that holds the spacing between adjacent rollers, and the revolving member is rotatable with respect to the eccentric portion. There is an eccentric bearing to be supported, and a flange portion protruding radially outward is formed at an axial end portion of the inner ring member, and a lubricating oil supply port is provided at the flange portion. Thereby, lubricating oil can be positively supplied into the inside of an eccentric bearing from a collar part. As a result, the temperature rise of the eccentric bearing can be prevented appropriately.
 好ましくは、駆動ユニットは、入力側回転部材を固定部材に対して回転自在に支持する主軸軸受を有し、潤滑油供給口は、主軸軸受に潤滑油を供給するために、主軸軸受の近傍に設けられている。これにより、主軸軸受に積極的に潤滑油を供給することができ、主軸軸受の温度上昇を適切に防止することができる。 Preferably, the drive unit has a main shaft bearing that rotatably supports the input side rotating member with respect to the fixed member, and the lubricating oil supply port is provided in the vicinity of the main shaft bearing in order to supply the lubricating oil to the main shaft bearing. Is provided. Thereby, lubricating oil can be actively supplied to a main shaft bearing, and the temperature rise of a main shaft bearing can be prevented appropriately.
 好ましくは、潤滑油供給口は、互いに異なる方向を指向するように、入力側回転部材の複数箇所に設けられている。これにより、潤滑油を満遍なく供給することができる。 Preferably, the lubricating oil supply ports are provided at a plurality of locations on the input side rotating member so as to be directed in different directions. Thereby, lubricating oil can be supplied uniformly.
 さらに好ましくは、軸心油路は、循環油路側から軸方向に潤滑油を供給し、潤滑油供給口は、径が循環油路側から順に大きくなるように、入力側回転部材の複数箇所に設けられている。これにより、潤滑油を軸方向に満遍なく供給することができる。 More preferably, the axial center oil passage supplies the lubricating oil in the axial direction from the circulating oil passage side, and the lubricating oil supply ports are provided at a plurality of locations on the input side rotating member so that the diameter increases in order from the circulating oil passage side. It has been. Thereby, lubricating oil can be supplied uniformly in an axial direction.
 さらに好ましくは、軸心油路は、循環油路側から軸方向に潤滑油を供給し、潤滑油供給口は、循環油路から近い第1の位置と、循環油路から遠い第2の位置とに設けられており、第2の位置に設けられる潤滑油供給口の数は、第1の位置に設けられる潤滑油供給口の数より多い。これにより、潤滑油を軸方向に満遍なく供給することができる。 More preferably, the axial center oil passage supplies lubricating oil in the axial direction from the circulating oil passage side, and the lubricating oil supply port has a first position close to the circulating oil passage and a second position far from the circulating oil passage. The number of lubricating oil supply ports provided at the second position is greater than the number of lubricating oil supply ports provided at the first position. Thereby, lubricating oil can be supplied uniformly in an axial direction.
 好ましくは、駆動ユニットは、固定部材の外径面に固定される内輪、減速機ハウジングの内径面に固定される外輪、および内輪および外輪の間に配置される複数の円すいころを含み、減速機ハウジングを固定部材に対して回転自在に支持する車軸軸受と、減速機ハウジングと固定部材との間の円すいころの大径側端部に対面する位置に減速機ハウジングの内部を密封する密封部材とをさらに有する。そして、潤滑油排出口は、車軸軸受および密封部材の間に設けられている。 Preferably, the drive unit includes an inner ring fixed to the outer diameter surface of the fixing member, an outer ring fixed to the inner diameter surface of the speed reducer housing, and a plurality of tapered rollers disposed between the inner ring and the outer ring, and the speed reducer An axle bearing that rotatably supports the housing with respect to the fixed member, and a sealing member that seals the inside of the speed reducer housing at a position facing the large-diameter end of the tapered roller between the speed reducer housing and the fixed member; It has further. The lubricating oil discharge port is provided between the axle bearing and the sealing member.
 潤滑油は、円すいころの小径側端部から軸受内部を通って、大径側端部側に排出される。したがって、車軸軸受と密封部材との間の空間に潤滑油排出口を設けることにより、スムーズに潤滑油を排出することができる。 Lubricating oil is discharged from the small-diameter end of the tapered roller through the inside of the bearing to the large-diameter end. Therefore, the lubricating oil can be smoothly discharged by providing the lubricating oil discharge port in the space between the axle bearing and the sealing member.
 さらに好ましくは、潤滑油排出口は、固定部材の下部領域に配置される。これにより、重力の力を利用して潤滑油を排出することができるので、潤滑油の循環がスムーズとなる。 More preferably, the lubricating oil discharge port is disposed in a lower region of the fixing member. Accordingly, the lubricating oil can be discharged using the force of gravity, so that the lubricating oil is smoothly circulated.
 好ましくは、潤滑油循環機構は、潤滑油を強制的に循環させるポンプをさらに備える。これにより、潤滑油の循環がさらにスムーズとなる。 Preferably, the lubricating oil circulation mechanism further includes a pump for forcibly circulating the lubricating oil. Thereby, circulation of lubricating oil becomes still smoother.
 好ましくは、潤滑油循環機構は、潤滑油排出口から排出された潤滑油を一時的に貯留する潤滑油貯留部をさらに備える。これにより、減速機構の攪拌抵抗の増加を防止することができると共に、減速機構に潤滑油をさらに安定して供給することができる。 Preferably, the lubricating oil circulation mechanism further includes a lubricating oil reservoir that temporarily stores the lubricating oil discharged from the lubricating oil discharge port. As a result, an increase in the stirring resistance of the speed reduction mechanism can be prevented, and the lubricating oil can be further stably supplied to the speed reduction mechanism.
 さらに好ましくは、潤滑油循環機構は、潤滑油貯留部に貯留される潤滑油を濾過する濾過装置をさらに備える。これにより、長期間に亘って高い潤滑性能を維持することが可能となる。 More preferably, the lubricating oil circulation mechanism further includes a filtering device that filters the lubricating oil stored in the lubricating oil storage section. Thereby, it becomes possible to maintain high lubrication performance over a long period of time.
 この発明によれば、入力側回転部材等の回転力を利用して減速機構に潤滑油を循環させることにより、減速機構の全域に安定して潤滑油を供給することが可能となる。その結果、耐久性に優れ、信頼性の高い鉄道車両駆動ユニットを得ることができる。 According to this invention, the lubricating oil can be stably supplied to the entire speed reducing mechanism by circulating the lubricating oil to the speed reducing mechanism using the rotational force of the input side rotating member or the like. As a result, a railway vehicle drive unit having excellent durability and high reliability can be obtained.
この発明の一実施形態に係る鉄道車両用車輪駆動装置を示す図である。It is a figure showing a wheel drive device for rail vehicles concerning one embodiment of this invention. 図1のII-IIにおける断面図である。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 図1の偏心部周辺の拡大図である。It is an enlarged view of the eccentric part periphery of FIG. 両持ち内ピン周辺の拡大図である。It is an enlarged view of the periphery of both-ends internal pins. 片持ち内ピン周辺の拡大図である。It is an enlarged view around a cantilever inner pin. 入力側回転部材を軸方向に垂直な方向に切断した場合の断面図であって、潤滑油供給口を示す図である。It is sectional drawing at the time of cut | disconnecting the input side rotation member in the direction perpendicular | vertical to an axial direction, Comprising: It is a figure which shows a lubricating oil supply port. 入力側回転部材を軸方向に垂直な方向に切断した場合の断面図であって、潤滑油供給口を示す図である。It is sectional drawing at the time of cut | disconnecting the input side rotation member in the direction perpendicular | vertical to an axial direction, Comprising: It is a figure which shows a lubricating oil supply port. 入力側回転部材を軸方向に垂直な方向に切断した場合の断面図であって、潤滑油供給口を示す図である。It is sectional drawing at the time of cut | disconnecting the input side rotation member in the direction perpendicular | vertical to an axial direction, Comprising: It is a figure which shows a lubricating oil supply port. 入力側回転部材を軸方向に垂直な方向に切断した場合の断面図であって、潤滑油供給口を示す図である。It is sectional drawing at the time of cut | disconnecting the input side rotation member in the direction perpendicular | vertical to an axial direction, Comprising: It is a figure which shows a lubricating oil supply port. 潤滑油供給口を設ける他の実施形態を示す図である。It is a figure which shows other embodiment which provides a lubricating oil supply port.
 図1~図5を参照して、この発明の一実施形態に係る鉄道車両駆動ユニット12および鉄道車両駆動ユニット12を含む鉄道車両用車輪駆動装置10を説明する。なお、図1は鉄道車両用車輪駆動装置10の概略断面図、図2は図1のII-IIにおける断面図、図3は偏心部16a,16b周辺の拡大図、図4は内ピン19の拡大図、図5は内ピン20の拡大図である。 With reference to FIGS. 1 to 5, a railway vehicle wheel drive unit 10 including a railway vehicle drive unit 12 and a railway vehicle drive unit 12 according to an embodiment of the present invention will be described. 1 is a schematic cross-sectional view of the wheel drive device 10 for a railway vehicle, FIG. 2 is a cross-sectional view taken along II-II in FIG. 1, FIG. 3 is an enlarged view around the eccentric portions 16a and 16b, and FIG. FIG. 5 is an enlarged view of the inner pin 20.
 まず、図1を参照して、鉄道車両用車輪駆動装置10は、鉄道車両用車輪11(以下「車輪11」という)と、車輪11の内径面に保持されて、駆動源(図示省略)の回転を減速して車輪11に伝達する駆動ユニット12(以下「鉄道車両駆動ユニット12」という)とで構成されており、鉄道車両本体(図示省略)の下部に配置されている。 First, referring to FIG. 1, a railway vehicle wheel drive device 10 is held on a railway vehicle wheel 11 (hereinafter referred to as “wheel 11”) and an inner diameter surface of the wheel 11 to drive a drive source (not shown). It is comprised with the drive unit 12 (henceforth "the rail vehicle drive unit 12") which decelerates and transmits to the wheel 11, and is arrange | positioned under the rail vehicle main body (illustration omitted).
 鉄道車両駆動ユニット12は、減速機ハウジング13と、入力側回転部材14と、減速機構15と、固定部材としての第1および第2のキャリア24,25と、第1および第2の車軸軸受26,27と、鉄道車両駆動ユニット12内で潤滑油を潤滑させる潤滑油循環機構とを主に備える。 The railway vehicle drive unit 12 includes a speed reducer housing 13, an input side rotation member 14, a speed reduction mechanism 15, first and second carriers 24 and 25 as fixed members, and first and second axle bearings 26. , 27 and a lubricating oil circulation mechanism that lubricates the lubricating oil in the railway vehicle drive unit 12.
 減速機ハウジング13は、車輪11の内径面に保持されると共に、内部に減速機構15を保持している。なお、減速機構15とは、偏心部材16、公転部材としての曲線板17,18、自転規制部材としての複数の内ピン19,20、外周係合部材としての複数の外ピン21、およびこれらに付随する部材によって構成されており、入力側回転部材14の回転を減速して減速機ハウジング13に伝達する。 The reduction gear housing 13 is held on the inner diameter surface of the wheel 11 and holds the reduction mechanism 15 inside. The speed reduction mechanism 15 includes an eccentric member 16, curved plates 17 and 18 as revolution members, a plurality of inner pins 19 and 20 as rotation restricting members, a plurality of outer pins 21 as outer peripheral engagement members, and the like. It is comprised by the member which accompanies, The rotation of the input side rotation member 14 is decelerated, and it transmits to the reduction gear housing 13.
