WO2010058861A1 - Process for producing t-bar steel and series of rolling devices - Google Patents

Process for producing t-bar steel and series of rolling devices Download PDF

Info

Publication number
WO2010058861A1
WO2010058861A1 PCT/JP2009/069989 JP2009069989W WO2010058861A1 WO 2010058861 A1 WO2010058861 A1 WO 2010058861A1 JP 2009069989 W JP2009069989 W JP 2009069989W WO 2010058861 A1 WO2010058861 A1 WO 2010058861A1
Authority
WO
WIPO (PCT)
Prior art keywords
web
rolling
roll
flange
rolling mill
Prior art date
Application number
PCT/JP2009/069989
Other languages
French (fr)
Japanese (ja)
Inventor
高嶋由紀雄
山口陽一郎
高橋英樹
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN2009801454102A priority Critical patent/CN102215989B/en
Publication of WO2010058861A1 publication Critical patent/WO2010058861A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/092T-sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/12Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel in a continuous process, i.e. without reversing stands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/02Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with axes of rolls arranged horizontally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/06Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with axes of rolls arranged vertically, e.g. edgers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/08Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with differently-directed roll axes, e.g. for the so-called "universal" rolling process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2263/00Shape of product
    • B21B2263/02Profile, e.g. of plate, hot strip, sections

