WO2010067417A1 - 車両の電源システム - Google Patents

車両の電源システム Download PDF

Info

Publication number
WO2010067417A1
WO2010067417A1 PCT/JP2008/072313 JP2008072313W WO2010067417A1 WO 2010067417 A1 WO2010067417 A1 WO 2010067417A1 JP 2008072313 W JP2008072313 W JP 2008072313W WO 2010067417 A1 WO2010067417 A1 WO 2010067417A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
charging
charger
storage device
power storage
Prior art date
Application number
PCT/JP2008/072313
Other languages
English (en)
French (fr)
Inventor
光谷 典丈
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2008/072313 priority Critical patent/WO2010067417A1/ja
Priority to CN200880132275.3A priority patent/CN102246386B/zh
Priority to US13/000,772 priority patent/US8648565B2/en
Priority to JP2010541910A priority patent/JP5333457B2/ja
Publication of WO2010067417A1 publication Critical patent/WO2010067417A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0038Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a vehicle power supply system, and more particularly to a vehicle charging system equipped with a power storage device configured to be rechargeable from an external power supply.
  • a battery such as an electric vehicle is charged by a charger, but has not only a load side that receives power from the charger but also a power side that supplies power to various electric loads. is there. Even when the battery temperature is out of the specified range, a cooling device such as a fan that cools the battery and other battery protection circuits operate. It was made as.
  • Patent Document 1 describes a charging control device for an electric vehicle, and when charging is temporarily interrupted depending on a battery state, the driving state of auxiliary equipment such as a cooling fan, an air conditioner, and a light is changed. Based on this, a charging control device is disclosed that supplies as much power as is consumed by an auxiliary device by a charger and suppresses battery power consumption.
  • Patent Document 1 describes a charging control device for an electric vehicle, and when charging is temporarily interrupted depending on a battery state, the driving state of auxiliary equipment such as a cooling fan, an air conditioner, and a light is changed. Based on this, a charging control device is disclosed that supplies as much power as is consumed by an auxiliary device by a charger and suppresses battery power consumption.
  • the charging control device for an electric vehicle disclosed in the above-mentioned Japanese Patent No. 3247230 can be charged for a long time when the charging power cannot be accurately set to 0 due to an error of the battery current sensor or the like.
  • the battery may be overcharged and the battery life may be shortened.
  • a failure may occur in the charger, and depending on the failure state of the charger, it may be necessary to stop charging and protect the battery.
  • An object of the present invention is to provide a vehicle charging system capable of charging an in-vehicle power storage device from an external power source with reduced possibility of battery overcharging.
  • the present invention is a charging system for a vehicle that charges an on-vehicle power storage device, and a battery charger configured to be supplied with electric power from a power source outside the vehicle in order to charge the power storage device, and the power storage device And a charge control device that controls the charger by generating a power command value for the charger based on the target value.
  • the charge control device detects a difference between the charging power detected by the charging power detection unit and the target value, and determines whether or not an abnormality has occurred in the charger based on the detected difference.
  • the vehicle includes an auxiliary device that can be driven by part of the electric power output from the charger.
  • the vehicle charging system further includes a charger output power detection unit that detects power output from the charger. Based on the power output from the charger and the charging power, the charging control device determines whether or not the auxiliary machine power consumption consumed by the auxiliary machine is excessive in order to ensure appropriate charging power. When it is determined that the auxiliary machine power consumption is excessive, when the state of charge of the power storage device becomes smaller than the threshold, or when the auxiliary machine power consumption is excessive for a predetermined time, The system forcibly terminates the vehicle including stopping the operation of the auxiliary equipment.
  • the charging control device determines that the auxiliary device power consumption is excessive, the charging of the power storage device from the outside by the charger is interrupted, and after the interruption, the auxiliary device power consumption is reduced and appropriate charging power is reduced. When the battery can be secured, charging of the power storage device is resumed.
  • the appropriate charging power is larger than the lower limit value at which the charging state of the power storage device can be appropriately estimated based on the output of the charging power detection unit.
  • the power storage device includes a first power storage device connected to the power supply path to the auxiliary machine, and a second power storage device connected to the output of the charger.
  • a vehicle charging system includes a first voltage converter that performs voltage conversion between a voltage of a first power storage device and a supply voltage to an electric load, and a voltage between a voltage of the second power storage device and a supply voltage. And a second voltage converter for performing the conversion.
  • the charge control device controls the first and second voltage converters to select a charge target to be supplied with charge power from the charger from the first and second power storage devices.
  • the charging control device interrupts the charging of the charging target from the outside by the charger when determining that the auxiliary machine power consumption is excessive, and compensates after the interruption.
  • the charging control device determines that the auxiliary machine power consumption is excessive, when the charging state of the charging target is smaller than a threshold value, or When the time when the auxiliary machine power consumption is excessive exceeds a predetermined time, the system forcibly terminating the vehicle including stopping the operation of the auxiliary machine is executed.
  • the vehicle includes a vehicle driving motor that operates by receiving electric power from the power storage device, and an internal combustion engine that is used together with the motor for driving the vehicle.
  • the present invention when charging is performed from an external power source, the possibility of overcharging the power storage device is reduced, and the possibility of adversely affecting the life of the power storage device is reduced.
  • FIG. 1 is an overall block diagram of a hybrid vehicle shown as an example of an electric vehicle according to the present invention.
  • FIG. 2 is a schematic configuration diagram of converters 12-1 and 12-2 shown in FIG. It is a schematic block diagram of the charger 42 shown in FIG. It is the figure which showed the change of the limiting value of the charging power determined by the microcomputer 88 of FIG. It is a functional block diagram of charge ECU46 shown in FIG. It is a flowchart of the abnormality determination of a charger at the time of the external charge performed by charge ECU46 of FIG. 1, and charge stop control. It is a figure for demonstrating judgment of step S2 of FIG. It is a figure for demonstrating the judgment in FIG.6 S3.
  • step S4 of FIG. It is a figure for demonstrating the process of step S4 of FIG. It is a figure for demonstrating the judgment performed by step S5, S6 of FIG. It is a figure for demonstrating judgment by step S8 of FIG. It is a figure for demonstrating auxiliary machine consumption "large” determination in case a slave battery is charged. It is the flowchart which showed the detail of auxiliary machine consumption "large” determination performed by step S9 of FIG. It is a figure for demonstrating the interruption and resumption of charge at the time of master battery charge.
  • 10-1 to 10-3 Power storage device, 11-1 to 11-3 System main relay, 12-1 to 12-2 Voltage converter, 13-1 Chopper circuit, 14-1 to 14-3, 18-1 to 18 -2, 20, 91, 93, 94 Voltage sensor, 16-1 to 16-3, 19, 92, 95 Current sensor, 22 Auxiliary equipment, 23 DC / DC converter, 24 Auxiliary equipment battery, 30-1 to 30- 2 Inverter, 32-1 to 32-2 Motor generator, 34 Power split device, 36 Engine, 38 Drive wheel, 42 Charger, 43 Pilot lamp, 44 Vehicle inlet, 45 Navigation ECU, 46 Charge ECU, 48 External power supply, 52 Power calculation unit, 53 subtraction unit, 54 feedback control unit, 62 addition unit, 65 output limiting unit, 80 power Limit part, 81 filter, 82 AC / DC conversion part, 83, C, C1 smoothing capacitor, 84 DC / AC conversion part, 85 insulation transformer, 86 rectification part, 87 temperature sensor, 88 microcomputer, 100 hybrid car, D1A, D1B Diode, L1
  • FIG. 1 is an overall block diagram of a hybrid vehicle shown as an example of an electric vehicle according to the present invention.
  • hybrid vehicle 100 includes power storage devices 10-1 to 10-3, system main relays (System Main Relay) 11-1 to 11-3, converters 12-1 and 12-2, Main positive bus MPL, main negative bus MNL, smoothing capacitor C, and auxiliary machine 22 are provided.
  • Hybrid vehicle 100 further includes inverters 30-1 and 30-2, motor generators 32-1 and 32-2, power split device 34, engine 36, and drive wheels 38.
  • the hybrid vehicle 100 includes voltage sensors 14-1 to 14-3, 18-1, 18-2, 20, current sensors 16-1 to 16-3, 19, and an MG-ECU (Electronic Control Unit) 40.
  • Hybrid vehicle 100 further includes a charger 42, a vehicle inlet 44, and a charging ECU 46.
  • Each of power storage devices 10-1 to 10-3 is a rechargeable DC power source, and includes, for example, a secondary battery such as nickel metal hydride or lithium ion, a large capacity capacitor, and the like.
  • Power storage device 10-1 is connected to converter 12-1 via system main relay 11-1, and power storage devices 10-2 and 10-3 are converters via system main relays 11-2 and 11-3, respectively. 12-2 is connected.
  • power storage device 10-1 may be referred to as a “master battery”, and power storage devices 10-2 and 10-3 may be referred to as “slave batteries”.
  • System main relay 11-1 is provided between power storage device 10-1 and converter 12-1.
  • System main relay 11-2 is provided between power storage device 10-2 and converter 12-2, and system main relay 11-3 is provided between power storage device 10-3 and converter 12-2.
  • system main relays 11-2 and 11-3 are selectively turned on and are not simultaneously turned on.
  • Converters 12-1 and 12-2 are connected in parallel to main positive bus MPL and main negative bus MNL.
  • Converter 12-1 performs voltage conversion between power storage device 10-1 and main positive bus MPL and main negative bus MNL based on signal PWC1 from MG-ECU 40.
  • converter 12-2 and main positive bus MPL and main negative bus are connected to one of power storage device 10-2 and power storage device 10-3 electrically connected to converter 12-2. Voltage conversion is performed with the MNL.
  • Auxiliary machine 22 is connected to positive line PL1 and negative line NL1 arranged between system main relay 11-1 and converter 12-1.
  • Smoothing capacitor C is connected between main positive bus MPL and main negative bus MNL, and reduces power fluctuation components contained in main positive bus MPL and main negative bus MNL.
  • Inverters 30-1 and 30-2 are connected in parallel to main positive bus MPL and main negative bus MNL.
  • Inverter 30-1 drives motor generator 32-1 based on signal PWI1 from MG-ECU 40.
  • Inverter 30-2 drives motor generator 32-2 based on signal PWI2 from MG-ECU 40.
  • Motor generators 32-1 and 32-2 are AC rotating electric machines, for example, permanent magnet type synchronous motors having a rotor in which permanent magnets are embedded. Motor generators 32-1 and 32-2 are connected to power split device 34.
  • Power split device 34 includes a planetary gear including a sun gear, a pinion gear, a carrier, and a ring gear.
  • the pinion gear engages with the sun gear and the ring gear.
  • the carrier supports the pinion gear so as to be capable of rotating, and is connected to the crankshaft of the engine 36.
  • the sun gear is coupled to the rotation shaft of motor generator 32-1.
  • the ring gear is connected to the rotation shaft of motor generator 32-2 and drive wheel 38.
  • the motor generator 32-1 generates power using the power of the engine 36 divided by the power split device 34. For example, when the SOC of power storage devices 10-1 to 10-3 decreases, engine 36 is started and power is generated by motor generator 32-1, and the generated power is supplied to the power storage device.
  • motor generator 32-2 generates driving force using at least one of the power supplied from at least one of power storage devices 10-1 to 10-3 and the power generated by motor generator 32-1.
  • the driving force of the motor generator 32-2 is transmitted to the driving wheels 38.
  • the motor generator 32-2 operates as a generator.
  • motor generator 32-2 operates as a regenerative brake that converts and recovers the kinetic energy of the vehicle into electric power.
  • MG-ECU 40 generates signals PWC1 and PWC2 for driving converters 12-1 and 12-2, and outputs the generated signals PWC1 and PWC2 to converters 12-1 and 12-2, respectively.
  • MG-ECU 40 generates signals PWI1 and PWI2 for driving motor generators 32-1 and 32-2, and outputs the generated signals PWI1 and PWI2 to inverters 30-1 and 30-2, respectively. .
  • MG-ECU 40 activates signal CH1 received from charge ECU 46 when battery 42 is charged with power storage device 10-1, and from charger 42 to converter 12-2, main positive bus MPL and Signals PWC1 and PWC2 are generated and output to converters 12-1 and 12-2 so that charging power is supplied to power storage device 10-1 sequentially through main negative bus MNL and converter 12-1.
  • Charger 42 has an input end connected to vehicle inlet 44, and an output end connected to positive line PL2 and negative line NL2 arranged between system main relays 11-2 and 11-3 and converter 12-2. Is done.
  • the charger 42 receives power supplied from a power source 48 (hereinafter also referred to as “external power source”) 48 from the vehicle inlet 44.
  • the charger 42 receives the power command value CHPW from the charging ECU 46 and outputs the output power of the charger 42 so as to match the power command value CHPW while controlling the output voltage of the charger 42 to a predetermined DC voltage. Control power.
  • the vehicle inlet 44 is a power interface for receiving power from the external power supply 48.
  • Hybrid vehicle 100 further includes a voltage sensor 47.
  • the voltage sensor 47 detects a voltage VAC given to the vehicle inlet 44 from the outside, and outputs a detected value to the charging ECU 46.
  • Voltage sensors 14-1 to 14-3 detect voltage VB1 of power storage device 10-1, voltage VB2 of power storage device 10-2, and voltage VB3 of power storage device 10-3, respectively, and output the detected values to charging ECU 46. To do.
  • Current sensors 16-1 to 16-3 input current IB1 input to and output from power storage device 10-1, current IB2 input to and output from power storage device 10-2, and input to power storage device 10-3. The output current IB3 is detected, and the detected value is output to the charging ECU 46.
  • Voltage sensors 18-1 and 18-2 respectively detect voltage VL1 between positive electrode line PL1 and negative electrode line NL1, and voltage VL2 between positive electrode line PL2 and negative electrode line NL2, and charge ECU 46 detects the detected values.
  • Current sensor 19 detects current IL of positive line PL2 input / output to / from converter 12-2, and outputs the detected value to charge ECU 46.
  • the current sensor 19 can detect the current flowing from the charger 42 to the converter 12-2 when the power storage device 10-1 is charged by the charger 42.
  • Voltage sensor 20 detects voltage VH between main positive bus MPL and main negative bus MNL, and outputs the detected value to charging ECU 46.
  • the charging ECU 46 sets the target value PR of the charging power (kW / h) of the power storage devices 10-1 to 10-3. calculate.
  • the target value PR is set based on the voltage VAC detected by the voltage sensor 47.
  • the voltage VAC is set to 2.0 kW / h when the AC voltage is 200V, and is set to 1.2 kW / h when the voltage VAC is 100V AC.
  • additional charging is performed when the state of charge of the power storage device is between a predetermined value and a full charge threshold.
  • the target value PR is set to a fixed value, for example, 0.5 kW / h.
  • target value PR is set in the same manner as described above at the time of rapid charge, and the power storage device at the time of additional charge The target value PR is adjusted so that the final target voltage at the time of full charge is maintained as it is (the charge is terminated when the target value PR is close to 0 kW / h).
  • charging ECU 46 receives a signal SEL indicating which of power storage devices 10-1 to 10-3 is charged by charger 42 from a vehicle ECU (not shown). That is, in this embodiment, power storage devices 10-1 to 10-3 are sequentially charged in a predetermined order.
  • Charging ECU 46 generates power command value CHPW indicating the target value of the output power of charger 42 when power storage devices 10-1 to 10-3 are charged by external power supply 48, and uses the generated power command value CHPW. Output to the charger 42.
  • charging ECU 46 receives the detected values of voltages VB1 to VB3, VL1, VL2, and VH and currents IB1 to IB3, IL, and the charging power that is actually supplied to power storage devices 10-1 to 10-3 is the target.
  • the power command value CHPW of the charger 42 is feedback-corrected based on the detected values so as to coincide with the value PR. That is, in this embodiment, not only the charger 42 is controlled so that the output power of the charger 42 matches the target value, but also the power storage device so that the actual charging power of the power storage device matches the target value.
  • the power command value CHPW is feedback corrected based on the state of the apparatus.
  • the charging power of power storage devices 10-1 to 10-3 can be made to match the target value PR with certainty.
  • Vehicle 100 further includes a DC / DC converter 23 connected to positive electrode line PL1 and negative electrode line NL1 for voltage conversion, an auxiliary machine 22 to which a power supply current is supplied from DC / DC converter 23, and DC / DC converter 23. And an auxiliary battery 24 connected to the auxiliary machine 22.
