WO2010071196A1 - プレートれんがの製造方法及びプレートれんが - Google Patents

プレートれんがの製造方法及びプレートれんが Download PDF

Info

Publication number
WO2010071196A1
WO2010071196A1 PCT/JP2009/071124 JP2009071124W WO2010071196A1 WO 2010071196 A1 WO2010071196 A1 WO 2010071196A1 JP 2009071124 W JP2009071124 W JP 2009071124W WO 2010071196 A1 WO2010071196 A1 WO 2010071196A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
mass
atmosphere
plate brick
less
Prior art date
Application number
PCT/JP2009/071124
Other languages
English (en)
French (fr)
Inventor
経一郎 赤峰
勝美 森川
丈記 吉富
恒夫 加山
Original Assignee
黒崎播磨株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黒崎播磨株式会社 filed Critical 黒崎播磨株式会社
Priority to DE112009004278.3T priority Critical patent/DE112009004278B4/de
Priority to KR1020117012246A priority patent/KR101246813B1/ko
Priority to BRPI0922166-2A priority patent/BRPI0922166B1/pt
Priority to US13/139,338 priority patent/US8609562B2/en
Priority to GB1112159.7A priority patent/GB2480165B/en
Priority to CN200980150286.9A priority patent/CN102245539B/zh
Priority to JP2010543011A priority patent/JP5565908B2/ja
Publication of WO2010071196A1 publication Critical patent/WO2010071196A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/1015Refractories from grain sized mixtures containing refractory metal compounds other than those covered by C04B35/103 - C04B35/106
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/103Refractories from grain sized mixtures containing non-oxide refractory materials, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/106Refractories from grain sized mixtures containing zirconium oxide or zircon (ZrSiO4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/652Reduction treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/721Carbon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/722Nitrogen content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Definitions

