WO2010059618A1 - Adamantyl benzamide compounds - Google Patents

Adamantyl benzamide compounds Download PDF

Info

Publication number
WO2010059618A1
WO2010059618A1 PCT/US2009/064776 US2009064776W WO2010059618A1 WO 2010059618 A1 WO2010059618 A1 WO 2010059618A1 US 2009064776 W US2009064776 W US 2009064776W WO 2010059618 A1 WO2010059618 A1 WO 2010059618A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
adamantan
aryl
hydroxy
Prior art date
Application number
PCT/US2009/064776
Other languages
English (en)
French (fr)
Inventor
Dharma Rao Polisetti
Suparna Gupta
Soren Ebdrup
Original Assignee
High Point Pharmaceuticals, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN2009801462081A priority Critical patent/CN102223797A/zh
Priority to BRPI0921299-0A priority patent/BRPI0921299A2/pt
Priority to JP2011537550A priority patent/JP2012509879A/ja
Priority to CA2744383A priority patent/CA2744383C/en
Priority to MX2011005037A priority patent/MX2011005037A/es
Priority to EP09828106A priority patent/EP2362730A4/en
Application filed by High Point Pharmaceuticals, Llc filed Critical High Point Pharmaceuticals, Llc
Priority to AU2009316802A priority patent/AU2009316802B2/en
Priority to EA201170703A priority patent/EA020496B1/ru
Priority to US13/128,045 priority patent/US8927549B2/en
Publication of WO2010059618A1 publication Critical patent/WO2010059618A1/en
Priority to IL212711A priority patent/IL212711A0/en
Priority to ZA2011/04551A priority patent/ZA201104551B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/64One oxygen atom attached in position 2 or 6
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/64One oxygen atom attached in position 2 or 6
    • C07D213/6432-Phenoxypyridines; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/70Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/70Sulfur atoms
    • C07D213/71Sulfur atoms to which a second hetero atom is attached
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D237/00Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings
    • C07D237/02Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings
    • C07D237/06Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D237/10Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D237/14Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/42One nitrogen atom