Definitions

  • the present invention relates to a method for producing a T-shaped steel (T-bar) by hot rolling and a rolling equipment line.
  • Fig. 12 shows the cross-sectional shape of the T-section steel.
  • the T-section steel 10 is a section steel having a T-shaped cross section composed of a web 11 and a flange 12, and is widely used in fields such as shipbuilding and bridges. T-shaped steel products are manufactured in various dimensions depending on the application, usage conditions, location, etc.
  • T-shaped steel dimensions are: web height: about 200-1000 mm, web thickness: about 8-25 mm, web inner dimension (inner height of web): about 190-980 mm, flange width: about 80-300 mm
  • the flange thickness is about 12 to 40 mm.
  • the web height is often more than twice the flange width.
  • the web internal dimension Ai and the web external dimension (outer height of web) Ao may be used as the web height reference.
  • the web inner dimension Ai is the same
  • the case where the web inner dimension Ai is the same, and the case where the web outer dimension Ao is the same is called the outer web constant.
  • the in-web method is constant, as shown in FIG.
  • the T-section steel is generally manufactured by welding the web 11 and the flange 12, but a technique for integrally forming the T-section steel by rolling has also been proposed.
  • one universal rolling mill (universal mill) is arranged in each of the intermediate rolling process and the finishing rolling process in order to efficiently produce T-shaped steel having various web thickness, flange thickness, web height and flange width.
  • a hot rolling facility has been proposed (for example, Patent Document 1).
  • FIG. 14 shows an example, and a rough shaping rolling mill 1 that reciprocally rolls a raw steel piece carried out from a heating furnace (not shown) to roughly form a cross-section into a substantially T-shaped section, and the rough shaping rolling mill 1 Rough universal rolling mill 2 for forming a T-shaped steel piece (not shown) roughly formed into a T-shape into a T-shaped steel having a substantially product size, and an edger rolling mill (located near the downstream of the rough universal rolling mill 2) edger mill) 3 and finishing universal rolling mill 5 (FIG. 14A).
  • the rolling process by the rough universal rolling mill 2 and the edger rolling mill 3 is an intermediate rolling process
  • the rolling process by the finishing universal rolling mill 5 is a finish rolling process.
  • Fig. 14 (b) schematically shows the configuration of the rough universal rolling mill 2
  • Fig. 14 (c) schematically shows the configuration of the edger rolling mill 3
  • Fig. 14 (d) schematically shows the configuration of the finishing universal rolling mill 5.
  • the rough universal rolling mill 2 has horizontal rolls 21a and 21b and vertical rolls 22a and 22b
  • the finishing universal rolling mill 5 has horizontal rolls 51a and 51b and vertical rolls. 52a and 52b, and by adjusting the respective roll opening (roll gap), it is possible to roll the steel slab into products having various flange thicknesses and web thicknesses without changing the rolls.
  • the edger rolling mill 3 has edger rolls 31a and 31b, which are composed of a large diameter portion 33 and a small diameter portion 32, and the end surface of the flange 12 can be crushed by the small diameter portion 32 to adjust the flange width.
  • Patent Document 2 discloses a method for efficiently producing a T-shaped steel using a triaxial roughing mill and a triaxial edger. In this technique, the end face 11a of the web 11 and the end face 12a of the flange 12 are simultaneously reduced by the triaxial edger shown in FIG. 15 after rough rolling, and the height of the web 11 is also adjusted.
  • Patent Document 3 discloses that when reciprocating rolling is performed on at least two universal rolling mills arranged in tandem on a rough section of T-shaped steel formed by rough rolling on a steel strip, FIG. As shown in a) and (b), the web and flange of the rough steel slab are reduced in the thickness direction by one universal rolling mill UR, and the flange of the rough steel slab is reduced in the width direction by the other universal rolling mill UF.
  • a method for producing a hot rolled T-section steel characterized in that the rolling down in the width direction of the flange and the reduction in the height direction of the web are simultaneously performed.
  • Patent Document 3 at least one coarse universal rolling mill UR and adjacent to the coarse steel slab of T-shaped steel formed by roughly rolling a steel slab by a rough rolling mill BD are arranged. Perform reciprocating rolling with at least one double rolling mill E, and reduce the web thickness and flange thickness of the rough shaped steel slab and adjust the web height of the rough shaped steel slab with a coarse universal rolling mill.
  • the web 11 of the T-shaped slab H is pressed down in the plate thickness direction by the horizontal rolls 21a and 21b, and the roll 22a And the flange 12 of the T-shaped steel slab (rolled material) H is pressed down in the plate thickness direction between the horizontal rolls 21a and 21b.
  • the side roll 22b that does not roll down the flange 12 is disposed in contact with the side surfaces of the horizontal rolls 21a and 21b, and when rolling down the flange 12, the force acting in the axial direction of the horizontal rolls 21a and 21b from the side roll 22a
  • the horizontal rolls 21a and 21b are pressed against their side surfaces so as not to move.
  • the width of the flange 12 is adjusted by reducing the end face in the width direction of the flange 12 of the T-shaped billet H.
  • the finish rolling process the flange 12 is shaped vertically between the horizontal rolls 51a and 51b and the scissors rolls 52a and 52b by the finish universal rolling mill 5, and the web is not squeezed down in the height direction, and the T-section steel is used. The hot rolling is finished.
  • the web thickness and the flange thickness are adjusted using the rough universal rolling mill 2 in the intermediate rolling process, and further, the flange end face is rolled down by the edger rolling mill 3 and the flange is moved.
  • the width is adjusted, the web is not rolled down by the roll in the height direction.
  • the height of the web may not necessarily be the target dimension, and the web tip (the end surface 11a of the web 11 in FIG. 12) has a cross-sectional shape (a cross-sectional shape perpendicular to the longitudinal direction of the product, and so on). Is not preferable as a product shape.
  • Patent Document 1 describes that a cutting portion is provided in a horizontal roll of a finishing universal rolling mill and a web end is cut and shaped in a finishing rolling process (FIGS. 21 and 22 of Patent Document 1). Since the cut portion is burred or rounded, a product having a good cross-sectional shape cannot be obtained.
  • the web is pressed down in the height direction by the roll of the second universal rolling mill shown in FIG. Can be adjusted.
  • the universal rolling mill plays a role of simultaneously reducing the flange width and the web tip, the thickness reduction ratio of the web and the flange must be as small as several percent. This is because the flange width is reduced by using a step-shaped horizontal roll having a small diameter part and a large diameter part, so it is necessary to use a saddle roll having a small diameter part on the flange side. This is to cause a step difference in the flange thickness.
  • the thickness of the flange tip increases, so that the step difference in the flange thickness is further increased, and the possibility that surface defects such as folds (flaws) occur on the outer surface of the flange increases. Furthermore, due to the structural problems of the second universal rolling mill as described above, although there are two universal rolling mills, the thickness is reduced substantially by only one universal rolling mill. There is a problem that the number of passes increases.
  • the rolling reaction force caused by the one roll roll reducing the flange acts in the axial direction of the horizontal roll, but the roll roll on the web tip side is in contact with the side surface of the horizontal roll.
  • the axial load of the horizontal roll cannot be supported by the heel roll. That is, when trying to effectively reduce the flange thickness, it is difficult to support an axial load of several thousand kN acting on the horizontal roll, and therefore the flange reduction rate cannot be increased.
  • the inclination angle of the flange in the intermediate rolling is preferably 5 degrees or less.
  • the contact length between the flange inner surface and the horizontal roll side surface becomes long, and the flange inner surface is easily wrinkled due to slippage between the roll and the rolled material.
  • the present invention has been made to solve the above-described problems, and the shape of the web tip is good, the desired web height can be obtained with high accuracy, and the T-shaped steel is efficiently manufactured with a small number of passes.
  • An object of the present invention is to provide a manufacturing method and a rolling equipment train for the purpose.
  • the object of the present invention can be achieved by the following means.
  • the intermediate rolling step includes a rolling step by a first rough universal rolling mill in which upper and lower horizontal rolls reduce the entire upper and lower surfaces in the web thickness direction, An edger rolling process for rolling down the end face of the flange; A plate where the width of the roll outer peripheral surface is the same as the target internal web dimension, and the web is removed from the vicinity of the tip portion using the upper and lower horizontal rolls that are processed into a shape in which the corner portion on the tip side of the web is not rolled.
  • one of the left and right rolls rolls down the flange in the plate thickness direction, and the other roll roll contacts the outer circumferential surface with the upper and lower horizontal rolls while the end face of the web
  • a rolling step by a second rough universal rolling mill for rolling down the web in the height direction of the web.
  • a T-section rolling equipment row for rolling a web and a flange with a T-shaped steel piece roughly formed into a T-shape as a material to be rolled A first rough universal rolling mill having upper and lower horizontal rolls whose width of the outer peripheral surface of the roll is wider than a target in-web dimension of the material to be rolled; an edger rolling machine for rolling down the end face of the flange of the material to be rolled; Upper and lower horizontal rolls whose outer peripheral surface width is the same as the target in-web dimension of the material to be rolled and the corner portion on the front end side of the web is processed into a shape that does not roll the web surface, and one of them rolls down the flange in the plate thickness direction.
  • a second rough universal rolling mill having left and right reed rolls that press the end surface of the web in the height direction of the web while the outer peripheral surface of the reed roll is in contact with the upper and lower horizontal rolls is arranged.
  • Characteristic T-section rolling equipment line Characteristic T-section rolling equipment line.
  • the following effects can be used to obtain a desired web height with high accuracy while maintaining the shape of the web tip as it is with hot rolling.
  • An effective manufacturing method of shape steel and a rolling equipment train are obtained, which are extremely useful in industry. 1. Since the reduction of the web thickness and the flange thickness in the intermediate rolling process is performed by both the first and second rough universal rolling mills, compared to the case of rolling the thickness by one rough universal rolling mill, per pass It is possible to increase the reduction amount of the web thickness and the flange thickness, thereby reducing the rolling pass and improving the rolling efficiency.
  • the rolling efficiency can be further improved by arranging a plurality of at least one of the first rough universal rolling mill, the edger rolling mill, and the second rough universal rolling mill.
  • the outer periphery of the roll is brought into contact with the side (web tip side) that does not reduce the flange thickness of the horizontal roll, and the rolling reaction force acting in the axial direction of the horizontal roll due to the reduction of the flange thickness is By supporting and rolling down the end face of the web in the height direction, it is possible to prevent the horizontal roll from moving in the axial direction and to roll a T-shaped steel with good dimensional accuracy.
  • FIG. 1 is a diagram showing an example of the arrangement of T-section steel rolling equipment used in the practice of the present invention.
  • 2A and 2B are diagrams for explaining the configuration of the first rough universal rolling mill used in the practice of the present invention, in which FIG. 2A is an example thereof, and FIG. 2B is a schematic diagram explaining another example.
  • FIG. 3 is a schematic diagram illustrating an example of the configuration of an edger rolling mill used in the practice of the present invention.
  • FIG. 4 is a schematic diagram for explaining an example of the configuration of a second rough universal rolling mill used in the practice of the present invention.
  • FIG. 5 is a schematic diagram for explaining another example of the configuration of the second rough universal rolling mill used in the implementation of the present invention.
  • FIG. 1 is a diagram showing an example of the arrangement of T-section steel rolling equipment used in the practice of the present invention.
  • 2A and 2B are diagrams for explaining the configuration of the first rough universal rolling mill used in the practice of the present invention, in which FIG. 2A is an example thereof
  • FIG. 6 is a schematic diagram illustrating still another example of the configuration of the second rough universal rolling mill used in the implementation of the present invention.
  • FIG. 7 is a schematic diagram illustrating still another example of the configuration of the second rough universal rolling mill used in the implementation of the present invention.
  • FIG. 8 is a schematic diagram illustrating still another example of the configuration of the second rough universal rolling mill used in the implementation of the present invention.
  • FIG. 9 is a schematic diagram illustrating still another example of the configuration of the second rough universal rolling mill used in the implementation of the present invention.
  • FIG. 10 is a schematic diagram for explaining an example of the configuration of a finishing universal rolling mill used for carrying out the present invention.
  • FIG. 11 is a schematic diagram for explaining a protrusion shape generated at the tip of the rolled material web.
  • FIG. 11 is a schematic diagram for explaining a protrusion shape generated at the tip of the rolled material web.
  • FIG. 12 is a cross-sectional view showing a cross-sectional shape of a T-shaped steel.
  • FIG. 13 is a diagram showing the dimensional shape of a T-shaped steel having a constant inner method and a constant outer method.
  • FIG. 13A is a diagram showing a T-shaped steel having a constant inner method
  • FIG. 14A and 14B are diagrams showing a conventional T-shaped steel rolling facility, where FIG. 14A is a layout drawing of a rolling mill, FIG. 14B is a diagram illustrating a configuration of a rough universal rolling mill, and FIG. 14C is edger rolling.
  • the figure explaining the structure of a mill (d) is a figure explaining the structure of a finishing universal rolling mill.
  • FIG. 14A is a layout drawing of a rolling mill
  • FIG. 14B is a diagram illustrating a configuration of a rough universal rolling mill
  • FIG. 14C is edger rolling.
  • the figure explaining the structure of a mill (d) is a figure explaining the structure of
  • FIG. 15 is a diagram showing a configuration of a conventional T-section edger rolling mill.
  • FIG. 16 is a diagram showing a configuration of a universal rolling mill in a conventional T-shaped steel rolling method, in which (a) is a diagram showing a configuration of a first universal rolling mill, and (b) is a second universal rolling. It is a figure which shows the structure of a machine. It is a figure which shows the rolling method of the conventional T-section steel using a rough universal rolling mill, an edger rolling mill, and a finishing universal rolling mill.
  • FIG. 1 shows an example of a rolling equipment line according to the present invention, in which 1 is a rough shaping rolling mill, 2 is a first rough universal rolling mill, 3 is an edger rolling mill, and 4 is a second rough universal rolling mill.
  • Reference numeral 5 denotes a finish rolling mill.
  • a raw steel slab (not shown) carried out of a heating furnace (not shown) is rolled into a T-shaped steel slab having a substantially T-shaped cross section by the rough shaping rolling mill 1.
  • known equipment can be used, for example, a double rolling mill equipped with a roll having a hole shape.
  • the obtained T-shaped slab is rolled in a rolling equipment row in which the first rough universal rolling mill 2, the edger rolling mill 3 and the second rough universal rolling mill 4 are arranged close to each other, and a web and a flange Is reduced (intermediate rolling process).
  • FIG. 2A shows a schematic diagram for explaining the structure of the first rough universal rolling mill 2.
  • the first rough universal rolling mill 2 includes horizontal rolls 21a and 21b that rotate on a horizontal axis, and roll rolls 22a and 22b that rotate on a vertical axis.
  • the horizontal rolls 21a and 21b and the scissors rolls 22a and 22b are opposed to each other.
  • the width (width of the pressed surface) W1 of the roll outer peripheral surface of the horizontal rolls 21a and 21b is made larger than the target internal dimension L of the web 11 (the distance from the flange inner surface to the web tip). Preferably, it is about 105 to 150% of the target internal dimension L of the web 11.
  • the entire surface in the height direction of the web 11 of the material H to be rolled, which is a T-shaped steel slab, is reduced in the plate thickness direction by horizontal rolls 21a and 21b,
  • the flange 12 is pressed down in the plate thickness direction on the side surfaces of the horizontal rolls 21a and 21b.
  • the thickness of the web 11 is adjusted by adjusting the opening of the horizontal rolls 21a and 21b, and the thickness of the flange 12 is adjusted by adjusting the opening of the flange roll 22a and the side surfaces of the horizontal rolls 21a and 21b.
  • FIG. 3 is a schematic diagram for explaining the structure of the edger rolling mill 3.
  • the edger rolling mill 3 has edger rolls 31a and 31b each having a large diameter roll portion 33 and a small diameter roll portion 32 in the horizontal axis direction.
  • the large diameter roll portion 33 guides the web 11 of the material H to be rolled, and the small diameter roll.
  • the roll surface (pressed surface) 32a of the portion 32 presses down the end surface 12a of the flange 12 in the width direction.
  • the roll diameter of the large diameter roll section 33 and the roll diameter of the small diameter roll section 32 are such that the roll surface of the large diameter roll section 33 is in the thickness direction of the web 11 during rolling of the end face 12a of the flange 12 by the small diameter roll section 32.
  • the gap is preferably 2 mm or less.
  • FIG. 4 shows a schematic diagram for explaining the structure of the second rough universal rolling mill 4.
  • 5 to 9 are also schematic diagrams for explaining the structure of the rough universal rolling mill 4, and are variations of FIG. 4 as described below.
  • the second rough universal rolling mill 4 has horizontal rolls 41a and 41b that rotate on the horizontal axis, and rolling rolls 42a and 42b that rotate on the vertical axis.
  • the horizontal rolls 41a and 41b and the heel rolls 42a and 42b are arranged to face each other.
  • the roll opening degree of the horizontal rolls 41a and 41b is adjusted, the plate
  • the circumferential surface c of the saddle roll 42b is arranged in contact with the other side surface b of the horizontal rolls 41a and 41b so that the horizontal rolls 41a and 41b do not move in the axial direction.
  • the width (width of the pressed surface) W2 of the roll outer peripheral surface of the horizontal rolls 41a and 41b is substantially the same value as the target inner dimension L (distance from the flange inner surface to the end surface 11a of the web tip) in the intermediate rolling process of the web 11. (That is, W2 ⁇ W1).
  • the target internal dimension L of the web 11 in the intermediate rolling process is usually determined by taking into account the slight increase in web height in the finishing universal rolling mill, which is the final rolling process, and is usually used in the T-section steel in the product stage. It is preferable to set a value shorter by about 0 to 5 mm than the dimension.
  • the width W2 of the circumferential roll surfaces of the horizontal rolls 41a and 41b be a value smaller by about 0 to 5 mm than the in-web dimension of the T-shaped steel product. Since the widths of the horizontal rolls 41 a and 41 b are the same as the target internal dimension L of the web 11, the scissors roll 42 b comes into contact with the tip of the web 11 and is pressed down to adjust the height of the web 11 and the shape of the end surface 11 a. It becomes possible.
  • the corner portion a on the web tip side of the horizontal rolls 41a and 41b is subjected to curved surface processing, chamfering, or a step.
  • corners of upper and lower horizontal rolls incorporated in a rough universal rolling mill of a shape steel having a flange such as an H-shape steel are subjected to arc processing in accordance with the shape of the shape steel to be rolled.
  • the horizontal roll corner portion is rolled into a shape that does not roll the web surface.
  • the shape of the corner part a of the horizontal rolls 41a and 41b is arc-shaped processing (FIGS. 4 and 7), chamfering processing (FIGS. 5 and 8), or step processing (FIGS. 6 and 6). 9) and the like, and a space for rolling the deformed portion of the web surface in the thickness direction of the web due to the increase in the thickness of the web tip is secured.
  • the circular arc may be an elliptical arc, and the central angle of the circular arc or elliptical arc is not limited to 90 degrees and can be selected as appropriate. Also, the angle of chamfering is not limited to 45 degrees and can be selected as appropriate. When providing chamfers or steps, it is preferable to round the corners.
  • the arc radius in the case of arc processing is 20 mm or more, and in the case of chamfering, the generation of ear-shaped projections can be prevented by performing processing of C 20 or more.
  • the width of the step portion is 20 mm or more.
  • the upper limit of the processing dimension is preferably such that a web surface of 70% or more of the target internal dimension L in the intermediate rolling process of the web 11 is rolled. That is, it is preferable to set it within 30% with respect to the width W2 of the outer peripheral surface of the horizontal rolls 41a and 41b.
  • the web end portion side of the horizontal roll forms an opening larger than the web thickness.
  • the opening width d of this opening is preferably about (web thickness + 10 mm) to (web thickness + 200 mm). A more preferable upper limit is about (web thickness + 100 mm). Also in shapes other than the above, it is preferable that the width of the non-rolled portion is 30% of 20 mm to L, and d is in the above range.
  • the side b close to the web tip of the horizontal roll 41a (41b) is vertical as shown in FIGS. 4, 5 and 6, and preferably has the same inclination as the side on the flange side as shown in FIGS.
  • An angle ⁇ from the vertical may be 5 ⁇ ⁇ 10 °.
  • an inclination of the same angle is also provided on the outer periphery of the roll 42b according to the inclination angle, and an up-down symmetrical chevron shape having an inclined hypotenuse with the center in the width direction of the roll surface as a vertex is provided.
  • a flat end having a width larger than the web thickness of the material H to be rolled is provided at the center in the width direction of the roll surface that rolls down the web tip.
  • first and second rough universal rolling mills it is preferable to perform rolling so that the reduction ratio of the web thickness and the flange thickness is 10 to 30%.
  • rolling at a reduction rate of 10% or less may be performed in a specific pass such as the last rolling mill that finishes the intermediate rolling, or the rolled material may be passed without being reduced.
  • the second rough universal rolling mill is the last rolling mill that finishes the intermediate rolling
  • the web rolling reduction in the finishing universal rolling mill 5 in the next process is small. It is also conceivable to change the process according to the level difference. That is, if the difference in sheet thickness is so large that it cannot be eliminated by finishing rolling by the finishing universal rolling mill 5, the material to be rolled H is fed back and rolled again by the first rough universal rolling mill 2, This can be eliminated by reducing the entire surface in the height direction.
  • the intermediate rolling process may be terminated and the finish rolling process may be started.
  • the roll opening of the second rough universal rolling mill 4 may be made larger than the dimension of the material H to be rolled, and may be passed without rolling. There is no difference in plate thickness near the tip.
  • the crossing angle ⁇ between the flange and the web is preferably 95 ⁇ ⁇ 110 °, more preferably 95 ⁇ ⁇ 100 °, in a cross-sectional view of the material to be rolled as viewed from the rolling direction. Is more preferable.
  • the crossing angle prevents the horizontal roll and the inner surface of the flange to be rolled from coming off quickly after rolling, and the generation of wrinkles on the inner surface of the flange. Also, the amount of roll refurbishment when the roll is worn can be reduced, and the roll life is extended.
  • the present invention is not limited to the arrangement shown in FIG. 1, and may be any other equipment as long as it has one or more first rough universal rolling mills 2, edger rolling mills 3, and second rough universal rolling mills 4. Any arrangement of can be applied. For example, at least one of the first coarse universal rolling mill, the edger rolling mill, and the second coarse universal rolling mill may be continuously arranged. Further, the arrangement order of the first rough universal rolling mill, the edger rolling mill, and the second rough universal rolling mill is changed, for example, the edger rolling mill and the second rough universal rolling mill are arranged at the beginning of the intermediate rolling process. May be. Furthermore, since each rolling mill is normally capable of reverse rolling or through (passing the rolling mill without rolling), the rolling order does not have to coincide with the rolling mill order.
  • FIG. 10 shows a schematic diagram for explaining the structure of the finishing universal rolling mill.
  • the finishing universal rolling mill 5 has horizontal rolls 51a and 51b that rotate on the horizontal axis, and roll rolls 52a and 52b that rotate on the vertical axis, and the side surfaces of the horizontal rolls 51a and 51b are orthogonal to the outer peripheral surface of the roll.
  • the rolled material in which the crossing angle ⁇ between the flange and the web is larger than 90 ° in the intermediate rolling step in the previous step is formed so that the crossing angle between the flange and the web becomes 90 °.
  • the flange of the material to be rolled H is rolled with the roll 52a having a flat outer periphery, the flange is shaped perpendicular to the web.
  • the thickness reduction ratio of the flange is preferably a slight reduction of several percent and at most 5%.
  • the horizontal rolls 51a and 51b can be prevented from moving in the axial direction by pressing the saddle roll 52b against the side surface of the horizontal rolls 51a and 51b that is not opposed to the flange.
  • the web is hardly reduced or lightly reduced by a thickness reduction rate of several percent to the extent that the shape and dimensions are adjusted.
  • a thickness reduction rate of several percent to the extent that the shape and dimensions are adjusted.
  • the width of the pressed surface of the horizontal rolls 51a and 51b is made larger than the in-web dimension (and thus larger than W2). Preferably, it is about 105 to 150% of the internal dimension of the web 11.
  • the manufacturing method and rolling equipment row of the present invention described above are used, a plurality of sizes of T-shaped steels having the same internal dimensions and different flange thicknesses can be manufactured.
  • the T-shaped steel having a constant internal dimension has a constant internal web dimension Ai even if the flange thickness tf changes.
  • the plate thickness tf of the flange can be adjusted by adjusting the opening between the side roll 42a of the second rough universal rolling mill and one side surface of the horizontal rolls 41a and 41b.
  • the circumferential surface c of the eaves roll 42b is arranged in contact with the other side face b of the horizontal rolls 41a and 41b so that the horizontal rolls 41a and 41b do not move in the axial direction.
  • the width of the roll outer peripheral surface of the horizontal rolls 41a and 41b is the same as the internal web dimension, the internal web dimension Ai can be rolled to a constant dimension regardless of the flange thickness.
  • a certain T-shaped steel can be easily manufactured.
  • a T-section steel having a target dimension of a web height of 300 mm, a flange width of 100 mm, a web thickness of 9 mm, and a flange thickness of 16 mm is rolled from a bloom having a rectangular cross section with a thickness of 250 mm and a width of 310 mm. did.
  • the 1st rough universal rolling mill 2 used the structure shown to Fig.2 (a).
  • the horizontal roll was set to 320 mm so that the width W1 of the pressed surface was wider than the target internal dimension L of the web (283 mm), and the angle ⁇ from the vertical direction of the side surface of the horizontal roll was set to 7 °.
  • the left and right saddle rolls are arranged so as to be opposed to each other, and in the cross-sectional shape, a vertically symmetrical mountain shape having a hypotenuse inclined at an angle of 7 ° from the vertical with the center in the width direction of the roll surface as a vertex.
  • the pressing force of the one that presses the side surface of the horizontal roll was adjusted so that the horizontal roll would not move in the horizontal axis direction due to the rolling of the flange.
  • the edger rolling mill 3 has a structure shown in FIG.
  • the step between the large diameter portion and the small diameter portion of the edger roll was 44 mm, and the roll width was ensured to be 500 mm or more for the large diameter portion and 200 mm or more for the small diameter portion.
  • the inclination angle of the step portion was set to 7 ° from the vertical.
  • the second rough universal rolling mill 4 having the structure shown in FIG. 4 was used.
  • the roll shaft of the horizontal roll was not reinforced, and a general structure was used.
  • the horizontal roll was 283 mm so that the width W2 of the pressed surface was the same as the web target internal dimension in the intermediate rolling process, and the side surface of the horizontal roll on the side where the flange was rolled was inclined by 7 ° from the vertical.
  • the size of the curved surface processing of the horizontal roll corner portion a was an arc shape with a radius of 30 mm (the web end side opening width d of the horizontal roll is the web thickness of the material to be rolled + about 60 mm).
  • one of the scissors rolls that rolls the flange with the left and right scissors rolls has a vertically-symmetrical chevron shape having a hypotenuse inclined at an angle of 7 ° from the vertical with the center in the width direction of the roll surface in the cross-sectional shape.
  • the other scissors roll that squeezes the tip in the height direction was a cylindrical shape with a flat roll surface.
  • the finishing universal rolling mill 5 has a structure shown in FIG.
  • the width of the horizontal roll was 320 mm.
  • the bloom was rolled with a rough shaping rolling mill 1 (using a double rolling mill incorporating a perforated roll) to obtain a T-shaped steel piece having a substantially T-shaped cross section.
  • the obtained T-shaped billet had a web thickness of 40 mm, a flange thickness of 75 mm, a web height of 365 mm, and a flange width of 130 mm.
  • reciprocal rolling of 5 passes is performed by a rolling mill group in which the first rough universal rolling mill 2, the edger rolling mill 3, and the second rough universal rolling mill 4 described above are arranged in this order, and the web and the flange are reduced. did.
  • Table 1 shows the pass schedule of the intermediate rolling process.
  • the web tip was adjusted in the web height direction by using a roll, and the web height was adjusted. At this time, rolling was performed while supporting the axial load of the horizontal roll, with the roll being rolled down the web tip in contact with the side of the horizontal roll. Finally, the finishing universal rolling mill 5 having horizontal rolls and rolls was rolled while applying light pressure to the flanges to shape the inclination of the flanges vertically. The web part was under light pressure. After hot rolling, the web height, flange width, web thickness, and flange thickness of the obtained T-shaped steel were measured. As a result, according to the present invention, the T-shaped steel satisfying the target dimension was heated. It was confirmed that it could be produced as it was rolled. In particular, the web height, which was difficult to adjust with conventional rolling, can be hot-rolled within the range of the target value ⁇ 1 mm, and the end face shape was also good.
  • an inner method constant T-shaped steel having the same inner dimension as the flange thickness of 16 mm and a flange thickness of 19 mm was manufactured.
  • the dimensions of the T-shaped steel slab after the raw steel slab having the same cross-sectional dimension as that of the flange thickness of 16 mm was rolled by the rough shaping rolling mill 1 were a web thickness of 33 mm, a flange thickness of 75 mm, a web height of 365 mm, and a flange width of 123 mm. It was.
  • the web tip was adjusted in the web height direction by using a roll, and the web height was adjusted.
  • the roll roll that squeezed the tip of the web was brought into contact with the side surface of the horizontal roll and rolled while supporting the axial load of the horizontal roll.
  • the finishing universal rolling mill 5 having horizontal rolls and rolls was rolled while applying light pressure to the flanges to shape the inclination of the flanges vertically.
  • the web part was under light pressure.
  • the dimensions of each part after hot rolling were as follows: a web height of 303 mm, a flange width of 100 mm, a web thickness of 9 mm, and a flange thickness of 19 mm.
  • the in-web dimension was 284 mm and the same value as the product with a flange thickness of 16 mm.
  • an intermediate rolling process is performed using a conventional rolling facility (FIG. 14) composed of one rough universal rolling mill in which the width of the pressed surface of the horizontal roll is set wider than the web width and one edger rolling mill.
  • T-shaped steel was manufactured. Bloom dimensions and target dimensions for each part after hot rolling of T-shaped steel were the same as the flange thickness of 19 mm of the present invention.
  • Table 3 shows the pass schedule for the intermediate rolling process. Since there was only one rough universal rolling mill in the equipment of the comparative example, reciprocating rolling with 9 passes was performed to the target dimension.
  • the 1st rough universal rolling mill 2 used the structure shown in FIG.2 (b).
  • the horizontal roll was 530 mm so that the width W1 of the pressed surface was wider than the in-web dimension, and the angle ⁇ from the vertical direction of the side surface of the horizontal roll was 7 °.
  • the left and right saddle rolls are arranged so as to be opposed to each other, and in the cross-sectional shape, a vertically symmetrical mountain shape having a hypotenuse inclined at an angle of 7 ° from the vertical with the center in the width direction of the roll surface as a vertex.
  • the pressing force of the one that presses the side surface of the horizontal roll was adjusted so that the horizontal roll would not move in the horizontal axis direction due to the rolling of the flange.
  • the edger rolling mill 3 has a structure shown in FIG.
  • the step between the large diameter part and the small diameter part of the edger roll was 67 mm, and the roll width was 550 mm or more for the large diameter part and 200 mm or more for the small diameter part.
  • the inclination angle of the step portion was set to 7 ° from the vertical.
  • the second rough universal rolling mill 4 having the structure shown in FIG. 4 was used.
  • the horizontal roll was 477 mm so that the width W2 of the pressed surface was the same as the web target internal dimension in the intermediate rolling process, and the side surface of the horizontal roll that pressed the flange was tilted by 7 ° from the vertical.
  • one of the scissors rolls that rolls the flange with the left and right scissors rolls has a vertically-symmetrical chevron shape having a hypotenuse inclined at an angle of 7 ° from the vertical with the center in the width direction of the roll surface in the cross-sectional shape.
  • the other scissors roll that squeezes the tip in the height direction was a cylindrical shape with a flat roll surface.
  • the finishing universal rolling mill 5 has a structure shown in FIG.
  • the width of the horizontal roll was 520 mm.
  • the bloom was rolled into a T-shaped steel slab having a substantially T-shaped cross section by the rough shaping rolling mill 1.
  • the obtained T-shaped billet had a web thickness of 50 mm, a flange thickness of 95 mm, a web height of 585 mm, and a flange width of 185 mm.
  • the web and the flange were reduced by performing 5 passes of reciprocating rolling in a rolling mill group in which the first rough universal rolling mill 2, the edger rolling mill 3, and the second rough universal rolling mill 4 described above were arranged in this order.
  • Table 4 shows the pass schedule of the intermediate rolling process.
  • the second rough universal rolling mill 4 rolling was performed in a state where the roll on the web tip side was pressed against the side surface of the horizontal roll, and the web height was adjusted by reducing the web tip in the web height direction. Finally, the inclination of the flange was vertically shaped by a finishing universal rolling mill 5 having a horizontal roll and a roll. After hot rolling, when the web height, flange width, web thickness and flange thickness of the obtained T-shaped steel were measured, the dimensions were as intended, and the web height was within the target value ⁇ 1 mm. The end face shape was also good.
  • an intermediate rolling process is performed using a conventional rolling facility including a first universal rolling mill (a), an edger rolling mill, and a second universal rolling mill (b) shown in FIG. T-shaped steel was manufactured.
  • Table 5 shows the pass schedule of the intermediate rolling process.
  • middle rolling increased about twice, and productivity deteriorated significantly.
  • the product dimensions were as planned and there were no problems.
  • the T-shaped steel of the present invention can be hot-rolled with a T-shaped steel having a good dimensional accuracy even with a large-sized T-shaped steel having a web height of 500 mm and a flange width of 150 mm. It could be manufactured as rolled, and it was confirmed that the rolling efficiency was significantly improved as compared with the conventional one.
  • the T-section steel is effective in which the shape of the web tip is good and the desired web height can be obtained with high accuracy while still being hot-rolled. Manufacturing method and rolling equipment line are obtained, which is very useful industrially.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Metal Rolling (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

A process for producing T-bar steel which includes an intermediate rolling step, in which the web and flange of a T-shaped steel bar roughly formed into a T shape are rolled, and a finishing step, in which the T-shaped steel bar obtained in the intermediate rolling step is finish-rolled into the shape of a product.  The intermediate rolling step comprises: a rolling step using a first universal roughing mill, wherein upper and lower horizontal rolls reduce the entire upper and lower surfaces of the web in the thickness direction; an edger rolling step in which the edge faces of the flange are reduced; and a rolling step using a second universal roughing mill, wherein upper and lower horizontal rolls, each having a roll surface that is the same width as the intended inner height of the web and also having a corner which is located on the web-tip side and has been processed into a shape that does not roll the web surface, are used to reduce the upper and lower sides of the web in the thickness direction, excluding an area near the tip.  Simultaneously with this rolling, one of right and left vertical rolls is used to reduce the edge face of the web in the height direction of the web, while keeping the periphery of the vertical roll in contact with the horizontal rolls, while the other vertical roll is used to reduce the flange in the thickness direction thereof.