  • the present invention relates to a plate brick manufacturing method and plate brick used in a sliding nozzle device for controlling the flow rate of molten metal.
  • a sliding nozzle device In manufacturing steel, a sliding nozzle device is used to control the flow rate of molten steel discharged from a molten metal container such as a ladle or tundish.
  • a plate brick having two or three refractory nozzle holes is used. The plate bricks are overlapped and slid with surface pressure applied, and the flow rate of the molten steel is adjusted by adjusting the opening of the nozzle holes.
  • the plate brick is generally made of an alumina-carbon material, and is divided into a fired type and a non-fired type depending on the manufacturing method. Although the fired type is more expensive than the unfired type, it is used for relatively large plate bricks because of its excellent strength.
  • the life of the plate brick is determined by the wear of the sliding surface which is the working surface.
  • the cause of wear on the sliding surface of this plate brick (hereinafter referred to as “surface roughness”) is due to loosening of the structure due to thermal shock, chemical reaction with molten steel, abrasion due to sliding, or oxidation of carbon bonds, etc. Is considered.
  • refractory raw materials such as zirconia mullite and alumina zirconia having a low thermal expansion coefficient are used in order to improve thermal shock resistance.
  • high-purity and dense raw materials such as fused alumina that does not easily react with slag, and the optimization of the type and content of carbon are being studied.
  • techniques such as making the structure denser and strengthening by optimizing the particle size composition of the raw materials used, and further improving the polishing accuracy of the sliding surface are implemented. ing.
  • an antioxidant such as silicon carbide, boron carbide or aluminum nitride is added.
  • fired type plate bricks for example, an organic binder is added and kneaded into a refractory raw material composition containing a metal such as silicon, and after molding, the molded body is put into a container filled with coke grains. There is a method of firing at 1000 ° C. or higher.
  • the bond structure of this fired type plate brick is mainly composed of carbon bonds and silicon carbide bonds, and is entangled with sintered oxide bonds. Carbon bonds have a lower elastic modulus than ceramic bonds and are excellent in thermal shock resistance.
  • silicon carbide bonds have the effect of imparting strength and oxidation wear resistance, they have an excellent connective structure that suppresses wear during use.
  • SiO 2 when silicon carbide is oxidized, it becomes SiO 2 and reacts with foreign components such as FeO and CaO to produce a low melting point material, so that the corrosion resistance is lowered.
  • SiO 2 tends to disappear as SiO gas at a high temperature, and there is a problem that it is difficult to maintain the effect when used for a long time.
  • Patent Document 1 discloses that a reactive sintered bond of aluminum carbide or aluminum nitride can be obtained by firing in a reducing atmosphere in carbon using a refractory raw material composition using aluminum. And it is described that it is excellent in mechanical strength and corrosion resistance than the conventional carbon bond type.
  • Patent Document 1 also discloses a method of firing in a nitrogen gas atmosphere.
  • a gas such as CO or CO 2 in the volatile matter generated by decomposition of a binder such as a phenol resin contained in a molded body that is a fired product, the aluminum nitride Production is inhibited. For this reason, the effect of improving the surface roughness resistance of the plate brick is insufficient and the expected effect cannot be obtained.
  • Patent Document 2 discloses that weak oxidation firing is performed in an atmosphere having an oxygen gas partial pressure of 10 to 10000 ppm.
  • Patent Document 2 Although the presence of CO and CO 2 is permitted under the firing conditions of Patent Document 2 (see Paragraph 0022 of Patent Document 2), when a large amount of CO and CO 2 is present in the firing atmosphere, nitrogen gas and aluminum There is a problem that the production of aluminum nitride due to the reaction of is inhibited.
  • the conventional technology has the above-mentioned problems, and the cause of the life of the plate brick still remains. It ’s rough.
  • the problem to be solved by the present invention is to improve the oxidation resistance and to improve the surface roughness resistance of a fired type plate brick, particularly a plate brick having an aluminum nitride bond.
  • the present inventor needs to suppress deterioration of the structure due to oxidation and disappearance of carbonaceous raw materials and carbon bonds during use as a countermeasure against surface roughness.
  • the improvement in oxidation resistance was considered important. Since aluminum nitride was considered to be more effective as an antioxidant than silicon carbide or boron carbide, attention was paid to plate bricks having aluminum nitride bonds in order to increase the oxidation resistance of the plate bricks. Furthermore, as a result of various examinations on the firing atmosphere, it was found that a very small amount of gas other than nitrogen gas during firing greatly affects the oxidation resistance of the plate brick.
  • the present invention relates to the production of a plate brick that is kneaded by adding an organic binder to a refractory raw material composition containing aluminum and / or an aluminum alloy, and then fired at 1000 ° C. to 1400 ° C. in a nitrogen gas atmosphere after forming.
  • the atmosphere temperature is at least 300 ° C.
  • the atmosphere is a nitrogen gas atmosphere
  • the oxygen gas concentration in the atmosphere is 100 ppm by volume or less
  • the carbon monoxide gas concentration, and the carbon dioxide gas concentration Is maintained at 1.0% by volume or less.
  • the plate brick molded body contains an organic binder such as a phenol resin, and when the molded body is heated, water is generated by condensation of the organic binder. When the temperature rises further, a part of the cured organic binder is decomposed, and water vapor, carbon monoxide gas, carbon dioxide gas, hydrocarbon gas, etc. are generated. In addition, air is always easily mixed in the firing atmosphere, and the atmosphere contains oxygen gas, carbon dioxide gas, water vapor, and the like. Oxygen gas, carbon monoxide gas, or carbon dioxide gas reacts with aluminum in the plate brick at the time of firing to produce aluminum oxide, thereby inhibiting the production of aluminum nitride.
  • an organic binder such as a phenol resin
  • the aluminum melt or gasification product starts to generate aluminum nitride by reacting with nitrogen gas in the plate brick from around 1000 ° C.
  • nitrogen gas in the plate brick from around 1000 ° C.
  • the concentration of oxygen gas, carbon monoxide gas, and carbon dioxide gas which are gases that inhibit the formation of aluminum nitride at 1000 ° C. or higher.
  • the oxygen gas concentration is set to 100 volume ppm or less
  • the total of the carbon monoxide gas concentration and the carbon dioxide gas concentration is set to 1.0 volume% or less.
  • oxygen gas Since oxygen gas is highly reactive with aluminum and oxidizes aluminum even in a trace amount, the concentration thereof is preferably as low as possible. When the oxygen gas concentration exceeds 100 ppm by volume, the amount of aluminum nitride produced becomes insufficient and the oxidation resistance becomes insufficient.
  • Carbon monoxide gas and carbon dioxide gas are much less reactive than oxygen gas, but react with aluminum to produce aluminum oxide. Therefore, the concentration of carbon monoxide gas and carbon dioxide gas may be zero as the concentration decreases. If the total of these exceeds 1.0% by volume, the amount of aluminum nitride produced becomes insufficient and the oxidation resistance becomes insufficient.
  • the aluminum nitride in the plate brick of the present invention is extremely active because it exists in the form as described above. That is, during use, carbon in the working surface brick is oxidized by FeO in the molten steel on the working surface of the brick, and the CO gas generated at that time reacts immediately with the aluminum nitride. And in order to produce
  • zirconia one or more of zirconia mullite and alumina zirconia may contain up to 20 wt% 4 wt% or more as the ZrO 2 component in the refractory raw material formulation.
  • the plate brick according to the production method of the present invention can improve the thermal shock resistance by the zirconia-containing raw material, so that the surface roughness is remarkably improved.
  • zirO 2 components of zirconia, zirconia mullite and alumina zirconia in the refractory raw material composition are less than 4% by mass, the effect of improving the thermal shock resistance is not sufficiently obtained. May decrease the durability and durability.
  • 0.5 to 5% by mass of silicon may be contained in the refractory raw material composition.
  • aluminum it is known that when carbon is included, the aluminum melted during firing reacts with carbon to partially produce aluminum carbide.
  • aluminum carbide easily hydrates and causes the structure to collapse, it is known that when silicon is added, silicon is dissolved in aluminum carbide and is difficult to hydrate. This improves digestion resistance. If the silicon content is less than 0.5% by mass, the digestion-preventing effect cannot be sufficiently obtained. If the silicon content exceeds 5% by mass, the FeO resistance and CaO resistance may decrease, and the durability may decrease.
  • the plate brick of the present invention has an aluminum nitride content of 1.5% by mass or more and 7.0% by mass or less, and is 3 at 150 ° C. under a pressure of 0.49 MPa in an autoclave digestion test.
  • the rate of weight increase due to the hydration reaction after holding for a period of time is 0.5% or less.
  • Metals such as aluminum, aluminum alloys, and silicon blended in the refractory raw material blend produce carbides, nitrides, and oxides such as aluminum carbide, aluminum nitride, alumina, silicon carbide, silicon nitride, and silica during firing.
  • aluminum carbide can be expected to have the same oxidation resistance effect, but aluminum carbide generates gas such as methane, carbide, acetylene, etc. by hydration reaction to produce aluminum hydroxide. As a result of this reaction, the volume expands and cracks occur, so the brick collapses and it becomes difficult to use it as a refractory. In the hydration reaction of aluminum carbide, the weight increases because aluminum hydroxide is produced. If the rate of weight increase in the digestion test with an autoclave exceeds 0.5%, the hydrated sliding surface will peel off or crack will occur during long-term storage, reuse in an actual furnace, or recycling. Since trouble occurs, a sufficient effect cannot be obtained.
  • Aluminum nitride is less susceptible to hydration than aluminum carbide, but when it is contained in a large amount, it produces ammonia gas by hydration to produce aluminum hydroxide. Like aluminum carbide, this hydration reaction produces aluminum hydroxide, which increases the weight. If the aluminum nitride content exceeds 7.0% by mass, the rate of weight increase due to the hydration reaction will exceed 0.5%, and it will be hydrated during long-term storage, reuse in an actual furnace, or recycling. Sufficient effects cannot be obtained because troubles such as peeling of the sliding surface and cracking occur.
  • the thickness of the decarburized layer on the working surface when the oxygen concentration is 30-120 mass ppm and the molten steel adjusted to the range of 1550 ° C.-1650 ° C. for 300 minutes is 1500 ⁇ m or less. It is preferable.
  • the oxidation resistance evaluation method described in JP-A-2009-204594 is used, and the oxygen concentration is 1550 ° C. to 1650 ° C. at 30 to 120 mass pm.
  • the molten steel adjusted to the range and the refractory are reacted for 300 minutes, and the maximum thickness of the decarburized layer on the working surface is evaluated.
  • carbon in the refractory is oxidized by oxygen in the molten steel to form a decarburized layer.
  • the plate brick of this invention can be obtained with the manufacturing method of this invention mentioned above.
  • the plate brick obtained by the present invention is excellent in oxidation resistance, the surface roughness resistance is improved, and as a result, the durability of the plate brick is improved.
  • Aluminum and / or aluminum alloy can be used without any problem as long as it is generally used for the production of plate bricks.
  • As the aluminum alloy an alloy with silicon, magnesium, or the like can be used.
  • an alloy an Al—Mg alloy, an Al—Si alloy, or an Al—Mg—Si alloy having an Al content of 50% by mass or more is preferable from the viewpoint of a high yield of aluminum nitride. It is preferable to use aluminum and / or aluminum alloy having a particle size of 200 ⁇ m or less because the oxidation resistance of the manufactured plate brick is more excellent.
  • Aluminum and / or aluminum alloy is preferably contained in the refractory raw material composition in an amount of 1 to 10% by mass, more preferably 2 to 5% by mass in terms of Al. If it is 1% by mass or less, the produced aluminum nitride may be insufficient and oxidation resistance may be insufficient. If it exceeds 10% by mass, the production of aluminum nitride becomes excessive, resulting in high strength and high elastic modulus, resulting in a decrease in thermal shock resistance and a decrease in digestion resistance. Moreover, the volume change at the time of baking may be large, and problems, such as a crack occurring after baking, may arise.
  • a refractory raw material composition containing aluminum and / or an aluminum alloy is used, but as a refractory raw material other than aluminum and aluminum alloy, a refractory used for general plate bricks is used.
  • Raw materials can be used.
  • a metal oxide, a metal nitride, a metal carbide, a metal excluding aluminum and an aluminum alloy, and a carbonaceous raw material can be used. More preferably, 80 to 98% by mass of metal oxide, 1 to 10% by mass of one or more of metal nitrides, metal carbides, metals excluding aluminum and aluminum alloys, and carbonaceous raw materials can be used.
  • Examples of the metal oxide include one or more of alumina, mullite, zirconia mullite, alumina zirconia, magnesia, spinel, clay, glass, brick scraps, etc.
  • examples of the metal nitride include silicon nitride, aluminum nitride, and boron nitride.
  • 1 or more of metal carbides such as silicon carbide and boron carbide, and metals other than aluminum and aluminum alloys include silicon, magnesium, iron, nickel, and alloys thereof.
  • As the carbonaceous raw material one or more of pitch, tar, carbon black, graphite and the like can be used.
  • metal oxide it is more preferable to use 50 to 80% by mass of alumina.
  • Alumina can increase corrosion resistance.
  • a metal oxide such as magnesia or spinel can be used.