  • a DC / DC converter 23 stops the voltage conversion operation, electric power is supplied from the auxiliary battery 24 to the auxiliary machine 22.
  • the DC / DC converter 23 not only supplies power supply current to the auxiliary machine 22 but also supplies charging current to the auxiliary battery 24.
  • the charging ECU 46 controls the DC / DC converter 23 to operate or stop when the charger 42 is being charged from the outside. Further, when external charging is being performed by the charging ECU 46, a pilot lamp 43 indicating that the driver or the like outside the vehicle is charging is turned on. Therefore, the pilot lamp 43 is preferably provided outside the passenger compartment (for example, below the side mirror). In addition, when the vehicle key is inserted and the vehicle is in an activated state (IG-ON or Ready ON state), the charging ECU 46 causes the navigation ECU 45 to display that the vehicle is being charged, and the driver Notify that charging is in progress.
  • IG-ON or Ready ON state the charging ECU 46 causes the navigation ECU 45 to display that the vehicle is being charged, and the driver Notify that charging is in progress.
  • the pilot lamp 43 is blinked or a command is sent to the navigation ECU 45 to operate the auxiliary machine 22 The driver is prompted to stop the operation of the auxiliary machine 22 that is not necessary.
  • the premise of the present embodiment is a charging system having the following features A to F: A) Plug-in charging system capable of supplying power according to a command value from another on-vehicle ECU; B) Power storage device The charging power or the auxiliary machine power consumption can be monitored by a voltage sensor and a current sensor provided in the battery charger, and a battery charger 18-2 and a current sensor 19 for traveling control immediately below the battery charger 42 are used to charge the battery charger.
  • FIG. 2 is a schematic configuration diagram of converters 12-1 and 12-2 shown in FIG. Since the configuration and operation of each converter are the same, the configuration and operation of converter 12-1 will be described below as a representative.
  • converter 12-1 includes a chopper circuit 13-1, a positive bus LN1A, a negative bus LN1C, a wiring LN1B, and a smoothing capacitor C1.
  • Chopper circuit 13-1 includes switching elements Q1A and Q1B, diodes D1A and D1B, and an inductor L1.
  • Positive bus LN1A has one end connected to the collector of switching element Q1B and the other end connected to main positive bus MPL.
  • Negative bus LN1C has one end connected to negative electrode line NL1 and the other end connected to main negative bus MNL.
  • Switching elements Q1A and Q1B are connected in series between negative bus LN1C and positive bus LN1A. Specifically, the emitter of switching element Q1A is connected to negative bus LN1C, and the collector of switching element Q1B is connected to positive bus LN1A. Diodes D1A and D1B are connected in antiparallel to switching elements Q1A and Q1B, respectively. Inductor L1 is connected between a connection node of switching elements Q1A and Q1B and wiring LN1B.
  • Wiring LN1B has one end connected to positive line PL1 and the other end connected to inductor L1. Smoothing capacitor C1 is connected between line LN1B and negative bus LN1C, and reduces the AC component included in the DC voltage between line LN1B and negative bus LN1C.
  • the chopper circuit 13-1 generates a bidirectional DC voltage between the power storage device 10-1 (FIG. 1) and the main positive bus MPL and the main negative bus MNL in response to a signal PWC1 from the MG-ECU 40 (FIG. 1). Perform conversion.
  • Signal PWC1 includes a signal PWC1A for controlling on / off of switching element Q1A constituting the lower arm element and a signal PWC1B for controlling on / off of switching element Q1B constituting the upper arm element.
  • the MG-ECU 40 controls the duty ratio (on / off period ratio) of the switching elements Q1A and Q1B within a certain duty cycle (the sum of the on period and the off period).
  • switching elements Q1A and Q1B are controlled so that the on-duty of switching element Q1A is increased (since switching elements Q1A and Q1B are complementarily turned on / off except for the dead time period, switching element Q1B is turned on The duty is reduced.)
  • the amount of pump current flowing from the power storage device 10-1 to the inductor L1 is increased, and the electromagnetic energy accumulated in the inductor L1 is increased.
  • the amount of current discharged from the inductor L1 to the main positive bus MPL via the diode D1B at the timing when the switching element Q1A transitions from the on state to the off state increases, and the voltage of the main positive bus MPL increases.
  • switching elements Q1A and Q1B are controlled so as to increase the on-duty of switching element Q1B (the on-duty of switching element Q1A decreases), the main positive bus MPL passes through switching element Q1B and inductor L1. Since the amount of current flowing to power storage device 10-1 increases, the voltage on main positive bus MPL decreases.
  • the duty ratio of switching elements Q1A and Q1B the voltage of main positive bus MPL can be controlled, and the current (power) that flows between power storage device 10-1 and main positive bus MPL can be controlled.
  • the current (power) that flows between power storage device 10-1 and main positive bus MPL can be controlled.
  • Direction and current amount (power amount) can be controlled.
  • FIG. 3 is a schematic configuration diagram of the charger 42 shown in FIG. 1.
  • charger 42 includes a filter 81, a power limiting unit 80, a temperature sensor 87, voltage sensors 91, 93, 94, current sensors 92, 95, and a microcomputer (microcomputer) 88. including.
  • the power limiting unit 80 includes an AC / DC conversion unit 82, a smoothing capacitor 83, a DC / AC conversion unit 84, an insulating transformer 85, and a rectification unit 86.
  • the filter 81 is provided between the vehicle inlet 44 (FIG. 1) and the AC / DC converter 82, and is charged from the vehicle inlet 44 when the power storage devices 10-1 to 10-3 are charged by the external power supply 48 (FIG. 1). This prevents high frequency noise from being output to the external power supply 48.
  • AC / DC converter 82 includes a single-phase bridge circuit. The AC / DC converter 82 converts AC power supplied from the external power supply 48 into DC power based on a drive signal from the microcomputer 88 and outputs the DC power to the positive line PLC and the negative line NLC. Smoothing capacitor 83 is connected between positive line PLC and negative line NLC, and reduces the power fluctuation component contained between positive line PLC and negative line NLC.
  • the DC / AC converter 84 includes a single-phase bridge circuit.
  • the DC / AC conversion unit 84 converts the DC power supplied from the positive line PLC and the negative line NLC into high frequency AC power based on the drive signal from the microcomputer 88 and outputs the high frequency AC power to the insulation transformer 85.
  • Insulation transformer 85 includes a core including a magnetic material, and a primary coil and a secondary coil wound around the core. The primary coil and the secondary coil are electrically insulated and connected to the DC / AC converter 84 and the rectifier 86, respectively.
  • Insulation transformer 85 converts high-frequency AC power received from DC / AC converter 84 into a voltage level corresponding to the turn ratio of the primary coil and the secondary coil, and outputs the voltage level to rectifier 86.
  • Rectifying unit 86 rectifies the AC power output from insulation transformer 85 into DC power and outputs the DC power to positive line PL2 and negative line NL2.
  • the voltage sensor 91 detects the voltage of the external power supply 48 after the filter 81 and outputs the detected value to the microcomputer 88.
  • Current sensor 92 detects a current supplied from external power supply 48 and outputs the detected value to microcomputer 88.
  • Voltage sensor 93 detects the voltage between positive line PLC and negative line NLC, and outputs the detected value to microcomputer 88.
  • the voltage sensor 94 detects the voltage on the output side of the rectifying unit 86 and outputs the detected value to the microcomputer 88.
  • the current sensor 95 detects the current output from the rectifying unit 86 and outputs the detected value to the microcomputer 88.
  • the microcomputer 88 uses the voltage sensors 91, 93, 94 and the current sensors 92, 95 so that the output power of the charger 42 calculated based on the detection values of the voltage sensor 94 and the current sensor 95 matches the power command value CHPW.
  • a drive signal for driving the AC / DC conversion unit 82 and the DC / AC conversion unit 84 is generated based on each detected value. Then, the microcomputer 88 outputs the generated drive signal to the AC / DC converter 82 and the DC / AC converter 84.
  • the temperature sensor 87 detects whether or not the save operation condition that the charger 42 may be overheated is satisfied. Specifically, the temperature sensor 87 detects the temperature TC of the charger 42 and transmits it to the microcomputer 88. The microcomputer 88 changes the operation mode of the charger 42 between the save mode and the normal mode based on the temperature TC output from the temperature sensor 87. The power limiting unit 80 limits the power from the power source outside the vehicle under the control of the microcomputer 88 and supplies it as charging power to the power storage devices 10-1 to 10-3.
  • FIG. 4 is a diagram showing a change in the limit value of the charging power determined by the microcomputer 88 in FIG.
  • the vertical axis indicates the output power from the charger 42, which is the charging power.
  • the horizontal axis shows the temperature TC detected by the temperature sensor 87.
  • the microcomputer 88 sets the rated output PS1 as the output limit value of the charger 42 from the low temperature state to the threshold temperature T2.
  • the operation mode in this case is the normal mode.
  • the mode is shifted to the save mode, and the power limiting unit 80 is caused to execute the output limiting operation. In this case, the output limit value decreases from PS1 to PS2.
  • the charger 42 is operated in the save mode. Further, when the temperature TC exceeds the threshold temperature T3, the microcomputer 88 stops the operation of the power limiting unit 80 and stops charging.
  • the battery is operated again in the save mode and the save mode is maintained until the temperature falls to the threshold temperature T1.
  • the operation mode of the charger 42 is returned to the normal mode.
  • FIG. 5 is a functional block diagram of charging ECU 46 shown in FIG. Referring to FIG. 5, charging ECU 46 includes an electric power calculation unit 52, a subtraction unit 53, a feedback (FB) control unit 54, an output restriction unit 65, and an addition unit 62.
  • FB feedback
  • power calculation unit 52 calculates the charging power of power storage device 10-1 based on the detected values of voltage VB1 and current IB1, and monitors the calculation result.
  • the value PM is output to the subtraction unit 53. Note that charging of power storage device 10-1 by charger 42 is determined by a signal SEL received from a vehicle ECU (not shown). Further, when power storage device 10-2 is charged by charger 42, power calculation unit 52 calculates the charging power of power storage device 10-2 based on the detected values of voltage VB2 and current IB2, and the calculation result Is output to the subtraction unit 53 as the monitor value PM.
  • power calculation unit 52 calculates the charging power of power storage device 10-3 based on the detected values of voltage VB3 and current IB3, and the calculation result Is output to the subtraction unit 53 as the monitor value PM.
  • Subtraction unit 53 subtracts monitor value PM calculated by power calculation unit 52 from target value PR of charging power (kW / h) of power storage devices 10-1 to 10-3 received from the vehicle ECU (not shown). The calculation result is output to the feedback control unit 54. Note that the target value PR may be different or the same for each of the power storage devices 10-1 to 10-3.
  • the feedback control unit 54 performs a proportional integration calculation using the deviation between the target value PR of the charging power (kW / h) received from the subtraction unit 53 and the monitor value as a control input (PI control), and the calculation result is used as a feedback correction value PC0. To the output restriction unit 65.
  • the output restriction unit 65 gives a restriction so that the power command value CHPW is not too far from the target value PR.
  • the correction value PC0 before the limit output from the feedback control unit 54 is limited so that the correction value PC0 does not become too far from 0, and the correction value PC is output.
  • Adder 62 adds correction value PC received from output limiter 65 to target value PR, and outputs the calculation result as power command value CHPW.
  • this charging ECU 46 feedback control is performed by the feedback control unit 54 so that the charging power (kW / h) of the power storage devices 10-1 to 10-3 matches the predetermined target value PR.
  • the charging ECU 46 performs the control shown in FIGS. 6 and 14 to detect abnormality of the charger 42 and to stop, interrupt, and resume charging.
  • FIG. 6 is a flowchart of charger abnormality determination and charge stop control during external charging executed by the charging ECU 46 of FIG.
  • the processing of this flowchart is called and executed from a predetermined main routine every predetermined time or every time a predetermined condition is satisfied. In the following description, it is actually required to continue the predetermined time in order to finalize the judgment, but since the flowchart becomes complicated, the process of measuring the predetermined time with a counter is described. Absent.
  • step S1 when the process is started, it is determined by charging ECU 46 whether or not charging power is being fed back in step S1.
  • “Charging power feedback is in progress” means that the power command value CHPW is output to the charger 42 to perform feedback control so that the power actually charged by the charging ECU 46 approaches the target value PR. That is.
  • step S1 if charging power feedback is not in progress, the process proceeds to step S10 and the control is moved to the main routine. On the other hand, if it is determined in step S1 that charging power is being fed back, the process proceeds to step S2.
  • step S2 it is determined whether or not the correction value PC added by the adding unit 62 to the target value PR in FIG. 5 is smaller than the threshold value ⁇ 1.
  • FIG. 7 is a diagram for explaining the determination in step S2 of FIG.
  • a region A1 in which the feedback correction value PC is smaller than the threshold value ⁇ 1 corresponds to a state in which the power command value CHPW is output with the target value PR being corrected smaller than ⁇ 1.
  • the correction value is set so that the power is rapidly reduced. The status is being output.
  • the process proceeds to step S11, a diagnosis result (diagnosis) that the power output from the charger 42 is abnormally exceeding the target value is determined, and charging is performed. Canceled.
  • step S3 it is determined whether or not the correction value PC is larger than the threshold value ⁇ 2.
  • FIG. 8 is a diagram for explaining the determination in step S3 of FIG. As shown in FIG. 8, in the region A2 where the feedback correction value PC is larger than the threshold value ⁇ 2, the power command value CHPW is output by applying a large correction over the threshold value ⁇ 2 to the target value PR shown in FIG. It shows the state.
  • step S12 the diagnosis result (diagnosis) is determined as the state where the power of the charger 42 is very low with respect to the target value, Charging is stopped.
  • step S3 it is determined whether or not the difference between charging power monitor value PM2 and target value PR is greater than threshold value ⁇ .
  • FIG. 9 is a diagram showing the relationship between the target value PR and the power command value CHPW.
  • the power command value CHPW is determined by a line L4 in which power for auxiliary machine consumption is added to the target value PR ( ⁇ PM2).
  • the line L5 is a line when an estimated amount that maximizes the power consumption of the auxiliary machine is added, and the line L4 is located between the line L3 and the line L5.
  • the charger 42 is executing the save operation, even if the target value PR is large, the charger 42 is limited to the limit value PS, so that the power command value CHPW is also within the region A4 within the charger 42. Is limited to the inside.
  • FIG. 10 is a diagram for explaining the processing in step S4 of FIG.
  • target value PR is shown on the horizontal axis
  • charge power monitor value PM2 is shown on the vertical axis.
  • the charging power monitor value PM2 is obtained by multiplying the power charged in the power storage device to be charged by the product of the corresponding current sensor and the detection value of the voltage sensor. That is, PM2 is any one of IB1 ⁇ VB1, IB2 ⁇ VB2, and IB3 ⁇ VB3.
  • the line L1 is a straight line where the target value PR and the charging power monitor value PM2 coincide.
  • the line L2 is a line indicating a state where the charging power monitor value PM2 is larger than the target value PR by the threshold value ⁇ .
  • a region A3 is a region where the difference is greater than the threshold value ⁇ .
  • step S4 of FIG. 6 the charging ECU 46 performs a process of determining whether or not the operating point of the charging system at the time of charging exists in the area A3. If the difference between the charging power monitor value PM2 and the target value PR is larger than ⁇ in step S4, the process proceeds to step S11, the diagnosis result (diagnosis) is confirmed, and charging is stopped. In this case, excessive power is output from the charger exceeding ⁇ indicating an appropriate allowable value. For example, there may be a case where a failure occurs in the charger 42 and power larger than the command value is output.
  • step S4 determines whether the difference between the charging power monitor value PM2 and the target value PR is not greater than the threshold value ⁇ in step S4.
  • step S5 it is determined whether the target value PR is greater than a predetermined value ⁇ .
  • step S6 it is determined whether or not the charging power monitor value PM2 is smaller than a predetermined value X.
  • FIG. 11 is a diagram for explaining the determination executed in steps S5 and S6 of FIG.
