WO2010067772A1 - Electrical double layer capacitor - Google Patents

Electrical double layer capacitor Download PDF

Info

Publication number
WO2010067772A1
WO2010067772A1 PCT/JP2009/070463 JP2009070463W WO2010067772A1 WO 2010067772 A1 WO2010067772 A1 WO 2010067772A1 JP 2009070463 W JP2009070463 W JP 2009070463W WO 2010067772 A1 WO2010067772 A1 WO 2010067772A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
fluorine
electrolyte
double layer
layer capacitor
Prior art date
Application number
PCT/JP2009/070463
Other languages
French (fr)
Japanese (ja)
Inventor
謙三 高橋
明天 高
舞 小山
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP2010542098A priority Critical patent/JPWO2010067772A1/en
Publication of WO2010067772A1 publication Critical patent/WO2010067772A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electric double layer capacitor.
  • Patent Document 1 also proposes a configuration of electrodes. By setting the electrode bulk density (electrode density) to a high density of 0.6 g / cm 3 or more, high capacitance and low internal resistance can be realized. It is stated.
  • the electric double layer capacitor is required to have the above-mentioned high capacitance and low internal resistance, and also needs a high withstand voltage corresponding thereto.
  • the present invention is an electric double layer capacitor comprising an electrode containing activated carbon and a binder and a non-aqueous electrolyte solution, (I) The electrode density of the electrode is 0.45 g / cm 3 or less, (II) The present invention relates to an electric double layer capacitor wherein the non-aqueous electrolyte is a non-aqueous electrolyte having a withstand voltage of 2.5 V or more.
  • non-aqueous electrolyte a fluorine-based electrolyte is preferable.
  • an electric double layer capacitor having a high electrostatic capacity, a low internal resistance, and a high withstand voltage can be provided.
  • the electric double layer capacitor of the present invention includes an electrode (I) containing a specific component and a fluorine-based electrolyte (II). Each configuration will be described below.
  • Electrode (I) used by this invention contains activated carbon (IA) and binder (IB).
  • Activated carbon activation treatment methods include a steam activation treatment method, a molten KOH activation treatment method, and the like, and it is preferable to use activated carbon obtained by a molten KOH activation treatment method in terms of obtaining a larger capacity.
  • activated carbon particles having a potassium content of 0 to 200 ppm measured by an extraction method, and an average particle diameter as described in Patent Document 1 are from 1 to Examples thereof include activated carbon particles having a pore volume of 10 cm and a pore volume of 1.5 cm 3 / g or less.
  • natural graphite artificial graphite, graphitized mesocarbon spherules, graphitized whiskers, gas-phase-grown carbon fibers, a furfuryl alcohol resin fired product, or a novolak resin fired product can be exemplified.
  • the binder (IB) binds the particles when it is formed into an electrode using activated carbon (IA) and other electrode components such as a conductive material added as necessary. Used for.
  • fluorine-based resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF); non-fluorine such as butadiene rubber and styrene-butadiene rubber System rubber is used.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • non-fluorine such as butadiene rubber and styrene-butadiene rubber System rubber is used.
  • a fluorine-based resin, particularly PTFE is preferable from the viewpoint of good pressure resistance and durability
  • non-fluorine rubber is preferable from the viewpoint of good pressure resistance and good adhesion to the current collector.
  • the conductive material is a non-activated carbon having a large specific surface area and has a role of imparting electron conductivity, and for example, carbonaceous materials such as carbon black, ketjen black, acetylene black, natural graphite, and artificial graphite
  • carbonaceous materials such as carbon black, ketjen black, acetylene black, natural graphite, and artificial graphite
  • An inorganic material such as a metal fiber, conductive titanium oxide or ruthenium oxide.
  • IC-2 Thickener
  • activated carbon (IA), binder (IB), and other additives added as necessary are dispersed in a solvent, for example, water to form a slurry, and metal It is applied to a foil or current collector and molded. At that time, a thickener is added to uniformly disperse the particles in the slurry and adjust the fluidity to an appropriate fluidity.
  • thickener examples include conventionally known carboxymethyl cellulose (CMC) and polyacrylic acid. Of these, polyacrylic acid is preferred from the viewpoint of good pressure resistance.
  • CMC carboxymethyl cellulose
  • polyacrylic acid is preferred from the viewpoint of good pressure resistance.
  • Electrode components are preferably blended in an amount of 2 to 6 parts by mass of binder (IB) with respect to 100 parts by mass of activated carbon (IA).
  • binder IB
  • activated carbon IA
  • the capacitance of the capacitor is decreased if the amount is too large so as to obtain good conductivity (low internal resistance). It is preferable to set it as 20 mass%.
  • the thickener (IC-2) when blended, it is preferably 3 parts by mass or less, more preferably 2 parts by mass or less, with respect to 100 parts by mass of activated carbon (IA) from the viewpoint of homogenizing the electrode density.
  • the lower limit is an amount that achieves the purpose of blending.
  • the electrode can be formed by various methods. For example, activated carbon (IA) and, if necessary, conductive material (IC-1) are dry mixed. In the mixing process, thickener (IC-2) and water are added as appropriate to disperse the particles. Next, a binder (IB) and water are added as appropriate, followed by wet mixing to prepare a homogeneous electrode forming slurry. This slurry is applied on a metal foil such as a current collector, pressed as appropriate, and dried to produce an electrode.
  • activated carbon (IA) and, if necessary, conductive material (IC-1) are dry mixed.
  • thickener (IC-2) and water are added as appropriate to disperse the particles.
  • a binder (IB) and water are added as appropriate, followed by wet mixing to prepare a homogeneous electrode forming slurry. This slurry is applied on a metal foil such as a current collector, pressed as appropriate, and dried to produce an electrode.
  • the electrode may be an electric double layer capacitor using the above electrodes for both electrodes, but a configuration using a non-polarizable electrode on one side, for example, a positive electrode mainly composed of a battery active material such as a metal oxide, and activated carbon mainly A configuration in which the negative electrode of the electrode of the present invention is combined is also possible.
  • the current collector may be any material that is chemically and electrochemically resistant to corrosion.
  • the bulk density (electrode density) of the produced electrode it is important to adjust the bulk density (electrode density) of the produced electrode to 0.45 g / cm 3 or less.
  • Patent Document 1 it is known to increase the electrode density (0.6 g / cm 3 or more) from the viewpoint of improvement in capacitance and reduction in internal resistance.
  • the electrode density is examined from the viewpoint of voltage, and the point that the withstand voltage is improved in the direction of lowering the density is a matter found for the first time in the present invention.
  • Method of adjusting solid content concentration of electrode slurry For example, it is preferable to adjust the solid content concentration to 15 to 25% by mass, preferably 18 to 22% by mass.
  • Non-aqueous electrolyte solution used in the present invention is a non-aqueous electrolyte solution having a withstand voltage of 2.5 V or more, preferably a fluorine-based electrolyte solution.
  • the nonaqueous electrolytic solution having a withstand voltage of 2.5 V or more includes a nonaqueous solvent (IIA) and an electrolyte salt (IIB).
  • Non-aqueous solvent As the non-aqueous solvent (IIA), any fluorine-based solvent (IIA-1) or non-fluorinated solvent (IIA) can be used as long as the withstand voltage of the electrolytic solution can be 2.5 V or higher. -2).
  • a fluorinated solvent containing a fluorinated cyclic carbonate described in Patent Document 2 is excellent in high electric resistance and wide electrolyte solubility. This is preferable.
  • the fluorine-containing cyclic carbonate the formula (1): (Wherein X 1 to X 4 are the same or different and all are —H, —F, —CF 3 , —CHF 2 , —CH 2 F, —C 2 F 5 or —CH 2 CF 3 ; At least one of X 1 to X 4 is —F, —CF 3 , —C 2 F 5 or —CH 2 CF 3 ). This is preferable from the viewpoint of high withstand voltage.
  • the fluorine-containing cyclic carbonate contained in the fluorine-based solvent (IIA-1) has particularly excellent properties such as a high dielectric constant and a high withstand voltage, and also has good solubility of electrolyte salt and reduction of internal resistance. From the point that the characteristics as an electric double layer capacitor in the present invention are improved, At least one selected from the group consisting of is preferred.
  • Etc. can also be used as the fluorine-containing cyclic carbonate.
  • the electrical properties in the present invention are particularly excellent in that they have excellent characteristics such as a high dielectric constant and a high withstand voltage, as well as the solubility of the electrolyte salt, the reduction in internal resistance, and the low-temperature characteristics. From the point that the characteristics as a multilayer capacitor are improved, Etc. are preferable.
  • Etc fluorine-containing chain carbonate
  • compounds described in JP-A-06-21992, JP-A-2000-327634, JP-A-2001-256983 and the like can be mentioned.
  • Rf c1 includes, for example, —CH 2 CF 2 CHF 2 , —CH 2 C 2 F 4 CHF 2 , —CH 2 CF 3 , —CH 2 C 3 F 6 CHF 2 , —CH 2 C 2 F 5 , —CH 2 CF 2 CHFCF 3 , —CH 2 CF (CF 3 ) CF 2 CHF 2 , —C 2 H 4 C 2 F 5 , —C 2 H 4 CF 3 and the like, and Rf c2
  • Rf c2 For example, —CF 2 CHFCF 3 , —C 2 F 4 CHF 2 , —C 2 H 4 CF 3 , —CH 2 CHFCF 3 , and —C 2 H 4 C 2 F 5 are preferable.
  • OCH 2 C 2 F 5 , CF 3 C ( ⁇ O) OCH 2 CF 2 CF 2 H, CF 3 C ( ⁇ O) OCH 2 CF 3 , CF 3 C ( ⁇ O) OCH (CF 3 ) 2 are particularly preferred. .
  • fluorine-containing lactone for example, formula (5): (Wherein X 5 to X 10 are the same or different and all are —H, —F, —Cl, —CH 3 or a fluorine-containing methyl group; provided that at least one of X 5 to X 10 is fluorine-containing methyl
  • fluorine-containing sulfolane derivative examples include fluorine-containing sulfolane derivatives described in JP-A-2003-132994, and among them, Is preferred.
  • the fluorinated solvent (IIA-1) the fluorinated cyclic carbonate represented by the formula (1) can be used alone, or another non-fluorinated solvent or fluorinated solvent can be used as a cosolvent.
  • a solvent for dissolving an electrolyte salt as a co-solvent a solvent for dissolving a fluorine-containing electrolyte salt is preferable from the viewpoint of good oxidation resistance and viscosity, and a fluorine-containing chain carbonate, a fluorine-containing chain ester, and a fluorine-containing chain ether. Is more preferable.
  • the fluorine-based solvent (IIA-1) when operated at a high voltage of 3.5 V or more includes a fluorine-containing cyclic carbonate represented by the formula (1), a fluorine-containing chain carbonate, a fluorine-containing chain ester, and Those consisting of at least one selected from the group consisting of fluorine-containing chain ethers are preferred. Of these, fluorine-containing chain ethers are preferred from the viewpoint of good oxidation resistance.
  • Fluorine-containing cyclic carbonates CF 3 CF 2 CH 2 —O—CF 2 CFHCF 3 , HCF 2 CF 2 CH 2 —O—CF 2 CFHCF 3 , CF 3 CF 2 CH 2 —O—CF 2 CF 2 H and It is a mixture with at least one fluorine-containing chain ether selected from the group consisting of HCF 2 CF 2 CH 2 —O—CF 2 CF 2 H.
  • Non-fluorinated solvent As the non-fluorinated solvent (IIA-2), non-fluorinated cyclic carbonate, non-fluorinated chain carbonate, non-fluorinated chain ester, non-fluorinated chain ether, non-fluorine Lactones, non-fluorine sulfolane derivatives, other solvents for dissolving non-fluorine electrolyte salts, and the like.
  • non-fluorinated cyclic carbonates examples include: Etc.
  • non-fluorine chain carbonate for example, the formula (7): (Wherein, R a1 and R a2 are the same or different and both are alkyl groups having 1 to 4 carbon atoms).
  • the electric double layer capacitor according to the present invention is particularly advantageous in that it has excellent characteristics such as a high dielectric constant and a high withstand voltage, and also has good solubility in electrolyte salts and a reduction in internal resistance. From the point that the characteristics as Etc. are preferable.
  • Etc. can also be used.
  • the electrolyte salt (IIB) includes conventionally known ammonium salts and metal salts, liquid salts (ionic liquids), inorganic polymer type salts, organic polymer type salts, and the like. .
  • ammonium salt conventionally known ones can be used, and examples include spiro-ring bipyridinium salts, imidazolium salts, tetraalkyl quaternary ammonium salts, N-alkylpyridinium salts, N, N-dialkylpyrrolidinium salts and the like.
  • Examples of the spiro ring bipyridinium salt include those represented by the formula (10-1): (Wherein R f1 and R f2 are the same or different and both are alkyl groups having 1 to 4 carbon atoms; X ⁇ is an anion; n1 is an integer of 0 to 5; n2 is an integer of 0 to 5) Spirocyclic bipyridinium salt, formula (10-2): (Wherein R f3 and R f4 are the same or different and both are alkyl groups having 1 to 4 carbon atoms; X ⁇ is an anion; n3 is an integer of 0 to 5; n4 is an integer of 0 to 5) Spiro ring bipyridinium salt or formula (10-3): (Wherein R f5 and R f6 are the same or different and both are alkyl groups having 1 to 4 carbon atoms; X ⁇ is an anion; n5 is an integer of 0 to 5; n6 is an integer of 0
  • the spiro-ring bipyridinium salt in which part or all of the hydrogen atoms are substituted with a fluorine atom and / or a fluorine-containing alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of improving oxidation resistance.
  • the anion X ⁇ may be an inorganic anion or an organic anion.
  • the inorganic anion include AlCl 4 ⁇ , BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , TaF 6 ⁇ , I ⁇ and SbF 6 ⁇ .
  • the organic anion include CH 3 COO ⁇ , CF 3 SO 3 ⁇ , (CF 3 SO 2 ) 2 N ⁇ , (C 2 F 5 SO 2 ) 2 N ⁇ and the like.
  • BF 4 ⁇ , PF 6 ⁇ , (CF 3 SO 2 ) 2 N ⁇ or (C 2 F 5 SO 2 ) 2 N ⁇ are highly dissociable and have low internal resistance under high voltage. In particular, PF 6 - is more preferable.
  • spirocyclic bipyridinium salt examples include, for example, Etc.
  • This spiro-ring bipyridinium salt is excellent in terms of solubility in a solvent, oxidation resistance, and ion conductivity.
  • an imidazolium salt for example, formula (11): An imidazolium salt represented by the formula (wherein R g1 and R g2 are the same or different and both are alkyl groups having 1 to 6 carbon atoms; X ⁇ is an anion) is preferred.
  • the imidazolium salt in which part or all of the hydrogen atoms are substituted with a fluorine atom and / or a fluorine-containing alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of improving oxidation resistance.
  • Preferred examples of the anion X ⁇ are the same as those of the spiro ring bipyridinium salt.
  • imidazolium salts include, for example, formula (12): And ethylmethylimidazolium salt represented by the formula:
  • This imidazolium salt has low viscosity and is excellent in solubility in a solvent.
  • tetraalkyl quaternary ammonium salt examples include the formula (13): (Wherein R h1 , R h2 , R h3 and R h4 are the same or different, and all are alkyl groups which may contain an ether bond having 1 to 6 carbon atoms; X ⁇ is an anion) Preferred is a quaternary ammonium salt.
  • the tetraalkyl quaternary ammonium salt in which part or all of the hydrogen atoms are substituted with fluorine atoms and / or fluorine-containing alkyl groups having 1 to 4 carbon atoms is preferable from the viewpoint of improving oxidation resistance. .
  • Preferred examples of the anion X ⁇ are the same as those of the spiro ring bipyridinium salt.
  • tetraalkyl quaternary ammonium salt examples include, for example, Et 4 NBF 4 , Et 4 NClO 4 , Et 4 NPF 6 , Et 4 NAsF 6 , Et 4 NSbF 6 , Et 4 NCF 3 SO 3 , Et 4 N (CF 3 SO 2 ) 2 N, Et 4 NC 4 F 9 SO 3 , Et 3 MeBF 4 , Et 3 MeClO 4 , Et 3 MePF 6 , Et 3 MeAsF 6 , Et 3 MeSbF 6 , Et 3 MeCF 3 SO 3 Et 3 Me (CF 3 SO 2 ) 2 N, Et 3 MeC 4 F 9 SO 3 and the like, and Et 4 NBF 4 , Et 4 NPF 6 , Et 4 NSbF 6 , Et 4 NAsF 6 and the like are particularly preferable. .