  • thermosetting organic binder is more preferable. Specifically, it is possible to use a resin obtained by diluting a phenol resin or a furan resin with a solvent such as phenol, ethylene glycol, or ethanol to adjust the viscosity. These resin powder types can be used in combination or independently.
  • an organic binder is added to a refractory raw material composition containing aluminum and / or an aluminum alloy, and the mixture is kneaded and molded by a conventional method. Firing is performed in a nitrogen gas atmosphere.
  • the firing furnace can be used in either a batch furnace or a continuous furnace. In any case, it is only necessary to prevent the entry of gases other than nitrogen gas, such as the atmosphere and combustion gas, and to control the supply amount of nitrogen gas, the discharge amount of furnace gas, the temperature, and the like.
  • gases other than nitrogen gas such as the atmosphere and combustion gas
  • These furnaces are known as firing furnaces for refractories and ceramics, and commercially available ones can be used.
  • a nitrogen gas atmosphere is set at least at an ambient temperature of 300 ° C. or higher.
  • the temperature below 300 ° C. can be an air atmosphere, but considering the complexity of changing the atmosphere during firing, it is more preferable to make the atmosphere from the start of firing to the end of firing a nitrogen gas atmosphere.
  • the process can be performed while discharging the gas in the furnace and supplying the nitrogen gas.
  • the nitrogen gas concentration is 100 vol ppm or lower and the total of the carbon monoxide gas concentration and the carbon dioxide gas concentration is 1.0 vol% or lower.
  • the furnace atmosphere is controlled by the amount of gas supplied and the amount of exhaust gas. More preferably, the oxygen gas concentration is 10 ppm by volume or less and the sum of the carbon monoxide gas concentration and the carbon dioxide gas concentration is 0.1 volume% or less at an atmospheric temperature of 1000 ° C. or higher.
  • the maximum temperature of the atmosphere in the furnace is an arbitrary temperature in the range of 1000 ° C. or higher and 1400 ° C. or lower, and the object to be fired may be held at the atmospheric temperature in this range for 1 hour or longer and 10 hours or shorter.
  • the atmosphere in the furnace is lower than 1000 ° C. during the temperature lowering process, basically, a nitrogen gas atmosphere is used until firing is completed in order to prevent oxidation due to air entering from outside the furnace.
  • a nitrogen gas atmosphere is used until firing is completed in order to prevent oxidation due to air entering from outside the furnace.
  • the oxygen gas concentration is 1000 ppm by volume or less, and the total of the carbon monoxide gas concentration and the carbon dioxide gas concentration is 1.0% by volume or less.
  • the effect of oxidation is small.
  • nitrogen gas can be supplied so as to form a nitrogen stream from the outlet side to the inlet side.
  • the nitrogen gas concentration in the atmosphere of 1000 ° C. or higher can be kept high.
  • the atmosphere may be a nitrogen gas atmosphere at a place where the atmospheric temperature is at least 300 ° C. or higher, and the air atmosphere may be lower than 300 ° C.
  • a low temperature range of 800 ° C. or lower it is desirable to provide a degreasing zone in order to remove gas generated from the object to be fired.
  • thermosetting resin such as a phenol resin
  • a separate furnace in the air atmosphere in the range of 300 to 100 ° C where aluminum is less oxidized. You may heat-process.
  • firing performed by embedding the compact in carbon particles such as coke grains is not possible in the present invention because aluminum nitride is less produced and cracks are likely to occur during firing.
  • firing is performed using only nitrogen gas and using oxygen gas, carbon monoxide gas, and carbon dioxide gas with very little carbon particles.
  • Table 1 shows examples and comparative examples of the present invention.
  • a phenol resin was added to the refractory raw material composition shown in Table 1 as an outer cover, kneaded, and a plate brick molded body was obtained with an oil press.
  • Example 1 shown in Table 1 firing was performed in a closed batch furnace (electric furnace). The compact was put in the furnace, the atmosphere in the furnace was replaced with nitrogen gas, and firing was started under the condition that the oxygen gas concentration in the furnace was 1000 ppm by volume or less. During the temperature increase, nitrogen gas was always supplied, and gas generated in the furnace and excess nitrogen gas were discharged outside the furnace. As the calcination temperature increases, the oxygen gas concentration decreases and the carbon monoxide gas concentration and carbon dioxide gas concentration increase due to decomposition of the phenol resin, etc., but the temperature is maintained at 900 ° C. during the temperature increase for 2 hours.
  • the exhaust gas amount was adjusted so that the oxygen gas concentration was 100 volume ppm or less, and the total of the carbon monoxide gas concentration and the carbon dioxide gas concentration was 1.0 volume% or less. Then, it heated up on this gas concentration condition, and hold
  • the product was cooled to 150 ° C. under the conditions described above, and the fired product was taken out at 150 ° C. In this example, nitrogen gas having an N 2 purity of 99.99% or more, an oxygen gas concentration of 5 ppm by volume or less, and a total of carbon monoxide gas concentration and carbon dioxide gas concentration of 100 ppm by volume or less was used.
  • the gas concentration in the furnace was measured by collecting gas through a pipe in the furnace. Further, the gas concentration in the furnace was continuously measured using an electrochemical oxygen gas concentration meter and an infrared carbon dioxide analyzer, and the amount of supplied gas and the amount of exhaust gas were controlled. In addition, the oxygen gas concentration, the carbon monoxide gas concentration, and the carbon dioxide gas concentration were controlled by supplying oxygen gas or carbon monoxide gas and carbon dioxide gas. From the measurement accuracy of the measuring instrument, the oxygen gas concentration was measured up to the order of 1 ppm by volume, and the carbon monoxide gas concentration and the carbon dioxide gas concentration were measured up to the order of 0.1% by volume.
  • Example 2 and 3 and Comparative Examples 1 and 2 the supply amount and exhaust amount of nitrogen gas were adjusted from 1000 ° C. so that the concentrations shown in the table were obtained under the conditions of Example 1, and a small amount of oxygen gas was added.
  • the oxygen gas concentration was controlled by supplying.
  • Examples 4 and 5, and Comparative Examples 3 and 4 a gas in which carbon monoxide gas and carbon dioxide gas were adjusted to 1: 1 from 1000 ° C. under the conditions of Example 1 above was adjusted to a predetermined concentration. .
  • the firing conditions of Examples 6 to 10 and Comparative Example 5 were the same as those of Example 1 above. In these Examples 2 to 10 and Comparative Examples 1 to 5, cooling was performed under the same conditions as in Example 1 above.
  • Comparative Example 6 was fired in a state where the fired body was embedded in coke powder using a silicon carbide container in another tunnel type gas firing furnace, and the firing temperature was the same as in the example.
  • Table 1 fused alumina used in the Al 2 O 3 is 99 wt%, calcining alumina Al 2 O 3 is 99 wt% zirconia mullite Al 2 O 3 is 55 wt%, ZrO 2 is 38% by mass, SiO 2 having 17% by mass was used.
  • Al powder, Al—Si powder, and Al—Mg powder having a particle size of 200 ⁇ m or less were used.
  • Zirconium mullite was blended in an amount of 33% by mass in all examples. That is, the refractory raw material composition of each example contains 13% by mass of the ZrO 2 component.
  • the amount of aluminum nitride produced was quantified by the internal standard method of X-ray diffraction.
  • generation amount shown in Table 1 is the quantity produced
  • the nitrogen content was quantified by a thermal conductivity method using an oxygen-nitrogen simultaneous analyzer (manufactured by LECO).
  • the carbon content was evaluated by the chemical analysis method for refractory bricks described in JIS R2011.
  • the apparent porosity was evaluated by the method for measuring the apparent porosity of refractory bricks described in JIS R2205.
  • Oxidation resistance was indexed with Example 1 as 100 by oxidizing SiC abrasive grains by the British Standard method after oxidizing for 2 hours in the atmosphere at 800 ° C. using a rotary furnace. The smaller the value, the better the oxidation resistance.
  • the oxidation resistance was also evaluated by the oxidation resistance evaluation method described in JP-A-2009-204594. That is, as shown in FIG. 2, a high-frequency induction furnace is used, and a refractory that is a sample lined in a reaction vessel (not shown) of this high-frequency induction furnace, and the oxygen concentration of 30 to 120 ppm by mass are placed in the reaction vessel. The molten steel adjusted in the range of 1550 ° C. to 1650 ° C. was reacted for 300 minutes, and the maximum thickness of the decarburized layer on the working surface (steel bath part) generated by the reaction was evaluated. In this oxidation resistance evaluation, the oxygen concentration of the molten steel was measured with an oxygen concentration meter so that the oxygen concentration was 30 to 120 ppm by mass. The molten steel was stirred with a stirring jig.
  • digestion resistance was measured by the rate of weight change with an autoclave, and indexed with Example 1 as 100.
  • rate of weight increase due to the hydration reaction after holding at 150 ° C. for 3 hours under a pressure condition of 0.49 MPa in an autoclave digestion test was also investigated.
  • Table 1 shows the average of the number of uses for the five sets.
  • Examples 1 to 3 are examples manufactured under conditions with different oxygen gas concentrations. As the oxygen gas concentration increases, the amount of aluminum nitride produced decreases, but the amount of aluminum nitride produced is 1.5% by mass or more. Yes, even in the oxidation resistance evaluation using a high frequency induction furnace, the thickness of the decarburized layer is thin and is 1500 ⁇ m or less, which is good. On the other hand, in Comparative Examples 1 and 2 in which the oxygen gas concentration is outside the range of the present invention, the amount of aluminum nitride produced is less than 1.5% by mass, and even in the oxidation resistance evaluation using a high frequency induction furnace, the thickness of the decarburized layer is It is thicker than 1500 ⁇ m and inferior in oxidation resistance.
  • Comparative Examples 1 and 2 are inferior in oxidation resistance because aluminum becomes aluminum oxide due to a small amount of oxygen gas and inhibits the formation of aluminum nitride. Also in the evaluation result of surface roughness in the actual furnace, it is 4.4 times in Comparative Example 1 and 3.2 times in Comparative Example 2, which is inferior to 5.0 to 5.4 times in Examples 1 to 3. . In Examples 1 to 3, the amount of aluminum nitride produced was 7.0% by mass or less, and the weight increase rate was 0.5% or less in the digestion test using an autoclave. . From these facts, it is understood that the oxygen gas concentration in the furnace is preferably 100 ppm by volume or less.
  • Example 4 and 5 the total of the carbon monoxide gas concentration and the carbon dioxide gas concentration is 0.5% by volume and 1.0% by volume, which are within the scope of the present invention.
  • the amount of aluminum nitride produced is 1.5% by mass or more, and even in the oxidation resistance evaluation using a high frequency induction furnace, the thickness of the decarburized layer is thin and 1500 ⁇ m or less, which is favorable.
  • the production amount of aluminum nitride is 7.0 mass% or less, and also in the digestion test by an autoclave, a weight increase rate is 0.5% or less, and it is excellent also in digestion resistance. .
  • Examples 4 and 5 are excellent in oxidation resistance and digestion resistance, and the number of times the plate brick is used in an actual furnace is also good at 5.0 times.
  • Comparative Examples 3 and 4 are out of the scope of the present invention, with the total of the carbon monoxide gas concentration and the carbon dioxide gas concentration being 2.0% by volume and 5.0% by volume. It is less than 5% by mass, and even in the oxidation resistance evaluation using a high frequency induction furnace, the thickness of the decarburized layer exceeds 1500 ⁇ m, and the oxidation resistance is lowered. Further, in the digestion test using an autoclave, the weight increase rate is more than 0.5%, and the digestion resistance is lowered in addition to the oxidation resistance. From this, although the production amount of aluminum nitride is 7.0 mass% or less, it is considered that aluminum carbide is produced. The number of plate bricks used in the actual furnace was also greatly inferior at 3.2 times.
  • Comparative Example 5 is an example in which aluminum nitride powder is added to the refractory raw material composition without using aluminum or an aluminum alloy, but the oxidation resistance is inferior to each example, and the plate bricks in the actual furnace are inferior. The number of uses is low.
  • Comparative Example 6 was fired in a state where the molded body was embedded in coke powder using a silicon carbide container in another tunnel type gas firing furnace, but the amount of aluminum nitride produced was 1.5 mass. Even in the oxidation resistance evaluation using a high frequency induction furnace, the thickness of the decarburized layer is thick and exceeds 1500 ⁇ m, and the oxidation resistance is inferior. In the digestion test using an autoclave, the weight increase rate is more than 0.5%. Although the amount of aluminum nitride produced is 7.0% by mass or less, it is considered that a large amount of aluminum carbide is produced. Moreover, cracks are generated after firing, and it is estimated that these cracks are caused by reduction of zirconia by firing in a strong reducing atmosphere.
  • Example 6 Si powder was added, but compared with Example 1, the rate of weight increase was 0.3% or less in the digestion test using an autoclave, and the digestion resistance was improved. I understand.
  • Example 8 used Al—Si powder
  • Example 9 used Al—Mg powder. The results were inferior to those using Al powder.
  • Example 10 the amount of Al powder was increased under the same firing conditions as in Example 1.
  • the production amount of aluminum nitride is 1.5% by mass or more, and in the oxidation resistance evaluation using a high frequency induction furnace, the thickness of the decarburized layer is thin and is 1500 ⁇ m or less, but the production amount of aluminum nitride is 7.0% by mass.
  • the weight increase rate exceeds 0.5%, and the digestion resistance tends to decrease. Therefore, it can be said that the amount of aluminum nitride produced is preferably suppressed to 7.0% by mass or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