  • the horizontal axis indicates the target value PR
  • the vertical axis indicates the charging power monitor value PM2.
  • charge power monitor value PM2 is IB1 ⁇ VB1.
  • the determination threshold value ⁇ for the target value PR is a value set larger than the threshold value X for the charging power monitor value PM2 in consideration of variations in sensors for detecting the measured values IL, VL2, IB1, and VB1. is there.
  • the threshold value X is a lower limit charging power for preventing erroneous determination that the determination of the state of charge of the power storage device cannot detect overcharge.
  • the state of charge of the power storage device can be determined by the open circuit voltage (OCV), but it is possible to detect the open circuit voltage (OCV) when performing constant power charge (CP charge). ), Not a closed circuit voltage (CCV).
  • OCV open circuit voltage
  • CCV closed circuit voltage
  • the CCV threshold is set assuming that the difference between the open circuit voltage (OCV) and the closed circuit voltage (CCV) is 0.2 V, which is the difference when charging is performed at 0.5 kW, for example.
  • 0.5 kW corresponds to guaranteed power for correctly calculating the SOC.
  • the difference between CCV and OCV is smaller than 0.2V. Therefore, when the electric power to be charged is small, the actual OCV becomes larger than the assumed OCV (the increase in voltage due to the internal resistance corresponding to the CCV-guaranteed electric power), which may cause overcharging of the power storage device. There is.
  • step S5 when the operating point of the charging system belongs to region A9, the process proceeds from step S5 to step S7 via step S6.
  • step S5 or step S6 when the operating point of the charging system does not belong to the region A9, the process proceeds from step S5 or step S6 to step S10, and the control is moved to the main routine.
  • step S7 it is determined in step S7 whether or not the auxiliary machine is being driven by the power storage device to be charged.
  • the auxiliary machine 22 is configured to receive power supply from the power storage device 10-1 in the configuration of FIG. 1, it is determined in step S7 whether or not the charging target is the power storage device 10-1. .
  • step S7 If it is determined in step S7 that the charging target is not the power storage device to which the auxiliary machine is connected, that is, the power storage device 10-1 in FIG. 1, the process proceeds to step S12. In this case, it is found that the charging power monitor value PM2 charged from the charger 42 to the target power storage device 10-2 or 10-3 is abnormally smaller than the target value PR. Therefore, in step S12, it is diagnosed that a failure that cannot output the electric power corresponding to the command value has occurred in the charger 42, the charging is stopped, and a diagnosis result (diagnosis) indicating the failure is confirmed.
  • step S7 it is determined whether or not the supplied power output from the charger 42 is smaller than the threshold value Y.
  • FIG. 12 is a diagram for explaining the determination in step S8 of FIG.
  • FIG. 12 is a determination map that is applied when the power storage device 10-1 that is the master battery is to be charged.
  • the horizontal axis indicates a value (IL ⁇ VL2) obtained by monitoring the power output from charger 42 in FIG.
  • the vertical axis indicates a value (IB1 ⁇ VB1) obtained by monitoring the power charged in the target power storage device 10-1.
  • threshold value X is the lower limit charging power for preventing erroneous determination such that determination of the state of charge of the power storage device cannot detect overcharge, as described in FIG. Until the process of step S8 is executed, the process is limited to the case where the charge power monitor value is smaller than the threshold value X in step S6.
  • step S8 charging is stopped and a diagnosis that the output power of the charger 42 is abnormal is confirmed.
  • step S8 the process proceeds from step S8 to step S9. In this case, power is output from the charger 42, but since the power consumed by the auxiliary machine 22 is large, there is a possibility that the power charged in the power storage device 10-1 is small.
  • step S9 a determination is made as to whether or not the power consumed by the auxiliary machine 22 is large (hereinafter referred to as "auxiliary machine consumption” high “" determination), and a predetermined flag corresponding to the determination result is turned ON / OFF.
  • step S9 When the determination in step S9 ends, control is transferred to the main routine in step S10.
  • FIG. 13 is a diagram for explaining the auxiliary machine consumption “large” determination when the slave battery is charged.
  • the horizontal axis indicates that (IB2 ⁇ VB2) is set as the charge power monitor value.
  • the monitor value (IB1 ⁇ VB1) of the electric power discharged from power storage device 10-1 to supply power to auxiliary machine 22 is shown.
  • the threshold value X is a threshold value indicating the minimum power for ensuring that the SOC of the power storage device is correctly detected.
  • Threshold value Z is a threshold value for determining “high” auxiliary machine consumption applied when the slave power storage device is charged.
  • Region A5 is a region where it is determined that a failure has occurred in the charger 42 that reduces the output power
  • region A6 is a region where it is determined that the power consumption of the auxiliary equipment is large.
  • FIG. 14 is a flowchart showing details of the auxiliary machine consumption “large” determination executed in step S9 of FIG.
  • step S101 it is determined whether or not the auxiliary machine power consumption is determined to be “large”. This can be determined based on whether or not the corresponding flag is ON. If it is not determined in step S101 that the power consumption of the auxiliary machine is “high”, the process proceeds to step S102.
  • step S102 it is determined whether or not the auxiliary device is being driven by the power storage device to be charged. In other words, it is determined whether or not the power storage device that drives the auxiliary machine is a target of external charging by the current charger 42. If it is determined in step S102 that the auxiliary device is being driven by the power storage device to be charged, the process proceeds to step S107. On the other hand, if the auxiliary device is not being driven by the power storage device to be charged, the process proceeds to step S103. In this case, power storage device 10-1 drives the auxiliary machine but is not charged. That is, the master battery is discharged.
  • step S103 it is determined whether or not the auxiliary machine side discharge power monitor value PM2 is smaller than the threshold value -Z.
  • the auxiliary machine side discharge power monitor value PM2 is IB1 ⁇ VB1. If PM2 ⁇ Z is satisfied in step S103, the process proceeds to step S107. If not, the process proceeds to step S106.
  • step S101 determines whether or not auxiliary machine side discharge power monitor value PM2 is greater than threshold value Z. If PM2> Z is established in step S105, the process proceeds to step S106, and if not, the process proceeds to step S107.
  • step S106 it is determined that the auxiliary machine power consumption is “high”. In response to this determination, the flag is set to the ON state.
  • step S107 the determination that the auxiliary machine power consumption is “high” is cleared, and the corresponding flag is set to the off state. Then, resumption of charging is permitted.
  • step S107 ends, the process proceeds to step S113, and control is transferred to the main routine.
  • step S106 determines whether or not.
  • the power storage device 10-1 corresponds to the power storage device that drives the auxiliary machine.
  • Threshold value A is a lower limit value of the state of charge SOC for preventing damage to power storage device 10-1, and is a value determined based on the characteristics of the power storage device.
  • step S108 If the auxiliary SOC is smaller than the threshold value A in step S108, the process proceeds to step S114 and the vehicle system is forcibly terminated. Thereby, in FIG. 1, the power storage device 10-1 can be prevented from being overdischarged.
  • step S109 the pilot lamp 43 outside the vehicle is blinked. This is to notify the user by blinking the pilot lamp outside the vehicle because the user may have left the vehicle while forgetting to turn off the auxiliary devices with high power consumption such as the headlamp and the hazard lamp.
  • the pilot lamp is lit during charging, and in step S109, the pilot lamp blinks in a special cycle or color to alert the user. This flashing method is described in the manual attached to the vehicle.
  • step S110 it is determined whether or not the ignition key switch is in an ON state. Note that the ignition key switch being in the ON state indicates a state where the vehicle can start (Ready ON state).
  • step S111 If the ignition key switch is not in the ON state in step S110, the process proceeds to step S111. In this case, since there are many cases where the user is not inside the vehicle, there is a high possibility that the auxiliary machine that has been forgotten to be turned off remains as it is. Therefore, in step S111, when the state where the auxiliary machine discharge power monitor value PM2 is larger than a certain level, the process proceeds to step S114, and the system is forcibly terminated. As a result, system main relay 11-1 in FIG. 1 is in an open state, so that overdischarge from power storage device 10-1 is prevented and the power storage device is protected.
  • step S111 if it is determined in step S111 that the auxiliary discharge power monitor value PM2 is not large for a certain period of time, the process proceeds to step S113 and the control is moved to the main routine.
  • step S110 If the ignition key switch is ON in step S110, the process proceeds to step S112, and the charging ECU 46 causes the navigation ECU 45 to display a warning message on the navigation screen.
  • a warning message for example, an interrupt display such as “insufficient charging power, please turn off the IG lamp” is executed.
  • display may be performed by a method that shows a sense of urgency, such as turning the navigation screen red.
  • step S112 After the warning message is displayed in step S112, the process proceeds to step S113, and control is transferred to the main routine.
  • FIG. 15 is a diagram for explaining charging interruption and resumption at the time of charging the master battery.
  • charging ECU 46 causes charger 42 to stop charging. This shows a case where the master battery cannot be charged with power equal to or higher than the threshold value X because the power consumed by the auxiliary device is large. In such a case, since the state of charge SOC cannot be calculated correctly, the master battery may be overcharged. For this reason, charging is temporarily interrupted.
  • ⁇ 1> ⁇ 2 is set in FIG. 15 to provide hysteresis. This is preferable.
  • the diagnosis that the power output from the charger is abnormal may be confirmed and the system may be terminated.
  • the times TA and TB are calculated by the following formula, and the user is notified based on the calculated times TA and TB.
  • TB ⁇ TA it is determined that the auxiliary machine power consumption is “high” even if the auxiliary machine power consumption is smaller than the threshold value X in FIG. It is better to notify.
  • the auxiliary machine consumption “large” judgment value that is a threshold value to be compared with the auxiliary machine power consumption can be calculated by (master battery remaining power amount) / (slave battery remaining charge capacity) ⁇ (charged power).
  • step S4 of FIG. 6 the charging control device detects a difference between the charging power monitor value PM2 detected by the charging power detection unit and the target value PR, and an abnormality of the charger 42 based on the detected difference. Determine if it occurs.
  • vehicle 100 includes an auxiliary device 22 that can be driven by a part of the electric power output from charger 42.
  • the charging system of vehicle 100 further includes a charger output power detection unit (voltage sensor 18-2, current sensor 19) that detects the power output from charger 42.
  • the charge control device is consumed by the auxiliary device 22 in order to ensure appropriate charging power (threshold value X in FIGS. 11 and 12) based on the power output from the charger 42 and the charging power.
  • the charge state of the power storage device becomes smaller than the threshold value A (step of FIG. 14).
  • step S111 in FIG. 14 When the time during which the auxiliary machine power consumption is excessive exceeds a predetermined time (YES in step S111 in FIG. 14), the system forcible termination of the vehicle including the operation stop of the auxiliary machine 22 is executed (YES in S108) Step S114 in FIG. 14).
  • the charging control device interrupts charging of the power storage devices 10-1 to 10-3 from the outside by the charger 42, and consumes the auxiliary equipment after the interruption.
  • the electric power decreases and a state where appropriate charging power can be secured, charging of the power storage device is resumed.
  • the appropriate charging power is a power that is larger than the lower limit value at which the state of charge SOC of the power storage device can be appropriately estimated based on the output of the charging power detection unit.
  • the power storage device is connected to the first power storage device 10-1 connected to the power supply path (PL1, NL1) to the auxiliary machine and the path (PL2, NL2) to which the output of the charger 42 is connected. And the connected second power storage device 10-2.
  • the vehicle charging system includes a first voltage converter 12-1 that performs voltage conversion between a voltage VL1 of the first power storage device and a supply voltage VH to the electric load, and a voltage of the second power storage device 10-2.
  • a second voltage converter 12-2 that performs voltage conversion between VL2 and supply voltage VH is further provided.
  • the charging control device selects the charging target to be supplied with charging power from the charger 42 by controlling the first and second voltage converters from the first and second power storage devices 10-1 and 10-2. To do.
  • the charging control device interrupts the charging of the charging target from the outside by the charger 42 when determining that the auxiliary machine power consumption is excessive. Then, after the interruption, the charging of the charging target is resumed when the auxiliary machine power consumption is reduced and an appropriate charging power can be secured.
  • the charging control device determines that the charging state SOC of the charging target is smaller than the threshold value A when the auxiliary power consumption is determined to be excessive.
  • the time is reached (YES in step S108) or the time when the auxiliary machine power consumption is excessive exceeds the predetermined time (YES in step S111)
  • the system forcible termination of the vehicle including the operation stop of the auxiliary machine is executed. .
  • vehicle (100) includes a vehicle driving motor (motor generator 32-2) that operates by receiving electric power from power storage devices 10-1 to 10-3, and an internal combustion engine that is used together with the motor for driving the vehicle. (Engine 36).
  • vehicle driving motor motor generator 32-2
  • Engine 36 internal combustion engine
  • an abnormality of the charger 42 is detected when the deviation of the feedback correction amount is larger than the threshold value before the charging power deviates from the target value (steps S2 and S3 in FIG. 6).
  • a threshold value is also set for the deviation between the absolute value of the charging power or the monitoring value of the charging power and the target value. The diagnosis of the failure of the charger 42 is confirmed when any value exceeds the threshold value.
  • the battery when detecting a decrease in the absolute power value, the battery is limited to the case where the battery driving the auxiliary machine and the battery to be charged are the same (YES in step S7 in FIG. 6). An abnormality is detected only when the power supply is reduced to prevent erroneous detection of the power when the power consumption is increased (YES in step S8).
  • step S104 When the charging power is reduced when the condition (3) is not satisfied, it is determined that the power consumption in the auxiliary machine is large to prevent overcharging, and charging is interrupted (step S104 in FIG. 14). If the auxiliary battery is different from the battery to be charged (YES in step S102), the charging is continued (auxiliary power consumption is monitored by the discharge amount of the auxiliary battery connecting battery).
  • the display system is operated to alert the user to stop the auxiliary machine (steps S109 and S112 in FIG. 14).
  • the warning method is switched appropriately, for example, the pilot lamp outside the passenger compartment blinks in a unique pattern.
  • the pilot lamp may not be blinked when IG-ON, but the pilot lamp 43 is always blinked in the flowchart of FIG. 14 assuming that the user forgets to turn off the ignition key switch and goes out of the passenger compartment.
  • IG-OFF and power consumption are within the expected range, it may be limited to specific auxiliary equipment (auxiliary equipment that is not interlocked with the ignition key switch, such as lamps and hazards).
  • the target of charging is not the power storage device 10-1 that drives the auxiliary machine
  • the power consumption that the power storage device 10-1 will be forcibly terminated before the power storage device 10-2 or 10-3 is completely charged is compensated. If the machine power consumption is smaller than the “high” determination threshold, the smaller one may be given priority to display the alert.
  • auxiliary machine power consumption is “high”, if the auxiliary battery reaches the capacity threshold value or less, the system is forcibly terminated to protect the battery from overdischarge (YES in step S108).
  • the consumption and consumption time thresholds are exceeded, it is determined that the user has left the vehicle, and the system is forcibly terminated without waiting for the remaining capacity to decrease (YES in step S111).
  • step S105 When the power consumption of the auxiliary machine is interrupted at “Large” and the power consumption of the auxiliary machine is reduced (NO in step S105), the necessary charge amount is secured, and overcharging due to the SOC calculation error is avoided. Regain charge and secure the opportunity for charge.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

