WO2010058607A1 - 屋外水の紫外線殺菌装置 - Google Patents

屋外水の紫外線殺菌装置 Download PDF

Info

Publication number
WO2010058607A1
WO2010058607A1 PCT/JP2009/006295 JP2009006295W WO2010058607A1 WO 2010058607 A1 WO2010058607 A1 WO 2010058607A1 JP 2009006295 W JP2009006295 W JP 2009006295W WO 2010058607 A1 WO2010058607 A1 WO 2010058607A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet
outdoor water
uvc
sterilizer
uva
Prior art date
Application number
PCT/JP2009/006295
Other languages
English (en)
French (fr)
Inventor
高橋章
木内陽介
芥川正武
Original Assignee
国立大学法人徳島大学
シルバーメイキング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人徳島大学, シルバーメイキング株式会社 filed Critical 国立大学法人徳島大学
Priority to JP2010539163A priority Critical patent/JPWO2010058607A1/ja
Priority to US13/130,574 priority patent/US8324595B2/en
Priority to EP09827388.1A priority patent/EP2394963B1/en
Publication of WO2010058607A1 publication Critical patent/WO2010058607A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3221Lamps suspended above a water surface or pipe
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3222Units using UV-light emitting diodes [LED]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3225Lamps immersed in an open channel, containing the liquid to be treated
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3227Units with two or more lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to an apparatus for sterilizing outdoor water, such as sewage, pool water, fish culture pond water, etc., which is drained outdoors and irradiated with sunlight.
  • Sterilization is indispensable not only in our daily life but also in industry.
  • chemical sterilization methods such as chlorine, heat sterilization, ultraviolet sterilization, and ozone sterilization are known as sterilization methods.
  • Higher quality sterilization techniques are required from the standpoint of no residue and environmental friendliness. From such a background, a sterilization method using ultraviolet rays (UV), that is, ultraviolet sterilization has been widely used.
  • UV ultraviolet rays
  • UV sterilization unlike sterilization with chemicals, has no residue and is excellent in safety. In addition, since it destroys bacterial DNA, it has the advantage of not creating resistant bacteria unlike drug sterilization.
  • the sterilization mechanism by UV is generally explained as follows. Nucleic acids (DNA) that control genetic information exist in cells of organisms, including bacteria, and when UV is irradiated, the nucleic acids absorb the light, and some pyrimidines (mainly thymines) are pyrimidine dimers. It is said that the transcriptional control from the gene is delayed and the metabolism is disturbed, resulting in death.
  • DNA Nucleic acids
  • pyrimidines mainly thymines
  • Patent Document 1 An apparatus for sterilizing water using ultraviolet rays has been developed.
  • the apparatus described in this publication sterilizes the treated water flowing in the tube with an ultraviolet light source provided outside the tube.
  • the ultraviolet light source is a lamp or a light emitting diode, and sterilizes the treated water of the tube by irradiating it with ultraviolet light.
  • This device can sterilize water without the use of chemicals.
  • UV sterilization inactivates microorganisms by causing damage to intracellular DNA, but when irradiated with sunlight, microorganisms deactivated by UV irradiation are included in the sunlight. In other words, it regains its activity with near-ultraviolet rays or visible rays, and grows.
  • the sterilizing power is reduced due to the light recovery phenomenon.
  • the light recovery phenomenon occurs when light near 400 nm activates a gene repair enzyme (photolyase) to repair the formation of a pyrimidine dimer. Sterilization by ultraviolet light is due to chromosomal damage caused by directly damaging microbial DNA to form pyrimidine dimers. However, when the microorganisms inactivated by ultraviolet rays are irradiated with light of around 400 nm, the gene repair enzyme (photolyase) is activated and the formation of the pyrimidine dimer is repaired, and the microorganisms due to the light recovery phenomenon are recovered. Activation occurs.
  • FIG. 1 is a graph showing that microorganisms sterilized by a light recovery phenomenon grow.
  • the horizontal axis represents time (minutes), and the vertical axis represents the number of E. coli bacteria decreased by sterilization with the number of bacteria before sterilization being 1.
  • This figure shows that UVC ultraviolet light having a main emission peak of 254 nm is irradiated with an intensity of 0.01 mW / cm 2 for about 30 minutes to reduce the number of bacteria to 1/2500, and then the main emission peak is 365 nm.
  • the present invention was developed for the purpose of eliminating the above-mentioned adverse effects, and an important object of the present invention is to prevent an increase in the number of bacteria after sterilization due to a light recovery phenomenon and effectively sterilize with ultraviolet rays. It is to provide an ultraviolet sterilizer for outdoor water that can be used.
  • the ultraviolet sterilizer of the present invention sterilizes the outdoor water 9 by irradiating it with ultraviolet rays.
  • the ultraviolet sterilizer includes an ultraviolet light emitting diode 1 for irradiating UVA ultraviolet light having a main emission peak of 320 nm to 400 nm, and the outdoor water 9 is sterilized by sterilizing the outdoor water 9 with the UVA ultraviolet light emitted by the ultraviolet light emitting diode 1. Bacteria growth due to the light recovery phenomenon of the outdoor water 9 is prevented.
  • the ultraviolet sterilization apparatus described above has the feature that it prevents the increase in the number of bacteria after sterilization due to the light recovery phenomenon, and can effectively sterilize outdoor water irradiated with sunlight with ultraviolet rays.
  • FIG. 2 shows that the ultraviolet sterilization apparatus of the present invention can maintain an effective sterilization state even in a state where it is irradiated with sunlight by suppressing the light recovery phenomenon.
  • This figure shows that UVA ultraviolet light having a main emission peak of 365 nm is irradiated with an ultraviolet light emitting diode at an intensity of 70 mW / cm 2 for 30 minutes to reduce the bacterial count of E.
  • Curves A, B, and C indicate that the number of bacteria changes after sterilizing the number of bacteria to 1/800, and then irradiating with UV intensity of 0.01 mW / cm 2 , 0.09 mW / cm 2 , and 0.30 mW / cm 2. It shows the state to do.
  • the chain line in this figure shows a state in which light is not irradiated after sterilization to 1/800.
  • UVA ultraviolet rays are irradiated to sterilize the E. coli bacteria count to 1/800, and then UVA rays contained in solar rays are irradiated. Proliferation does not occur.
  • the number of bacteria may be further reduced by irradiation with UVA light.
  • FIG. 3 is a graph showing the sterilized state of Vibrio parahaemolyticus. This figure shows that UVC ultraviolet light with a main emission peak of 254 nm is irradiated and sterilized until the number of Vibrio parahaemolyticus bacteria is reduced to about 1/700, and then UVA light of 405 nm contained in sunlight is irradiated.
  • the UVA contained in sunlight It shows a state in which Vibrio parahaemolyticus is increased by irradiation with 405 nm light.
  • Curve A shows the number of bacteria of Vibrio parahaemolyticus sterilized with UVC
  • curve B shows the number of bacteria of Vibrio parahaemolyticus sterilized with UVA UV light.
  • the chain line C is in a state in which the number of bacteria is sterilized to 1/700 with UVC and is not irradiated with light
  • the chain line D is in a state in which the number of bacteria is sterilized with UVA to 1/700 and is not irradiated with light.
  • the number of bacteria in Vibrio parahaemolyticus sterilized with UVC ultraviolet rays increases to 1/50 after 180 minutes due to the light recovery phenomenon. That is, the number of bacteria grows about 10 times or more by the light recovery phenomenon.
  • Vibrio parahaemolyticus sterilized with UVA ultraviolet rays hardly grows after 180 minutes and does not increase bacteria due to the light recovery phenomenon, as in the case where light is not irradiated after sterilization.
  • the above sterilization apparatus also realizes the following incidental features. Since the sterilizer uses UVA ultraviolet light emitting diodes that are close to visible light as ultraviolet rays, effective sterilization can be realized while preventing adverse effects on human eyes. Although conventional UV sterilization uses invisible UV rays, it is necessary to turn off the UV irradiation and stop the UV irradiation when a person is in the area. While checking the sterilization state, it is not necessary to turn on / off even when a person is present, and the sterilization effect can be exhibited by continuously lighting for 24 hours. Moreover, it can be installed without providing a special shielding material even in a place such as a wall that is visible to the human eye.
  • the outdoor water 9 can be any one of sewage, outdoor pool water, and fish culture pond water.
  • the above ultraviolet sterilizers are characterized in that they can be effectively sterilized even when they are exposed to sunlight by draining sewage, outdoor pool water, and fish culture pond water outdoors.
  • an apparatus for sterilizing sewage with ultraviolet rays has an excellent feature that the sterilized sewage is drained into a natural river or sea and does not adversely affect the natural environment like a medicine.
  • outdoor pool water can be effectively sterilized without adding chemicals such as chlorine, and therefore has no phytotoxicity to swimmers and can be used safely and safely.
  • fish farming in order to prevent fish death, a huge amount of antibiotics is added to the feed. Fish cultivated in this state is not preferable for food because antibiotics remain.
  • the sterilization apparatus of the present invention can effectively sterilize fish culture pond water, it can effectively prevent killing caused by fish bacteria. For this reason, the amount of antibiotics added to the bait can be significantly reduced, and the remaining amount of antibiotics can be limited. For this reason, it is possible to cultivate fish that can be eaten safely and safely.