Definitions

  • the present invention relates to substituted adamantyl based inhibitors, to their use in therapy, to pharmaceutical compositions comprising the compounds, to the use of said compounds in the manufacture of medicaments, and to therapeutic methods comprising the administration of said compounds.
  • the present compounds modulate the activity of 11 ⁇ -hydroxysteroid dehydrogenase type 1 (11 ⁇ HSD 1) and are accordingly useful in the treatment of diseases in which such a modulation is beneficial.
  • Metabolic syndrome is a major global health problem. In the US, the prevalence in the adult population is currently estimated to be approximately 25%, and it continues to increase both in the US and worldwide. Metabolic syndrome is characterized by a combination of insulin resistance, dyslipidemia, obesity and hypertension leading to increased morbidity and mortality of cardiovascular diseases. People with metabolic syndrome are at increased risk of developing frank type 2 diabetes, the prevalence of which is equally escalating.
  • glucocorticoids are able to induce all of the cardinal features of the metabolic syndrome and type 2 diabetes.
  • 11 ⁇ -hydroxysteroid dehydrogenase type 1 (1 l ⁇ HSDl) catalyzes the local generation of active glucocorticoid in several tissues and organs including predominantly the liver and adipose tissue, but also e.g. skeletal muscle, bone, pancreas, endothelium, ocular tissue and certain parts of the central nervous system.
  • 1 l ⁇ HSDl serves as a local regulator of glucocorticoid actions in the tissues and organs where it is expressed.
  • 11 ⁇ HSDl in metabolic syndrome and type 2 diabetes is supported by several lines of evidence.
  • treatment with the non-specific 11 ⁇ HSDl inhibitor carbenoxolone improves insulin sensitivity in lean healthy volunteers and people with type 2 diabetes.
  • 11 ⁇ HSDl knock-out mice are resistant to insulin resistance induced by obesity and stress. Additionally, the knock-out mice present with an antiatherogenic lipid profile of decreased VLDL triglycerides and increased HDL- cholesterol.
  • mice that overexpress 11 ⁇ HSDl in adipocytes develop insulin resistance, hyperlipidemia and visceral obesity, a phenotype that resembles the human metabolic syndrome.
  • 11 ⁇ HSDl modulation has been investigated in several rodent models and different cellular systems.
  • 11 ⁇ HSDl promotes the features of the metabolic syndrome by increasing hepatic expression of the rate-limiting enzymes in gluconeogenesis, namely phosphoenolpyuvate carboxykinase and glucose-6-phosphatase, promoting the differentiation of preadipocytes into adipocytes thus facilitating obesity, directly and indirectly stimulating hepatic VLDL secretion, decreasing hepatic LDL uptake and increasing vessel contractility.
  • WO 01/90090, WO 01/90091, WO 01/90092, WO 01/90093 and WO 01/90094 disclose various thiazol-sulfonamides as inhibitors of the human 11 ⁇ -hydroxysteroid dehydrogenase type 1 enzyme, and further state that said compounds may be useful in treating diabetes, obesity, glaucoma, osteoporosis, cognitive disorders, immune disorders and depression.
  • WO 2004/089470 discloses various substituted amides and the use thereof for stimulating 11 ⁇ -hydroxysteroid dehydrogenase type 1.
  • WO 2004/089415 and WO 2004/089416 disclose various combination therapies using an 11 ⁇ -hydroxysteroid dehydrogenase type 1 inhibitor and respectively a glucocorticoid receptor agonist or an antihypertensive agent.
  • 11 ⁇ -hydroxysteroid dehydrogenase type 1 inhibitor and respectively a glucocorticoid receptor agonist or an antihypertensive agent.
  • a glucocorticoid receptor agonist or an antihypertensive agent As can be seen, there is a need for new compounds that modulate the activity of 11 ⁇ HSD 1 leading to altered intracellular concentrations of active glucocorticoid. More specifically, there is a need for compounds that inhibit the activity of 11 ⁇ HSD 1 leading to decreased intracellular concentrations of active glucocorticoid.
  • Such compounds can be used to treat disorders where a decreased level of active intracellular glucocorticoid is desirable, such as e.g.
  • metabolic syndrome type 2 diabetes, impaired glucose tolerance (IGT), impaired fasting glucose (IFG), dyslipidemia, obesity, hypertension, diabetic late complications, cardiovascular diseases, arteriosclerosis, atherosclerosis, myopathy, muscle wasting, osteoporosis, neurodegenerative and psychiatric disorders, and adverse effects of treatment or therapy with glucocorticoid receptor agonists.
  • ITT impaired glucose tolerance
  • IGF impaired fasting glucose
  • dyslipidemia obesity, hypertension, diabetic late complications, cardiovascular diseases, arteriosclerosis, atherosclerosis, myopathy, muscle wasting, osteoporosis, neurodegenerative and psychiatric disorders, and adverse effects of treatment or therapy with glucocorticoid receptor agonists.
  • the present invention provides adamantyl benzamide derivatives as described herein. In another embodiment, the present invention also provides methods for the preparation of adamantyl benzamide derivatives.
  • the present invention provides methods for the preparation of hydroxyadamantylamine derivatives useful as intermediates for the synthesis of chemical compounds, including the admantyl benzamide derivatives according to an embodiment of the present invention.
  • the present invention also provides pharmaceutical compositions comprising an adamantyl benzamide derivative.
  • the present invention provides methods for the preparation of pharmaceutical compositions comprising an adamantyl benzamide derivative.
  • the pharmaceutical compositions may further comprise a pharmaceutically acceptable carrier, excipient, diluent, or mixture thereof.
  • the present invention provides methods for the use of adamantyl benzamide derivatives and for the use of pharmaceutical compositions comprising adamantyl benzamide derivatives.
  • the compounds and pharmaceutical compositions of the present invention may be used for the treatment of human or animal disorders.
  • the invention provides for a compound of the general formula (I):
  • R 1 1 is selected from the group consistin g of hydrogen, -Ci-Cs alkyl, and -Ci-C 6 alkylene-aryl;
  • R ⁇ 1 is each independently R a ;
  • R 9 is either a direct bond or a divalent radical selected from the group consisting of Ci-C 6 alkylene, C3-Ciocycloalkylene and arylene, wherein the arylene group is optionally substituted with one or more R 11 ;
  • R 10 is selected from the group consisting of hydrogen, -Ci-C ⁇ alkyl, -C 3 - Ciocycloalkyl, haloalkyl, trihaloalkyl and aryl, wherein the aryl group is optionally substituted with one or more R 11 ;
  • L is a direct bond, -O- or -S-;
  • R 11 is halogen, hydroxy, -Ci-C ⁇ alkyl, aryl, hetaryl, -Cs-Ciocycloalkyl, and -C3-Ciohetcycloalkyl; p is 0, 1, 2, 3 or 4; or a pharmaceutically acceptable salt thereof.
  • Embodiment 1 In a first embodiment, the present invention provides for a compound of the general formula (I):
  • R 1 is selected from the group consisting of hydrogen, -Ci-Cg alkyl, and -C 1 -C 6 alkylene-aryl;
  • R 2 is each independently R a ;
  • R 8 is selected from the group consisting of hydrogen, -Ci-C ⁇ alkyl, -C 1 - Cealkyleneoxy-Ci-C ⁇ alkyl, -Cs-Ciocycloalkyl, aryl and -Ci-C ⁇ alkylene-aryl, wherein the aryl group is optionally substituted with one or more R 11 ;
  • R 9 is either a direct bond or a divalent radical selected from the group consisting of Ci-C 6 alkylene, C3-Ciocycloalkylene and arylene, wherein the arylene group is optionally substituted with one or more R 11 ;
  • R 10 is selected from the group consisting of hydrogen, -Ci-C ⁇ alkyl, -C 3 -
  • L is a direct bond, -O- or -S-;
  • R 11 is halogen, hydroxy, -Ci-C ⁇ alkyl, aryl, hetaryl, -Cs-Ciocycloalkyl, and -Cs-Ciohetcycloalkyl; p is O, 1, 2, 3 or 4; or a pharmaceutically acceptable salt thereof.
  • Embodiment 2 A compound according to embodiment 1, wherein R 1 is hydrogen.
  • Embodiment 3 A compound according to embodiment 1 or 2, wherein each R 2 is hydrogen.
  • Embodiment 4 A compound according to any one of embodiments 1 through 3, wherein X is selected from the group consisting of -N(H)-, -O-, -S-, -S(O)- and -S(O 2 )-.
  • Embodiment 5 A compound according to any one of embodiments 1 through 3, wherein X is -O-.
  • Embodiment 6 A compound according to any one of embodiments 1 through 3, wherein X is -S-.
  • Embodiment 7 A compound according to any one of embodiments 1 through 3, wherein X is -N(H)-.
  • Embodiment 8 A compound according to any one of embodiments 1 through 3, wherein X is -S(O)-.
  • Embodiment 9 A compound according to any one of embodiments 1 through 3, wherein X is -S(O 2 )-.
  • Embodiment 14 A compound according to embodiment 13, wherein R 7 is selected from the group consisting of hydrogen, halogen, -Ci-C 6 alkyl, trihalomethyl and - C 3 -C 6 cycloalkyl.
  • Embodiment 15 A compound according to embodiment 14, wherein R 7 is halogen.
  • Embodiment 16 A compound according to embodiment 14, wherein R 7 is chloro.
  • Embodiment 17 A compound according to embodiment 14, wherein R 7 is trifluoromethyl.
  • Embodiment 18 A compound according to embodiment 14, wherein R 7 is hydrogen.
  • Embodiment 19 A compound according to embodiment 14, wherein R 7 is methyl.
  • Embodiment 21 A compound according to embodiment 20, wherein R 6 is selected from the group consisting of hydrogen, halogen, -Ci-C 6 alkyl, trihalomethyl and - C 3 -C 6 cycloalkyl.
  • Embodiment 22 A compound according to embodiment 21, wherein R 6 is halogen,
  • Embodiment 23 A compound according to embodiment 21, wherein R 6 is chloro.
  • Embodiment 24 A compound according to embodiment 21, wherein R 6 is trifluoromethyl.
  • Embodiment 25 A compound according to embodiment 21, wherein R 6 is hydrogen.
  • Embodiment 26 A compound according to embodiment 21, wherein R 6 is methyl.
  • Embodiment 27 A compound according to embodiment 26, wherein R is methyl.
  • Embodiment 29 A compound according to embodiment 28, wherein R 5 is selected from the group consisting of halogen, -Ci-C ⁇ alkyl, trihalomethyl and -C3-C6 cycloalkyl.
  • Embodiment 30 A compound according to embodiment 29, wherein R 5 is halogen.
  • Embodiment 31 A compound according to embodiment 29, wherein R 5 is chloro.
  • Embodiment 32 A compound according to embodiment 29, wherein R 7 is halogen.
  • Embodiment 33 A compound according to embodiment 29, wherein R 7 is chloro.
  • Embodiment 34 A compound according to embodiment 29, wherein R 5 is trifluoromethyl.
  • Embodiment 35 A compound according to embodiment 29, wherein R 5 is hydrogen.
  • Embodiment 36 A compound according to embodiment 29, wherein R 5 is methyl.
  • Embodiment 38 A compound according to embodiment 37, wherein R 3 is selected from the group consisting of hydrogen, halogen, -Ci-C 6 alkyl, trihalomethyl and ⁇ C 3 -C 6 cycloalkyl.
  • Embodiment 39 A compound according to embodiment 38, wherein R is halogen.
  • Embodiment 40 A compound according to embodiment 38, wherein R is chloro.
  • Embodiment 41 A compound according to embodiment 38, wherein R 3 is trifluoromethyl.
  • Embodiment 42 A compound according to embodiment 38, wherein R 3 is hydrogen.
  • Embodiment 44 A compound according to embodiment 43, wherein R 3 , R 5 , R 6 and R 7 are independently selected from the group consisting of hydrogen, halogen, -C 1 - C 6 alkyl, trihalomethyl and -C 3 -C 6 cycloalkyl.
  • Embodiment 45 A compound according to embodiment 44, wherein R 3 , R 5 and R 6 are hydrogen and R 7 is selected from the group consisting of hydrogen, halogen, -Ci- C 6 alkyl, trihalomethyl and -C 3 -C 6 cycloalkyl.
  • Embodiment 46 A compound according to embodiment 44, wherein R 7 is selected from the group consisting of chloro and trifluoromethyl.
  • Embodiment 47 A compound according to embodiment 1, wherein at least one of R 3 , R 4 , R 5 , R 6 and R 7 is halogen.
  • Examples of compounds of Formula (I) of the present invention are shown in Table 1 and in the Examples section.
  • the compounds specifically exemplified below were named based on their chemical structure using Autonom 2000 (Version 4.1, SPl, Elsevier MDL) plug-in for ISIS Draw.
  • hydroxyadamantylamine derivatives or salts thereof, are described. These compounds may be useful as intermediates for the synthesis of chemical compounds, including the admantyl benzamide derivatives according to Embodiments 1 through 47 above.
  • the hydroxyadamantylamine derivatives prepared according to methods of the present invention are E-isomer enriched.
  • This E-isomer enrichment may be, for example, at least 60% E-isomer, typically at least 90% E-isomer, more typically at least 95% E-isomer, and often, at least 98% E-isomer.
  • this E-enriched isomer is E- enriched 4-amino-admantan-l-ol.
  • a method according to the present invention may include a method for making E- enriched 4-amino-adamantan-l-ol, or a salt thereof.
  • the method may include stirring a suspension of a mixture of E-4-amino-adamantan-l-ol and Z-4-amino-adamantan-l-ol in an alcoholic solvent wherein the suspension is at a temperature above 20 0 C.
  • the E-4- amino-adamantan-1-ol and Z-4-amino-adamantan-l-ol compounds may be hydrochloric acid salts thereof.
  • the alcoholic solvent may be, for example, methanol, ethanol, isopropanol or the like. In one embodiment, the alcohol may be methanol.
  • the temperature of the suspension may be selected as a temperature at which the E-4-amino- adamantan-1-ol is less soluble in the alcoholic solvent than the Z-4-amino-adamantan-l- ol.
  • the temperature of the suspension may be about 6O 0 C, may be above 50 0 C, may be above 50 0 C and below the boiling point of the alcoholic solvent, or may be between 50 0 C and 65°C.
  • the alcoholic solvent may be methanol and the temperature of the suspension may be about 6O 0 C or may be above 50 0 C.
  • the suspension of the mixture of E- and Z-isomers in the alcoholic solvent may be stirred at the elevated temperature for a sufficient time to selectively dissolve the Z- isomer over the E-isomer.
  • this sufficient time may be from about 15 minutes to about 2 hours, typically about 30 minutes.
  • the method for making E-enriched 4-amino-adamantan-l-ol, or a salt thereof may further include a step of separating the solids in the suspension aftering stirring the suspension at the elevated temperature for the sufficient time.
  • separating the solids may be accomplished by filtering the solids from the suspension aftering stirring the suspension at the elevated temperature for the sufficient time. In one embodiment of the present invention, the solids may be filtered without any substantial cooling of the suspension.
  • the phrase "without any substantial cooling” may include some cooling of the suspension between the time period between when the heat is removed from the suspension to when the solids are filtered, however, no intentional delay to allow for cooling is intended.
  • the filtered solids may optionally be washed with an alcoholic solvent wherein the alcoholic solvent is at a temperature above 20 0 C.