  • N-alkylpyridinium salts include, for example, formula (14): N-alkylpyridinium salts represented by the formula (wherein R i1 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; X ⁇ is an anion) are preferred.
  • the N-alkylpyridinium salt in which part or all of the hydrogen atoms are substituted with a fluorine atom and / or a fluorine-containing alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of improving oxidation resistance.
  • Preferred examples of the anion X ⁇ are the same as those of the spiro ring bipyridinium salt.
  • This N-alkylpyridinium salt has low viscosity and is excellent in solubility in a solvent.
  • N, N-dialkylpyrrolidinium salts include, for example, formula (15): Preferred examples include N, N-dialkylpyrrolidinium salts represented by the formula (wherein R j1 and R j2 are the same or different and both are alkyl groups having 1 to 6 carbon atoms; X ⁇ is an anion). Further, the oxidation resistance of the N, N-dialkylpyrrolidinium salt in which part or all of the hydrogen atoms are substituted with a fluorine atom and / or a fluorine-containing alkyl group having 1 to 4 carbon atoms is improved. It is preferable from the point.
  • Preferred examples of the anion X ⁇ are the same as those of the spiro ring bipyridinium salt.
  • This N, N-dialkylpyrrolidinium salt has low viscosity and is excellent in solubility in a solvent.
  • spiro-ring bipyridinium salts and imidazolium salts are preferred in terms of solubility in solvents, oxidation resistance, and ionic conductivity.
  • X ⁇ is BF 4 ⁇ , PF 6 ⁇ , (CF 3 SO 2 ) 2 N ⁇ or (C 2 F 5 SO 2 ) 2 N ⁇ , particularly BF 4 ⁇ or PF 6 ⁇ .
  • X ⁇ is BF 4 ⁇ , PF 6 ⁇ , (CF 3 SO 2 ) 2 N ⁇ or (C 2 F 5 SO 2 ) 2 N ⁇ , particularly BF 4 ⁇ or PF 6 ⁇ ). Is preferred.
  • lithium salt for example, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiN (SO 2 C 2 H 5) 2 is preferred.
  • a magnesium salt may be used to improve the capacitance.
  • the magnesium salt for example, Mg (ClO 4 ) 2 , Mg (OOC 2 H 5 ) 2 and the like are preferable.
  • the amount of electrolyte salt (IIB) blended varies depending on the required current density, application, type of electrolyte salt, etc., but 0.1 mol / liter or more and 2.5 mol / liter or less with respect to the non-aqueous solvent (IIA). Further, it is preferably 0.8 mol / liter or more and 1.8 mol / liter or less, more preferably 1.0 mol / liter or more and 1.6 mol / liter or less.
  • the electrolytic solution used in the present invention is prepared by dissolving an electrolyte salt (IIB) in a non-aqueous solvent (IIA).
  • ion conductive compounds described in Japanese Patent Application No. 2004-301934 can also be used.
  • the electrolyte used in the present invention may contain other additives as necessary.
  • other additives include metal oxides and glass.
  • Such an electrolyte solution can simultaneously improve flame retardancy, low temperature characteristics, solubility of electrolyte salts and compatibility with hydrocarbon solvents, and stable characteristics can be obtained at a withstand voltage of 3.5 V or more. It is excellent as an electrolyte for electric double layer capacitors.
  • the upper limit of the withstand voltage is preferably as high as possible, and is appropriately set depending on the type and application of the non-aqueous electrolyte to be used.
  • the electrode (I) is usually wound through a separator or a current collector to constitute a wound element.
  • Conventional separators and current collectors can be used as they are.
  • the electric double layer capacitor is assembled by placing the non-aqueous electrolyte (II) and the winding element in a case made of aluminum or the like, and sealing and sealing with a rubber sealing body.
  • a laminate type electric double layer capacitor or a coin type electric double layer capacitor can be obtained by a known method.
  • the measurement method and evaluation method employed in the examples are as follows.
  • Electrode density (unit: g / cm 3 ) The external dimensions and mass are measured, and the bulk density (g / cm 3 ) is calculated from these values.
  • Electrolytic solution was applied to a three-electrode voltage measuring cell (working electrode, counter electrode: platinum (where the area ratio of the counter electrode and working electrode is 5: 1), reference electrode: Ag, HS cell manufactured by Hosen Co., Ltd.) Then, the potential is pulled at 3 mV / sec with a potentiostat, and the decomposition current is measured. The maximum potential at which the decomposition current no longer increases is defined as the withstand voltage of the electrolyte.
  • Capacitance, internal resistance, and withstand voltage of the capacitor Increase the charging voltage to the applied voltage (2.5V) while charging the laminate cell with a constant current with an electronic power supply. After maintaining the constant voltage state for 5 minutes and confirming that the charging current is sufficiently lowered and saturated, constant current discharge is performed and the cell voltage difference ( ⁇ V) and the current value (I) are measured.
  • the constant current value for charging and discharging is 10 mA / F, and 35 mA.
  • the cell voltage and current are measured by 0.5 second sampling.
  • the current value (I) flowing through the cell is calculated by connecting a 1 ⁇ fixed resistor in series to the cell and measuring the voltage across this end. This current value is used when measuring the internal resistance of the cell.
  • the capacitance of the capacitor (unit: F) and the internal resistance (unit: ⁇ ) of the capacitor are calculated as follows.
  • each of the cells in the same manner with 8 types of specified applied voltages (3.0V, 3.3V, 3.5V, 3.7V, 3.9V, 4.1V, 4.3V) Calculate the internal resistance value. Since the internal resistance value of the cell is constant regardless of the applied voltage unless the cell deteriorates, the maximum applied voltage value at which no increase in the internal resistance value of the cell is observed with the increase in the applied voltage is Of withstand voltage.
  • Example 1 (Production of electrodes) Activated carbon particles (specific surface area 2100 m 2 / g. Average particle size 11 ⁇ m. CEP21 manufactured by Nippon Oil Corporation. Activated carbon 1) and 100 parts by mass of ketjen black (EC600JD manufactured by Lion Corporation) as a conductive material, 3 parts by mass of acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) was dry mixed with a stirrer. It was transferred to a kneader and 2 parts by mass of polyacrylic acid (Aron A-10H manufactured by Toagosei Co., Ltd.) and 50 parts by mass of water were added.
  • ketjen black E600JD manufactured by Lion Corporation
  • this slurry was applied onto an etched aluminum current collector (thickness 20 ⁇ m) previously coated with a conductive paste (T602 manufactured by Nippon Graphite Co., Ltd.) with a film thickness of 20 ⁇ m, and dried at 110 ° C. Later, press treatment was performed to produce a roll electrode having an activated carbon layer thickness of 80 ⁇ m (electrode density 0.40 g / cm 3 ).
  • Electrolyte using spirobipyrrolidinium tetra phosphate as an electrolyte salt (manufactured by Hoechst (Ltd.)), CF 3 as an electrolyte solvent - ethylene carbonate (CF 3 -EC) and fluorine-containing ether (HCF 2 CF 2 CH 2 OCF 2 CF 2 H.
  • a fluorine-based electrolytic solution having an electrolyte salt concentration of 1 mol / liter was prepared by mixing 1: 1 fluorine-containing ether 1). It was 5.0V when the withstand voltage of this fluorine-type electrolyte solution was measured.
  • Example 2 A slurry for the same electrode as in Example 1 was prepared, and 17.5 parts by mass of water was added to 100 parts by weight of the slurry as a viscosity adjustment immediately before application (the stability of this slurry evaluated separately was ⁇ ). ) Using this slurry, an electrode having a thickness of 80 ⁇ m was immediately prepared in the same manner as in Example 1. The electrode density of this electrode was 0.38 g / cm 3 . When this electrode was subjected to a bending resistance test and examined for mechanical durability, the electrode was not cracked (evaluation: ⁇ ).
  • a laminate type electric double layer capacitor was produced using a fluorine-based electrolyte prepared in the same manner as in Example 1 except that this electrode was used, and withstand voltage (V), capacitance at 2.5 V (F) , And the internal resistance ( ⁇ ) at each voltage was measured. The results are shown in Table 1.
  • Example 3 A slurry for the same electrode as in Example 1 was prepared, and 20 parts by mass of water was added to 100 parts by weight of the slurry as a viscosity adjustment immediately before application (the stability of this slurry evaluated separately was good). . Using this slurry, an electrode having a thickness of 80 ⁇ m was immediately prepared in the same manner as in Example 1. The electrode density of this electrode was 0.36 g / cm 3 . When this electrode was subjected to a bending resistance test and examined for mechanical durability, the electrode was not cracked (evaluation: ⁇ ).
  • Example 4 A slurry for the electrode as in Example 1 was prepared, and as a viscosity adjustment just before coating, 11.3 parts by mass of water was added to 100 parts by weight of the slurry (the stability of this slurry evaluated separately was ⁇ ). ) Using this slurry, an electrode having a thickness of 80 ⁇ m was immediately prepared in the same manner as in Example 1. The electrode density of this electrode was 0.43 g / cm 3 . When this electrode was subjected to a bending resistance test and examined for mechanical durability, the electrode was not cracked (evaluation: ⁇ ).
  • Comparative Example 1 The same slurry for electrodes as in Example 1 was prepared, and the solid content concentration was further set to 30% by mass (the stability of this slurry was good). A comparative electrode having a thickness of 80 ⁇ m was produced using this slurry. The electrode density of this electrode was 0.53 g / cm 3 . When this comparative electrode was subjected to a bending resistance test and examined for mechanical durability, the electrode was not cracked (evaluation: ⁇ ).
  • a laminate type electric double layer capacitor was produced using a fluorine-based electrolytic solution prepared in the same manner as in Example 1 except that this comparative electrode was used, and withstand voltage (V), capacitance at 2.5V. (F) and internal resistance ( ⁇ ) at each voltage were measured. The results are shown in Table 1.
  • Comparative Example 2 A slurry for the electrode as in Example 1 was prepared, and 7.5 parts by mass of water was added to 100 parts by weight of the slurry as a viscosity adjustment immediately before application (the stability of this slurry evaluated separately was ⁇ ). ) Using this slurry, an electrode having a thickness of 80 ⁇ m was immediately prepared in the same manner as in Example 1. The electrode density of this electrode was 0.46 g / cm 3 . When this electrode was subjected to a bending resistance test and examined for mechanical durability, the electrode was not cracked (evaluation: ⁇ ).
  • Example 5 PTFE binder (D210C manufactured by Daikin Industries, Ltd .; binder 2) 10 parts by weight and 80 parts by weight of water were added as a binder, and the mixture was used for a predetermined time. An electrode having a thickness of 80 ⁇ m was immediately prepared in the same manner as in Example 1 using this slurry. The electrode density of this electrode was 0.40 g / cm 3 . When this electrode was subjected to a bending resistance test and examined for mechanical durability, the electrode was not cracked (evaluation: ⁇ ).
  • a laminate type electric double layer capacitor was produced using a fluorine-based electrolyte prepared in the same manner as in Example 1 except that this electrode was used, and withstand voltage (V), capacitance at 2.5 V (F) was measured. The results are shown in Table 2.
  • Example 6 A slurry for the electrode was prepared in the same manner as in Example 1 except that YP50F (non-graphitizable carbon manufactured by Kuraray Chemical Co., Ltd., activated carbon 2) was used as the activated carbon, and this slurry was immediately used as in Example 1. Thus, an electrode having a thickness of 80 ⁇ m was produced. The electrode density of this electrode was 0.40 g / cm 3 . When this electrode was subjected to a bending resistance test and examined for mechanical durability, the electrode was not cracked (evaluation: ⁇ ).
  • YP50F non-graphitizable carbon manufactured by Kuraray Chemical Co., Ltd., activated carbon 2
  • a laminate type electric double layer capacitor was produced using a fluorine-based electrolyte prepared in the same manner as in Example 1 except that this electrode and the electrolyte were used, and withstand voltage (V), capacitance at 2.5V. (F) was measured. The results are shown in Table 2.
  • Comparative Example 3 A laminated electric double layer capacitor was produced in the same manner as in Example 6 except that the electrode of Comparative Example 1 was used as the electrode, and the withstand voltage (V) and the electrostatic capacity (F) at 2.5 V were measured. The results are shown in Table 2.
  • Example 7 Using the same electrode as in Example 1, the electrolyte used was spirobipyrrolidinium tetraphosphate (SBP-BF 6 ) (manufactured by Nippon Carlit Co., Ltd.) as the electrolyte salt, and CF 3 -ethylene carbonate as the electrolyte solvent.
  • SBP-BF 6 spirobipyrrolidinium tetraphosphate
  • CF 3 -ethylene carbonate as the electrolyte solvent.
  • a mixture of fluorine-containing ether (HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 .Fluorine-containing ether 2) in a ratio of 1: 1 was used, and a fluorine-based electrolytic solution having an electrolyte salt concentration of 1 mol / liter was used. It was 5.0V when the withstand voltage of this fluorine-type electrolyte solution was measured.
  • a laminate type electric double layer capacitor was produced in the same manner as in Example 1 except that this electrode and the electrolytic solution were used, and the withstand voltage (V) and the electrostatic capacity (F) at 2.5 V were measured. The results are shown in Table 3.
  • Example 8 Using the same electrode as in Example 1, the electrolyte used was triethylmethylammonium BF 4 as the electrolyte salt, and PC (propylene carbonate) and fluorine-containing ether (HCF 2 CF 2 CH 2 OCF 2 CF 2 H) were used as the electrolyte solvent. A mixture of 1: 1 was used, and a fluorine-based electrolytic solution having an electrolyte salt concentration of 1 mol / liter was used. It was 5.0V when the withstand voltage of this fluorine-type electrolyte solution was measured.
  • PC propylene carbonate
  • fluorine-containing ether HCF 2 CF 2 CH 2 OCF 2 CF 2 H
  • a laminate type electric double layer capacitor was produced in the same manner as in Example 1 except that this electrode and the electrolytic solution were used, and the withstand voltage (V) and the electrostatic capacity (F) at 2.5 V were measured. The results are shown in Table 3.
  • Comparative Example 4 A laminated electric double layer capacitor was produced in the same manner as in Example 1 except that the same electrode as in Comparative Example 1 was used and the same fluorine-based electrolytic solution as in Example 8 was used as the electrolytic solution. The capacitance (F) at 0.5 V was measured. The results are shown in Table 3.
  • Example 9 Using the same electrode as in Example 1, the electrolyte used was tetraethylammonium BF 4 as the electrolyte salt, and PC (propylene carbonate) and fluorine-containing carbonate (CF 3 CH 2 OCOOCH 2 CF 3 ) were used as the electrolyte solvent at a ratio of 1: 1.
  • a mixed electrolyte was used, and a fluorine electrolyte solution having an electrolyte salt concentration of 1 mol / liter was used. It was 5.0V when the withstand voltage of this fluorine-type electrolyte solution was measured.
  • a laminate type electric double layer capacitor was produced in the same manner as in Example 1 except that this electrode and the electrolytic solution were used, and the withstand voltage (V) and the electrostatic capacity (F) at 2.5 V were measured. The results are shown in Table 3.
  • Comparative Example 5 A laminated electric double layer capacitor was produced in the same manner as in Example 1 except that the same electrode as in Comparative Example 1 was used and the same fluorine-based electrolytic solution as in Example 9 was used as the electrolytic solution. The capacitance (F) at 0.5 V was measured. The results are shown in Table 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

Disclosed is an electrical double layer capacitor having high electrostatic capacity, low internal resistance, and high withstand voltage. This electrical double layer capacitor is characterized by being equipped with an electrode that contains activated carbon and a binding material, and a nonaqueous electrolytic solution, and in that (I) the electrode density of the electrode is 0.45 g/cm3 or less and (II) the nonaqueous electrolytic solution is a nonaqueous electrolytic solution with a withstand voltage of 2.5 V or more.