  • the main light emission peak of the ultraviolet light-emitting diode 1 can be 350 nm to 380 nm.
  • the outdoor water ultraviolet sterilizer of the present invention can have a UVC light source 2 that emits UVC ultraviolet light.
  • FIGS. 4 to 6 are graphs showing a state in which the number of bacteria is changed by a light recovery phenomenon after sterilizing sewage with ultraviolet rays. These figures show the state in which the number of bacteria changes by irradiating with 365-nm UVA rays contained in sunlight with an intensity of 0.30 mW / cm 2 after sterilizing with ultraviolet rays, and irradiating the rays after sterilizing. The number of bacteria in the absence is shown by a chain line.
  • FIG. 4 shows a state where the number of bacteria is changed by irradiating UVC ultraviolet light having a main emission peak of 254 nm with an intensity of 0.02 mW / cm 2 by a solid line.
  • the bacteria sterilized with UVC ultraviolet rays are irradiated with sunlight and the number of bacteria rapidly increases. That is, the number of bacteria increases remarkably by the light recovery phenomenon.
  • FIG. 5 irradiates the UVA rays contained in the sun rays after sterilization by irradiating UVA ultraviolet rays having a main emission peak of 365 nm with an intensity of 70 mW / cm 2 . Proliferation due to the light recovery phenomenon of sterilized bacteria does not occur.
  • FIG. 6 the main emission peak and 254 nm, along with ultraviolet UVC to 0.02 mW / cm 2 intensity, the main emission peak and 365 nm, both UVA ultraviolet to strength and 70 mW / cm 2 This shows a state in which the number of bacteria is increased by sterilizing sewage by irradiating with water.
  • the ultraviolet sterilizer for outdoor water of the present invention can make the output of the UVC light source 2 smaller than the output of the ultraviolet light emitting diode 1.
  • the above sterilizer can effectively sterilize the UVC light source by making the output of the UVC light source smaller than the output of the UV light emitting diode, and can effectively sterilize by synergistic effect of the UVC light source and the ultraviolet light emitting diode.
  • the UV sterilizer shown in FIGS. 7 to 10 sterilizes the outdoor water of any one of sewage, outdoor pool water, and fish pond water by irradiating UVA ultraviolet rays.
  • 7 and FIG. 8 is set above the surface of the outdoor water 9 stored in the water tank 10 and irradiates UVA ultraviolet rays toward the outdoor water 9.
  • the ultraviolet sterilizer of FIG. 9 and FIG. 10 has a waterproof structure and is disposed in the liquid of the outdoor water 9 to irradiate the outdoor water 9 with ultraviolet rays.
  • an ultraviolet light emitting diode 1 that irradiates UVA ultraviolet rays is provided on the outer case 3.
  • 8 and 10 includes a UVC light source 2 that emits UVC ultraviolet light in addition to the ultraviolet light-emitting diode 1 in the exterior case 3.
  • the outer case 3 is provided with a reflective layer 4 that reflects ultraviolet rays on the inner surface.
  • the exterior case 3 shown in these figures is provided with a peripheral wall 5 around it, and effectively reflects the ultraviolet rays emitted from the ultraviolet light emitting diode 1 and the UVC light source 2 to irradiate the outdoor water 9.
  • the outer case 3 containing the UVC light source 2 prevents UVC ultraviolet rays from leaking outside through the peripheral wall 5.
  • the exterior case 3 incorporates a circuit board 6, and a plurality of ultraviolet light emitting diodes 1 are fixed to the circuit board 6.
  • the circuit board 6 shown in the figure has an elongated plate shape, and a plurality of ultraviolet light-emitting diodes 1 are arranged and fixed on the circuit board 6 in a plurality of rows.
  • the circuit boards 6 are arranged in a plurality of rows to increase the irradiation area of the ultraviolet light emitting diode 1.
  • the exterior case can incorporate a single circuit board, and a plurality of ultraviolet light emitting diodes can be fixed to the circuit board. Further, as shown in the perspective view of FIG. 11, the outer case 3 of FIGS.
  • FIG. 8 and 10 is an elongated plate-like circuit board 6 to which a plurality of ultraviolet light emitting diodes 1 are fixed, and a cylindrical elongated ultraviolet lamp.
  • a certain UVC light source 2 is alternately arranged and incorporated.
  • This structure has a feature that it can irradiate ultraviolet rays uniformly over a wide range from the plurality of ultraviolet light emitting diodes 1 and the UVC light source 2 fixed to the circuit board 6.
  • the opening of the outer case 3 is closed with a light-transmitting plate 7 in order to have a waterproof structure.
  • the translucent plate 7 is fixed to the outer case 3 with a waterproof member (not shown) such as packing interposed at the boundary with the end surface of the peripheral wall 5 in order to close the opening edge of the outer case 3 in a watertight manner.
  • the translucent plate 7 transmits the ultraviolet rays emitted from the ultraviolet light emitting diode 1 and the UVC light source 2 built in the outer case 3 and irradiates the outside. Therefore, quartz glass excellent in ultraviolet transmittance is used for the translucent plate 7.
  • quartz glass excellent in ultraviolet transmittance is used for the translucent plate 7.
  • calcium fluoride, magnesium fluoride, or the like can be used for the translucent plate.
  • the outer case 3 described above has a box-like container shape as a whole, and a circuit board 6 to which a plurality of ultraviolet light-emitting diodes 1 are fixed is disposed, or a plurality of ultraviolet light-emitting diodes 1 are fixed.
  • the circuit board 6 and the UVC light source 2 are arranged.
  • the ultraviolet sterilizer of the present invention does not specify the shape of the outer case or the arrangement of the ultraviolet light emitting diode and the UVC light source as the above structure.
  • the ultraviolet sterilization apparatus attaches a plurality of ultraviolet light emitting diodes side by side to the surface and / or the back surface of an attachment member having a flat shape, a rod shape, a cylinder shape, a box shape, a spherical shape, or an arbitrary shape.
  • ultraviolet rays emitted from the ultraviolet light-emitting diode can be emitted to the surroundings according to the shape of the mounting member, and can be irradiated to outdoor water.
  • the ultraviolet sterilizer of FIGS. 12 and 13 has a cylindrical outer case 23 coaxially piped with a translucent transfer tube 25 and a plurality of ultraviolet light emitting diodes 1 built in the outer case 23.
  • the UV light of UVA is irradiated from these ultraviolet light emitting diodes 1 to the transfer tube 25 to sterilize the outdoor water 9 transferred by the transfer tube 25.
  • this ultraviolet sterilizer transfers outdoor water 9 to a transfer pipe 25 through a circulator 28 such as a pump, and irradiates the outdoor water 9 passing through the transfer pipe 25 with ultraviolet rays. Sterilize the water 9.
  • the cylindrical outer case 23 is provided with a reflective layer 24 on the inner surface.
  • the transfer tube 25 is a cylindrical pipe and is made of quartz glass so that it can efficiently transmit ultraviolet rays emitted from the ultraviolet light emitting diode 1.
  • the plurality of ultraviolet light emitting diodes 1 are fixed to a circuit board 26 as an attachment member, and the circuit board 26 is fixed to the inside of a cylindrical outer case 23 at equal intervals.
  • the ultraviolet sterilization apparatus shown in the drawing is disposed inside the outer case 23, and the UVC light source 2 is disposed between the plurality of circuit boards 6. This ultraviolet sterilizer can irradiate UVA ultraviolet rays from the ultraviolet light emitting diode 1 and UVC ultraviolet rays simultaneously from the UVC light source 2 and sterilize the outdoor water 9 transferred by the transfer pipe 25 more effectively.
  • the ultraviolet sterilizer shown in FIGS. 14 and 15 has a plurality of ultraviolet light emitting diodes in a transparent container 33 that has a hermetic and waterproof property against water and transmits ultraviolet rays emitted from the ultraviolet light emitting diodes 1. 1 is built-in. As shown in FIG. 14, this ultraviolet sterilizer is disposed in a solution of outdoor water 9 and sterilizes by irradiating the outdoor water 9 with ultraviolet rays.
  • the container 33 has a cylindrical shape whose bottom is closed, and its upper opening is water-tightly closed with a lid 35.
  • the container 33 is made of quartz glass so that the ultraviolet rays emitted from the ultraviolet light emitting diode 1 can be efficiently transmitted.
  • the plurality of ultraviolet light emitting diodes 1 are arranged in the container 33 in a posture in which the irradiation direction is the outside, and have a structure that radiates ultraviolet rays emitted from the ultraviolet light emitting diodes 1 in all directions.
  • the ultraviolet sterilizer of FIG. 15 fixes a plurality of ultraviolet light emitting diodes 1 to the outer peripheral surface of a fixed cylinder 36 as an attachment member at a predetermined interval, and the fixed cylinder 36 is coaxial with the inside of a cylindrical container 33. Is arranged.
  • the illustrated fixed cylinder 36 is provided with a reflective layer 34 on the outer peripheral surface, and effectively reflects ultraviolet rays to irradiate the outdoor water 9.
  • the ultraviolet sterilization apparatus having this structure is small and has a feature that a sterilization effect can be realized in a wide range. Further, as shown by the chain line in the figure, the ultraviolet sterilizer disposes the UVC light source 2 on the outside of the fixed cylinder 36 and irradiates the UVA ultraviolet rays and the UVC ultraviolet rays, so that the outdoor water 9 is more effectively used. It can also be sterilized.