Description

T形鋼の製造方法および圧延設備列T-section steel manufacturing method and rolling equipment line
 本発明は、熱間圧延によるT形鋼(T−bar)の製造方法および圧延設備列に関する。 The present invention relates to a method for producing a T-shaped steel (T-bar) by hot rolling and a rolling equipment line.
 図12にT形鋼の断面形状を示す。 T形鋼10はウェブ(web)11とフランジ(flange)12からなる断面がT字形状の形鋼であり、造船や橋梁等の分野で広く使用される。 T形鋼は、その用途や使用条件、使用箇所等によって様々な寸法の製品が製造されている。 Fig. 12 shows the cross-sectional shape of the T-section steel. The T-section steel 10 is a section steel having a T-shaped cross section composed of a web 11 and a flange 12, and is widely used in fields such as shipbuilding and bridges. T-shaped steel products are manufactured in various dimensions depending on the application, usage conditions, location, etc.
 通常用いられるT形鋼の寸法は、ウェブ高さ:200~1000mm程度、ウェブ厚:8~25mm程度、ウェブ内法寸法(inner height of web):190~980mm程度、フランジ幅:80~300mm程度、フランジ厚:12~40mm程度である。 さらに、造船用として用いられるT形鋼の場合、ウェブ高さはフランジ幅の2倍以上であることが多い。 Commonly used T-shaped steel dimensions are: web height: about 200-1000 mm, web thickness: about 8-25 mm, web inner dimension (inner height of web): about 190-980 mm, flange width: about 80-300 mm The flange thickness is about 12 to 40 mm. Furthermore, in the case of T-shaped steel used for shipbuilding, the web height is often more than twice the flange width.
 また、ウェブ高さとフランジ幅がほぼ同じであっても、ウェブ厚とフランジ厚が異なる複数のサイズのT形鋼が、必要とされる強度に応じて選択され、構造物に適用される。 図13に示すように、ウェブ高さの基準として、ウェブの内法寸法Aiとウェブの外法寸法(outer height of web)Ao(図12のウェブ高さと同じ)を使用する場合があり、サイズが変わってもウェブ内法寸法Aiが同じ場合をウェブ内法一定、ウェブ外法寸法Aoが同じ場合をウェブ外法一定と呼ぶ。 ウェブ内法一定の場合、図13(a)のようにフランジ厚tfがtf1,tf2,tf3と変化すると、Aiが一定でAoがAo1,Ao2,Ao3と変化する。 また、ウェブ外法一定の場合、図13(b)のようにフランジ厚tfがtf1,tf2,tf3と変化すると、Aoが一定でAiがAi1,Ai2,Ai3と変化する。 サイズの異なるT形鋼を長さ方向に接続すると、ウェブ内法一定の場合はフランジの内面(ウェブ側の面)が同じ高さになり、フランジの外面に段差が生じる。 逆にウェブ外法一定の場合には、長さ方向に接続するとフランジの外面が同じ高さで内面に段差が生じる。どちらを使用するかは、用途や使用部位に応じて施工性の観点で選択される。 Also, even when the web height and the flange width are substantially the same, a plurality of sizes of T-shaped steel having different web thicknesses and flange thicknesses are selected according to the required strength and applied to the structure. As shown in FIG. 13, the web internal dimension Ai and the web external dimension (outer height of web) Ao (same as the web height in FIG. 12) may be used as the web height reference. When the web inner dimension Ai is the same, the case where the web inner dimension Ai is the same, and the case where the web outer dimension Ao is the same is called the outer web constant. When the in-web method is constant, as shown in FIG. 13A, when the flange thickness tf is changed to tf1, tf2, and tf3, Ai is constant and Ao is changed to Ao1, Ao2, and Ao3. Further, when the outer web method is constant, as shown in FIG. 13B, when the flange thickness tf changes to tf1, tf2, and tf3, Ao is constant and Ai changes to Ai1, Ai2, and Ai3. When connecting T-shaped steels with different sizes in the length direction, the inner surface of the flange (surface on the web side) becomes the same height when the inner web method is constant, and a step occurs on the outer surface of the flange. On the other hand, when the outer web method is constant, the flange will have the same height and a step on the inner surface when connected in the length direction. Which one is used is selected from the viewpoint of workability according to the application and use site.
 ところで、T形鋼はウェブ11とフランジ12とを溶接して製造されることが一般的であるが、圧延にてT形鋼を一体成形する技術も提案されている。 例えば、ウェブ厚、フランジ厚、ウェブ高さおよびフランジ幅が様々な寸法のT形鋼を効率よく製造するため、ユニバーサル圧延機(universal mill)を中間圧延工程と仕上圧延工程に1基ずつ配置した熱間圧延設備が提案されている(例えば特許文献1)。 Incidentally, the T-section steel is generally manufactured by welding the web 11 and the flange 12, but a technique for integrally forming the T-section steel by rolling has also been proposed. For example, one universal rolling mill (universal mill) is arranged in each of the intermediate rolling process and the finishing rolling process in order to efficiently produce T-shaped steel having various web thickness, flange thickness, web height and flange width. A hot rolling facility has been proposed (for example, Patent Document 1).
 図14は、その一例を示し、加熱炉(図示しない)から搬出された素材鋼片を往復圧延して断面略T形に粗成形する粗造形圧延機1と、この粗造形圧延機1により略T形形状に粗成形したT形鋼片(図示しない)を略製品寸法のT形鋼に成形するための粗ユニバーサル圧延機2、粗ユニバーサル圧延機2の下流に近設されたエッジャ圧延機(edger mill)3および仕上ユニバーサル圧延機5を備える(図14(a))。粗ユニバーサル圧延機2およびエッジャ圧延機3による圧延工程が中間圧延工程、仕上ユニバーサル圧延機5による圧延工程が仕上圧延工程である。 FIG. 14 shows an example, and a rough shaping rolling mill 1 that reciprocally rolls a raw steel piece carried out from a heating furnace (not shown) to roughly form a cross-section into a substantially T-shaped section, and the rough shaping rolling mill 1 Rough universal rolling mill 2 for forming a T-shaped steel piece (not shown) roughly formed into a T-shape into a T-shaped steel having a substantially product size, and an edger rolling mill (located near the downstream of the rough universal rolling mill 2) edger mill) 3 and finishing universal rolling mill 5 (FIG. 14A). The rolling process by the rough universal rolling mill 2 and the edger rolling mill 3 is an intermediate rolling process, and the rolling process by the finishing universal rolling mill 5 is a finish rolling process.
 図14(b)に粗ユニバーサル圧延機2の構成を、図14(c)にエッジャ圧延機3の構成を、図14(d)に仕上ユニバーサル圧延機5の構成を模式的に示す。 粗ユニバーサル圧延機2は水平ロール(horizontal roll)21a,21bと、竪ロール(vertical roll)22a,22bとを有しており、また、仕上ユニバーサル圧延機5は、水平ロール51a,51bと竪ロール52a,52bとを有しており、それぞれのロール開度(roll gap)を調整することによってロール交換を行わずとも鋼片を種々のフランジ厚、ウェブ厚の製品に圧延することが可能である。 エッジャ圧延機3はエッジャロール31a、31bを有し、これらは大径部33と小径部32で構成され、小径部32でフランジ12の端面を圧下し、フランジ幅の調整を行うことができる。 Fig. 14 (b) schematically shows the configuration of the rough universal rolling mill 2, Fig. 14 (c) schematically shows the configuration of the edger rolling mill 3, and Fig. 14 (d) schematically shows the configuration of the finishing universal rolling mill 5. The rough universal rolling mill 2 has horizontal rolls 21a and 21b and vertical rolls 22a and 22b, and the finishing universal rolling mill 5 has horizontal rolls 51a and 51b and vertical rolls. 52a and 52b, and by adjusting the respective roll opening (roll gap), it is possible to roll the steel slab into products having various flange thicknesses and web thicknesses without changing the rolls. . The edger rolling mill 3 has edger rolls 31a and 31b, which are composed of a large diameter portion 33 and a small diameter portion 32, and the end surface of the flange 12 can be crushed by the small diameter portion 32 to adjust the flange width.
 特許文献2には、3軸粗圧延機および3軸エッジャを用いてT形鋼を効率よく製造する方法が開示されている。 この技術では、粗圧延後に図15に示す3軸エッジャによりウェブ11の端面11aとフランジ12の端面12aとを同時に圧下し、ウェブ11の高さの調整も行う。 Patent Document 2 discloses a method for efficiently producing a T-shaped steel using a triaxial roughing mill and a triaxial edger. In this technique, the end face 11a of the web 11 and the end face 12a of the flange 12 are simultaneously reduced by the triaxial edger shown in FIG. 15 after rough rolling, and the height of the web 11 is also adjusted.
 さらに、特許文献3には、鋼片に粗圧延を行って造形されたT形鋼の粗形鋼片に、タンデム配列された少なくとも2台のユニバーサル圧延機による往復圧延を行うに際し、図16(a)および(b)に示すように一方のユニバーサル圧延機URにより該粗形鋼片のウェブ及びフランジを厚み方向へ圧下し、他方のユニバーサル圧延機UFにより前記粗形鋼片のフランジを幅方向へ圧下すること、又は、フランジの幅方向の圧下とウェブの高さ方向の圧下とを同時に行うことを特徴とする熱間圧延T形鋼の製造方法が開示されている。 Furthermore, Patent Document 3 discloses that when reciprocating rolling is performed on at least two universal rolling mills arranged in tandem on a rough section of T-shaped steel formed by rough rolling on a steel strip, FIG. As shown in a) and (b), the web and flange of the rough steel slab are reduced in the thickness direction by one universal rolling mill UR, and the flange of the rough steel slab is reduced in the width direction by the other universal rolling mill UF. A method for producing a hot rolled T-section steel, characterized in that the rolling down in the width direction of the flange and the reduction in the height direction of the web are simultaneously performed.
 また、特許文献3には、粗圧延機BDにより鋼片に粗圧延を行って造形されたT形鋼の粗形鋼片に、少なくとも1台の粗ユニバーサル圧延機URとこれに隣接配置された少なくとも1台の2重式圧延機Eとによる往復圧延を行って、粗ユニバーサル圧延機により該粗形鋼片のウェブの厚み及びフランジの厚みの圧下と該粗形鋼片のウェブ高さの調整とを行うとともに、2重式圧延機により粗形鋼片のフランジ幅の圧下とウェブの端部の厚みの圧下とを行う中間圧延を行ってT形鋼を造形した後に、仕上げユニバーサル圧延機UFにより、前記フランジの厚み、前記ウェブの厚み又は前記ウェブの高さのうち少なくとも1つの寸法調整を行う仕上げ圧延を行うことによって、T形鋼を製造する技術が開示されている(図17)。 Further, in Patent Document 3, at least one coarse universal rolling mill UR and adjacent to the coarse steel slab of T-shaped steel formed by roughly rolling a steel slab by a rough rolling mill BD are arranged. Perform reciprocating rolling with at least one double rolling mill E, and reduce the web thickness and flange thickness of the rough shaped steel slab and adjust the web height of the rough shaped steel slab with a coarse universal rolling mill. And the intermediate rolling which performs the reduction of the flange width of the rough shaped steel slab and the reduction of the thickness of the end of the web by the double rolling mill to form the T-shaped steel, and then finish the universal rolling mill UF Thus, a technique for producing a T-shaped steel by performing finish rolling for adjusting at least one of the thickness of the flange, the thickness of the web, or the height of the web is disclosed (FIG. 17).
特公昭43−19671号公報Japanese Patent Publication No. 43-19671 特開昭57−4301号公報Japanese Unexamined Patent Publication No. 57-4301 特開2007−331027号公報JP 2007-331027 A
 図14に示した圧延設備で圧延する場合、中間圧延工程の粗ユニバーサル圧延機2では、水平ロール21a,21bでT形鋼片Hのウェブ11をその板厚方向に圧下するとともに、竪ロール22aと水平ロール21a,21bとの間でT形鋼片(被圧延材)Hのフランジ12をその板厚方向に圧下する。 フランジ12を圧下しない側の竪ロール22bは、水平ロール21a,21bの側面に接して配置され、フランジ12を圧下する際に、竪ロール22aから水平ロール21a,21bの軸方向に働く力により、水平ロール21a,21bが移動しないようにそれらの側面を押圧する。 また、粗ユニバーサル圧延機2の下流に近設されたエッジャ圧延機3では、T形鋼片Hのフランジ12の幅方向の端面を圧下してフランジ12の幅を調整する。 仕上圧延工程では、仕上ユニバーサル圧延機5によってフランジ12が水平ロール51a,51bと、竪ロール52a、52bとの間で垂直に整形されて、ウェブはその高さ方向に圧下されずにT形鋼の熱間圧延が終了する。 When rolling with the rolling equipment shown in FIG. 14, in the rough universal rolling mill 2 in the intermediate rolling process, the web 11 of the T-shaped slab H is pressed down in the plate thickness direction by the horizontal rolls 21a and 21b, and the roll 22a And the flange 12 of the T-shaped steel slab (rolled material) H is pressed down in the plate thickness direction between the horizontal rolls 21a and 21b. The side roll 22b that does not roll down the flange 12 is disposed in contact with the side surfaces of the horizontal rolls 21a and 21b, and when rolling down the flange 12, the force acting in the axial direction of the horizontal rolls 21a and 21b from the side roll 22a The horizontal rolls 21a and 21b are pressed against their side surfaces so as not to move. Further, in the edger rolling mill 3 provided close to the downstream of the rough universal rolling mill 2, the width of the flange 12 is adjusted by reducing the end face in the width direction of the flange 12 of the T-shaped billet H. In the finish rolling process, the flange 12 is shaped vertically between the horizontal rolls 51a and 51b and the scissors rolls 52a and 52b by the finish universal rolling mill 5, and the web is not squeezed down in the height direction, and the T-section steel is used. The hot rolling is finished.
 すなわち、図14に示した圧延設備を用いた場合、中間圧延工程において、粗ユニバーサル圧延機2を用いてウェブ厚およびフランジ厚を調整し、さらに、エッジャ圧延機3によってフランジ端面を圧下してフランジ幅を調整しているが、ウェブは、その高さ方向にロールで圧下されることがない。 このため、ウェブはその高さが必ずしも目標寸法とならない場合が生じ、また、ウェブ先端部(図12におけるウェブ11の端面11a)が断面形状(製品の長手方向に直角な断面形状、以下同様)において円弧状となり、製品形状として好ましくない。 熱間圧延の後でガス切断やスリッター等でウェブの先端部を切断して製品とするという対策もあるが、この場合、熱間圧延の後に切断工程を追加するため、T形鋼の製造コストの増加や製造所要期間の長期化(納期遅れ等)が生じる。 That is, when the rolling equipment shown in FIG. 14 is used, the web thickness and the flange thickness are adjusted using the rough universal rolling mill 2 in the intermediate rolling process, and further, the flange end face is rolled down by the edger rolling mill 3 and the flange is moved. Although the width is adjusted, the web is not rolled down by the roll in the height direction. For this reason, the height of the web may not necessarily be the target dimension, and the web tip (the end surface 11a of the web 11 in FIG. 12) has a cross-sectional shape (a cross-sectional shape perpendicular to the longitudinal direction of the product, and so on). Is not preferable as a product shape. There is also a measure to cut the web tip with a gas cutter or slitter after hot rolling to make a product, but in this case, a cutting process is added after hot rolling, so the manufacturing cost of T-section steel Increase in production time and production period (such as delay in delivery).
 特許文献1には、仕上ユニバーサル圧延機の水平ロールに切断部を設けて仕上圧延工程でウェブの端部を切断整形することが記載されている(特許文献1の図21および図22)が、切断部にかえり(bur)や丸み(shear droop)が生じるため、断面形状の良い製品が得られない。 Patent Document 1 describes that a cutting portion is provided in a horizontal roll of a finishing universal rolling mill and a web end is cut and shaped in a finishing rolling process (FIGS. 21 and 22 of Patent Document 1). Since the cut portion is burred or rounded, a product having a good cross-sectional shape cannot be obtained.
 特許文献2に開示された、3軸エッジャによりウェブ11の端面11aとフランジ12の端面12aとを同時に圧下する方法では、ウェブ高さの調整も行われる。 しかし、エッジャ圧延時にウェブ11は端面のみが拘束されることとなる。 このため、ウェブ高さが大きい場合や、ウェブ厚が小さい寸法のT形鋼を製造する際に、ウェブ端面に対して強い圧下を行おうとすると、ウェブ11が座屈してしまいウェブ高さを精度よく調整することはできない。 特にウェブ高さがフランジ幅の2倍以上の寸法である造船用T形鋼では、座屈が発生しやすくウェブ高さの精度が悪化するという問題がある。 In the method of simultaneously rolling down the end surface 11a of the web 11 and the end surface 12a of the flange 12 by the triaxial edger disclosed in Patent Document 2, the web height is also adjusted. However, only the end face of the web 11 is restrained during edger rolling. For this reason, when the web height is large, or when producing a T-shaped steel having a small web thickness, if the web end surface is subjected to strong reduction, the web 11 is buckled and the web height is accurately measured. It cannot be adjusted well. Especially for shipbuilding T-shaped steels whose web height is more than twice the flange width, there is a problem that the accuracy of the web height is likely to be buckled.
 これに対し、特許文献3に記載の圧延方法では、図16(b)に示す第2のユニバーサル圧延機の竪ロールでウェブを高さ方向に圧下するため、ウェブ先端の成形とウェブ高さ寸法の調整が可能である。 しかし、当該ユニバーサル圧延機ではフランジ幅とウェブ先端の圧下を同時に行う役割を担うものの、ウェブとフランジの厚み圧下率は数%程度と小さくせざるを得ない。 これは、小径部と大径部を有する段差状の水平ロールを用いてフランジ幅を圧下するため、フランジ側に小径部を有する竪ロールを用いる必要があり、この竪ロールではフランジ両端が圧下できずにフランジ厚の段差を生じさせるためである。また、フランジ幅を圧下することにより、フランジ先端の厚みが増加するため、フランジ厚の段差は一層大きくなり、フランジ外面に折れ込み疵(flaw)などの表面欠陥が発生する可能性が高まる。 さらに、以上のような第2のユニバーサル圧延機の構造上の問題から、ユニバーサル圧延機が2台あるにもかかわらず、実質的に1台のユニバーサル圧延機だけで厚みを圧下することとなり、圧延パス数が多くなるという問題がある。 On the other hand, in the rolling method described in Patent Document 3, the web is pressed down in the height direction by the roll of the second universal rolling mill shown in FIG. Can be adjusted. However, although the universal rolling mill plays a role of simultaneously reducing the flange width and the web tip, the thickness reduction ratio of the web and the flange must be as small as several percent. This is because the flange width is reduced by using a step-shaped horizontal roll having a small diameter part and a large diameter part, so it is necessary to use a saddle roll having a small diameter part on the flange side. This is to cause a step difference in the flange thickness. Further, by reducing the flange width, the thickness of the flange tip increases, so that the step difference in the flange thickness is further increased, and the possibility that surface defects such as folds (flaws) occur on the outer surface of the flange increases. Furthermore, due to the structural problems of the second universal rolling mill as described above, although there are two universal rolling mills, the thickness is reduced substantially by only one universal rolling mill. There is a problem that the number of passes increases.
 また、図16のユニバーサル圧延機UFにおいては、片方の竪ロールがフランジを圧下することによる圧延反力が水平ロールの軸方向に作用するが、ウェブ先端側の竪ロールが水平ロールの側面に接していないため、竪ロールで水平ロールの軸方向荷重を支持することができない。すなわち、フランジ厚を有効に圧下しようとする場合、水平ロールに作用する数千kNの軸方向荷重を支持することが困難であるため、フランジ圧下率を大きくすることができない。 Further, in the universal rolling mill UF in FIG. 16, the rolling reaction force caused by the one roll roll reducing the flange acts in the axial direction of the horizontal roll, but the roll roll on the web tip side is in contact with the side surface of the horizontal roll. As a result, the axial load of the horizontal roll cannot be supported by the heel roll. That is, when trying to effectively reduce the flange thickness, it is difficult to support an axial load of several thousand kN acting on the horizontal roll, and therefore the flange reduction rate cannot be increased.
 さらに、中間圧延におけるフランジの傾斜角(ウェブを水平とした場合の、フランジ部の垂直に対する傾斜角。図11のα—90°に相当)は5度以下が望ましい、とされているため、第2のユニバーサル圧延機でフランジ厚を有効に圧下しようとすると、フランジ内面と水平ロール側面の接触長が長くなり、ロールと圧延材の滑りによってフランジ内面に疵がつきやすいという問題もある。 Further, the inclination angle of the flange in the intermediate rolling (the inclination angle with respect to the vertical of the flange portion when the web is horizontal, which corresponds to α-90 ° in FIG. 11) is preferably 5 degrees or less. When trying to effectively reduce the flange thickness with the universal rolling mill of No. 2, there is a problem that the contact length between the flange inner surface and the horizontal roll side surface becomes long, and the flange inner surface is easily wrinkled due to slippage between the roll and the rolled material.
 一方、図17に示す特許文献3に記載の粗ユニバーサル圧延機と2重式圧延機を用いたもう1つの方法では、粗ユニバーサル圧延機が1台なので圧延パス数が多く、またフランジの角度を0度以上5度以下が望ましいとしているため、フランジ内面に疵がつきやすいという問題がある。 On the other hand, in another method using the rough universal rolling mill and the double rolling mill described in Patent Document 3 shown in FIG. 17, since there is one rough universal rolling mill, the number of rolling passes is large, and the angle of the flange is set. Since 0 degree or more and 5 degrees or less are desirable, there exists a problem that a wrinkle is easy to be attached to the flange inner surface.
 本発明は、上述した問題を解決するためになされたもので、ウェブ先端部の形状が良好で、且つ所望のウェブ高さが精度良く得られ、T形鋼を少ないパス数で効率よく製造するための製造方法と圧延設備列を提供することを目的とする。 The present invention has been made to solve the above-described problems, and the shape of the web tip is good, the desired web height can be obtained with high accuracy, and the T-shaped steel is efficiently manufactured with a small number of passes. An object of the present invention is to provide a manufacturing method and a rolling equipment train for the purpose.
 本発明の課題は以下の手段により達成可能である。
 (1)T形形状に粗成形されたT形鋼片のウェブとフランジとを圧延する中間圧延工程と、前記中間圧延工程で得られたT形鋼片を製品形状とする仕上圧延を行う仕上圧延工程とを有するT形鋼の製造方法であって、
 前記中間圧延工程は、上下の水平ロールがウェブの板厚方向における上下面の全面を圧下する第1の粗ユニバーサル圧延機による圧延工程と、
 フランジの端面を圧下するエッジャ圧延工程と、
 ロール外周面の幅が目標ウェブ内法寸法と同じで、ウェブ先端部側のコーナー部がウェブ面を圧延しない形状に加工された上下の水平ロールを用いて、ウェブを先端部近傍を除いた板厚方向の上下面を圧下しつつ、左右の竪ロールのうち一方の竪ロールがフランジをその板厚方向に圧下し、他方の竪ロールが外周面を上下の水平ロールに接触させつつウェブの端面をウェブの高さ方向に圧下する第2の粗ユニバーサル圧延機による圧延工程と