Description

電気二重層キャパシタElectric double layer capacitor
 本発明は、電気二重層キャパシタに関する。 The present invention relates to an electric double layer capacitor.
 電気二重層キャパシタは、電気自動車や瞬時停電時の電源として期待され、種々検討されている。そうした電気二重層キャパシタには高い静電容量と低い内部抵抗が望まれ、電解質を溶解する溶媒として、非フッ素系の非水系溶媒(特許文献1)やフッ素系の非水系溶媒(特許文献2)が使用されている。 The electric double layer capacitor is expected to be used as a power source for electric vehicles and instantaneous power outages, and various studies have been made. Such an electric double layer capacitor is desired to have a high capacitance and a low internal resistance, and as a solvent for dissolving the electrolyte, a non-fluorine-based non-aqueous solvent (Patent Document 1) or a fluorine-based non-aqueous solvent (Patent Document 2). Is used.
 また、特許文献1では電極の構成も提案されており、電極の嵩密度(電極密度)を0.6g/cm3以上の高密度にすることで、高い静電容量と低い内部抵抗が実現できると述べられている。 Patent Document 1 also proposes a configuration of electrodes. By setting the electrode bulk density (electrode density) to a high density of 0.6 g / cm 3 or more, high capacitance and low internal resistance can be realized. It is stated.
特開2001-143973号公報JP 2001-143973 A 国際公開第2008/084846号International Publication No. 2008/084846
 電気二重層キャパシタには、上記の高い静電容量と低い内部抵抗が要求されるとともに、それに見合った高い耐電圧も必要である。 The electric double layer capacitor is required to have the above-mentioned high capacitance and low internal resistance, and also needs a high withstand voltage corresponding thereto.
 本発明の目的は、高い静電容量と低い内部抵抗を有し、しかも耐電圧の高い電気二重層キャパシタを提供することを目的とする。 An object of the present invention is to provide an electric double layer capacitor having a high capacitance, a low internal resistance, and a high withstand voltage.
 すなわち本発明は、活性炭および結合材を含む電極と非水系電解液とを備える電気二重層キャパシタであって、
(I)電極の電極密度が0.45g/cm3以下であり、
(II)非水系電解液が耐電圧2.5V以上の非水系電解液である
ことを特徴とする電気二重層キャパシタに関する。
That is, the present invention is an electric double layer capacitor comprising an electrode containing activated carbon and a binder and a non-aqueous electrolyte solution,
(I) The electrode density of the electrode is 0.45 g / cm 3 or less,
(II) The present invention relates to an electric double layer capacitor wherein the non-aqueous electrolyte is a non-aqueous electrolyte having a withstand voltage of 2.5 V or more.
 非水系電解液としては、フッ素系電解液が好ましい。 As the non-aqueous electrolyte, a fluorine-based electrolyte is preferable.
 本発明の電気二重層キャパシタによれば、高い静電容量と低い内部抵抗を有し、しかも耐電圧の高い電気二重層キャパシタを提供することができる。 According to the electric double layer capacitor of the present invention, an electric double layer capacitor having a high electrostatic capacity, a low internal resistance, and a high withstand voltage can be provided.
 本発明の電気二重層キャパシタは、特定の成分を含む電極(I)とフッ素系電解液(II)とを備えている。以下、各構成について説明する。 The electric double layer capacitor of the present invention includes an electrode (I) containing a specific component and a fluorine-based electrolyte (II). Each configuration will be described below.
(I)電極
 本発明で用いる電極(I)は、活性炭(IA)および結合材(IB)を含む。
(I) Electrode The electrode (I) used by this invention contains activated carbon (IA) and binder (IB).
(IA)活性炭
 活性炭(IA)は電気二重層キャパシタの静電容量を大きくする役割を有しており、その役割を果たす限り特に限定されないが、大容量で低内部抵抗の電気二重層キャパシタが得られるように、平均粒径が20μm以下で比表面積が1500~3000m2/gの活性炭を使用するのが好ましい。活性炭の具体例として、フェノール樹脂系活性炭、やしがら系活性炭、石油コークス系活性炭などがある。これらのうち大きい容量を得られる点で石油コークス系活性炭またはフェノール樹脂系活性炭を使用するのが好ましい。また、活性炭の賦活処理法には、水蒸気賦活処理法、溶融KOH賦活処理法などがあり、より大きな容量が得られる点で溶融KOH賦活処理法による活性炭を使用するのが好ましい。
(IA) Activated carbon Activated carbon (IA) has a role of increasing the capacitance of the electric double layer capacitor, and is not particularly limited as long as it plays the role, but an electric double layer capacitor having a large capacity and low internal resistance can be obtained. It is preferable to use activated carbon having an average particle size of 20 μm or less and a specific surface area of 1500 to 3000 m 2 / g. Specific examples of the activated carbon include phenol resin-based activated carbon, coconut-based activated carbon, and petroleum coke-based activated carbon. Among these, it is preferable to use petroleum coke activated carbon or phenol resin activated carbon in that a large capacity can be obtained. Activated carbon activation treatment methods include a steam activation treatment method, a molten KOH activation treatment method, and the like, and it is preferable to use activated carbon obtained by a molten KOH activation treatment method in terms of obtaining a larger capacity.
 より具体的には、特許文献2に記載されているような、抽出法により測定されたカリウム含有量が0~200ppmの活性炭粒子、特許文献1に記載されているような平均粒径が1~10μmで細孔容積が1.5cm3/g以下の活性炭粒子などが例示できる。 More specifically, as described in Patent Document 2, activated carbon particles having a potassium content of 0 to 200 ppm measured by an extraction method, and an average particle diameter as described in Patent Document 1 are from 1 to Examples thereof include activated carbon particles having a pore volume of 10 cm and a pore volume of 1.5 cm 3 / g or less.
 また、天然黒鉛、人造黒鉛、黒鉛化メソカーボン小球体、黒鉛化ウィスカ、気層成長炭素繊維、フルフリルアルコール樹脂の焼成品またはノボラック樹脂の焼成品なども例示できる。 Further, natural graphite, artificial graphite, graphitized mesocarbon spherules, graphitized whiskers, gas-phase-grown carbon fibers, a furfuryl alcohol resin fired product, or a novolak resin fired product can be exemplified.
(IB)結合材
 結合材(IB)は、活性炭(IA)、および必要に応じて添加される導電材などの他の電極成分を用いて電極に成形する際に、それらの粒子を結合するために使用される。
(IB) Binder The binder (IB) binds the particles when it is formed into an electrode using activated carbon (IA) and other electrode components such as a conductive material added as necessary. Used for.
 したがって、その目的を達成し得るものであれば特に限定されないが、通常、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)などのフッ素系樹脂;ブタジエンゴム、スチレン-ブタジエンゴムなどの非フッ素系ゴムが使用されている。 Accordingly, there is no particular limitation as long as the object can be achieved, but usually, fluorine-based resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF); non-fluorine such as butadiene rubber and styrene-butadiene rubber System rubber is used.
 なかでも、耐圧性、耐久性が良好な点からフッ素系樹脂、特にPTFEが好ましく、また、耐圧性が良好であり、集電体との密着性が良好な点から非フッ素系ゴムが好ましい。 Among these, a fluorine-based resin, particularly PTFE is preferable from the viewpoint of good pressure resistance and durability, and non-fluorine rubber is preferable from the viewpoint of good pressure resistance and good adhesion to the current collector.
(IC)他の電極成分
 以上の活性炭(IA)および結合材(IB)に加えて、電気二重層キャパシタ用の電極に通常配合される添加剤を配合してもよい。他の添加剤としては、たとえば導電材、増粘剤などがあげられる。
(IC) Other electrode components In addition to the activated carbon (IA) and the binder (IB) described above, additives that are usually blended in electrodes for electric double layer capacitors may be blended. Examples of other additives include conductive materials and thickeners.
(IC-1)導電材
 導電材は、大比表面積の不活性炭で電子伝導性を付与する役割を有し、たとえばカーボンブラック、ケッチェンブラック、アセチレンブラック、天然黒鉛、人造黒鉛などの炭素質材料;金属ファイバ、導電性酸化チタン、酸化ルテニウムなどの無機材料があげられる。
(IC-1) Conductive Material The conductive material is a non-activated carbon having a large specific surface area and has a role of imparting electron conductivity, and for example, carbonaceous materials such as carbon black, ketjen black, acetylene black, natural graphite, and artificial graphite An inorganic material such as a metal fiber, conductive titanium oxide or ruthenium oxide.
(IC-2)増粘剤
 電極を作成する場合、活性炭(IA)、結合材(IB)、その他必要に応じて添加される他の添加剤を溶媒、たとえば水に分散させてスラリーとし、金属箔や集電体に塗布して成形する。その際、スラリー中に粒子を均質に分散させかつ流動性を適正な流動性に調整するために、増粘剤が添加されている。
(IC-2) Thickener When preparing an electrode, activated carbon (IA), binder (IB), and other additives added as necessary are dispersed in a solvent, for example, water to form a slurry, and metal It is applied to a foil or current collector and molded. At that time, a thickener is added to uniformly disperse the particles in the slurry and adjust the fluidity to an appropriate fluidity.
 増粘剤としては、従来公知のカルボキシメチルセルロース(CMC)、ポリアクリル酸などが例示できる。なかでも、耐圧性が良好な点からポリアクリル酸が好ましい。 Examples of the thickener include conventionally known carboxymethyl cellulose (CMC) and polyacrylic acid. Of these, polyacrylic acid is preferred from the viewpoint of good pressure resistance.
 これらの電極成分は、活性炭(IA)100質量部に対して、結合材(IB)を2~6質量部配合することが好ましい。より高い静電容量と低い内部抵抗と高い耐電圧を得るには、活性炭(IA)100質量部に対して、結合材(IB)を3~5質量部配合することがさらに好ましい。 These electrode components are preferably blended in an amount of 2 to 6 parts by mass of binder (IB) with respect to 100 parts by mass of activated carbon (IA). In order to obtain higher capacitance, lower internal resistance, and higher withstand voltage, it is more preferable to add 3 to 5 parts by mass of the binder (IB) to 100 parts by mass of the activated carbon (IA).
 たとえば導電材(IC-1)を配合する場合は、良好な導電性(低い内部抵抗)を得るように、また多すぎるとキャパシタの静電容量が減るため、活性炭粒子との合計量中1~20質量%とするのが好ましい。 For example, when the conductive material (IC-1) is blended, the capacitance of the capacitor is decreased if the amount is too large so as to obtain good conductivity (low internal resistance). It is preferable to set it as 20 mass%.
 また増粘剤(IC-2)を配合する場合は、電極密度を均質にする点から、活性炭(IA)100質量部に対して、3質量部以下、さらには2質量部以下が好ましい。下限は、配合する目的を達成する量である。 In addition, when the thickener (IC-2) is blended, it is preferably 3 parts by mass or less, more preferably 2 parts by mass or less, with respect to 100 parts by mass of activated carbon (IA) from the viewpoint of homogenizing the electrode density. The lower limit is an amount that achieves the purpose of blending.
 電極は、種々の方法で形成することができる。たとえば、活性炭(IA)、および要すれば導電材(IC-1)を乾式混合する。その混合の過程で増粘剤(IC-2)と水を適宜添加して粒子を分散させる。ついで、結合材(IB)と水を適宜加えた後湿式混合し、均質な電極形成用のスラリーを調製する。このスラリーを集電体などの金属箔上に塗布し、適宜プレスし、乾燥して電極を作製する。 The electrode can be formed by various methods. For example, activated carbon (IA) and, if necessary, conductive material (IC-1) are dry mixed. In the mixing process, thickener (IC-2) and water are added as appropriate to disperse the particles. Next, a binder (IB) and water are added as appropriate, followed by wet mixing to prepare a homogeneous electrode forming slurry. This slurry is applied on a metal foil such as a current collector, pressed as appropriate, and dried to produce an electrode.
 電極は、上記の電極を両極に用いて電気二重層キャパシタとしてもよいが、片側に非分極性電極を用いる構成、たとえば、金属酸化物等の電池活物質を主体とする正極と、活性炭を主体とする本発明の電極の負極とを組合せた構成も可能である。 The electrode may be an electric double layer capacitor using the above electrodes for both electrodes, but a configuration using a non-polarizable electrode on one side, for example, a positive electrode mainly composed of a battery active material such as a metal oxide, and activated carbon mainly A configuration in which the negative electrode of the electrode of the present invention is combined is also possible.
 集電体は化学的、電気化学的に耐食性のあるものであればよい。活性炭を主体とする分極性電極の集電体としては、ステンレス、アルミニウム、チタンまたはタンタルが好ましく使用できる。これらのうち、ステンレスまたはアルミニウムが、得られる電気二重層キャパシタの特性と価格の両面において特に好ましい材料である。 The current collector may be any material that is chemically and electrochemically resistant to corrosion. As the current collector of the polarizable electrode mainly composed of activated carbon, stainless steel, aluminum, titanium or tantalum can be preferably used. Of these, stainless steel or aluminum is a particularly preferable material in terms of both characteristics and cost of the electric double layer capacitor to be obtained.
 本発明では、作製された電極の嵩密度(電極密度)を0.45g/cm3以下に調整することが重要である。 In the present invention, it is important to adjust the bulk density (electrode density) of the produced electrode to 0.45 g / cm 3 or less.
 前述の特許文献1のように、静電容量の向上や内部抵抗の低下の観点から、電極密度を高密度化(0.6g/cm3以上)することは知られているが、キャパシタの耐電圧の観点から電極密度を検討した例はなく、しかも、低密度化の方向で耐電圧が向上する点については本発明で初めて見出された事項である。 As described in Patent Document 1, it is known to increase the electrode density (0.6 g / cm 3 or more) from the viewpoint of improvement in capacitance and reduction in internal resistance. There is no example in which the electrode density is examined from the viewpoint of voltage, and the point that the withstand voltage is improved in the direction of lowering the density is a matter found for the first time in the present invention.
 電極密度は、好ましくは耐電圧が良好な点から0.45g/cm3以下、さらには0.40g/cm3以下である。一方、下限は機械的強度を維持する点から0.30g/cm3、特に0.35g/cm3が好ましい。 Electrode density is preferably 0.45 g / cm 3 or less from the viewpoint withstand voltage is good, more is 0.40 g / cm 3 or less. On the other hand, the lower limit is 0.30 g / cm 3 from the viewpoint of maintaining mechanical strength, in particular 0.35 g / cm 3 preferred.
 電極密度を調整する方法は特に限定されず、たとえばつぎの方法が採用できる。 The method for adjusting the electrode density is not particularly limited, and for example, the following method can be adopted.
(1)電極用スラリーの固形分濃度を調節する方法
 たとえば固形分濃度を15~25質量%、好ましくは18~22質量%に調整することが好ましい。
(1) Method of adjusting solid content concentration of electrode slurry For example, it is preferable to adjust the solid content concentration to 15 to 25% by mass, preferably 18 to 22% by mass.
(2)塗布後に電極用スラリーの塗膜をプレスする際の圧力を調節する方法
 プレス圧は、目的とする電極厚などに合わせて適宜選定すればよい。
(2) Method of adjusting the pressure when pressing the electrode slurry coating after coating The pressing pressure may be appropriately selected according to the target electrode thickness and the like.
 これらの方法は単独、または組み合わせて行ってもよい。 These methods may be performed alone or in combination.
(II)非水系電解液
 本発明に用いる非水系電解液(II)は、耐電圧が2.5V以上の非水系電解液であり、好ましくはフッ素系電解液である。耐電圧が2.5V以上の非水系電解液は、非水系溶媒(IIA)と電解質塩(IIB)とを含む。
(II) Non-aqueous electrolyte solution The non-aqueous electrolyte solution (II) used in the present invention is a non-aqueous electrolyte solution having a withstand voltage of 2.5 V or more, preferably a fluorine-based electrolyte solution. The nonaqueous electrolytic solution having a withstand voltage of 2.5 V or more includes a nonaqueous solvent (IIA) and an electrolyte salt (IIB).
(IIA)非水系溶媒
 非水系溶媒(IIA)としては、電解液の耐電圧を2.5V以上にすることができるものであれば、フッ素系溶媒(IIA-1)でも非フッ素系溶媒(IIA-2)でもよい。
(IIA) Non-aqueous solvent As the non-aqueous solvent (IIA), any fluorine-based solvent (IIA-1) or non-fluorinated solvent (IIA) can be used as long as the withstand voltage of the electrolytic solution can be 2.5 V or higher. -2).