  • the ultraviolet light emitting diode 1 emits UVA ultraviolet light having a main light emission peak in a wavelength range of 320 nm to 400 nm. More preferably, the main emission peak of ultraviolet rays emitted from the ultraviolet light emitting diode 1 is 350 to 380 nm, which is an even narrower wavelength range.
  • the ultraviolet light emitting diode 1 having the main light emission peak in these wavelength regions is realized by a gallium nitride compound semiconductor light emitting element.
  • the ultraviolet light emitting diode 1 irradiates light including a boundary region between visible light and near ultraviolet light. This is because visible light is in a wavelength region of 380 nm or more.
  • the output of the ultraviolet light-emitting diode 1, the radiation intensity on the center line away 1cm from the tip for example 10 mW / cm 2 or more, preferably 50 mW / cm 2 or more, further preferably 60 mW / cm 2 or more.
  • the UVC light source 2 is an ultraviolet lamp that emits UVC ultraviolet light in a wavelength range of less than 280 nm.
  • the UVC light source 2 shown in the drawing uses a cylindrical elongated lamp as the most general ultraviolet lamp.
  • the ultraviolet sterilization apparatus provided with the UVC light source 2 has a synergistic effect by irradiating UVC ultraviolet rays from the UVC light source 2 in addition to sterilization by irradiating UVA ultraviolet rays from the ultraviolet light emitting diodes 1.
  • UVC ultraviolet rays are effectively applied to UVC and UVA while suppressing the light recovery phenomenon by irradiating the ultraviolet light emitting diode 1 with UVA ultraviolet rays, thereby realizing more effective sterilization.
  • the output of the UVC light source 2 can be made smaller than the output of the ultraviolet light emitting diode 1.
  • the output of the UVC light source 2 is, for example, 1 ⁇ W / cm 2 or more, preferably 5 ⁇ W / cm 2 or more, and more preferably 10 ⁇ W / cm 2 or more.
  • UV light-emitting diodes and UVC light sources can be reflected and indirectly irradiated to the outdoor water without directly irradiating the ultraviolet light toward the outdoor water.
  • the photocatalyst can be irradiated with a part of the ultraviolet rays emitted from the ultraviolet light emitting diode or the UVC light source, and sterilized by a synergistic effect with the photocatalyst.
  • a wavelength conversion material such as a phosphor can be irradiated with a part of the ultraviolet rays, and the wavelength of the ultraviolet rays can be converted with the wavelength conversion material.
  • the ultraviolet sterilizer of the present invention can activate a photocatalyst with ultraviolet rays emitted from an ultraviolet light-emitting diode or a UVC light source, and can use a synergistic effect of ultraviolet rays and active oxygen when used together with the photocatalyst.
  • a photocatalyst when used in combination, the dispersion and deterioration of the catalyst performance, as well as material costs and processing costs increase. Therefore, effective sterilization can be realized by irradiating the outdoor water with the ultraviolet rays emitted from the ultraviolet light emitting diode or the UVC light source as efficiently as possible without using a photocatalyst or a wavelength conversion material.
  • FIG. 16 shows the survival rate by single or combined irradiation using UVA and UVC.
  • this figure shows the state in which the viability of Vibrio parahaemolyticus changes when UVA and UVC are irradiated, that is, the Vibrio parahaemolyticus is sterilized by UVA and UVC irradiation against the number of Vibrio parahaemolyticus that are not irradiated with UVA and UVC.
  • the ratio at which the number of bacteria is reduced is shown as the survival rate.
  • UVA is irradiated for 6 minutes and the integrated light amount is 36 J / cm 2
  • UVC is irradiated for 6 minutes and the integrated light amount is 0.024 J / cm 2 .
  • the Vibrio parahaemolyticus is sterilized to about 1/5 with respect to the state not irradiated with UVA alone.
  • Vibrio parahaemolyticus is sterilized to about 1/10 with respect to irradiation that is not irradiated.
  • the state of irradiating UVC after irradiating UVA it is sterilized to about 1/46 with respect to the state not irradiated, and sterilized to about 1/21 in the state of irradiating UVA after irradiating UVC.
  • the germicidal effect is synergistically enhanced by irradiating UVA and UVC at the same time by sterilizing to about 1/130 of the state not irradiating. Becomes clear.
  • FIG. 17 is a graph showing that the sterilizing effect of Vibrio parahaemolyticus is improved by increasing the integrated amount of light irradiated with UVA.
  • UVC is irradiated for 6 minutes
  • the integrated light quantity is set to a constant 0.024 J / cm 2
  • the UVA irradiation intensity is set to 100 mW / cm 2
  • the irradiation time is changed to change the integrated light quantity from 0 to It shows the survival rate in which the Vibrio parahaemolyticus is sterilized and the number of bacteria is reduced in a state of changing to 100 J / cm 2 .
  • This figure shows the ratio at which the number of bacteria is reduced by sterilizing Vibrio parahaemolyticus by irradiating UVA and UVC with respect to the number of bacteria of Vibrio parahaemolyticus not irradiated with UVA and UVC.
  • the bactericidal effect by UVA and UVC simultaneous irradiation is remarkably enhanced by increasing the cumulative amount of UVA.
  • the survival rate in the state that the survival rates of about 1 / 10,36J / cm 2 in a state that the integrated light amount of UVA and 25 J / cm 2 is in a state to be about 1 / 100,90J / cm 2 The survival rate is about 1 / 50,000 and the bactericidal effect is extremely strong.
  • the integrated light quantity of UVC and 0.024J / cm 2 in the state in which the 25 J / cm 2 the integrated light quantity of UVA UVA / UVC is about 1000 times, the integrated light quantity of UVA 36J / cm
  • the UVA / UVC in the state of 2 is 1500 times
  • the UVA / UVC in the state of 90 J / cm 2 in the state where the UVA integrated light amount is 3750 times the UVA integrated light amount is 500 times or more of the UVC integrated light amount.
  • the sterilization effect can be remarkably improved by irradiating both UVA and UVC by setting it to 1000 times or more, more preferably 1500 times or more.
  • the ratio of the integrated light quantity of UVA / UVC is the ratio of the irradiation intensity of UVA / UVC in an apparatus that irradiates UVA and UVC simultaneously.
  • FIG. 18 shows the bactericidal effect using titanium oxide as a photocatalyst and UVA in combination.
  • this figure shows the rate at which the number of Vibrio parahaemolyticus decreases when 200 ⁇ l of Vibrio parahaemolyticus is placed in a 96-well plate at a concentration of 10 6 / ml, that is, the survival rate. .
  • the bottom of the well is coated with 0.5 cm 2 of titanium oxide.
  • the survival rate of irradiation with only UVA is about 1/5
  • the survival rate of only titanium oxide is about 1/2
  • the survival rate when UVA is irradiated to titanium oxide is about 1/6. From this figure, it is clear that the synergistic effect of sterilization of titanium oxide and UVA is very weak.
  • a plurality of ultraviolet light emitting diodes 1 are arranged in a predetermined arrangement in the outer case 3.
  • the plurality of ultraviolet light emitting diodes 1 are fixed to the inside of the outer case 3 through the circuit board 6 so as to face downward.
  • the ultraviolet light-emitting diode 1 (manufactured by Nichia Corporation) has a main emission peak wavelength of 365 nm, an emission spectrum half-width of 10 nm, and an optical output of 100 mW.
  • the plurality of ultraviolet light emitting diodes 1 are connected in series and in parallel to a power source (PAS40-9 manufactured by Kikusui Electronics Co., Ltd.).
  • the power source is a DC stabilized power source that stabilizes the output.
  • This power supply is used in a constant current mode in which a current is applied at a rated current of 500 mA where the light output of the ultraviolet light emitting diode 1 is 100 mW.
  • LB medium is used for culture of bacteria.
  • a method for preparing a liquid medium and an agar medium (LB plate) will be described below.
  • -Composition of LB medium tryptone 1% 10 g / l yeast extract 0.5% 5g / l NaCl 1% 10g / l
  • agar is added to this so that it may become 1.5% (W / V).
  • LB medium is dissolved in deionized water and then sterilized (121 ° C., 20 minutes) in an autoclave.
  • a stirrer bar For the agar medium, add a stirrer bar, stir uniformly with a stirrer after autoclaving, and cool to about 65 ° C. Dispense an appropriate amount into a 10 cm disposable plastic petri dish (Eiken Equipment Co., Ltd.) Set to solidify.
  • a non-pathogenic Escherichia coli DH5 ⁇ strain is used as an indicator for outdoor water to be sterilized.
  • the Escherichia coli is cultured for 16 hours in a 37 ° C. shaking incubator using 5 ml of LB medium.
  • Method for adjusting the number of bacteria In the experiment, a plate culture method is used to measure the number of bacteria. This is to count the number of colonies produced by smearing and culturing a certain amount of bacterial solution on an agar medium. A colony is a group of the same bacteria, and one cell cannot be seen with the naked eye, but the colony can be confirmed with the naked eye. To adjust the number of bacteria, first measure the approximate number of bacteria with a spectrophotometer, and then perform serial dilution.