 車載の蓄電装置(10-1~10-3)を充電する車両の充電システムは、蓄電装置を充電するために車両外部の電源から電力が供給されるように構成された充電器(42)と、蓄電装置に供給される充電電力を検知する充電電力検知部(14-1~14-3,16-1~16-3)と、目標値に基づいて充電器(42)に対する電力指令値を生成することによって充電器(42)の制御を行なう充電制御装置(46)とを備える。充電制御装置は、充電電力検知部により検知された充電電力と目標値との差を検出し、検出した差に基づいて充電器(42)の異常発生の有無を判断する。

Description

車両の電源システム
 この発明は、車両の電源システムに関し、特に外部電源から充電が可能に構成された蓄電装置を搭載する車両の充電システムに関する。
 電気自動車等のバッテリは、充電器により充電されるが、充電器から電力の供給を受ける負荷的な側面ばかりでなく、様々な電気負荷に対して電力を供給する電源的な側面を有するものである。バッテリの温度が所定範囲を外れる異常状態となったときにも、バッテリを冷却するファン等の冷却装置やその他のバッテリ保護回路は動作するから、これらの回路への電力の供給は、バッテリを電源としてなされていた。
 しかしながら、バッテリの異常を検出した時に、そのバッテリに電気負荷を駆動させることは、バッテリの充電電力をバッテリ保護のためにのみ浪費してしまうことになる。このため、バッテリの異常状態が解消した時には相当の充電電力が消費されており、例え異常状態が解消された時点から直ちにバッテリの充電を再開したとしても、その消費された電力をカバーするために充電時間が延びてしまう。
 また、充電されたバッテリの本来的な電力の供給対象である電気負荷には、バッテリの異常状態とは無関係に動作を必要とするものも存在する。例えば、自動車の場合には、バッテリの電気負荷としてライト、エアコンディショナなど各種の補機系が接続されるが、これらはバッテリ状態の如何を問わず作動の必要が生じる可能性のあるものである。したがって、この様な電気負荷が作動を開始した場合、バッテリからの電力供給が必要となり充電という点からは不都合であった。
 特許第3247230号公報(特許文献1)には、電気自動車の充電制御装置であって、バッテリ状態により一時的に充電中断が必要な場合、冷却ファン、エアコン、ライトなどの補機の駆動状態に基づいて、充電器によって補機で消費される分だけの電力を供給し、電池電力の消費を抑制する充電制御装置が開示されている。
特許第3247230号公報
 しかしながら、上記特許第3247230号公報に開示された電気自動車用充電制御装置は、バッテリ電流センサの誤差などにより、充電電力を0に正確に設定することが実現できない場合には、長時間の充電が継続される場合があり、バッテリの過充電が生じバッテリの寿命を短くしてしまうという可能性がある。また、充電器に故障が発生する場合も考えられ、充電器の故障の状態によっては充電を中止してバッテリを保護する必要も生じる。
 この発明の目的は、バッテリの過充電となる可能性が低減された、外部電源から車載の蓄電装置を充電することが可能な車両の充電システムを提供することである。
 この発明は、要約すると、車載の蓄電装置を充電する車両の充電システムであって、蓄電装置を充電するために車両外部の電源から電力が供給されるように構成された充電器と、蓄電装置に供給される充電電力を検知する充電電力検知部と、目標値に基づいて充電器に対する電力指令値を生成することによって充電器の制御を行なう充電制御装置とを備える。充電制御装置は、充電電力検知部により検知された充電電力と目標値との差を検出し、検出した差に基づいて充電器の異常発生の有無を判断する。
 好ましくは、車両は、充電器から出力される電力の一部によって駆動され得る補機を含む。車両の充電システムは、充電器から出力される電力を検知する充電器出力電力検知部をさらに備える。充電制御装置は、充電器から出力される電力と充電電力とに基づいて、適切な充電電力を確保するためには補機で消費される補機消費電力が過大であるか否かを判断し、補機消費電力が過大であると判断した場合には、蓄電装置の充電状態がしきい値より小さくなったとき、または補機消費電力が過大である時間が所定時間を超えたときに、補機の動作停止を含む車両のシステム強制終了を実行する。
 より好ましくは、充電制御装置は、補機消費電力が過大であると判断した場合には充電器による外部からの蓄電装置に対する充電を中断し、中断後に補機消費電力が減少し適切な充電電力を確保できる状態となったときに蓄電装置に対する充電を再開させる。
 より好ましくは、適切な充電電力は、充電電力検知部の出力に基づいて蓄電装置の充電状態が適切に推定できる下限値より大きい電力である。
 より好ましくは、蓄電装置は、補機への電力供給経路に接続された第1の蓄電装置と、充電器の出力が接続された第2の蓄電装置とを含む。車両の充電システムは、第1の蓄電装置の電圧と電気負荷への供給電圧との間で電圧変換を行なう第1の電圧コンバータと、第2の蓄電装置の電圧と供給電圧との間で電圧変換を行なう第2の電圧コンバータとをさらに備える。充電制御装置は、第1、第2の電圧コンバータを制御することにより充電器から充電電力が供給される充電対象を第1、第2の蓄電装置のうちから選択する。第1の蓄電装置が充電対象である場合には、充電制御装置は、補機消費電力が過大であると判断した場合には充電器による外部からの充電対象に対する充電を中断し、中断後に補機消費電力が減少し適切な充電電力を確保できる状態となったときに充電対象に対する充電を再開させる。第2の蓄電装置が充電対象である場合には、充電制御装置は、補機消費電力が過大であると判断した場合には、充電対象の充電状態がしきい値より小さくなったとき、または補機消費電力が過大である時間が所定時間を超えたときに、補機の動作停止を含む車両のシステム強制終了を実行する。
 好ましくは、車両は、蓄電装置から電力を受けて作動する車両駆動用のモータと、モータと共に車両駆動用として併用される内燃機関とを含む。
 本発明によれば、外部電源から充電を実行している際に、蓄電装置への過充電となる可能性が低減され、蓄電装置の寿命に悪影響を及ぼす可能性が低減される。
この発明による電動車両の一例として示されるハイブリッド自動車の全体ブロック図である。 図1に示したコンバータ12-1,12-2の概略構成図である。 図1に示した充電器42の概略構成図である。 図3のマイコン88によって決定される充電電力の制限値の変化を示した図である。 図1に示した充電ECU46の機能ブロック図である。 図1の充電ECU46によって実行される外部充電時の充電器の異常判定および充電中止制御のフローチャートである。 図6のステップS2の判断を説明するための図である。 図6のステップS3での判断を説明するための図である。 目標値PRと電力指令値CHPWとの関係を示した図である。 図6のステップS4の処理を説明するための図である。 図6のステップS5,S6で実行される判断を説明するための図である。 図6のステップS8での判断を説明するための図である。 スレーブバッテリに充電される場合の補機消費「大」判定について説明するための図である。 図6のステップS9で実行される補機消費「大」判定の詳細を示したフローチャートである。 マスタバッテリ充電時の充電中断と再開について説明するための図である。
符号の説明
 10-1~10-3 蓄電装置、11-1~11-3 システムメインリレー、12-1~12-2 電圧コンバータ、13-1 チョッパ回路、14-1~14-3,18-1~18-2,20,91,93,94 電圧センサ、16-1~16-3,19,92,95 電流センサ、22 補機、23 DC/DCコンバータ、24 補機バッテリ、30-1~30-2 インバータ、32-1~32-2 モータジェネレータ、34 動力分割装置、36 エンジン、38 駆動輪、42 充電器、43 パイロットランプ、44 車両インレット、45 ナビゲーションECU、46 充電ECU、48 外部電源、52 電力算出部、53 減算部、54 フィードバック制御部、62 加算部、65 出力制限部、80 電力制限部、81 フィルタ、82 AC/DC変換部、83,C,C1 平滑コンデンサ、84 DC/AC変換部、85 絶縁トランス、86 整流部、87 温度センサ、88 マイコン、100 ハイブリッド自動車、D1A,D1B ダイオード、L1 インダクタ、LN1A 正母線、LN1B 配線、LN1C 負母線、MNL 主負母線、MPL 主正母線、NL1,NL2,NLC 負極線、PL1,PL2,PLC 正極線、Q1A,Q1B スイッチング素子。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 [車両の全体構成]
 図1は、この発明による電動車両の一例として示されるハイブリッド自動車の全体ブロック図である。
 図1を参照して、ハイブリッド自動車100は、蓄電装置10-1~10-3と、システムメインリレー(System Main Relay)11-1~11-3と、コンバータ12-1,12-2と、主正母線MPLと、主負母線MNLと、平滑コンデンサCと、補機22とを備える。また、ハイブリッド自動車100は、インバータ30-1,30-2と、モータジェネレータ(Motor Generator)32-1,32-2と、動力分割装置34と、エンジン36と、駆動輪38とをさらに備える。さらに、ハイブリッド自動車100は、電圧センサ14-1~14-3,18-1,18-2,20と、電流センサ16-1~16-3,19と、MG-ECU(Electronic Control Unit)40とを備える。さらに、ハイブリッド自動車100は、充電器42と、車両インレット44と、充電ECU46とを備える。
 蓄電装置10-1~10-3の各々は、再充電可能な直流電源であり、たとえば、ニッケル水素やリチウムイオン等の二次電池や、大容量のキャパシタ等を含む。蓄電装置10-1は、システムメインリレー11-1を介してコンバータ12-1に接続され、蓄電装置10-2,10-3は、それぞれシステムメインリレー11-2,11-3を介してコンバータ12-2に接続される。なお、以下において蓄電装置10-1を「マスタバッテリ」と称する場合があり、また蓄電装置10-2,10-3を「スレーブバッテリ」と称する場合がある。
 システムメインリレー11-1は、蓄電装置10-1とコンバータ12-1との間に設けられる。システムメインリレー11-2は、蓄電装置10-2とコンバータ12-2との間に設けられ、システムメインリレー11-3は、蓄電装置10-3とコンバータ12-2との間に設けられる。なお、蓄電装置10-2と蓄電装置10-3との短絡を避けるため、システムメインリレー11-2,11-3は、選択的にオンされ、同時にオンされることはない。
 コンバータ12-1,12-2は、互いに並列して主正母線MPLおよび主負母線MNLに接続される。コンバータ12-1は、MG-ECU40からの信号PWC1に基づいて、蓄電装置10-1と主正母線MPLおよび主負母線MNLとの間で電圧変換を行なう。コンバータ12-2は、MG-ECU40からの信号PWC2に基づいて、コンバータ12-2に電気的に接続された蓄電装置10-2および蓄電装置10-3のいずれかと主正母線MPLおよび主負母線MNLとの間で電圧変換を行なう。
 補機22は、システムメインリレー11-1とコンバータ12-1との間に配設される正極線PL1および負極線NL1に接続される。平滑コンデンサCは、主正母線MPLと主負母線MNLとの間に接続され、主正母線MPLおよび主負母線MNLに含まれる電力変動成分を低減する。
 インバータ30-1,30-2は、互いに並列して主正母線MPLおよび主負母線MNLに接続される。インバータ30-1は、MG-ECU40からの信号PWI1に基づいてモータジェネレータ32-1を駆動する。インバータ30-2は、MG-ECU40からの信号PWI2に基づいてモータジェネレータ32-2を駆動する。
 モータジェネレータ32-1,32-2は、交流回転電機であり、たとえば、永久磁石が埋設されたロータを備える永久磁石型同期電動機である。モータジェネレータ32-1,32-2は、動力分割装置34に連結される。動力分割装置34は、サンギヤと、ピニオンギヤと、キャリアと、リングギヤとを含む遊星歯車を含む。ピニオンギヤは、サンギヤおよびリングギヤと係合する。キャリアは、ピニオンギヤを自転可能に支持するとともに、エンジン36のクランクシャフトに連結される。サンギヤは、モータジェネレータ32-1の回転軸に連結される。リングギヤは、モータジェネレータ32-2の回転軸および駆動輪38に連結される。この動力分割装置34によって、エンジン36が発生する動力は、駆動輪38へ伝達される経路と、モータジェネレータ32-1へ伝達される経路とに分割される。
 そして、モータジェネレータ32-1は、動力分割装置34によって分割されたエンジン36の動力を用いて発電する。たとえば、蓄電装置10-1~10-3のSOCが低下すると、エンジン36が始動してモータジェネレータ32-1により発電が行なわれ、その発電された電力が蓄電装置へ供給される。
 一方、モータジェネレータ32-2は、蓄電装置10-1~10-3の少なくとも1つから供給される電力およびモータジェネレータ32-1により発電された電力の少なくとも一方を用いて駆動力を発生する。モータジェネレータ32-2の駆動力は、駆動輪38に伝達される。なお、車両の制動時には、車両の運動エネルギーが駆動輪38からモータジェネレータ32-2に伝達されてモータジェネレータ32-2が駆動され、モータジェネレータ32-2が発電機として作動する。これにより、モータジェネレータ32-2は、車両の運動エネルギーを電力に変換して回収する回生ブレーキとして作動する。
 MG-ECU40は、コンバータ12-1,12-2をそれぞれ駆動するための信号PWC1,PWC2を生成し、その生成した信号PWC1,PWC2をそれぞれコンバータ12-1,12-2へ出力する。また、MG-ECU40は、モータジェネレータ32-1,32-2をそれぞれ駆動するための信号PWI1,PWI2を生成し、その生成した信号PWI1,PWI2をそれぞれインバータ30-1,30-2へ出力する。
 また、MG-ECU40は、充電器42によって蓄電装置10-1の充電が行なわれるとき、充電ECU46から受ける信号CH1が活性化されると、充電器42からコンバータ12-2、主正母線MPLおよび主負母線MNLならびにコンバータ12-1を順次介して蓄電装置10-1へ充電電力が供給されるように信号PWC1,PWC2を生成してコンバータ12-1,12-2へそれぞれ出力する。
 充電器42は、車両インレット44に入力端が接続され、システムメインリレー11-2,11-3とコンバータ12-2との間に配設される正極線PL2および負極線NL2に出力端が接続される。充電器42は、車両外部の電源(以下「外部電源」とも称する。)48から供給される電力を車両インレット44から受ける。そして、充電器42は、充電ECU46から電力指令値CHPWを受け、充電器42の出力電圧を所定の直流電圧に制御しつつ、充電器42の出力電力が電力指令値CHPWに一致するように出力電力を制御する。車両インレット44は、外部電源48から電力を受けるための電力インターフェースである。
 ハイブリッド自動車100は、電圧センサ47をさらに含む。電圧センサ47は車両インレット44に外部から与えられる電圧VACを検出し、充電ECU46に検出値を出力する。
 電圧センサ14-1~14-3は、蓄電装置10-1の電圧VB1、蓄電装置10-2の電圧VB2および蓄電装置10-3の電圧VB3をそれぞれ検出し、その検出値を充電ECU46へ出力する。電流センサ16-1~16-3は、蓄電装置10-1に対して入出力される電流IB1、蓄電装置10-2に対して入出力される電流IB2および蓄電装置10-3に対して入出力される電流IB3をそれぞれ検出し、その検出値を充電ECU46へ出力する。
 電圧センサ18-1,18-2は、正極線PL1と負極線NL1との間の電圧VL1、および正極線PL2と負極線NL2との間の電圧VL2をそれぞれ検出し、その検出値を充電ECU46へ出力する。電流センサ19は、コンバータ12-2に対して入出力される正極線PL2の電流ILを検出し、その検出値を充電ECU46へ出力する。なお、この電流センサ19は、充電器42によって蓄電装置10-1の充電が行なわれるとき、充電器42からコンバータ12-2へ流れる電流を検出可能である。電圧センサ20は、主正母線MPLと主負母線MNLとの間の電圧VHを検出し、その検出値を充電ECU46へ出力する。
 充電ECU46は、車両インレット44に接続される外部電源48による蓄電装置10-1~10-3の充電時、蓄電装置10-1~10-3の充電電力(kW/h)の目標値PRを算出する。
 たとえば、電力一定充電(CP充電)を実行する場合には、まず蓄電装置の充電状態SOCが所定値以下のときに急速充電を実行する。このとき目標値PRは、電圧センサ47で検出する電圧VACに基づいて設定される。たとえば電圧VACが交流200Vであれば2.0kW/hに設定され、電圧VACが交流100Vであれば1.2kW/hに設定される。その後、蓄電装置の充電状態が所定値から満充電しきい値の間では、追加充電が行なわれる。このとき目標値PRは、固定値、例えば0.5kW/hに設定される。
 また、急速充電時に電力一定充電(CP充電)を行ないその後追加充電時に電圧一定充電(CV充電)を行なう場合には、急速充電時には上記と同様に目標値PRが設定され、追加充電時には蓄電装置の電圧VBが満充電時の最終目標電圧をそのまま維持するように目標値PRを調整する(目標値PRが0kW/h付近になったら充電終了させる)。
 また、充電ECU46は、充電器42によって蓄電装置10-1~10-3のいずれの充電が行なわれるかを示す信号SELを図示しない車両ECUから受ける。すなわち、この実施の形態においては、蓄電装置10-1~10-3は、予め定められた順序で順次充電される。
 なお、蓄電装置10-1の充電が行なわれるときは、充電ECU46からMG-ECU40へ信号CH1が出力され、充電器42からコンバータ12-2およびコンバータ12-1を順次介して蓄電装置10-1へ電力が流れるようにコンバータ12-1,12-2が動作する。ここで、蓄電装置10-1とコンバータ12-1との間に接続されている補機22は、蓄電装置10-1の充電が行なわれるときは、充電器42から供給される電力によって動作する。一方、蓄電装置10-2または蓄電装置10-3の充電が行なわれるときは、補機22は、蓄電装置10-1から電力の供給を受ける。
 そして、充電ECU46は、外部電源48による蓄電装置10-1~10-3の充電時、充電器42の出力電力の目標値を示す電力指令値CHPWを生成し、その生成した電力指令値CHPWを充電器42へ出力する。
 ここで、充電ECU46は、電圧VB1~VB3,VL1,VL2,VHおよび電流IB1~IB3,ILの各検出値を受け、蓄電装置10-1~10-3に実際に供給される充電電力が目標値PRに一致するように、充電器42の電力指令値CHPWを上記各検出値に基づいてフィードバック補正する。すなわち、この実施の形態においては、充電器42の出力電力が目標値に一致するように充電器42を制御するだけでなく、蓄電装置の実際の充電電力が目標値に一致するように、蓄電装置の状態に基づいて電力指令値CHPWがフィードバック補正される。これにより、蓄電装置10-1~10-3の充電電力を目標値PRに確実に一致させることができる。