(IIA-1)フッ素系溶媒
 フッ素系溶媒(IIA-1)としては、たとえば特許文献2に記載されている含フッ素環状カーボネートを含むフッ素系溶媒が、高い耐電性と広い電解質溶解性に優れている点から好ましい。
含フッ素環状カーボネートとしては、式(1):
Figure JPOXMLDOC01-appb-C000001
(式中、X1~X4は同じかまたは異なり、いずれも-H、-F、-CF3、-CHF2、-CH2F、-C25または-CH2CF3;ただし、X1~X4の少なくとも1つは-F、-CF3、-C25または-CH2CF3である)で示される含フッ素環状カーボネートを含有する溶媒が、静電容量が大きく、耐電圧も高い点から好ましい。
(IIA-1) Fluorinated solvent As the fluorinated solvent (IIA-1), for example, a fluorinated solvent containing a fluorinated cyclic carbonate described in Patent Document 2 is excellent in high electric resistance and wide electrolyte solubility. This is preferable.
As the fluorine-containing cyclic carbonate, the formula (1):
Figure JPOXMLDOC01-appb-C000001
(Wherein X 1 to X 4 are the same or different and all are —H, —F, —CF 3 , —CHF 2 , —CH 2 F, —C 2 F 5 or —CH 2 CF 3 ; At least one of X 1 to X 4 is —F, —CF 3 , —C 2 F 5 or —CH 2 CF 3 ). This is preferable from the viewpoint of high withstand voltage.
 前記フッ素系溶媒(IIA-1)中に含まれる含フッ素環状カーボネートとしては、高い誘電率、高い耐電圧といった優れた特性が特に発揮できる点、そのほか電解質塩の溶解性、内部抵抗の低減が良好な点で本発明における電気二重層キャパシタとしての特性が向上する点から、
Figure JPOXMLDOC01-appb-C000002
よりなる群から選ばれる少なくとも1種が好ましい。
The fluorine-containing cyclic carbonate contained in the fluorine-based solvent (IIA-1) has particularly excellent properties such as a high dielectric constant and a high withstand voltage, and also has good solubility of electrolyte salt and reduction of internal resistance. From the point that the characteristics as an electric double layer capacitor in the present invention are improved,
Figure JPOXMLDOC01-appb-C000002
At least one selected from the group consisting of is preferred.
 含フッ素環状カーボネートのフッ素含有率は、誘電率、耐酸化性の点から、15~55質量%が好ましく、17~44質量%がより好ましい。 The fluorine content of the fluorine-containing cyclic carbonate is preferably 15 to 55% by mass, more preferably 17 to 44% by mass from the viewpoint of dielectric constant and oxidation resistance.
 他にも、含フッ素環状カーボネートとしては、
Figure JPOXMLDOC01-appb-C000003
なども使用できる。
In addition, as the fluorine-containing cyclic carbonate,
Figure JPOXMLDOC01-appb-C000003
Etc. can also be used.
 フッ素系溶媒(IIA-1)中の含フッ素環状カーボネートの含有率は、誘電率や粘性が良好な点で、100~20体積%が好ましく、90~20体積%がより好ましい。 The content of the fluorinated cyclic carbonate in the fluorinated solvent (IIA-1) is preferably 100 to 20% by volume, more preferably 90 to 20% by volume in terms of good dielectric constant and viscosity.
 フッ素系溶媒(IIA-1)は、式(1)で示される含フッ素環状カーボネートを単独で用いてもよいし、他の含フッ素電解質塩溶解用溶媒や非フッ素系電解質塩溶解用溶媒との混合物として使用してもよい。また、含フッ素環状カーボネートは一般的に融点が高いため、単独では低温での動作に障害が生じることがある。そのようなときには、耐酸化性、粘性、低温特性を向上させる点から、式(1)で示される含フッ素環状カーボネートと他の含フッ素電解質塩溶解用溶媒との混合物として使用することが好ましい。 As the fluorine-based solvent (IIA-1), the fluorine-containing cyclic carbonate represented by the formula (1) may be used alone, or other fluorine-containing electrolyte salt dissolving solvent or non-fluorinated electrolyte salt dissolving solvent. It may be used as a mixture. Moreover, since a fluorine-containing cyclic carbonate generally has a high melting point, it may cause an obstacle to operation at a low temperature by itself. In such a case, it is preferable to use it as a mixture of the fluorine-containing cyclic carbonate represented by the formula (1) and another fluorine-containing electrolyte salt dissolving solvent from the viewpoint of improving oxidation resistance, viscosity, and low temperature characteristics.
 式(1)で示される含フッ素環状カーボネートの共溶媒として使用する含フッ素電解質塩溶解用溶媒としては、含フッ素鎖状カーボネート、含フッ素鎖状エステル、含フッ素鎖状エーテル、含フッ素ラクトン、含フッ素スルホラン誘導体などがあげられる。 Solvents for dissolving the fluorine-containing electrolyte salt used as a co-solvent for the fluorine-containing cyclic carbonate represented by the formula (1) include fluorine-containing chain carbonates, fluorine-containing chain esters, fluorine-containing chain ethers, fluorine-containing lactones, And fluorine sulfolane derivatives.
 含フッ素鎖状カーボネートとしては、粘性や耐酸化性が良好な点から、式(2):
Figure JPOXMLDOC01-appb-C000004
(式中、Rfa1およびRfa2は同じかまたは異なり、炭素数1~4のアルキル基または炭素数1~4の含フッ素アルキル基である。ただし、少なくとも一方は炭素数1~4の含フッ素アルキル基である)で示されるものが、好ましい。
As the fluorine-containing chain carbonate, from the viewpoint of good viscosity and oxidation resistance, the formula (2):
Figure JPOXMLDOC01-appb-C000004
(Wherein Rf a1 and Rf a2 are the same or different and are an alkyl group having 1 to 4 carbon atoms or a fluorine-containing alkyl group having 1 to 4 carbon atoms, provided that at least one of them is a fluorine-containing group having 1 to 4 carbon atoms. Those represented by (which are alkyl groups) are preferred.
 含フッ素鎖状カーボネートのなかでも、高い誘電率、高い耐電圧といった優れた特性が特に発揮できる点、そのほか電解質塩の溶解性、内部抵抗の低減、低温特性が良好な点で本発明における電気二重層キャパシタとしての特性が向上する点から、
Figure JPOXMLDOC01-appb-C000005
などが好ましい。
Among the fluorine-containing chain carbonates, the electrical properties in the present invention are particularly excellent in that they have excellent characteristics such as a high dielectric constant and a high withstand voltage, as well as the solubility of the electrolyte salt, the reduction in internal resistance, and the low-temperature characteristics. From the point that the characteristics as a multilayer capacitor are improved,
Figure JPOXMLDOC01-appb-C000005
Etc. are preferable.
 その他、含フッ素鎖状カーボネートとしては、
Figure JPOXMLDOC01-appb-C000006
なども使用できる。また、たとえば、特開平06-21992号公報、特開2000-327634号公報、特開2001-256983号公報などに記載された化合物もあげられる。
In addition, as fluorine-containing chain carbonate,
Figure JPOXMLDOC01-appb-C000006
Etc. can also be used. Further, for example, compounds described in JP-A-06-21992, JP-A-2000-327634, JP-A-2001-256983 and the like can be mentioned.
 なかでも、耐酸化性、電解質塩の溶解性が良好な点から、
Figure JPOXMLDOC01-appb-C000007
が好ましい。
Above all, from the point that oxidation resistance and solubility of electrolyte salt are good,
Figure JPOXMLDOC01-appb-C000007
Is preferred.
 含フッ素鎖状エーテルとしては、たとえば、特開平08-037024号公報、特開平09-097627号公報、特開平11-026015号公報、特開2000-294281号公報、特開2001-052737号公報、特開平11-307123号公報などに記載された化合物があげられる。 Examples of the fluorine-containing chain ether include, for example, JP-A-08-037024, JP-A-09-097627, JP-A-11-026015, JP-A-2000-294281, JP-A-2001-052737, Examples thereof include compounds described in JP-A-11-307123.
 なかでも、他溶媒との相溶性が良好で適切な沸点を有する点から、式(3):
Rfc1-O-Rfc2 (3)
(式中、Rfc1およびRfc2は同じかまたは異なり、いずれも炭素数2~4の含フッ素アルキル基である)で示される含フッ素エーテルが好ましい。
Among these, from the viewpoint of good compatibility with other solvents and an appropriate boiling point, the formula (3):
Rf c1 -O-Rf c2 (3)
(Wherein, Rfc1 and Rfc2 are the same or different and both are fluorine-containing alkyl groups having 2 to 4 carbon atoms).
 とくに、Rfc1としては、たとえば、-CH2CF2CHF2、-CH224CHF2、-CH2CF3、-CH236CHF2、-CH225、-CH2CF2CHFCF3、-CH2CF(CF3)CF2CHF2、-C2425、-C24CF3などがあげられ、また、Rfc2としては、たとえば、-CF2CHFCF3、-C24CHF2、-C24CF3、-CH2CHFCF3、-C2425が好ましい。 In particular, Rf c1 includes, for example, —CH 2 CF 2 CHF 2 , —CH 2 C 2 F 4 CHF 2 , —CH 2 CF 3 , —CH 2 C 3 F 6 CHF 2 , —CH 2 C 2 F 5 , —CH 2 CF 2 CHFCF 3 , —CH 2 CF (CF 3 ) CF 2 CHF 2 , —C 2 H 4 C 2 F 5 , —C 2 H 4 CF 3 and the like, and Rf c2 For example, —CF 2 CHFCF 3 , —C 2 F 4 CHF 2 , —C 2 H 4 CF 3 , —CH 2 CHFCF 3 , and —C 2 H 4 C 2 F 5 are preferable.
 含フッ素鎖状エステルとしては、難燃性が高く、かつ他溶媒との相溶性や耐酸化性が良好な点から、式(4):
Figure JPOXMLDOC01-appb-C000008
(式中、Rfb1およびRfb2は同じかまたは異なり、いずれも炭素数1~4の含フッ素アルキル基である)で示されることが好ましい。
As the fluorine-containing chain ester, since the flame retardancy is high and the compatibility with other solvents and the oxidation resistance are good, the formula (4):
Figure JPOXMLDOC01-appb-C000008
(Wherein Rf b1 and Rf b2 are the same or different and both are fluorine-containing alkyl groups having 1 to 4 carbon atoms).
 含フッ素鎖状エステルとしては、たとえば、CF3C(=O)OC25、CF3C(=O)OCH2CF3、CF3C(=O)OCH2CH2CF3、CF3C(=O)OCH225、CF3C(=O)OCH2CF2CF2H、CF3C(=O)OCH(CF32、CF3C(=O)OCH(CF32などがあげられ、なかでも、他溶媒との相溶性、粘性、耐酸化性などが良好な点から、CF3C(=O)OC25、CF3C(=O)OCH225、CF3C(=O)OCH2CF2CF2H、CF3C(=O)OCH2CF3、CF3C(=O)OCH(CF32が特に好ましい。 Examples of the fluorine-containing chain ester include CF 3 C (═O) OC 2 F 5 , CF 3 C (═O) OCH 2 CF 3 , CF 3 C (═O) OCH 2 CH 2 CF 3 , and CF 3. C (= O) OCH 2 C 2 F 5, CF 3 C (= O) OCH 2 CF 2 CF 2 H, CF 3 C (= O) OCH (CF 3) 2, CF 3 C (= O) OCH ( CF 3 ) 2 and the like. Among these, CF 3 C (═O) OC 2 F 5 , CF 3 C (═O) are preferred because they have good compatibility with other solvents, viscosity, and oxidation resistance. OCH 2 C 2 F 5 , CF 3 C (═O) OCH 2 CF 2 CF 2 H, CF 3 C (═O) OCH 2 CF 3 , CF 3 C (═O) OCH (CF 3 ) 2 are particularly preferred. .
 含フッ素ラクトンとしては、たとえば、式(5):
Figure JPOXMLDOC01-appb-C000009
(式中、X5~X10は同じかまたは異なり、いずれも-H、-F、-Cl、-CH3または含フッ素メチル基;ただし、X5~X10の少なくとも1つは含フッ素メチル基である)で示される含フッ素ラクトンがあげられる。
As the fluorine-containing lactone, for example, formula (5):
Figure JPOXMLDOC01-appb-C000009
(Wherein X 5 to X 10 are the same or different and all are —H, —F, —Cl, —CH 3 or a fluorine-containing methyl group; provided that at least one of X 5 to X 10 is fluorine-containing methyl A fluorine-containing lactone represented by the following formula:
 含フッ素ラクトンとしては、前記式(5)で示されるもの以外にも、たとえば、式(6):
Figure JPOXMLDOC01-appb-C000010
(式中、AおよびBはいずれか一方がCX1617(X16およびX17は同じかまたは異なり、いずれも-H、-F、-Cl、-CF3、-CH3または水素原子がハロゲン原子で置換されていてもよくヘテロ原子を鎖中に含んでいてもよいアルキル基)であり、他方は酸素原子;Rfeは含フッ素エーテル基、含フッ素アルコキシ基または炭素数2以上の含フッ素アルキル基;X11およびX12は同じかまたは異なり、いずれも-H、-F、-Cl、-CF3または-CH3;X13~X15は同じかまたは異なり、いずれも-H、-F、-Clまたは水素原子がハロゲン原子で置換されていてもよくヘテロ原子を鎖中に含んでいてもよいアルキル基;n=0または1)で示される含フッ素ラクトンなどもあげられる。
Examples of the fluorine-containing lactone include those represented by the formula (6):
Figure JPOXMLDOC01-appb-C000010
(In the formula, either one of A and B is CX 16 X 17 (X 16 and X 17 are the same or different, and all are —H, —F, —Cl, —CF 3 , —CH 3 or a hydrogen atom) may be substituted with a halogen atom include a hetero atom in the chain is also an alkyl group), the other is an oxygen atom; Rf e is a fluorine-containing ether group, a fluorine-containing alkoxy group or having two or more carbon atoms containing Fluoroalkyl group; X 11 and X 12 are the same or different, all are —H, —F, —Cl, —CF 3 or —CH 3 ; X 13 to X 15 are the same or different and both are —H, Examples thereof include -F, -Cl or an alkyl group in which a hydrogen atom may be substituted with a halogen atom and a hetero atom may be included in the chain; a fluorine-containing lactone represented by n = 0 or 1).
 これらのなかでも、高い誘電率、高い耐電圧といった優れた特性が特に発揮できる点、そのほか電解質塩の溶解性、内部抵抗の低減が良好な点で本発明における電解液としての特性が向上する点から、
Figure JPOXMLDOC01-appb-C000011
が好ましい。
Among these, the point that the excellent characteristics such as high dielectric constant and high withstand voltage can be exhibited especially, and the characteristics as the electrolytic solution in the present invention are improved in that the solubility of the electrolyte salt and the reduction of internal resistance are good. From
Figure JPOXMLDOC01-appb-C000011
Is preferred.
 その他、含フッ素ラクトンとしては、
Figure JPOXMLDOC01-appb-C000012
なども使用できる。
In addition, as fluorine-containing lactone,
Figure JPOXMLDOC01-appb-C000012
Etc. can also be used.
 含フッ素スルホラン誘導体としては、特開2003-132994号公報に記載された含フッ素スルホラン誘導体が例示でき、なかでも、
Figure JPOXMLDOC01-appb-C000013
が好ましい。
Examples of the fluorine-containing sulfolane derivative include fluorine-containing sulfolane derivatives described in JP-A-2003-132994, and among them,
Figure JPOXMLDOC01-appb-C000013
Is preferred.
 フッ素系溶媒(IIA-1)は、式(1)で示される含フッ素環状カーボネートを単独、または他の非フッ素系溶媒またはフッ素系溶媒を共溶媒として使用することができる。共溶媒としての電解質塩溶解用溶媒としては、耐酸化性、粘性が良好な点から、含フッ素電解質塩溶解用溶媒が好ましく、含フッ素鎖状カーボネート、含フッ素鎖状エステル、含フッ素鎖状エーテルがより好ましい。とくに、3.5V以上の高電圧で動作させる際のフッ素系溶媒(IIA-1)には、式(1)で示される含フッ素環状カーボネートと、含フッ素鎖状カーボネート、含フッ素鎖状エステルおよび含フッ素鎖状エーテルよりなる群から選ばれる少なくとも1種のみからなるものが好ましい。なかでも、含フッ素鎖状エーテルが、耐酸化性が良好な点から好ましい。 As the fluorinated solvent (IIA-1), the fluorinated cyclic carbonate represented by the formula (1) can be used alone, or another non-fluorinated solvent or fluorinated solvent can be used as a cosolvent. As a solvent for dissolving an electrolyte salt as a co-solvent, a solvent for dissolving a fluorine-containing electrolyte salt is preferable from the viewpoint of good oxidation resistance and viscosity, and a fluorine-containing chain carbonate, a fluorine-containing chain ester, and a fluorine-containing chain ether. Is more preferable. In particular, the fluorine-based solvent (IIA-1) when operated at a high voltage of 3.5 V or more includes a fluorine-containing cyclic carbonate represented by the formula (1), a fluorine-containing chain carbonate, a fluorine-containing chain ester, and Those consisting of at least one selected from the group consisting of fluorine-containing chain ethers are preferred. Of these, fluorine-containing chain ethers are preferred from the viewpoint of good oxidation resistance.
 特に好ましい含フッ素環状カーボネートと含フッ素鎖状エーテルの組合せとしては、特に耐酸化性、電解質塩の溶解性が良好な点から、
Figure JPOXMLDOC01-appb-C000014
の含フッ素環状カーボネートと、CF3CF2CH2-O-CF2CFHCF3、HCF2CF2CH2-O-CF2CFHCF3、CF3CF2CH2-O-CF2CF2HおよびHCF2CF2CH2-O-CF2CF2Hよりなる群れから選ばれる少なくとも1種の含フッ素鎖状エーテルとの混合物である。
As a particularly preferred combination of the fluorine-containing cyclic carbonate and the fluorine-containing chain ether, particularly from the viewpoint of good oxidation resistance and solubility of the electrolyte salt,
Figure JPOXMLDOC01-appb-C000014
Fluorine-containing cyclic carbonates, CF 3 CF 2 CH 2 —O—CF 2 CFHCF 3 , HCF 2 CF 2 CH 2 —O—CF 2 CFHCF 3 , CF 3 CF 2 CH 2 —O—CF 2 CF 2 H and It is a mixture with at least one fluorine-containing chain ether selected from the group consisting of HCF 2 CF 2 CH 2 —O—CF 2 CF 2 H.
(IIA-2)非フッ素系溶媒
 非フッ素系溶媒(IIA-2)としては、非フッ素系環状カーボネート、非フッ素系鎖状カーボネート、非フッ素系鎖状エステル、非フッ素系鎖状エーテル、非フッ素系ラクトン、非フッ素系スルホラン誘導体、他の非フッ素系電解質塩溶解用溶媒などがあげられる。
(IIA-2) Non-fluorinated solvent As the non-fluorinated solvent (IIA-2), non-fluorinated cyclic carbonate, non-fluorinated chain carbonate, non-fluorinated chain ester, non-fluorinated chain ether, non-fluorine Lactones, non-fluorine sulfolane derivatives, other solvents for dissolving non-fluorine electrolyte salts, and the like.