  • Spectrophotometer Assume that the intensity of light having a certain wavelength changes from I 0 (intensity of incident light) to I (intensity of transmitted light) while passing through a solution layer of a substance. In this case, the ratio of I to I 0 (I / I 0) the permeability; says (t Transmittance), those representing the permeability in percentage transmittance; say (T percent transmittance). Optical density (OD) is the common logarithm of the inverse of transmission.
  • 100 ⁇ l of the sample stock solution is mixed with 900 ⁇ l of PBS to make a 10-fold diluted solution, and further 100 ⁇ l of 10-fold diluted solution is mixed with 900 ⁇ l of PBS to make a 100-fold diluted solution.
  • dilution was carried out sequentially to adjust up to 6 levels.
  • the bacterial solution diluted 10 5 times or 10 6 times is suitable for the measurement of the number of bacteria before UV irradiation, so 100 ⁇ l of each was dropped onto the LB plate, smeared evenly with a large stick, and 37 ° C. Incubate for 16 hours. Thereafter, the number of colonies appearing on the LB agar medium is measured. To count the number of colonies, count all colonies with the naked eye from the back of the petri dish. The number of bacteria is obtained by multiplying the number of colonies of each dilution factor by the dilution factor and averaging. The number of bacteria in the bacterial solution is adjusted to be, for example, 5 ⁇ 10 9 cells / ml.
  • Sterilization step 200 ⁇ l of the bacterial solution prepared by the above-described adjustment method is placed in a sterilized well plate (Becton Dickinson Labware). There are about 10 9 E. coli in 200 ⁇ l of this bacterial solution.
  • the bacterial solution is irradiated with UVA ultraviolet light having a main emission peak of 365 nm with the ultraviolet light emitting diode 1 at an intensity of 70 mW / cm 2 for 30 minutes.
  • the UVA irradiation in this step is performed in order to sterilize Escherichia coli, which is the indicator bacterium. The number of bacteria after UV irradiation is measured.
  • UVA rays contained in solar rays having a main light emission peak of 365 nm were changed to 0.01 mW / cm 2 , 0.09 mW / cm 2 , and 0.30 mW / cm 2 .
  • Irradiate in steps of UV intensity The UVA irradiation in this step is performed to measure the change in the number of bacteria due to the light recovery phenomenon after sterilization. For irradiation at each ultraviolet intensity, the number of bacteria after 30 minutes, 60 minutes, 120 minutes and 180 minutes has been measured.
  • the number of bacteria of E. coli that decreases by ultraviolet irradiation is shown as a ratio, where the number of bacteria before ultraviolet irradiation (before sterilization) is 1.
  • FIG. 1 shows that the bacteria count of E. coli is reduced to about 1/800 by the sterilization process in which UVA ultraviolet light having a main emission peak of 365 nm is irradiated at an intensity of 70 mW / cm 2 for 30 minutes, and then in the light recovery process, A state in which the number of bacteria is changed by irradiating with UVA light contained in sunlight is shown.
  • curves A, B, and C show the state in which the number of bacteria changes with the intensity of ultraviolet rays irradiated after sterilization being 0.01 mW / cm 2 , 0.09 mW / cm 2 , and 0.30 mW / cm 2. Yes.
  • the chain line in the figure shows the change in the number of bacteria in a state where the UVA light contained in the sunlight is not irradiated.
  • UVA ultraviolet rays are irradiated to sterilize the number of E. coli bacteria to 1/800, and then UVA rays contained in sunlight are irradiated with various ultraviolet intensities.
  • curve C the number of bacteria may be further reduced by irradiation with UVA light.
  • Vibrio parahaemolyticus is used in place of non-pathogenic Escherichia coli as an indicator bacterium for outdoor water to be sterilized, and the UV intensity of the UVA light contained in the sunlight irradiated in the light recovery process after the sterilization process is 0.30 mW.
  • the change in the number of bacteria is measured in the same manner as in Example 1 except that / cm 2 is used.
  • FIG. This figure shows that the number of bacteria of Vibrio parahaemolyticus is reduced to about 1/700 by the sterilization process in which UVA ultraviolet light having a main emission peak of 365 nm is irradiated at an intensity of 70 mW / cm 2. It shows a state in which the number of bacteria of Vibrio parahaemolyticus changes by irradiating with 365 nm UVA light contained in the light.
  • the curve B shows a state in which the number of bacteria is changed with the ultraviolet ray intensity irradiated in the light recovery step being 0.30 mW / cm 2
  • the chain line D in the figure does not irradiate the UVA rays contained in the sunlight. It shows the change in the number of bacteria in the state.
  • an exterior case 3 having a plurality of ultraviolet light emitting diodes 1 and a UVC light source 2 is used, and sewage is used as outdoor water to be sterilized.
  • UVA ultraviolet light having a main emission peak of 365 nm is irradiated with the ultraviolet light emitting diode 1 at an intensity of 70 mW / cm 2 for 15 minutes to sterilize.
  • UVA light contained in sunlight with a main emission peak of 365 nm is irradiated at an ultraviolet intensity of 0.30 mW / cm 2 and the number of bacteria after 180 minutes is measured. .
  • FIG. This figure shows a state in which the number of bacteria contained in the sewage is reduced to about 1/20 by the sterilization process, and then the number of bacteria is changed in the light recovery process.
  • the solid line in the figure shows a state in which the number of bacteria is changed by irradiating UVA light contained in sunlight in the light recovery process, and the chain line in the figure shows a state in which UVA light contained in sunlight is not irradiated. It shows changes in the number of bacteria.
  • the main emission peak as 254 nm, the ultraviolet UVC that the strength and 0.02 mW / cm 2 was irradiated from the UVC light source 2, a primary emission peak as 365 nm, UVA ultraviolet to strength and 70 mW / cm 2 Is measured in the same manner as in Example 3, except that both UVC ultraviolet rays and UVA ultraviolet rays are irradiated together for 15 minutes to sterilize the sewage.
  • FIG. This figure shows a state in which the number of bacteria contained in the sewage is reduced to about 1/5000 by the sterilization process, and then the number of bacteria is changed in the light recovery process.
  • the solid line in the figure shows a state in which the number of bacteria is changed by irradiating UVA light contained in sunlight with an ultraviolet intensity of 0.30 mW / cm 2 in the light recovery process. The change of the number of bacteria in the state which does not irradiate the UVA light contained is shown.
  • Example 1 In the sterilization step, the change in the number of bacteria is measured in the same manner as in Example 2 except that UVC ultraviolet light having a main emission peak of 254 nm is irradiated at an intensity of 70 mW / cm 2 .
  • Curve A in FIG. 3 shows a state in which the number of bacteria is changed by irradiating UVA rays contained in sunlight with an ultraviolet intensity of 0.30 mW / cm 2 in the light recovery process after sterilization by UVC ultraviolet rays.
  • the chain line C in the figure shows the change in the number of bacteria in a state where the UVA light contained in the sunlight is not irradiated.
  • UVC ultraviolet rays are irradiated to sterilize Vibrio parahaemolyticus to 1/700
  • UVA rays contained in sunlight are then irradiated.
  • the number of bacteria increases to 1/50 after 180 minutes due to the light recovery phenomenon. That is, it can be seen that the number of bacteria grows about 10 times or more by the light recovery phenomenon.
  • Example 2 In the sterilization step, the change in the number of bacteria is measured in the same manner as in Example 3 except that UVC ultraviolet light having a main emission peak of 254 nm is irradiated at an intensity of 70 mW / cm 2 .
  • the solid line in FIG. 4 shows a state in which the number of bacteria is changed by irradiating UVA light contained in sunlight with an ultraviolet intensity of 0.30 mW / cm 2 in the light recovery process after sterilization by UVC ultraviolet rays.
  • the chain line in the figure shows the change in the number of bacteria in a state where the UVA light contained in the sunlight is not irradiated.
  • UVC ultraviolet rays are irradiated to sterilize until the number of bacteria contained in the sewage is reduced to 1/800, and then UVA rays contained in sunlight are irradiated.
  • the number of bacteria increases to 1/50 after 180 minutes due to the light recovery phenomenon. That is, it can be seen that the number of bacteria grows about 10 times or more by the light recovery phenomenon.
  • the present invention can be used in various fields such as sterilizing outdoor water with ultraviolet rays, such as sewage, pool water, and fish culture pond water.