 アルミニウム及び/又はアルミニウム合金を含有する耐火原料配合物に有機バインダーを添加して混練し、成形後、窒素ガス雰囲気にて1000℃以上1400℃以下で焼成するプレートれんがの製造方法において、少なくとも炉内雰囲気温度が300℃以上では窒素ガス雰囲気とし、しかも炉内雰囲気温度が1000℃以上では雰囲気中の酸素ガス濃度を100体積ppm以下かつ一酸化炭素ガス濃度と二酸化炭素ガス濃度の合計を1.0体積%以下に保持する。これによってプレートれんが中に微細で均一な窒化アルミニウムが多く生成し、炭化アルミニウムの生成による消化による組織劣化を防止するとともに、カーボンボンドの酸化が抑制され、耐面荒れ性が向上する。

Description

プレートれんがの製造方法及びプレートれんが
 本発明は溶融金属の流量制御のためのスライディングノズル装置に使用されるプレートれんがの製造方法及びプレートれんがに関する。
 鋼の製造において、取鍋やタンディッシュ等の溶融金属容器から排出される溶鋼の流量を制御するために、スライディングノズル装置が使用される。このスライディングノズル装置には2枚もしくは3枚の耐火物製のノズル孔を持つプレートれんがが使用される。このプレートれんがは重ね合わせられ、面圧が付加された状態で摺動され、ノズル孔の開度を調整することで溶鋼の流量が調整される。

 このプレートれんがには、アルミナ-カーボン材質が一般的に使用され、製造方法によって焼成タイプと不焼成タイプとに分かれる。焼成タイプは、不焼成タイプよりコスト高になるが、強度に優れるため比較的大型のプレートれんがに使用されている。

 プレートれんがの寿命は、多くの場合、稼動面となる摺動面が損耗を受けることにより決まる。このプレートれんがの摺動面の損耗(以下「面荒れ」という。)の原因は、熱衝撃による組織の緩み、溶鋼との化学的な反応によるもの、摺動による摩耗、あるいはカーボンボンドの酸化などが考えられている。

 耐面荒れ性を改善する手法としては、例えば耐熱衝撃性を向上するために、低熱膨張率であるジルコニアムライトやアルミナジルコニア等の耐火原料が使用されている。また、耐食性を向上するためには、スラグと反応しにくい電融アルミナ等の高純度で緻密な原料の使用、さらにカーボンの種類やカーボン含有量の適正化等が検討されている。摺動による耐摩耗性を向上するためには、使用する原料の粒度構成の適正化等により組織を緻密化し高強度化する、さらには摺動面の研磨精度を向上させるなどの手法が実施されている。また、酸化防止のためには炭化珪素、炭化硼素、窒化アルミ等の酸化防止剤の添加が行われている。

 このように、プレートれんがの耐面荒れ性を向上するために、様々な耐火原料の組合せが検討されている。また、これとともに焼成条件等の製造方法の適正化も検討されている。

 焼成タイプのプレートれんがの一般的な製造方法として、例えば、シリコン等の金属を含む耐火原料配合物に有機バインダーを添加して混練し、成形後、コークス粒を充満した容器に成形体を入れて1000℃以上で焼成する方法がある。この焼成タイプのプレートれんがの結合組織は、カーボンボンドと炭化珪素ボンドが主体となり、酸化物の焼結ボンド等がからみ合ったものとなっている。カーボンボンドはセラミックボンドと比較して低弾性率であり、耐熱衝撃性に優れる。また、炭化珪素ボンドは、強度及び耐酸化摩耗性を付与する効果を持つことから、使用時の損耗を抑制した優れた結合組織となっている。ただし、炭化珪素は酸化されるとSiOとなり、FeOやCaOなどの外来成分と反応して低融点物質を生成するため、耐食性が低下する。また、SiOは、高温下でSiOガスとして消失しやすく、長時間の使用では効果が持続し難いといった問題がある。

 また、焼成タイプでは、シリコン以外にアルミニウムを使用することも知られている。例えば特許文献1には、アルミニウムを使用した耐火原料配合物を使用して、炭素中の還元雰囲気で焼成することで炭化アルミニウムや窒化アルミニウムの反応焼結ボンドが得られることが開示されている。そして、従来のカーボンボンドタイプよりも機械的強度及び耐食性に優れると記載されている。

 しかし、特許文献1のようなアルミニウムの添加による窒化アルミニウムボンドを含むタイプのプレートれんがを、炭素中での還元雰囲気で焼成すると、炭化アルミニウムを多量に生成するため、耐消化性に劣る問題がある。具体的には操業都合などにより取り外され、再使用される場合などは、放置され、次回の使用までに時間を要することから、大気中の水蒸気により炭化アルミニウムが水和され、れんがの強度が低下し耐用性が低下する問題が生じる。また、使用後に回収し、リサイクル使用される場合などは、回収されたれんがを再度、研磨、加工することから、加工時の水により炭化アルミニウムが水和され、れんがの強度が低下し耐用性が低下する。特許文献1には、窒素ガス雰囲気中で焼成する方法も開示されている。しかし、単に窒素ガス雰囲気中で焼成するのみでは、被焼成物である成形体に含まれるフェノール樹脂等のバインダーが分解されて発生する揮発分中のCOやCOなどのガスにより、窒化アルミニウムの生成が阻害される。このため、プレートれんがの耐面荒れ性の改善効果が不十分であり期待する程の効果が得られない。

 さらに、焼成条件としては、特許文献2に酸素ガス分圧が10~10000ppmの雰囲気で弱酸化焼成することが開示されている。

 しかし、特許文献2の焼成条件でアルミニウムの添加による窒化アルミニウムボンドを含むプレートれんがを焼成した場合も、先に述べたように、被焼成物である成形体に含まれるフェノール樹脂等のバインダーが分解されて発生する揮発分中のCOやCOなどのガスにより、窒化アルミニウムの生成が阻害される。このため、窒化アルミニウムの収率が低く、耐酸化性(耐面荒れ性)の改善効果が満足するものが得られない。

 さらに、特許文献2の焼成条件では、CO及びCOの存在が許容されているが(特許文献2の段落0022参照)、CO及びCOが焼成雰囲気中に多く存在すると、窒素ガスとアルミニウムとの反応による窒化アルミニウムの生成が阻害されるといった問題がある。

 このように、プレートれんがの耐面荒れ性は、使用する原料の組合せや焼成条件によって改善されつつあるものの、従来の技術には上述のような問題があり、現在でもプレートれんがの寿命の原因は依然として面荒れである。
特開昭57-27971号公報 特開2003-171187号公報
 本発明が解決しようとする課題は、焼成タイプのプレートれんが、とくに窒化アルミニウムボンドを有するプレートれんがの耐酸化性を向上させ、耐面荒れ性を向上させることにある。
 本発明者は、使用後のプレートれんがの解析から、面荒れの対策として使用時の炭素質原料やカーボンボンドの酸化、消失による組織劣化を抑制することが必要であり、そのためにはカーボンボンドの耐酸化性向上が重要であると考えた。そして、窒化アルミニウムが炭化珪素や炭化硼素よりも酸化防止剤としての効果が高いと考えられたことから、プレートれんがの耐酸化性を高めるために、窒化アルミニウムボンドを有するプレートれんがについて着目した。さらに、その焼成雰囲気について種々検討した結果、焼成中の窒素ガス以外の微量のガスがプレートれんがの耐酸化性に大きな影響を与えることを見出した。

 すなわち、本発明は、アルミニウム及び/又はアルミニウム合金を含有する耐火原料配合物に有機バインダーを添加して混練し、成形後、窒素ガス雰囲気にて1000℃以上1400℃以下で焼成するプレートれんがの製造方法において、少なくとも炉内雰囲気温度が300℃以上では窒素ガス雰囲気とし、しかも炉内雰囲気温度が1000℃以上では雰囲気中の酸素ガス濃度を100体積ppm以下かつ一酸化炭素ガス濃度と二酸化炭素ガス濃度の合計を1.0体積%以下に保持することを特徴とするものである。

 以下、本発明の特徴を具体的に説明する。

 プレートれんがの成形体にはフェノール樹脂等の有機バインダーが含まれており、成形体が加熱されると、有機バインダーが縮合することで水が発生する。さらに温度が上がると硬化した有機バインダーの一部が分解し、水蒸気、一酸化炭素ガス、二酸化炭素ガス、炭化水素系ガス等が発生する。また、焼成雰囲気には常に大気が混入しやすく、大気中には酸素ガス、二酸化炭素ガス、水蒸気等が含まれる。酸素ガス、一酸化炭素ガス、あるいは二酸化炭素ガスは、焼成時にプレートれんが中のアルミニウムと反応して酸化アルミニウムを生成し、窒化アルミニウムの生成を阻害する。

 また、焼成時には、1000℃前後からプレートれんが中でアルミニウムの溶融物あるいはガス化物は窒素ガスと反応して窒化アルミニウムを生成し始める。このため、窒化アルミニウムの収率を向上させるためには、1000℃以上において窒化アルミニウムの生成を阻害するガスである酸素ガス、一酸化炭素ガス及び二酸化炭素ガスの濃度を低減する必要がある。具体的には、酸素ガス濃度を100体積ppm以下、かつ一酸化炭素ガス濃度と二酸化炭素ガス濃度の合計を1.0体積%以下とする。

 酸素ガスは、アルミニウムとの反応性が高いため微量でもアルミニウムを酸化することから、その濃度は少ない程好ましく0でも良い。酸素ガス濃度は、100体積ppmを超えると窒化アルミニウムの生成量が不十分となり、耐酸化性が不十分となる。

 一酸化炭素ガス及び二酸化炭素ガスも、酸素ガスより反応性はかなり低いがアルミニウムと反応して酸化アルミニウムを生成することから、その濃度は少ない程良く0でも良い。これらの合計が1.0体積%を超えると窒化アルミニウムの生成量が不十分となり、耐酸化性が不十分となる。

 また、焼成温度は、1000℃未満では窒化アルミニウムの生成が不十分となり、焼成温度が1400℃を超えるとセラミックボンドが発達しすぎて高弾性化し耐熱衝撃性が低下する。 