 また、減速機ハウジング13の内径面と第1および第2のキャリア24,25の外径面との間には第1および第2の車軸軸受26,27が配置されている。そして、減速機ハウジング13は、第1および第2のキャリア24,25に対して回転自在となっており、車輪11と一体回転する出力側回転部材(車軸)としても機能する。 Further, first and second axle bearings 26 and 27 are arranged between the inner diameter surface of the reduction gear housing 13 and the outer diameter surfaces of the first and second carriers 24 and 25. The reduction gear housing 13 is rotatable with respect to the first and second carriers 24 and 25 and also functions as an output side rotation member (axle) that rotates integrally with the wheel 11.
 第1の車軸軸受26は、第1のキャリア24の外径面に固定される内輪26aと、減速機ハウジング13の内径面に固定される外輪26bと、内輪26aおよび外輪26bの間に配置される複数の円すいころ26cと、隣接する円すいころ26cの間隔を保持する保持器26dとを含む円すいころ軸受である。第2の転がり軸受27も同様の構成であるので、説明は省略する。第1および第2の車軸軸受26,27として高負荷容量の円すいころ軸受を採用することにより、車輪11に作用するラジアル荷重およびアキシアル荷重を適切に支持することができる。 The first axle bearing 26 is disposed between an inner ring 26a fixed to the outer diameter surface of the first carrier 24, an outer ring 26b fixed to the inner diameter surface of the reduction gear housing 13, and the inner ring 26a and the outer ring 26b. This is a tapered roller bearing including a plurality of tapered rollers 26c and a retainer 26d that holds a distance between adjacent tapered rollers 26c. Since the 2nd rolling bearing 27 is also the same structure, description is abbreviate | omitted. By adopting a tapered roller bearing having a high load capacity as the first and second axle bearings 26 and 27, it is possible to appropriately support the radial load and the axial load acting on the wheel 11.
 また、第1の車軸軸受26は車輪11の嵌合位置(より具体的には「車輪11の嵌合幅中心」であって、図1中一点鎖線lで示す位置を指す)の軸方向一方側(図1中の右側)で、第2の車軸軸受27は車輪11の嵌合位置の軸方向他方側(図2中の左側)でそれぞれ減速機ハウジング13を第1および第2のキャリア24,25に対して回転自在に支持している。この実施形態においては、第1および第2の車軸軸受26,27それぞれの車輪11の嵌合幅中心からの距離(オフセット)は、等しく設定されている。 Further, the first axle bearing 26 has one axial direction of the fitting position of the wheel 11 (more specifically, “the fitting width center of the wheel 11”, which indicates the position indicated by the one-dot chain line 1 in FIG. 1). On the side (right side in FIG. 1), the second axle bearing 27 is connected to the reduction gear housing 13 on the other side (left side in FIG. 2) in the axial direction of the fitting position of the wheel 11, respectively. , 25 are rotatably supported. In this embodiment, the distance (offset) from the fitting width center of the wheel 11 of each of the first and second axle bearings 26 and 27 is set equal.
 さらに、第1および第2の車軸軸受26,27は、互いの小径側端部を向かい合わせて配置されている(背面組合せ)。これにより、車輪11に作用するモーメント荷重を適切に支持することができる。 Furthermore, the first and second axle bearings 26, 27 are arranged with their small diameter side ends facing each other (rear combination). Thereby, the moment load which acts on the wheel 11 can be supported appropriately.
 また、減速機ハウジング13の軸方向両端部には、減速機ハウジング13の内部に潤滑油を封入するための密封部材28,29が設けられている。この密封部材28,29は、第1および第2のキャリア24,25の外径面に摺接するリップ部を有し、減速機ハウジング13の内径面に固定されて、減速機ハウジング13と一体回転する。 Further, sealing members 28 and 29 for enclosing lubricating oil inside the reduction gear housing 13 are provided at both ends in the axial direction of the reduction gear housing 13. The sealing members 28 and 29 have lip portions that are in sliding contact with the outer diameter surfaces of the first and second carriers 24 and 25, are fixed to the inner diameter surface of the speed reducer housing 13, and rotate integrally with the speed reducer housing 13. To do.
 入力側回転部材14は、駆動源(例えば、モータ等)に接続されて、駆動源の回転に伴って回転する。また、曲線板17,18の両側で転がり軸受30a,30bによって両持ち支持されており、第1および第2のキャリア24,25に対して回転自在に保持されている。すなわち、転がり軸受30a,30bは、入力側回転部材14を第1および第2のキャリア24,25に対して回転自在に支持する主軸軸受となる。なお、この実施形態においては、転がり軸受30a,30bとして円筒ころ軸受を採用している。また、転がり軸受30aのさらに外側(図1中の右側)は、減速機ハウジング13の内部に潤滑油を封入する密封部材31が配置されている。 The input side rotation member 14 is connected to a drive source (for example, a motor) and rotates as the drive source rotates. Further, both sides of the curved plates 17 and 18 are supported at both ends by rolling bearings 30a and 30b, and are held rotatably with respect to the first and second carriers 24 and 25. That is, the rolling bearings 30a and 30b are spindle bearings that support the input-side rotating member 14 so as to be rotatable with respect to the first and second carriers 24 and 25. In this embodiment, cylindrical roller bearings are employed as the rolling bearings 30a and 30b. Further, on the further outer side (the right side in FIG. 1) of the rolling bearing 30 a, a sealing member 31 that encloses lubricating oil is disposed inside the reduction gear housing 13.
 偏心部材16は、第1および第2の偏心部16a,16bを有し、入力側回転部材14に嵌合固定されている。第1および第2の偏心部16a,16bは、偏心運動による遠心力を互いに打ち消しあう位相、つまり180°位相を変えて配置されている。すなわち、第1および第2の偏心部16a,16bは、偏心運動によって生じる不均一な荷重を吸収するバランス調整機構としても機能する。 The eccentric member 16 has first and second eccentric portions 16 a and 16 b and is fitted and fixed to the input-side rotating member 14. The first and second eccentric portions 16a and 16b are arranged with different phases, i.e., 180 [deg.] Phases, that cancel out the centrifugal force due to the eccentric motion. That is, the first and second eccentric portions 16a and 16b also function as a balance adjustment mechanism that absorbs a non-uniform load caused by the eccentric motion.
 曲線板17は、転がり軸受32によって第1の偏心部16aに相対回転自在に保持されている。すなわち、転がり軸受32は、曲線板17を第1の偏心部16aに対して回転自在に支持する偏心軸受となる。そして、入力側回転部材14の回転軸心を中心とする公転運動を行う。また、図2を参照して、曲線板17は、厚み方向に貫通する第1および第2の貫通孔17a,17bと、外周にエピトロコイド等のトロコイド系曲線で構成される複数の波形17cと、内部を径方向に延びる油路17dと、油路17dの途中に潤滑油を一時的に保持する潤滑油保持空間17eとを有する。 The curved plate 17 is held by the first eccentric portion 16a by a rolling bearing 32 so as to be relatively rotatable. That is, the rolling bearing 32 is an eccentric bearing that supports the curved plate 17 rotatably with respect to the first eccentric portion 16a. And the revolving motion centering on the rotating shaft center of the input side rotation member 14 is performed. Referring to FIG. 2, the curved plate 17 includes first and second through holes 17 a and 17 b that penetrate in the thickness direction, and a plurality of waveforms 17 c that are constituted by trochoidal curves such as epitrochoid on the outer periphery. The oil passage 17d extends in the radial direction inside, and the lubricating oil holding space 17e that temporarily holds the lubricating oil in the middle of the oil passage 17d.
 第1の貫通孔17aは、曲線板17の中央部に形成されており、第1の偏心部16aおよび転がり軸受32を受け入れる。第2の貫通孔17bは、曲線板17の自転軸心を中心とする円周上に等間隔に複数個設けられており、第1および第2のキャリア24,25に保持される内ピン19,20を受入れる。波形17cは、減速機ハウジング13に保持される外ピン21に係合して、曲線板17の回転を減速機ハウジング13に伝達する。なお、曲線板18も同様の構成であって、転がり軸受33によって第2の偏心部16bに回転自在に保持されている。 The first through hole 17a is formed at the center of the curved plate 17, and receives the first eccentric portion 16a and the rolling bearing 32. A plurality of second through holes 17b are provided at equal intervals on the circumference centered on the rotation axis of the curved plate 17, and the inner pins 19 held by the first and second carriers 24, 25 are provided. , 20. The waveform 17 c engages with the outer pin 21 held by the speed reducer housing 13 and transmits the rotation of the curved plate 17 to the speed reducer housing 13. The curved plate 18 has the same configuration, and is rotatably held by the second eccentric portion 16b by the rolling bearing 33.
 油路17dは、第1の貫通孔17aから曲線板17の外周面に向かって延びている。なお、油路17dの位置は特に限定されないが、図2に示すように、第2の貫通孔17bを通過するように設けるのが望ましい。これにより、曲線板17と内ピン19,20との接触部分に積極的に潤滑油を供給することができる。また、油路17dの径方向外側の端部は、波形17cの谷部分に形成するのが望ましい。曲線板17と外ピン21との係合時に破損等するのを防止するためである。 The oil passage 17 d extends from the first through hole 17 a toward the outer peripheral surface of the curved plate 17. Although the position of the oil passage 17d is not particularly limited, it is desirable to provide the oil passage 17d so as to pass through the second through hole 17b as shown in FIG. Thereby, lubricating oil can be positively supplied to the contact part between the curved plate 17 and the inner pins 19 and 20. Further, it is desirable that the radially outer end of the oil passage 17d be formed in a valley portion of the waveform 17c. This is to prevent damage or the like when the curved plate 17 and the outer pin 21 are engaged.
 さらに、油路17dから分岐する潤滑油保持空間17eを設けることにより、十分な量の潤滑油が供給されている時には曲線板17内に潤滑油を保持しておき、潤滑油の供給量が低下した時には潤滑油保持空間17eに保持されている潤滑油を油路17dに放出することができる。これにより、より安定して潤滑油を供給することができる。 Further, by providing the lubricating oil holding space 17e branched from the oil passage 17d, the lubricating oil is held in the curved plate 17 when a sufficient amount of lubricating oil is supplied, and the supply amount of the lubricating oil decreases. In this case, the lubricating oil retained in the lubricating oil retaining space 17e can be discharged to the oil passage 17d. Thereby, lubricating oil can be supplied more stably.
 転がり軸受32は、偏心部16aの外径面に嵌合し、その外径面に内側軌道面を有する内輪部材32aと、曲線板17の貫通孔17aの内径面に直接形成された外側軌道面と、内側軌道面および外側軌道面の間に配置される複数の円筒ころ32bと、隣接する円筒ころ32bの間隔を保持する保持器32cとを備える円筒ころ軸受である。転がり軸受33も同様の構成であるので、説明は省略する。 The rolling bearing 32 is fitted to the outer diameter surface of the eccentric portion 16a and has an inner race member 32a having an inner raceway surface on the outer diameter surface, and an outer raceway surface formed directly on the inner diameter surface of the through hole 17a of the curved plate 17. And a plurality of cylindrical rollers 32b disposed between the inner raceway surface and the outer raceway surface, and a retainer 32c that holds the interval between the adjacent cylindrical rollers 32b. Since the rolling bearing 33 has the same configuration, the description thereof is omitted.