  • the alcoholic solvent used to wash the filtered solids is at a temperature similar to, the same as, or above the temperature of the suspension when filtered.
  • the alcoholic solvent used to wash the filtered solids is at a temperature above 50 0 C.
  • the alcoholic solvent used to wash the filtered solids may be the same alcoholic solvent used to selectively dissolve the E-4-amino-adamantan-l-ol and Z-4-amino-adamantan-l-ol.
  • the alcoholic solvent used to wash the filtered solids ismethanol.
  • the filtered solids may then be dried to give the E- enriched 4-amino-adamantan-l-ol, or a salt thereof.
  • alkyl refers to a straight or branched chain hydrocarbon having one to six carbon atoms, which may be optionally substituted as herein further described, with multiple degrees of substitution being allowed. Examples of “alkyl” as used herein include, but are not limited to, methyl, ethyl, propyl, isopropyl, isobutyl, n-butyl, tert-butyl, isopentyl, and n-pentyl.
  • alkylene refers to a straight or branched chain divalent hydrocarbon radical having from one to six carbon atoms, which may be optionally substituted as herein further described, with multiple degrees of substitution being allowed.
  • alkylene as used herein include, but are not limited to, methylene, ethylene, n-propylene, and n-butylene.
  • C x -Cy alkyl or “C x - y alkyl,” which refer to an alkyl group, as herein defined, containing from x to y, inclusive, carbon atoms. Similar terminology will apply for other terms and ranges as well.
  • halogen or “halo” refers to fluorine, chlorine, bromine, or iodine.
  • haloalkyl refers to an alkyl group, as defined herein, that is substituted with at least one halogen.
  • branched or straight chained “haloalkyl” groups as used herein include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, and t-butyl substituted independently with one or more halogens, for example, fluoro, chloro, bromo, and iodo.
  • haloalkyl should be interpreted to include groups such as -CF 3 , -CH 2 -CF 3 , and -CF 2 Cl .
  • alkoxy or "alkyloxy” refers to the group R X O-, where R x is alkyl.
  • alkyleneoxy refers to the group -R X O-, where R x is alkyl.
  • cycloalkyl refers to an optionally substituted non- aromatic, three- to twelve-membered, cyclic hydrocarbon ring, optionally containing one or more degrees of unsaturation, which may be optionally substituted as herein further described, with multiple degrees of substitution being allowed.
  • cycloalkyl groups as used herein include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl, as well as rings containing one or more degrees of unsaturation but short of aromatic, such as cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, and cycloheptenyl.
  • cycloalkylene refers to a divalent, non-aromatic, three- to twelve membered, cyclic hydrocarbon ring, which may be optionally substituted as herein further described, with multiple degrees of substitution being allowed.
  • cycloalkylene groups include, but are not limited to, cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, cycloheptylene, and substituted versions thereof.
  • the term is intended to encompass divalent rings having different points of attachment as well as a common point of attachment, which connecting atom may also be referred to as "spiroatom.”
  • heterocyclic refers to an optionally substituted univalent non-aromatic mono- or polycyclic ring system, optionally containing one or more degrees of unsaturation and also containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, which may be optionally substituted, including oxidized, as herein further described, with multiple degrees of substitution being allowed.
  • the ring is three to twelve-membered and is either fully saturated or has one or more degrees of unsaturation.
  • Such rings may be optionally fused to one or more of another heterocyclic ring(s), cycloalkyl ring(s), aryl groups (as defined below) or heteroaryl groups (as defined below).
  • heterocyclic groups as used herein include, but are not limited to, tetrahydrofuran, pyran, 1 ,4-dioxane, 1 ,3-dioxane, piperidine, pyrrolidine, morpholine, tetrahydrothiopyran, and tetrahydrothiophene.
  • aryl refers to a benzene ring or to benzene ring fused to one to three benzene rings, optionally substituted and multiple degrees of substitution being allowed. Examples of aryl include, but are not limited to, phenyl, 2-naphthyl, 1- naphthyl, 1-anthracenyl, biphenyl, and the like.
  • arylene refers to a divalent aromatic carbon containing ring or polycyclic fused ring system (up to three rings) where each ring contains between 3 to 7 atoms, which may be optionally substituted as herein further described, with multiple degrees of substitution being allowed. Examples of “arylene” include, but are not limited to, benzene- 1 ,4-diyl, naphthalene-1 ,8-diyl.
  • heteroaryl refers to a monocyclic five to seven membered aromatic ring, or to a fused bicyclic aromatic ring system comprising two of such aromatic rings, which may be optionally substituted as herein further described, with multiple degrees of substitution being allowed.
  • heteroaryl rings contain one or more nitrogen, sulfur, and/or oxygen atoms, where N-oxides, sulfur oxides, and dioxides are permissible heteroatom substitutions.
  • heteroaryl groups as used herein include, but should not be limited to, furan, thiophene, pyrrole, imidazole, pyrazole, triazole, tetrazole, thiazole, oxazole, isoxazole, oxadiazole, thiadiazole, isothiazole, pyridine, pyridazine, pyrazine, pyrimidine, quinoline, isoquinoline, benzofuran, benzodioxolyl, benzothiophene, indole, indazole, benzimidizolyl, imidazopyridinyl, pyrazolopyridinyl, and pyrazolopyrimidinyl.
  • substituted refers to substitution of one or more hydrogens of the designated moiety with the named substituent or substituents, multiple degrees of substitution being allowed unless otherwise stated, provided that the substitution results in a stable or chemically feasible compound.
  • a stable compound or chemically feasible compound is one in which the chemical structure is not substantially altered when kept at a temperature from about -80° C to about +40° C, in the absence of moisture or other chemically reactive conditions, for at least a week, or a compound which maintains its integrity long enough to be useful for therapeutic administration to a subject.
  • the terms “pharmaceutically acceptable carrier”, “pharmaceutically acceptable diluent”, and “pharmaceutically acceptable excipient” means the carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
  • therapeutically effective amount as used herein means that amount of active compound or pharmaceutical agent that elicits the biological or medicinal response in a tissue, system, animal, human, or subject that is being sought by a researcher, veterinarian, medical doctor, patient or other clinician, which includes reduction or alleviation of the symptoms of the disease or condition being treated.
  • references to the amount of active ingredient are to the free acid or free base form of the compound.
  • Subjects include, for example, horses, cows, sheep, pigs, mice, dogs, cats, primates such as chimpanzees, gorillas, rhesus monkeys, and, humans.
  • a subject is a human.
  • the compound of the invention is an agent useful for the treatment, prevention and/or prophylaxis of any conditions, disorders and diseases wherein a modulation or an inhibition of the activity of 1 l ⁇ HSDl is beneficial.
  • the compound of the invention is an agent useful for the treatment, prevention and/or prophylaxis of any conditions, disorders and diseases that are influenced by intracellular glucocorticoid levels.
  • the compound of the invention is an agent useful for the treatment, prevention and/or prophylaxis of conditions, disorders or diseases selected from the group consisting of the metabolic syndrome, insulin resistance, dyslipidemia, hypertension and obesity.
  • the compound of the invention is an agent useful for the treatment, prevention and/or prophylaxis of type 2 diabetes, impaired glucose tolerance (IGT), impaired fasting glucose (IFG).
  • ITT impaired glucose tolerance
  • IGF impaired fasting glucose
  • the compound of the invention is an agent useful for the delaying or prevention of the progression from IGT into type 2 diabetes.
  • the compound of the invention is an agent useful for delaying or prevention of the progression of the metabolic syndrome into type 2 diabetes.
  • the compound of the invention is an agent useful for the treatment, prevention and/or prophylaxis of adverse effects of glucocorticoid receptor agonist treatment or therapy.
  • the invention relates to a pharmaceutical composition comprising, as an active ingredient, at least one compound according to the invention together with one or more pharmaceutically acceptable carriers or excipients.
  • the invention relates to a pharmaceutical composition which is for oral, nasal, buccal, transdermal, pulmonal or parenteral administration.
  • the invention relates to a pharmaceutical composition in unit dosage form, comprising from less than 2000 mg/day, less than 1000 mg/day, less than 500 mg/day or from 0.5 mg to 500 mg per day of the compound according to the invention.
  • the invention relates to a use of a compound according to the invention for the preparation of a pharmaceutical composition for the treatment, prevention and/or prophylaxis of any conditions, disorders and diseases wherein modulation or inhibition of the activity of 1 l ⁇ HSDl is beneficial.
  • the invention relates to a use of a compound according to the invention for the preparation of a pharmaceutical composition for the treatment, prevention and/or prophylaxis of any conditions, disorders and diseases that are influenced by intracellular glucocorticoid levels.
  • the compounds according to the invention have an IC50 value, as tested below, of less than 300OnM, in a further aspect of the invention, some compounds may have IC50 values below 50OnM, in yet a further aspect, some compounds may have IC 50 values below 300 nM, and, in yet a further aspect, below 200 nM.
  • Compounds of the present invention having cis-trans and/or E/Z isomerism may occur as either isomer or a mixture of both isomers.
  • the present invention also encompasses pharmaceutically acceptable salts of the present compounds.
  • Such salts include pharmaceutically acceptable acid addition salts, pharmaceutically acceptable base addition salts, pharmaceutically acceptable metal salts, ammonium and alkylated ammonium salts.
  • Acid addition salts include salts of inorganic acids as well as organic acids. Representative examples of suitable inorganic acids include hydrochloric, hydrobromic, hydroiodic, phosphoric, sulfuric, nitric acids and the like.
  • suitable organic acids include formic, acetic, trichloroacetic, trifluoroacetic, propionic, benzoic, cinnamic, citric, fumaric, glycolic, lactic, maleic, malic, malonic, mandelic, oxalic, picric, pyruvic, salicylic, succinic, methanesulfonic, ethanesulfonic, tartaric, ascorbic, pamoic, bismethylene salicylic, ethanedisulfonic, gluconic, citraconic, aspartic, stearic, palmitic, EDTA, glycolic, p- aminobenzoic, glutamic, benzenesulfonic, p-toluenesulfonic acids, sulphates, nitrates, phosphates, perchlorates, borates, acetates, benzoates, hydroxylnaphthoates, glycerophosphates,
  • compositions include the pharmaceutically acceptable salts listed in J. Pharm. ScL, 66, 2 (1977).
  • metal salts include lithium, sodium, potassium, barium, calcium, magnesium, zinc, calcium salts and the like.
  • amines and organic amines include ammonium, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, propylamine, butylamine, tetramethylamine, ethanolamine, diethanolamine, triethanolamine, meglumine, ethylenediamine, choline, N,N'-dibenzylethylenediamine, N-benzylphenylethylamine, N- methyl-D-glucamine, guanidine and the like.
  • cationic amino acids include lysine, arginine, histidine and the like.
  • the pharmaceutically acceptable salts may be prepared by reacting a compound of the present invention with a base such as sodium hydroxide, sodium methoxide, sodium hydride, potassium te/t-butoxide, calcium hydroxide, magnesium hydroxide and the like, in solvents like ether, THF, methanol, te/t-butanol, dioxane, isopropanol, ethanol etc. Mixtures of solvents may be used. Organic bases like lysine, arginine, diethanolamine, choline, guandine and their derivatives etc. may also be used.
  • acid addition salts wherever applicable are prepared by treatment with acids such as hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid, p- toluenesulphonic acid, methanesulfonic acid, acetic acid, citric acid, maleic acid salicylic acid, hydroxynaphthoic acid, ascorbic acid, palmitic acid, succinic acid, benzoic acid, benzenesulfonic acid, tartaric acid and the like in solvents like ethyl acetate, ether, alcohols, acetone, THF, dioxane etc. Mixture of solvents may also be used.
  • acids such as hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid, p- toluenesulphonic acid, methanesulfonic acid, acetic acid, citric acid, maleic acid salicylic acid, hydroxynaphthoic acid, ascorbic
  • the compounds according to the invention alter, and more specifically, reduce the level of active intracellular glucocorticoid and are accordingly useful for the treatment, prevention and/or prophylaxis of disorders and diseases in which such a modulation or reduction is beneficial.
  • the present compounds may be applicable for the treatment, prevention and/or prophylaxis of metabolic syndrome, insulin resistance, dyslipidemia, hypertension, obesity, type 2 diabetes, impaired glucose tolerance (IGT), impaired fasting glucose (IFG), Latent Autoimmune Diabetes in the Adult (LADA), type 1 diabetes, diabetic late complications including cardiovascular diseases, cardiovascular disorders, disorders of lipid metabolism, neurodegenerative and psychiatric disorders, dysregulation of intraocular pressure including glaucoma, immune disorders, inappropriate immune responses, musculoskeletal disorders, gastrointestinal disorders, polycystic ovarie syndrome (PCOS), reduced hair growth or other diseases, disorders or conditions that are influenced by intracellular glucocorticoid levels, adverse effects of increased blood levels of active endogenous or exogenous glucocorticoid, and any combination thereof, adverse effects of increased plasma levels of endogenous active glucocorticoid, Cushing's disease, Cushing's syndrome, adverse effects of glucocorticoid receptor agonist treatment of autoimmune diseases
  • present compounds may be applicable for the treatment of visceral fat accumulation and insulin resistance in HAART (highly active antiretroviral treatment)- treated patients. Further, the present compounds may be applicable for the treatment of hydrocephalus as well as for the treatment or prevention of disorders related to the buildup of fluid within the ventricles of the brain.