 このような条件で製造されるプレートれんがにおいては、焼成中に溶融したアルミニウムもしくはガス化したアルミニウムが、マトリックスにおいて雰囲気中の窒素ガスと反応して窒化アルミニウムを生成する。この点は、本発明のプレートれんがをSEM観察した結果である図1に示すように、窒化アルミニウムは径が0.1~0.2μmの微細なファイバー状をしており、組織中の空間を充填していることからも明らかである。

 本発明のプレートれんが中の窒化アルミニウムは上述のような形態で存在していることから極めて活性が高い。すなわち、使用時にれんがの稼働面で溶鋼中のFeOなどにより稼動面のれんが中のカーボンが酸化されるが、そのときに生じたCOガスが窒化アルミニウムと直ちに反応する。そして、アルミナとカーボンを生成するため、アルミナとカーボンによる新たな組織を形成し、マトリックスの組織を緻密化する。このようなメカニズムで一旦酸化されたカーボンが再生され、しかも表面の組織が緻密化しFeO等の浸透を抑制するため、カーボンボンドの酸化が抑制されて耐酸化性が向上し、ひいては耐面荒れ性が付与されると考えられる。

 一方、従来のように粉末状の窒化アルミニウムを耐火原料配合物に添加した場合には、均一に分散させることが難しくその粒径も大きい。このため、反応によって生成する窒化アルミニウムと比較すると耐酸化性向上への寄与に劣り、さらに結合組織を形成することもない。

 また、本発明の製造方法によれば、耐火原料配合物にジルコニア、ジルコニアムライト及びアルミナジルコニアのうち1種以上をZrO成分として4質量%以上20質量%以下を含有させることができる。

 従来一般的なコークス粒中に埋設させて焼成するプレートれんがの製造方法においては、アルミニウム及び/又はアルミニウム合金を含有する耐火原料配合物中にジルコニア含有原料を使用すると焼成後に亀裂が発生しやすくなる。この理由は明確ではないが、高温下ではコークス粒中の酸素ガスはコークスと反応して一酸化炭素ガスを生成し、さらに被焼成物中には強還元剤であるアルミニウムを含有することから、れんがの気孔中は、強還元雰囲気となる。高温条件下、強還元雰囲気下ではジルコニアが還元され、ジルコニウム、あるいは炭化ジルコニウムを生成しやすくなると考えられる。ジルコニウム、あるいは炭化ジルコニウムは、さらに微量の酸素ガスと著しい体積変化を伴う激しい反応によりジルコニアを生成し、亀裂が発生するものと推定される。

 一方、本発明の製造方法においては、ジルコニア含有原料を使用しても焼成後に亀裂が発生しない。この理由は、焼成雰囲気が窒素ガス主体であり、還元性ガスである一酸化炭素などのガス濃度が1.0体積%以下と少ないことから強還元雰囲気とはならず、ジルコニウムや炭化ジルコニウムの生成が抑制されるためと考えられる。したがって、本発明の製造方法によるプレートれんがは、ジルコニア含有原料による耐熱衝撃性向上効果が得られるので、格段に耐面荒れ性が高まる。

 耐火原料配合物中のジルコニア、ジルコニアムライト及びアルミナジルコニアのうち1種以上のZrO成分が4質量%未満では耐熱衝撃性の向上効果が十分には得られず、20質量%を超えると耐FeO性が低下し、耐用性が低下することがある。

 さらに本発明の製造方法では、耐火原料配合物にシリコンを0.5~5質量%含有させても良い。アルミニウムを添加すると、カーボンを含む場合、焼成中に溶融したアルミニウムとカーボンが反応して炭化アルミニウムを一部生成することが知られている。炭化アルミニウムは容易に水和して組織を崩壊させる要因となるが、シリコンを添加すると炭化アルミニウムにシリコンが固溶して水和し難くなることが知られている。このことにより、耐消化性が改善される。シリコンが0.5質量%未満では消化防止効果が十分には得られず、5質量%を超えると耐FeO性及び耐CaO性が低下し、耐用性が低下することがある。

 一方、本発明のプレートれんがは、窒化アルミニウムの含有量が1.5質量%以上7.0質量%以下であって、オートクレーブによる消化試験において、0.49MPaの加圧条件下、150℃で3時間保持した後の水和反応による重量増加率が0.5%以下である。

 耐火原料配合物に配合されたアルミニウムやアルミニウム合金、シリコンなどの金属は、焼成時に炭化アルミニウムや窒化アルミニウム、アルミナ、炭化珪素、窒化珪素、シリカなどの炭化物、窒化物、酸化物を生成する。

 これらの中で窒化アルミニウムは、使用時に、溶鋼中のFeOなどによってれんがの稼働面でれんが中のカーボンが酸化されて生じたCOガスと直ちに反応する。そして、アルミナとカーボンを生成するため、マトリックスの組織を緻密化することから、耐酸化性の効果が高い。アルミナでは、この耐酸化性の効果は得られず、窒化アルミニウムの生成量が多いほど、耐酸化性の効果が高い。窒化アルミニウム生成量が1.5質量%以下では耐酸化性の効果を十分得ることができない。一方、炭化アルミニウムも同様の耐酸化性効果が期待できるが、炭化アルミニウムは、水和反応により、メタン、カーバイド、アセチレンなどのガスを発生し、水酸化アルミニウムを生成する。この反応により、体積が膨張し亀裂が生じることから、れんがが崩壊し、耐火物として使用することが困難となる。炭化アルミニウムの水和反応では水酸化アルミニウムを生成することから重量は増加する。オートクレーブによる消化試験での重量増加率が0.5%を超えると、長期間の保管あるいは実炉での再使用、又は再生使用時に、水和した摺動面が剥離する、亀裂が生じる等のトラブルが生じることから、十分な効果を得ることができない。

 窒化アルミニウムは、炭化アルミニウムと比較すると水和反応が生じにくいが、多量に含有する場合は、水和反応によりアンモニアガスを生じ、水酸化アルミニウムを生成する。炭化アルミニウムと同様、この水和反応でも水酸化アルミニウムを生成することから重量は増加する。窒化アルミニウムの含有量が7.0質量%を超えると、水和反応による重量増加率が0.5%超となり、長期間の保管あるいは実炉での再使用、または再生使用時に、水和した摺動面が剥離する、亀裂が生じる等のトラブルが生じることから、十分な効果を得ることができない。

 また、本発明のプレートれんがは、酸素濃度が30~120質量ppmで1550℃~1650℃の範囲に調整された溶鋼と300分間反応させた時の稼動面の脱炭層の厚みが1500μm以下であることが好ましい。

 この脱炭層の厚み耐酸化性の指標であり、具体的には特開2009-204594号公報に記載の耐酸化性評価方法を用い、酸素濃度が30~120質量pmで1550℃~1650℃の範囲に調整された溶鋼と耐火物を300分間反応させ、稼動面の脱炭層の厚みの最大値を評価する。この耐酸化性評価方法では、耐火物中のカーボンが溶鋼中の酸素により酸化され、脱炭層を形成する。窒化アルミニウムの生成量が多い場合、酸化により生成した一酸化炭素と窒化アルミニウムが反応し緻密なアルミナ層を形成し、カーボンを析出することから、脱炭層の生成が抑制される。脱炭層の最大厚みが1500μm以下である場合は、実炉においても摺動面の酸化が抑制され摺動面の損耗が軽減されるが、1500μmを超える場合は、溶鋼中の酸素による脱炭が進行し、十分な効果を得ることができない。

 なお、本発明のプレートれんがは、上述した本発明の製造方法によって得ることができる。
 本発明によって得られるプレートれんがは耐酸化性に優れるため、耐面荒れ性が向上し、その結果、プレートれんがの耐用性が向上する。
本発明の製造方法によって製造したプレートれんがのSEM観察を示す。 高周波誘導炉を用いた耐酸化性の評価方法を示す説明図である。
 アルミニウム及び/又はアルミニウム合金は、一般的にプレートれんがの製造に使用されているものであれば、とくに問題なく使用することができる。アルミニウム合金としては、シリコンやマグネシウム等との合金を使用することができる。なかでも、合金の場合にはAlの含有率が50質量%以上のAl-Mg合金、Al-Si合金、あるいはAl-Mg-Si合金が窒化アルミニウムの収率が高い点から好ましい。アルミニウム及び/又はアルミニウム合金は、その粒径が200μm以下の粉末状のものを使用すると、製造されるプレートれんがの耐酸化性がより優れることから好ましい。

 アルミニウム及び/又はアルミニウム合金は、耐火原料配合物中にAl換算で1~10質量%含有させることが好ましく、より好ましくは2~5質量%である。1質量%以下では生成する窒化アルミニウムが不足し耐酸化性が不足することがある。10質量%を超えると窒化アルミニウムの生成が過多となり高強度高弾性率となり耐熱衝撃性が低下し、また耐消化性が低下することがある。また、焼成時の体積変化が大きく、焼成後に亀裂が生じるなどの問題が生じることもある。

 本発明のプレートれんがの製造方法においては、アルミニウム及び/又はアルミニウム合金を含有する耐火原料配合物を使用するが、アルミニウム及びアルミニウム合金以外の耐火原料としては、一般的なプレートれんがに使用される耐火原料を使用することができる。例えば、金属酸化物を主体とし、これに金属窒化物、金属炭化物、アルミニウム及びアルミニウム合金を除く金属、並びに炭素質原料のうち1種以上を使用することができる。より好ましくは、金属酸化物を80~98質量%、金属窒化物、金属炭化物、アルミニウム及びアルミニウム合金を除く金属、並びに炭素質原料のうち1種以上を1~10質量%使用することができる。