 なお、2枚の曲線板17,18の中心点をGとすると、中心点Gは車輪11の中心位置と一致させているが、車輪11から鉄道車両駆動ユニット12に負荷されるモーメント荷重を極小化させるためには、中心点Gと車輪中心位置とをオフセットさせたほうがよい。これにより、構成部品(「曲線板17,18、内ピン19,20、および外ピン21等」を指す)が傾いて、接触部分に過大な負荷が生じるのを防止することができる。その結果、鉄道車両駆動ユニット12の回転がスムーズになると共に、耐久性が向上する。 If the center point of the two curved plates 17 and 18 is G, the center point G coincides with the center position of the wheel 11, but the moment load applied from the wheel 11 to the railway vehicle drive unit 12 is minimized. In order to achieve this, it is better to offset the center point G and the wheel center position. Thereby, it is possible to prevent the component parts (pointing to “ curve plates 17 and 18, inner pins 19 and 20, outer pins 21 and the like”) from being inclined and causing an excessive load on the contact portion. As a result, the rotation of the railway vehicle drive unit 12 becomes smooth and the durability is improved.
 また、2つ曲線板17,18の間には、複数の内ピン19,20に外接する外接リング36が配置されている。これにより、曲線板17,18の軸方向の動き量を規制している。なお、曲線板17,18と外接リング36とは滑り接触するので、互いに接触する壁面に研削加工を施す等するのが望ましい。また、この外接リング36の機能は、複数の内ピン19,20に内接する内接リング、または複数の外ピン21に内接する内接リングでも代替することができる。 Further, a circumscribed ring 36 that circumscribes the plurality of inner pins 19 and 20 is disposed between the two curved plates 17 and 18. As a result, the amount of movement of the curved plates 17 and 18 in the axial direction is restricted. Since the curved plates 17 and 18 and the circumscribed ring 36 are in sliding contact with each other, it is desirable to grind the wall surfaces in contact with each other. The function of the circumscribed ring 36 can be replaced by an inscribed ring inscribed in the plurality of inner pins 19 and 20 or an inscribed ring inscribed in the plurality of outer pins 21.
 内ピン19,20は、入力側回転部材14の回転軸心を中心とする円周軌道上に等間隔に複数個設けられている。また、曲線板17,18の第2の貫通孔17b,18bの内壁面に当接する位置(両持ち内ピン19では、大径部19aの位置)には、内ピン軸受19e,20eが取り付けられている。これにより、曲線板17,18と内ピン19,20との摩擦抵抗を低減することができる。なお、この実施形態における内ピン軸受19e,20eは、滑り軸受である。 A plurality of inner pins 19 and 20 are provided at equal intervals on a circumferential track centering on the rotation axis of the input side rotation member 14. Further, inner pin bearings 19e and 20e are attached to positions where the curved plates 17 and 18 are in contact with the inner wall surfaces of the second through holes 17b and 18b (the position of the large diameter portion 19a in the both-end inner pin 19). ing. Thereby, the frictional resistance between the curved plates 17 and 18 and the inner pins 19 and 20 can be reduced. The inner pin bearings 19e and 20e in this embodiment are sliding bearings.
 図4を参照して、内ピン19は、軸方向中央部に大径部19aと、軸方向両端部に大径部19aより直径が小さい第1および第2の小径部19b,19cと、大径部19aと第1および第2の小径部19b,19cの間に案内部19dとを含む。第1および第2の小径部19b,19cの外周面には、それぞれ雄ねじが形成されている。案内部19dの外径は、両持ち内ピン19を受け入れる孔24a,25aの内径と一致するように設定されており、第1および第2のキャリア24,25に対して内ピン19の径方向の位置決めをするために用いられる。 Referring to FIG. 4, the inner pin 19 includes a large diameter portion 19 a at the center in the axial direction, first and second small diameter portions 19 b and 19 c having a diameter smaller than the large diameter portion 19 a at both ends in the axial direction, A guide portion 19d is included between the diameter portion 19a and the first and second small diameter portions 19b and 19c. Male screws are formed on the outer peripheral surfaces of the first and second small diameter portions 19b and 19c, respectively. The outer diameter of the guide portion 19d is set to coincide with the inner diameters of the holes 24a and 25a for receiving the both-end inner pins 19, and the radial direction of the inner pins 19 with respect to the first and second carriers 24 and 25 It is used for positioning.
 この内ピン19は、第1および第2のキャリア24,25に両持ち支持される両持ち内ピンである。より具体的には、第1の小径部19bは、第1のキャリア24に直接固定されており、第2の小径部19cは、押圧固定手段(後述する)によって第2のキャリア25を大径部19aの端面に押し付けて固定されている。 The inner pin 19 is a both-end supported pin that is supported by the first and second carriers 24 and 25 at both ends. More specifically, the first small-diameter portion 19b is directly fixed to the first carrier 24, and the second small-diameter portion 19c has the second carrier 25 having a large diameter by pressing and fixing means (described later). It is pressed and fixed to the end surface of the part 19a.
 図5を参照して、内ピン20は、長手方向全域で直径が同一の単純円柱形状であって、軸方向一方側端部のみを第1のキャリア24に片持ち支持されている片持ち内ピンである。 Referring to FIG. 5, the inner pin 20 has a simple cylindrical shape having the same diameter in the entire longitudinal direction, and is cantilevered in which only one end in the axial direction is cantilevered by the first carrier 24. It is a pin.
 また、片持ち内ピン20には、その内部に潤滑油保持空間20aと、潤滑油保持空間20aから径方向に延びる貫通孔20bとが設けられている。同様に、内ピン軸受20eにも、径方向に貫通する貫通孔20fが設けられている。なお、貫通孔20b,20fの位置は特に限定されないが、図5に示すように、曲線板17,18の間の空間に対面する位置に設けるのが望ましい。 Also, the cantilevered inner pin 20 is provided with a lubricating oil holding space 20a and a through hole 20b extending in the radial direction from the lubricating oil holding space 20a. Similarly, the inner pin bearing 20e is also provided with a through hole 20f penetrating in the radial direction. The positions of the through holes 20b and 20f are not particularly limited, but are desirably provided at positions facing the space between the curved plates 17 and 18, as shown in FIG.
 潤滑油保持空間20aには潤滑油が保持されており、主に、内ピン20と内ピン軸受20eとの間、および内ピン軸受20eと曲線板17,18との接触部分に潤滑油を供給する。具体的には、十分な量の潤滑油が供給されている時には潤滑油保持空間20a内に潤滑油を保持しておき、潤滑油の供給量が低下したときには潤滑油保持空間20aに保持されている潤滑油を貫通孔20b,20fを通じて放出する。これにより、より安定して潤滑油を供給することができる。 Lubricating oil is held in the lubricating oil holding space 20a, and the lubricating oil is mainly supplied between the inner pin 20 and the inner pin bearing 20e and the contact portion between the inner pin bearing 20e and the curved plates 17 and 18. To do. Specifically, the lubricating oil is held in the lubricating oil holding space 20a when a sufficient amount of lubricating oil is supplied, and is held in the lubricating oil holding space 20a when the supply amount of the lubricating oil decreases. The lubricating oil is discharged through the through holes 20b and 20f. Thereby, lubricating oil can be supplied more stably.
 さらに、潤滑油保持空間20aに潤滑油を含浸した多孔質部材(図示省略)を格納してもよい。これにより、貫通孔20b,20fを通じて徐々に潤滑油が染み出すので、長期間に亘って安定して潤滑油を供給することができる。なお、多孔質部材としては、焼結金属や発泡グリース等が挙げられる。 Further, a porous member (not shown) impregnated with lubricating oil may be stored in the lubricating oil holding space 20a. Thereby, since the lubricating oil oozes out through the through holes 20b and 20f, the lubricating oil can be stably supplied over a long period of time. Examples of the porous member include sintered metal and foamed grease.
 なお、上記の実施形態においては、片持ち内ピン20にのみ潤滑油保持空間20aおよび貫通孔20bを設け、内ピン軸受20eにのみ貫通孔20fを設けた例を示したが、両持ち内ピン19および内ピン軸受19eも同様の構成とすることができる。また、内ピン19,20だけに留まらず、外ピン21および外ピン軸受21aをも同様の構成とすることができる。 In the above embodiment, the lubricant holding space 20a and the through hole 20b are provided only in the cantilever inner pin 20, and the through hole 20f is provided only in the inner pin bearing 20e. 19 and the inner pin bearing 19e can also have the same configuration. Further, not only the inner pins 19 and 20 but also the outer pin 21 and the outer pin bearing 21a can be configured similarly.
 なお、第2の貫通孔17b,18bの直径は、内ピン19,20の直径(「内ピン軸受19e,20eを含む最大外径」を指す)と比較して所定分だけ大きく設定されている。その結果、内ピン19は、曲線板17,18が入力側回転部材14の回転に伴って回転しようとする際に、曲線板の公転運動を許容しつつ、自転運動を阻止する自転規制部材として機能する。 The diameters of the second through holes 17b and 18b are set to be larger by a predetermined amount than the diameters of the inner pins 19 and 20 (referring to “the maximum outer diameter including the inner pin bearings 19e and 20e”). . As a result, the inner pin 19 is a rotation restricting member that prevents the rotation movement while allowing the revolution movement of the curved plate when the curved plates 17 and 18 are about to rotate as the input side rotation member 14 rotates. Function.
 外ピン21は、入力側回転部材14の回転軸心を中心とする円周軌道上に等間隔に複数個設けられている。この外ピン21は、その中央部が減速機ハウジングに保持されると共に、両端部が車軸軸受26,27に当接して固定されている。そして、外ピン21は、曲線板17,18の波形17c,18cに係合して、減速機ハウジング13を入力側回転部材14に対して減速回転させる。 A plurality of outer pins 21 are provided at equal intervals on a circumferential track centering on the rotation axis of the input side rotating member 14. The center portion of the outer pin 21 is held by the reduction gear housing, and both end portions thereof are fixed in contact with the axle bearings 26 and 27. The outer pin 21 engages with the waveforms 17 c and 18 c of the curved plates 17 and 18 to cause the speed reducer housing 13 to rotate at a reduced speed with respect to the input side rotation member 14.
 さらに、曲線板17,18の波形17c,18cに当接する位置には、外ピン軸受21aが取り付けられている。これにより、曲線板17,18と外ピン21との摩擦抵抗を低減することができる。なお、この実施形態に係る外ピン軸受21aは、滑り軸受である。 Furthermore, an outer pin bearing 21a is attached at a position where the curved plates 17 and 18 come into contact with the waveforms 17c and 18c. Thereby, the frictional resistance between the curved plates 17 and 18 and the outer pin 21 can be reduced. The outer pin bearing 21a according to this embodiment is a sliding bearing.
 カウンタウェイト22は、重心と異なる位置に入力側回転部材14を受け入れる貫通孔を有し、偏心部16aの偏心運動による不釣合い慣性偶力を打消す位相、つまり偏心部16aと180°位相を変えて入力側回転部材14に嵌合固定されている。つまり、カウンタウェイト22は、偏心部16aの偏心運動によって生じる不均一な荷重を吸収するバランス調整機構として機能する。なお、カウンタウェイト23も同様の構成であって、偏心部16bの偏心運動による不釣合い慣性偶力を打ち消す位相で入力側回転部材14に嵌合固定されている。 The counterweight 22 has a through-hole that receives the input side rotation member 14 at a position different from the center of gravity, and changes the phase that cancels the unbalanced inertia couple due to the eccentric movement of the eccentric portion 16a, that is, changes the phase by 180 ° from the eccentric portion 16a. The input side rotating member 14 is fixedly fitted. That is, the counterweight 22 functions as a balance adjustment mechanism that absorbs a non-uniform load generated by the eccentric motion of the eccentric portion 16a. The counterweight 23 has the same configuration, and is fitted and fixed to the input-side rotating member 14 at a phase that cancels the unbalanced inertia couple caused by the eccentric motion of the eccentric portion 16b.