  • the present compounds may be applicable for the treatment, prevention and/or prophylaxis of metabolic syndrome, type 2 diabetes, diabetes as a consequence of obesity, insulin resistance, hyperglycemia, prandial hyperglycemia, hyperinsulinemia, inappropriately low insulin secretion, impaired glucose tolerance (IGT), impaired fasting glucose (IFG), increased hepatic glucose production, type 1 diabetes, LADA, pediatric diabetes, dyslipidemia, diabetic dyslipidemia, hyperlipidemia, hypertriglyceridemia, hyperlipoproteinemia, hypercholesterolemia, decreased HDL cholesterol, impaired LDL/HDL ratio, other disorders of lipid metabolism, obesity, visceral obesity, obesity as a consequence of diabetes, increased food intake, hypertension, diabetic late complications, micro-/macroalbuminuria, nephropathy, retinopathy, neuropathy, diabetic ulcers, cardiovascular diseases, arteriosclerosis, atherosclerosis, coronary artery disease, cardiac hypertrophy, myocardial ischemia, heart insufficiency, congestive heart
  • asthma cystic fibrosis, emphysema, bronchitis, hypersensitivity, pneumonitis, eosinophilic pneumonias, pulmonary fibrosis, adverse effects of glucocorticoid receptor agonist treatment of inflammatory bowel disease such as Crohn's disease and ulcerative colitis; adverse effects of glucocorticoid receptor agonist treatment of disorders of the immune system, connective tissue and joints e.g.
  • hemolytic anemia thrombocytopenia, paroxysmal nocturnal hemoglobinuria
  • adverse effects of glucocorticoid receptor agonist treatment of cancer such as spinal cord diseases, neoplastic compression of the spinal cord, brain tumours, acute lymphoblastic leukemia, Hodgkin's disease, chemotherapy-induced nausea, adverse effects of glucocorticoid receptor agonist treatment of diseases of muscle and at the neuro-muscular joint e.g. myasthenia gravis and heriditary myopathies (e.g. Duchenne muscular dystrophy), adverse effects of glucocorticoid receptor agonist treatment in the context of surgery & transplantation e.g.
  • cancer such as spinal cord diseases, neoplastic compression of the spinal cord, brain tumours, acute lymphoblastic leukemia, Hodgkin's disease, chemotherapy-induced nausea
  • adverse effects of glucocorticoid receptor agonist treatment of diseases of muscle and at the neuro-muscular joint e.g
  • glucocorticoid receptor agonists include trauma, post-surgical stress, surgical stress, renal transplantation, liver transplantation, lung transplantation, pancreatic islet transplantation, blood stem cell transplantation, bone marrow transplantation, heart transplantation, adrenal gland transplantation, tracheal transplanttation, intestinal transplantation, corneal transplantation, skin grafting, keratoplasty, lens implantation and other procedures where immunosuppression with glucocorticoid receptor agonists is beneficial; adverse effects of glucocorticoid receptor agonist treatment of brain abscess, nausea/vomiting, infections, hypercalcemia, adrenal hyperplasia, autoimmune hepatitis, spinal cord diseases, saccular aneurysms or adverse effects to glucocorticoid receptor agonist treatment in other diseases, disorders and conditions where glucocorticoid receptor agonists provide clinically beneficial effects.
  • the invention relates to a compound according to the invention for use as a pharmaceutical composition.
  • the invention also relates to pharmaceutical compositions comprising, as an active ingredient, at least one compound according to the invention together with one or more pharmaceutically acceptable carriers or diluents.
  • the pharmaceutical composition may be in unit dosage form, comprising from about 0.05 mg/day to about 2000 mg/day, or from about 1 mg/day to about 500 mg/day of a compound according to the invention.
  • the subject may be treated with a compound according to the invention for at least 1 week, for at least 2 weeks, for at least 4 weeks, for at least 2 months or for at least 4 months.
  • the pharmaceutical composition is for oral, nasal, transdermal, pulmonal or parenteral administration.
  • the invention relates to the use of a compound according to the invention for the preparation of a pharmaceutical composition for the treatment, prevention and/or prophylaxis of disorders and diseases wherein a modulation or an inhibition of the activity of 11 ⁇ HSD 1 is beneficial.
  • the invention also relates to a method for the treatment, prevention and/or prophylaxis of disorders and diseases wherein a modulation or an inhibition of the activity of 11 ⁇ HSDl is beneficial, the method comprising administering to a subject in need thereof an effective amount of a compound according to the invention.
  • the present compounds are used for the preparation of a medicament for the treatment, prevention and/or prophylaxis of any diseases and conditions that are influenced by intracellular glucocorticoid levels as mentioned above.
  • the present compounds are used for the preparation of a medicament for the treatment, prevention and/or prophylaxis of conditions and disorders where a decreased level of active intracellular glucocorticoid is desirable, such as the conditions and diseases mentioned above.
  • the present compounds are used for the preparation of a medicament for the treatment, prevention and/or prophylaxis of the metabolic syndrome including insulin resistance, dyslipidemia, hypertension and obesity.
  • the present compounds are used for the preparation of a medicament for the treatment, prevention and/or prophylaxis of type 2 diabetes, impaired glucose tolerance (IGT), impaired fasting glucose (IFG).
  • ITT impaired glucose tolerance
  • IGF impaired fasting glucose
  • the present compounds are used for the preparation of a pharmaceutical composition for the delaying or prevention of the progression from IGT to type 2 diabetes.
  • the present compounds are used for the preparation of a pharmaceutical composition for the delaying or prevention of the progression of the metabolic syndrome into type 2 diabetes.
  • the present compounds are used for the preparation of a pharmaceutical composition for the treatment, prevention and/or prophylaxis of diabetic late complications including cardiovascular diseases; arteriosclerosis; atherosclerosis.
  • the present compounds are used for the preparation of a pharmaceutical composition for the treatment, prevention and/or prophylaxis of neurodegenerative and psychiatric disorders.
  • the present compounds are used for the preparation of a pharmaceutical composition for the treatment, prevention and/or prophylaxis of adverse effects of glucocorticoid receptor agonist treatment or therapy.
  • the route of administration may be any route which effectively transports a compound according to the invention to the appropriate or desired site of action, such as oral, nasal, buccal, transdermal, pulmonal, or parenteral.
  • the present compounds are administered in combination with one or more further active substances in any suitable ratios.
  • Such further active substances may e.g. be selected from antiobesity agents, antidiabetics, agents modifying the lipid metabolism, antihypertensive agents, glucocorticoid receptor agonists, agents for the treatment and/or prevention of complications resulting from or associated with diabetes and agents for the treatment and/or prevention of complications and disorders resulting from or associated with obesity.
  • the present compounds may be administered in combination with one or more antiobesity agents or appetite regulating agents.
  • Such agents may be selected from the group consisting of CART (***e amphetamine regulated transcript) agonists, NPY (neuropeptide Y) antagonists, MC4 (melanocortin 4) agonists, orexin antagonists, TNF (tumor necrosis factor) agonists, CRF (corticotropin releasing factor) agonists, CRF BP (corticotropin releasing factor binding protein) antagonists, urocortin agonists, ⁇ 3 agonists, MSH (melanocyte-stimulating hormone) agonists, MCH (melanocyte-concentrating hormone) antagonists, CCK (cholecystokinin) agonists, serotonin re-uptake inhibitors, serotonin and noradrenaline reuptake inhibitors, mixed serotonin and noradrenergic compounds, 5HT (serotonin) agonists, bombesin agonists, galanin antagonists, growth hormone, growth hormone releasing compounds,
  • the antiobesity agent is leptin; dexamphetamine or amphetamine; fenfluramine or dexfenfluramine; sibutramine; orlistat; mazindol or phentermine.
  • Suitable antidiabetic agents include insulin, insulin analogues and derivatives such as those disclosed in EP 792 290 (Novo Nordisk A/S), e.g. N ⁇ B29 -tetradecanoyl des (B30) human insulin, EP 214 826 and EP 705 275 (Novo Nordisk A/S), e.g. Asp B28 human insulin, US 5,504, 188 (Eli Lilly), e.g.
  • Lys B28 Pro B29 human insulin EP 368 187 (Aventis), eg Lantus, which are all incorporated herein by reference, GLP-I (glucagon like peptide-1) and GLP-I derivatives such as those disclosed in WO 98/08871 to Novo Nordisk A/S, which is incorporated herein by reference as well as orally active hypoglycemic agents.
  • the orally active hypoglycemic agents may comprise sulphonylureas, biguanides, meglitinides, glucosidase inhibitors, glucagon antagonists such as those disclosed in WO 99/01423 to Novo Nordisk A/S and Agouron Pharmaceuticals, Inc., GLP-I agonists, potassium channel openers such as those disclosed in WO 97/26265 and WO 99/03861 to Novo Nordisk A/S which are incorporated herein by reference, DPP-IV (dipeptidyl peptidase-IV) inhibitors, inhibitors of hepatic enzymes involved in stimulation of gluconeogenesis and/or glycogenolysis, glucose uptake modulators, compounds modifying the lipid metabolism such as antihyperlipidemic agents and antilipidemic agents as PP ARa modulators, PPAR ⁇ modulators, cholesterol absorption inhibitors, HSL (hormone-sensitive lipase) inhibitors and HMG CoA inhibitors (statins), nico
  • the present compounds are administered in combination with insulin or an insulin analogue or derivative, such as N ⁇ B29 -tetradecanoyl des (B30) human insulin, Asp B28 human insulin, Lys B28 Pro B29 human insulin, Lantus®, or a mix- preparation comprising one or more of these.
  • insulin an insulin analogue or derivative, such as N ⁇ B29 -tetradecanoyl des (B30) human insulin, Asp B28 human insulin, Lys B28 Pro B29 human insulin, Lantus®, or a mix- preparation comprising one or more of these.
  • the present compounds are administered in combination with a sulphonylurea e.g. tolbutamide, glibenclamide, glipizide or glicazide.
  • a sulphonylurea e.g. tolbutamide, glibenclamide, glipizide or glicazide.
  • the present compounds are administered in combination with a biguanide e.g. metformin.
  • the present compounds are administered in combination with a meglitinide e.g. repaglinide or senaglinide.
  • a meglitinide e.g. repaglinide or senaglinide.
  • the present compounds are administered in combination with a thiazolidinedione e.g. troglitazone, ciglitazone, pioglitazone, rosiglitazone or compounds disclosed in WO 97/41097 such as 5-[[4-[3-Methyl-4-oxo- 3 ,4-dihydro-2-quinazolinyl]methoxy]phenyl-methyl]thiazolidine-2,4-dione or a pharmaceutically acceptable salt thereof, such as the potassium salt.
  • a thiazolidinedione e.g. troglitazone, ciglitazone, pioglitazone, rosiglitazone or compounds disclosed in WO 97/41097 such as 5-[[4-[3-Methyl-4-oxo- 3 ,4-dihydro-2-quinazolinyl]methoxy]phenyl-methyl]thiazolidine-2,4-dione or
  • the present compounds may be administered in combination with the insulin sensitizers disclosed in WO 99/19313 such as (-) 3-[4-[2- Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salts thereof, such as the arginine salt.
  • the insulin sensitizers disclosed in WO 99/19313 such as (-) 3-[4-[2- Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salts thereof, such as the arginine salt.
  • the present compounds are administered in combination with an ⁇ -glucosidase inhibitor e.g. miglitol or acarbose.
  • an agent acting on the ATP-dependent potassium channel of the ⁇ -cells e.g. tolbutamide, glibenclamide, glipizide, glicazide or repaglinide.
  • the present compounds may be administered in combination with nateglinide.
  • the present compounds are administered in combination with an antihyperlipidemic agent or antilipidemic agent e.g. cholestyramine, colestipol, clof ⁇ brate, gemfibrozil, fenofibrate, bezaf ⁇ brate, tesaglitazar, EML-4156, LY- 818, MK-767, atorvastatin, fluvastatin, lovastatin, pravastatin, simvastatin, acipimox, probucol, ezetimibe or dextrothyroxine.
  • an antihyperlipidemic agent or antilipidemic agent e.g. cholestyramine, colestipol, clof ⁇ brate, gemfibrozil, fenofibrate, bezaf ⁇ brate, tesaglitazar, EML-4156, LY- 818, MK-767, atorvastatin, fluvastat
  • the present compounds are administered in combination with more than one of the above-mentioned compounds e.g. in combination with a sulphonylurea and metformin, a sulphonylurea and acarbose, repaglinide and metformin, insulin and a sulphonylurea, insulin and metformin, insulin, insulin and lovastatin, etc.
  • the present compounds may be administered in combination with one or more antihypertensive agents.
  • antihypertensive agents are ⁇ -blockers such as alprenolol, atenolol, timolol, pindolol, propranolol, metoprolol, bisoprololfumerate, esmolol, acebutelol, metoprolol, acebutolol, betaxolol, celiprolol, nebivolol, tertatolol, oxprenolol, amusolalul, carvedilol, labetalol, ⁇ 2-receptor blockers e.g.
  • S-atenolol, OPC- 1085, ACE (angiotensin converting enzyme) inhibitors such as quinapril, lisinopril, enalapril, captopril, benazepril, perindopril, trandolapril, fosinopril, ramipril, cilazapril, delapril, imidapril, moexipril, spirapril, temocapril, zofenopril, S-5590, fasidotril, Hoechst-Marion Roussel: 100240 (EP 00481522), omapatrilat, gemopatrilat and GW- 660511, calcium channel blockers such as nifedipine, felodipine, nicardipine, isradipine, nimodipine, diltiazem, amlodipine, nitrendipine
  • vasopressin V2 antagonists such as tolvaptan, SR- 121463 and OPC-31260
  • B-type natriuretic peptide agonists e.g. Nesiritide, angiotensin II antagonists such as irbesartan, candesartancilexetil, losartan, valsartan, telmisartan, eprosartan, candesartan, CL-329167, eprosartan, iosartan, olmesartan, pratosartan, TA-606, and YM-358, 5-HT2 agonists e.g.
  • adenosine Al antagonists such as naftopidil, N-0861 and FK-352
  • thromboxane A2 antagonists such as KT2-962
  • endopeptidase inhibitors e.g. ecadotril
  • nitric oxide agonists such as LP-805
  • dopamine Dl antagonists e.g. MYD-37
  • dopamine D2 agonists such as nolomirole, n-3 fatty acids e.g. omacor
  • prostacyclin agonists such as treprostinil, beraprost, PGEl agonists e.g.
  • ecraprost Na+/K+ ATPase modulators e.g. PST-2238, Potassium channel activators e.g. KR-30450, vaccines such as PMD-3117, Indapamides, CGRP-unigene, guanylate cyclase stimulators, hydralazines, methyldopa, docarpamine, moxonidine, CoAprovel, MondoBiotech-811.
  • the present compounds may be administered in combination with one or more glucocorticoid receptor agonists.