  • FIG. 8 It is a schematic sectional drawing which shows the use condition of the ultraviolet sterilizer concerning the other Example of this invention. It is a perspective view which shows the internal structure of the ultraviolet sterilizer shown in FIG. 8 and FIG. It is a schematic sectional drawing which shows the use condition of the ultraviolet sterilizer concerning the other Example of this invention. It is an expanded horizontal sectional view which shows the internal structure of the ultraviolet sterilizer shown in FIG. It is a schematic sectional drawing which shows the use condition of the ultraviolet sterilizer concerning the other Example of this invention. It is an expanded cross-sectional view which shows the internal structure of the ultraviolet sterilizer shown in FIG. It is a graph which shows the survival rate of the bacteria by single and combined irradiation using UVA and UVC.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Toxicology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Health & Medical Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physical Water Treatments (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

【課題】光回復現象による、殺菌後における細菌数の増加を防止して、紫外線で効果的に屋外水を殺菌する。 【解決手段】紫外線殺菌装置は、屋外水9に紫外線を照射して殺菌する。紫外線殺菌装置は、主発光ピークを320nmないし400nmとするUVAの紫外線を照射する紫外線発光ダイオード1を備え、この紫外線発光ダイオード1が照射するUVAの紫外線で屋外水9を殺菌して、殺菌された屋外水9の光回復現象による細菌の増殖を防止している。

Description

屋外水の紫外線殺菌装置
 本発明は、主として汚水、プール水、魚の養殖池水などのように屋外に排水されて太陽光線に照射される屋外水を紫外線で殺菌する装置に関する。
 殺菌は、我々の日常生活のみならず産業上でも必要不可欠である。一般に、殺菌方法としては、塩素などによる薬剤殺菌、加熱殺菌、紫外線殺菌、オゾン殺菌などが知られているが、薬剤による弊害や環境意識の高まりから、殺菌する対象物が変質しないこと、不要な残留物がないこと、環境に優しいことなどの観点から、より質の高い殺菌技術が求められている。このような背景から、紫外線(UV)を用いた殺菌方法、すなわち紫外線殺菌が広く用いられるようになってきている。
 UVによる殺菌は、薬剤による殺菌と異なり、残留するものがなく、安全性において優れている。また、細菌のDNAを破壊することから、薬剤殺菌と違い耐性菌を作らないという利点もある。UVによる殺菌機構については、一般に次の説明がされている。細菌をはじめ、生物の細胞内には遺伝情報をつかさどる核酸(DNA)が存在し、UVが照射されると核酸はその光を吸収し、一部のピリミジン(主にチミン)がピリミジン2量体を形成するため、遺伝子からの転写制御が滞り新陳代謝に支障をきたし死に至るとされる。
 紫外線を利用して水を殺菌する装置は開発されている。(特許文献1参照)
 この公報に記載される装置は、チューブ内を流れる処理水を、チューブの外側に設けている紫外線光源で殺菌する。紫外線光源はランプや発光ダイオードで、チューブの処理水に紫外線を照射して殺菌する。この装置は、薬剤を使用しないで水を殺菌できる。ただ、紫外線殺菌は、細胞内のDNAに損傷を超して微生物を不活性化するものであるが、太陽光線に照射されると、紫外線照射によって不活性化された微生物が、太陽光線に含まれる近紫外光線や可視光線で活性を取り戻して増殖する、すなわち光回復現象による殺菌力の低下がおこる。光回復現象は、400nm付近の光が遺伝子修復酵素(photolyase)を活性化して、ピリミジン2量体の形成を修復することで起こる。紫外線による殺菌は、直接に微生物のDNAを傷害してピリミジン2量体を形成することにより引き起こされる染色体の傷害による。ところが、紫外線で不活性化された微生物に、400nm付近の光が照射されると、遺伝子修復酵素(photolyase)が活性化されて、ピリミジン2量体の形成が修復されて光回復現象による微生物の活性化が起こる。
 図1は、光回復現象によって殺菌された微生物が増殖することを示すグラフである。この図の横軸は時間(分)、縦軸は殺菌前の細菌数を1として殺菌によって減少する大腸菌の細菌数を示している。この図は、主発光ピークを254nmとするUVCの紫外線を、0.01mW/cmの強度で約30分照射して、細菌数を1/2500に減少し、その後、主発光ピークを365nmとするUVAの光線を0.30mW/cmの強度で照射して細菌数が増加する状態を示している。この図から明らかなように、UVCの紫外線を照射した後、太陽光線に含まれるUVAの光線を照射すると、光回復現象によって、約180分後には、1/2500になるまで殺菌されていた大腸菌が、その細菌数が1/20まで増加する。この図の鎖線は、細菌数を1/2500となるまで殺菌した後、光線を照射しない状態であって、細菌数が増加しない状態を示している。この図から、光回復現象によって、殺菌されていた大腸菌は100倍以上にも増殖する。
特開2008-136940号公報
 本発明は、以上の弊害を解消することを目的として開発されたもので、本発明の大切な目的は、光回復現象による殺菌後における細菌数の増加を防止して、紫外線で効果的に殺菌できる屋外水の紫外線殺菌装置を提供することにある。
課題を解決するための手段及び発明の効果
 本発明の紫外線殺菌装置は、屋外水9に紫外線を照射して殺菌する。紫外線殺菌装置は、主発光ピークを320nmないし400nmとするUVAの紫外線を照射する紫外線発光ダイオード1を備え、この紫外線発光ダイオード1が照射するUVAの紫外線で屋外水9を殺菌して、殺菌された屋外水9の光回復現象による細菌の増殖を防止している。
 以上の紫外線殺菌装置は、光回復現象による殺菌後における細菌数の増加を防止して、紫外線でもって太陽光線に照射される屋外水を効果的に殺菌できる特徴がある。図2は、本発明の紫外線殺菌装置が光回復現象を抑制することで、太陽光線に照射される状態においても効果的な殺菌状態を保持できることを示している。この図は、主発光ピークを365nmとするUVAの紫外線を紫外線発光ダイオードでもって70mW/cmの強度で30分照射して、大腸菌の細菌数を約1/800に減少し、その後、さらに主発光ピークを365nmとする、太陽光線に含まれるUVAの光線を照射して細菌数が変化する状態を示している。曲線A、B、Cは、細菌数を1/800に殺菌した後、照射する紫外線強度を0.01mW/cm、0.09mW/cm、0.30mW/cmとして、細菌数が変化する状態を示している。この図の鎖線は、1/800まで殺菌した後、光線を照射しない状態を示している。この図から明らかなように、UVAの紫外線を照射して大腸菌の細菌数を1/800とするまで殺菌した後、太陽光線に含まれるUVAの光線を照射しても、光回復現象による大腸菌の増殖は起こらない。さらに、UVAの光線を照射することでさらに細菌数が減少することもある。
 さらに、図3は、腸炎ビブリオの殺菌状態を示すグラフである。この図は、主発光ピークを254nmとするUVCの紫外線を照射して、腸炎ビブリオの細菌数が約1/700に減少するまで殺菌した後、太陽光線に含まれるUVAの405nmの光線を照射して、腸炎ビブリオが増加する状態と、主発光ピークを365nmとするUVAの紫外線を照射して、腸炎ビブリオの細菌数が約1/700に減少するまで殺菌した後、太陽光線に含まれるUVAの405nmの光線を照射して、腸炎ビブリオが増加する状態とを示している。曲線AはUVCで殺菌された腸炎ビブリオの細菌数を示し、曲線BはUVAの紫外線で殺菌された腸炎ビブリオの細菌数を示している。さらに、鎖線Cは、UVCで細菌数を1/700まで殺菌した後、光線を照射しない状態を、また、鎖線Dは、UVAで細菌数を1/700まで殺菌した後、光線を照射しない状態をそれぞれ示している。この図の曲線Aから明らかなように、UVCの紫外線で殺菌された腸炎ビブリオは、光回復現象によって、180分後には細菌数が1/50に増加する。すなわち、光回復現象によって細菌数が約10倍以上に増殖する。これに対して、UVAの紫外線で殺菌された腸炎ビブリオは、殺菌後に光線を照射しない状態と同じように、180分経過後もほとんど増殖せず光回復現象による細菌の増加は起こらない。