 車両100は、さらに、正極線PL1と負極線NL1とに接続され電圧変換を行なうDC/DCコンバータ23と、DC/DCコンバータ23から電源電流が供給される補機22と、DC/DCコンバータ23とともに補機22に接続される補機バッテリ24とを含む。DC/DCコンバータ23が電圧変換動作を中止しているときには、補機バッテリ24から補機22に対して電力の供給が行なわれる。またDC/DCコンバータ23は、補機22に電源電流を供給するだけでなく、補機バッテリ24にも充電電流を供給する。
 充電ECU46は、充電器42によって外部から充電が行なわれている際にDC/DCコンバータ23を動作させたり停止させたりする制御を行なう。また、充電ECU46によって外部充電が実行されているときに車両外部にいる運転者等に充電中であることを示すパイロットランプ43が点灯される。したがって、パイロットランプ43は車室外(たとえばサイドミラーの下部など)に設けられることが好ましい。また充電ECU46は、車両のキーが差込まれており、車両が起動状態(IG-ONまたはReady ON状態)である場合には、ナビゲーションECU45に車両が充電中であることを表示させ、運転者に充電中であることを報知する。
 そして、充電器42に異常が発生したり充電中に補機22による消費電力が大きく充電がなかなか進行しない場合には、パイロットランプ43を点滅させたり、ナビゲーションECU45に指令を送り補機22が動作中である旨を表示させたりし、補機22のうち不要なものを動作停止させるように運転者に促す。
 本実施の形態の前提となるのは、以下のA~Fの特徴を持つ充電システムである:A)車載の他のECUからの指令値により電力供給可能なプラグイン充電システム;B)蓄電装置に設けられている電圧センサおよび電流センサにより充電電力または補機消費電力がモニタ可能であり、また充電器42直下の走行制御用の電圧センサ18-2,電流センサ19を利用することにより充電器42が供給する電力がモニタ可能なシステム;C)複数の蓄電装置を持ち、補機駆動する蓄電装置10-1と充電対象の蓄電装置とが同一の場合または別々の場合それぞれの充電パターンが混在するシステム;D)内部に設けられたサーミスタ等により過熱時にセーブ運転が可能な充電器42を有するシステム;E)ユーザがイグニッションキースイッチをONしたとき(IG-ON)にはナビゲーション画面にて任意の情報の表示が可能なシステム;F)車室外に設けられたパイロットランプ43を点灯および点滅させることで、充電状態を簡易的にユーザに伝えるシステム。
 図2は、図1に示したコンバータ12-1,12-2の概略構成図である。なお、各コンバータの構成および動作は同様であるので、以下ではコンバータ12-1の構成および動作について代表として説明する。
 図2を参照して、コンバータ12-1は、チョッパ回路13-1と、正母線LN1Aと、負母線LN1Cと、配線LN1Bと、平滑コンデンサC1とを含む。チョッパ回路13-1は、スイッチング素子Q1A,Q1Bと、ダイオードD1A,D1Bと、インダクタL1とを含む。
 正母線LN1Aは、一方端がスイッチング素子Q1Bのコレクタに接続され、他方端が主正母線MPLに接続される。負母線LN1Cは、一方端が負極線NL1に接続され、他方端が主負母線MNLに接続される。
 スイッチング素子Q1A,Q1Bは、負母線LN1Cと正母線LN1Aとの間に直列に接続される。具体的には、スイッチング素子Q1Aのエミッタが負母線LN1Cに接続され、スイッチング素子Q1Bのコレクタが正母線LN1Aに接続される。ダイオードD1A,D1Bは、それぞれスイッチング素子Q1A,Q1Bに逆並列に接続される。インダクタL1は、スイッチング素子Q1A,Q1Bの接続ノードと配線LN1Bとの間に接続される。
 配線LN1Bは、一方端が正極線PL1に接続され、他方端がインダクタL1に接続される。平滑コンデンサC1は、配線LN1Bと負母線LN1Cとの間に接続され、配線LN1Bおよび負母線LN1C間の直流電圧に含まれる交流成分を低減する。
 チョッパ回路13-1は、MG-ECU40(図1)からの信号PWC1に応じて、蓄電装置10-1(図1)と主正母線MPLおよび主負母線MNLとの間で双方向の直流電圧変換を行なう。信号PWC1は、下アーム素子を構成するスイッチング素子Q1Aのオン/オフを制御する信号PWC1Aと、上アーム素子を構成するスイッチング素子Q1Bのオン/オフを制御する信号PWC1Bとを含む。そして、一定のデューティーサイクル(オン期間およびオフ期間の和)内でのスイッチング素子Q1A,Q1Bのデューティー比(オン/オフ期間比率)がMG-ECU40によって制御される。
 スイッチング素子Q1Aのオンデューティーが大きくなるようにスイッチング素子Q1A,Q1Bが制御されると(スイッチング素子Q1A,Q1Bはデッドタイム期間を除いて相補的にオン/オフ制御されるので、スイッチング素子Q1Bのオンデューティーは小さくなる。)、蓄電装置10-1からインダクタL1に流れるポンプ電流量が増大し、インダクタL1に蓄積される電磁エネルギーが大きくなる。その結果、スイッチング素子Q1Aがオン状態からオフ状態に遷移したタイミングでインダクタL1からダイオードD1Bを介して主正母線MPLへ放出される電流量が増大し、主正母線MPLの電圧が上昇する。
 一方、スイッチング素子Q1Bのオンデューティーが大きくなるようにスイッチング素子Q1A,Q1Bが制御されると(スイッチング素子Q1Aのオンデューティーは小さくなる。)、主正母線MPLからスイッチング素子Q1BおよびインダクタL1を介して蓄電装置10-1へ流れる電流量が増大するので、主正母線MPLの電圧は下降する。
 このように、スイッチング素子Q1A,Q1Bのデューティー比を制御することによって、主正母線MPLの電圧を制御することができるとともに、蓄電装置10-1と主正母線MPLとの間に流す電流(電力)の方向および電流量(電力量)を制御することができる。
 図3は、図1に示した充電器42の概略構成図である。
 図3を参照して、充電器42は、フィルタ81と、電力制限部80と、温度センサ87と、電圧センサ91,93,94と、電流センサ92,95と、マイコン(マイクロコンピュータ)88とを含む。
 電力制限部80は、AC/DC変換部82と、平滑コンデンサ83と、DC/AC変換部84と、絶縁トランス85と、整流部86とを含む。
 フィルタ81は、車両インレット44(図1)とAC/DC変換部82との間に設けられ、外部電源48(図1)による蓄電装置10-1~10-3の充電時、車両インレット44から外部電源48へ高周波のノイズが出力されるのを防止する。AC/DC変換部82は、単相ブリッジ回路を含む。AC/DC変換部82は、マイコン88からの駆動信号に基づいて、外部電源48から供給される交流電力を直流電力に変換して正極線PLCおよび負極線NLCへ出力する。平滑コンデンサ83は、正極線PLCと負極線NLCとの間に接続され、正極線PLCおよび負極線NLC間に含まれる電力変動成分を低減する。
 DC/AC変換部84は、単相ブリッジ回路を含む。DC/AC変換部84は、マイコン88からの駆動信号に基づいて、正極線PLCおよび負極線NLCから供給される直流電力を高周波の交流電力に変換して絶縁トランス85へ出力する。絶縁トランス85は、磁性材を含むコアと、コアに巻回された一次コイルおよび二次コイルを含む。一次コイルおよび二次コイルは、電気的に絶縁されており、それぞれDC/AC変換部84および整流部86に接続される。そして、絶縁トランス85は、DC/AC変換部84から受ける高周波の交流電力を一次コイルおよび二次コイルの巻数比に応じた電圧レベルに変換して整流部86へ出力する。整流部86は、絶縁トランス85から出力される交流電力を直流電力に整流して正極線PL2および負極線NL2へ出力する。
 電圧センサ91は、フィルタ81後の外部電源48の電圧を検出し、その検出値をマイコン88へ出力する。電流センサ92は、外部電源48から供給される電流を検出し、その検出値をマイコン88へ出力する。電圧センサ93は、正極線PLCと負極線NLCとの間の電圧を検出し、その検出値をマイコン88へ出力する。電圧センサ94は、整流部86の出力側の電圧を検出し、その検出値をマイコン88へ出力する。電流センサ95は、整流部86から出力される電流を検出し、その検出値をマイコン88へ出力する。
 マイコン88は、電圧センサ94および電流センサ95の検出値に基づいて算出される充電器42の出力電力が電力指令値CHPWに一致するように、電圧センサ91,93,94および電流センサ92,95の各検出値に基づいて、AC/DC変換部82およびDC/AC変換部84を駆動するための駆動信号を生成する。そして、マイコン88は、その生成した駆動信号をAC/DC変換部82およびDC/AC変換部84へ出力する。
 温度センサ87は、充電器42が過熱状態に至るおそれがあるというセーブ運転条件が成立しているか否かを検出する。具体的には、温度センサ87は、充電器42の温度TCを検出しマイコン88に送信する。マイコン88は、温度センサ87の出力する温度TCに基づいて、セーブモードと通常モードとの間で充電器42の動作モードを変更する。電力制限部80は、マイコン88の制御の下で車両外部の電源からの電力を制限して蓄電装置10-1~10-3への充電電力として供給する。
 図4は、図3のマイコン88によって決定される充電電力の制限値の変化を示した図である。
 図4において、縦軸には充電電力である充電器42からの出力電力が示される。横軸には温度センサ87で検出される温度TCが示される。マイコン88は、温度が低い状態からしきい値温度T2に至るまでは、定格出力PS1を充電器42の出力制限値として設定する。この場合の動作モードは通常モードである。そして温度TCがしきい値温度T2を超えると、セーブモードに移行し、出力制限運転を電力制限部80に実行させる。この場合の出力制限値はPS1からPS2に低下する。
 そして温度TCがしきい値温度T2からしきい値温度T3である間はセーブモードで充電器42を運転させる。さらに温度TCがしきい値温度T3を超えると、マイコン88は、電力制限部80の動作を停止させ充電を停止させる。
 一方、充電を停止させることにより温度TCがしきい値温度T3よりも低下すると、再びセーブモードで充電器を運転させしきい値温度T1に低下するまではセーブモードを維持する。そして温度TCがしきい値温度T1よりもさらに低下した場合に、通常モードに充電器42の動作モードを復帰させる。
 図5は、図1に示した充電ECU46の機能ブロック図である。
 図5を参照して、充電ECU46は、電力算出部52と、減算部53と、フィードバック(FB)制御部54と、出力制限部65と、加算部62とを含む。
 電力算出部52は、充電器42によって蓄電装置10-1の充電が行なわれるとき、電圧VB1および電流IB1の検出値に基づいて蓄電装置10-1の充電電力を算出し、その演算結果をモニタ値PMとして減算部53へ出力する。なお、充電器42によって蓄電装置10-1の充電が行なわれることは、図示されない車両ECUから受ける信号SELによって判断される。また、充電器42によって蓄電装置10-2の充電が行なわれるとき、電力算出部52は、電圧VB2および電流IB2の検出値に基づいて蓄電装置10-2の充電電力を算出し、その演算結果をモニタ値PMとして減算部53へ出力する。また、充電器42によって蓄電装置10-3の充電が行なわれるとき、電力算出部52は、電圧VB3および電流IB3の検出値に基づいて蓄電装置10-3の充電電力を算出し、その演算結果をモニタ値PMとして減算部53へ出力する。
 減算部53は、上記の図示されない車両ECUから受ける蓄電装置10-1~10-3の充電電力(kW/h)の目標値PRから、電力算出部52によって算出されたモニタ値PMを減算し、その演算結果をフィードバック制御部54へ出力する。なお、目標値PRは、蓄電装置10-1~10-3ごとに異なってもよいし同じでもよい。
 フィードバック制御部54は、減算部53から受ける充電電力(kW/h)の目標値PRとモニタ値との偏差を制御入力として比例積分演算を行ない(PI制御)、その演算結果をフィードバック補正値PC0として出力制限部65へ出力する。
 出力制限部65は、目標値PRに対して電力指令値CHPWがあまり離れすぎないように制限を与える。フィードバック制御部54から出力された制限前の補正値PC0を制限してあまり0から大きく離れた値とならないようにし補正値PCを出力する。加算部62は、出力制限部65から受ける補正値PCを目標値PRに加算し、その演算結果を電力指令値CHPWとして出力する。
 この充電ECU46においては、フィードバック制御部54によって、蓄電装置10-1~10-3の充電電力(kW/h)が所定の目標値PRに一致するようにフィードバック制御される。
 [充電器に対する制御]
 本実施の形態では、上記に説明したハイブリッド車両の構成において、充電ECU46が図6および図14に示す制御を行ない、充電器42の異常検出や充電の中止、中断および再開を行なう。
 図6は、図1の充電ECU46によって実行される外部充電時の充電器の異常判定および充電中止制御のフローチャートである。このフローチャートの処理は、所定のメインルーチンから一定時間ごとまたは所定の条件が成立するごとに呼出されて実行される。なお、以下の説明において、判断を確定させるために所定時間の継続を要件とすることが実際には行なわれているが、フローチャートが煩雑になるので所定時間をカウンタで測定する処理は記載していない。
 図1、図6を参照して、まず処理が開始されると、ステップS1において充電電力フィードバック中であるか否かが充電ECU46によって判断される。充電電力フィードバック中というのは、充電ECU46によって実際に充電される電力が目標値PRに近づくように充電器42に対して電力指令値CHPWを出力しフィードバック制御を行なうことが実行中であるかということである。
 ステップS1において、充電電力フィードバック中でなければステップS10に処理が進み制御はメインルーチンに移される。一方、ステップS1において充電電力フィードバック中であると判断された場合には、ステップS2に処理が進む。
 ステップS2では、図5で目標値PRに対して加算部62によって加算される補正値PCがしきい値-α1よりも小さいか否かが判断される。
 図7は、図6のステップS2の判断を説明するための図である。
 図7において、フィードバック補正値PCがしきい値-α1より小さい領域A1は、目標値PRに対して-α1よりも小さい補正をかけて電力指令値CHPWを出力している状態に対応する。このような状態は、充電器42から蓄電装置10-1,10-2,10-3のいずれかに向けて送られている電力が大きすぎるので、これを急激に小さくするように補正値が出力されている状態である。このような場合には、ステップS11に処理が進み、充電器42から出力される電力が目標値を異常に超過している状態であるという診断結果(ダイアグノーシス:diagnosis)が確定され、充電が中止される。
 一方ステップS2において補正値PC<-α1が成立しなかった場合にはステップS3に処理が進む。ステップS3では、補正値PCがしきい値α2よりも大きいか否かが判断される。
 図8は、図6のステップS3での判断を説明するための図である。
 図8に示すように、フィードバック補正値PCがしきい値α2よりも大きい領域A2は、図5の目標値PRに対してしきい値α2以上の大きな補正をかけて電力指令値CHPWを出力している状態を示す。
 このような状態は、充電器42が故障等により電力をあまり出力することができなくなっていることが考えられる。したがって、PC>α2が成立した場合には、ステップS12に処理が進み、充電器42の電力が目標値に対して非常に低下した状態であると診断結果(ダイアグノーシス:diagnosis)が確定され、充電が中止される。
 一方ステップS3においてPC>α2が成立しなかった場合にはステップS4に処理が進む。ステップS4では、充電電力モニタ値PM2と目標値PRとの差分がしきい値βより大きいか否かが判断される。
 図9は、目標値PRと電力指令値CHPWとの関係を示した図である。
 図9に示すように、電力指令値CHPWは、目標値PR(≒PM2)に対して補機消費分の電力が足しこまれたラインL4によって決定される。なお、ラインL5は補機消費電力が最大となる見積もり量が加えられた場合のラインであり、ラインL4はラインL3とラインL5の間に位置する。なお、充電器42がセーブ運転を実行している場合には、目標値PRが大きくても充電器42が制限値PSに制限しているので充電器42の内部では電力指令値CHPWも領域A4の内部に制限されている。
 図10は、図6のステップS4の処理を説明するための図である。
 図10を参照して、横軸に目標値PRが示され、縦軸に充電電力モニタ値PM2が示されている。なお、充電電力モニタ値PM2は、充電対象の蓄電装置に充電される電力を対応する電流センサと電圧センサの検出値の積によって求めたものである。すなわちPM2は、IB1×VB1,IB2×VB2,IB3×VB3のいずれか1つである。
 そしてラインL1は、目標値PRと充電電力モニタ値PM2とが一致する直線である。これに対し、ラインL2は、目標値PRに対し充電電力モニタ値PM2がしきい値βだけ大きい状態を示すラインである。そして領域A3は、しきい値β以上差分が大きくなっている領域である。
 したがって図6のステップS4では、充電ECU46が、充電時の充電システムの動作点が領域A3に存在しているか否かを判断する処理を行なっている。ステップS4において充電電力モニタ値PM2と目標値PRとの差分がβより大きい場合には、ステップS11に処理が進み診断結果(ダイアグノーシス:diagnosis)を確定させ、充電は停止される。この場合は、適正な許容値を示すβを超えて充電器から過大な電力が出力されている。これは、たとえば充電器42に故障が発生して、指令値よりも大きな電力が出力されてしまうような場合が考えられる。
 一方ステップS4において充電電力モニタ値PM2と目標値PRとの差分がしきい値βより大きくなかった場合にはステップS5に処理が進む。ステップS5では、目標値PRが所定値γより大きいか否かが判断される。続いてステップS6では、充電電力モニタ値PM2が所定値Xより小さいか否かが判断される。
 図11は、図6のステップS5,S6で実行される判断を説明するための図である。
 図11において、横軸に目標値PRが示され、縦軸には充電電力モニタ値PM2が示される。なお、充電対象が、マスタバッテリである蓄電装置10-1の場合には、充電電力モニタ値PM2はIB1×VB1となる。
 なお、目標値PRに対する判定しきい値γは、測定値IL,VL2,IB1,VB1を検出するセンサのばらつきを考慮して、充電電力モニタ値PM2に対するしきい値Xより大きく設定された値である。