  • glucocorticoid receptor agonists are betametasone, dexamethasone, hydrocortisone, methylprednisolone, prednisolone, prednisone, beclomethasone, butixicort, clobetasol, flunisolide, flucatisone (and analogues), momethasone, triamcinolonacetonide, triamcinolonhexacetonide GW- 685698, NXC-1015, NXC-1020, NXC-1021, NS-126, P-4112, P-4114, RU-24858 and T- 25 series.
  • the compounds of the present invention may be administered alone or in combination with pharmaceutically acceptable carriers or excipients, in either single or multiple doses.
  • the pharmaceutical compositions according to the invention may be formulated with pharmaceutically acceptable carriers or diluents as well as any other known adjuvants and excipients in accordance with conventional techniques such as those disclosed in Remington: The Science and Practice of Pharmacy, 19 th Edition, Gennaro, Ed., Mack Publishing Co., Easton, PA, 1995.
  • compositions may be specifically formulated for administration by any suitable route such as the oral, rectal, nasal, pulmonary, topical
  • transdermal including buccal and sublingual
  • intracisternal including buccal and sublingual
  • intraperitoneal including vaginal and parenteral (including subcutaneous, intramuscular, intrathecal, intravenous and intradermal) route.
  • parenteral including subcutaneous, intramuscular, intrathecal, intravenous and intradermal route. It will be appreciated that the preferred route will depend on the general condition and age of the subject to be treated, the nature of the condition to be treated and the active ingredient chosen.
  • compositions for oral administration include solid dosage forms such as hard or soft capsules, tablets, troches, dragees, pills, lozenges, powders and granules. Where appropriate, they can be prepared with coatings such as enteric coatings or they can be formulated so as to provide controlled release of the active ingredient such as sustained or prolonged release according to methods well-known in the art.
  • Liquid dosage forms for oral administration include solutions, emulsions, suspensions, syrups and elixirs.
  • compositions for parenteral administration include sterile aqueous and non-aqueous injectable solutions, dispersions, suspensions or emulsions as well as sterile powders to be reconstituted in sterile injectable solutions or dispersions prior to use. Depot injectable formulations are also contemplated as being within the scope of the present invention.
  • Suitable administration forms include suppositories, sprays, ointments, cremes, gels, inhalants, dermal patches, implants etc.
  • a typical oral dosage is less than 100 mg/kg body weight per day, or from about 0.01 to about 50 mg/kg body weight per day, or from about 0.05 to about 10 mg/kg body weight per day administered in one or more dosages such as 1 to 3 dosages. The exact dosage will depend upon the frequency and mode of administration, the sex, age, weight and general condition of the subject treated, the nature and severity of the condition treated and any concomitant diseases to be treated and other factors evident to those skilled in the art.
  • a typical unit dosage form for oral administration one or more times per day such as 1 to 3 times per day may contain from less than 2000 mg, e.g. from 0.1 to 1000 mg, from 0.5 mg to 500 mg., from 1 mg to 200 mg, e.g. 100 mg.
  • parenteral routes such as intravenous, intrathecal, intramuscular and similar administration
  • typically doses are in the order of about half the dose employed for oral administration.
  • the compounds of this invention may be utilized as the free substance or as a pharmaceutically acceptable salt thereof.
  • examples are an acid addition salt of a compound having the utility of a free base and a base addition salt of a compound having the utility of a free acid.
  • pharmaceutically acceptable salts refers to salts of the compounds for use according to the present invention which are generally prepared by reacting the free base with a suitable organic or inorganic acid or by reacting the acid with a suitable organic or inorganic base.
  • a compound for use according to the present invention contains a free base such salts are prepared in a conventional manner by treating a solution or suspension of the compound with a chemical equivalent of a pharmaceutically acceptable acid.
  • a compounds for use according to the present invention contains a free acid
  • such salts are prepared in a conventional manner by treating a solution or suspension of the compound with a chemical equivalent of a pharmaceutically acceptable base.
  • Physiologically acceptable salts of a compound with a hydroxy group include the anion of said compound in combination with a suitable cation such as sodium or ammonium ion.
  • Other salts which are not pharmaceutically acceptable may be useful in the preparation of compounds for use according to the present invention and these form a further aspect of the present invention.
  • solutions of the present compounds in sterile aqueous solution aqueous propylene glycol or sesame or peanut oil may be employed.
  • aqueous solutions should be suitable buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose.
  • the aqueous solutions are particularly suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration.
  • the sterile aqueous media employed are all readily available by standard techniques known to those skilled in the art.
  • Suitable pharmaceutical carriers include inert solid diluents or fillers, sterile aqueous solution and various organic solvents.
  • suitable carriers are water, salt solutions, alcohols, polyethylene glycols, polyhydroxyethoxylated castor oil, peanut oil, olive oil, syrup, phosphorlipids, gelatine, lactose, terra alba, sucrose, cyclodextrin, amylose, magnesium stearate, talc, gelatin, agar, pectin, acacia, stearic acid or lower alkyl ethers of cellulose, silicic acid, fatty acids, fatty acid amines, fatty acid monoglycerides and diglycerides, pentaerythritol fatty acid esters, polyoxyethylene, hydroxymethylcellulose and polyvinylpyrrolidone.
  • the carrier or diluent may include any sustained release material known in the art, such as glyceryl monostearate or glyceryl distearate, alone or mixed with a wax.
  • the formulations may also include wetting agents, emulsifying and suspending agents, preserving agents, sweetening agents or flavouring agents.
  • compositions formed by combining the compounds of the invention and the pharmaceutically acceptable carriers may be administered in a variety of dosage forms suitable for the disclosed routes of administration.
  • the formulations may conveniently be presented in unit dosage form by methods known in the art of pharmacy.
  • Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules or tablets, each containing a predetermined amount of the active ingredient, and which may include a suitable excipient.
  • These formulations may be in the form of powder or granules, as a solution or suspension in an aqueous or non-aqueous liquid, or as an oil-in- water or water-in-oil liquid emulsion.
  • compositions intended for oral use may be prepared according to any known method, and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents, and preserving agents in order to provide pharmaceutically elegant and palatable preparations.
  • Tablets may contain the active ingredient in admixture with non-toxic pharmaceutically-acceptable excipients which are suitable for the manufacture of tablets.
  • excipients may be for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example corn starch or alginic acid; binding agents, for example, starch, gelatine or acacia; and lubricating agents, for example magnesium stearate, stearic acid or talc.
  • the tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period.
  • a time delay material such as glyceryl monostearate or glyceryl distearate may be employed. They may also be coated by the techniques described in U.S. Patent Nos. 4,356,108; 4,166,452; and 4,265,874, to form osmotic therapeutic tablets for controlled release.
  • Formulations for oral use may also be presented as hard gelatine capsules where the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or a soft gelatine capsule wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin, or olive oil.
  • Aqueous suspensions may contain the active compounds in admixture with excipients suitable for the manufacture of aqueous suspensions.
  • excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxy- propylmethylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide such as lecithin, or condensation products of an alkylene oxide with fatty acids, for example poly- oxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example, heptadecaethyl-eneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate.
  • the aqueous suspensions may also contain one or more coloring agents, one or more flavouring
  • Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as a liquid paraffin.
  • the oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavouring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.
  • Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active compound in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives.
  • compositions comprising a compound for use according to the present invention may also be in the form of oil-in- water emulsions.
  • the oily phase may be a vegetable oil, for example, olive oil or arachis oil, or a mineral oil, for example a liquid paraffin, or a mixture thereof.
  • Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides, for example sorbitan monooleate, and condensation products of said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate.
  • the emulsions may also contain sweetening and flavouring agents.
  • Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, preservative and flavoring and coloring agent.
  • the pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to the known methods using suitable dispersing or wetting agents and suspending agents described above.
  • the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example as a solution in 1,3-butanediol.
  • Suitable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution.
  • sterile, fixed oils are conveniently employed as solvent or suspending medium.
  • any bland fixed oil may be employed using synthetic mono- or diglycerides.
  • fatty acids such as oleic acid find use in the preparation of injectables.
  • compositions may also be in the form of suppositories for rectal administration of the compounds of the present invention.
  • These compositions can be prepared by mixing the drug with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will thus melt in the rectum to release the drug.
  • suitable non-irritating excipient include cocoa butter and polyethylene glycols, for example.
  • a pharmaceutical composition comprising a compound for use according to the present invention, or a pharmaceutically acceptable salt thereof, and one or more pharmaceutically acceptable carriers, excipients, or diluents.
  • the preparation may be tableted, placed in a hard gelatine capsule in powder or pellet form or it can be in the form of a troche or lozenge.
  • the amount of solid carrier may vary but will usually be from 25 mg to 1 g.
  • the preparation may be in the form of a syrup, emulsion, soft gelatine capsule or sterile injectable liquid such as an aqueous or non-aqueous liquid suspension or solution.
  • the compounds of the invention may be administered to a patient which is a mammal, especially a human in need thereof. Such mammals include also animals, both domestic animals, e.g. household pets, and non-domestic animals such as wildlife.
  • the present invention is further illustrated in the following representative examples which are, however, not intended to limit the scope of the invention in any way.
  • the compounds of Formula (I) may be prepared according to the following Examples. In these Examples, it is also possible to make use of variants that are themselves known to those of ordinary skill in this art, but are not mentioned in greater detail.
  • LC-MS data was obtained using gradient elution on a parallel MUX T>/! system, running four Waters 1525 binary HPLC pumps, equipped with a Mux-UV 2488 multichannel UV- Vis detector (recording at 215 and 254 nM) and a Leap Technologies
  • HTS PAL Auto sampler using a Waters Xterra MS Cl 8 4.6x50 mm column. A three minute gradient was run from 25% B (97.5%acetonitrile, 2.5% water, 0.05% TFA) and
  • BINAP 2,2'-bis(diphenylphosphino)-l,r-binaphthyl
  • E-isomer (contains ⁇ 2% Z-isomer) 5-Hydroxy-adamantan-2-one (Lachema, 673 g, 4 moles) was dissolved in 7 M ammonia in methanol (2.5 L) and molecular sieves 4A powder (175 g) was added. The suspension was stirred for 3 h at room temperature. The contents were then transferred to a Parr hydrogenation vessel and 10% palladium on charcoal (40 g) was added. The contents were subjected to hydrogen at 100 PSI. When the reaction was complete the contents were filtered over a 6-inch thick pad of Celite and concentrated to half- volume. The contents were cooled to room temperature in a water-bath.
  • Crude product was filtered through a bed of silica gel using hexane: ethyl acetate.
  • Assay Buffer (water based) used for Enzyme, Compounds and Microsomes:
  • Enzyme Buffer 333 ⁇ M NADPH (FAC 200 ⁇ M) and 266 nM Cortisone (FAC 16OnM).
  • Test compounds (10 mM stock in 100% DMSO) were diluted in Assay Buffer (see below) with 1% DMSO FAC and placed into the 96-well plate. Test compounds were typically tested over 10 concentrations (30 ⁇ M- 0.3 nM).
  • Test compounds were prepared at 10 concentrations (lOuM -0.1 nM). Dilutions were made up in Cell Media. Cell Media from the plate is aspirated and 97 ⁇ L was added to the wells.
  • the media was harvested from cells.
  • the IC50 values for select test compounds was ⁇ 300 nm.
PCT/US2009/064776 2008-11-21 2009-11-17 Adamantyl benzamide compounds WO2010059618A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
BRPI0921299-0A BRPI0921299A2 (pt) 2008-11-21 2009-11-17 Compostos de benzamida adamantila
JP2011537550A JP2012509879A (ja) 2008-11-21 2009-11-17 アダマンチルベンズアミド化合物
CA2744383A CA2744383C (en) 2008-11-21 2009-11-17 Adamantyl benzamide compounds
MX2011005037A MX2011005037A (es) 2008-11-21 2009-11-17 Compuestos de adamantilo benzamida.
EP09828106A EP2362730A4 (en) 2008-11-21 2009-11-17 Adamantyl BENZAMIDE CONNECTIONS
CN2009801462081A CN102223797A (zh) 2008-11-21 2009-11-17 金刚烷基苯甲酰胺化合物
AU2009316802A AU2009316802B2 (en) 2008-11-21 2009-11-17 Adamantyl benzamide compounds
EA201170703A EA020496B1 (ru) 2008-11-21 2009-11-17 Производное адамантилбензамида, фармацевтическая композиция, включающая его, и его применение
US13/128,045 US8927549B2 (en) 2008-11-21 2009-11-17 Adamantyl benzamide derivatives
IL212711A IL212711A0 (en) 2008-11-21 2011-05-05 Adamantyl benzamide compounds
ZA2011/04551A ZA201104551B (en) 2008-11-21 2011-06-21 Adamantyl benzamide compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11681008P 2008-11-21 2008-11-21
US61/116,810 2008-11-21