 を有することを特徴とするT形鋼の製造方法。
The object of the present invention can be achieved by the following means.
(1) An intermediate rolling step of rolling a web and a flange of a T-shaped steel piece roughly formed into a T-shape, and a finish-rolling process in which the T-shaped steel piece obtained in the intermediate rolling step is made into a product shape. A method for producing a T-shaped steel having a rolling process,
The intermediate rolling step includes a rolling step by a first rough universal rolling mill in which upper and lower horizontal rolls reduce the entire upper and lower surfaces in the web thickness direction,
An edger rolling process for rolling down the end face of the flange;
A plate where the width of the roll outer peripheral surface is the same as the target internal web dimension, and the web is removed from the vicinity of the tip portion using the upper and lower horizontal rolls that are processed into a shape in which the corner portion on the tip side of the web is not rolled. While rolling down the upper and lower surfaces in the thickness direction, one of the left and right rolls rolls down the flange in the plate thickness direction, and the other roll roll contacts the outer circumferential surface with the upper and lower horizontal rolls while the end face of the web And a rolling step by a second rough universal rolling mill for rolling down the web in the height direction of the web.
 (2)前記第2の粗ユニバーサル圧延機による圧延工程において、ウェブ端面を圧下する竪ロールの外周面を上下の水平ロールに接触させつつ、もう一方の竪ロールと上下の水平ロール側面との開度を調整することにより、ウェブ内法寸法が一定でフランジ厚が異なる複数のサイズのT形鋼を製造することを特徴とする、上記(1)に記載のT形鋼の製造方法。 (2) In the rolling process by the second rough universal rolling mill, the outer surface of the heel roll for rolling down the web end face is brought into contact with the upper and lower horizontal rolls while the other heel roll and the upper and lower horizontal roll sides are opened. The method for producing a T-section steel according to (1) above, wherein by adjusting the degree, a plurality of sizes of T-section steel having a constant in-web dimension and different flange thicknesses are produced.
 3.T形形状に粗成形されたT形鋼片を被圧延材として、そのウェブとフランジとを圧延するT形鋼の圧延設備列であって、
 ロール外周面の幅が前記被圧延材の目標ウェブ内法寸法より広い上下の水平ロールを有する第1の粗ユニバーサル圧延機と、前記被圧延材のフランジの端面を圧下するエッジャ圧延機と、ロール外周面の幅が前記被圧延材の目標ウェブ内法寸法と同じでウェブ先端側のコーナー部がウェブ面を圧延しない形状に加工された上下の水平ロールおよび一方がフランジをその板厚方向に圧下し他方がその竪ロール外周面を上下の水平ロールに接触させつつウェブの端面をウェブの高さ方向に圧下する左右の竪ロールを有する第2の粗ユニバーサル圧延機とが配置されてなることを特徴とするT形鋼の圧延設備列。
3. A T-section rolling equipment row for rolling a web and a flange with a T-shaped steel piece roughly formed into a T-shape as a material to be rolled,
A first rough universal rolling mill having upper and lower horizontal rolls whose width of the outer peripheral surface of the roll is wider than a target in-web dimension of the material to be rolled; an edger rolling machine for rolling down the end face of the flange of the material to be rolled; Upper and lower horizontal rolls whose outer peripheral surface width is the same as the target in-web dimension of the material to be rolled and the corner portion on the front end side of the web is processed into a shape that does not roll the web surface, and one of them rolls down the flange in the plate thickness direction. On the other hand, a second rough universal rolling mill having left and right reed rolls that press the end surface of the web in the height direction of the web while the outer peripheral surface of the reed roll is in contact with the upper and lower horizontal rolls is arranged. Characteristic T-section rolling equipment line.
 本発明に係るT形鋼の製造方法と圧延設備列によれば、以下の効果により、熱間圧延ままで、ウェブ先端部の形状が良好で、且つ所望のウェブ高さが精度良く得られるT形鋼の効果的な製造方法と圧延設備列が得られ、産業上極めて有用である。
 1.中間圧延工程のウェブ厚とフランジ厚の圧下を第1と第2の粗ユニバーサル圧延機の両方で実施するため、一基の粗ユニバーサル圧延機で厚みを圧延する場合と比較して、1パス当たりのウェブ厚とフランジ厚の圧下量を大きくすることが可能で、圧延パスを削減し、圧延能率が向上する。 また、第1の粗ユニバーサル圧延機、エッジャ圧延機、第2の粗ユニバーサル圧延機の少なくともいずれかを、複数基配置することにより、更に圧延能率を向上させることができる。
 2.第2の粗ユニバーサル圧延機により、水平ロールのフランジ厚を圧下しない方(ウェブ先端側)に竪ロールの外周を接触させて、フランジ厚の圧下による水平ロールの軸方向に作用する圧延反力を支持するとともに、ウェブの端面を高さ方向に圧下することにより、水平ロールの軸方向移動を防止し、寸法精度の良好なT形鋼を圧延することができる。
 3.第2の粗ユニバーサル圧延機に用いる水平ロールのウェブ先端側のコーナー部がウェブ面を圧延しない形状に加工されているため、ウェブ先端を圧下しても耳状の突起が形成されることがなく、良好なウェブ先端形状が得られる。
According to the T-section steel manufacturing method and rolling equipment row according to the present invention, the following effects can be used to obtain a desired web height with high accuracy while maintaining the shape of the web tip as it is with hot rolling. An effective manufacturing method of shape steel and a rolling equipment train are obtained, which are extremely useful in industry.
1. Since the reduction of the web thickness and the flange thickness in the intermediate rolling process is performed by both the first and second rough universal rolling mills, compared to the case of rolling the thickness by one rough universal rolling mill, per pass It is possible to increase the reduction amount of the web thickness and the flange thickness, thereby reducing the rolling pass and improving the rolling efficiency. Moreover, the rolling efficiency can be further improved by arranging a plurality of at least one of the first rough universal rolling mill, the edger rolling mill, and the second rough universal rolling mill.
2. With the second rough universal rolling mill, the outer periphery of the roll is brought into contact with the side (web tip side) that does not reduce the flange thickness of the horizontal roll, and the rolling reaction force acting in the axial direction of the horizontal roll due to the reduction of the flange thickness is By supporting and rolling down the end face of the web in the height direction, it is possible to prevent the horizontal roll from moving in the axial direction and to roll a T-shaped steel with good dimensional accuracy.
3. Since the corner portion on the web tip side of the horizontal roll used in the second rough universal rolling mill is processed into a shape that does not roll the web surface, no ear-shaped projections are formed even if the web tip is rolled down. A good web tip shape can be obtained.
図1は、本発明の実施に用いる、T形鋼の圧延設備の配置の一例を示す図である。FIG. 1 is a diagram showing an example of the arrangement of T-section steel rolling equipment used in the practice of the present invention. 図2は、本発明の実施に用いる、第1の粗ユニバーサル圧延機の構成を説明する図であって、(a)はその一例、(b)は他の例を説明する模式図である。2A and 2B are diagrams for explaining the configuration of the first rough universal rolling mill used in the practice of the present invention, in which FIG. 2A is an example thereof, and FIG. 2B is a schematic diagram explaining another example. 図3は、本発明の実施に用いる、エッジャ圧延機の構成の一例を説明する模式図である。FIG. 3 is a schematic diagram illustrating an example of the configuration of an edger rolling mill used in the practice of the present invention. 図4は、本発明の実施に用いる、第2の粗ユニバーサル圧延機の構成の一例を説明する模式図である。FIG. 4 is a schematic diagram for explaining an example of the configuration of a second rough universal rolling mill used in the practice of the present invention. 図5は、本発明の実施に用いる、第2の粗ユニバーサル圧延機の構成の他の一例を説明する模式図である。FIG. 5 is a schematic diagram for explaining another example of the configuration of the second rough universal rolling mill used in the implementation of the present invention. 図6は、本発明の実施に用いる、第2の粗ユニバーサル圧延機の構成のさらに他の一例を説明する模式図である。FIG. 6 is a schematic diagram illustrating still another example of the configuration of the second rough universal rolling mill used in the implementation of the present invention. 図7は、本発明の実施に用いる、第2の粗ユニバーサル圧延機の構成のさらに他の一例を説明する模式図である。FIG. 7 is a schematic diagram illustrating still another example of the configuration of the second rough universal rolling mill used in the implementation of the present invention. 図8は、本発明の実施に用いる、第2の粗ユニバーサル圧延機の構成のさらに他の一例を説明する模式図である。FIG. 8 is a schematic diagram illustrating still another example of the configuration of the second rough universal rolling mill used in the implementation of the present invention. 図9は、本発明の実施に用いる、第2の粗ユニバーサル圧延機の構成のさらに他の一例を説明する模式図である。FIG. 9 is a schematic diagram illustrating still another example of the configuration of the second rough universal rolling mill used in the implementation of the present invention. 図10は、本発明の実施に用いる、仕上ユニバーサル圧延機の構成の一例を説明する模式図である。FIG. 10 is a schematic diagram for explaining an example of the configuration of a finishing universal rolling mill used for carrying out the present invention. 図11は、圧延材ウェブ先端に発生する突起形状を説明する模式図である。FIG. 11 is a schematic diagram for explaining a protrusion shape generated at the tip of the rolled material web. 図12は、T形鋼の断面形状を示す断面図である。FIG. 12 is a cross-sectional view showing a cross-sectional shape of a T-shaped steel. 図13は、内法一定と外法一定のT形鋼の寸法形状を示す図であって、(a)は内法一定、(b)は外法一定のT形鋼を示す図である。FIG. 13 is a diagram showing the dimensional shape of a T-shaped steel having a constant inner method and a constant outer method. FIG. 13A is a diagram showing a T-shaped steel having a constant inner method, and FIG. 図14は、従来のT形鋼の圧延設備を示す図であって、(a)は圧延機の配置図、(b)は粗ユニバーサル圧延機の構成を説明する図、(c)はエッジャ圧延機の構成を説明する図、(d)は仕上ユニバーサル圧延機の構成を説明する図である。14A and 14B are diagrams showing a conventional T-shaped steel rolling facility, where FIG. 14A is a layout drawing of a rolling mill, FIG. 14B is a diagram illustrating a configuration of a rough universal rolling mill, and FIG. 14C is edger rolling. The figure explaining the structure of a mill, (d) is a figure explaining the structure of a finishing universal rolling mill. 図15は、従来のT形鋼のエッジャ圧延機の構成を示す図である。FIG. 15 is a diagram showing a configuration of a conventional T-section edger rolling mill. 図16は、従来のT形鋼の圧延方法におけるユニバーサル圧延機の構成を示す図であって、(a)は第1のユニバーサル圧延機の構成を示す図、(b)は第2のユニバーサル圧延機の構成を示す図である。FIG. 16 is a diagram showing a configuration of a universal rolling mill in a conventional T-shaped steel rolling method, in which (a) is a diagram showing a configuration of a first universal rolling mill, and (b) is a second universal rolling. It is a figure which shows the structure of a machine. 粗ユニバーサル圧延機、エッジャ圧延機、仕上ユニバーサル圧延機を用いた従来のT形鋼の圧延方法を示す図である。It is a figure which shows the rolling method of the conventional T-section steel using a rough universal rolling mill, an edger rolling mill, and a finishing universal rolling mill.
 以下、本発明に係る製造方法および圧延設備列の実施形態を、図面を用いて詳細に説明する。
 図1は、本発明に係る圧延設備列の一例を示し、図において1は粗造形圧延機、2は第1の粗ユニバーサル圧延機、3はエッジャ圧延機、4は第2の粗ユニバーサル圧延機、5は仕上圧延機を示す。 加熱炉(図示せず)から搬出された素材鋼片(図示せず)は粗造形圧延機1によって断面形状が略T形のT形鋼片に圧延される。 粗造形圧延機1としては、公知の設備が利用でき、例えば、孔型を有するロールが装備された二重式圧延機とする。 得られたT形鋼片を、第1の粗ユニバーサル圧延機2とエッジャ圧延機3と第2の粗ユニバーサル圧延機4が近接して配置された圧延設備列で圧延を行って、ウェブとフランジの圧下を行う(中間圧延工程)。
Hereinafter, embodiments of a manufacturing method and a rolling equipment train according to the present invention will be described in detail with reference to the drawings.
FIG. 1 shows an example of a rolling equipment line according to the present invention, in which 1 is a rough shaping rolling mill, 2 is a first rough universal rolling mill, 3 is an edger rolling mill, and 4 is a second rough universal rolling mill. Reference numeral 5 denotes a finish rolling mill. A raw steel slab (not shown) carried out of a heating furnace (not shown) is rolled into a T-shaped steel slab having a substantially T-shaped cross section by the rough shaping rolling mill 1. As the rough shaping rolling mill 1, known equipment can be used, for example, a double rolling mill equipped with a roll having a hole shape. The obtained T-shaped slab is rolled in a rolling equipment row in which the first rough universal rolling mill 2, the edger rolling mill 3 and the second rough universal rolling mill 4 are arranged close to each other, and a web and a flange Is reduced (intermediate rolling process).
 図2(a)に第1の粗ユニバーサル圧延機2の構造を説明する模式図を示す。第1の粗ユニバーサル圧延機2は、水平軸上を回転する水平ロール21a,21bと、垂直軸上を回転する竪ロール22a,22bを有する。水平ロール21aと21b、竪ロール22aと22bは、夫々対向配置される。 本発明では、水平ロール21a、21bのロール外周面の幅(圧下面の幅)W1を、ウェブ11の目標内法寸法L(フランジ内面からウェブ先端部までの距離)より大きくする。好ましくは、ウェブ11の目標内法寸法Lの105~150%程度とする。 FIG. 2A shows a schematic diagram for explaining the structure of the first rough universal rolling mill 2. The first rough universal rolling mill 2 includes horizontal rolls 21a and 21b that rotate on a horizontal axis, and roll rolls 22a and 22b that rotate on a vertical axis. The horizontal rolls 21a and 21b and the scissors rolls 22a and 22b are opposed to each other. In the present invention, the width (width of the pressed surface) W1 of the roll outer peripheral surface of the horizontal rolls 21a and 21b is made larger than the target internal dimension L of the web 11 (the distance from the flange inner surface to the web tip). Preferably, it is about 105 to 150% of the target internal dimension L of the web 11.
 第1の粗ユニバーサル圧延機2では水平ロール21a,21bにより、T形鋼片である被圧延材Hの、ウェブ11の高さ方向の全面をその板厚方向に圧下し、竪ロール22aと、水平ロール21a,21bの側面でフランジ12をその板厚方向に圧下する。 ウェブ11の板厚調整は、水平ロール21a,21bの開度調整で行い、フランジ12の板厚調整は、竪ロール22aと、水平ロール21a,21bの側面との開度調整で行う。 フランジ12を圧下する際、竪ロール22aにより、水平ロール21a,21bの一方の側面から軸方向に力が作用するので、竪ロール22bを水平ロール21a,21bの、他方の側面に押圧して、水平ロール21a,21bが軸方向に移動しないようにすることが好ましい。また、竪ロール22bとこれに押圧される水平ロールの側面は、図2(b)に示すように傾斜のない垂直な形状としてもよい。 In the first rough universal rolling mill 2, the entire surface in the height direction of the web 11 of the material H to be rolled, which is a T-shaped steel slab, is reduced in the plate thickness direction by horizontal rolls 21a and 21b, The flange 12 is pressed down in the plate thickness direction on the side surfaces of the horizontal rolls 21a and 21b. The thickness of the web 11 is adjusted by adjusting the opening of the horizontal rolls 21a and 21b, and the thickness of the flange 12 is adjusted by adjusting the opening of the flange roll 22a and the side surfaces of the horizontal rolls 21a and 21b. When the flange 12 is squeezed down, a force acts in the axial direction from one side of the horizontal rolls 21a, 21b by the side roll 22a, so the side roll 22b is pressed against the other side of the horizontal rolls 21a, 21b, It is preferable to prevent the horizontal rolls 21a and 21b from moving in the axial direction. Moreover, as shown in FIG.2 (b), the side surface of the scissors roll 22b and the horizontal roll pressed by this is good also as a perpendicular | vertical shape without an inclination.
 図3にエッジャ圧延機3の構造を説明する模式図を示す。エッジャ圧延機3は、水平軸方向に大径ロール部33と小径ロール部32を備えたエッジャロール31a,31bを有し、大径ロール部33が被圧延材Hのウェブ11を誘導し、小径ロール部32のロール表面(圧下面)32aがフランジ12の端面12aをその幅方向に圧下する。 大径ロール部33のロール径と、小径ロール部32のロール径は、小径ロール部32によるフランジ12の端面12aの圧延中に、大径ロール部33のロール表面がウェブ11の板厚方向の上下面に若干の隙間を有するように調整するのが好ましい。 若干の隙間を設けることで、大径ロール部33がウェブに接触した場合に発生する余分な圧延反力をなくすとともに、大径ロール部33がガイドとして働き、上下のウェブ面から上下のフランジ先端までの長さを揃える効果が生まれ、寸法精度を向上させることができる。 隙間は2mm以下とすることが好ましい。 FIG. 3 is a schematic diagram for explaining the structure of the edger rolling mill 3. The edger rolling mill 3 has edger rolls 31a and 31b each having a large diameter roll portion 33 and a small diameter roll portion 32 in the horizontal axis direction. The large diameter roll portion 33 guides the web 11 of the material H to be rolled, and the small diameter roll. The roll surface (pressed surface) 32a of the portion 32 presses down the end surface 12a of the flange 12 in the width direction. The roll diameter of the large diameter roll section 33 and the roll diameter of the small diameter roll section 32 are such that the roll surface of the large diameter roll section 33 is in the thickness direction of the web 11 during rolling of the end face 12a of the flange 12 by the small diameter roll section 32. It is preferable to adjust so that there is a slight gap between the upper and lower surfaces. By providing a slight gap, an excessive rolling reaction force generated when the large-diameter roll portion 33 comes into contact with the web is eliminated, and the large-diameter roll portion 33 acts as a guide from the upper and lower web surfaces to the upper and lower flange tips. The effect of aligning the length up to is born, and the dimensional accuracy can be improved. The gap is preferably 2 mm or less.
 図4に第2の粗ユニバーサル圧延機4の構造を説明する模式図を示す。 なお、図5~図9も粗ユニバーサル圧延機4の構造を説明する模式図であり、以下に述べるように図4のバリエーションである。 第2の粗ユニバーサル圧延機4は、水平軸上を回転する水平ロール41a,41bと、垂直軸上を回転する竪ロール42a,42bを有する。水平ロール41aと41b、竪ロール42aと42bは、夫々対向配置される。 第2の粗ユニバーサル圧延機4では、水平ロール41a,41bのロール開度を調整にしてウェブ11の板厚を調整し、竪ロール42aと、水平ロール41a,41bの一方の側面との開度を調整することによりフランジ12の板厚を調整する。 この際、水平ロール41a,41bが軸方向に移動しないように竪ロール42bの周面cを水平ロール41a,41bの他方の側面bに接触させて配置する。 FIG. 4 shows a schematic diagram for explaining the structure of the second rough universal rolling mill 4. 5 to 9 are also schematic diagrams for explaining the structure of the rough universal rolling mill 4, and are variations of FIG. 4 as described below. The second rough universal rolling mill 4 has horizontal rolls 41a and 41b that rotate on the horizontal axis, and rolling rolls 42a and 42b that rotate on the vertical axis. The horizontal rolls 41a and 41b and the heel rolls 42a and 42b are arranged to face each other. In the 2nd rough universal rolling mill 4, the roll opening degree of the horizontal rolls 41a and 41b is adjusted, the plate | board thickness of the web 11 is adjusted, and the opening degree of the side roll 42a and one side surface of the horizontal rolls 41a and 41b Is adjusted to adjust the plate thickness of the flange 12. At this time, the circumferential surface c of the saddle roll 42b is arranged in contact with the other side surface b of the horizontal rolls 41a and 41b so that the horizontal rolls 41a and 41b do not move in the axial direction.
 水平ロール41a、41bのロール外周面の幅(圧下面の幅)W2は、ウェブ11の中間圧延工程における目標内法寸法L(フランジ内面からウェブ先端部の端面11aまでの距離)とほぼ同じ値とする(すなわちW2<W1でもある)。 尚、ウェブ11の中間圧延工程における目標内法寸法Lは、最終の圧延工程となる仕上ユニバーサル圧延機での微小なウェブ高さの増加を考慮し、通常は製品段階におけるT形鋼の内法寸法に対し0~5mm程度短い値とすることが好ましい。すなわち、水平ロール41a、41bの周方向圧下面の幅W2は、T形鋼製品のウェブ内法寸法に対し0~5mm程度小さい値とすることが好ましい。 水平ロール41a,41bの幅がウェブ11の目標内法寸法Lと同じ寸法であるため、竪ロール42bがウェブ11の先端に接触して圧下し、ウェブ11の高さと端面11aの形状を調整することが可能となる。 The width (width of the pressed surface) W2 of the roll outer peripheral surface of the horizontal rolls 41a and 41b is substantially the same value as the target inner dimension L (distance from the flange inner surface to the end surface 11a of the web tip) in the intermediate rolling process of the web 11. (That is, W2 <W1). Note that the target internal dimension L of the web 11 in the intermediate rolling process is usually determined by taking into account the slight increase in web height in the finishing universal rolling mill, which is the final rolling process, and is usually used in the T-section steel in the product stage. It is preferable to set a value shorter by about 0 to 5 mm than the dimension. In other words, it is preferable that the width W2 of the circumferential roll surfaces of the horizontal rolls 41a and 41b be a value smaller by about 0 to 5 mm than the in-web dimension of the T-shaped steel product. Since the widths of the horizontal rolls 41 a and 41 b are the same as the target internal dimension L of the web 11, the scissors roll 42 b comes into contact with the tip of the web 11 and is pressed down to adjust the height of the web 11 and the shape of the end surface 11 a. It becomes possible.