 金属酸化物としては例えば、アルミナ、ムライト、ジルコニアムライト、アルミナジルコニア、マグネシア、スピネル、粘土、ガラス、及びれんが屑等のうち1種以上を、金属窒化物としては窒化珪素、窒化アルミニウム、及び窒化硼素等のうち1種以上を、金属炭化物としては炭化珪素及び炭化硼素等のうち1種以上を、アルミニウム及びアルミニウム合金を除く金属としてはシリコン、マグネシウム、鉄、ニッケル、及びこれらの合金等のうち1種以上を、炭素質原料としてはピッチ、タール、カーボンブラック及び黒鉛等のうち1種以上を使用することができる。

 金属酸化物としては、アルミナを50~80質量%使用することがより好ましい。アルミナは耐食性を高めることができる。また、耐食性を重視した材質が必要な場合は、マグネシアやスピネルなどの金属酸化物を使用することも可能である。

 有機バインダーは、成形時の強度付与及びカーボンボンド形成のために一般的に耐火物に使用されているものを使用することができるが、熱硬化性有機バインダーがより好ましい。具体的には、フェノール樹脂やフラン樹脂を、フェノール、エチレングリコール、あるいはエタノール等の溶剤に希釈し粘性調整したものを使用することができる。また、これらの樹脂の粉末タイプを併用あるいは単独で使用することもできる。

 本発明では、アルミニウム及び/又はアルミニウム合金を含有する耐火原料配合物に有機バインダーを添加して常法で混練し、成形する。焼成は窒素ガス雰囲気で行う。

 焼成炉は、バッチ炉でも連続炉でもどちらでも使用可能である。何れの場合にも、大気や燃焼ガスなど窒素ガス以外のガスの侵入を防止でき、窒素ガスの供給量、炉内ガスの排出量、及び温度等を制御することができれば良い。これらの炉は、耐火物やセラミックスの焼成炉として公知であり、市販されているものを使用することができる。

 焼成時は、被焼成物の酸化を防止するために最低でも雰囲気温度が300℃以上では窒素ガス雰囲気とする。300℃未満は大気雰囲気とすることもできるが、焼成途中で雰囲気を変更することの煩雑さを考慮すると、焼成開始から焼成終了までの間を窒素ガス雰囲気とすることがより好ましい。

 昇温過程で炉内の雰囲気が1000℃未満迄の領域では、バインダーに含まれるガスが発生するため、炉内ガスを排出しながらかつ、窒素ガスを供給しながら行うことができる。

 炉内の雰囲気温度が1000℃以上においては、雰囲気中の酸素ガス濃度が100体積ppm以下、かつ一酸化炭素ガス濃度と二酸化炭素ガス濃度の合計が1.0体積%以下となるように、窒素ガスの供給量と排ガス量とで炉内雰囲気を制御する。より好ましくは、雰囲気温度が1000℃以上において、酸素ガス濃度が10体積ppm以下、一酸化炭素ガス濃度と二酸化炭素ガス濃度の合計が0.1体積%以下の条件である。 

 炉内の雰囲気の最高温度は、1000℃以上1400℃以下の範囲の任意の温度とし、この範囲の雰囲気温度に1時間以上10時間以下の時間で被焼成物が保持されれば良い。

 降温過程で炉内の雰囲気が1000℃未満からは、炉外から侵入する空気による酸化を防止するためには、基本的には焼成が終了するまで窒素ガス雰囲気で行う。この冷却時は、被焼成物からのガスの発生はないので、300℃までの温度領域で炉内に大気の侵入を抑制することができれば良い。そのときの炉内雰囲気の目安としては、酸素ガス濃度が1000体積ppm以下、かつ一酸化炭素ガス濃度と二酸化炭素ガス濃度の合計が1.0体積%以下とすることがより好ましい。また、窒素ガスを節約する場合には、300℃未満の温度では大気を導入して冷却しても酸化の影響は少ない。

 バッチ炉においては、窒素ガスを供給する際に、常法で炉内雰囲気を窒素ガスに置換する操作を行うことがより好ましい。

 トンネルキルン等の連続炉での焼成においては、出口側から入口側に向う窒素気流を形成するように窒素ガスを供給することができる。このようにすることで、1000℃以下で被焼成物から発生するガスはより低温側に流れて行くため1000℃以上の雰囲気での窒素ガス濃度を高く保持することができる。連続炉においては、基本的には台車が炉内に挿入された位置で窒素ガス雰囲気とすることが望ましい。ただし、窒素ガスを節約する場合には少なくも雰囲気温度が300℃以上になる場所では窒素ガス雰囲気とし、300℃未満では大気雰囲気として良い。また、800℃以下の低温域では、被焼成物から発生するガスを除去するために、脱脂帯を設けることが望ましい。

 なお、有機バインダーとしてフェノール樹脂等の熱硬化性樹脂を使用した場合には、溶剤や反応による水分をあらかじめ除くために、アルミニウムの酸化の少ない300~100℃の範囲で大気雰囲気で別の炉で熱処理しても良い。

 また、成形体をコークス粒などの炭素粒子に埋め込んで行う焼成は、窒化アルミニウムの生成が少なく、また焼成時の亀裂が発生しやすくなることから、本発明では採用できない。本発明は、炭素粒を使用することなく、窒素ガスのみで酸素ガス、一酸化炭素ガス及び二酸化炭素ガスが極めて少ない条件で焼成する。
 表1に本発明の実施例及び比較例を示す。表1に示す耐火原料配合物にフェノール樹脂を外掛けで添加して、混練し、オイルプレスでプレートれんがの成形体を得た。

 表1に示す実施例1において焼成は、密閉式のバッチ炉(電気炉)で行った。炉内に成形体を入れて炉内雰囲気を窒素ガスに置換し、炉内の酸素ガス濃度が1000体積ppm以下の条件で焼成を開始した。昇温中は常に窒素ガスを供給し、炉内で発生するガスや過剰な窒素ガスは炉外に排出した。焼成温度が高くなるにつれて、酸素ガス濃度は低下し、フェノール樹脂などの分解により一酸化炭素ガス濃度及び二酸化炭素ガス濃度が上昇するが、昇温途中の900℃で2時間保持し、供給ガス量と排ガス量を調整し、酸素ガス濃度を100体積ppm以下、一酸化炭素ガス濃度と二酸化炭素ガス濃度の合計を1.0体積%以下とした。その後、このガス濃度条件下で昇温し、最高温度(焼成温度)1300℃で3時間保持した。室温から1300℃までの昇温には20時間要した。その後は加熱を止め、炉内圧力が大気より高くなるように窒素ガスを供給しながら、酸素ガス濃度が100体積ppm以下で、一酸化炭素ガス及び二酸化炭素ガスの合計が1.0体積%以下の条件で150℃まで冷却し、150℃で焼成物を取り出した。本実施例では窒素ガスはN純度が99.99%以上、酸素ガス濃度が5体積ppm以下、かつ一酸化炭素ガス濃度と二酸化炭素ガス濃度の合計が100体積ppm以下のものを使用した。

 炉内のガス濃度は炉内に配管を通し、ガスを収集し測定した。また、電気化学式の酸素ガス濃度計、及び赤外線式の炭酸ガス分析装置を用いて炉内のガス濃度を連続して測定し、供給ガス量と排ガス量を制御した。また、酸素ガス、又は、一酸化炭素ガス及び二酸化炭素ガスの供給により、酸素ガス濃度と一酸化炭素ガス濃度及び二酸化炭素ガス濃度とを制御した。測定機器の測定精度から、酸素ガス濃度は1体積ppmのオーダーまでを測定し、一酸化炭素ガス濃度及び二酸化炭素ガス濃度については、0.1体積%のオーダーまでを測定した。

 なお、表1において、酸素ガス濃度、一酸化炭素ガス濃度及び二酸化炭素ガス濃度の合計は、1300℃での測定結果を示す。

 実施例2及び3、並びに比較例1及び2では、上記実施例1の条件において表中に示す濃度になるように1000℃から窒素ガスの供給量と排気量を調整し、さらに酸素ガスを少量供給して酸素ガス濃度を制御した。実施例4及び5、並びに比較例3及び4は、上記実施例1の条件において1000℃から一酸化炭素ガス及び二酸化炭素ガスを1対1に調整したガスを供給し、所定の濃度に調整した。実施例6~10及び比較例5の焼成条件は上記実施例1と同じとした。これらの実施例2~10及び比較例1~5において冷却は、上記実施例1と同じ条件で行った。

 比較例6は、別のトンネル式ガス焼成炉にて炭化珪素の容器を使用して焼成体をコークス粉中に埋設した状態で焼成したもので、焼成温度は実施例と同じとした。

 表1で使用した電融アルミナはAlが99質量%、仮焼アルミナはAlが99質量%、ジルコニアムライトはAlが55質量%、ZrOが38質量%、SiOが17質量%のものを使用した。Al粉、Al-Si粉及びAl-Mg粉は、粒径が200μm以下のものを使用した。なお、ジルコニアムライトは、すべての例において33質量%配合した。すなわち、各例の耐火原料配合物はZrO成分を13質量%含有する。

 窒化アルミニウムの生成量はX線回折の内部標準法により定量した。なお、表1に示す窒化アルミニウム生成量は、焼成により生じた量であるが、耐火原料配合物に窒化アルミニウムを配合していない場合には、れんが中の含有量に相当する。

 窒素含有量は、酸素窒素同時分析装置(LECO社製)を用いて熱伝導度法で定量した。また、カーボン含有量は、JISR2011に記載の耐火れんがの化学分析方法で評価した。