 図3を参照して、2枚の曲線板17,18の中心点Gの右側について、中心点Gと曲線板17の中心との距離をL、曲線板17、転がり軸受32、および偏心部16aの質量の和をm、曲線板17の重心の回転軸心からの偏心量をεとし、中心点Gとカウンタウェイト22との距離をL、カウンタウェイト22の質量をm、カウンタウェイト22の重心の回転軸心からの偏心量をεとすると、L×m×ε=L×m×εを満たす関係となっている。また、図3の中心点Gの左側の曲線板18とカウンタウェイト23との間にも同様の関係が成立する。 Referring to FIG. 3, regarding the right side of the center point G of the two curved plates 17 and 18, the distance between the center point G and the center of the curved plate 17 is L 1 , the curved plate 17, the rolling bearing 32, and the eccentric portion. The sum of the mass of 16a is m 1 , the amount of eccentricity of the center of gravity of the curved plate 17 from the rotational axis is ε 1 , the distance between the center point G and the counter weight 22 is L 2 , and the mass of the counter weight 22 is m 2 , When the amount of eccentricity of the counterweight 22 from the center of rotation of the center of gravity of the counterweight 22 is ε 2 , the relationship satisfies L 1 × m 1 × ε 1 = L 2 × m 2 × ε 2 . A similar relationship is established between the curved plate 18 on the left side of the center point G and the counterweight 23 in FIG.
 第1および第2のキャリア24,25は、鉄道車両本体に連結固定されており、曲線板17,18に対面する壁面に内ピン19,20を保持すると共に、外径面に嵌合固定された第1および第2の車軸軸受26,27によって減速機ハウジング13を、内径面に嵌合固定された転がり軸受30a,30bによって入力側回転部材14をそれぞれ回転自在に支持している。 The first and second carriers 24 and 25 are connected and fixed to the railway vehicle body, hold the inner pins 19 and 20 on the wall surfaces facing the curved plates 17 and 18, and are fitted and fixed to the outer diameter surface. The reduction gear housing 13 is rotatably supported by the first and second axle bearings 26 and 27, and the input side rotating member 14 is rotatably supported by the rolling bearings 30a and 30b fitted and fixed to the inner diameter surface.
 第1のキャリア24は、両持ち内ピン19の第1の小径部19bを受け入れる孔24aと、片持ち内ピン20の軸方向一方側端部を受け入れる孔24bとを有する。なお、孔24aは、内壁面に雌ねじが形成されているねじ穴である。一方、孔24bは、単純孔(ねじが形成されていない孔)である。 The first carrier 24 has a hole 24a for receiving the first small-diameter portion 19b of the both-end inner pin 19, and a hole 24b for receiving one end portion in the axial direction of the cantilever inner pin 20. The hole 24a is a screw hole in which an internal thread is formed on the inner wall surface. On the other hand, the hole 24b is a simple hole (a hole in which no screw is formed).
 第2のキャリア25は、両持ち内ピン19の第2の小径部19cを受け入れる貫通孔25aと、片持ち内ピン20の軸方向他方側端部を受け入れる孔25bとを有する。なお、貫通孔25aの直径は第2の小径部19cより、孔25bの直径は片持ち内ピン20のよりそれぞれ大きく設定されている。 The second carrier 25 has a through hole 25a that receives the second small-diameter portion 19c of the both-end inner pin 19, and a hole 25b that receives the other end portion in the axial direction of the cantilever inner pin 20. The diameter of the through hole 25a is set larger than that of the second small diameter portion 19c, and the diameter of the hole 25b is set larger than that of the cantilever inner pin 20.
 ここで、内ピン19,20を第1および第2のキャリア24,25に取り付ける方法を説明する。まず、内ピン19,20を第1のキャリア24に固定する。具体的には、両持ち内ピン19の第1の小径部19bを孔24aに螺合固定すると共に、片持ち内ピン20の軸方向一方側端部を孔24bに圧入固定する。 Here, a method of attaching the inner pins 19 and 20 to the first and second carriers 24 and 25 will be described. First, the inner pins 19 and 20 are fixed to the first carrier 24. Specifically, the first small-diameter portion 19b of the both-end inner pin 19 is screwed and fixed to the hole 24a, and one end portion in the axial direction of the cantilever inner pin 20 is press-fitted and fixed to the hole 24b.
 なお、内ピン19,20と第1のキャリア24との固定方法は、上記の例に限ることなく、例えば、両持ち内ピン19の一方側端部を孔24aに圧入し、片持ち内ピン20の一方側端部と孔24bとにねじを形成して両者を螺合してもよい。 The fixing method of the inner pins 19 and 20 and the first carrier 24 is not limited to the above example. For example, one end of the both-end inner pin 19 is press-fitted into the hole 24a, and the cantilever inner pin is fixed. A screw may be formed on one side end of 20 and the hole 24b, and both may be screwed together.
 次に、内ピン19,20それぞれに内ピン軸受19e,20eを嵌め入れる。 Next, the inner pin bearings 19e and 20e are fitted into the inner pins 19 and 20, respectively.
 そして、両持ち内ピン19の第2の小径部19cが貫通孔25aに、片持ち内ピン20の軸方向他方側端部が孔25bにそれぞれ嵌まり込むように第2のキャリア25を嵌め入れる。このとき、内ピン19,20と貫通孔25a,25bとの間には隙間が設けられているので、ある程度の製造誤差や取付け誤差を許容することができる。 Then, the second carrier 25 is fitted so that the second small diameter portion 19c of the both-end inner pin 19 fits into the through hole 25a and the other axial end of the cantilevered inner pin 20 fits into the hole 25b. . At this time, since a gap is provided between the inner pins 19 and 20 and the through holes 25a and 25b, a certain amount of manufacturing error and mounting error can be allowed.
 最後に、両持ち内ピン19を押圧固定手段によって固定する。この実施形態における押圧固定手段は、第2の小径部19cに設けられた雄ねじと、これに螺合するナット37とで構成される。つまり、第2の小径部19cにナット37を螺合すると、第2のキャリア25が大径部19aに押し付けられるので、両持ち内ピン19が第1および第2のキャリア24,25に対して強固に固定される。 Finally, the both-end inner pin 19 is fixed by the press fixing means. The pressing and fixing means in this embodiment includes a male screw provided in the second small diameter portion 19c and a nut 37 that is screwed into the male screw. That is, when the nut 37 is screwed into the second small diameter portion 19c, the second carrier 25 is pressed against the large diameter portion 19a, so that the both-end inner pin 19 is against the first and second carriers 24, 25. It is firmly fixed.
 このとき、案内部19dによって、両持ち内ピン19が径方向に位置決めされる。なお、図4に示す案内部19dは円柱形状であるが、これに限らず、任意の形状を採用することができる。例えば、案内部を両持ち内ピン19の端部に向かって直径が徐々に小さくなる円錐形状とし、孔24a,25aの両持ち内ピン19対面する側の開口部も案内部の形状に対応する円錐面とすれば、さらに簡単に位置決めを行うことができる。 At this time, the doubly-supported inner pin 19 is positioned in the radial direction by the guide portion 19d. In addition, although the guide part 19d shown in FIG. 4 is cylindrical, not only this but arbitrary shapes are employable. For example, the guide portion has a conical shape whose diameter gradually decreases toward the end of the both-end inner pin 19, and the openings on the side of the holes 24a and 25a facing the both-end inner pin 19 also correspond to the shape of the guide portion. If a conical surface is used, positioning can be performed more easily.
 上記のようにすることで、鉄道車両駆動ユニット12の組立性が向上する。なお、組立性向上および部品点数の削減等の観点からは、両持ち内ピン19を片持ち内ピン20よりも少なくするのが望ましい。ただし、内ピン19,20には曲線板17,18から荷重が負荷されるので、両持ち内ピン19および片持ち内ピン20は、それぞれ等間隔に配置するのが望ましい。 As described above, the assembly of the railway vehicle drive unit 12 is improved. It should be noted that it is desirable that the number of both-end supported pins 19 be smaller than that of the cantilevered inner pins 20 from the viewpoint of improving assemblability and reducing the number of parts. However, since loads are applied to the inner pins 19 and 20 from the curved plates 17 and 18, it is desirable that the both-end inner pins 19 and the cantilevered inner pins 20 are arranged at equal intervals.
 潤滑油循環機構は、入力側回転部材14の内部を軸方向に延びる軸心油路14aと、軸心油路14aから入力側回転部材14の外径面に向かって延び、複数箇所に設けられる潤滑油供給口14b~14eと、第2のキャリア25に設けられた潤滑油排出口25cと、潤滑油排出口25cおよび軸心油路14aを接続し、潤滑油排出口25cから排出された潤滑油を軸心油路14aに還流する循環油路34と、潤滑油排出口25cから排出された潤滑油を一時的に貯留する潤滑油貯留部35とを主に備える。 The lubricating oil circulation mechanism includes an axial oil passage 14a that extends in the axial direction inside the input-side rotating member 14, and extends from the axial oil passage 14a toward the outer diameter surface of the input-side rotating member 14, and is provided at a plurality of locations. The lubricating oil supply ports 14b to 14e, the lubricating oil discharge port 25c provided in the second carrier 25, the lubricating oil discharge port 25c and the shaft center oil passage 14a are connected, and the lubricating oil discharged from the lubricating oil discharge port 25c is connected. A circulating oil passage 34 for returning the oil to the shaft center oil passage 14a and a lubricating oil reservoir 35 for temporarily storing the lubricating oil discharged from the lubricating oil outlet 25c are mainly provided.
 潤滑油供給口14b,14eは、偏心部材16を保持する位置に設けられている。潤滑油供給口14b,14eは、互いに異なる方向を指向(一方は上向き、他方は下向き)するように配置されている。また、偏心部材16および転がり軸受32,33の内輪32a,33aには、潤滑油供給口14b,14eに連通する貫通孔16c,32d,33dが設けられている。この貫通孔32d,33dは、内輪32a,32bの軌道面に位置する。潤滑油は、潤滑油供給口14b,14eと、貫通孔16c,32d,33dとを通り、鉄道車両駆動ユニット12内に供給される。 Lubricating oil supply ports 14 b and 14 e are provided at positions where the eccentric member 16 is held. The lubricating oil supply ports 14b and 14e are disposed so as to be directed in different directions (one is directed upward and the other is directed downward). Further, the eccentric member 16 and the inner rings 32a, 33a of the rolling bearings 32, 33 are provided with through holes 16c, 32d, 33d communicating with the lubricating oil supply ports 14b, 14e. The through holes 32d and 33d are located on the raceway surfaces of the inner rings 32a and 32b. The lubricating oil is supplied into the railway vehicle drive unit 12 through the lubricating oil supply ports 14b, 14e and the through holes 16c, 32d, 33d.