 ここでしきい値Xは、蓄電装置の充電状態の判定が過充電を検出できないような誤判定をしないための下限の充電電力である。たとえば、蓄電装置の充電状態は、開放電圧(OCV)で判断できることはよく知られているが、電力一定充電(CP充電)を実施しているときに、検出することが可能なのは開放電圧(OCV)ではなく閉路電圧(CCV)である。そして充電の完了後このCCVに対応するしきい値によって判断している。しかし、この開放電圧(OCV)に対して閉路電圧(CCV)の差がたとえば充電が0.5kW行なわれている際の差である0.2VであるとしてCCVしきい値を設定したとする。ここでは、0.5kWが正しくSOCを算出するための保証電力に該当する。このとき、充電している電力が0.5kWよりも小さい場合には、CCVとOCVとの差が0.2Vよりも小さくなる。したがって、充電される電力が小さい場合、実際のOCVが想定されたOCV(CCV-保証電力に対応する内部抵抗による電圧増加分)よりも大きくなってしまうので、蓄電装置に過充電が発生するおそれがある。
 たとえば、OCVを4.0VにするためにCCVが4.2Vになるまで充電を実行する場合を考える。充電電力が0.5kWよりも小さい場合には、CCVを4.2Vになるまで充電するとOCVは4.0Vより高い値となり想定されるSOCよりも大きくなるので過充電の恐れがある。
 図11において、領域A9に動作点が属する場合とは、目標値PRが大きいのにもかかわらず実際に充電電力としてモニタされる値(充電電力モニタ値PM2=IB1×VB1)が異常なほど小さい場合である。
 図11において充電システムの動作点が領域A9に属する場合には、ステップS5からステップS6を経由してステップS7に処理が進む。一方、領域A9に充電システムの動作点が属さない場合にはステップS5またはステップS6からステップS10に処理が進み制御はメインルーチンに移される。
 ステップS6からステップS7に処理が進んだ場合には、ステップS7において充電対象である蓄電装置によって補機が駆動中であるか否かが判断される。言い換えると、図1の構成では補機22は蓄電装置10-1から電力供給を受ける構成となっているので、ステップS7では、充電対象が蓄電装置10-1であるか否かが判断される。
 ステップS7において充電対象が補機が接続されている側の蓄電装置、すなわち図1の蓄電装置10-1でない場合には、ステップS12に処理が進む。この場合は、充電器42から対象の蓄電装置10-2または10-3に充電される充電電力モニタ値PM2が目標値PRに対して異常に少ないことが判明する。したがって、ステップS12では、指令値に対応する電力を出力することができない故障が充電器42に生じたと診断され、充電を停止し、そして故障である旨の診断結果(ダイアグノーシス:diagnosis)を確定させる。
 一方ステップS7において充電対象が補機22に電力を供給する蓄電装置であった場合にはステップS7からステップS8に処理が進む。ステップS8では、充電器42から出力される供給電力がしきい値Yより小さいか否かが判断される。
 図12は、図6のステップS8での判断を説明するための図である。なお、図12は、マスタバッテリである蓄電装置10-1が充電対象になっている場合に適用される判定マップである。
 図12を参照して、横軸には図1の充電器42から出力される電力をモニタした値(IL×VL2)が示されている。また縦軸には、対象である蓄電装置10-1に充電される電力をモニタした値(IB1×VB1)が示されている。
 ここでしきい値Xは、図11でも説明したが、蓄電装置の充電状態の判定が過充電を検出できないような誤判定をしないための下限の充電電力である。ステップS8の処理を実行するまでには、ステップS6において充電電力モニタ値がしきい値Xより小さい場合に限定されている。
 そこで図12の領域A7に動作点が存在する場合には、充電対象の推定SOCに誤差が生じ過充電のおそれがあるので、ステップS8からステップS12に処理が進む。ステップS12では充電を停止させるとともに充電器42の出力電力低下異常であるという診断を確定させる。一方、領域A8に動作点が属する場合には、ステップS8からステップS9に処理が進む。この場合は、充電器42からは電力が出力されているが、補機22において消費される電力が大きいので、蓄電装置10-1に充電される電力が小さいという可能性がある。ステップS9においては、補機22で消費される電力が大きいか否かの判定(以下補機消費「大」判定という)を実行し、その判定結果に対応する所定のフラグをON/OFFさせる。
 ステップS9の判定が終了するとステップS10において制御はメインルーチンに移される。
 図13は、スレーブバッテリに充電される場合の補機消費「大」判定について説明するための図である。
 図13を参照して、横軸には、充電電力モニタ値として(IB2×VB2)が設定されていることを示す。縦軸には、補機22に対して電力供給を行なうために蓄電装置10-1から放電される電力のモニタ値(IB1×VB1)が示されている。しきい値Xは、図11,図12でも説明したが、蓄電装置のSOCを正しく検出することを保証するための最低電力を示すしきい値である。またしきい値Zは、スレーブ蓄電装置を充電している場合に適用される補機消費「大」を判定するためのしきい値である。
 領域A5では、充電器42に出力電力が低下する故障が発生したと判定する領域であり、領域A6は、補機の消費電力が大きい状態であると判定する領域である。
 図14は、図6のステップS9で実行される補機消費「大」判定の詳細を示したフローチャートである。
 図14を参照して、このフローチャートの処理が開始されると、まずステップS101において、補機消費電力が「大」であると判定されているか否かが判断される。これは対応するフラグがON状態であるか否かで判断することができる。ステップS101において補機の消費電力が「大」であると判定されていない場合にはステップS102に処理が進む。
 ステップS102では、充電対象の蓄電装置で補機が駆動中であるか否かが判断される。言い換えると、補機を駆動する蓄電装置が現在の充電器42による外部充電の対象であるか否かが判断される。ステップS102において充電対象の蓄電装置で補機が駆動中であると判断された場合にはステップS107に処理が進む。一方充電対象である蓄電装置で補機が駆動中でない場合にはステップS103に処理が進む。この場合には、蓄電装置10-1は補機を駆動するが充電されることは無い。すなわちマスタバッテリにおいて放電が行なわれている。
 ステップS103では、補機側放電電力モニタ値PM2がしきい値-Zよりも小であるか否かが判断される。ここで、補機側放電電力モニタ値PM2はIB1×VB1である。ステップS103においてPM2<-Zが成立した場合にはステップS107に処理が進み、成立しなかった場合にはステップS106に処理が進む。
 一方ステップS101において補機消費電力「大」と判定されていた場合にはステップS104に処理が進み一旦充電が中断されさらにステップS105に処理が進む。ステップS105では、補機側放電電力モニタ値PM2がしきい値Zより大であるか否かが判断される。ステップS105においてPM2>Zが成立した場合にはステップS106に処理が進み、成立しなかった場合はステップS107に処理が進む。
 ステップS106では、補機消費電力が「大」であるという判定が行なわれる。この判定に対応してフラグがON状態に設定される。
 一方ステップS107では、補機消費電力が「大」であるという判定がクリアされこれに対応するフラグがオフ状態に設定される。そして充電の再開が許可される。ステップS107の処理が終了するとステップS113に処理が進み制御はメインルーチンに移される。
 一方ステップS106において補機消費電力が「大」であるという判定が行なわれた場合にはステップS108に処理が進み、補機を駆動する蓄電装置の充電状態SOCがしきい値Aより小であるか否かが判断される。ここで図1の構成では、補機を駆動する蓄電装置とは蓄電装置10-1が該当する。そしてしきい値Aは、蓄電装置10-1のダメージ防止のための充電状態SOCの管理下限値であり、蓄電装置の特性に基づいて定められる値である。
 ステップS108において補機側SOCがしきい値Aよりも小さい場合には、ステップS114に処理が進み車両のシステムを強制終了する。これにより、図1では蓄電装置10-1が過放電となることを防ぐことができる。
 一方ステップS108においてSOC<Aが成立しなかった場合にはステップS109に処理が進む。ステップS109では、車外のパイロットランプ43を点滅させる。これは、ヘッドランプやハザードランプなどの消費電力が大きい補機を消し忘れたままユーザが車両から離れた可能性があるので、車外のパイロットランプを点滅させてユーザに報知するものである。なお、このパイロットランプは、充電実行中は点灯状態とし、ステップS109では、特殊な周期や色などで点滅を行ないユーザに注意を促す。なおこの点滅の方法は車両に付属の説明書などに記載しておく。
 続いてステップS110においてイグニッションキースイッチがON状態であるか否かが判断される。なお、イグニッションキースイッチがON状態であるとは、車両が発進可能にある状態(Ready ON状態)を示す。
 ステップS110においてイグニッションキースイッチがON状態でなかった場合にはステップS111に処理が進む。この場合、ユーザが車両の内部にいない場合が多いので、消し忘れられた補機がそのままになる可能性が高い。したがってステップS111では、補機放電電力モニタ値PM2が大きい状態が一定以上となった場合にステップS114に処理が進み、システムを強制終了させる。これにより、図1のシステムメインリレー11-1がオープン状態になるので、蓄電装置10-1からの過放電が防止され蓄電装置が保護される。
 一方ステップS111において、補機放電電力モニタ値PM2が大きい状態が一定時間以上継続していない場合にはステップS113に処理が進み制御はメインルーチンに移される。
 またステップS110においてイグニッションキースイッチがON状態であった場合には、ステップS112に処理が進み充電ECU46がナビゲーションECU45に対してナビゲーション画面に警告メッセージを表示させる。この警告メッセージとしては、たとえば「充電電力が不足しています、IGランプをお切り下さい」などの割込表示を実行させる。また、マスタバッテリである蓄電装置10-1の残量が低下しているときには、ナビゲーション画面を赤くするなどより切迫感を示す方法で表示を行なわせてもよい。
 ステップS112において警告メッセージの表示が実行された後には、ステップS113に処理が進み、制御はメインルーチンに移される。
 図15は、マスタバッテリ充電時の充電中断と再開について説明するための図である。
 図15を参照して、まずマスタバッテリ充電中において領域A8に動作点が属する場合には、充電ECU46は充電器42に対して充電を中断させる。これは、補機による消費電力が大きいため、マスタバッテリに、しきい値X以上の電力が充電できない場合を示している。このような場合には、充電状態SOCの正しい算出ができないので、マスタバッテリが過充電となってしまうおそれがある。このため充電を一旦中断させる。
 そして、補機が動作停止したことによりマスタバッテリから放電される電力IB1×VB1が減少し、±Z以内に入った場合に充電を再開させる。電力消費が大きかった補機が停止されたことにより充電再開時にしきい値Xよりも大きい電力の充電が期待できる。
 この場合、充電器42から供給される電力IL×VL2のばらつきが大きい場合に充電中断と再開の頻度が高くなるハンチングを防止するために、図15においてβ1>β2に設定しヒステリシスを設けるようにすれば好ましい。
 また、一定期間内で、設定回数以上の充電中断と再開の繰返しがある場合には、充電器の出力する電力の低下異常であるという診断を確定させシステムを終了してもよい。
 一方、スレーブバッテリすなわち図1の蓄電装置10-2または10-3の充電時には、充電を継続すると、スレーブバッテリへの充電完了前に補機電力消費によりマスタバッテリの過放電が生じるおそれがある場合がある。このような場合には以下の式で時間TA,TBを算出しこれに基づいてユーザに告知する。
 TA(残充電時間)=(スレーブバッテリ充電残容量)/(充電電力)
 TB(マスタバッテリSOC持続時間)=((マスタバッテリSOC)-(強制終了SOC))/(補機消費電力)
 そして、TB<TAとなる場合には、補機消費電力が図15のしきい値Xより小の場合でも補機消費電力「大」であると判定し、スレーブバッテリの充電は継続するがユーザには告知することがよい。
 このとき、補機消費電力と比較するしきい値である補機消費「大」判定値は、(マスタバッテリ残電力量)/(スレーブバッテリ充電残容量)×(充電電力)で算出できる。
 最後に、本実施の形態について図1を参照して総括する。本実施の形態に係る車載の蓄電装置10-1~10-3を充電する車両の充電システムは、蓄電装置10-1~10-3を充電するために車両外部の電源48から電力が供給されるように構成された充電器42と、蓄電装置10-1~10-3に供給される充電電力を検知する充電電力検知部(電圧センサ14-1~14-3,電流センサ16-1~16-3)と、目標値PRに基づいて充電器(42)に対する電力指令値CHPWを生成することによって充電器42の制御を行なう充電制御装置(充電ECU46)とを備える。充電制御装置は、図6のステップS4に示すように、充電電力検知部により検知された充電電力モニタ値PM2と目標値PRとの差を検出し、検出した差に基づいて充電器42の異常発生の有無を判断する。
 好ましくは、車両100は、充電器42から出力される電力の一部によって駆動され得る補機22を含む。車両100の充電システムは、充電器42から出力される電力を検知する充電器出力電力検知部(電圧センサ18-2,電流センサ19)をさらに備える。充電制御装置は、充電器42から出力される電力と充電電力とに基づいて、適切な充電電力(図11,図12のしきい値X)を確保するためには補機22で消費される補機消費電力が過大であるか否かを判断し、補機消費電力が過大であると判断した場合には、蓄電装置の充電状態がしきい値Aより小さくなったとき(図14のステップS108でYES)、または補機消費電力が過大である時間が所定時間を超えたとき(図14のステップS111でYES)に、補機22の動作停止を含む車両のシステム強制終了を実行する(図14のステップS114)。
 より好ましくは、充電制御装置は、補機消費電力が過大であると判断した場合には充電器42による外部からの蓄電装置10-1~10-3に対する充電を中断し、中断後に補機消費電力が減少し適切な充電電力を確保できる状態となったときに蓄電装置に対する充電を再開させる。
 より好ましくは、適切な充電電力(しきい値X)は、充電電力検知部の出力に基づいて蓄電装置の充電状態SOCが適切に推定できる下限値より大きい電力である。
 より好ましくは、蓄電装置は、補機への電力供給経路(PL1、NL1)に接続された第1の蓄電装置10-1と、充電器42の出力が接続される経路(PL2、NL2)に接続された第2の蓄電装置10-2とを含む。車両の充電システムは、第1の蓄電装置の電圧VL1と電気負荷への供給電圧VHとの間で電圧変換を行なう第1の電圧コンバータ12-1と、第2の蓄電装置10-2の電圧VL2と供給電圧VHとの間で電圧変換を行なう第2の電圧コンバータ12-2とをさらに備える。充電制御装置は、第1、第2の電圧コンバータを制御することにより充電器42から充電電力が供給される充電対象を第1、第2の蓄電装置10-1,10-2のうちから選択する。第1の蓄電装置10-1が充電対象である場合には、充電制御装置は、補機消費電力が過大であると判断した場合には充電器42による外部からの充電対象に対する充電を中断し、中断後に補機消費電力が減少し適切な充電電力を確保できる状態となったときに充電対象に対する充電を再開させる。第2の蓄電装置10-2が充電対象である場合には、充電制御装置は、補機消費電力が過大であると判断した場合には、充電対象の充電状態SOCがしきい値Aより小さくなったとき(ステップS108でYES)、または補機消費電力が過大である時間が所定時間を超えたとき(ステップS111でYES)に、補機の動作停止を含む車両のシステム強制終了を実行する。
 好ましくは、車両(100)は、蓄電装置10-1~10-3から電力を受けて作動する車両駆動用のモータ(モータジェネレータ32-2)と、モータと共に車両駆動用として併用される内燃機関(エンジン36)とを含む。
 本実施の形態の特徴を列挙すると以下のとおりである。
 (1)電池を保護するため、充電電力が目標値と乖離する前にフィードバック補正量のずれがしきい値よりも大きいことで充電器42の異常を検知する(図6のステップS2、S3)。急な故障も瞬時に検知するため、充電電力の絶対値または充電電力モニタ値と目標値の偏差にもしきい値を設定する。いずれかの値がしきい値を超えたことで充電器42の故障の診断を確定させる。
 (2)モニタ値低下検出の際、センサ出力バラツキによる故障の誤検出を防止するため、目標電力の下限を設定する(図11)。
 (3)さらに、電力絶対値低下を検出する際には、補機駆動をしている電池と充電対象の電池とが同一の場合のみに限定し(図6のステップS7でYES)、補機での消費電力増加の際の故障誤検出防止のため供給電力も低下したときに限定して(ステップS8でYES)異常を検出する。
 (4)上記(3)の条件が不成立での充電電力低下時は、過充電防止のため補機での消費電力が大きいと判断し、充電を中断する(図14のステップS104)。なお補機駆動電池と充電対象電池とが異なる場合には(ステップS102でYES)充電を継続させる(補機接続側電池の放電量にて補機消費電力はモニタする)。
 (5)補機での消費電力が「大」時には、ユーザへ補機停止喚起のため表示系を操作する(図14のステップS109、S112)。たとえばIG-ON時ではナビゲーション画面に表示し、IG-OFF時は、車室外のパイロットランプを独自パターンの点滅をさせるなど、注意喚起方法を適宜切換える。なお、パイロットランプはIG-ON時には点滅させないでも良いが、イグニッションキースイッチをOFFし忘れてユーザが車室外に出たことも想定し、図14のフローチャートではパイロットランプ43は常時点滅させている。
 また、IG-OFFかつ消費電力が想定内であることで、固有の補機(ランプ、ハザードなどイグニッションキースイッチ非連動の補機)に限定し注意を喚起してもよい。
 さらに、充電対象が補機を駆動する蓄電装置10-1でないときに、蓄電装置10-2または10-3の充電完了までに蓄電装置10-1が強制終了に至るという消費電力の方が補機消費電力「大」判定しきい値よりも小さい場合、その小さい方を優先して注意喚起の表示をしてもよい。
 (6)補機消費電力「大」時に、補機側電池の容量しきい値以下に到達したときには、電池を過放電から保護するためシステムを強制終了させる(ステップS108でYES)。消費量および消費時間のしきい値を超えたときは、ユーザが車両から離れたと判定し、残容量の低下を待たずにシステムを強制終了させる(ステップS111でYES)。
 (7)補機での消費電力「大」での中断中に、補機の消費電力が低下し(ステップS105でNO)必要な充電量が確保されSOC算出誤差による過充電が回避される場合は、充電を復帰し充電の機会を確保する。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