 さらに、本発明では、水平ロール41a,41bのウェブ先端側のコーナー部aには、曲面加工、面取りを施したり、段差を設けるなどする。 一般にH形鋼などのフランジを有する形鋼の粗ユニバーサル圧延機に組込む上下水平ロールのコーナー部には、圧延される形鋼の製品形状に合わせて円弧状加工が施されている。 しかし、T形鋼の圧延においては、ウェブ先端は直角に成形することが望ましいため、従来と同様の製品寸法に合わせるという観点からはウェブ先端側のコーナー部は円弧状加工が不要と考えられる。 ところが、ウェブ先端が竪ロール42bに圧下されると、圧下部分の体積が断面内でウェブ厚みを増加させる変形が生じる。 そして、コーナー部に空間がない場合、圧下されたウェブ先端の変形が、竪ロール42bの周面cと水平ロール41a,41bの他方の側面bとの僅かな隙間に流れ込み、図11に示すようにウェブの先端に耳状の突起15が形成され、仕上げユニバーサル圧延機での圧延で折れ込み疵などの欠陥を発生させてしまう。 Further, in the present invention, the corner portion a on the web tip side of the horizontal rolls 41a and 41b is subjected to curved surface processing, chamfering, or a step. In general, corners of upper and lower horizontal rolls incorporated in a rough universal rolling mill of a shape steel having a flange such as an H-shape steel are subjected to arc processing in accordance with the shape of the shape steel to be rolled. However, in rolling T-shaped steel, it is desirable to form the web tip at a right angle. From the viewpoint of adjusting to the same product dimensions as in the past, it is considered that arc-shaped machining is unnecessary for the corner portion on the web tip side. However, when the tip of the web is crushed by the roll 42b, deformation occurs in which the volume of the crushed portion increases the web thickness within the cross section. And when there is no space in the corner portion, the deformation of the squeezed web tip flows into a slight gap between the peripheral surface c of the heel roll 42b and the other side face b of the horizontal rolls 41a and 41b, as shown in FIG. In addition, an ear-like protrusion 15 is formed at the tip of the web, and a defect such as a folding flaw is generated by rolling with a finishing universal rolling mill.
 これを回避するため、本発明では、水平ロールコーナー部がウェブ面を圧延しない形状に加工して圧延を行う。 これにより、ウェブ11の先端近傍の水平ロール41a,41bの周方向圧下面と竪ロール42bの周面との間に大きな空間が形成されるため、ウェブの端面11aが圧下された際に僅かな隙間に局所的な変形(突起15)が形成されることが防止される。 In order to avoid this, in the present invention, the horizontal roll corner portion is rolled into a shape that does not roll the web surface. Thereby, since a large space is formed between the circumferential direction pressure lower surface of the horizontal rolls 41a and 41b in the vicinity of the tip of the web 11 and the circumferential surface of the scissors roll 42b, a slight amount is generated when the end surface 11a of the web is rolled down. A local deformation (protrusion 15) is prevented from being formed in the gap.
 具体的な例としては、水平ロール41a,41bのコーナー部aの形状は、円弧状加工(図4、図7)、面取り加工(図5、図8)、または、段差加工(図6、図9)などによるものとし、ウェブ先端の厚み増加によるウェブの板厚方向のウェブ面の変形部を圧延しない空間を確保する。 円弧は楕円弧でもよく、また円弧・楕円弧の中心角は90度に限定されず適宜選択できる。 また面取りの角度は45度に限定されず、適宜選択できる。 面取りや段差を設ける際には、角に丸みを持たせることが好ましい。 As a specific example, the shape of the corner part a of the horizontal rolls 41a and 41b is arc-shaped processing (FIGS. 4 and 7), chamfering processing (FIGS. 5 and 8), or step processing (FIGS. 6 and 6). 9) and the like, and a space for rolling the deformed portion of the web surface in the thickness direction of the web due to the increase in the thickness of the web tip is secured. The circular arc may be an elliptical arc, and the central angle of the circular arc or elliptical arc is not limited to 90 degrees and can be selected as appropriate. Also, the angle of chamfering is not limited to 45 degrees and can be selected as appropriate. When providing chamfers or steps, it is preferable to round the corners.
 通常、円弧状加工の場合の円弧半径は20mm以上、面取り加工の場合はC20以上の加工を施すことにより、耳状突起の発生を防止できる。 また、段差加工の場合も段差部分の幅を20mm以上とすることが好ましい。 一方、加工寸法の上限は、ウェブ11の中間圧延工程における目標内法寸法Lの70%以上のウェブ面が圧延されるようにすることが好ましい。 すなわち、水平ロール41a、41bのロール外周面の幅W2に対して30%以内とすることが好ましい。 これにより、竪ロール42bでウェブ11の端面をウェブの高さ方向に圧延する際、水平ロール41a,41bによりウェブ11の大部分(すなわち先端部の近傍以外)はウェブの板厚方向に圧延されているので、竪ロール42bでウェブ先端部の端面11aを圧下してもウェブ11は座屈しない。 Ordinarily, the arc radius in the case of arc processing is 20 mm or more, and in the case of chamfering, the generation of ear-shaped projections can be prevented by performing processing of C 20 or more. Also in the case of step machining, it is preferable that the width of the step portion is 20 mm or more. On the other hand, the upper limit of the processing dimension is preferably such that a web surface of 70% or more of the target internal dimension L in the intermediate rolling process of the web 11 is rolled. That is, it is preferable to set it within 30% with respect to the width W2 of the outer peripheral surface of the horizontal rolls 41a and 41b. Thus, when the end surface of the web 11 is rolled in the height direction of the web by the roll 42b, most of the web 11 (that is, other than the vicinity of the tip) is rolled in the thickness direction of the web by the horizontal rolls 41a and 41b. Therefore, the web 11 does not buckle even if the end surface 11a of the web front end portion is squeezed down by the heel roll 42b.
 なお、水平ロールコーナー部を、ウェブ面を圧延しない形状とした場合、水平ロールのウェブ端部側はウェブ厚みより大きい開口を形成する。 この開口の開口幅dは(ウェブ厚+10mm)~(ウェブ厚+200mm)程度が好ましい。 さらに好ましい上限は(ウェブ厚+100mm)程度である。 上記以外の形状においても、非圧延部の幅:20mm~Lの30%とし、dを上記範囲とすることが好ましい。 In addition, when the horizontal roll corner portion has a shape that does not roll the web surface, the web end portion side of the horizontal roll forms an opening larger than the web thickness. The opening width d of this opening is preferably about (web thickness + 10 mm) to (web thickness + 200 mm). A more preferable upper limit is about (web thickness + 100 mm). Also in shapes other than the above, it is preferable that the width of the non-rolled portion is 30% of 20 mm to L, and d is in the above range.
 水平ロール41a(41b)のウェブ先端に近い側面bは、図4、5、6に示すように垂直でも、また図7、8、9に示すようにフランジ側の側面と同様の傾斜、好ましくは鉛直から角度θ:5<θ≦10°を有していてもよい。 傾斜を設ける場合は、その傾斜角度に合わせて竪ロール42bの外周にも同じ角度の傾斜を設け、ロール面の幅方向中心を頂点とする、傾いた斜辺を有する上下対称の山形形状とする。ただし、ウェブ先端を圧下するロール面の幅方向中心には、被圧延材Hのウェブ厚よりも大きな幅の平端部を設ける。 The side b close to the web tip of the horizontal roll 41a (41b) is vertical as shown in FIGS. 4, 5 and 6, and preferably has the same inclination as the side on the flange side as shown in FIGS. An angle θ from the vertical may be 5 <θ ≦ 10 °. In the case of providing an inclination, an inclination of the same angle is also provided on the outer periphery of the roll 42b according to the inclination angle, and an up-down symmetrical chevron shape having an inclined hypotenuse with the center in the width direction of the roll surface as a vertex is provided. However, a flat end having a width larger than the web thickness of the material H to be rolled is provided at the center in the width direction of the roll surface that rolls down the web tip.
 上述した第1の粗ユニバーサル圧延機2、エッジャ圧延機3、および第2の粗ユニバーサル圧延機4による中間圧延工程においては、仕上圧延が可能な形状が得られるまで、往復圧延を行う。 第1および第2の粗ユニバーサル圧延機では、ウェブ厚とフランジ厚の圧下率が10~30%となる圧延を行うのが好ましい。 ただし、中間圧延を終了する最後の圧延機などの特定のパスで圧下率10%以下の圧延を行ったり、圧下を行わずに圧延材を通過させるなどしてもよい。 In the intermediate rolling process using the first rough universal rolling mill 2, the edger rolling mill 3, and the second rough universal rolling mill 4 described above, reciprocal rolling is performed until a shape capable of finish rolling is obtained. In the first and second rough universal rolling mills, it is preferable to perform rolling so that the reduction ratio of the web thickness and the flange thickness is 10 to 30%. However, rolling at a reduction rate of 10% or less may be performed in a specific pass such as the last rolling mill that finishes the intermediate rolling, or the rolled material may be passed without being reduced.
 尚、第2の粗ユニバーサル圧延機4で、ウェブ11を板厚方向に圧延すると、水平ロール41a,41bにより圧下される部分と圧下されない部分(ウェブ先端部11a近傍)で、板厚差が生じることがある。往復圧延中は第1の粗ユニバーサル圧延機2でウェブ先端の厚みが圧下されて板厚差が解消されるため、第2の粗ユニバーサル圧延機で板厚差が生じても問題はない。 往復圧延中に板厚差の境界部に折れ込み疵等の有害な表面疵が発生する懸念があるが、本発明者らの検討ではウェブ厚の圧下率30%以下の範囲で表面疵は発生しなかった。 ただし、第2の粗ユニバーサル圧延機が中間圧延を終了する最後の圧延機となっている場合、次工程の仕上ユニバーサル圧延機5でのウェブ圧下率が小さいため、第2の粗ユニバーサル圧延機で生じた段差に応じて工程を変更することも考えられる。 すなわち当該板厚差が仕上ユニバーサル圧延機5による仕上圧延で解消されない程度に大きい場合には、被圧延材Hを逆送して、再度第1の粗ユニバーサル圧延機2で圧延して、ウェブの高さ方向の全面を圧下して解消すればよい。 一方、当該板厚差が仕上圧延機5による仕上圧延で解消される程度の大きさの場合は、中間圧延工程を終了し、仕上圧延工程を開始すればよい。 中間圧延工程の最後の圧延パスで第2の粗ユニバーサル圧延機4のロール開度を被圧延材Hの寸法よりも大きくしておき、圧延せずに通過させてもよく、この場合にはウェブ先端近傍に板厚差は発生しない。 In addition, when the web 11 is rolled in the sheet thickness direction by the second rough universal rolling mill 4, a sheet thickness difference is generated between a portion that is crushed by the horizontal rolls 41a and 41b and a portion that is not crushed (near the web tip portion 11a). Sometimes. During the reciprocating rolling, the thickness of the web tip is reduced by the first rough universal rolling mill 2 to eliminate the difference in sheet thickness. Therefore, there is no problem even if the difference in sheet thickness occurs in the second rough universal rolling mill. Although there is a concern that harmful surface wrinkles such as wrinkles may occur at the boundary of the plate thickness difference during reciprocating rolling, in the study by the present inventors, surface wrinkles occur within the range of a web thickness reduction rate of 30% or less. I didn't. However, when the second rough universal rolling mill is the last rolling mill that finishes the intermediate rolling, the web rolling reduction in the finishing universal rolling mill 5 in the next process is small. It is also conceivable to change the process according to the level difference. That is, if the difference in sheet thickness is so large that it cannot be eliminated by finishing rolling by the finishing universal rolling mill 5, the material to be rolled H is fed back and rolled again by the first rough universal rolling mill 2, This can be eliminated by reducing the entire surface in the height direction. On the other hand, when the thickness difference is such that it can be eliminated by finish rolling by the finish rolling mill 5, the intermediate rolling process may be terminated and the finish rolling process may be started. In the final rolling pass of the intermediate rolling process, the roll opening of the second rough universal rolling mill 4 may be made larger than the dimension of the material H to be rolled, and may be passed without rolling. There is no difference in plate thickness near the tip.
 また、中間圧延工程では、被圧延材を圧延方向からみた断面視で、フランジとウェブとの交差角αを95<α≦110°とすることが好ましく、さらに95<α≦100°とすることがより好ましい。 当該交差角とすることで、水平ロールと被圧延のフランジ内面が圧延後、速やかにはなれて、フランジ内面に疵が発生することが防止される。 また、ロール磨耗時のロール改削量を小さくでき、ロール寿命が延長される。 フランジとウェブの交差角αを95<α≦100°とする場合は、粗ユニバーサル圧延機2,4において、水平ロール21,41のフランジを圧下する側の側面を、鉛直方向から角度θ:5<θ≦10°となるよう傾ける。 In the intermediate rolling step, the crossing angle α between the flange and the web is preferably 95 <α ≦ 110 °, more preferably 95 <α ≦ 100 °, in a cross-sectional view of the material to be rolled as viewed from the rolling direction. Is more preferable. The crossing angle prevents the horizontal roll and the inner surface of the flange to be rolled from coming off quickly after rolling, and the generation of wrinkles on the inner surface of the flange. Also, the amount of roll refurbishment when the roll is worn can be reduced, and the roll life is extended. When the crossing angle α between the flange and the web is 95 <α ≦ 100 °, in the rough universal rolling mills 2 and 4, the side surface of the horizontal rolls 21 and 41 on the side where the flange is pressed down is angle θ from the vertical direction: 5 Tilt so that <θ ≦ 10 °.
 本発明は、図1に示す配置に限られるものではなく、第1の粗ユニバーサル圧延機2、エッジャ圧延機3および第2の粗ユニバーサル圧延機4を1基以上ずつ有する設備であれば、他のどのような配置であっても適用することができる。 例えば、第1の粗ユニバーサル圧延機、エッジャ圧延機、第2の粗ユニバーサル圧延機の少なくともいずれかを、2基以上連続して配置してもよい。 また、第1の粗ユニバーサル圧延機、エッジャ圧延機、第2の粗ユニバーサル圧延機の配置順を変更して、例えば、中間圧延工程の最初にエッジャ圧延機や第2の粗ユニバーサル圧延機を配置してもよい。さらに、各圧延機は通常、リバース圧延や素通し(圧延を行わずに圧延機を通過させる)が可能なので、圧延の順番は圧延機の順番と一致せずともよい。 The present invention is not limited to the arrangement shown in FIG. 1, and may be any other equipment as long as it has one or more first rough universal rolling mills 2, edger rolling mills 3, and second rough universal rolling mills 4. Any arrangement of can be applied. For example, at least one of the first coarse universal rolling mill, the edger rolling mill, and the second coarse universal rolling mill may be continuously arranged. Further, the arrangement order of the first rough universal rolling mill, the edger rolling mill, and the second rough universal rolling mill is changed, for example, the edger rolling mill and the second rough universal rolling mill are arranged at the beginning of the intermediate rolling process. May be. Furthermore, since each rolling mill is normally capable of reverse rolling or through (passing the rolling mill without rolling), the rolling order does not have to coincide with the rolling mill order.
 中間圧延工程で得られたT形鋼は、仕上圧延工程で製品寸法に圧延する。 図10に、仕上ユニバーサル圧延機の構造を説明する模式図を示す。 仕上ユニバーサル圧延機5は、水平軸上を回転する水平ロール51a,51bと垂直軸上を回転する竪ロール52a,52bを有し、水平ロール51a,51bの側面はロール外周面と直交させる。 T-shaped steel obtained in the intermediate rolling process is rolled to product dimensions in the finish rolling process. FIG. 10 shows a schematic diagram for explaining the structure of the finishing universal rolling mill. The finishing universal rolling mill 5 has horizontal rolls 51a and 51b that rotate on the horizontal axis, and roll rolls 52a and 52b that rotate on the vertical axis, and the side surfaces of the horizontal rolls 51a and 51b are orthogonal to the outer peripheral surface of the roll.
 仕上圧延工程では、前工程の中間圧延工程でフランジとウェブの交差角αが90°より大きな角度となっていた圧延材を、フランジとウェブの交差角が90°になるように成形する。 外周が平坦な竪ロール52aで被圧延材Hのフランジを圧延すると、ウェブに対し、フランジが垂直に整形される。フランジの厚み圧下率は数%、大きくても5%以下の軽圧下が望ましい。 このとき、竪ロール52bを水平ロール51a,51bのフランジと対向しない側の側面に押圧することで水平ロール51a,51bが軸方向に移動しないようにできる。 In the finish rolling step, the rolled material in which the crossing angle α between the flange and the web is larger than 90 ° in the intermediate rolling step in the previous step is formed so that the crossing angle between the flange and the web becomes 90 °. When the flange of the material to be rolled H is rolled with the roll 52a having a flat outer periphery, the flange is shaped perpendicular to the web. The thickness reduction ratio of the flange is preferably a slight reduction of several percent and at most 5%. At this time, the horizontal rolls 51a and 51b can be prevented from moving in the axial direction by pressing the saddle roll 52b against the side surface of the horizontal rolls 51a and 51b that is not opposed to the flange.
 仕上ユニバーサル圧延機では、ウェブはほとんど圧下されないか、または、形・寸法を整える程度に数%の厚み圧下率で軽圧下される。 特に、第2の粗ユニバーサル圧延機4での圧延によって、水平ロール41a,41bにより圧下される部分と圧下されない部分(ウェブ先端部11a近傍)で板厚差が生じている場合には、これを解消するようにウェブを軽圧下する。 この目的に適うため、水平ロール51a,51bの圧下面の幅は、ウェブ内法寸法より大きくする(したがってW2より大きい)。 好ましくは、ウェブ11の内法寸法の105~150%程度とする。 In the finishing universal rolling mill, the web is hardly reduced or lightly reduced by a thickness reduction rate of several percent to the extent that the shape and dimensions are adjusted. In particular, when a difference in sheet thickness occurs between the portion that is squeezed by the horizontal rolls 41a and 41b and the portion that is not squeezed (near the web tip portion 11a) by rolling in the second rough universal rolling mill 4. Lightly reduce the web to eliminate. In order to meet this purpose, the width of the pressed surface of the horizontal rolls 51a and 51b is made larger than the in-web dimension (and thus larger than W2). Preferably, it is about 105 to 150% of the internal dimension of the web 11.
 以上の本発明の製造方法と圧延設備列を用いれば、内法寸法が同じでフランジ厚が異なる複数のサイズのT形鋼を製造することができる。内法寸法が一定のT形鋼は、図13(a)に示すように、フランジ厚tfが変化してもウェブ内法寸法Aiが一定である。 本発明では、フランジの板厚tfは、第2の粗ユニバーサル圧延機の竪ロール42aと、水平ロール41a,41bの一方の側面との開度を調整することにより調整することができる。この際、水平ロール41a,41bが軸方向に移動しないように竪ロール42bの周面cを水平ロール41a,41bの他方の側面bに接触させて配置する。ここで、水平ロール41a,41bのロール外周面の幅はウェブ内法寸法と同じであるので、ウェブ内法寸法Aiはフランジ厚によらず一定の寸法に圧延することができ、内法寸法が一定のT形鋼を容易に製造することができる。 If the manufacturing method and rolling equipment row of the present invention described above are used, a plurality of sizes of T-shaped steels having the same internal dimensions and different flange thicknesses can be manufactured. As shown in FIG. 13A, the T-shaped steel having a constant internal dimension has a constant internal web dimension Ai even if the flange thickness tf changes. In the present invention, the plate thickness tf of the flange can be adjusted by adjusting the opening between the side roll 42a of the second rough universal rolling mill and one side surface of the horizontal rolls 41a and 41b. At this time, the circumferential surface c of the eaves roll 42b is arranged in contact with the other side face b of the horizontal rolls 41a and 41b so that the horizontal rolls 41a and 41b do not move in the axial direction. Here, since the width of the roll outer peripheral surface of the horizontal rolls 41a and 41b is the same as the internal web dimension, the internal web dimension Ai can be rolled to a constant dimension regardless of the flange thickness. A certain T-shaped steel can be easily manufactured.
 [実施例1] [Example 1]
 図1に示す圧延設備を用いて、厚さ250mm、幅310mmの長方形断面を有するブルームから、ウェブ高さ300mm、フランジ幅100mm、ウェブ厚9mm、フランジ厚16mmを目標寸法とするT形鋼を圧延した。 Using the rolling equipment shown in FIG. 1, a T-section steel having a target dimension of a web height of 300 mm, a flange width of 100 mm, a web thickness of 9 mm, and a flange thickness of 16 mm is rolled from a bloom having a rectangular cross section with a thickness of 250 mm and a width of 310 mm. did.
 第1の粗ユニバーサル圧延機2は、図2(a)に示す構造のものを用いた。 水平ロールは、圧下面の幅W1がウェブの目標内法寸法L(283mmとした)よりも広くなるように320mmとし、水平ロールの側面の鉛直方向からの角度θは、7°とした。 左右の竪ロールは対向するように配置し、断面形状においてロール面の幅方向中心を頂点とする、鉛直から角度7°傾いた斜辺を有する上下対称の山形形状とした。 また、左右の竪ロールのうち、水平ロールの側面を押圧するものは、フランジの圧延で水平ロールが水平軸方向に移動しないように、押圧力を調整した。 The 1st rough universal rolling mill 2 used the structure shown to Fig.2 (a). The horizontal roll was set to 320 mm so that the width W1 of the pressed surface was wider than the target internal dimension L of the web (283 mm), and the angle θ from the vertical direction of the side surface of the horizontal roll was set to 7 °. The left and right saddle rolls are arranged so as to be opposed to each other, and in the cross-sectional shape, a vertically symmetrical mountain shape having a hypotenuse inclined at an angle of 7 ° from the vertical with the center in the width direction of the roll surface as a vertex. In addition, among the left and right saddle rolls, the pressing force of the one that presses the side surface of the horizontal roll was adjusted so that the horizontal roll would not move in the horizontal axis direction due to the rolling of the flange.