 見掛け気孔率は、JISR2205に記載の耐火れんがの見掛け気孔率の測定方法で評価した。

 耐酸化性は回転炉を用いて、大気中で800℃の条件で2時間酸化した後に、ブリティッシュスタンダード法により、SiCの砥粒を吹き付け、実施例1を100として指数化した。数値が小さいほど耐酸化性に優れる。

 また、特開2009-204594号公報に記載の耐酸化性評価方法によっても、耐酸化性を評価した。すなわち図2に示すように高周波誘導炉を用い、この高周波誘導炉の反応容器(図示せず)に内張りされたサンプルである耐火物と、反応容器に入れられ、酸素濃度が30~120質量ppmで1550℃~1650℃の範囲に調整された溶鋼とを300分間反応させ、その反応により生じた稼働面(鋼浴部)の脱炭層の最大厚みを評価した。なお、この耐酸化性の評価では、酸素濃度計で溶鋼の酸素濃度を測定し、その酸素濃度が30~120質量ppmとなるようにした。また、溶鋼は撹拌ジグで撹拌した。

 また、耐消化性はオートクレーブにより重量変化率によって測定を行い、実施例1を100として指数化した。また、耐消化性としては、オートクレーブによる消化試験において、0.49MPaの加圧条件下、150℃で3時間保持した後の水和反応による重量増加率も調査した。これらの耐消化性の評価における数値は、その数値が小さいほど耐消化性に優れる。

 また、実炉での面荒れの評価として、表1のプレートれんがを同じ製鉄所の取鍋で5セット使用し、3回使用後から摺動面を観察し面荒れの程度で使用可否を判断した。5セットの使用回数の平均を表1に示した。

 実施例1~3は酸素ガス濃度が異なる条件で製造した例であり、酸素ガス濃度が高くなるにつれて、窒化アルミニウムの生成量が少なくなるが、窒化アルミニウムの生成量が1.5質量%以上であり、高周波誘導炉を用いた耐酸化性評価でも、脱炭層厚みが薄く1500μm以下であり良好である。一方、酸素ガス濃度が本発明の範囲外である比較例1及び2では窒化アルミニウムの生成量が1.5質量%未満であり、高周波誘導炉を用いた耐酸化性評価でも、脱炭層厚みが厚く1500μm超であり耐酸化性に劣る。比較例1及び2が耐酸化性に劣るのは、アルミニウムが微量の酸素ガスにより酸化アルミニウムとなり、窒化アルミニウムの生成を阻害しているためと考えられる。実炉での面荒れの評価結果においても、比較例1では4.4回、比較例2では3.2回と実施例1~3の5.0~5.4回と比べると劣っている。また、実施例1~3については、窒化アルミニウムの生成量が7.0質量%以下であり、オートクレーブによる消化試験においても重量増加率は0.5%以下であり耐消化性にも優れている。これらのことから、炉内の酸素ガス濃度は100体積ppm以下が良いことがわかる。

 実施例4及び5は、一酸化炭素ガス濃度と二酸化炭素ガス濃度の合計が0.5体積%及び1.0体積%と本発明の範囲内である。いずれも窒化アルミニウムの生成量が1.5質量%以上であり、高周波誘導炉を用いた耐酸化性評価でも、脱炭層厚みが薄く1500μm以下となり良好である。また、実施例4及び5については、窒化アルミニウムの生成量が7.0質量%以下であり、オートクレーブによる消化試験においても重量増加率は0.5%以下であり耐消化性にも優れている。このように実施例4及び5は耐酸化性及び耐消化性に優れ、実炉でのプレートれんがの使用回数も5.0回と良好である。

 一方、比較例3及び4は、一酸化炭素ガス濃度と二酸化炭素ガス濃度の合計2.0体積%及び5.0体積%と本発明の範囲外となっており、窒化アルミニウムの生成量が1.5質量%未満であり、高周波誘導炉を用いた耐酸化性評価でも、脱炭層厚みが1500μm超となり、耐酸化性が低下している。また、オートクレーブによる消化試験においても重量増加率が0.5%超であり、耐酸化性に加えて耐消化性も低下している。このことから、窒化アルミニウムの生成量が7.0質量%以下であるが、炭化アルミニウムが生成していると考えられる。実炉でのプレートれんがの使用回数も3.2回と大きく劣る結果となった。

 比較例5は、アルミニウムあるいはアルミニウム合金を使用せず、耐火原料配合物中に窒化アルミニウム粉末を添加した例であるが、各実施例と比較すると耐酸化性に劣り、実炉でのプレートれんがの使用回数も低い。

 比較例6は、別のトンネル式ガス焼成炉にて炭化珪素の容器を使用して成形体をコークス粉中に埋設した状態で焼成したものであるが、窒化アルミニウムの生成量が1.5質量%未満であり、高周波誘導炉を用いた耐酸化性評価でも、脱炭層厚みが厚く1500μm超となり、耐酸化性に劣る。オートクレーブによる消化試験においても重量増加率が0.5%超である。窒化アルミニウムの生成量が7.0質量%以下であるが、炭化アルミニウムが多く生成していると考えられる。しかも焼成後は亀裂が発生しており、この亀裂は強還元雰囲気下での焼成によるジルコニアの還元に起因すると推定される。

 実施例6、7は、Si粉を添加したものであるが、実施例1と比較するとオートクレーブによる消化試験においても重量増加率が0.3%以下であり、耐消化性が向上していることがわかる。実施例8は、Al-Si粉を、実施例9はAl-Mg粉を使用したものであるが、Al粉を使用したものと遜色のない結果であった。

 実施例10は、実施例1と同様の焼成条件でAl粉を増量したものである。窒化アルミウムの生成量が1.5質量%以上であり、高周波誘導炉を用いた耐酸化性評価では、脱炭層厚みが薄く1500μm以下となり良好であるが、窒化アルミニウムの生成量が7.0質量%超であり、オートクレーブによる消化試験においては重量増加率が0.5%超となり耐消化性が低下傾向にある。したがって、窒化アルミニウムの生成量は7.0質量%以下に抑えることが好ましいといえる。

Figure JPOXMLDOC01-appb-T000001

Claims (5)

  1.  アルミニウム及び/又はアルミニウム合金を含有する耐火原料配合物に有機バインダーを添加して混練し、成形後、窒素ガス雰囲気にて1000℃以上1400℃以下で焼成するプレートれんがの製造方法において、
     炉内雰囲気温度が300℃以上では窒素ガス雰囲気とし、しかも炉内雰囲気温度が1000℃以上では雰囲気中の酸素ガス濃度を100体積ppm以下かつ一酸化炭素ガス濃度と二酸化炭素ガス濃度の合計を1.0体積%以下に保持することを特徴とするプレートれんがの製造方法。
  2.  耐火原料配合物が、ジルコニア、ジルコニアムライト及びアルミナジルコニアのうち1種以上をZrO成分として4質量%以上20質量%以下含有する請求項1に記載のプレートれんがの製造方法。
  3.  耐火原料配合物が、シリコンを0.5質量%以上5質量%以下含有する請求項1又は請求項2に記載のプレートれんがの製造方法。
  4.  窒化アルミニウムの含有量が1.5質量%以上7.0質量%以下であって、オートクレーブによる消化試験において、0.49MPaの加圧条件下、150℃で3時間保持した後の水和反応による重量増加率が0.5%以下であるプレートれんが。
  5.  酸素濃度が30~120質量ppmで1550℃~1650℃の範囲に調整された溶鋼と300分間反応させた時の稼動面の脱炭層の厚みが1500μm以下である請求項4に記載のプレートれんが。
PCT/JP2009/071124 2008-12-18 2009-12-18 プレートれんがの製造方法及びプレートれんが WO2010071196A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE112009004278.3T DE112009004278B4 (de) 2008-12-18 2009-12-18 Verfahren zur Herstellung einer Ziegelplatte und Ziegelplatte
KR1020117012246A KR101246813B1 (ko) 2008-12-18 2009-12-18 플레이트 벽돌의 제조 방법 및 플레이트 벽돌
BRPI0922166-2A BRPI0922166B1 (pt) 2008-12-18 2009-12-18 Tijolo de placa, e, método para produzir um tijolo de placa
US13/139,338 US8609562B2 (en) 2008-12-18 2009-12-18 Plate brick production method and plate brick
GB1112159.7A GB2480165B (en) 2008-12-18 2009-12-18 Plate brick production method and plate brick
CN200980150286.9A CN102245539B (zh) 2008-12-18 2009-12-18 板砖的制造方法及板砖
JP2010543011A JP5565908B2 (ja) 2008-12-18 2009-12-18 プレートれんがの製造方法及びプレートれんが

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-322609 2008-12-18
JP2008322609 2008-12-18

Publications (1)

Publication Number Publication Date
WO2010071196A1 true WO2010071196A1 (ja) 2010-06-24

Family

ID=42268863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071124 WO2010071196A1 (ja) 2008-12-18 2009-12-18 プレートれんがの製造方法及びプレートれんが

Country Status (8)