 非フッ素系環状カーボネートとしては、たとえば、
Figure JPOXMLDOC01-appb-C000015
などがあげられる。
Examples of non-fluorinated cyclic carbonates include:
Figure JPOXMLDOC01-appb-C000015
Etc.
 非フッ素系鎖状カーボネートとしては、たとえば、式(7):
Figure JPOXMLDOC01-appb-C000016
(式中、Ra1およびRa2は同じかまたは異なり、いずれも炭素数1~4のアルキル基)で示される鎖状カーボネートが好ましい。
As the non-fluorine chain carbonate, for example, the formula (7):
Figure JPOXMLDOC01-appb-C000016
(Wherein, R a1 and R a2 are the same or different and both are alkyl groups having 1 to 4 carbon atoms).
 非フッ素系鎖状カーボネートのなかでも、高い誘電率、高い耐電圧といった優れた特性が特に発揮できる点、そのほか電解質塩の溶解性、内部抵抗の低減が良好な点で本発明における電気二重層キャパシタとしての特性が向上する点から、
Figure JPOXMLDOC01-appb-C000017
などが好ましい。
Among the non-fluorine chain carbonates, the electric double layer capacitor according to the present invention is particularly advantageous in that it has excellent characteristics such as a high dielectric constant and a high withstand voltage, and also has good solubility in electrolyte salts and a reduction in internal resistance. From the point that the characteristics as
Figure JPOXMLDOC01-appb-C000017
Etc. are preferable.
 その他、非フッ素鎖状カーボネートとしては、
Figure JPOXMLDOC01-appb-C000018
なども使用できる。
In addition, as non-fluorine chain carbonate,
Figure JPOXMLDOC01-appb-C000018
Etc. can also be used.
(IIB)電解質塩
 電解質塩(IIB)は、従来公知のアンモニウム塩、金属塩のほか、液体状の塩(イオン性液体)、無機高分子型の塩、有機高分子型の塩などがあげられる。
(IIB) Electrolyte Salt The electrolyte salt (IIB) includes conventionally known ammonium salts and metal salts, liquid salts (ionic liquids), inorganic polymer type salts, organic polymer type salts, and the like. .
 アンモニウム塩としては、従来公知のものが使用でき、たとえばスピロ環ビピリジニウム塩、イミダゾリウム塩、テトラアルキル4級アンモニウム塩、N-アルキルピリジニウム塩、N,N-ジアルキルピロリジニウム塩などがあげられる。 As the ammonium salt, conventionally known ones can be used, and examples include spiro-ring bipyridinium salts, imidazolium salts, tetraalkyl quaternary ammonium salts, N-alkylpyridinium salts, N, N-dialkylpyrrolidinium salts and the like.
 スピロ環ビピリジニウム塩としては、たとえば、式(10-1):
Figure JPOXMLDOC01-appb-C000019
(式中、Rf1およびRf2は同じかまたは異なり、いずれも炭素数1~4のアルキル基;X-はアニオン;n1は0~5の整数;n2は0~5の整数)で示されるスピロ環ビピリジニウム塩、式(10-2):
(式中、Rf3およびRf4は同じかまたは異なり、いずれも炭素数1~4のアルキル基;X-はアニオン;n3は0~5の整数;n4は0~5の整数)で示されるスピロ環ビピリジニウム塩、または式(10-3):
Figure JPOXMLDOC01-appb-C000021
(式中、Rf5およびRf6は同じかまたは異なり、いずれも炭素数1~4のアルキル基;X-はアニオン;n5は0~5の整数;n6は0~5の整数)で示されるスピロ環ビピリジニウム塩が好ましくあげられる。また、このスピロ環ビピリジニウム塩の水素原子の一部または全部がフッ素原子および/または炭素数1~4の含フッ素アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
Examples of the spiro ring bipyridinium salt include those represented by the formula (10-1):
Figure JPOXMLDOC01-appb-C000019
(Wherein R f1 and R f2 are the same or different and both are alkyl groups having 1 to 4 carbon atoms; X is an anion; n1 is an integer of 0 to 5; n2 is an integer of 0 to 5) Spirocyclic bipyridinium salt, formula (10-2):
(Wherein R f3 and R f4 are the same or different and both are alkyl groups having 1 to 4 carbon atoms; X is an anion; n3 is an integer of 0 to 5; n4 is an integer of 0 to 5) Spiro ring bipyridinium salt or formula (10-3):
Figure JPOXMLDOC01-appb-C000021
(Wherein R f5 and R f6 are the same or different and both are alkyl groups having 1 to 4 carbon atoms; X is an anion; n5 is an integer of 0 to 5; n6 is an integer of 0 to 5) Spiro ring bipyridinium salts are preferred. In addition, the spiro-ring bipyridinium salt in which part or all of the hydrogen atoms are substituted with a fluorine atom and / or a fluorine-containing alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of improving oxidation resistance.
 アニオンX-としては、無機アニオンでも有機アニオンでもよい。無機アニオンとしては、たとえば、AlCl4 -、BF4 -、PF6 -、AsF6 -、TaF6 -、I-、SbF6 -などがあげられる。また、有機アニオンとしては、たとえば、CH3COO-、CF3SO3 -、(CF3SO22-、(C25SO22-などがあげられる。これらのうち、解離性が高く、高電圧下での内部抵抗が低い点から、BF4 -、PF6 -、(CF3SO22-または(C25SO22-が好ましく、とくにPF6 -がより好ましい。 The anion X may be an inorganic anion or an organic anion. Examples of the inorganic anion include AlCl 4 , BF 4 , PF 6 , AsF 6 , TaF 6 , I and SbF 6 . Examples of the organic anion include CH 3 COO , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , (C 2 F 5 SO 2 ) 2 N − and the like. Of these, BF 4 , PF 6 , (CF 3 SO 2 ) 2 N or (C 2 F 5 SO 2 ) 2 N are highly dissociable and have low internal resistance under high voltage. In particular, PF 6 - is more preferable.
 スピロ環ビピリジニウム塩の好ましい具体例としては、たとえば、
Figure JPOXMLDOC01-appb-C000022
などがあげられる。
Preferable specific examples of the spirocyclic bipyridinium salt include, for example,
Figure JPOXMLDOC01-appb-C000022
Etc.
 このスピロ環ビピリジニウム塩は溶媒への溶解性、耐酸化性、イオン伝導性の点で優れている。 This spiro-ring bipyridinium salt is excellent in terms of solubility in a solvent, oxidation resistance, and ion conductivity.
 イミダゾリウム塩としては、たとえば、式(11):
Figure JPOXMLDOC01-appb-C000023
(式中、Rg1およびRg2は同じかまたは異なり、いずれも炭素数1~6のアルキル基;X-はアニオン)で示されるイミダゾリウム塩が好ましくあげられる。また、このイミダゾリウム塩の水素原子の一部または全部がフッ素原子および/または炭素数1~4の含フッ素アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
As an imidazolium salt, for example, formula (11):
Figure JPOXMLDOC01-appb-C000023
An imidazolium salt represented by the formula (wherein R g1 and R g2 are the same or different and both are alkyl groups having 1 to 6 carbon atoms; X is an anion) is preferred. In addition, the imidazolium salt in which part or all of the hydrogen atoms are substituted with a fluorine atom and / or a fluorine-containing alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of improving oxidation resistance.
 アニオンX-の好ましい具体例は、スピロ環ビピリジニウム塩と同じである。 Preferred examples of the anion X are the same as those of the spiro ring bipyridinium salt.
 イミダゾリウム塩の好ましい具体例としては、たとえば、式(12):
Figure JPOXMLDOC01-appb-C000024
で示されるエチルメチルイミダゾリウム塩などがあげられる。
Preferable specific examples of imidazolium salts include, for example, formula (12):
Figure JPOXMLDOC01-appb-C000024
And ethylmethylimidazolium salt represented by the formula:
 このイミダゾリウム塩は粘性が低く、また溶媒への溶解性の点で優れている。 This imidazolium salt has low viscosity and is excellent in solubility in a solvent.
 テトラアルキル4級アンモニウム塩としては、たとえば、式(13):
Figure JPOXMLDOC01-appb-C000025
(式中、Rh1、Rh2、Rh3およびRh4は同じかまたは異なり、いずれも炭素数1~6のエーテル結合を含んでいてもよいアルキル基;X-はアニオン)で示されるテトラアルキル4級アンモニウム塩が好ましくあげられる。また、このテトラアルキル4級アンモニウム塩の水素原子の一部または全部がフッ素原子および/または炭素数1~4の含フッ素アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
Examples of the tetraalkyl quaternary ammonium salt include the formula (13):
Figure JPOXMLDOC01-appb-C000025
(Wherein R h1 , R h2 , R h3 and R h4 are the same or different, and all are alkyl groups which may contain an ether bond having 1 to 6 carbon atoms; X is an anion) Preferred is a quaternary ammonium salt. In addition, the tetraalkyl quaternary ammonium salt in which part or all of the hydrogen atoms are substituted with fluorine atoms and / or fluorine-containing alkyl groups having 1 to 4 carbon atoms is preferable from the viewpoint of improving oxidation resistance. .
 具体例としては、
式(13-1):
Figure JPOXMLDOC01-appb-C000026
(式中、Rh1、Rh2およびX-は式(13)と同じ;xおよびyは同じかまたは異なり、0~4の整数で、かつx+y=4である)で示されるテトラアルキル4級アンモニウム塩、
式(13-2):
Figure JPOXMLDOC01-appb-C000027
(式中、Rh5は炭素数1~6のアルキル基;Rh6は炭素数1~6の2価の炭化水素基;Rh7は炭素数1~4のアルキル基;zは1または2;X-はアニオン)で示されるアルキルエーテル基含有トリアルキルアンモニウム塩などがあげられる。アルキルエーテル基を導入することにより、粘性の低下が図れる。
As a specific example,
Formula (13-1):
Figure JPOXMLDOC01-appb-C000026
(Wherein R h1 , R h2 and X are the same as in formula (13); x and y are the same or different, an integer of 0 to 4 and x + y = 4) Ammonium salt,
Formula (13-2):
Figure JPOXMLDOC01-appb-C000027
Wherein R h5 is an alkyl group having 1 to 6 carbon atoms; R h6 is a divalent hydrocarbon group having 1 to 6 carbon atoms; R h7 is an alkyl group having 1 to 4 carbon atoms; z is 1 or 2; An alkyl ether group-containing trialkylammonium salt represented by X is an anion). By introducing an alkyl ether group, the viscosity can be lowered.
 アニオンX-の好ましい具体例は、スピロ環ビピリジニウム塩と同じである。 Preferred examples of the anion X are the same as those of the spiro ring bipyridinium salt.
 テトラアルキル4級アンモニウム塩の好適な具体例としては、たとえば、Et4NBF4、Et4NClO4、Et4NPF6、Et4NAsF6、Et4NSbF6、Et4NCF3SO3、Et4N(CF3SO22N、Et4NC49SO3、Et3MeBF4、Et3MeClO4、Et3MePF6、Et3MeAsF6、Et3MeSbF6、Et3MeCF3SO3、Et3Me(CF3SO22N、Et3MeC49SO3などがあげられ、特に、Et4NBF4、Et4NPF6、Et4NSbF6、Et4NAsF6などが好ましい。 Preferable specific examples of the tetraalkyl quaternary ammonium salt include, for example, Et 4 NBF 4 , Et 4 NClO 4 , Et 4 NPF 6 , Et 4 NAsF 6 , Et 4 NSbF 6 , Et 4 NCF 3 SO 3 , Et 4 N (CF 3 SO 2 ) 2 N, Et 4 NC 4 F 9 SO 3 , Et 3 MeBF 4 , Et 3 MeClO 4 , Et 3 MePF 6 , Et 3 MeAsF 6 , Et 3 MeSbF 6 , Et 3 MeCF 3 SO 3 Et 3 Me (CF 3 SO 2 ) 2 N, Et 3 MeC 4 F 9 SO 3 and the like, and Et 4 NBF 4 , Et 4 NPF 6 , Et 4 NSbF 6 , Et 4 NAsF 6 and the like are particularly preferable. .
 N-アルキルピリジニウム塩としては、たとえば、式(14):
Figure JPOXMLDOC01-appb-C000028
(式中、Ri1は水素原子または炭素数1~6のアルキル基;X-はアニオン)で示されるN-アルキルピリジニウム塩が好ましくあげられる。また、このN-アルキルピリジニウム塩の水素原子の一部または全部がフッ素原子および/または炭素数1~4の含フッ素アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
N-alkylpyridinium salts include, for example, formula (14):
Figure JPOXMLDOC01-appb-C000028
N-alkylpyridinium salts represented by the formula (wherein R i1 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; X is an anion) are preferred. In addition, the N-alkylpyridinium salt in which part or all of the hydrogen atoms are substituted with a fluorine atom and / or a fluorine-containing alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of improving oxidation resistance.
 アニオンX-の好ましい具体例は、スピロ環ビピリジニウム塩と同じである。 Preferred examples of the anion X are the same as those of the spiro ring bipyridinium salt.
 好ましい具体例としては、たとえば
Figure JPOXMLDOC01-appb-C000029
などがあげられる。
As a preferable specific example, for example,
Figure JPOXMLDOC01-appb-C000029
Etc.
 このN-アルキルピリジニウム塩は粘性が低く、また溶媒への溶解性の点で優れている。 This N-alkylpyridinium salt has low viscosity and is excellent in solubility in a solvent.
 N,N-ジアルキルピロリジニウム塩としては、たとえば、式(15):
Figure JPOXMLDOC01-appb-C000030
(式中、Rj1およびRj2は同じかまたは異なり、いずれも炭素数1~6のアルキル基;X-はアニオン)で示されるN,N-ジアルキルピロリジニウム塩が好ましくあげられる。また、このN,N-ジアルキルピロリジニウム塩の水素原子の一部または全部がフッ素原子および/または炭素数1~4の含フッ素アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
N, N-dialkylpyrrolidinium salts include, for example, formula (15):
Figure JPOXMLDOC01-appb-C000030
Preferred examples include N, N-dialkylpyrrolidinium salts represented by the formula (wherein R j1 and R j2 are the same or different and both are alkyl groups having 1 to 6 carbon atoms; X is an anion). Further, the oxidation resistance of the N, N-dialkylpyrrolidinium salt in which part or all of the hydrogen atoms are substituted with a fluorine atom and / or a fluorine-containing alkyl group having 1 to 4 carbon atoms is improved. It is preferable from the point.
 アニオンX-の好ましい具体例は、スピロ環ビピリジニウム塩と同じである。 Preferred examples of the anion X are the same as those of the spiro ring bipyridinium salt.
 好ましい具体例としては、たとえば、
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
などがあげられる。
As a preferable specific example, for example,
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Etc.
 このN,N-ジアルキルピロリジニウム塩は粘性が低く、また溶媒への溶解性の点で優れている。 This N, N-dialkylpyrrolidinium salt has low viscosity and is excellent in solubility in a solvent.
 これらのアンモニウム塩のうち、スピロ環ビピリジニウム塩およびイミダゾリウム塩が溶媒への溶解性、耐酸化性、イオン伝導性の点で好ましく、さらには、
Figure JPOXMLDOC01-appb-C000033
(式中、X-はBF4 -、PF6 -、(CF3SO22-または(C25SO22-であり、特にはBF4 -、PF6 -である)、
Figure JPOXMLDOC01-appb-C000034
(式中、X-はBF4 -、PF6 -、(CF3SO22-または(C25SO22-であり、特にはBF4-、PF6 -である)
が好ましい。
Of these ammonium salts, spiro-ring bipyridinium salts and imidazolium salts are preferred in terms of solubility in solvents, oxidation resistance, and ionic conductivity.
Figure JPOXMLDOC01-appb-C000033
(In the formula, X is BF 4 , PF 6 , (CF 3 SO 2 ) 2 N or (C 2 F 5 SO 2 ) 2 N , particularly BF 4 or PF 6 . ),
Figure JPOXMLDOC01-appb-C000034
(In the formula, X is BF 4 , PF 6 , (CF 3 SO 2 ) 2 N or (C 2 F 5 SO 2 ) 2 N , particularly BF 4 or PF 6 ).
Is preferred.
 また、電解質塩として、リチウム塩を併用してもよい。リチウム塩としては、たとえば、LiPF6、LiBF4、LiAsF6、LiSbF6、LiN(SO2252が好ましい。 Moreover, you may use together lithium salt as electrolyte salt. The lithium salt, for example, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiN (SO 2 C 2 H 5) 2 is preferred.
 さらに、静電容量を向上させるためにマグネシウム塩を用いてもよい。マグネシウム塩としては、たとえばMg(ClO42、Mg(OOC252などが好ましい。
Furthermore, a magnesium salt may be used to improve the capacitance. As the magnesium salt, for example, Mg (ClO 4 ) 2 , Mg (OOC 2 H 5 ) 2 and the like are preferable.
 電解質塩(IIB)の配合量は要求される電流密度、用途、電解質塩の種類などによって異なるが、非水系溶媒(IIA)に対し、0.1モル/リットル以上、2.5モル/リットル以下、さらには0.8モル/リットル以上、1.8モル/リットル以下、さらには1.0モル/リットル以上、1.6モル/リットル以下が好ましい。 The amount of electrolyte salt (IIB) blended varies depending on the required current density, application, type of electrolyte salt, etc., but 0.1 mol / liter or more and 2.5 mol / liter or less with respect to the non-aqueous solvent (IIA). Further, it is preferably 0.8 mol / liter or more and 1.8 mol / liter or less, more preferably 1.0 mol / liter or more and 1.6 mol / liter or less.
 本発明で用いる電解液は、電解質塩(IIB)を非水系溶媒(IIA)に溶解させることで調製される。 The electrolytic solution used in the present invention is prepared by dissolving an electrolyte salt (IIB) in a non-aqueous solvent (IIA).
 また、本発明において電解液は、本発明の電解液に使用する溶媒に溶解または膨潤する高分子材料と組み合わせてゲル状(可塑化された)のゲル電解液としてもよい。 In the present invention, the electrolytic solution may be a gel (plasticized) gel electrolytic solution in combination with a polymer material that dissolves or swells in the solvent used in the electrolytic solution of the present invention.