Claims (6)

  1.  車載の蓄電装置(10-1~10-3)を充電する車両の充電システムであって、
     前記蓄電装置を充電するために車両外部の電源から電力が供給されるように構成された充電器(42)と、
     前記蓄電装置に供給される充電電力を検知する充電電力検知部(14-1~14-3,16-1~16-3)と、
     目標値に基づいて前記充電器に対する電力指令値を生成することによって前記充電器の制御を行なう充電制御装置(46)とを備え、
     前記充電制御装置は、前記充電電力検知部により検知された充電電力と前記目標値との差を検出し、検出した差に基づいて前記充電器の異常発生の有無を判断する、車両の充電システム。
  2.  前記車両(100)は、
     前記充電器から出力される電力の一部によって駆動され得る補機(22)を含み、
     前記車両の充電システムは、
     前記充電器から出力される電力を検知する充電器出力電力検知部(18-2,19)をさらに備え、
     前記充電制御装置は、前記充電器から出力される電力と前記充電電力とに基づいて、適切な前記充電電力を確保するためには前記補機で消費される補機消費電力が過大であるか否かを判断し、前記補機消費電力が過大であると判断した場合には、前記蓄電装置の充電状態がしきい値より小さくなったとき、または前記補機消費電力が過大である時間が所定時間を超えたときに、前記補機の動作停止を含む車両のシステム強制終了を実行する、請求の範囲1に記載の車両の充電システム。
  3.  前記充電制御装置は、前記補機消費電力が過大であると判断した場合には前記充電器による外部からの前記蓄電装置に対する充電を中断し、中断後に前記補機消費電力が減少し適切な前記充電電力を確保できる状態となったときに前記蓄電装置に対する充電を再開させる、請求の範囲2に記載の車両の充電システム。
  4.  前記適切な前記充電電力は、前記充電電力検知部の出力に基づいて前記蓄電装置の充電状態が適切に推定できる下限値より大きい電力である、請求の範囲2または3に記載の車両の充電システム。
  5.  前記蓄電装置は、
     前記補機への電力供給経路に接続された第1の蓄電装置(10-1)と、
     前記充電器の出力が接続された第2の蓄電装置(10-2)とを含み、
     前記車両の充電システムは、
     前記第1の蓄電装置の電圧と電気負荷への供給電圧との間で電圧変換を行なう第1の電圧コンバータ(12-1)と、
     前記第2の蓄電装置の電圧と前記供給電圧との間で電圧変換を行なう第2の電圧コンバータ(12-2)とをさらに備え、
     前記充電制御装置は、前記第1、第2の電圧コンバータを制御することにより前記充電器から前記充電電力が供給される充電対象を前記第1、第2の蓄電装置のうちから選択し、
     前記第1の蓄電装置が充電対象である場合には、前記充電制御装置は、前記補機消費電力が過大であると判断したときには前記充電器による外部からの前記充電対象に対する充電を中断し、中断後に前記補機消費電力が減少し適切な前記充電電力を確保できる状態となったときに前記充電対象に対する充電を再開させ、
     前記第2の蓄電装置が充電対象である場合には、前記充電制御装置は、前記補機消費電力が過大であると判断したときには、前記充電対象の充電状態がしきい値より小さくなったとき、または前記補機消費電力が過大である時間が所定時間を超えたときに、前記補機の動作停止を含む車両のシステム強制終了を実行する、請求の範囲2に記載の車両の充電システム。
  6.  前記車両(100)は、
     前記蓄電装置から電力を受けて作動する車両駆動用のモータ(32-2)と、
     前記モータと共に車両駆動用として併用される内燃機関(36)とを含む、請求の範囲1に記載の車両の充電システム。
PCT/JP2008/072313 2008-12-09 2008-12-09 車両の電源システム WO2010067417A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2008/072313 WO2010067417A1 (ja) 2008-12-09 2008-12-09 車両の電源システム
CN200880132275.3A CN102246386B (zh) 2008-12-09 2008-12-09 车辆的电源***
US13/000,772 US8648565B2 (en) 2008-12-09 2008-12-09 Power supply system of vehicle
JP2010541910A JP5333457B2 (ja) 2008-12-09 2008-12-09 車両の充電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/072313 WO2010067417A1 (ja) 2008-12-09 2008-12-09 車両の電源システム