 ここで、潤滑油供給口14b,14eは、第1の偏心部16aおよび第2の偏心部16bのそれぞれの最大偏心位置と180°異なる位置、すなわち、カウンタウェイト22,23と同位相に設けることが好ましい。偏心部材16は、偏心していることから、最大偏心位置に大きな負荷がかかってしまう。このような最大偏心位置に、潤滑油供給口14b,14eを設けると、内輪32a,32bの軌道面において、孔を起点とした剥離等を生じる虞がある。そこで、潤滑油供給口14b,14eを、第1の偏心部16aおよび第2の偏心部16bのそれぞれの最大偏心位置と180°異なる位置に設けることにより、偏心部材16において、負荷の大きくかかる部分を避けて、潤滑油供給口14b,14eを設ける。その結果、潤滑油供給口14b,14eを起点とした剥離等を適切に防止することができる。 Here, the lubricating oil supply ports 14b and 14e are provided at positions that are 180 ° different from the maximum eccentric positions of the first eccentric portion 16a and the second eccentric portion 16b, that is, in the same phase as the counterweights 22 and 23. Is preferred. Since the eccentric member 16 is eccentric, a large load is applied to the maximum eccentric position. If the lubricating oil supply ports 14b and 14e are provided at such maximum eccentric position, there is a risk of peeling or the like starting from the holes on the raceways of the inner rings 32a and 32b. Therefore, by providing the lubricating oil supply ports 14b and 14e at positions different from the maximum eccentric positions of the first eccentric portion 16a and the second eccentric portion 16b by 180 °, a portion of the eccentric member 16 that is heavily loaded. The lubricating oil supply ports 14b and 14e are provided. As a result, it is possible to appropriately prevent peeling and the like starting from the lubricating oil supply ports 14b and 14e.
 また、潤滑油供給口14c,14dは、入力側回転部材14を支持する転がり軸受30a,30bの近傍に設けられている。具体的には、潤滑油供給口14c,14dは、転がり軸受30a,30bの偏心部材16側に設けられている。潤滑油供給口14c,14dは、互いに異なる方向を指向(一方は上向き、他方は下向き)するように配置されている。潤滑油は、潤滑油供給口14c,14dを通り、鉄道車両駆動ユニット12内に供給される。 Further, the lubricating oil supply ports 14c and 14d are provided in the vicinity of the rolling bearings 30a and 30b that support the input-side rotating member 14. Specifically, the lubricating oil supply ports 14c and 14d are provided on the eccentric member 16 side of the rolling bearings 30a and 30b. The lubricating oil supply ports 14c and 14d are disposed so as to be directed in different directions (one is directed upward and the other is directed downward). The lubricating oil is supplied into the railway vehicle drive unit 12 through the lubricating oil supply ports 14c and 14d.
 潤滑油供給口14b~14eは、循環油路34側から軸方向に、潤滑油供給口14d、潤滑油供給口14b、潤滑油供給口14e、潤滑油供給口14cの順に位置する。すなわち、潤滑油供給口14dおよび潤滑油供給口14bは、循環油路34から近い第1の位置に設けられており、潤滑油供給口14eおよび潤滑油供給口14cは、循環油路34から遠い第2の位置に設けられている。そして、潤滑油供給口14b~14eの径は、循環油路34側から順に大きくなるように設けられている。例えば、潤滑油供給口14dの径は、2mmであって、潤滑油供給口14bの径は、3mmであって、潤滑油供給口14eの径は、4mmであって、潤滑油供給口14cの径は、5mmである。 The lubricating oil supply ports 14b to 14e are positioned in the order of the lubricating oil supply port 14d, the lubricating oil supply port 14b, the lubricating oil supply port 14e, and the lubricating oil supply port 14c in the axial direction from the circulating oil passage 34 side. That is, the lubricating oil supply port 14d and the lubricating oil supply port 14b are provided at a first position close to the circulating oil passage 34, and the lubricating oil supply port 14e and the lubricating oil supply port 14c are far from the circulating oil passage 34. It is provided at the second position. The diameters of the lubricating oil supply ports 14b to 14e are provided so as to increase in order from the circulating oil passage 34 side. For example, the diameter of the lubricating oil supply port 14d is 2 mm, the diameter of the lubricating oil supply port 14b is 3 mm, the diameter of the lubricating oil supply port 14e is 4 mm, and the diameter of the lubricating oil supply port 14c is The diameter is 5 mm.
 また、この実施形態における潤滑油排出口25cは、第2の車軸軸受27と密封部材29との間から第2のキャリア25の内部を通って、鉄道車両駆動ユニット12の外部へ潤滑油を排出する。 Further, the lubricating oil discharge port 25c in this embodiment discharges the lubricating oil from between the second axle bearing 27 and the sealing member 29 to the outside of the railway vehicle drive unit 12 through the inside of the second carrier 25. To do.
 さらに、この実施形態における潤滑油貯留部35は、鉄道車両駆動ユニット12の外部に配置した例を示したが、これに限ることなく、例えば、第2のキャリア25の内部に配置してもよい。また、この潤滑油貯留部35に貯留される潤滑油を濾過する濾過装置(図示省略)を取り付けてもよい。 Furthermore, although the example which has arrange | positioned the lubricating oil storage part 35 in this embodiment outside the railway vehicle drive unit 12 was shown, you may arrange | position not only to this but the inside of the 2nd carrier 25, for example. . Further, a filtration device (not shown) for filtering the lubricant stored in the lubricant storage 35 may be attached.
 上記構成の鉄道車両駆動ユニット12の作動原理を詳しく説明する。 The operating principle of the railway vehicle drive unit 12 having the above configuration will be described in detail.
 まず、駆動源の回転に伴って入力側回転部材14および偏心部材16が一体回転する。このとき、曲線板17,18も回転しようとするが、第2の貫通孔17b,18bに挿通する内ピン19,20に自転運動を阻止され、公転運動のみを行うことになる。つまり、曲線板17,18は、入力側回転部材14の回転軸心を中心とする円周軌道上を平行移動する。 First, the input side rotation member 14 and the eccentric member 16 rotate integrally with the rotation of the drive source. At this time, the curved plates 17 and 18 also try to rotate, but the inner pins 19 and 20 inserted through the second through holes 17b and 18b are prevented from rotating, and only revolving motion is performed. In other words, the curved plates 17 and 18 move in parallel on a circumferential path around the rotation axis of the input side rotating member 14.
 曲線板17,18が公転運動すると、波形17c,18cと外ピン21とが係合し、減速機ハウジング13および車輪11が入力側回転部材14と同一方向に一体回転する。このとき、曲線板17,18から減速機ハウジング13に伝達される回転は減速され、高トルクになっている。 When the curved plates 17 and 18 revolve, the waveforms 17c and 18c and the outer pin 21 are engaged, and the speed reducer housing 13 and the wheel 11 rotate integrally in the same direction as the input side rotating member 14. At this time, the rotation transmitted from the curved plates 17 and 18 to the speed reducer housing 13 is decelerated to a high torque.
 具体的には、外ピン21の数をZ、曲線板17,18の波形の数をZとすると、鉄道車両駆動ユニット12の減速比はZ/(Z-Z)で算出され、さらに減速比をnとすると、図1の実施形態における速度比は1/(n+1)で算出される。図2に示す実施形態では、Z=24、Z=22であるので、減速比は11となり、速度比は1/12となる。したがって、低トルク、高回転型の駆動源を採用した場合でも、車輪11に必要なトルクを伝達することが可能となる。 Specifically, when the number of outer pins 21 Z A, the number of waveforms of the curved plates 17 and 18 and Z B, the reduction ratio of the railway vehicle drive unit 12 is calculated by Z B / (Z A -Z B ) Further, if the reduction ratio is n, the speed ratio in the embodiment of FIG. 1 is calculated by 1 / (n + 1). In the embodiment shown in FIG. 2, since Z A = 24 and Z B = 22, the reduction ratio is 11, and the speed ratio is 1/12. Therefore, even when a low torque, high rotation type drive source is employed, it is possible to transmit the necessary torque to the wheels 11.
 このように、多段構成とすることなく大きな減速比を得ることができる減速機構15を採用することにより、コンパクトで高減速比の鉄道車両駆動ユニット12を得ることができる。また、内ピン19,20および外ピン21の曲線板17,18に当接する位置に内ピン軸受19e,20eおよび外ピン軸受21aを設けたことにより、接触部分の摩擦抵抗が低減される。その結果、鉄道車両駆動ユニット12の伝達効率が向上する。 Thus, by adopting the reduction mechanism 15 that can obtain a large reduction ratio without using a multi-stage configuration, a compact and high reduction ratio railway vehicle drive unit 12 can be obtained. Further, by providing the inner pin bearings 19e, 20e and the outer pin bearing 21a at positions where they contact the curved plates 17, 18 of the inner pins 19, 20 and the outer pin 21, the frictional resistance of the contact portion is reduced. As a result, the transmission efficiency of the railway vehicle drive unit 12 is improved.
 次に、上記構成の鉄道車両駆動ユニット12の潤滑油の流れを詳しく説明する。まず、循環油路34側から軸方向に軸心油路14aを流れる潤滑油は、入力側回転部材14の回転に伴う遠心力によって潤滑油供給口14b~14eから流出する。このとき、複数の潤滑油供給口14b~14eのうち、潤滑油供給口14bおよび潤滑油供給口14eと、潤滑油供給口14dおよび潤滑油供給口14cとを互いに異なる方向を指向(一方は上向き、他方は下向き)するように配置しているので、潤滑油を満遍なく供給することができる。また、潤滑油供給口14b,14eは、偏心部材16を保持する位置に設けているので、転がり軸受32,33に積極的に潤滑油を供給することができる。また、潤滑油供給口14d,14cは、転がり軸受30a,30bの近傍に設けているので、転がり軸受30a,30bに積極的に潤滑油を供給することができる。また、潤滑油供給口14b~14eの径は、循環油路34側から順に大きくなるように設けているので、循環油路34から遠い第2の位置に設けられている潤滑油供給口14c,14eであっても、適切な量の潤滑油を流出させることができる。その結果、潤滑油を軸方向に満遍なく供給することができ、循環油路34から遠くに位置する転がり軸受32,30aであっても、温度上昇を適切に防止することができる。 Next, the flow of lubricating oil in the railway vehicle drive unit 12 having the above configuration will be described in detail. First, the lubricating oil flowing in the axial center oil passage 14a in the axial direction from the circulating oil passage 34 flows out from the lubricating oil supply ports 14b to 14e due to the centrifugal force accompanying the rotation of the input side rotating member 14. At this time, among the plurality of lubricating oil supply ports 14b to 14e, the lubricating oil supply port 14b and the lubricating oil supply port 14e and the lubricating oil supply port 14d and the lubricating oil supply port 14c are directed in different directions (one is upward) , The other is directed downward), so that the lubricating oil can be supplied evenly. Further, since the lubricating oil supply ports 14b and 14e are provided at positions where the eccentric member 16 is held, the lubricating oil can be positively supplied to the rolling bearings 32 and 33. Further, since the lubricating oil supply ports 14d and 14c are provided in the vicinity of the rolling bearings 30a and 30b, the lubricating oil can be positively supplied to the rolling bearings 30a and 30b. Further, since the diameters of the lubricating oil supply ports 14b to 14e are provided so as to increase in order from the circulating oil passage 34 side, the lubricating oil supply ports 14c and 14c provided at the second position far from the circulating oil passage 34 are provided. Even if it is 14e, an appropriate quantity of lubricating oil can be made to flow out. As a result, the lubricating oil can be uniformly supplied in the axial direction, and even the rolling bearings 32 and 30a located far from the circulating oil passage 34 can appropriately prevent temperature rise.