 さらに、以上の殺菌装置は、以下の付随的な特徴も実現する。殺菌装置が、紫外線としては可視光線に近いUVAの紫外線発光ダイオードを使用するので、人の目に与える悪影響を防止しながら効果的な殺菌が実現できる。従来の紫外線殺菌は、見えない紫外線を使用するにもかかわらず、人がエリア内に居る場合には消灯して紫外線照射を停止する必要があったが、本発明の紫外線殺菌装置は、目で殺菌状態を確認しながら、人が居る場合もオン・オフの必要がなく、24時間連続点灯して殺菌効果を発揮することができる。また、壁などの人の目に付く場所でも、特別な遮蔽材を設けることなく設置することができる。
 本発明の屋外水の紫外線殺菌装置は、屋外水9を、汚水、屋外プール水、魚の養殖池水のいずれかとすることができる。
 以上の紫外線殺菌装置は、汚水、屋外プール水、魚の養殖池水を屋外に排水して、太陽光線に照射される状態となっても効果的な殺菌状態にできる特徴がある。とくに、汚水を紫外線で殺菌する装置は、殺菌された汚水を自然の河川や海に排水して、薬剤のように自然環境を悪い影響を与えることがない優れた特徴がある。また、屋外プール水にあっては、塩素などの薬剤を添加することなく効果的に殺菌できるので、スイマーに対する薬害が全くなく、安心して安全に使用できる特徴がある。さらに、魚の養殖にあっては、魚の死滅を防止するために、膨大な量の抗生物質を餌に添加して使用している。この状態で養殖された魚は抗生物質が残存することから食用として決して好ましい状態でない。本発明の殺菌装置は、魚の養殖池水を効果的に殺菌できることから、魚の細菌に起因する死滅を効果的に防止できる。このため、餌に添加する抗生物質量を著しく減少し、抗生物質の残存量を極限できる。このため、安全で安心して食べることができる魚を養殖できる。
 本発明の屋外水の紫外線殺菌装置は、紫外線発光ダイオード1の主発光ピークを350nmないし380nmとすることができる。
 さらに、本発明の屋外水の紫外線殺菌装置は、紫外線発光ダイオード1に加えて、UVCの紫外線を放射するUVC光源2を有することができる。
 図4ないし図6は、汚水を紫外線殺菌して、光回復現象によって細菌数が変化する状態を示すグラフである。これらの図は、紫外線殺菌した後、太陽光線に含まれる365nmのUVAの光線を0.30mW/cmの強度で照射して細菌数が変化する状態を実線で示し、殺菌した後に光線を照射しない状態での細菌数を鎖線で示している。
 図4は、主発光ピークを254nmとするUVCの紫外線を0.02mW/cmの強度で照射して細菌数が変化する状態を実線で示している。この図から明らかなようにUVCの紫外線で殺菌された細菌は、UVCの紫外線の照射を停止して太陽光線に照射されて細菌数が急激に増加する。すなわち光回復現象によって細菌数は著しく増加する。
 これに対して、図5は、主発光ピークを365nmとするUVAの紫外線を70mW/cmの強度で照射して殺菌した後、太陽光線に含まれるUVAの光線を照射するものであるが、殺菌された細菌の光回復現象による増殖は起こらない。さらに、図6は、主発光ピークを254nmとし、強度を0.02mW/cmとするUVCの紫外線と、主発光ピークを365nmとし、強度を70mW/cmとするUVAの紫外線の両方を一緒に照射して汚水を殺菌して細菌数が増加する状態を示している。この図から、UVCとUVAの両方の紫外線を照射することで、細菌数を約1/5000と極めて効果的な殺菌が実現できることに加えて、UVCとUVAの紫外線で効果的に殺菌したにもかかわらず、光回復現象による細菌数の増加はほとんど起こらない。すなわち、細菌にはUVCとUVAの紫外線が有効に作用して効果的な殺菌が実現できるにもかかわらず、UVAの紫外線を照射することで光回復現象を理想的な状態に抑制できる。したがって、この殺菌装置は、安価な殺菌ランプや紫外線ランプで効果的に殺菌しながら、同時にUVAの紫外線を照射することで光回復現象による細菌の増殖を抑制できるという理想的な殺菌が実現できる。
 さらに、本発明の屋外水の紫外線殺菌装置は、UVC光源2の出力を紫外線発光ダイオード1の出力よりも小さくすることができる。
 以上の殺菌装置は、UVC光源の出力を紫外線発光ダイオードの出力よりも小さくして、UVC光源と紫外線発光ダイオードの相乗効果で効果的に殺菌できることから、設備コストを低減して極めて効率よく殺菌しながら、光回復現象による殺菌された細菌の増殖を抑制して、効果的な殺菌状態に保持できる特徴がある。
 以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための紫外線殺菌装置を例示するものであって、本発明は紫外線殺菌装置を以下のものに特定しない。さらに、この明細書は、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。
 図7ないし図10に示す紫外線殺菌装置は、汚水、屋外プール水、魚の養殖池水のいずれかの屋外水にUVAの紫外線を照射して殺菌する。図7と図8の紫外線殺菌装置は、水槽10に蓄える屋外水9の水面の上方にセットされて、屋外水9に向かってUVAの紫外線を照射する。図9と図10の紫外線殺菌装置は防水構造で、屋外水9の液中に配置されて屋外水9に紫外線を照射する。図7と図9の紫外線殺菌装置は、外装ケース3に、UVAの紫外線を照射する紫外線発光ダイオード1を設けている。図8と図10の紫外線殺菌装置は、外装ケース3に、紫外線発光ダイオード1に加えてUVCの紫外線を放射するUVC光源2を設けている。
 外装ケース3は、内面で紫外線を反射する反射層4を設けている。これ等の図に示す外装ケース3は、周囲に周壁5を設けて、紫外線発光ダイオード1とUVC光源2から放射される紫外線を効果的に反射して屋外水9に照射している。とくに、UVC光源2を内蔵する外装ケース3は、周壁5でUVCの紫外線が外部に漏れるのを防止する。
 外装ケース3は、回路基板6を内蔵しており、この回路基板6に複数の紫外線発光ダイオード1を固定している。図の回路基板6は細長い板状としており、この回路基板6に複数の紫外線発光ダイオード1を複数列に並べて固定している。図7と図9の外装ケース3は、この回路基板6を複数列に並べて配置して、紫外線発光ダイオード1の照射面積を広くしている。ただ、外装ケースは、1枚の回路基板を内蔵して、この回路基板に複数の紫外線発光ダイオードを固定することもできる。また、図8と図10の外装ケース3は、図11の斜視図に示すように、複数の紫外線発光ダイオード1を固定している細長い板状の回路基板6と、円筒状の細長い紫外線ランプであるUVC光源2とを交互に並べて内蔵している。この構造は、回路基板6に固定した複数の紫外線発光ダイオード1とUVC光源2から、広い範囲にムラなく紫外線を照射できる特徴がある。
 さらに、図9と図10の紫外線殺菌装置は、防水構造とするために、外装ケース3の開口部を透光プレート7で閉塞している。透光プレート7は、外装ケース3の開口縁を水密に閉塞するために、周壁5の端面との境界部分にパッキン等の防水部材(図示せず)を介在させて外装ケース3に固定している。この透光プレート7は、外装ケース3に内蔵される紫外線発光ダイオード1やUVC光源2から照射される紫外線を透過させて外部に照射する。したがって、この透光プレート7には、紫外線の透過率に優れた石英ガラスを使用する。ただ、透光プレートには、フッ化カルシウム、フッ化マグネシウム等も使用できる。
 以上の外装ケース3は、全体の形状を箱形の容器形状として、その内部に、複数の紫外線発光ダイオード1を固定している回路基板6を配置し、あるいは、複数の紫外線発光ダイオード1を固定している回路基板6とUVC光源2とを配置している。ただ、本発明の紫外線殺菌装置は、外装ケースの形状や紫外線発光ダイオード及びUVC光源の配置を以上の構造に特定しない。紫外線殺菌装置は、複数の紫外線発光ダイオードを、平面状、棒状、筒状、箱状、球状もしくは任意の形状の取り付け部材の表面及び/又は裏面に並べて取り付けると共に、この取り付け部材を種々の形状の外装ケースに内蔵して、紫外線発光ダイオードから放射される紫外線を、取り付け部材の形状に応じて周囲に放射して、屋外水に照射することができる。
 図12と図13の紫外線殺菌装置は、円筒状の外装ケース23に、透光性を有する移送管25を同軸に配管すると共に、外装ケース23の内側に複数の紫外線発光ダイオード1を内蔵しており、これらの紫外線発光ダイオード1から移送管25にUVAの紫外線を照射して、移送管25で移送される屋外水9を殺菌する構造としている。この紫外線殺菌装置は、図12に示すように、ポンプ等の循環器28を介して屋外水9を移送管25に移送させると共に、移送管25を通過する屋外水9に紫外線を照射して屋外水9を殺菌する。円筒状の外装ケース23は、図13に示すように、内面に反射層24を設けている。移送管25は、円筒状のパイプで、石英ガラスで製造して、紫外線発光ダイオード1から照射される紫外線を効率よく透過できるようにしている。複数の紫外線発光ダイオード1は、取り付け部材である回路基板26に固定されると共に、この回路基板26を円筒状の外装ケース23の内側に等間隔で固定している。さらに、図に示す紫外線殺菌装置は、外装ケース23の内側であって、複数の回路基板6の間にUVC光源2を配置している。この紫外線殺菌装置は、紫外線発光ダイオード1からUVAの紫外線を、UVC光源2からUVCの紫外線を同時に照射して、移送管25で移送される屋外水9をより効果的に殺菌できる。