Publications (1)

Publication Number Publication Date
WO2010059618A1 true WO2010059618A1 (en) 2010-05-27

Family

ID=42198471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/064776 WO2010059618A1 (en) 2008-11-21 2009-11-17 Adamantyl benzamide compounds

Country Status (13)

Country Link
US (1) US8927549B2 (ja)
EP (1) EP2362730A4 (ja)
JP (1) JP2012509879A (ja)
KR (1) KR20110088575A (ja)
CN (1) CN102223797A (ja)
AU (1) AU2009316802B2 (ja)
BR (1) BRPI0921299A2 (ja)
CA (1) CA2744383C (ja)
EA (1) EA020496B1 (ja)
IL (1) IL212711A0 (ja)
MX (1) MX2011005037A (ja)
WO (1) WO2010059618A1 (ja)
ZA (1) ZA201104551B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8524894B2 (en) 2009-06-04 2013-09-03 Laboratorios Salvat, S.A. Inhibitor compounds of 11-beta-hydroxysteroid dehydrogenase type 1
WO2013157511A1 (ja) * 2012-04-16 2013-10-24 大日本住友製薬株式会社 アリールアミノピラゾール誘導体
WO2014084494A1 (ko) * 2012-11-30 2014-06-05 한국생명공학연구원 신규한 이치환 아다만틸 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 유효성분으로 함유하는 암 전이 억제용 약학적 조성물
US8895552B2 (en) 2010-09-03 2014-11-25 Sumitomo Dainippon Pharma Co., Ltd. Cyclic amide derivative
US11891382B2 (en) 2017-04-26 2024-02-06 Basilea Pharmaceutica International AG Processes for the preparation of furazanobenzimidazoles and crystalline forms thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1802623A1 (en) * 2004-10-12 2007-07-04 Novo Nordisk A/S 11beta-hydroxysteroid dehydrogenase type 1 active spiro compounds
US20090306048A1 (en) * 2006-06-16 2009-12-10 John Paul Kilburn Pharmaceutical use of substituted piperidine carboxamides
EP1878721A1 (en) * 2006-07-13 2008-01-16 Novo Nordisk A/S 4-Piperidylbenzamides as 11-beta-hydroxysteroid dehydrogenase type 1 inhibitors
WO2008101907A2 (en) * 2007-02-23 2008-08-28 High Point Pharmaceuticals, Llc N-adamantyl benzamides as inhibitors of 11-beta-hydroxysteroid dehydrogenase
WO2008101885A1 (en) * 2007-02-23 2008-08-28 High Point Pharmaceuticals, Llc N-adamantyl benzamides as inhibitors of 11-beta-hydroxysteroid dehydrogenase
AU2008219326B2 (en) * 2007-02-23 2012-12-13 Vtv Therapeutics Llc N-adamantyl benzamides as inhibitors of 11-beta-hydroxysteroid dehydrogenase
EP2125704A1 (en) * 2007-02-23 2009-12-02 High Point Pharmaceuticals, LLC N-adamantyl benzamides as inhibitors of 11-beta-hydroxysteroid dehydrogenase
CA2679866A1 (en) * 2007-03-09 2008-09-18 High Point Pharmaceuticals, Llc Indole- and benzimidazole amides as hydroxysteroid dehydrogenase inhibitors
JP2010522766A (ja) * 2007-03-28 2010-07-08 ハイ ポイント ファーマシューティカルズ,リミティド ライアビリティ カンパニー 11ベータ−hsd1活性化合物
US20100137377A1 (en) * 2007-04-11 2010-06-03 Soren Ebdrup Et Al Novel compounds
CA2685036A1 (en) * 2007-04-24 2008-11-06 High Point Pharmaceuticals, Llc Pharmaceutical use of substituted amides
AU2009316802B2 (en) 2008-11-21 2015-02-26 Vtv Therapeutics Llc Adamantyl benzamide compounds
US8513430B2 (en) 2010-07-27 2013-08-20 High Point Pharmaceuticals, Llc Substituted thiazol-2-ylamine derivatives, pharmaceutical compositions, and methods of use as 11-beta HSD1 modulators
GB201321601D0 (en) 2013-12-06 2014-01-22 Canbex Therapeutics Ltd Modulator

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4166452A (en) 1976-05-03 1979-09-04 Generales Constantine D J Jr Apparatus for testing human responses to stimuli
US4265874A (en) 1980-04-25 1981-05-05 Alza Corporation Method of delivering drug with aid of effervescent activity generated in environment of use
US4356108A (en) 1979-12-20 1982-10-26 The Mead Corporation Encapsulation process
EP0214826A2 (en) 1985-08-30 1987-03-18 Novo Nordisk A/S Insulin analogues and method of preparing the same
EP0368187A2 (de) 1988-11-08 1990-05-16 Hoechst Aktiengesellschaft Neue Insulinderivate, ihre Verwendung und eine sie enthaltende pharmazeutische Zubereitung
EP0481522A1 (en) 1990-10-18 1992-04-22 Merrell Pharmaceuticals Inc. Novel mercaptoacetylamide derivatives useful as inhibitors of enkephalinase and ace
US5504188A (en) 1994-06-16 1996-04-02 Eli Lilly And Company Preparation of stable zinc insulin analog crystals
EP0705275A1 (en) 1993-06-21 1996-04-10 Novo Nordisk A/S Asp?b28 insulin crystals
WO1997026265A1 (en) 1996-01-17 1997-07-24 Novo Nordisk A/S Fused 1,2,4-thiadiazine and fused 1,4-thiazine derivatives, their preparation and use
EP0792290A1 (en) 1993-09-17 1997-09-03 Novo Nordisk A/S Acylated insulin
WO1997041097A2 (en) 1996-12-31 1997-11-06 Dr. Reddy's Research Foundation Novel heterocyclic compounds process for their preparation and pharmaceutical compositions containing them and their use in the treatment of diabetes and related diseases
WO1998008871A1 (en) 1996-08-30 1998-03-05 Novo Nordisk A/S Glp-1 derivatives
US5786379A (en) * 1995-12-01 1998-07-28 Centre International De Recherches Dermatologiques Galderma Adamantyl-substituted biaromatic compounds and pharmaceutical/cosmetic compositions comprised thereof
WO1999001423A1 (en) 1997-07-01 1999-01-14 Novo Nordisk A/S Glucagon antagonists/inverse agonists
WO1999003861A1 (en) 1997-07-16 1999-01-28 Novo Nordisk A/S Fused 1,2,4-thiadiazine derivatives, their preparation and use
WO1999019313A1 (en) 1997-10-27 1999-04-22 Dr. Reddy's Research Foundation Novel tricyclic compounds and their use in medicine; process for their preparation and pharmaceutical compositions containing them
WO2001090090A1 (en) 2000-05-22 2001-11-29 Biovitrum Ab Inhibitors of 11-beta-hydroxy steroid dehydrogenase type 1
WO2004089416A2 (en) 2003-04-11 2004-10-21 Novo Nordisk A/S Combination of an 11beta-hydroxysteroid dehydrogenase type 1 inhibitor and an antihypertensive agent
WO2004089415A2 (en) 2003-04-11 2004-10-21 Novo Nordisk A/S COMBINATIONS OF AN 11β-HYDROXYSTEROID DEHYDROGENASE TYPE 1 INHIBITOR AND A GLUCOCORTICOID RECEPTOR AGONIST
WO2004089470A2 (en) 2003-04-11 2004-10-21 Novo Nordisk A/S New amide derivatives and pharmaceutical use thereof
WO2008101907A2 (en) * 2007-02-23 2008-08-28 High Point Pharmaceuticals, Llc N-adamantyl benzamides as inhibitors of 11-beta-hydroxysteroid dehydrogenase
WO2008101886A1 (en) * 2007-02-23 2008-08-28 High Point Pharmaceuticals, Llc N-adamantyl benzamides as inhibitors of 11-beta-hydroxysteroid dehydrogenase