 鉄道車両駆動ユニット12内部の潤滑油にはさらに遠心力が作用するので、転がり軸受30a,30b、転がり軸受32,33の内側軌道面、外側軌道面、曲線板17,18と内ピン19,20との当接部分、曲線板17,18と外ピン21との当接部分、および第1および第2の車軸軸受26,27等を潤滑しながら径方向外側に移動する。また、潤滑油供給口14b~14eから供給される潤滑油の一部は、曲線板17,18に設けられた油路17d,18dを通って、各部に供給される。さらに油路17d,18dを通過する潤滑油の一部は、潤滑油保持空間17e,18e,20aに保持される。 Since centrifugal force further acts on the lubricating oil inside the railway vehicle drive unit 12, the inner and outer race surfaces of the rolling bearings 30 a and 30 b and the rolling bearings 32 and 33, the curved plates 17 and 18 and the inner pins 19 and 20. And the first and second axle bearings 26 and 27 and the like are moved radially outward while being lubricated. A part of the lubricating oil supplied from the lubricating oil supply ports 14b to 14e is supplied to each part through oil passages 17d and 18d provided in the curved plates 17 and 18. Further, part of the lubricating oil that passes through the oil passages 17d and 18d is held in the lubricating oil holding spaces 17e, 18e, and 20a.
 そして、車軸軸受26,27と密封部材28,29との間の空間に到達した潤滑油は、潤滑油排出口25cから鉄道車両駆動ユニット12の外部へ排出され、潤滑油貯留部35に一時的に貯留された後に循環油路34を経由して軸心油路14aに還流する。 The lubricating oil that has reached the space between the axle bearings 26, 27 and the sealing members 28, 29 is discharged from the lubricating oil discharge port 25 c to the outside of the railway vehicle drive unit 12 and temporarily stored in the lubricating oil reservoir 35. And then recirculates to the axial oil passage 14a via the circulation oil passage 34.
 このとき、潤滑油排出口25cを第1または第2のキャリア24,25の下部領域に配置することで、重力の力を利用して潤滑油を排出することができるので、潤滑油の循環がスムーズとなる。または、潤滑油循環機構にポンプ(図示省略)を設けて、潤滑油を強制的に循環させるようにしてもよい。これにより、潤滑油の循環がさらにスムーズとなる。 At this time, by arranging the lubricating oil discharge port 25c in the lower region of the first or second carrier 24, 25, the lubricating oil can be discharged using the force of gravity. Smooth. Alternatively, a pump (not shown) may be provided in the lubricating oil circulation mechanism to forcibly circulate the lubricating oil. Thereby, circulation of lubricating oil becomes still smoother.
 このように、入力側回転部材14から鉄道車両駆動ユニット12内に潤滑油を供給することにより、入力側回転部材14周辺の潤滑油量不足を解消することができる。また、潤滑油排出口25cから潤滑油を排出することによって、攪拌抵抗を抑えて鉄道車両駆動ユニット12のトルク損失を低減することができる。 Thus, by supplying the lubricating oil from the input side rotating member 14 into the railway vehicle drive unit 12, the shortage of the lubricating oil amount around the input side rotating member 14 can be solved. Further, by discharging the lubricating oil from the lubricating oil discharge port 25c, it is possible to suppress the stirring resistance and reduce the torque loss of the railway vehicle drive unit 12.
 また、高速回転時においては、排出しきれない潤滑油を一時的に潤滑油貯留部35に貯留しておくことができる。その結果、鉄道車両駆動ユニット12のトルク損失の増加を防止することができる。一方、低速回転時においては、遠心力が小さくなって潤滑油排出口25cに到達する潤滑油量が少なくなっても、潤滑油貯留部35に貯留されている潤滑油を軸心油路14aに還流することができる。その結果、鉄道車両駆動ユニット12に安定して潤滑油を供給することができる。 Also, during high-speed rotation, the lubricating oil that cannot be discharged can be temporarily stored in the lubricating oil reservoir 35. As a result, an increase in torque loss of the railway vehicle drive unit 12 can be prevented. On the other hand, at the time of low-speed rotation, even if the centrifugal force becomes small and the amount of lubricating oil reaching the lubricating oil discharge port 25c decreases, the lubricating oil stored in the lubricating oil reservoir 35 is transferred to the shaft center oil passage 14a. It can be refluxed. As a result, the lubricating oil can be stably supplied to the railway vehicle drive unit 12.
 さらに、入力側回転部材14の回転数に応じて、軸心油路14aに還流する潤滑油量を変化させることにより、鉄道車両駆動ユニット12を構成する各部の温度上昇を適切に防止することができる。具体的には、高速回転時には、軸心油路14aに還流する潤滑油量を多くして、低速回転時には、軸心油路14aに還流する潤滑油量を少なくする。これにより、鉄道車両駆動ユニット12の長寿命化を図ることができる。 Further, by changing the amount of lubricating oil returning to the shaft center oil passage 14a according to the rotational speed of the input side rotating member 14, it is possible to appropriately prevent the temperature rise of each part constituting the railway vehicle drive unit 12. it can. Specifically, the amount of lubricating oil returning to the shaft center oil passage 14a is increased during high speed rotation, and the amount of lubricating oil returning to the shaft center oil passage 14a is decreased during low speed rotation. As a result, the service life of the railway vehicle drive unit 12 can be extended.
 さらに、潤滑油貯留部35に濾過装置を設ければ、鉄道車両駆動ユニット12から排出される潤滑油から摩耗粉等の異物を取り除いて循環させることができるので、長期間に亘って高い潤滑性能を維持することが可能となる。 Further, if a lubricating device is provided in the lubricating oil reservoir 35, foreign matter such as abrasion powder can be removed from the lubricating oil discharged from the railway vehicle drive unit 12 and circulated, so that high lubricating performance can be achieved over a long period of time. Can be maintained.
 なお、上記の実施形態においては、複数の潤滑油供給口14b~14eの径を、循環油路34側から順に大きくなるように設けることにより、潤滑油を軸方向に満遍なく供給する例について説明したが、これに限ることなく、第2の位置に設けられる潤滑油供給口14e,14cの数を、第1の位置に設けられる潤滑油供給口14d,14bの数より多くすることにより、潤滑油を軸方向に満遍なく供給してもよい。 In the above embodiment, an example has been described in which the lubricating oil is uniformly supplied in the axial direction by providing the diameters of the plurality of lubricating oil supply ports 14b to 14e so as to increase in order from the circulating oil passage 34 side. However, the number of the lubricating oil supply ports 14e and 14c provided in the second position is not limited to this, and the number of the lubricating oil supply ports 14d and 14b provided in the first position is increased. May be supplied evenly in the axial direction.
 図6~図9は、入力側回転部材14を軸方向に垂直な方向に切断した場合の断面図であって、潤滑油供給口14b~14eを示す図である。図6および図7を参照して、循環油路34から近い第1の位置に設けられる潤滑油供給口14d,14bの数は、1つである。また、図8および図9を参照して、循環油路34から遠い第2の位置に設けられる潤滑油供給口14e,14cの数は、2つである。これにより、潤滑油を軸方向に満遍なく供給することができ、循環油路34から遠くに位置する転がり軸受32,30aであっても、温度上昇を適切に防止することができる。 6 to 9 are cross-sectional views when the input side rotating member 14 is cut in a direction perpendicular to the axial direction, showing the lubricating oil supply ports 14b to 14e. Referring to FIGS. 6 and 7, the number of lubricating oil supply ports 14d and 14b provided at the first position close to circulating oil passage 34 is one. 8 and 9, the number of lubricating oil supply ports 14e and 14c provided at the second position far from the circulating oil passage 34 is two. As a result, the lubricating oil can be uniformly supplied in the axial direction, and even the rolling bearings 32 and 30a located far from the circulating oil passage 34 can appropriately prevent the temperature rise.
 また、上記の実施形態においては、潤滑油供給口14b~14eは、偏心部材16を保持する位置と、入力側回転部材14を支持する転がり軸受30a,30bの近傍とに設ける例について説明したが、これに限ることなく、潤滑油の供給状況に応じて、偏心部材16を保持する位置のみに設けてもよいし、入力側回転部材14を支持する転がり軸受30a,30bの近傍のみに設けてもよい。 In the above-described embodiment, the lubricating oil supply ports 14b to 14e have been described as being provided at positions where the eccentric member 16 is held and in the vicinity of the rolling bearings 30a and 30b which support the input side rotating member 14. However, the present invention is not limited to this, and it may be provided only at the position where the eccentric member 16 is held, or only near the rolling bearings 30a, 30b that support the input side rotating member 14, depending on the supply state of the lubricating oil. Also good.
 ここで、潤滑油供給口を設ける他の実施形態について説明する。図10は、潤滑油供給口を設ける他の実施形態を示す図であって、図3に対応する図である。図10を参照して、転がり軸受32,33の内輪32a,33aには、軸方向両端部において、径方向外側に突出する鍔部32e,33eが形成されている。そして、潤滑油供給口14f~14iは、偏心部材16を保持する位置であって、転がり軸受32,33の内輪32a,33aの鍔部32e,33eが配置される軸方向位置に設けられている。そして、偏心部材16には、潤滑油供給口14f~14iに連通する貫通孔16dが設けられており、転がり軸受32,33の内輪32a,33aの鍔部32e,33eには、潤滑油供給口14f~14iに連通する貫通孔32f,33fが設けられている。また、潤滑油供給口14f~14iは、第1の偏心部16aおよび第2の偏心部16bのそれぞれの最大偏心位置と180°異なる位置に設けられている。 Here, another embodiment in which a lubricating oil supply port is provided will be described. FIG. 10 is a view showing another embodiment in which a lubricating oil supply port is provided, and corresponds to FIG. Referring to FIG. 10, inner rings 32a and 33a of rolling bearings 32 and 33 are formed with flange portions 32e and 33e protruding radially outward at both axial ends. The lubricating oil supply ports 14f to 14i are positions that hold the eccentric member 16, and are provided at axial positions where the flanges 32e and 33e of the inner rings 32a and 33a of the rolling bearings 32 and 33 are disposed. . The eccentric member 16 is provided with a through hole 16d communicating with the lubricating oil supply ports 14f to 14i, and the lubricating oil supply port is provided in the flanges 32e and 33e of the inner rings 32a and 33a of the rolling bearings 32 and 33. Through holes 32f and 33f communicating with 14f to 14i are provided. The lubricating oil supply ports 14f to 14i are provided at positions different from the maximum eccentric positions of the first eccentric portion 16a and the second eccentric portion 16b by 180 °.
 これにより、鍔部32e,33eから転がり軸受32,33の内部に積極的に潤滑油を供給することができる。特に、内輪32a,33aの鍔部32e,33eにおいて、保持器32c,33cを案内する場合、鍔部32e,33eに設けられていることから、高速回転時の保持器32c,33cとの接触による焼付き等を適切に防止することができる。 Thereby, lubricating oil can be positively supplied into the inside of the rolling bearings 32 and 33 from the flanges 32e and 33e. In particular, when the cages 32c and 33c are guided in the collar portions 32e and 33e of the inner rings 32a and 33a, the cages 32e and 33e are provided with the collar portions 32e and 33e, so that they are brought into contact with the cages 32c and 33c during high-speed rotation. It is possible to appropriately prevent seizure and the like.
 なお、潤滑油供給口14f~14iを設けることなく、潤滑油供給口14e,14bから内輪32a,33aの軌道面および鍔部32e,33eに延びるように貫通穴16d,32f,33fを設けてもよい。 The through holes 16d, 32f, 33f may be provided so as to extend from the lubricating oil supply ports 14e, 14b to the raceway surfaces of the inner rings 32a, 33a and the flanges 32e, 33e without providing the lubricating oil supply ports 14f-14i. Good.