 さらに、図14と図15に示す、紫外線殺菌装置は、水に対する密閉性と防水性を備え、かつ紫外線発光ダイオード1から放射される紫外線を透過させる透明性のある容器33に複数の紫外線発光ダイオード1を内蔵している。この紫外線殺菌装置は、図14に示すように、屋外水9の液中に配置して、屋外水9に紫外線を照射して殺菌する。容器33は、底を閉塞してなる円筒状で、上方の開口部を蓋体35で水密に閉塞している。この容器33は、石英ガラスで製造しており、紫外線発光ダイオード1から照射される紫外線を効率よく透過できるようにしている。複数の紫外線発光ダイオード1は、照射方向が外側となる姿勢で容器33内に配置して、紫外線発光ダイオード1から放射される紫外線を四方八方に発散する構造としている。図15の紫外線殺菌装置は、複数の紫外線発光ダイオード1を、取り付け部材である固定筒36の外周面に所定の等間で固定すると共に、この固定筒36を円筒状の容器33の内側に同軸に配置している。図の固定筒36は、外周面に反射層34を設けており、紫外線を効果的に反射して屋外水9に照射している。この構造の紫外線殺菌装置は、小型でかつ広範囲に殺菌効果を実現できる特徴がある。さらに、紫外線殺菌装置は、図の鎖線で示すように、固定筒36の外側に、UVC光源2を配置して、UVAの紫外線とUVCの紫外線を照射して、屋外水9をより効果的に殺菌することもできる。
 紫外線発光ダイオード1は、320nmないし400nmの波長域に主発光ピークを有するUVAの紫外線を放射する。より好ましくは、紫外線発光ダイオード1が放射する紫外線の主発光ピークは、350ないし380nmと、さらに狭い波長域とする。主発光ピークをこれ等の波長領域とする紫外線発光ダイオード1は、窒化ガリウム系化合物半導体発光素子で実現する。この紫外線発光ダイオード1は、可視光線と近紫外線の境界領域を含む光線を照射する。可視光線が380nm以上の波長領域にあるからである。
 さらにまた、紫外線発光ダイオード1の出力は、先端から1cm離れた中心線上の放射強度を、たとえば10mW/cm以上、好ましくは50mW/cm以上、さらに好ましくは60mW/cm以上とする。
 UVC光源2は、280nm未満の波長域にあるUVCの紫外線を放射する紫外線ランプである。図に示すUVC光源2は、最も一般的な紫外線ランプとして、円筒状の細長いランプを使用している。このように、UVC光源2を備える紫外線殺菌装置は、紫外線発光ダイオード1からUVAの紫外線を照射して殺菌することに加えて、UVC光源2からUVCの紫外線を照射することによる相乗効果で、より効果的に殺菌できる。とくに、紫外線発光ダイオード1でUVAの紫外線を照射することで光回復現象を抑制しながら、UVCとUVAの紫外線を有効に作用させて、より効果的な殺菌が実現できる。このUVC光源2の出力は、紫外線発光ダイオード1の出力よりも小さくすることができる。UVC光源2の出力は、たとえば1μW/cm以上、好ましくは5μW/cm以上、さらに好ましくは10μW/cm以上とする。
 紫外線発光ダイオードやUVC光源は、紫外線を直接に屋外水に向かって照射することなく、反射させて間接的に屋外水に向かって照射することもできる。また、紫外線発光ダイオードやUVC光源から放射される紫外線の一部で光触媒を照射し、光触媒との相乗効果で殺菌することもできる。さらに、紫外線の一部で蛍光体等の波長変換材料を照射し、波長変換材料で紫外線を波長変換することもできる。本発明の紫外線殺菌装置は、紫外線発光ダイオードやUVC光源から放射される紫外線で光触媒を活性化することができ、光触媒を併用すると紫外線と活性酸素の相乗効果を利用できる。ただ、光触媒を併用すると、触媒性能のばらつきや劣化、さらには材料費、加工費が増大する。したがって、光触媒や波長変換材料を使用することなく、紫外線発光ダイオードやUVC光源から放射される紫外線をできる限り効率よく屋外水に照射して、効果的な殺菌が実現できる。
 図16は、UVAとUVCを用いた単独・併用照射による生存率を示している。ただし、この図は、UVA、UVCを照射して腸炎ビブリオの生存率が変化する状態、すなわちUVA、UVCを照射しない腸炎ビブリオの菌数に対して、UVA、UVCを照射して腸炎ビブリオが殺菌されて菌数が少なくなる比率を生存率として示している。UVAは6分照射して積算光量を36J/cm、UVCは6分照射して積算光量を0.024J/cmとしている。この図から、UVAのみを照射する状態にあっては、照射されない状態に対して腸炎ビブリオは約1/5に殺菌される。UVCのみを照射する状態にあっては、照射されない照射に対して腸炎ビブリオは約1/10に殺菌される。UVAを照射した後UVCを照射する状態にあっては、照射されない状態に対して約1/46に殺菌され、UVCを照射した後UVAを照射する状態にあっては約1/21に殺菌され、さらにUVAとUVCの両方を同時に照射する状態にあっては、照射しない状態に対して約1/130に殺菌され、UVAとUVCを同時に照射することにより、相乗的に殺菌効果が増強することが明らかとなる。
 図17はUVAを照射する積算光量を増加して、腸炎ビブリオの殺菌効果が向上することを示すグラフである。ただし、この図は、UVCを6分照射してその積算光量を一定の0.024J/cmとし、UVAの照射強度を100mW/cmとし、その照射時間を変更して積算光量を0~100J/cmに変化させる状態で腸炎ビブリオが殺菌されて菌数が減少する生存率を示している。この図は、UVAとUVCを照射しない腸炎ビブリオの菌数に対して、UVAとUVCを照射して腸炎ビブリオが殺菌されて菌数が少なくなる比率を示している。この図から明らかなように、UVAの積算光量を増加することで、UVAとUVC同時照射による殺菌効果は著しく増強される。ちなみに、UVAの積算光量を25J/cmとする状態での生存率は約1/10、36J/cmとする状態での生存率は約1/100、90J/cmとする状態での生存率は約1/50000と極めて殺菌効果が強くなる。
 図17のグラフにおいて、UVCの積算光量を0.024J/cmとするので、UVAの積算光量を25J/cmとする状態ではUVA/UVCは約1000倍、UVAの積算光量を36J/cmとする状態でのUVA/UVCは1500倍、UVAの積算光量を90J/cmとする状態でのUVA/UVCは3750倍であるから、UVAの積算光量をUVCの積算光量の500倍以上、好ましくは1000倍以上、さらに好ましくは1500倍以上とすることで、UVAとUVCの両方を照射して殺菌効果を著しく向上することができる。UVAとUVCの積算光量は、照射強度と照射時間の積であるから、UVAとUVCを同時に照射する装置においては、UVA/UVCの積算光量の比率は、UVA/UVCの照射強度の比率となる。
 さらに、図18は光触媒である酸化チタンとUVAを併用しての殺菌効果を示している。ただし、この図は、96ウエルプレートに200μlの腸炎ビブリオを10/mlの濃度で入れて、UVAとUVCを照射しての腸炎ビブリオの菌数が減少する率、すなわち生存率を示している。この図もウエルの底は0.5cmの酸化チタンコートを行っている。UVAのみの照射における生存率は約1/5、酸化チタンのみの生存率は約1/2、酸化チタンにUVAを照射しての生存率は約1/6となる。この図から、酸化チタンとUVAとの殺菌の相乗効果は非常に弱いことが明白となる。
[紫外線殺菌装置の作製]
 図7に示すように、外装ケース3に複数の紫外線発光ダイオード1を所定の配列で配置する。複数の紫外線発光ダイオード1は真下に向く姿勢で、回路基板6を介して外装ケース3の内部に固定される。紫外線発光ダイオード1(日亜化学工業株式会社製)は、主発光ピーク波長を365nm、発光スペクトルの半値幅を10nm、光出力を100mWとするものである。複数の紫外線発光ダイオード1は、直列と並列に接続して電源(菊水電子工業株式会社製PAS40-9)に接続される。電源は、出力を安定化している直流安定化電源である。この電源は、紫外線発光ダイオード1の光出力を100mWとする定格電流の500mAで通電する定電流モードで使用する。
 以上の紫外線殺菌装置が優れた殺菌効果を有することは、以下の試験で確認される。
[培養液の作成法]
 細菌の培養には、LB培地を用いる。液体培地と寒天培地(LBプレート)の作成方法を次に述べる。 
・LB培地の組成;tryptone      1% 10g/l
         yeast extract  0.5%  5g/l
         NaCl        1% 10g/l
 寒天培地の場合は、これにagarを1.5%(W/V)になるように加える。
 LB培地は、脱イオン水に溶解後、オートクレーブにて滅菌(121℃、20分)する。寒天培地は、スターラーバーを入れておき、オートクレーブ後、スターラーで均一に攪拌し、65℃程度に冷めたら、10cmのディスポーザブルプラスチックシャーレ(栄研器材株式会社)に適量を分注し、水平な所に置いて固化させる。
[本実験の指標菌]
 殺菌される屋外水の指標菌として、非病原性大腸菌DH5α株を使用する。実験で作製した紫外線殺菌装置の大腸菌に対する殺菌効果の検討を行うために、大腸菌はLB培地5mlを用いて、37℃の振盪培養器で16時間培養したものを使用する。
[菌数の調整法]
 実験では、菌数の測定に、平板培養法を用いる。これは、寒天培地上に一定量の菌液を塗抹し培養して生成したコロニー数を数えるというものである。コロニーとは同一の細菌から成る集団のことで、1個の菌体は肉眼では見えないが、コロニーは肉眼で確認できる。菌数の調整には、まず分光光度計でおよその菌数を測定し、その後、段階希釈を行う。
・分光光度計
 ある波長の光がある物質の溶液層を通過する間に、その強さがI(入射光の強さ)からI(透過光の強さ)に変化したとする。このとき、Iに対するIの比(I/I)を透過度(t;transmittance)と言い、透過度を百分率で表したものを透過率(T;percent transmittance)と言う。光学密度(O.D.;optical density)は、透過度の逆数の常用対数である。
T=(I/I)×100、A=-logt=log(I/I)=O.D.