 かかる高分子材料としては、従来公知のポリエチレンオキシドやポリプロピレンオキシド、それらの変性体(特開平8-222270号公報、特開2002-100405号公報);ポリアクリレート系ポリマー、ポリアクリロニトリルや、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体などのフッ素樹脂(特表平4-506726号公報、特表平8-507407号公報、特開平10-294131号公報);それらフッ素樹脂と炭化水素系樹脂との複合体(特開平11-35765号公報、特開平11-86630号公報)などがあげられる。特には、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体をゲル電解質用高分子材料として用いることが望ましい。 Examples of such polymer materials include conventionally known polyethylene oxide and polypropylene oxide, modified products thereof (JP-A-8-222270 and JP-A-2002-1000040); polyacrylate polymers, polyacrylonitrile, and polyvinylidene fluoride. Fluorine resins such as vinylidene fluoride-hexafluoropropylene copolymer (JP-A-4-506726, JP-A-8-507407, JP-A-10-294131); Examples thereof include composites with resins (Japanese Patent Laid-Open Nos. 11-35765 and 11-86630). In particular, it is desirable to use polyvinylidene fluoride or a vinylidene fluoride-hexafluoropropylene copolymer as the polymer material for the gel electrolyte.
 そのほか、特願2004-301934号明細書に記載されているイオン伝導性化合物も使用できる。 In addition, ion conductive compounds described in Japanese Patent Application No. 2004-301934 can also be used.
 本発明で用いる電解液には必要に応じて、他の添加剤を配合してもよい。他の添加剤としては、たとえば金属酸化物、ガラスなどがあげられる。 The electrolyte used in the present invention may contain other additives as necessary. Examples of other additives include metal oxides and glass.
 こうした電解液は、難燃性、低温特性、電解質塩の溶解性および炭化水素系溶媒との相溶性を同時に向上させることができ、3.5V以上の耐電圧で安定した特性が得られるので、電気二重層キャパシタの電解液として優れている。耐電圧の上限は高ければ高い方が好ましく、使用する非水系電解液の種類や用途により適宜設定されるが、たとえば5V程度があげられる。 Such an electrolyte solution can simultaneously improve flame retardancy, low temperature characteristics, solubility of electrolyte salts and compatibility with hydrocarbon solvents, and stable characteristics can be obtained at a withstand voltage of 3.5 V or more. It is excellent as an electrolyte for electric double layer capacitors. The upper limit of the withstand voltage is preferably as high as possible, and is appropriately set depending on the type and application of the non-aqueous electrolyte to be used.
 本発明の電気二重層キャパシタ、たとえば巻回型電気二重層キャパシタにおいて、電極(I)は、通常、セパレータや集電体を介して巻回され、巻回素子を構成する。セパレータおよび集電体は従来公知のものがそのまま使用できる。電気二重層キャパシタは、上記の非水系電解液(II)および巻回素子をアルミニウム製などのケースに入れ、ゴム製の封口体で封止して密封することにより組み立てられる。 In the electric double layer capacitor of the present invention, for example, a wound type electric double layer capacitor, the electrode (I) is usually wound through a separator or a current collector to constitute a wound element. Conventional separators and current collectors can be used as they are. The electric double layer capacitor is assembled by placing the non-aqueous electrolyte (II) and the winding element in a case made of aluminum or the like, and sealing and sealing with a rubber sealing body.
 また、公知の方法により、ラミネート型電気二重層キャパシタやコイン型電気二重層キャパシタとすることもできる。 Also, a laminate type electric double layer capacitor or a coin type electric double layer capacitor can be obtained by a known method.
 つぎに本発明を実施例および比較例に基づいて説明するが、本発明はかかる例のみに限定されるものではない。 Next, the present invention will be described based on examples and comparative examples, but the present invention is not limited to such examples.
 なお、実施例で採用した測定方法、評価方法はつぎのとおりである。 The measurement method and evaluation method employed in the examples are as follows.
(1)電極用スラリーの安定性
 実施例および比較例で調製した電極用スラリーをポリエチレン容器に入れ、3時間静置したのちの状態を目視で観察する。評価はつぎの基準で行う。
○:沈殿が生じなかった。
×:沈殿が生じた。
(1) Stability of electrode slurry The electrode slurry prepared in Examples and Comparative Examples is placed in a polyethylene container and allowed to stand for 3 hours. Evaluation is based on the following criteria.
○: No precipitation occurred.
X: Precipitation occurred.
(2)塗膜屈曲試験
 JIS K5400に準じ、折曲試験機(安田精機製作所(株)製の塗膜屈曲試験機)を用いて、φ2の条件で測定する。評価はつぎの基準で行う。
○:目視上、まったく割れが確認されなかった。
×:目視上、ひび割れが確認された。
(2) Coating film bending test In accordance with JIS K5400, measurement is performed under the condition of φ2 using a bending tester (a coating film bending tester manufactured by Yasuda Seiki Seisakusho Co., Ltd.). Evaluation is based on the following criteria.
○: No cracks were observed visually.
X: The crack was confirmed visually.
(3)電極密度(単位:g/cm3
 外形寸法と質量を測定し、これらの値から嵩密度(g/cm3)を算出する。
(3) Electrode density (unit: g / cm 3 )
The external dimensions and mass are measured, and the bulk density (g / cm 3 ) is calculated from these values.
(4)電解液の耐電圧(単位:V)
 3電極式電圧測定セル(作用極、対極:白金(なお、対極と作用極の面積比を5:1とする)、参照極:Ag。宝泉(株)製のHSセル)に電解液を入れ、ポテンシオスタットで3mV/secで電位走引し、分解電流を測定する。分解電流の上昇がみられなくなった最大電位を電解液の耐電圧とする。
(4) Withstand voltage of electrolyte (unit: V)
Electrolytic solution was applied to a three-electrode voltage measuring cell (working electrode, counter electrode: platinum (where the area ratio of the counter electrode and working electrode is 5: 1), reference electrode: Ag, HS cell manufactured by Hosen Co., Ltd.) Then, the potential is pulled at 3 mV / sec with a potentiostat, and the decomposition current is measured. The maximum potential at which the decomposition current no longer increases is defined as the withstand voltage of the electrolyte.
(5)キャパシタの静電容量、内部抵抗および耐電圧
 ラミネートセルに、電子電源にて、定電流充電しながら印加電圧(2.5V)まで充電電圧を上昇させ、規定の印加電圧に到達後約5分間定電圧状態を維持し、充電電流が十分下降かつ飽和状態になったことを確認した後、定電流放電してセル電圧差(ΔV)および電流値(I)を計測する。
(5) Capacitance, internal resistance, and withstand voltage of the capacitor Increase the charging voltage to the applied voltage (2.5V) while charging the laminate cell with a constant current with an electronic power supply. After maintaining the constant voltage state for 5 minutes and confirming that the charging current is sufficiently lowered and saturated, constant current discharge is performed and the cell voltage difference (ΔV) and the current value (I) are measured.
 充電および放電における定電流値は10mA/Fを目安とし、35mAとする。セル電圧および電流の計測は、0.5秒サンプリングで行う。 ∙ The constant current value for charging and discharging is 10 mA / F, and 35 mA. The cell voltage and current are measured by 0.5 second sampling.
 セルに流れる電流値(I)は、セルに対して直列に1Ωの固定抵抗を接続し、この両端の電圧を計測することで算出する。この電流値はセルの内部抵抗を測定する際に使用する。 The current value (I) flowing through the cell is calculated by connecting a 1Ω fixed resistor in series to the cell and measuring the voltage across this end. This current value is used when measuring the internal resistance of the cell.
 得られた計測値を用いて、キャパシタの静電容量(単位:F)およびキャパシタの内部抵抗(単位:Ω)をつぎの要領で算出する。 Using the measured values obtained, the capacitance of the capacitor (unit: F) and the internal resistance (unit: Ω) of the capacitor are calculated as follows.
(キャパシタの静電容量)
 セル電圧の時間変化を記録した上で、各電圧で満充電させたセルを定電流放電する。セル電圧降下の直線部の電圧V1(V)からV2(V)に下がるまでの時間T1(秒)、T2(秒)を測定し、次式より静電容量を算出する。なおセルへ流れる電流値((5)で算出した電流値(I)を用いる(日本電子機械工業会規格EIAJ RC-2377参照)。
 静電容量=I×(T2-T1)/(V2-V1)
(Capacitance of the capacitor)
After recording the time change of the cell voltage, the cell fully charged with each voltage is discharged at a constant current. Times T1 (seconds) and T2 (seconds) from when the voltage V1 (V) at the straight line of the cell voltage drop is reduced to V2 (V) are measured, and the capacitance is calculated from the following equation. Note that the value of the current flowing to the cell (the current value (I) calculated in (5) is used (see Japan Electronic Machinery Manufacturers Association Standard EIAJ RC-2377).
Capacitance = I × (T2-T1) / (V2-V1)
(キャパシタの内部抵抗)
 記録計上において、放電開始前のセル電圧、および、放電直後のセル電圧(セル電圧降下の直線部を延長して補助線を引き、その補助線と放電開始時の時間軸との交点)との電圧差(ΔV)とセルへ流れる電流値(I)を用いて、次式によって内部抵抗Rを算出する(日本電子機械工業会規格EIAJ RC-2377参照)。
 R=ΔV/I
(Internal resistance of capacitor)
In the record, the cell voltage before the start of discharge and the cell voltage immediately after the discharge (the intersection of the auxiliary line and the time axis at the start of discharge) Using the voltage difference (ΔV) and the current value (I) flowing to the cell, the internal resistance R is calculated by the following equation (see Japan Electronic Machinery Manufacturers Association Standard EIAJ RC-2377).
R = ΔV / I
(キャパシタの耐電圧)
 2.5Vに加えて、さらに規定の8種類の印加電圧(3.0V、3.3V、3.5V、3.7V、3.9V、4.1V、4.3V)で同様にセルの各内部抵抗値を算出する。セルの内部抵抗値は、セルの劣化がなければ、印加電圧に関わらず一定であるから、印加電圧の上昇に伴い、セルの内部抵抗値の上昇がみられなくなった最大の印加電圧値をキャパシタの耐電圧とする。
(Capacitor withstand voltage)
In addition to 2.5V, each of the cells in the same manner with 8 types of specified applied voltages (3.0V, 3.3V, 3.5V, 3.7V, 3.9V, 4.1V, 4.3V) Calculate the internal resistance value. Since the internal resistance value of the cell is constant regardless of the applied voltage unless the cell deteriorates, the maximum applied voltage value at which no increase in the internal resistance value of the cell is observed with the increase in the applied voltage is Of withstand voltage.
実施例1
(電極の作製)
 活性炭粒子(比表面積2100m2/g。平均粒径11μm。新日本石油(株)製CEP21。活性炭1)100質量部と導電材としてケッチェンブラック(ライオン(株)製のEC600JD)2質量部およびアセチレンブラック(電気化学工業(株)製のデンカブラック)3質量部とを攪拌機により乾式混合した。それを混練機に移し、ポリアクリル酸(東亞合成(株)製のアロンA-10H)2質量部と水50質量部を加えた。
Example 1
(Production of electrodes)
Activated carbon particles (specific surface area 2100 m 2 / g. Average particle size 11 μm. CEP21 manufactured by Nippon Oil Corporation. Activated carbon 1) and 100 parts by mass of ketjen black (EC600JD manufactured by Lion Corporation) as a conductive material, 3 parts by mass of acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) was dry mixed with a stirrer. It was transferred to a kneader and 2 parts by mass of polyacrylic acid (Aron A-10H manufactured by Toagosei Co., Ltd.) and 50 parts by mass of water were added.
 ついで、結合材として粒子状もしくは粒子状熱可塑性エラストマーバインダー(日本ゼオン(株)製のAZ9001。結合材1)4質量部と水80質量部を加え、所定時間、混練した。 Then, 4 parts by mass of particulate or particulate thermoplastic elastomer binder (AZ9001 manufactured by Nippon Zeon Co., Ltd., binder 1) and 80 parts by mass of water were added as a binder, and kneaded for a predetermined time.
 その後、攪拌機に移し、水130質量部を加えて、所定時間、湿式混合した後、ホモジナイザーに移し、水30質量部を加え、所定時間、破砕処理した。最後に、スラリーをろ過した後に、水60質量部を加えることで、電極用のスラリーを調製した。得られた電極用スラリーについて安定性を調べたところ、沈殿は生じなかった(評価:○)。 Thereafter, the mixture was transferred to a stirrer, 130 parts by mass of water was added and wet-mixed for a predetermined time, then transferred to a homogenizer, 30 parts by mass of water was added, and the mixture was crushed for a predetermined time. Finally, after the slurry was filtered, 60 parts by mass of water was added to prepare a slurry for the electrode. When the stability of the obtained electrode slurry was examined, no precipitation occurred (evaluation: ◯).
 なお、塗布直前に粘度調整として、スラリー100重量部に対して、水15質量部を加えた。 In addition, 15 mass parts of water was added with respect to 100 weight part of slurry as viscosity adjustment just before application | coating.
 ついで、あらかじめ20μmの膜厚で導電性ペースト(日本黒鉛(株)製のT602)を塗布したエッチドアルミニウム製集電体(厚さ20μm)上にこのスラリーを塗布し、110℃で乾燥させた後に、プレス処理を施し、活性炭層の厚さ80μmのロール電極を作製した(電極密度0.40g/cm3)。 Next, this slurry was applied onto an etched aluminum current collector (thickness 20 μm) previously coated with a conductive paste (T602 manufactured by Nippon Graphite Co., Ltd.) with a film thickness of 20 μm, and dried at 110 ° C. Later, press treatment was performed to produce a roll electrode having an activated carbon layer thickness of 80 μm (electrode density 0.40 g / cm 3 ).
 この電極を耐屈曲試験に供して、機械的耐久性を調べたところ、電極に割れは生じなかった(評価:○)。 When this electrode was subjected to a bending resistance test and examined for mechanical durability, the electrode was not cracked (evaluation: ◯).
(電解液の調製)
 電解液は電解質塩としてスピロビピロリジニウムテトラフォスフェート(日本カーリット(株)製)を用い、電解液溶媒としてCF3-エチレンカーボネート(CF3-EC)と含フッ素エーテル(HCF2CF2CH2OCF2CF2H。含フッ素エーテル1)を1:1で混合させたものを用い、電解質塩濃度が1モル/リットルのフッ素系電解液を調製した。このフッ素系電解液の耐電圧を測定したところ5.0Vであった。
(Preparation of electrolyte)
Electrolyte using spirobipyrrolidinium tetra phosphate as an electrolyte salt (manufactured by Hoechst (Ltd.)), CF 3 as an electrolyte solvent - ethylene carbonate (CF 3 -EC) and fluorine-containing ether (HCF 2 CF 2 CH 2 OCF 2 CF 2 H. A fluorine-based electrolytic solution having an electrolyte salt concentration of 1 mol / liter was prepared by mixing 1: 1 fluorine-containing ether 1). It was 5.0V when the withstand voltage of this fluorine-type electrolyte solution was measured.
(ラミネートセル電気二重層キャパシタの作製)
 上記電極を所定の大きさ(20×72mm)に切断して、集電体のアルミ面に電極引出しリードを溶接で接着した後ラミネート容器(品番:D-EL40H、製造元:大日本印刷(株))に収納し、セパレータを挟んだ。ついでドライチャンバー中で電解液を注入含浸させ、その後封止して本発明の電気二重層キャパシタ(ラミネート型)を作製した。セパレータとしては、セルガードNo.2400(セルガード社製のポリエチレン製多孔膜。膜厚:25μm、密度:0.56g/cm3、最大孔径:0.125×0.05μm)を用いた。
(Production of laminated cell electric double layer capacitor)
The electrode is cut to a predetermined size (20 × 72 mm), and an electrode lead is bonded to the aluminum surface of the current collector by welding, and then a laminate container (product number: D-EL40H, manufacturer: Dai Nippon Printing Co., Ltd.) ) And sandwiched the separator. Subsequently, the electrolytic solution was injected and impregnated in a dry chamber, and then sealed to prepare an electric double layer capacitor (laminated type) of the present invention. As the separator, Celgard No. 2400 (a polyethylene porous film manufactured by Celgard Co., Ltd., film thickness: 25 μm, density: 0.56 g / cm 3 , maximum pore diameter: 0.125 × 0.05 μm) was used.
 このラミネート型電気二重層キャパシタについて耐電圧(V)、2.5Vにおける静電容量(F)、および各電圧における内部抵抗(Ω)を測定した。結果を表1に示す。 With respect to this laminated electric double layer capacitor, the withstand voltage (V), the electrostatic capacity (F) at 2.5 V, and the internal resistance (Ω) at each voltage were measured. The results are shown in Table 1.
実施例2
 実施例1と同じ電極用のスラリーを調製し、塗布直前に粘度調整として、スラリー100重量部に対して、水17.5質量部を加えた(別途評価したこのスラリーの安定性は○であった)。このスラリーを用いて直ちに実施例1と同様にして厚さ80μmの電極を作製した。この電極の電極密度は0.38g/cm3であった。この電極を耐屈曲試験に供して、機械的耐久性を調べたところ、電極に割れは生じなかった(評価:○)。
Example 2
A slurry for the same electrode as in Example 1 was prepared, and 17.5 parts by mass of water was added to 100 parts by weight of the slurry as a viscosity adjustment immediately before application (the stability of this slurry evaluated separately was ○). ) Using this slurry, an electrode having a thickness of 80 μm was immediately prepared in the same manner as in Example 1. The electrode density of this electrode was 0.38 g / cm 3 . When this electrode was subjected to a bending resistance test and examined for mechanical durability, the electrode was not cracked (evaluation: ◯).