 なお、潤滑油供給口14h,14iの両方を、第1の偏心部16aの最大偏心位置と180°異なる位置に設けることなく、互いに異なる方向を指向するように設けてもよい。こうすることにより、周方向に万遍なく潤滑油を供給することができる。 Note that both of the lubricating oil supply ports 14h and 14i may be provided so as to be directed in different directions without being provided at positions different from the maximum eccentric position of the first eccentric portion 16a by 180 °. By carrying out like this, lubricating oil can be supplied uniformly in the circumferential direction.
 また、上記の実施形態においては、曲線板17,18を180°位相を変えて2枚設けたが、この曲線板の枚数は任意に設定することができ、例えば、曲線板を3枚設ける場合は、120°位相を変えて設けるとよい。 In the above embodiment, two curved plates 17 and 18 are provided with a 180 ° phase change. However, the number of curved plates can be arbitrarily set. For example, when three curved plates are provided. May be provided by changing the phase by 120 °.
 また、上記の実施形態において、偏心部16a,16bを有する偏心部材16を入力側回転部材14に嵌合固定した例を示したが、これに限ることなく、入力側回転部材14の外径面に直接偏心部16a,16bを形成してもよい。 In the above-described embodiment, the example in which the eccentric member 16 having the eccentric portions 16a and 16b is fitted and fixed to the input-side rotating member 14 is shown. Alternatively, the eccentric portions 16a and 16b may be directly formed.
 また、上記の実施形態における転がり軸受26,27,30a,30b,32,33は、図1の形態に限定されることなく、例えば、すべり軸受、円筒ころ軸受、円すいころ軸受、針状ころ軸受、自動調心ころ軸受、深溝玉軸受、アンギュラ玉軸受、3点接触球軸受、4点接触玉軸受等、すべり軸受であるか転がり軸受であるかを問わず、転動体がころであるか玉であるかを問わず、さらには複列か単列かを問わず、あらゆる軸受を適用することができる。 Further, the rolling bearings 26, 27, 30a, 30b, 32, and 33 in the above-described embodiment are not limited to the form shown in FIG. 1, and are, for example, a plain bearing, a cylindrical roller bearing, a tapered roller bearing, and a needle roller bearing. Spherical roller bearings, deep groove ball bearings, angular contact ball bearings, 3-point contact ball bearings, 4-point contact ball bearings, etc., whether the rolling element is a roller or a rolling bearing. Any bearing can be applied regardless of whether it is a double row or a single row.
 また、上記の実施形態における内ピン軸受19e,20eおよび外ピン軸受21aは、滑り軸受である例を示したが、これに限ることなく、転がり軸受を採用してもよい。この場合、厚み方向にコンパクト化する観点から針状ころ軸受を採用するのが望ましい。 In the above embodiment, the inner pin bearings 19e and 20e and the outer pin bearing 21a are sliding bearings. However, the present invention is not limited to this, and a rolling bearing may be adopted. In this case, it is desirable to employ a needle roller bearing from the viewpoint of making it compact in the thickness direction.
 以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示された実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。 As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment shown in figure. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.
 この発明は、鉄道車両駆動ユニットに有利に利用される。 This invention is advantageously used for a railway vehicle drive unit.
 10 鉄道車両用車輪駆動装置、11 車輪、12 鉄道車両駆動ユニット、13 減速機ハウジング、14 入力側回転部材、14a 軸心油路、14b,14c,14d,14e,14f,14g,14h,14i 潤滑油供給口、15 減速機構、16 偏心部材、16a,16b 偏心部、17,18 曲線板、16c,16d,17a,17b,18a,18b,20b,20f,25a,32d,33d,32f,33f 貫通孔、17c,18c 波形、17d,18d 油路、17e,18e,20a 潤滑油保持空間、19,20 内ピン、19a 大径部、19b,19c 小径部、19d 案内部、21 外ピン、19e,20e,21a 軸受、22,23 カウンタウェイト、24,25 キャリア、24a,24b,25b 孔、25c 潤滑油排出口、26,27 車軸軸受、26a,27a 内輪、26b,27b 外輪、26c,27c,32b,33b 円すいころ、26d,27d,32c,33c 保持器、28,29,31 密封部材、30a,30b,32,33 転がり軸受、32a,33a 内輪部材、32e,33e 鍔部、34 循環油路、35 潤滑油貯留部、36 外接リング、37 ナット。 10 Wheel drive device for railway vehicle, 11 wheel, 12 railway vehicle drive unit, 13 reduction gear housing, 14 input side rotating member, 14a axial oil passage, 14b, 14c, 14d, 14e, 14f, 14g, 14h, 14i lubrication Oil supply port, 15 deceleration mechanism, 16 eccentric member, 16a, 16b eccentric part, 17, 18 curved plate, 16c, 16d, 17a, 17b, 18a, 18b, 20b, 20f, 25a, 32d, 33d, 32f, 33f Hole, 17c, 18c corrugated, 17d, 18d oil passage, 17e, 18e, 20a Lubricating oil holding space, 19, 20 inner pin, 19a large diameter part, 19b, 19c small diameter part, 19d guide part, 21 outer pin, 19e, 20e, 21a bearing, 22, 23 counterweight, 24, 25 carrier, 24a, 4b, 25b hole, 25c lubricating oil discharge port, 26, 27 axle bearing, 26a, 27a inner ring, 26b, 27b outer ring, 26c, 27c, 32b, 33b tapered roller, 26d, 27d, 32c, 33c cage, 28, 29 , 31 sealing member, 30a, 30b, 32, 33 rolling bearing, 32a, 33a inner ring member, 32e, 33e flange, 34 circulating oil passage, 35 lubricating oil reservoir, 36 outer ring, 37 nut.

Claims (15)

  1.  鉄道車両の車輪を回転駆動する駆動ユニットであって、
     車輪の内径面に保持されて車輪と一体回転する減速機ハウジングと、
     駆動源に接続されている入力側回転部材と、
     前記入力側回転部材の回転を減速して前記減速機ハウジングに伝達する減速機構と、
     前記減速機ハウジングの内部に配置され、車両本体に連結固定される固定部材と、
     前記駆動ユニット内で潤滑油を潤滑させる潤滑油循環機構とを備え、
    前記潤滑油循環機構は、
     前記入力側回転部材の内部を軸方向に延びる軸心油路と、
     前記軸心油路から前記入力側回転部材の外径面に向かって延びる潤滑油供給口と、
     前記固定部材に設けられた潤滑油排出口と、
     前記潤滑油排出口および前記軸心油路を接続し、前記潤滑油排出口から排出された潤滑油を前記軸心油路に還流する循環油路とを含む、鉄道車両駆動ユニット。
    A drive unit that rotationally drives wheels of a railway vehicle,
    A reduction gear housing that is held on the inner diameter surface of the wheel and rotates integrally with the wheel;
    An input side rotating member connected to the driving source;
    A speed reduction mechanism for decelerating the rotation of the input side rotation member and transmitting it to the speed reducer housing;
    A fixing member disposed inside the reduction gear housing and connected and fixed to the vehicle body;
    A lubricating oil circulation mechanism for lubricating the lubricating oil in the drive unit;
    The lubricating oil circulation mechanism is
    An axial oil passage extending in the axial direction inside the input side rotation member;
    A lubricating oil supply port extending from the axial center oil passage toward the outer diameter surface of the input side rotation member;
    A lubricating oil outlet provided in the fixing member;
    A railway vehicle drive unit, comprising: a circulation oil passage that connects the lubricant oil outlet and the shaft oil passage and returns the lubricant discharged from the lubricant oil outlet to the shaft oil passage.
  2.  前記入力側回転部材は、偏心部を有し、
     前記減速機構は、前記偏心部に相対回転自在に保持されて、前記入力側回転部材の回転軸心を中心とする公転運動を行う公転部材と、
     前記公転部材の公転運動を許容しつつ、自転運動を阻止する自転規制部材と、
     前記減速機ハウジングに固定され、前記公転部材の外周に係合して前記減速機ハウジングを前記入力側回転部材に対して減速回転させる外周係合部材とを含む、請求項1に記載の鉄道車両駆動ユニット。
    The input side rotating member has an eccentric part,
    The speed reduction mechanism is held by the eccentric part so as to be relatively rotatable, and performs a revolving member centering on a rotation axis of the input side rotating member,
    A rotation restricting member that inhibits the revolving motion while allowing the revolving motion of the revolving member;
    The railway vehicle according to claim 1, further comprising: an outer periphery engaging member fixed to the speed reducer housing and engaged with an outer periphery of the revolution member to decelerate and rotate the speed reducer housing with respect to the input side rotation member. Drive unit.
  3.  前記潤滑油供給口は、前記偏心部に設けられている、請求項2に記載の鉄道車両駆動ユニット。 The railway vehicle drive unit according to claim 2, wherein the lubricating oil supply port is provided in the eccentric portion.
  4.  前記潤滑油供給口は、前記偏心部の最大偏心位置と180°異なる位置に設けられている、請求項2に記載の鉄道車両駆動ユニット。 The railcar drive unit according to claim 2, wherein the lubricating oil supply port is provided at a position 180 ° different from a maximum eccentric position of the eccentric portion.
  5.  前記公転部材は、貫通穴を有し、
    前記駆動ユニットは、
     前記偏心部の外径面に嵌合して径方向外側に内側軌道面が形成された内輪部材、前記公転部材の前記貫通穴の内径面に形成された外側軌道面、前記内側軌道面および前記外側軌道面の間に配置される複数のころ、および隣接するころの間隔を保持する保持器を含み、前記公転部材を前記偏心部に対して回転自在に支持する偏心軸受を有し、
     前記潤滑油供給口は、前記内輪部材の軌道面に設けられている、請求項2に記載の鉄道車両駆動ユニット。
    The revolving member has a through hole,
    The drive unit is
    An inner ring member that is fitted to the outer diameter surface of the eccentric portion and has an inner raceway surface formed radially outward, an outer raceway surface that is formed on an inner diameter surface of the through hole of the revolving member, the inner raceway surface, and the A plurality of rollers disposed between the outer raceway surfaces, and a cage that holds a distance between adjacent rollers, and having an eccentric bearing that rotatably supports the revolving member with respect to the eccentric portion,
    The railway vehicle drive unit according to claim 2, wherein the lubricating oil supply port is provided on a raceway surface of the inner ring member.
  6.  前記公転部材は、貫通穴を有し、
    前記駆動ユニットは、
     前記偏心部の外径面に嵌合して径方向外側に内側軌道面が形成された内輪部材、前記公転部材の前記貫通穴の内径面に形成された外側軌道面、前記内側軌道面および前記外側軌道面の間に配置される複数のころ、および隣接するころの間隔を保持する保持器を含み、前記公転部材を前記偏心部に対して回転自在に支持する偏心軸受を有し、
     前記内輪部材の軸方向端部には、径方向外側に突出する鍔部が形成されており、
     前記潤滑油供給口は、前記鍔部に設けられている、請求項2に記載の鉄道車両駆動ユニット。
    The revolving member has a through hole,
    The drive unit is
    An inner ring member that is fitted to the outer diameter surface of the eccentric portion and has an inner raceway surface formed radially outward, an outer raceway surface that is formed on an inner diameter surface of the through hole of the revolving member, the inner raceway surface, and the A plurality of rollers disposed between the outer raceway surfaces, and a cage that holds a distance between adjacent rollers, and having an eccentric bearing that rotatably supports the revolving member with respect to the eccentric portion,
    At the axial end portion of the inner ring member, a collar portion protruding outward in the radial direction is formed,
    The railway vehicle drive unit according to claim 2, wherein the lubricating oil supply port is provided in the flange portion.