Publications (1)

Publication Number Publication Date
WO2010067417A1 true WO2010067417A1 (ja) 2010-06-17

Family

ID=42242428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072313 WO2010067417A1 (ja) 2008-12-09 2008-12-09 車両の電源システム

Country Status (4)

Country Link
US (1) US8648565B2 (ja)
JP (1) JP5333457B2 (ja)
CN (1) CN102246386B (ja)
WO (1) WO2010067417A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011176A1 (ja) * 2010-07-22 2012-01-26 トヨタ自動車株式会社 電動車両およびその充電制御方法
JP2012023938A (ja) * 2010-07-16 2012-02-02 Toyota Motor Corp 充電システム
JP2012060752A (ja) * 2010-09-08 2012-03-22 Nitto Kogyo Co Ltd 分電盤
JP2013090459A (ja) * 2011-10-18 2013-05-13 Toyota Motor Corp 電気自動車用充電装置
EP2592716A1 (en) * 2010-07-05 2013-05-15 Toyota Jidosha Kabushiki Kaisha Control device for vehicle and control method for vehicle
WO2015008757A1 (ja) * 2013-07-16 2015-01-22 日本電気株式会社 蓄電池の急速充電方法、急速充電システムおよびプログラム
JP2017153255A (ja) * 2016-02-25 2017-08-31 株式会社Subaru 車両用電源装置
WO2024100793A1 (ja) * 2022-11-09 2024-05-16 株式会社オートネットワーク技術研究所 車両用遮断制御装置

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AP3970A (en) 2009-04-01 2016-12-30 Eaglepicher Technologies Llc Hybrid energy storage system, renewable energy system including the storage system, and method of using same.
US8575886B2 (en) * 2009-09-10 2013-11-05 Hitachi Engineering & Services Co., Ltd. Power storage apparatus of power generation system and operating method of power storage apparatus
KR101144033B1 (ko) * 2009-12-04 2012-05-23 현대자동차주식회사 하이브리드 차량의 모터 구동 시스템 제어 방법
US8698451B2 (en) 2009-12-18 2014-04-15 General Electric Company Apparatus and method for rapid charging using shared power electronics
US8536729B2 (en) * 2010-06-09 2013-09-17 Hamilton Sundstrand Corporation Hybrid electric power architecture for a vehicle
US9511679B2 (en) * 2010-06-23 2016-12-06 Toyota Jidosha Kabushiki Kaisha Vehicular control device and method
JP5607569B2 (ja) * 2011-03-31 2014-10-15 トヨタ自動車株式会社 車両の充電装置およびそれを備える車両、ならびに電流センサのオフセット補正方法
MX341830B (es) * 2011-08-12 2016-09-05 Stephen Davies Kevin Sistema de conversion de energia.
KR20130025822A (ko) * 2011-09-02 2013-03-12 삼성에스디아이 주식회사 모터를 구비한 전기기기의 배터리 충전 장치 및 방법
CN103906651B (zh) * 2011-11-04 2016-04-20 丰田自动车株式会社 车辆和车辆的控制方法
JP5919991B2 (ja) * 2011-11-29 2016-05-18 ソニー株式会社 電子機器、給電装置および給電システム
EP2800226B1 (en) 2011-12-31 2018-08-15 Shenzhen BYD Auto R&D Company Limited Electric vehicle and power system and motor controller for electric vehicle
KR101297150B1 (ko) * 2012-01-12 2013-08-21 주진관 이차전지를 이용한 전원장치의 충방전 전환장치
JP5831261B2 (ja) * 2012-02-01 2015-12-09 株式会社デンソー 電力伝送装置
KR101312263B1 (ko) * 2012-03-23 2013-09-25 삼성에스디아이 주식회사 운송 수단 및 그 제어 방법
US8981727B2 (en) * 2012-05-21 2015-03-17 General Electric Company Method and apparatus for charging multiple energy storage devices
CN103847530B (zh) 2012-12-03 2017-04-12 通用电气公司 电驱动***及其能量管理方法
JP5776679B2 (ja) * 2012-12-21 2015-09-09 トヨタ自動車株式会社 電動車両および電動車両の制御方法
TWI491858B (zh) * 2013-03-15 2015-07-11 Richtek Technology Corp 溫度偵測電路及其方法
US9434385B2 (en) * 2013-04-01 2016-09-06 Toyota Jidosha Kabushiki Kaisha Charge control device, vehicle control device, vehicle, charge control method and vehicle control method
CN103290803A (zh) * 2013-06-25 2013-09-11 芜湖爱瑞特环保科技有限公司 一种新能源清洗车
JP6136784B2 (ja) * 2013-09-04 2017-05-31 トヨタ自動車株式会社 車両
US10286800B2 (en) 2013-10-09 2019-05-14 Ford Global Technologies, Llc Control pilot latch-out mechanism to reduce off-board energy consumption
US10046661B2 (en) 2013-10-09 2018-08-14 Ford Global Technologies, Llc Detection of on-board charger connection to electric vehicle supply equipment
US9969276B2 (en) 2013-10-09 2018-05-15 Ford Global Technologies, Llc Plug-in vehicle with secondary DC-DC converter
US9056553B2 (en) 2013-10-31 2015-06-16 Honda Motor Co., Ltd. Methods and systems for charging an electric vehicle
BR112016010829B1 (pt) * 2013-11-13 2021-06-22 Volvo Lastvagnar Aktiebolag Sistema de carga/descarga
JP6227003B2 (ja) * 2013-11-13 2017-11-08 ボルボ ラストバグナー アクチエボラグ 充放電システム
TWI559648B (zh) * 2014-01-21 2016-11-21 台達電子工業股份有限公司 動態充電之充電裝置及其操作方法
JP6286793B2 (ja) * 2014-01-24 2018-03-07 株式会社日立情報通信エンジニアリング Dc−dcコンバータ、二次電池充放電システム、およびdc−dcコンバータの制御方法
US9834098B2 (en) 2014-01-30 2017-12-05 General Electric Company Vehicle propulsion system with multi-channel DC bus and method of manufacturing same
KR101684736B1 (ko) * 2014-08-21 2016-12-08 에스케이이노베이션 주식회사 전력 소모를 최소화한 과충전 방지 장치
US10052965B2 (en) * 2014-09-30 2018-08-21 Ford Global Technologies, Llc Method for charging the starter battery of a vehicle
US20160101703A1 (en) * 2014-10-14 2016-04-14 Efficient Drivetrains, Inc. Systems and methods for safe charging for electric or hybrid electric vehicles
DE102014016620B4 (de) * 2014-10-24 2021-08-26 Audi Ag Verfahren zum Betrieb einer Energiespeichereinrichtung in einem Kraftfahrzeug und Kraftfahrzeug
CN104955244B (zh) * 2015-07-08 2016-04-27 曹俊军 智能路灯照明***
GB2537197B (en) * 2015-10-16 2017-05-10 Ford Global Tech Llc A vehicle electrical system
TWI569556B (zh) * 2015-10-22 2017-02-01 財團法人工業技術研究院 電池管理系統和方法
CN105356724B (zh) * 2015-12-05 2018-08-03 泉州台商投资区华奥电子科技有限公司 一种城市用电电力转换***
US10427537B2 (en) * 2016-10-14 2019-10-01 Ford Global Technologies, Llc Vehicle power supply control
DE102016123923A1 (de) * 2016-12-09 2018-06-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Ladevorrichtung
KR20180070892A (ko) * 2016-12-19 2018-06-27 현대자동차주식회사 전기 자동차, 그를 포함하는 시스템 및 전기 자동차의 배터리 충전 방법
US10394548B2 (en) 2017-07-25 2019-08-27 Aurora Labs Ltd. Assembling data deltas in vehicle ECUs and managing interdependencies between software versions in vehicle ECUs using tool chain
JP6548699B2 (ja) * 2017-08-03 2019-07-24 本田技研工業株式会社 電源システム
KR102443338B1 (ko) * 2017-09-12 2022-09-15 현대자동차주식회사 배터리 충전 제어방법 및 시스템
JP6759465B2 (ja) * 2017-09-26 2020-09-23 株式会社東芝 ハイブリッド車両
DE102018201934A1 (de) * 2018-02-07 2019-08-08 HELLA GmbH & Co. KGaA Ladesteuerungseinrichtung für Kraftfahrzeuge
JP7027946B2 (ja) * 2018-02-22 2022-03-02 トヨタ自動車株式会社 車両
JP6979588B2 (ja) * 2018-02-23 2021-12-15 パナソニックIpマネジメント株式会社 照明光通信装置
CN112004712A (zh) * 2018-04-20 2020-11-27 西门子股份公司 充电基础设施单元和具有充电功率选项的充电基础设施
IT201800006205A1 (it) * 2018-06-11 2019-12-11 Impianto elettrico di potenza di un veicolo con propulsione elettrica
JP7070333B2 (ja) * 2018-10-29 2022-05-18 トヨタ自動車株式会社 電力変換ユニット
WO2021070815A1 (ja) * 2019-10-07 2021-04-15 本田技研工業株式会社 充電システム
EP3823070A1 (en) * 2019-11-12 2021-05-19 AIRBUS HELICOPTERS DEUTSCHLAND GmbH A hybrid energy storage system
JP7172974B2 (ja) * 2019-12-10 2022-11-16 トヨタ自動車株式会社 充電制御装置
CN111756046B (zh) * 2020-07-29 2022-02-18 阳光电源股份有限公司 一种母线电压控制方法、控制器及光伏储能变换***
JP2022142450A (ja) * 2021-03-16 2022-09-30 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP2022144647A (ja) * 2021-03-19 2022-10-03 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP2022156736A (ja) * 2021-03-31 2022-10-14 本田技研工業株式会社 車両、車両制御装置、車両制御プログラム及び車両制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02193532A (ja) * 1989-01-20 1990-07-31 Shinko Electric Co Ltd 充電器の制御方法
JPH09308126A (ja) * 1996-05-17 1997-11-28 Nissan Motor Co Ltd 充電装置
JP2007209168A (ja) * 2006-02-03 2007-08-16 Toyota Motor Corp 電動車両
JP2008187884A (ja) * 2007-01-04 2008-08-14 Toyota Motor Corp 電源システムおよびそれを備える車両、ならびにその制御方法
JP2008211955A (ja) * 2007-02-28 2008-09-11 Toyota Motor Corp 走行用蓄電機構の充電制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3247230B2 (ja) 1993-12-28 2002-01-15 トヨタ自動車株式会社 充電制御装置
JP4462224B2 (ja) * 2006-03-31 2010-05-12 マツダ株式会社 車両のハイブリッドシステム
US8030880B2 (en) * 2006-11-15 2011-10-04 Glacier Bay, Inc. Power generation and battery management systems
JP4782663B2 (ja) * 2006-11-29 2011-09-28 パナソニック株式会社 充電システム、充電装置、及び電池パック

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02193532A (ja) * 1989-01-20 1990-07-31 Shinko Electric Co Ltd 充電器の制御方法
JPH09308126A (ja) * 1996-05-17 1997-11-28 Nissan Motor Co Ltd 充電装置
JP2007209168A (ja) * 2006-02-03 2007-08-16 Toyota Motor Corp 電動車両
JP2008187884A (ja) * 2007-01-04 2008-08-14 Toyota Motor Corp 電源システムおよびそれを備える車両、ならびにその制御方法
JP2008211955A (ja) * 2007-02-28 2008-09-11 Toyota Motor Corp 走行用蓄電機構の充電制御装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2592716A1 (en) * 2010-07-05 2013-05-15 Toyota Jidosha Kabushiki Kaisha Control device for vehicle and control method for vehicle
EP2592716A4 (en) * 2010-07-05 2015-04-22 Toyota Motor Co Ltd CONTROL DEVICE FOR VEHICLE AND CONTROL PROCESS FOR VEHICLE
JP2012023938A (ja) * 2010-07-16 2012-02-02 Toyota Motor Corp 充電システム
US9160193B2 (en) 2010-07-16 2015-10-13 Toyota Jidosha Kabushiki Kaisha Electricity charging system
CN102892615A (zh) * 2010-07-22 2013-01-23 丰田自动车株式会社 电动车辆及其充电控制方法
JP5348326B2 (ja) * 2010-07-22 2013-11-20 トヨタ自動車株式会社 電動車両およびその充電制御方法
US8810206B2 (en) 2010-07-22 2014-08-19 Toyota Jidosha Kabushiki Kaisha Electric motored vehicle and method for controlling electrically charging the same
WO2012011176A1 (ja) * 2010-07-22 2012-01-26 トヨタ自動車株式会社 電動車両およびその充電制御方法
JP2012060752A (ja) * 2010-09-08 2012-03-22 Nitto Kogyo Co Ltd 分電盤
JP2013090459A (ja) * 2011-10-18 2013-05-13 Toyota Motor Corp 電気自動車用充電装置
WO2015008757A1 (ja) * 2013-07-16 2015-01-22 日本電気株式会社 蓄電池の急速充電方法、急速充電システムおよびプログラム
CN105379058A (zh) * 2013-07-16 2016-03-02 日本电气株式会社 用于蓄电池的快速充电方法、快速充电***和程序
JPWO2015008757A1 (ja) * 2013-07-16 2017-03-02 日本電気株式会社 蓄電池の急速充電方法、急速充電システムおよびプログラム
JP2017153255A (ja) * 2016-02-25 2017-08-31 株式会社Subaru 車両用電源装置
WO2024100793A1 (ja) * 2022-11-09 2024-05-16 株式会社オートネットワーク技術研究所 車両用遮断制御装置

Also Published As

Publication number Publication date
US20110101915A1 (en) 2011-05-05
JPWO2010067417A1 (ja) 2012-05-17
US8648565B2 (en) 2014-02-11
JP5333457B2 (ja) 2013-11-06
CN102246386A (zh) 2011-11-16
CN102246386B (zh) 2014-06-11

Similar Documents

Publication Publication Date Title
JP5333457B2 (ja) 車両の充電システム
JP5343981B2 (ja) 車両の充電システム
JP5327235B2 (ja) 車両の充電システムおよび充電システムの制御方法
JP5359413B2 (ja) 車両の充電システムおよび車両
JP3760820B2 (ja) 自動車およびその電力系統制御装置
JP4780180B2 (ja) 車両の充電システム
JP5035427B2 (ja) 車両の充電システム
CN102753379B (zh) 电动车辆的电源***及其控制方法
US10000137B2 (en) Hybrid vehicle with means for disconnection of a depleted auxiliary battery in order to allow for more rapid main battery charging
US9929674B2 (en) Power supply system for vehicle
JP5479999B2 (ja) 車両の電源装置
CN105811561A (zh) 蓄电***
EP2196350A1 (en) Vehicle control device and control method
WO2012081104A1 (ja) 車両の制御装置および車両の制御方法
JP2014143817A (ja) 車両の電源システム
JP5884700B2 (ja) 車両の制御装置および車両
WO2015071712A1 (en) Charging and discharging system with connector lock
JP5835180B2 (ja) 車両
JP5885236B2 (ja) 車両の電源装置
JP5561114B2 (ja) 蓄電装置の制御装置およびそれを搭載する車両、ならびに蓄電装置の制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880132275.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878716

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13000772

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2010541910

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878716

Country of ref document: EP

Kind code of ref document: A1