 この電極を用いたほかは実施例1と同様にして調製したフッ素系電解液を使用してラミネート型電気二重層キャパシタを作製し、耐電圧(V)、2.5Vにおける静電容量(F)、および各電圧における内部抵抗(Ω)を測定した。結果を表1に示す。 A laminate type electric double layer capacitor was produced using a fluorine-based electrolyte prepared in the same manner as in Example 1 except that this electrode was used, and withstand voltage (V), capacitance at 2.5 V (F) , And the internal resistance (Ω) at each voltage was measured. The results are shown in Table 1.
実施例3
 実施例1と同じ電極用のスラリーを調製し、塗布直前に粘度調整として、スラリー100重量部に対して、水20質量部を加えた(別途評価したこのスラリーの安定性は○であった)。このスラリーを用いて直ちに実施例1と同様にして厚さ80μmの電極を作製した。この電極の電極密度は0.36g/cm3であった。この電極を耐屈曲試験に供して、機械的耐久性を調べたところ、電極に割れは生じなかった(評価:○)。
Example 3
A slurry for the same electrode as in Example 1 was prepared, and 20 parts by mass of water was added to 100 parts by weight of the slurry as a viscosity adjustment immediately before application (the stability of this slurry evaluated separately was good). . Using this slurry, an electrode having a thickness of 80 μm was immediately prepared in the same manner as in Example 1. The electrode density of this electrode was 0.36 g / cm 3 . When this electrode was subjected to a bending resistance test and examined for mechanical durability, the electrode was not cracked (evaluation: ◯).
 この電極を用いたほかは実施例1と同様にして調製したフッ素系電解液を使用してラミネート型電気二重層キャパシタを作製し、耐電圧(V)、2.5Vにおける静電容量(F)、および各電圧における内部抵抗(Ω)を測定した。結果を表1に示す。 A laminate type electric double layer capacitor was produced using a fluorine-based electrolyte prepared in the same manner as in Example 1 except that this electrode was used, and withstand voltage (V), capacitance at 2.5 V (F) , And the internal resistance (Ω) at each voltage was measured. The results are shown in Table 1.
実施例4
 実施例1と同じ電極用のスラリーを調製し、塗布直前に粘度調整として、スラリー100重量部に対して、水11.3質量部を加えた(別途評価したこのスラリーの安定性は○であった)。このスラリーを用いて直ちに実施例1と同様にして厚さ80μmの電極を作製した。この電極の電極密度は0.43g/cm3であった。この電極を耐屈曲試験に供して、機械的耐久性を調べたところ、電極に割れは生じなかった(評価:○)。
Example 4
A slurry for the electrode as in Example 1 was prepared, and as a viscosity adjustment just before coating, 11.3 parts by mass of water was added to 100 parts by weight of the slurry (the stability of this slurry evaluated separately was ○). ) Using this slurry, an electrode having a thickness of 80 μm was immediately prepared in the same manner as in Example 1. The electrode density of this electrode was 0.43 g / cm 3 . When this electrode was subjected to a bending resistance test and examined for mechanical durability, the electrode was not cracked (evaluation: ◯).
 この電極を用いたほかは実施例1と同様にして調製したフッ素系電解液を使用してラミネート型電気二重層キャパシタを作製し、耐電圧(V)、2.5Vにおける静電容量(F)、および各電圧における内部抵抗(Ω)を測定した。結果を表1に示す。 A laminate type electric double layer capacitor was produced using a fluorine-based electrolyte prepared in the same manner as in Example 1 except that this electrode was used, and withstand voltage (V), capacitance at 2.5 V (F) , And the internal resistance (Ω) at each voltage was measured. The results are shown in Table 1.
比較例1
 実施例1と同じ電極用のスラリーを調製し、さらに固形分濃度を30質量%にした(このスラリーの安定性は○であった)。このスラリーを用いて厚さ80μmの比較用の電極を作製した。この電極の電極密度は0.53g/cm3であった。この比較用の電極を耐屈曲試験に供して、機械的耐久性を調べたところ、電極に割れは生じなかった(評価:○)。
Comparative Example 1
The same slurry for electrodes as in Example 1 was prepared, and the solid content concentration was further set to 30% by mass (the stability of this slurry was good). A comparative electrode having a thickness of 80 μm was produced using this slurry. The electrode density of this electrode was 0.53 g / cm 3 . When this comparative electrode was subjected to a bending resistance test and examined for mechanical durability, the electrode was not cracked (evaluation: ◯).
 この比較用の電極を用いたほかは実施例1と同様にして調製したフッ素系電解液を使用してラミネート型電気二重層キャパシタを作製し、耐電圧(V)、2.5Vにおける静電容量(F)、および各電圧における内部抵抗(Ω)を測定した。結果を表1に示す。 A laminate type electric double layer capacitor was produced using a fluorine-based electrolytic solution prepared in the same manner as in Example 1 except that this comparative electrode was used, and withstand voltage (V), capacitance at 2.5V. (F) and internal resistance (Ω) at each voltage were measured. The results are shown in Table 1.
比較例2
 実施例1と同じ電極用のスラリーを調製し、塗布直前に粘度調整として、スラリー100重量部に対して、水7.5質量部を加えた(別途評価したこのスラリーの安定性は○であった)。このスラリーを用いて直ちに実施例1と同様にして厚さ80μmの電極を作製した。この電極の電極密度は0.46g/cm3であった。この電極を耐屈曲試験に供して、機械的耐久性を調べたところ、電極に割れは生じなかった(評価:○)。
Comparative Example 2
A slurry for the electrode as in Example 1 was prepared, and 7.5 parts by mass of water was added to 100 parts by weight of the slurry as a viscosity adjustment immediately before application (the stability of this slurry evaluated separately was ○). ) Using this slurry, an electrode having a thickness of 80 μm was immediately prepared in the same manner as in Example 1. The electrode density of this electrode was 0.46 g / cm 3 . When this electrode was subjected to a bending resistance test and examined for mechanical durability, the electrode was not cracked (evaluation: ◯).
 この比較用の電極を用いたほかは実施例1と同様にして調製したフッ素系電解液を使用してラミネート型電気二重層キャパシタを作製し、耐電圧(V)、2.5Vにおける静電容量(F)、および各電圧における内部抵抗(Ω)を測定した。結果を表1に示す。 A laminate type electric double layer capacitor was produced using a fluorine-based electrolytic solution prepared in the same manner as in Example 1 except that this comparative electrode was used, and withstand voltage (V), capacitance at 2.5V. (F) and internal resistance (Ω) at each voltage were measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 表1の結果から、電極密度が0.45g/cm3以下であるとき、高い静電容量と低い内部抵抗を維持しながら、しかも電解液の耐電圧を活かして、さらに電気二重層キャパシタの耐電圧が向上していることが分かる。 From the results shown in Table 1, when the electrode density is 0.45 g / cm 3 or less, while maintaining high electrostatic capacity and low internal resistance, and further utilizing the withstand voltage of the electrolyte, the electric double layer capacitor can further withstand the resistance. It can be seen that the voltage is improved.
実施例5
 結合材としてPTFEバインダー(ダイキン工業(株)製のD210C。結合材2)10質量部と水80質量部を加え、所定時間、混練したものを用いたほかは実施例1と同様にして電極用のスラリーを調製し、このスラリーを用いて直ちに実施例1と同様にして厚さ80μmの電極を作製した。この電極の電極密度は0.40g/cm3であった。この電極を耐屈曲試験に供して、機械的耐久性を調べたところ、電極に割れは生じなかった(評価:○)。
Example 5
PTFE binder (D210C manufactured by Daikin Industries, Ltd .; binder 2) 10 parts by weight and 80 parts by weight of water were added as a binder, and the mixture was used for a predetermined time. An electrode having a thickness of 80 μm was immediately prepared in the same manner as in Example 1 using this slurry. The electrode density of this electrode was 0.40 g / cm 3 . When this electrode was subjected to a bending resistance test and examined for mechanical durability, the electrode was not cracked (evaluation: ◯).
 この電極を用いたほかは実施例1と同様にして調製したフッ素系電解液を使用してラミネート型電気二重層キャパシタを作製し、耐電圧(V)、2.5Vにおける静電容量(F)を測定した。結果を表2に示す。 A laminate type electric double layer capacitor was produced using a fluorine-based electrolyte prepared in the same manner as in Example 1 except that this electrode was used, and withstand voltage (V), capacitance at 2.5 V (F) Was measured. The results are shown in Table 2.
実施例6
 活性炭としてYP50F(クラレケミカル(株)製の難黒鉛化炭素。活性炭2)を用いたほかは実施例1と同様にして電極用のスラリーを調製し、このスラリーを用いて直ちに実施例1と同様にして厚さ80μmの電極を作製した。この電極の電極密度は0.40g/cm3であった。この電極を耐屈曲試験に供して、機械的耐久性を調べたところ、電極に割れは生じなかった(評価:○)。
Example 6
A slurry for the electrode was prepared in the same manner as in Example 1 except that YP50F (non-graphitizable carbon manufactured by Kuraray Chemical Co., Ltd., activated carbon 2) was used as the activated carbon, and this slurry was immediately used as in Example 1. Thus, an electrode having a thickness of 80 μm was produced. The electrode density of this electrode was 0.40 g / cm 3 . When this electrode was subjected to a bending resistance test and examined for mechanical durability, the electrode was not cracked (evaluation: ◯).
 電解液は電解質塩としてトリエチルメチルアンモニウムBF4を用い、電解液溶媒としてPC(プロピレンカーボネート)と含フッ素エーテル(HCF2CF2CH2OCF2CF2H)を1:1で混合させたものを用い、電解質塩濃度が1モル/リットルであるフッ素系電解液を用いた。このフッ素系電解液の耐電圧を測定したところ5.0Vであった。 The electrolyte used was triethylmethylammonium BF 4 as the electrolyte salt, and a 1: 1 mixture of PC (propylene carbonate) and fluorine-containing ether (HCF 2 CF 2 CH 2 OCF 2 CF 2 H) as the electrolyte solvent. A fluorine-based electrolytic solution having an electrolyte salt concentration of 1 mol / liter was used. It was 5.0V when the withstand voltage of this fluorine-type electrolyte solution was measured.
 この電極と電解液を用いたほかは実施例1と同様にして調製したフッ素系電解液を使用してラミネート型電気二重層キャパシタを作製し、耐電圧(V)、2.5Vにおける静電容量(F)を測定した。結果を表2に示す。 A laminate type electric double layer capacitor was produced using a fluorine-based electrolyte prepared in the same manner as in Example 1 except that this electrode and the electrolyte were used, and withstand voltage (V), capacitance at 2.5V. (F) was measured. The results are shown in Table 2.
比較例3
 電極として比較例1の電極を用いたほかは実施例6と同様にしてラミネート型電気二重層キャパシタを作製し、耐電圧(V)、2.5Vにおける静電容量(F)を測定した。結果を表2に示す。
Comparative Example 3
A laminated electric double layer capacitor was produced in the same manner as in Example 6 except that the electrode of Comparative Example 1 was used as the electrode, and the withstand voltage (V) and the electrostatic capacity (F) at 2.5 V were measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000036
 表2から、密度が0.45を超えるとキャパシタの耐電圧が低下することが分かる。
Figure JPOXMLDOC01-appb-T000036
From Table 2, it can be seen that the withstand voltage of the capacitor decreases when the density exceeds 0.45.
実施例7
 実施例1と同じ電極を用い、電解液は電解質塩としてスピロビピロリジニウムテトラフォスフェート(SBP-BF6)(日本カーリット(株)製)を用い、電解液溶媒としてCF3-エチレンカーボネートと含フッ素エーテル(HCF2CF2CH2OCF2CFHCF3。含フッ素エーテル2)を1:1で混合させたものを用い、電解質塩濃度が1モル/リットルであるフッ素系電解液を用いた。このフッ素系電解液の耐電圧を測定したところ5.0Vであった。
Example 7
Using the same electrode as in Example 1, the electrolyte used was spirobipyrrolidinium tetraphosphate (SBP-BF 6 ) (manufactured by Nippon Carlit Co., Ltd.) as the electrolyte salt, and CF 3 -ethylene carbonate as the electrolyte solvent. A mixture of fluorine-containing ether (HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 .Fluorine-containing ether 2) in a ratio of 1: 1 was used, and a fluorine-based electrolytic solution having an electrolyte salt concentration of 1 mol / liter was used. It was 5.0V when the withstand voltage of this fluorine-type electrolyte solution was measured.
 この電極と電解液を用いたほかは実施例1と同様にしてラミネート型電気二重層キャパシタを作製し、耐電圧(V)、2.5Vにおける静電容量(F)を測定した。結果を表3に示す。 A laminate type electric double layer capacitor was produced in the same manner as in Example 1 except that this electrode and the electrolytic solution were used, and the withstand voltage (V) and the electrostatic capacity (F) at 2.5 V were measured. The results are shown in Table 3.
実施例8
 実施例1と同じ電極を用い、電解液は電解質塩としてトリエチルメチルアンモニウムBF4を用い、電解液溶媒としてPC(プロピレンカーボネート)と含フッ素エーテル(HCF2CF2CH2OCF2CF2H)を1:1で混合させたものを用い、電解質塩濃度が1モル/リットルであるフッ素系電解液を用いた。このフッ素系電解液の耐電圧を測定したところ5.0Vであった。
Example 8
Using the same electrode as in Example 1, the electrolyte used was triethylmethylammonium BF 4 as the electrolyte salt, and PC (propylene carbonate) and fluorine-containing ether (HCF 2 CF 2 CH 2 OCF 2 CF 2 H) were used as the electrolyte solvent. A mixture of 1: 1 was used, and a fluorine-based electrolytic solution having an electrolyte salt concentration of 1 mol / liter was used. It was 5.0V when the withstand voltage of this fluorine-type electrolyte solution was measured.
 この電極と電解液を用いたほかは実施例1と同様にしてラミネート型電気二重層キャパシタを作製し、耐電圧(V)、2.5Vにおける静電容量(F)を測定した。結果を表3に示す。 A laminate type electric double layer capacitor was produced in the same manner as in Example 1 except that this electrode and the electrolytic solution were used, and the withstand voltage (V) and the electrostatic capacity (F) at 2.5 V were measured. The results are shown in Table 3.
比較例4
 比較例1と同じ電極を用い、電解液は実施例8と同じフッ素系電解液を用いたほかは実施例1と同様にしてラミネート型電気二重層キャパシタを作製し、耐電圧(V)、2.5Vにおける静電容量(F)を測定した。結果を表3に示す。
Comparative Example 4
A laminated electric double layer capacitor was produced in the same manner as in Example 1 except that the same electrode as in Comparative Example 1 was used and the same fluorine-based electrolytic solution as in Example 8 was used as the electrolytic solution. The capacitance (F) at 0.5 V was measured. The results are shown in Table 3.
実施例9
 実施例1と同じ電極を用い、電解液は電解質塩としてテトラエチルアンモニウムBF4を用い、電解液溶媒としてPC(プロピレンカーボネート)と含フッ素カーボネート(CF3CH2OCOOCH2CF3)を1:1で混合させたものを用い、電解質塩濃度が1モル/リットルであるフッ素系電解液を用いた。このフッ素系電解液の耐電圧を測定したところ5.0Vであった。
Example 9
Using the same electrode as in Example 1, the electrolyte used was tetraethylammonium BF 4 as the electrolyte salt, and PC (propylene carbonate) and fluorine-containing carbonate (CF 3 CH 2 OCOOCH 2 CF 3 ) were used as the electrolyte solvent at a ratio of 1: 1. A mixed electrolyte was used, and a fluorine electrolyte solution having an electrolyte salt concentration of 1 mol / liter was used. It was 5.0V when the withstand voltage of this fluorine-type electrolyte solution was measured.
 この電極と電解液を用いたほかは実施例1と同様にしてラミネート型電気二重層キャパシタを作製し、耐電圧(V)、2.5Vにおける静電容量(F)を測定した。結果を表3に示す。 A laminate type electric double layer capacitor was produced in the same manner as in Example 1 except that this electrode and the electrolytic solution were used, and the withstand voltage (V) and the electrostatic capacity (F) at 2.5 V were measured. The results are shown in Table 3.
比較例5
 比較例1と同じ電極を用い、電解液は実施例9と同じフッ素系電解液を用いたほかは実施例1と同様にしてラミネート型電気二重層キャパシタを作製し、耐電圧(V)、2.5Vにおける静電容量(F)を測定した。結果を表3に示す。
Comparative Example 5
A laminated electric double layer capacitor was produced in the same manner as in Example 1 except that the same electrode as in Comparative Example 1 was used and the same fluorine-based electrolytic solution as in Example 9 was used as the electrolytic solution. The capacitance (F) at 0.5 V was measured. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
表3から、密度が0.45を超えるとキャパシタの耐電圧が低下することが分かる。 From Table 3, it can be seen that the withstand voltage of the capacitor decreases when the density exceeds 0.45.