  7.  前記駆動ユニットは、
     前記入力側回転部材を前記固定部材に対して回転自在に支持する主軸軸受を有し、
     前記潤滑油供給口は、前記主軸軸受に潤滑油を供給するために、前記主軸軸受の近傍に設けられている、請求項1に記載の鉄道車両駆動ユニット。
    The drive unit is
    A spindle bearing that rotatably supports the input-side rotating member with respect to the fixed member;
    The railway vehicle drive unit according to claim 1, wherein the lubricating oil supply port is provided in the vicinity of the main shaft bearing in order to supply lubricating oil to the main shaft bearing.
  8.  前記潤滑油供給口は、互いに異なる方向を指向するように、前記入力側回転部材の複数箇所に設けられている、請求項1に記載の鉄道車両駆動ユニット。 2. The railway vehicle drive unit according to claim 1, wherein the lubricating oil supply ports are provided at a plurality of locations of the input side rotating member so as to be directed in different directions.
  9.  前記軸心油路は、前記循環油路側から軸方向に潤滑油を供給し、
     前記潤滑油供給口は、径が前記循環油路側から順に大きくなるように、前記入力側回転部材の複数箇所に設けられている、請求項1に記載の鉄道車両駆動ユニット。
    The shaft center oil passage supplies lubricating oil in the axial direction from the circulating oil passage side,
    The railway vehicle drive unit according to claim 1, wherein the lubricating oil supply port is provided at a plurality of locations of the input-side rotating member so that a diameter increases in order from the circulating oil passage side.
  10.  前記軸心油路は、前記循環油路側から軸方向に潤滑油を供給し、
     前記潤滑油供給口は、前記循環油路から近い第1の位置と、前記循環油路から遠い第2の位置とに設けられており、前記第2の位置に設けられる前記潤滑油供給口の数は、前記第1の位置に設けられる前記潤滑油供給口の数より多い、請求項1に記載の鉄道車両駆動ユニット。
    The shaft center oil passage supplies lubricating oil in the axial direction from the circulating oil passage side,
    The lubricating oil supply port is provided at a first position close to the circulating oil passage and a second position far from the circulating oil passage, and the lubricating oil supply port of the lubricating oil supply port provided at the second position is provided. The railway vehicle drive unit according to claim 1, wherein the number is greater than the number of the lubricating oil supply ports provided in the first position.
  11.  前記駆動ユニットは、
     前記固定部材の外径面に固定される内輪、前記減速機ハウジングの内径面に固定される外輪、および前記内輪および前記外輪の間に配置される複数の円すいころを含み、前記減速機ハウジングを前記固定部材に対して回転自在に支持する車軸軸受と、
     前記減速機ハウジングと前記固定部材との間の前記円すいころの大径側端部に対面する位置に前記減速機ハウジングの内部を密封する密封部材とをさらに有し、
     前記潤滑油排出口は、前記車軸軸受および前記密封部材の間に設けられている、請求項1に記載の鉄道車両駆動ユニット。
    The drive unit is
    An inner ring fixed to an outer diameter surface of the fixing member, an outer ring fixed to an inner diameter surface of the speed reducer housing, and a plurality of tapered rollers disposed between the inner ring and the outer ring; An axle bearing rotatably supported with respect to the fixed member;
    A sealing member that seals the inside of the reduction gear housing at a position facing the large-diameter end of the tapered roller between the reduction gear housing and the fixing member;
    The railway vehicle drive unit according to claim 1, wherein the lubricating oil discharge port is provided between the axle bearing and the sealing member.
  12.  前記潤滑油排出口は、前記固定部材の下部領域に配置される、請求項1に記載の鉄道車両駆動ユニット。 The railway vehicle drive unit according to claim 1, wherein the lubricating oil discharge port is disposed in a lower region of the fixing member.
  13.  前記潤滑油循環機構は、潤滑油を強制的に循環させるポンプをさらに備える、請求項1に記載の鉄道車両駆動ユニット。 The railway vehicle drive unit according to claim 1, wherein the lubricating oil circulation mechanism further includes a pump for forcibly circulating the lubricating oil.
  14.  前記潤滑油循環機構は、前記潤滑油排出口から排出された潤滑油を一時的に貯留する潤滑油貯留部をさらに備える、請求項1に記載の鉄道車両駆動ユニット。 The railway vehicle drive unit according to claim 1, wherein the lubricating oil circulation mechanism further includes a lubricating oil reservoir that temporarily stores the lubricating oil discharged from the lubricating oil discharge port.
  15.  前記潤滑油循環機構は、前記潤滑油貯留部に貯留される潤滑油を濾過する濾過装置をさらに備える、請求項14に記載の鉄道車両駆動ユニット。 The railway vehicle drive unit according to claim 14, wherein the lubricating oil circulation mechanism further includes a filtering device that filters the lubricating oil stored in the lubricating oil storage section.
PCT/JP2009/069911 2008-12-26 2009-11-26 Railroad vehicle drive unit WO2010073867A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-335035 2008-12-26
JP2008335035 2008-12-26
JP2009-171512 2009-07-22
JP2009171512A JP2010169247A (en) 2008-12-26 2009-07-22 Railroad vehicle drive unit

Publications (1)

Publication Number Publication Date
WO2010073867A1 true WO2010073867A1 (en) 2010-07-01

Family

ID=42287485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069911 WO2010073867A1 (en) 2008-12-26 2009-11-26 Railroad vehicle drive unit

Country Status (2)

Country Link
JP (1) JP2010169247A (en)
WO (1) WO2010073867A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2772664A3 (en) * 2013-03-01 2015-12-16 Sumitomo Heavy Industries, Ltd. Planetary reduction gear and series of the same
JP2022508033A (en) * 2018-11-26 2022-01-19 グリー エレクトリック アプライアンシーズ インク オブ ズーハイ Cycloid gears and reducers

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251595A (en) * 2011-06-02 2012-12-20 Sumitomo Heavy Ind Ltd Reduction gear device of wind power generating facility
JP2013007443A (en) * 2011-06-24 2013-01-10 Jtekt Corp Speed reduction mechanism and motor rotation force transmission device equipped with the same
JP5654972B2 (en) * 2011-09-16 2015-01-14 住友重機械工業株式会社 Eccentric oscillation type speed reducer
JP5791542B2 (en) * 2012-02-22 2015-10-07 住友重機械工業株式会社 Planetary reducer
JP5922464B2 (en) * 2012-03-30 2016-05-24 ナブテスコ株式会社 Gear transmission
JP5973855B2 (en) * 2012-09-13 2016-08-23 ナブテスコ株式会社 Gear transmission and crankshaft structure used therefor
JP6285728B2 (en) * 2014-01-22 2018-02-28 ナブテスコ株式会社 Gear transmission
JP2016035278A (en) * 2014-08-01 2016-03-17 Ntn株式会社 Cycloidal speed reducer and in-wheel motor drive device with cycloidal speed reducer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220242U (en) * 1985-07-19 1987-02-06
JPH0712135A (en) * 1993-06-25 1995-01-17 Nippon Seiko Kk Rolling bearing
JP2006029393A (en) * 2004-07-13 2006-02-02 Nabtesco Corp Bearing part structure
JP2006064128A (en) * 2004-08-30 2006-03-09 Sumitomo Heavy Ind Ltd Inner gearing planetary gear structure
JP2006226499A (en) * 2005-02-21 2006-08-31 Sumitomo Heavy Ind Ltd Reduction gear and lubricating method for reduction gear
JP2006336702A (en) * 2005-05-31 2006-12-14 Sumitomo Heavy Ind Ltd Power transmission
JP2007230508A (en) * 2006-03-03 2007-09-13 Ntn Corp Wheel drive structure for railway vehicle
JP2008002659A (en) * 2006-06-26 2008-01-10 Ntn Corp High-speed rotation single row cylindrical roller bearing
JP2008275094A (en) * 2007-05-01 2008-11-13 Ntn Corp In-wheel motor drive unit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220242U (en) * 1985-07-19 1987-02-06
JPH0712135A (en) * 1993-06-25 1995-01-17 Nippon Seiko Kk Rolling bearing
JP2006029393A (en) * 2004-07-13 2006-02-02 Nabtesco Corp Bearing part structure
JP2006064128A (en) * 2004-08-30 2006-03-09 Sumitomo Heavy Ind Ltd Inner gearing planetary gear structure
JP2006226499A (en) * 2005-02-21 2006-08-31 Sumitomo Heavy Ind Ltd Reduction gear and lubricating method for reduction gear
JP2006336702A (en) * 2005-05-31 2006-12-14 Sumitomo Heavy Ind Ltd Power transmission
JP2007230508A (en) * 2006-03-03 2007-09-13 Ntn Corp Wheel drive structure for railway vehicle
JP2008002659A (en) * 2006-06-26 2008-01-10 Ntn Corp High-speed rotation single row cylindrical roller bearing
JP2008275094A (en) * 2007-05-01 2008-11-13 Ntn Corp In-wheel motor drive unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2772664A3 (en) * 2013-03-01 2015-12-16 Sumitomo Heavy Industries, Ltd. Planetary reduction gear and series of the same
JP2022508033A (en) * 2018-11-26 2022-01-19 グリー エレクトリック アプライアンシーズ インク オブ ズーハイ Cycloid gears and reducers
JP7203966B2 (en) 2018-11-26 2023-01-13 グリー エレクトリック アプライアンシーズ インク オブ ズーハイ Cycloid gear and reducer

Also Published As

Publication number Publication date
JP2010169247A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
WO2010073867A1 (en) Railroad vehicle drive unit
WO2009104594A1 (en) Railway vehicle drive unit
WO2009104593A1 (en) Railway rolling stock drive unit
JP5079431B2 (en) In-wheel motor drive device
WO2010001698A1 (en) Cycloid reduction gear, in-wheel motor drive device, and motor drive device for vehicle
JP2009257494A (en) Motor drive unit and in-wheel motor drive unit
JP2016161117A (en) Cycloid speed reducer and motor drive device with cycloid speed reducer
JP2011033113A (en) Railway vehicle driving unit
JP5010490B2 (en) Motor drive device and in-wheel motor drive device
JP2009262616A (en) Motor driving device and in-wheel motor driving device
JP2009012569A (en) In-wheel motor drive device
JP5010484B2 (en) Cycloid reducer and in-wheel motor drive device
JP2008202746A (en) Lubricating structure for vehicle speed reducing part and in-wheel motor drive mechanism
JP2011038575A (en) Rolling stock driving unit
JP2010156407A (en) Railway rolling stock drive unit
JP2015092099A (en) In-wheel motor drive device
WO2016017351A1 (en) Cycloidal speed reducer and in-wheel motor drive device provided with same
JP2010155541A (en) Railroad vehicle drive unit
WO2015046086A1 (en) In-wheel motor drive device
JP2010156406A (en) Railway rolling stock drive unit
JP2008275094A (en) In-wheel motor drive unit
JP2015080996A (en) In-wheel motor drive device
JP4918051B2 (en) Motor drive device and in-wheel motor drive device
JP2010249164A (en) Railway vehicle drive unit
JP2008207585A (en) In-wheel motor drive unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834671

Country of ref document: EP

Kind code of ref document: A1