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US592783A (en) * 1897-11-02 Adjustable back-rest for bicycle-seats
FI864875A0 (fi) * 1986-11-28 1986-11-28 Orion Yhtymae Oy Nya farmakologiskt aktiva foereningar, dessa innehaollande kompositioner samt foerfarande och mellanprodukter foer anvaendning vid framstaellning av dessa.
YU213587A (en) * 1986-11-28 1989-06-30 Orion Yhtymae Oy Process for obtaining new pharmacologic active cateholic derivatives
US5283352A (en) * 1986-11-28 1994-02-01 Orion-Yhtyma Oy Pharmacologically active compounds, methods for the preparation thereof and compositions containing the same
US5750532A (en) * 1986-12-10 1998-05-12 Schering Corporation Pharmaceutically active compounds
US4851423A (en) * 1986-12-10 1989-07-25 Schering Corporation Pharmaceutically active compounds
US5272167A (en) * 1986-12-10 1993-12-21 Schering Corporation Pharmaceutically active compounds
GB8904174D0 (en) * 1989-02-23 1989-04-05 British Bio Technology Compounds
US5677330A (en) 1990-02-12 1997-10-14 The Center For Innovative Technology Medical uses of allosteric hemoglobin modifier compounds in patient care
US5432191A (en) * 1990-02-12 1995-07-11 The Center For Innovative Technology Allosteric hemoglobin modifiers to decrease oxygen affinity in blood
US5705521A (en) * 1990-02-12 1998-01-06 The Center For Innovative Technology Use of allosteric hemoglobin modifiers in combination with radiation therapy to treat carcinogenic tumors
US5290803A (en) * 1990-02-12 1994-03-01 The Center Of Innovative Technology Using allosteric hemoglobin modifiers to decrease oxygen affinity in blood
US5382680A (en) * 1990-12-07 1995-01-17 The Center For Innovative Technology Allosteric hemoglobin modifier compounds
US5591892A (en) * 1990-02-12 1997-01-07 Center For Innovative Technology Allosteric modifiers of hemoglobin
US5648375A (en) * 1990-02-12 1997-07-15 Virginia Commonwealth University Use of hydrophobic compounds and anesthetics in combination with allosteric hemoglobin modifiers
US5731454A (en) * 1990-02-12 1998-03-24 Virginia Commonwealth University Allosteric modifiers of hemoglobin useful for decreasing oxygen affinity and preserving oxygen carrying capability of stored blood
US5049695A (en) * 1990-02-12 1991-09-17 Center For Innovative Technology Allosteric hemoglobin modifiers
US5122539A (en) * 1990-02-12 1992-06-16 Center For Innovative Technology Allosteric hemoglobin modifiers useful for decreasing oxygen affinity and preserving oxygen carrying capability of stored blood
US5872282A (en) * 1990-12-07 1999-02-16 Virginia Commonwealth University Allosteric modifiers of hemoglobin
US5260325A (en) * 1991-08-19 1993-11-09 E. I. Du Pont De Nemours And Company Angiotensin II receptor blocking tertiary amides
US5258407A (en) * 1991-12-31 1993-11-02 Sterling Winthrop Inc. 3,4-disubstituted phenols-immunomodulating agents
US5395846A (en) * 1993-06-25 1995-03-07 Rhone-Poulenc Rorer Pharmaceuticals Inc. Amino Bi- and tri-carbocyclic aklane bis-aryl squalene synthase inhibitors
FR2708608B1 (fr) * 1993-07-30 1995-10-27 Sanofi Sa Dérivés de N-sulfonylbenzimidazolone, leur préparation, les compositions pharmaceutiques en contenant.
HU222178B1 (hu) * 1993-08-10 2003-04-28 James Black Foundation Ltd. Gasztrin és CCK-receptor ligandumok, eljárás előállításukra és ezeket tartalmazó gyógyászati készítmények
GB9409150D0 (en) * 1994-05-09 1994-06-29 Black James Foundation Cck and gastrin receptor ligands
US5795907A (en) * 1994-05-27 1998-08-18 James Black Foundation Limited Gastin and CCK receptor ligands
US5912260A (en) * 1994-05-27 1999-06-15 James Black Foundation Limited Gastrin and CCK antagonists
JPH0848662A (ja) 1994-08-05 1996-02-20 Fujirebio Inc 2−オキシベンズアミド誘導体
GB9517622D0 (en) 1995-08-29 1995-11-01 Univ Edinburgh Regulation of intracellular glucocorticoid concentrations
TR199800327T1 (en) * 1995-08-30 1998-06-22 Bayer Aktiengesellschaft A�ilaminosalisilamidler.
GB9525828D0 (en) 1995-12-18 1996-02-21 Bayer Ag Use of hetarylacetic acid derivatives
GB9526560D0 (en) 1995-12-27 1996-02-28 Bayer Ag Use of 2-Amino-Heterocycles
WO1998047869A1 (en) * 1997-04-22 1998-10-29 Cocensys, Inc. Carbocyclic and heterocyclic substituted semicarbazones and thiosemicarbazones and the use thereof
AUPP982399A0 (en) 1999-04-19 1999-05-13 Fujisawa Pharmaceutical Co., Ltd. Mmp inhibitor
WO2000073283A1 (en) 1999-06-02 2000-12-07 Nps Pharmaceuticals, Inc. Metabotropic glutamate receptor antagonists and their use for treating central nervous system diseases
US6451830B1 (en) * 1999-09-23 2002-09-17 G.D. Searle & Co. Use of substituted N,N-disubstituted non-fused heterocyclo amino compounds for inhibiting cholesteryl ester transfer protein activity
EP1309697A2 (en) 2000-07-05 2003-05-14 Bayer Aktiengesellschaft Regulation of human 11 beta-hydroxysteroid dehydrogenase 1-like enzyme
US7129242B2 (en) * 2000-12-06 2006-10-31 Signal Pharmaceuticals, Llc Anilinopyrimidine derivatives as JNK pathway inhibitors and compositions and methods related thereto
GB0105772D0 (en) 2001-03-08 2001-04-25 Sterix Ltd Use
GB0107383D0 (en) 2001-03-23 2001-05-16 Univ Edinburgh Lipid profile modulation
WO2003037900A2 (en) * 2001-11-01 2003-05-08 Icagen, Inc. Pyrazolopyrimidines
WO2003065983A2 (en) 2002-02-01 2003-08-14 Merck & Co., Inc. 11-beta-hydroxysteroid dehydrogenase 1 inhibitors useful for the treatment of diabetes, obesity and dyslipidemia
CA2476681A1 (en) 2002-02-19 2003-08-28 Bruce N. Rogers Fused bicyclic-n-bridged-heteroaromatic carboxamides for the treatment of disease
JP2005528395A (ja) 2002-04-05 2005-09-22 ザ ユニバーシティ オブ エディンバラ 組成物
CA2480856A1 (en) * 2002-04-05 2003-10-23 Merck & Co., Inc. Substituted aryl amides
AU2003269242A1 (en) 2002-10-11 2004-05-04 Astrazeneca Ab 1,4-disubstituted piperidine derivatives and their use as 11-betahsd1 inhibitors
EA200500783A1 (ru) 2002-12-11 2005-12-29 ФАРМАЦИЯ ЭНД АПДЖОН КОМПАНИ ЭлЭлСи Комбинация для лечения синдрома дефицита внимания с гиперактивностью
WO2004056744A1 (en) * 2002-12-23 2004-07-08 Janssen Pharmaceutica N.V. Adamantyl acetamides as hydroxysteroid dehydrogenase inhibitors
TW200503994A (en) 2003-01-24 2005-02-01 Novartis Ag Organic compounds
US7320989B2 (en) * 2003-02-28 2008-01-22 Encysive Pharmaceuticals, Inc. Pyridine, pyrimidine, quinoline, quinazoline, and naphthalene urotensin-II receptor antagonists
EP1610789B1 (en) 2003-03-26 2010-07-21 Merck Sharp & Dohme Corp. Bicyclic piperidine derivatives as melanocortin-4 receptor agonists
US20070270408A1 (en) * 2003-04-11 2007-11-22 Novo Nordisk A/S Pharmaceutical use of substituted pyrazolo[1,5-a]pyrimidines
EP1615697A2 (en) 2003-04-11 2006-01-18 Novo Nordisk A/S New pyrazolo[1,5-a] pyrimidine derivatives and pharmaceutical use thereof
US7501405B2 (en) * 2003-04-11 2009-03-10 High Point Pharmaceuticals, Llc Combination therapy using an 11β-hydroxysteroid dehydrogenase type 1 inhibitor and an antihypertensive agent for the treatment of metabolic syndrome and related diseases and disorders
US7700583B2 (en) * 2003-04-11 2010-04-20 High Point Pharmaceuticals, Llc 11β-hydroxysteroid dehydrogenase type 1 active compounds
US20060094699A1 (en) * 2003-04-11 2006-05-04 Kampen Gita Camilla T Combination therapy using an 11beta-hydroxysteroid dehydrogenase type 1 inhibitor and a glucocorticoid receptor agonist to minimize the side effects associated with glucocorticoid receptor agonist therapy
ATE455547T1 (de) * 2003-04-11 2010-02-15 High Point Pharmaceuticals Llc Pharmazeutische verwendungen von kondensierten 1, 2,4-triazolen
AU2004263190A1 (en) 2003-08-08 2005-02-17 Avanir Pharmaceuticals Selective pharmacologic inhibition of protein trafficking and related methods of treating human diseases
DE102004009238A1 (de) 2004-02-26 2005-09-08 Merck Patent Gmbh Arylamid-Derivate
US20050261302A1 (en) * 2004-04-29 2005-11-24 Hoff Ethan D Inhibitors of the 11-beta-hydroxysteroid dehydrogenase Type 1 enzyme and their therapeutic application
DE602005007344D1 (de) * 2004-05-07 2008-07-17 Janssen Pharmaceutica Nv Adamantyl pyrrolidin-2-on-derivate als 11-beta hydroxysteroid dehydrogenas inhibitoren
KR100927563B1 (ko) 2004-08-06 2009-11-23 오쓰까 세이야꾸 가부시키가이샤 방향족 화합물
EA201890903A9 (ru) 2004-09-02 2021-11-10 Дженентек, Инк. Соединения пиридиловых ингибиторов передачи сигналов белком hedgehog, способ их получения, композиция и способы лечения рака и ингибирований ангиогенеза и сигнального пути hedgehog в клетках на их основе
EP1802623A1 (en) * 2004-10-12 2007-07-04 Novo Nordisk A/S 11beta-hydroxysteroid dehydrogenase type 1 active spiro compounds
WO2006044645A2 (en) 2004-10-13 2006-04-27 Adolor Corporation Sulfamoyl benzamides and methods of their use
EP1655283A1 (en) 2004-11-08 2006-05-10 Evotec OAI AG 11beta-HSD1 Inhibitors
WO2006055752A2 (en) 2004-11-18 2006-05-26 Incyte Corporation INHIBITORS OF 11-β HYDROXYL STEROID DEHYDROGENASE TYPE 1 AND METHODS OF USING THE SAME
CN102816081A (zh) 2005-01-05 2012-12-12 雅培制药有限公司 11-β-羟甾类脱氢酶1型酶的抑制剂
EP1846363B1 (en) * 2005-01-05 2012-04-25 Abbott Laboratories Adamantyl derivatives as inhibitors of the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme
AU2006222372B8 (en) 2005-03-03 2010-04-08 F. Hoffmann-La Roche Ag 1-sulfonyl-piperidine-3-carboxylic acid amide derivatives as inhibitors of 11-beta-hydroxysteroid dehydrogenase for the treatment of type II diabetes mellitus
WO2006105127A2 (en) 2005-03-31 2006-10-05 Takeda San Diego, Inc. Hydroxysteroid dehydrogenase inhibitors
US20060235028A1 (en) 2005-04-14 2006-10-19 Li James J Inhibitors of 11-beta hydroxysteroid dehydrogenase type I
CN1736485A (zh) 2005-06-29 2006-02-22 上海美迪西生物医药有限公司 香草醛受体激动剂用于制备抗阿尔茨海默病产品的用途
JP2009514818A (ja) * 2005-11-01 2009-04-09 ハイ ポイント ファーマシューティカルズ,リミティド ライアビリティ カンパニー 置換アミドの製薬学的用途
EP1945207A2 (en) * 2005-11-01 2008-07-23 Transtech Pharma, Inc. Pharmaceutical use of substituted amides
US7544676B2 (en) 2005-11-10 2009-06-09 Adolor Corporation Sulfamoyl benzamides and methods of their use
RU2444362C2 (ru) 2005-12-05 2012-03-10 Оцука Фармасьютикал Ко., Лтд. Лекарственное средство
JP5089185B2 (ja) 2006-02-02 2012-12-05 大塚製薬株式会社 コラーゲン産生抑制剤。
JP5306986B2 (ja) 2006-03-16 2013-10-02 エボテック (ユーエス) インコーポレイテッド P2x7調節因子としてのビシクロへテロアリール化合物およびその使用
US20100168083A1 (en) * 2006-03-21 2010-07-01 Soren Ebdrup Adamantane derivatives for the treatment of the metabolic syndrome
BRPI0710669A2 (pt) * 2006-04-07 2011-08-16 High Point Pharmaceuticals Llc compostos ativos de dehidrogenase de 11b-hidroxiesteróide tipo 1
US20090306048A1 (en) * 2006-06-16 2009-12-10 John Paul Kilburn Pharmaceutical use of substituted piperidine carboxamides
US8048908B2 (en) * 2006-07-13 2011-11-01 High Point Pharmaceuticals, Llc 11β-hydroxysteroid dehydrogenase type 1 active compounds
EP1878721A1 (en) * 2006-07-13 2008-01-16 Novo Nordisk A/S 4-Piperidylbenzamides as 11-beta-hydroxysteroid dehydrogenase type 1 inhibitors
AU2008219326B2 (en) * 2007-02-23 2012-12-13 Vtv Therapeutics Llc N-adamantyl benzamides as inhibitors of 11-beta-hydroxysteroid dehydrogenase
WO2008101885A1 (en) 2007-02-23 2008-08-28 High Point Pharmaceuticals, Llc N-adamantyl benzamides as inhibitors of 11-beta-hydroxysteroid dehydrogenase
CA2679866A1 (en) 2007-03-09 2008-09-18 High Point Pharmaceuticals, Llc Indole- and benzimidazole amides as hydroxysteroid dehydrogenase inhibitors
JP2010522766A (ja) * 2007-03-28 2010-07-08 ハイ ポイント ファーマシューティカルズ,リミティド ライアビリティ カンパニー 11ベータ−hsd1活性化合物
US20100137377A1 (en) * 2007-04-11 2010-06-03 Soren Ebdrup Et Al Novel compounds
CA2685036A1 (en) * 2007-04-24 2008-11-06 High Point Pharmaceuticals, Llc Pharmaceutical use of substituted amides
US20090281089A1 (en) 2008-04-11 2009-11-12 Genentech, Inc. Pyridyl inhibitors of hedgehog signalling
AR074343A1 (es) 2008-11-14 2011-01-12 Amgen Inc Derivados de piridina y pirimidina como inhibidores de la fosfodiesterasa 10
AU2009316802B2 (en) 2008-11-21 2015-02-26 Vtv Therapeutics Llc Adamantyl benzamide compounds
US8513430B2 (en) * 2010-07-27 2013-08-20 High Point Pharmaceuticals, Llc Substituted thiazol-2-ylamine derivatives, pharmaceutical compositions, and methods of use as 11-beta HSD1 modulators