Claims (2)

  1. 活性炭および結合材を含む電極と非水系電解液とを備える電気二重層キャパシタであって、
    (I)電極の電極密度が0.45g/cm3以下であり、
    (II)非水系電解液が耐電圧2.5V以上の非水系電解液である
    ことを特徴とする電気二重層キャパシタ。
    An electric double layer capacitor comprising an electrode containing activated carbon and a binder and a non-aqueous electrolyte,
    (I) The electrode density of the electrode is 0.45 g / cm 3 or less,
    (II) An electric double layer capacitor, wherein the non-aqueous electrolyte is a non-aqueous electrolyte having a withstand voltage of 2.5 V or more.
  2. 非水系電解液がフッ素系電解液である請求項1記載の電気二重層キャパシタ。 The electric double layer capacitor according to claim 1, wherein the non-aqueous electrolyte is a fluorine-based electrolyte.
PCT/JP2009/070463 2008-12-08 2009-12-07 Electrical double layer capacitor WO2010067772A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010542098A JPWO2010067772A1 (en) 2008-12-08 2009-12-07 Electric double layer capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008312475 2008-12-08
JP2008-312475 2008-12-08

Publications (1)

Publication Number Publication Date
WO2010067772A1 true WO2010067772A1 (en) 2010-06-17

Family

ID=42242759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070463 WO2010067772A1 (en) 2008-12-08 2009-12-07 Electrical double layer capacitor

Country Status (2)

Country Link
JP (1) JPWO2010067772A1 (en)
WO (1) WO2010067772A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002104817A (en) * 2000-07-25 2002-04-10 Kuraray Co Ltd Activated carbon, its manufacturing method, polarizable electrode and capacitor with electrical double layer
JP2003282369A (en) * 2002-03-20 2003-10-03 Osaka Gas Co Ltd Carbon material for electric double-layer capacitor and its manufacturing method
WO2008084846A1 (en) * 2007-01-12 2008-07-17 Daikin Industries, Ltd. Electric double layer capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002104817A (en) * 2000-07-25 2002-04-10 Kuraray Co Ltd Activated carbon, its manufacturing method, polarizable electrode and capacitor with electrical double layer
JP2003282369A (en) * 2002-03-20 2003-10-03 Osaka Gas Co Ltd Carbon material for electric double-layer capacitor and its manufacturing method
WO2008084846A1 (en) * 2007-01-12 2008-07-17 Daikin Industries, Ltd. Electric double layer capacitor

Also Published As

Publication number Publication date
JPWO2010067772A1 (en) 2012-05-17

Similar Documents

Publication Publication Date Title
KR101053337B1 (en) Electric double layer capacitor
JP5041090B2 (en) Electrode binder composition
JP5637858B2 (en) Electric double layer capacitor
JP5392355B2 (en) Electric double layer capacitor
US20130058008A1 (en) Electrode active material composition and electrochemical capacitor including the same
JP5318175B2 (en) Electrolyte for electric double layer capacitor
JP5983751B2 (en) Electrolytic solution and electrochemical device
JP2016521006A (en) Electrochemical supercapacitor device produced from an electrolyte solution comprising at least one salt produced from an alkali element other than lithium as the conductive salt
US20120107689A1 (en) Binder composition for electrode
JP6308217B2 (en) Electrolytic solution and electrochemical device
JP6187688B2 (en) Electrolytic solution and electrochemical device
JP5343977B2 (en) Electric double layer capacitor
JP4858107B2 (en) Electrolyte
JP2008166342A (en) Lithium ion capacitor
WO2010067772A1 (en) Electrical double layer capacitor
JP2008091823A (en) Electrolyte for electric double layer capacitor and electric double layer capacitor
JPWO2015087963A1 (en) Electrolytic solution and electrochemical device
JP6314409B2 (en) Electrolytic solution and electrochemical device
WO2011070924A1 (en) Electric double layer capacitor
JP2008091821A (en) Electrolyte for electric double layer capacitor and electric double layer capacitor
JP2013026519A (en) Electrolyte for electric double layer capacitor, electric double layer capacitor and module
JP2008091822A (en) Electrolyte for electric double layer capacitor and electric double layer capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831876

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010542098

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831876

Country of ref document: EP

Kind code of ref document: A1