 エッジャ圧延機3は図3に示す構造のものを用いた。 エッジャロールの大径部と小径部との段差は44mmとし、ロール幅は大径部が500mm以上、小径部が200mm以上を確保した。 また、段差部分の傾斜角は鉛直から角度7°とした。 The edger rolling mill 3 has a structure shown in FIG. The step between the large diameter portion and the small diameter portion of the edger roll was 44 mm, and the roll width was ensured to be 500 mm or more for the large diameter portion and 200 mm or more for the small diameter portion. In addition, the inclination angle of the step portion was set to 7 ° from the vertical.
 第2の粗ユニバーサル圧延機4は、図4に示す構造のものを用いた。水平ロールのロール軸には特段の補強をせず、一般的な構造のものを使用した。水平ロールは、圧下面の幅W2が中間圧延工程におけるウェブ目標内法寸法と同じになるように283mmとし、水平ロールの、フランジを圧延する側の側面は鉛直から角度7°傾けた。また、水平ロールコーナー部aの曲面加工の大きさは半径30mmの円弧状とした(水平ロールのウェブ端部側開口幅dは被圧延材のウェブ厚+約60mm)。 また、左右の竪ロールで、フランジを圧延する一方の竪ロールは、断面形状においてロール面の幅方向中心を頂点とする、鉛直から角度7°傾いた斜辺を有する上下対称の山形形状とし、ウェブ先端部を高さ方向に圧下する他方の竪ロールは、ロール面が平坦な円筒型とした。 The second rough universal rolling mill 4 having the structure shown in FIG. 4 was used. The roll shaft of the horizontal roll was not reinforced, and a general structure was used. The horizontal roll was 283 mm so that the width W2 of the pressed surface was the same as the web target internal dimension in the intermediate rolling process, and the side surface of the horizontal roll on the side where the flange was rolled was inclined by 7 ° from the vertical. Moreover, the size of the curved surface processing of the horizontal roll corner portion a was an arc shape with a radius of 30 mm (the web end side opening width d of the horizontal roll is the web thickness of the material to be rolled + about 60 mm). In addition, one of the scissors rolls that rolls the flange with the left and right scissors rolls has a vertically-symmetrical chevron shape having a hypotenuse inclined at an angle of 7 ° from the vertical with the center in the width direction of the roll surface in the cross-sectional shape. The other scissors roll that squeezes the tip in the height direction was a cylindrical shape with a flat roll surface.
 仕上ユニバーサル圧延機5は図10に示す構造のものを用いた。水平ロールの幅は320mmとした。 The finishing universal rolling mill 5 has a structure shown in FIG. The width of the horizontal roll was 320 mm.
 最初に、上記ブルームを粗造形圧延機1(孔型ロールを組み込んだ二重式圧延機を用いた)で圧延し、略T形断面形状のT形鋼片とした。得られたT形鋼片のウェブ厚は40mm、フランジ厚は75mm、ウェブ高さ365mm、フランジ幅130mmであった。 続いて、上述した第1粗ユニバーサル圧延機2、エッジャ圧延機3、および第2粗ユニバーサル圧延機4をこの順に近接配置した圧延機群で5パスの往復圧延を行って、ウェブとフランジを圧下した。中間圧延工程のパススケジュールを表1に示す。 First, the bloom was rolled with a rough shaping rolling mill 1 (using a double rolling mill incorporating a perforated roll) to obtain a T-shaped steel piece having a substantially T-shaped cross section. The obtained T-shaped billet had a web thickness of 40 mm, a flange thickness of 75 mm, a web height of 365 mm, and a flange width of 130 mm. Subsequently, reciprocal rolling of 5 passes is performed by a rolling mill group in which the first rough universal rolling mill 2, the edger rolling mill 3, and the second rough universal rolling mill 4 described above are arranged in this order, and the web and the flange are reduced. did. Table 1 shows the pass schedule of the intermediate rolling process.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 第2粗ユニバーサル圧延機4では竪ロールを用いてウェブ先端部をウェブ高さ方向に圧下し、ウェブ高さの調整を行った。 このとき、ウェブ先端を圧下する竪ロールが水平ロール側面に接する状態とし、水平ロールの軸方向荷重を支持しつつ圧延を行った。 最後に、水平ロールと竪ロールとを有する仕上ユニバーサル圧延機5でフランジに軽圧下を加えつつ圧延してフランジの傾斜を鉛直に整形した。ウェブ部は軽圧下とした。 熱間圧延後、得られたT形鋼のウェブ高さ、フランジ幅、ウェブ厚、フランジ厚を測定したところ、目標通りの寸法で、本発明によれば目標寸法を満足するT形鋼を熱間圧延ままで製造できることが確認された。 特に、従来圧延ままでは調整が困難であったウェブ高さは、目標値±1mmの範囲で熱間圧延することが可能で、端面形状も良好であった。 In the second rough universal rolling mill 4, the web tip was adjusted in the web height direction by using a roll, and the web height was adjusted. At this time, rolling was performed while supporting the axial load of the horizontal roll, with the roll being rolled down the web tip in contact with the side of the horizontal roll. Finally, the finishing universal rolling mill 5 having horizontal rolls and rolls was rolled while applying light pressure to the flanges to shape the inclination of the flanges vertically. The web part was under light pressure. After hot rolling, the web height, flange width, web thickness, and flange thickness of the obtained T-shaped steel were measured. As a result, according to the present invention, the T-shaped steel satisfying the target dimension was heated. It was confirmed that it could be produced as it was rolled. In particular, the web height, which was difficult to adjust with conventional rolling, can be hot-rolled within the range of the target value ± 1 mm, and the end face shape was also good.
 さらに、同じ圧延設備を用いて、内法寸法がフランジ厚16mmと同じでフランジ厚が19mmの内法一定T形鋼を製造した。フランジ厚16mmのときと同じ断面寸法の素材鋼片を粗造形圧延機1で圧延した後のT形鋼片の寸法は、ウェブ厚33mm、フランジ厚75mm、ウェブ高さ365mm、フランジ幅123mmであった。 続いて、第1粗ユニバーサル圧延機2、エッジャ圧延機3、および第2粗ユニバーサル圧延機4をこの順に近接配置した圧延機群で5パスの往復圧延を行って、ウェブとフランジを圧下した。中間圧延工程のパススケジュールを表2に示す。 Furthermore, using the same rolling equipment, an inner method constant T-shaped steel having the same inner dimension as the flange thickness of 16 mm and a flange thickness of 19 mm was manufactured. The dimensions of the T-shaped steel slab after the raw steel slab having the same cross-sectional dimension as that of the flange thickness of 16 mm was rolled by the rough shaping rolling mill 1 were a web thickness of 33 mm, a flange thickness of 75 mm, a web height of 365 mm, and a flange width of 123 mm. It was. Subsequently, reciprocal rolling of 5 passes was performed by a rolling mill group in which the first rough universal rolling mill 2, the edger rolling mill 3, and the second rough universal rolling mill 4 were arranged close to each other in this order to reduce the web and the flange. Table 2 shows the pass schedule of the intermediate rolling process.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 第2粗ユニバーサル圧延機4では竪ロールを用いてウェブ先端部をウェブ高さ方向に圧下し、ウェブ高さの調整を行った。 このとき、ウェブ先端を圧下する竪ロールはフランジ厚16mmのときと同様に、水平ロール側面に接する状態とし、水平ロールの軸方向荷重を支持しつつ圧延を行った。 最後に、水平ロールと竪ロールとを有する仕上ユニバーサル圧延機5でフランジに軽圧下を加えつつ圧延してフランジの傾斜を鉛直に整形した。ウェブ部は軽圧下とした。 熱間圧延後の各部の寸法は、ウェブ高さ303mm、フランジ幅100mm、ウェブ厚9mm、フランジ厚19mmと目標どおりの寸法の製品が得られた。ウェブ内法寸法は284mmでフランジ厚16mmの製品と同じ値であった。 In the second rough universal rolling mill 4, the web tip was adjusted in the web height direction by using a roll, and the web height was adjusted. At this time, as in the case of the flange thickness of 16 mm, the roll roll that squeezed the tip of the web was brought into contact with the side surface of the horizontal roll and rolled while supporting the axial load of the horizontal roll. Finally, the finishing universal rolling mill 5 having horizontal rolls and rolls was rolled while applying light pressure to the flanges to shape the inclination of the flanges vertically. The web part was under light pressure. The dimensions of each part after hot rolling were as follows: a web height of 303 mm, a flange width of 100 mm, a web thickness of 9 mm, and a flange thickness of 19 mm. The in-web dimension was 284 mm and the same value as the product with a flange thickness of 16 mm.
 一方、比較例として、中間圧延工程を、水平ロールの圧下面幅をウェブ幅より広く設定した粗ユニバーサル圧延機を1基と、エッジャ圧延機1基とからなる従来の圧延設備(図14)を用いて実施し、T形鋼を製造した。 ブルーム寸法、T形鋼の熱間圧延後の各部目標寸法は本発明例のフランジ厚19mmと同じとした。 中間圧延工程のパススケジュールを表3に示す。比較例の設備では粗ユニバーサル圧延機が1基しかないため、パス数が9パスの往復圧延を行って目標寸法まで圧延した。 On the other hand, as a comparative example, an intermediate rolling process is performed using a conventional rolling facility (FIG. 14) composed of one rough universal rolling mill in which the width of the pressed surface of the horizontal roll is set wider than the web width and one edger rolling mill. T-shaped steel was manufactured. Bloom dimensions and target dimensions for each part after hot rolling of T-shaped steel were the same as the flange thickness of 19 mm of the present invention. Table 3 shows the pass schedule for the intermediate rolling process. Since there was only one rough universal rolling mill in the equipment of the comparative example, reciprocating rolling with 9 passes was performed to the target dimension.
 比較例では、ウェブの先端を圧下することができなかったため、ウェブ高さが目標の300mmよりも大きくなり、306mm程度となって寸法外れが発生した。 このため、圧延後にウェブの端部を切断する必要が生じ、時間と費用がかかり製造コストが増加した。また、パス数が増えたため本発明の実施例に比較して中間圧延の圧延時間が2倍程度に増え、生産性が大幅に悪化した。 In the comparative example, since the tip of the web could not be crushed, the web height became larger than the target of 300 mm, and was about 306 mm, resulting in out-of-size. For this reason, it was necessary to cut the edge of the web after rolling, which took time and expense, and increased the manufacturing cost. Moreover, since the number of passes increased, the rolling time of intermediate rolling increased to about twice as compared with the examples of the present invention, and the productivity was greatly deteriorated.
 なお、表1および表2のスケジュールを用いた上記実施例において、W1および仕上ユニバーサル圧延機の水平ロールの幅をそれぞれ340mmに変えてみたが、やはり結果は良好であった。 さらに、上記実施例において、第2の粗ユニバーサル圧延機4の水平ロールのコーナー部aの形状を、半径30mmの円弧状(図4)に替えて、C20の面取り加工(図5)(d=ウェブ厚+40mm)、および水平ロールのコーナーから幅50mmの間を段差加工(図6)(d=ウェブ厚+30mm)として圧延した場合についても、やはり結果は良好であった。
 [実施例2]
In addition, in the said Example using the schedule of Table 1 and Table 2, the width of the horizontal roll of W1 and a finishing universal rolling mill was changed to 340 mm, respectively, but the result was also favorable. Furthermore, in the said Example, the shape of the corner part a of the horizontal roll of the 2nd rough universal rolling mill 4 is changed into the circular arc shape (FIG. 4) of radius 30mm (FIG. 5) (FIG. 5) (d = The results were also good when the web thickness was rolled as a step processing (FIG. 6) (d = web thickness + 30 mm) between the width of the web roll +40 mm) and a width of 50 mm from the corner of the horizontal roll.
[Example 2]
 次に本発明の第2の実施例として、図1に示す圧延設備を用いて厚さ300mm、幅620mmの長方形断面を有するブルームから、ウェブ高さ500mm、フランジ幅150mm、ウェブ厚12mm、フランジ厚22mmを目標寸法とするT形鋼を圧延した。 Next, as a second embodiment of the present invention, from a bloom having a rectangular cross section with a thickness of 300 mm and a width of 620 mm using the rolling equipment shown in FIG. 1, a web height of 500 mm, a flange width of 150 mm, a web thickness of 12 mm, and a flange thickness A T-shaped steel having a target dimension of 22 mm was rolled.
 第1の粗ユニバーサル圧延機2は、図2(b)に示す構造のものを用いた。水平ロールは、圧下面の幅W1がウェブ内法寸法よりも広くなるように530mmとし、水平ロールの側面の鉛直方向からの角度θは、7°とした。 左右の竪ロールは対向するように配置し、断面形状においてロール面の幅方向中心を頂点とする、鉛直から角度7°傾いた斜辺を有する上下対称の山形形状とした。 また、左右の竪ロールのうち、水平ロールの側面を押圧するものは、フランジの圧延で水平ロールが水平軸方向に移動しないように、押圧力を調整した。 The 1st rough universal rolling mill 2 used the structure shown in FIG.2 (b). The horizontal roll was 530 mm so that the width W1 of the pressed surface was wider than the in-web dimension, and the angle θ from the vertical direction of the side surface of the horizontal roll was 7 °. The left and right saddle rolls are arranged so as to be opposed to each other, and in the cross-sectional shape, a vertically symmetrical mountain shape having a hypotenuse inclined at an angle of 7 ° from the vertical with the center in the width direction of the roll surface as a vertex. In addition, among the left and right saddle rolls, the pressing force of the one that presses the side surface of the horizontal roll was adjusted so that the horizontal roll would not move in the horizontal axis direction due to the rolling of the flange.
 エッジャ圧延機3は図3に示す構造のものを用いた。 エッジャロールの大径部と小径部との段差は67mmとし、ロール幅は大径部が550mm以上、小径部が200mm以上を確保した。 また、段差部分の傾斜角は鉛直から角度7°とした。 The edger rolling mill 3 has a structure shown in FIG. The step between the large diameter part and the small diameter part of the edger roll was 67 mm, and the roll width was 550 mm or more for the large diameter part and 200 mm or more for the small diameter part. In addition, the inclination angle of the step portion was set to 7 ° from the vertical.
 第2の粗ユニバーサル圧延機4は、図4に示す構造のものを用いた。水平ロールは、圧下面の幅W2が中間圧延工程におけるウェブ目標内法寸法と同じになるよう477mmとし、フランジを圧下する水平ロールの側面は鉛直から角度7°傾けた。また、水平ロールコーナー部aの曲面加工の大きさは半径30mmの円弧状とした(d=ウェブ厚+60mm)。 また、左右の竪ロールで、フランジを圧延する一方の竪ロールは、断面形状においてロール面の幅方向中心を頂点とする、鉛直から角度7°傾いた斜辺を有する上下対称の山形形状とし、ウェブ先端部を高さ方向に圧下する他方の竪ロールは、ロール面が平坦な円筒型とした。 The second rough universal rolling mill 4 having the structure shown in FIG. 4 was used. The horizontal roll was 477 mm so that the width W2 of the pressed surface was the same as the web target internal dimension in the intermediate rolling process, and the side surface of the horizontal roll that pressed the flange was tilted by 7 ° from the vertical. Moreover, the size of the curved surface processing of the horizontal roll corner portion a was an arc shape with a radius of 30 mm (d = web thickness + 60 mm). In addition, one of the scissors rolls that rolls the flange with the left and right scissors rolls has a vertically-symmetrical chevron shape having a hypotenuse inclined at an angle of 7 ° from the vertical with the center in the width direction of the roll surface in the cross-sectional shape. The other scissors roll that squeezes the tip in the height direction was a cylindrical shape with a flat roll surface.
 仕上ユニバーサル圧延機5は図10に示す構造のものを用いた。水平ロールの幅は520mmとした。 The finishing universal rolling mill 5 has a structure shown in FIG. The width of the horizontal roll was 520 mm.
 最初に、上記ブルームを粗造形圧延機1で略T形断面形状のT形鋼片に圧延した。得られたT形鋼片のウェブ厚は50mm、フランジ厚は95mm、ウェブ高さ585mm、フランジ幅185mmであった。 続いて、上述した第1粗ユニバーサル圧延機2、エッジャ圧延機3、第2粗ユニバーサル圧延機4をこの順に近接配置した圧延機群で5パスの往復圧延を行って、ウェブとフランジを圧下した。中間圧延工程のパススケジュールを表4に示す。 First, the bloom was rolled into a T-shaped steel slab having a substantially T-shaped cross section by the rough shaping rolling mill 1. The obtained T-shaped billet had a web thickness of 50 mm, a flange thickness of 95 mm, a web height of 585 mm, and a flange width of 185 mm. Subsequently, the web and the flange were reduced by performing 5 passes of reciprocating rolling in a rolling mill group in which the first rough universal rolling mill 2, the edger rolling mill 3, and the second rough universal rolling mill 4 described above were arranged in this order. . Table 4 shows the pass schedule of the intermediate rolling process.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 第2粗ユニバーサル圧延機4ではウェブ先端側の竪ロールを水平ロール側面に押付けた状態で圧延し、ウェブ先端部をウェブ高さ方向に圧下してウェブ高さの調整を行った。最後に、水平ロールと竪ロールとを有する仕上ユニバーサル圧延機5でフランジの傾斜を鉛直に整形した。 熱間圧延後、得られたT形鋼のウェブ高さ、フランジ幅、ウェブ厚、フランジ厚を測定したところ、目標通りの寸法になっており、ウェブ高さは目標値±1mmの範囲で、端面形状も良好であった。 In the second rough universal rolling mill 4, rolling was performed in a state where the roll on the web tip side was pressed against the side surface of the horizontal roll, and the web height was adjusted by reducing the web tip in the web height direction. Finally, the inclination of the flange was vertically shaped by a finishing universal rolling mill 5 having a horizontal roll and a roll. After hot rolling, when the web height, flange width, web thickness and flange thickness of the obtained T-shaped steel were measured, the dimensions were as intended, and the web height was within the target value ± 1 mm. The end face shape was also good.
 比較例として、図16に示す第1のユニバーサル圧延機(a)とエッジャ圧延機と第2のユニバーサル圧延機(b)とからなる従来の圧延設備を用いて中間圧延工程を実施し、同じ寸法のT形鋼を製造した。中間圧延工程のパススケジュールを表5に示す。この比較例の設備では第2のユニバーサル圧延機でウェブとフランジの厚みを圧下できないため、パス数が9パスの往復圧延を行って目標寸法まで圧延した。このため、本発明の実施例に比較して中間圧延の圧延時間が2倍程度に増え、生産性が大幅に悪化した。製品寸法は目標どおりで特に問題はなかった。 As a comparative example, an intermediate rolling process is performed using a conventional rolling facility including a first universal rolling mill (a), an edger rolling mill, and a second universal rolling mill (b) shown in FIG. T-shaped steel was manufactured. Table 5 shows the pass schedule of the intermediate rolling process. In the equipment of this comparative example, since the thickness of the web and the flange cannot be reduced by the second universal rolling mill, reciprocating rolling with 9 passes was performed to the target dimension. For this reason, compared with the Example of this invention, the rolling time of intermediate | middle rolling increased about twice, and productivity deteriorated significantly. The product dimensions were as planned and there were no problems.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上の結果から、本発明のT形鋼の製造方法と圧延設備で、ウェブ高さ500mm、フランジ幅150mmといった大きなサイズのT形鋼であっても、寸法精度の良好なT形鋼を熱間圧延ままで製造でき、さらに従来に比べて大幅に圧延能率が向上することが確認できた。 From the above results, the T-shaped steel of the present invention can be hot-rolled with a T-shaped steel having a good dimensional accuracy even with a large-sized T-shaped steel having a web height of 500 mm and a flange width of 150 mm. It could be manufactured as rolled, and it was confirmed that the rolling efficiency was significantly improved as compared with the conventional one.
 本発明に係るT形鋼の製造方法と圧延設備列によれば、熱間圧延ままで、ウェブ先端部の形状が良好で、且つ所望のウェブ高さが精度良く得られるT形鋼の効果的な製造方法と圧延設備列が得られ、産業上極めて有用である。 According to the method for manufacturing a T-section steel and a rolling equipment train according to the present invention, the T-section steel is effective in which the shape of the web tip is good and the desired web height can be obtained with high accuracy while still being hot-rolled. Manufacturing method and rolling equipment line are obtained, which is very useful industrially.
1   粗造形圧延機
2   第1の粗ユニバーサル圧延機
3   エッジャ圧延機
4   第2の粗ユニバーサル圧延機
5   仕上ユニバーサル圧延機
10  T形鋼
11  ウェブ
11a 端面(ウェブ)
12  フランジ
12a 端面(フランジ)
15  耳状の突起
21a,21b 水平ロール
22a,22b 竪ロール
31a,31b エッジャロール
32  小径部
32a 圧下面
33  大径部
41a,41b 水平ロール
42a,42b 竪ロール
51a,51b 水平ロール
52a,52b 竪ロール
W1 第1の粗ユニバーサル圧延機の水平ロールの外周面の幅
W2 第2の粗ユニバーサル圧延機の水平ロールの外周面の幅
L  ウェブの目標内法寸法
H  被圧延材(T形鋼片)
a  コーナー部
b  側面
c  周面
d  開口幅
Ai、Ai1、Ai2、Ai3:ウェブの内法寸法
Ao、Ao1、Ao2、Ao3:ウェブの外法寸法
tf1、tf2、tf3:フランジ厚
DESCRIPTION OF SYMBOLS 1 Rough shaping rolling mill 2 1st rough universal rolling mill 3 Edger rolling mill 4 2nd rough universal rolling mill 5 Finish universal rolling mill 10 T-section steel 11 Web 11a End surface (web)
12 flange 12a end face (flange)
15 Ear-shaped protrusions 21a and 21b Horizontal rolls 22a and 22b Edge rolls 31a and 31b Edger roll 32 Small diameter part 32a Pressure-repressed surface 33 Large diameter parts 41a and 41b Horizontal rolls 42a and 42b Horizontal rolls 51a and 51b Horizontal rolls 52a and 52b Horizontal rolls W1 Width W2 of the outer peripheral surface of the horizontal roll of the first rough universal rolling mill Width L of the outer peripheral surface of the horizontal roll of the second rough universal rolling mill Target internal dimension H of the material to be rolled (T-shaped slab)
a Corner portion b Side surface c Peripheral surface d Opening width Ai, Ai1, Ai2, Ai3: Web internal dimensions Ao, Ao1, Ao2, Ao3: Web external dimensions tf1, tf2, tf3: Flange thickness