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4166452A (en) 1976-05-03 1979-09-04 Generales Constantine D J Jr Apparatus for testing human responses to stimuli
US4356108A (en) 1979-12-20 1982-10-26 The Mead Corporation Encapsulation process
US4265874A (en) 1980-04-25 1981-05-05 Alza Corporation Method of delivering drug with aid of effervescent activity generated in environment of use
EP0214826A2 (en) 1985-08-30 1987-03-18 Novo Nordisk A/S Insulin analogues and method of preparing the same
EP0368187A2 (de) 1988-11-08 1990-05-16 Hoechst Aktiengesellschaft Neue Insulinderivate, ihre Verwendung und eine sie enthaltende pharmazeutische Zubereitung
EP0481522A1 (en) 1990-10-18 1992-04-22 Merrell Pharmaceuticals Inc. Novel mercaptoacetylamide derivatives useful as inhibitors of enkephalinase and ace
EP0705275A1 (en) 1993-06-21 1996-04-10 Novo Nordisk A/S Asp?b28 insulin crystals
EP0792290A1 (en) 1993-09-17 1997-09-03 Novo Nordisk A/S Acylated insulin
US5504188A (en) 1994-06-16 1996-04-02 Eli Lilly And Company Preparation of stable zinc insulin analog crystals
US5786379A (en) * 1995-12-01 1998-07-28 Centre International De Recherches Dermatologiques Galderma Adamantyl-substituted biaromatic compounds and pharmaceutical/cosmetic compositions comprised thereof
WO1997026265A1 (en) 1996-01-17 1997-07-24 Novo Nordisk A/S Fused 1,2,4-thiadiazine and fused 1,4-thiazine derivatives, their preparation and use
WO1998008871A1 (en) 1996-08-30 1998-03-05 Novo Nordisk A/S Glp-1 derivatives
WO1997041097A2 (en) 1996-12-31 1997-11-06 Dr. Reddy's Research Foundation Novel heterocyclic compounds process for their preparation and pharmaceutical compositions containing them and their use in the treatment of diabetes and related diseases
WO1999001423A1 (en) 1997-07-01 1999-01-14 Novo Nordisk A/S Glucagon antagonists/inverse agonists
WO1999003861A1 (en) 1997-07-16 1999-01-28 Novo Nordisk A/S Fused 1,2,4-thiadiazine derivatives, their preparation and use
WO1999019313A1 (en) 1997-10-27 1999-04-22 Dr. Reddy's Research Foundation Novel tricyclic compounds and their use in medicine; process for their preparation and pharmaceutical compositions containing them
WO2001090091A1 (en) 2000-05-22 2001-11-29 Biovitrum Ab Inhibitors of 11-beta-hydroxy steroid dehydrogenase type 1
WO2001090093A1 (en) 2000-05-22 2001-11-29 Biovitrum Ab Inhibitors of 11-beta-hydroxy steroid dehydrogenase type 1
WO2001090090A1 (en) 2000-05-22 2001-11-29 Biovitrum Ab Inhibitors of 11-beta-hydroxy steroid dehydrogenase type 1
WO2001090092A1 (en) 2000-05-22 2001-11-29 Biovitrum Ab Inhibitors of 11-beta-hydroxy steroid dehydrogenase type 1
WO2001090094A1 (en) 2000-05-22 2001-11-29 Biovitrum Ab Inhibitors of 11-beta-hydroxy steroid dehydrogenase type 1
WO2004089416A2 (en) 2003-04-11 2004-10-21 Novo Nordisk A/S Combination of an 11beta-hydroxysteroid dehydrogenase type 1 inhibitor and an antihypertensive agent
WO2004089415A2 (en) 2003-04-11 2004-10-21 Novo Nordisk A/S COMBINATIONS OF AN 11β-HYDROXYSTEROID DEHYDROGENASE TYPE 1 INHIBITOR AND A GLUCOCORTICOID RECEPTOR AGONIST
WO2004089470A2 (en) 2003-04-11 2004-10-21 Novo Nordisk A/S New amide derivatives and pharmaceutical use thereof
WO2008101907A2 (en) * 2007-02-23 2008-08-28 High Point Pharmaceuticals, Llc N-adamantyl benzamides as inhibitors of 11-beta-hydroxysteroid dehydrogenase
WO2008101886A1 (en) * 2007-02-23 2008-08-28 High Point Pharmaceuticals, Llc N-adamantyl benzamides as inhibitors of 11-beta-hydroxysteroid dehydrogenase

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GENNARO,: "Remington: The Science and Practice of Pharmacy, 19th Edition", 1995, MACK PUBLISHING CO.
J. PHARM. SCI., vol. 66, 1977, pages 2
See also references of EP2362730A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8524894B2 (en) 2009-06-04 2013-09-03 Laboratorios Salvat, S.A. Inhibitor compounds of 11-beta-hydroxysteroid dehydrogenase type 1
US8822452B2 (en) 2009-06-04 2014-09-02 Laboratorios Salvat, S.A. Inhibitor compounds of 11-beta-hydroxysteroid dehydrogenase type 1
US8895552B2 (en) 2010-09-03 2014-11-25 Sumitomo Dainippon Pharma Co., Ltd. Cyclic amide derivative
WO2013157511A1 (ja) * 2012-04-16 2013-10-24 大日本住友製薬株式会社 アリールアミノピラゾール誘導体
WO2014084494A1 (ko) * 2012-11-30 2014-06-05 한국생명공학연구원 신규한 이치환 아다만틸 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 유효성분으로 함유하는 암 전이 억제용 약학적 조성물
US9447063B2 (en) 2012-11-30 2016-09-20 Korea Research Institute Of Bioscience And Biotechnology Disubstituted adamantyl derivative or pharmaceutically acceptable salt thereof, production method for same, and pharmaceutical composition for suppressing cancer metastasis comprising same as active ingredient
US11891382B2 (en) 2017-04-26 2024-02-06 Basilea Pharmaceutica International AG Processes for the preparation of furazanobenzimidazoles and crystalline forms thereof

Also Published As

Publication number Publication date
AU2009316802B2 (en) 2015-02-26
BRPI0921299A2 (pt) 2015-08-25
IL212711A0 (en) 2011-07-31
EP2362730A1 (en) 2011-09-07
EA020496B1 (ru) 2014-11-28
CA2744383C (en) 2017-04-25
CN102223797A (zh) 2011-10-19
JP2012509879A (ja) 2012-04-26
ZA201104551B (en) 2012-03-28
KR20110088575A (ko) 2011-08-03
US8927549B2 (en) 2015-01-06
MX2011005037A (es) 2011-06-16
EP2362730A4 (en) 2012-08-29
EA201170703A1 (ru) 2012-01-30
AU2009316802A1 (en) 2010-05-27
CA2744383A1 (en) 2010-05-27
US20110224244A1 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
US8927549B2 (en) Adamantyl benzamide derivatives
EP2150526B1 (en) N-adamantyl benzamides as inhibitors of 11-beta-hydroxysteroid dehydrogenase
US8383683B2 (en) Pharmaceutical use of substituted amides
US7700583B2 (en) 11β-hydroxysteroid dehydrogenase type 1 active compounds
EP1787982B1 (en) 11Beta-Hydroxysteroid dehydrogenase type 1 active compounds
US8334305B2 (en) N-adamantyl benzamides as inhibitors of 11-β-hydroxysteroid dehydrogenase
EP2152081B1 (en) Novel compounds
US20100056600A1 (en) 11beta-hsd1 active compounds
US20100168083A1 (en) Adamantane derivatives for the treatment of the metabolic syndrome
US20090325932A1 (en) 4-piperidylbenzamides as 11-beta-hydroxysteroid dehydrogenase type 1 inhibitors
US20110003852A1 (en) N-adamantyl benzamides as inhibitors of 11-beta-hydroxysteroid dehydrogenase

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980146208.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828106

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 212711

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 13128045

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 592800

Country of ref document: NZ

Ref document number: 2009316802

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/005037

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2744383

Country of ref document: CA

Ref document number: 3778/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009828106

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011537550

Country of ref document: JP

Ref document number: 2009828106

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009316802

Country of ref document: AU

Date of ref document: 20091117

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201170703

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 20117013921

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0921299

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110516