Country Link
US (1) US8609562B2 (ja)
JP (1) JP5565908B2 (ja)
KR (1) KR101246813B1 (ja)
CN (1) CN102245539B (ja)
BR (1) BRPI0922166B1 (ja)
DE (1) DE112009004278B4 (ja)
GB (1) GB2480165B (ja)
WO (1) WO2010071196A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224001A (ja) * 2013-05-15 2014-12-04 品川リフラクトリーズ株式会社 スライドプレート装置用プレートれんが及びその製造方法
DE112009004278B4 (de) * 2008-12-18 2016-11-17 Krosakiharima Corp. Verfahren zur Herstellung einer Ziegelplatte und Ziegelplatte
JP2017083400A (ja) * 2015-10-30 2017-05-18 黒崎播磨株式会社 耐火物の評価方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6027405B2 (ja) * 2012-11-12 2016-11-16 東京窯業株式会社 スライディングノズル用のプレート再生品の製造方法
WO2015129745A1 (ja) * 2014-02-28 2015-09-03 黒崎播磨株式会社 鋼の鋳造用耐火物,及びスライディングノズル装置用のプレート,並びに鋼の鋳造用耐火物の製造方法
WO2022117268A1 (de) * 2020-12-04 2022-06-09 Refractory Intellectual Property Gmbh & Co. Kg VERFAHREN ZUR QUANTITATIVEN BESTIMMUNG VON Al4C3 SOWIE VORRICHTUNG ZUR DURCHFÜHRUNG DES VERFAHRENS
CN113004027B (zh) * 2021-03-26 2022-05-17 福建安溪马斯特陶瓷有限公司 一种耐磨高性能陶瓷辊棒及其制备方法
CN113151707A (zh) * 2021-03-30 2021-07-23 李功毕 一种泡沫铝及其制备工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727971A (en) * 1980-07-22 1982-02-15 Kurosaki Refractories Co Plate brick for sliding nozzle
JPH06206759A (ja) * 1993-01-13 1994-07-26 Shinagawa Refract Co Ltd 連続鋳造用耐火物及びその製造方法
JPH10139527A (ja) * 1996-11-12 1998-05-26 Kawasaki Refract Co Ltd スライディングノズル用プレート耐火物の製造方法
JP2000107839A (ja) * 1998-10-01 2000-04-18 Toshiba Ceramics Co Ltd スライドゲート用プレートの製造方法
JP2003277129A (ja) * 2002-03-22 2003-10-02 Kurosaki Harima Corp スライディングノズル装置用プレートれんがとその製造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3236663A (en) * 1961-07-19 1966-02-22 Union Carbide Corp Method of producing refractory body bonded by an aluminum nitride-aluminum boride composition
US3492153A (en) * 1964-09-03 1970-01-27 North American Rockwell Silicon carbide-aluminum nitride refractory composite
US4332755A (en) * 1978-06-15 1982-06-01 Kennecott Corporation Sintered silicon carbide - aluminum nitride articles and method of making such articles
ZA812568B (en) * 1980-05-14 1982-06-30 Dresser Ind Refractory
JPS5727972A (en) * 1980-07-22 1982-02-15 Kurosaki Refractories Co Plate brick for sliding nozzle
JPS5727970A (en) * 1980-07-22 1982-02-15 Kurosaki Refractories Co Plate brick for sliding nozzle
FR2565964A1 (fr) * 1984-06-13 1985-12-20 Lafarge Refractaires Nouveaux refractaires a haute teneur en alumine et leur procede d'obtention
JPH03257062A (ja) * 1990-03-05 1991-11-15 Tokyo Yogyo Co Ltd スライドゲート用プレートレンガ
JPH0416547A (ja) * 1990-05-08 1992-01-21 Shinagawa Refract Co Ltd 炭素含有耐火物
US5286685A (en) * 1990-10-24 1994-02-15 Savoie Refractaires Refractory materials consisting of grains bonded by a binding phase based on aluminum nitride containing boron nitride and/or graphite particles and process for their production
DE4109375A1 (de) * 1991-03-22 1992-09-24 Dolomitwerke Gmbh Verfahren zur herstellung eines feuerfesten verbundwerkstoffs
JP3031192B2 (ja) * 1995-02-01 2000-04-10 住友金属工業株式会社 スライディングノズル用プレート耐火物
JPH11278940A (ja) * 1998-03-27 1999-10-12 Kurosaki Refract Co Ltd アルミナ−炭化珪素質耐火物
JP2000094121A (ja) * 1998-09-22 2000-04-04 Toshiba Ceramics Co Ltd スライドゲート用プレートの製造方法
JP2000319070A (ja) * 1999-04-30 2000-11-21 Nkk Corp 衝撃に強い耐火物およびその製造方法
JP2000327401A (ja) * 1999-05-13 2000-11-28 Toshiba Ceramics Co Ltd スライドゲート用プレート
JP2003002742A (ja) * 2001-06-19 2003-01-08 Sumitomo Metal Ind Ltd 電気伝導性に優れる耐火物
JP4009451B2 (ja) 2001-12-03 2007-11-14 黒崎播磨株式会社 スライディングノズル装置用プレートれんがとその製造法
JP4245122B2 (ja) * 2002-08-28 2009-03-25 黒崎播磨株式会社 窒化アルミニウム結合耐火れんがの製造方法
CN100519005C (zh) * 2003-07-21 2009-07-29 宝山钢铁股份有限公司 一种采用不烧工艺生产的铝碳锆质滑动水口砖
CN100534954C (zh) * 2007-02-09 2009-09-02 江苏苏嘉集团新材料有限公司 一种非氧化物复合低碳镁碳砖
JP5054572B2 (ja) 2008-02-29 2012-10-24 黒崎播磨株式会社 カーボン含有耐火物の耐酸化性評価方法
US8609562B2 (en) * 2008-12-18 2013-12-17 Krosakiharima Corporation Plate brick production method and plate brick

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727971A (en) * 1980-07-22 1982-02-15 Kurosaki Refractories Co Plate brick for sliding nozzle
JPH06206759A (ja) * 1993-01-13 1994-07-26 Shinagawa Refract Co Ltd 連続鋳造用耐火物及びその製造方法
JPH10139527A (ja) * 1996-11-12 1998-05-26 Kawasaki Refract Co Ltd スライディングノズル用プレート耐火物の製造方法
JP2000107839A (ja) * 1998-10-01 2000-04-18 Toshiba Ceramics Co Ltd スライドゲート用プレートの製造方法
JP2003277129A (ja) * 2002-03-22 2003-10-02 Kurosaki Harima Corp スライディングノズル装置用プレートれんがとその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KEIICHIRO AKAMINE: "Kotaiyo SN Plate Zaishitsu (WRX-kei) no Kaihatsu Oyobi sono Hyoka Gijutsu", TAIKA ZAIRYO, 12 December 2008 (2008-12-12), pages 45 - 52 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112009004278B4 (de) * 2008-12-18 2016-11-17 Krosakiharima Corp. Verfahren zur Herstellung einer Ziegelplatte und Ziegelplatte
JP2014224001A (ja) * 2013-05-15 2014-12-04 品川リフラクトリーズ株式会社 スライドプレート装置用プレートれんが及びその製造方法
JP2017083400A (ja) * 2015-10-30 2017-05-18 黒崎播磨株式会社 耐火物の評価方法

Also Published As

Publication number Publication date
DE112009004278B4 (de) 2016-11-17
CN102245539A (zh) 2011-11-16
KR20110081885A (ko) 2011-07-14
KR101246813B1 (ko) 2013-03-26
DE112009004278T5 (de) 2012-09-20
US8609562B2 (en) 2013-12-17
BRPI0922166B1 (pt) 2020-02-18
JP5565908B2 (ja) 2014-08-06
GB2480165B (en) 2014-03-19
GB2480165A (en) 2011-11-09
US20110241267A1 (en) 2011-10-06
BRPI0922166A2 (pt) 2015-12-29
JPWO2010071196A1 (ja) 2012-05-31
GB201112159D0 (en) 2011-08-31
CN102245539B (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5565908B2 (ja) プレートれんがの製造方法及びプレートれんが
JP4634263B2 (ja) マグネシアカーボンれんが
TWI632126B (zh) 鋼的鑄造用耐火物,和滑動噴嘴裝置用板,以及鋼的鑄造用耐火物之製造方法
EP2399879A1 (en) Carbonaceous refractory material, process for producing same, and furnace bottom or side wall of blast furnace
KR100726312B1 (ko) 탄소질 내화물 및 그의 제조 방법
JP2015193511A (ja) 鋳造用耐火物、並びにそれを使用した鋳造用ノズル及びスライディングノズル用プレート
JP6600729B1 (ja) 真空脱ガス装置用スピネル−マグネシア−カーボンれんが及びこれを下部槽側壁にライニングした真空脱ガス装置
WO2011058811A1 (ja) スライディングノズルプレート
CN111732417A (zh) 一种抗氧化性能优异的耐冲刷超低碳镁碳砖及其制备方法
JP2006056735A (ja) マグネシア−カーボンれんが
JP7389352B2 (ja) 真空脱ガス装置用スピネル-マグネシア-カーボン煉瓦及び真空脱ガス装置
JP2012192430A (ja) アルミナ−カーボン質スライドゲートプレート
JP2003171184A (ja) 耐食性、耐スポーリング性、乾燥性に優れた不定形耐火物用SiC、その製造方法及び不定形耐火物原料
JP2003171170A (ja) マグネシア−カーボンれんが
JP2006021972A (ja) マグネシア−カーボンれんが
JP4245122B2 (ja) 窒化アルミニウム結合耐火れんがの製造方法
JP2009242122A (ja) 高炉炉床用れんが及びこれをライニングした高炉炉床
JP5578680B2 (ja) 炭素含有耐火物
JP6541607B2 (ja) スライディングノズル用炭素含有プレート耐火物の製造方法
JP4856513B2 (ja) カーボン含有耐火物
JP2018015763A (ja) 連続鋳造用タンディッシュ用内張り耐火物
CN1417159A (zh) 一种镁铝尖晶石\氮化钛复合材料的制造方法
JP2000086334A (ja) スライディングノズル装置用れんが
JP2006110614A (ja) スライディングノズル用プレート耐火物
JP2016185890A (ja) 耐火物及びスライディングノズル用プレート

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980150286.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010543011

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1750/KOLNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117012246

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13139338

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120090042783

Country of ref document: DE

Ref document number: 112009004278

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 1112159

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20091218

WWE Wipo information: entry into national phase

Ref document number: 1112159.7

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 09833498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0922166

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110617