Claims (3)

  1.  T形形状に粗成形されたT形鋼片のウェブとフランジとを圧延する中間圧延工程と、前記中間圧延工程で得られたT形鋼片を製品形状とする仕上圧延を行う仕上圧延工程とを有するT形鋼の製造方法であって、
     前記中間圧延工程は、上下の水平ロールがウェブの板厚方向における上下面の全面を圧下する第1の粗ユニバーサル圧延機による圧延工程と、
     フランジの端面を圧下するエッジャ圧延工程と、
     ロール外周面の幅が目標ウェブ内法寸法と同じで、ウェブ先端部側のコーナー部がウェブ面を圧延しない形状に加工された上下の水平ロールを用いて、ウェブを先端部近傍を除いた板厚方向の上下面を圧下しつつ、左右の竪ロールのうち一方の竪ロールがフランジをその板厚方向に圧下し、他方の竪ロールが外周面を上下の水平ロールに接触させつつウェブの端面をウェブの高さ方向に圧下する第2の粗ユニバーサル圧延機による圧延工程と
     を有するT形鋼の製造方法。
    An intermediate rolling step of rolling a web and a flange of a T-shaped slab roughly formed into a T-shape, and a finish rolling step of performing finish rolling to make the T-shaped slab obtained in the intermediate rolling step into a product shape; A method for producing a T-section steel having
    The intermediate rolling step includes a rolling step by a first rough universal rolling mill in which upper and lower horizontal rolls reduce the entire upper and lower surfaces in the web thickness direction,
    An edger rolling process for rolling down the end face of the flange;
    A plate where the width of the roll outer peripheral surface is the same as the target internal web dimension, and the web is removed from the vicinity of the tip portion using the upper and lower horizontal rolls that are processed into a shape in which the corner portion on the tip side of the web is not rolled. While rolling down the upper and lower surfaces in the thickness direction, one of the left and right rolls rolls down the flange in the plate thickness direction, and the other roll roll contacts the outer circumferential surface with the upper and lower horizontal rolls while the end face of the web Rolling process with a second rough universal rolling mill that reduces the web in the height direction of the web.
  2.  前記第2の粗ユニバーサル圧延機による圧延工程において、ウェブ端面を圧下する竪ロールの外周面を上下の水平ロールに接触させつつ、もう一方の竪ロールと上下の水平ロール側面との開度を調整することにより、ウェブ内法寸法が一定でフランジ厚が異なる複数のサイズのT形鋼を製造する請求項1に記載のT形鋼の製造方法。 In the rolling process by the second rough universal rolling mill, the degree of opening between the other side roll and the upper and lower horizontal roll sides is adjusted while the outer peripheral surface of the side roll rolling down the web end surface is brought into contact with the upper and lower horizontal rolls. The method for producing a T-section steel according to claim 1, wherein a plurality of sizes of T-section steel having a constant in-web dimension and different flange thicknesses are produced.
  3.  T形形状に粗成形されたT形鋼片を被圧延材として、そのウェブとフランジとを圧延するT形鋼の圧延設備列であって、
     ロール外周面の幅が前記被圧延材の目標ウェブ内法寸法より広い上下の水平ロールを有する第1の粗ユニバーサル圧延機と、前記被圧延材のフランジの端面を圧下するエッジャ圧延機と、ロール外周面の幅が前記被圧延材の目標ウェブ内法寸法と同じでウェブ先端側のコーナー部がウェブ面を圧延しない形状に加工された上下の水平ロールおよび一方がフランジをその板厚方向に圧下し他方がその竪ロール外周面を上下の水平ロールに接触させつつウェブの端面をウェブの高さ方向に圧下する左右の竪ロールを有する第2の粗ユニバーサル圧延機とが配置されてなることを特徴とするT形鋼の圧延設備列。
    A T-section rolling equipment row for rolling a web and a flange with a T-shaped steel piece roughly formed into a T-shape as a material to be rolled,
    A first rough universal rolling mill having upper and lower horizontal rolls whose width of the outer peripheral surface of the roll is wider than a target in-web dimension of the material to be rolled; an edger rolling machine for rolling down the end face of the flange of the material to be rolled; Upper and lower horizontal rolls whose outer peripheral surface width is the same as the target in-web dimension of the material to be rolled and the corner portion on the front end side of the web is processed into a shape that does not roll the web surface, and one of them rolls down the flange in the plate thickness direction. On the other hand, a second rough universal rolling mill having left and right reed rolls that press the end surface of the web in the height direction of the web while the outer peripheral surface of the reed roll is in contact with the upper and lower horizontal rolls is arranged. Characteristic T-section rolling equipment line.
PCT/JP2009/069989 2008-11-20 2009-11-19 Process for producing t-bar steel and series of rolling devices WO2010058861A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801454102A CN102215989B (en) 2008-11-20 2009-11-19 Process for producing t-bar steel and series of rolling devices

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-296484 2008-11-20
JP2008296484 2008-11-20
JP2009258609A JP4544371B2 (en) 2008-11-20 2009-11-12 T-section steel manufacturing method and rolling equipment line
JP2009-258609 2009-11-12

Publications (1)

Publication Number Publication Date
WO2010058861A1 true WO2010058861A1 (en) 2010-05-27

Family

ID=42198300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069989 WO2010058861A1 (en) 2008-11-20 2009-11-19 Process for producing t-bar steel and series of rolling devices

Country Status (4)

Country Link
JP (1) JP4544371B2 (en)
KR (1) KR101043564B1 (en)
CN (1) CN102215989B (en)
WO (1) WO2010058861A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5884162B2 (en) * 2010-12-22 2016-03-15 Jfeスチール株式会社 Manufacturing method of T-section steel
JP5141839B2 (en) * 2011-01-20 2013-02-13 Jfeスチール株式会社 T-section steel manufacturing method and rolling equipment
CN102513362A (en) * 2011-12-12 2012-06-27 莱芜钢铁集团有限公司 UE hole type for hot rolling J-shaped portal channel steel
JP5884468B2 (en) * 2011-12-22 2016-03-15 Jfeスチール株式会社 Manufacturing method of T-section steel, universal rolling mill for T-section steel rolling, and T-section steel manufacturing equipment
KR101560290B1 (en) * 2012-01-17 2015-10-14 제이에프이 스틸 가부시키가이샤 Method for manufacturing t-shaped steel and rolling equipment
AT512899B1 (en) 2012-11-15 2013-12-15 Blum Gmbh Julius Method for producing a sheet metal profile for a drawer pull-out guide
CN103350114B (en) * 2013-07-19 2015-09-16 莱芜钢铁集团有限公司 Track shoes roll diapsid and milling method
CN104014587A (en) * 2014-06-12 2014-09-03 中冶赛迪工程技术股份有限公司 Long-length rolling method and production line of T-shaped elevator guide rails
CN107695094B (en) * 2017-10-12 2019-02-22 刘庚申 The production system of H profile steel
CN108435790A (en) * 2018-05-30 2018-08-24 攀钢集团攀枝花钢钒有限公司 The milling method of wide width wing T-steel
CN109775560B (en) * 2019-02-15 2023-09-15 山东钢铁股份有限公司 Novel section deformed steel and production method thereof
CN111112327B (en) * 2020-01-20 2021-11-19 邯郸钢铁集团有限责任公司 Steel rail production process with limited participation of universal rolling mill
CN112742873A (en) * 2020-11-30 2021-05-04 天津市中重科技工程有限公司 Combined control hole pattern of universal rolling mill
CN113732054B (en) * 2021-09-02 2024-04-05 马鞍山钢铁股份有限公司 UR hole type of hot-rolled H-shaped steel and rolling method of hot-rolled H-shaped steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331027A (en) * 2005-11-15 2007-12-27 Sumitomo Metal Ind Ltd Method of manufacturing hot-rolled t-shape steel for hull reinforcing member and hot-rolled t-shape steel
WO2008146948A1 (en) * 2007-05-31 2008-12-04 Jfe Steel Corporation Process for manufacturing t-shaped steel and rolling equipment line

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331027A (en) * 2005-11-15 2007-12-27 Sumitomo Metal Ind Ltd Method of manufacturing hot-rolled t-shape steel for hull reinforcing member and hot-rolled t-shape steel
WO2008146948A1 (en) * 2007-05-31 2008-12-04 Jfe Steel Corporation Process for manufacturing t-shaped steel and rolling equipment line

Also Published As

Publication number Publication date
KR20110028553A (en) 2011-03-18
KR101043564B1 (en) 2011-06-22
CN102215989A (en) 2011-10-12
JP2010149181A (en) 2010-07-08
CN102215989B (en) 2013-10-23
JP4544371B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP4544371B2 (en) T-section steel manufacturing method and rolling equipment line
JP4453771B2 (en) T-section steel manufacturing method and rolling equipment line
JPH08215702A (en) Rolling method of shape having flange and web and rolling device train
JP4992040B2 (en) T-section steel rolling method and rolling equipment
KR101560290B1 (en) Method for manufacturing t-shaped steel and rolling equipment
JP3064870B2 (en) Rolling apparatus for section steel and method for rolling section steel using the apparatus
JP3496554B2 (en) Manufacturing method of channel steel, rough universal rolling mill and finish universal rolling mill
JP7280504B2 (en) Method for manufacturing asymmetric H-beam steel with different left and right flange thicknesses
JP2005021960A (en) Manufacturing method and manufacturing apparatus for steel plate
JP2009262157A (en) Rolling method of shape steel having flange
JP2943326B2 (en) Method for manufacturing H-section steel
JPH0481201A (en) Method for hot-rolling shape having flanges
JP4608762B2 (en) Mold for width press and hot rolling method using the same
JP6703306B2 (en) Method for manufacturing H-section steel
JP5929542B2 (en) Rolling method and rolling equipment for channel steel
JP2023039810A (en) Manufacturing method for hat-shaped steel sheet pile
JP2023113156A (en) Method for manufacturing hat-shaped steel sheet pile
JP2023100065A (en) Facility and method for manufacturing hat-shaped steel sheet pile
JP2006289465A (en) Method and apparatus for manufacturing steel plate using universal mill
JP2007245216A (en) Rolling method for t-steel
JPS58128202A (en) Production of deformed shape steel
JPH1128502A (en) Method for rolling channel steel
JPH0813363B2 (en) Method for hot rolling profile with flange
JPS61137601A (en) Hot rolling method of h-beam
JPH0550108A (en) Edger mill for rolling h-shape steel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980145410.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827642

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117003559

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09827642

Country of ref document: EP

Kind code of ref document: A1