 大腸菌の数を測定するためには、波長600nmの光を用いて計測する。その結果をOD600と書く。
 実験には、菌液を試料として、PBS[phosphate-buffeved saline(リン酸緩衝液)以下PBSという]を対照にOD600を計測する。菌液に希釈液(PBS)を混合し、OD600の値が1.0となるように調整する。OD600=1.0に調整した菌液を原液とし、これをPBSにより10倍まで段階希釈する。試料原液100μlをPBS900μlに混合し、10倍希釈液とし、さらに10倍希釈液100μlをPBS900μlに混合し100倍希釈液とする。同様に順次希釈し6段階まで調整した。
[紫外線殺菌装置が紫外線を照射する前の菌数の測定]
 予備実験により、10倍、10倍に希釈した菌液が紫外線照射前の菌数の測定に適しているので、それぞれを100μlずつLBプレートに滴下し、コンラージ棒でまんべんなく塗抹し、37℃、16時間培養する。その後、LB寒天培地上に出現したコロニー数の測定を行う。コロニー数を数えるには、シャーレの裏側から全てのコロニーを肉眼で数える。菌数は、各希釈倍数のプレートのコロニー数にその希釈倍数を乗じ、平均して求める。菌液中の菌数は、例えば、5×10個/mlとなるように調整する。
[紫外線殺菌装置から紫外線を照射]
(1) 殺菌工程
 前述した調整法にて調整した菌液を、滅菌済ウェルプレート(BectonDickinson Labware)に200μl入れる。この菌液200μl中には、約10個の大腸菌が存在する。この菌液に、主発光ピークを365nmとするUVAの紫外線を紫外線発光ダイオード1でもって70mW/cmの強度で30分照射する。この工程におけるUVAの紫外線の照射は、指標菌である大腸菌を殺菌するために行う。紫外線を照射後の細菌数を測定する。
(2) 光回復工程
 さらに、その後、主発光ピークを365nmとする、太陽光線に含まれるUVAの光線を、0.01mW/cm、0.09mW/cm、0.30mW/cmの3段階の紫外線強度に分けて照射する。この工程におけるUVAの紫外線の照射は、殺菌後における光回復現象による細菌数の変化を測定するために行う。各紫外線強度における照射について、30分経過後、60分経過後、120分経過後、180分経過後の細菌数をそれぞれ測定する。
[紫外線殺菌装置で紫外線を照射した後の菌数の測定]
 紫外線照射後の菌数の測定は、紫外線照射後の菌液を取り出しPBSにより10倍、100倍に希釈する。そして、希釈なし(原液)、10倍希釈、100倍希釈した菌液をそれぞれ100μlずつLBプレートに滴下しコンラージ棒でまんべんなく塗抹する。これを37℃、16時間培養した後、LB寒天培地上に出現したコロニー数の測定を行い、各条件下における紫外線照射後の残存している菌数を算定する。 
 紫外線発光ダイオード1による紫外線照射における殺菌効果を評価するために、紫外線照射前(殺菌前)の細菌数を1として、紫外線の照射によって減少する大腸菌の細菌数を比率で示す。
 以上の実験結果を図2に示す。この図は、主発光ピークを365nmとするUVAの紫外線を70mW/cmの強度で30分照射する殺菌工程によって、大腸菌の細菌数が約1/800に減少し、その後、光回復工程において、太陽光線に含まれるUVAの光線を照射して細菌数が変化する状態を示している。この図において、曲線A、B、Cは、殺菌後に照射する紫外線強度を0.01mW/cm、0.09mW/cm、0.30mW/cmとして、細菌数が変化する状態を示している。さらに、図の鎖線は、太陽光線に含まれるUVAの光線を照射しない状態における細菌数の変化を示している。この図から明らかなように、殺菌工程において、UVAの紫外線を照射して大腸菌の細菌数を1/800とするまで殺菌した後、太陽光線に含まれるUVAの光線を種々の紫外線強度で照射しても、光回復現象による大腸菌の増殖は起こらないことがわかる。さらに、曲線Cで示すように、UVAの光線を照射することで、さらに細菌数が減少することもある。
 殺菌される屋外水の指標菌として、非病原性大腸菌に代わって、腸炎ビブリオ菌を使用し、殺菌工程後の光回復工程において照射する太陽光線に含まれるUVAの光線の紫外線強度を0.30mW/cmとする以外、実施例1と同様にして細菌数の変化を測定する。
 この実験結果を図3に示す。この図は、主発光ピークを365nmとするUVAの紫外線を70mW/cmの強度で照射する殺菌工程によって、腸炎ビブリオの細菌数が約1/700に減少し、その後、光回復工程において、太陽光線に含まれるUVAの365nmの光線を照射して、腸炎ビブリオの菌数が変化する状態を示している。この図において曲線Bは、光回復工程において照射する紫外線強度を0.30mW/cmとして、細菌数が変化する状態を示し、図の鎖線Dは、太陽光線に含まれるUVAの光線を照射しない状態における細菌数の変化を示している。この図から明らかなように、殺菌工程において、UVAの紫外線を照射して腸炎ビブリオの細菌数を1/700とするまで殺菌した後、太陽光線に含まれるUVAの光線を照射しても、光回復現象による腸炎ビブリオ菌の増殖は起こらないことがわかる。
 紫外線殺菌装置として、図8に示すように、外装ケース3に複数の紫外線発光ダイオード1とUVC光源2とを備えるものを使用し、殺菌される屋外水として汚水を使用する。
 殺菌工程において、主発光ピークを365nmとするUVAの紫外線を紫外線発光ダイオード1でもって70mW/cmの強度で15分照射して殺菌する。この殺菌後に、光回復工程として、主発光ピークを365nmとする、太陽光線に含まれるUVAの光線を、0.30mW/cmの紫外線強度で照射し、180分経過後の細菌数を測定する。
 この実験結果を図5に示す。この図は、殺菌工程によって、汚水に含まれる細菌数が約1/20に減少し、その後、光回復工程において、菌数が変化する状態を示している。図の実線は、光回復工程において、太陽光に含まれるUVAの光線を照射して、細菌数が変化する状態を示し、図の鎖線は、太陽光線に含まれるUVAの光線を照射しない状態における細菌数の変化を示している。この図から明らかなように、殺菌工程において、UVAの紫外線を照射して汚水に含まれる細菌数を1/20とするまで殺菌した後、太陽光線に含まれるUVAの光線を照射しても、光回復現象による細菌の増殖は起こらないことがわかる。
 殺菌工程において、主発光ピークを254nmとして、強度を0.02mW/cmとするUVCの紫外線をUVC光源2から照射し、主発光ピークを365nmとして、強度を70mW/cmとするUVAの紫外線を紫外線発光ダイオード1から照射する以外、すなわち、UVCの紫外線とUVAの紫外線の両方を一緒に15分照射して汚水を殺菌する以外、実施例3と同様にして細菌数の変化を測定する。
 この実験結果を図6に示す。この図は、殺菌工程によって、汚水に含まれる細菌数が約1/5000に減少し、その後、光回復工程において、菌数が変化する状態を示している。図の実線は、光回復工程において、太陽光に含まれるUVAの光線を0.30mW/cmの紫外線強度で照射して、細菌数が変化する状態を示し、図の鎖線は、太陽光線に含まれるUVAの光線を照射しない状態における細菌数の変化を示している。この図から明らかなように、殺菌工程において、UVCとUVAの両方の紫外線を照射することで、細菌数を約1/5000と極めて効果的な殺菌が実現できることに加えて、UVCとUVAの紫外線で効果的に殺菌したにもかかわらず、光回復現象による細菌数の増加はほとんど起こらないことがわかる。とくに、UVC光源の出力を紫外線発光ダイオードの出力よりも小さくするにも関わらず、UVCの紫外線とUVAの紫外線の相乗効果で、極めて効果的に殺菌しながら、光回復現象による殺菌された細菌の増殖を抑制して、効果的な殺菌状態に保持できることがわかる。
 [比較例1]
 殺菌工程において、主発光ピークを254nmとするUVCの紫外線を70mW/cmの強度で照射する以外、実施例2と同様にして細菌数の変化を測定する。
 図3の曲線Aは、UVCの紫外線による殺菌後に、光回復工程において、太陽光に含まれるUVAの光線を0.30mW/cmの紫外線強度で照射して、細菌数が変化する状態を示し、図の鎖線Cは、太陽光線に含まれるUVAの光線を照射しない状態における細菌数の変化を示している。この図から明らかなように、殺菌工程において、UVCの紫外線を照射して腸炎ビブリオの細菌数を1/700とするまで殺菌しても、その後、太陽光線に含まれるUVAの光線を照射することで、光回復現象によって、180分後には細菌数が1/50に増加する。すなわち、光回復現象によって細菌数が約10倍以上に増殖することがわかる。
 [比較例2]
殺菌工程において、主発光ピークを254nmとするUVCの紫外線を70mW/cmの強度で照射する以外、実施例3と同様にして細菌数の変化を測定する。
 図4の実線は、UVCの紫外線による殺菌後に、光回復工程において、太陽光に含まれるUVAの光線を0.30mW/cmの紫外線強度で照射して、細菌数が変化する状態を示し、図の鎖線は、太陽光線に含まれるUVAの光線を照射しない状態における細菌数の変化を示している。この図から明らかなように、殺菌工程において、UVCの紫外線を照射して汚水に含まれる細菌数を1/800とするまで殺菌しても、その後、太陽光線に含まれるUVAの光線を照射することで、光回復現象によって、180分後には細菌数が1/50に増加する。すなわち、光回復現象によって細菌数が約10倍以上に増殖することがわかる。
 本発明は、屋外の水を紫外線で殺菌する分野、たとえば汚水、プール水、魚の養殖池水などの種々の分野において利用することができる。
紫外線の照射で殺菌された細菌が光回復現象によって増殖する状態を示すグラフである。 本発明の紫外線殺菌装置が光回復現象を抑制する状態を示すグラフであって、実施例1における大腸菌の殺菌状態を示すグラフである。 本発明の紫外線殺菌装置が光回復現象を抑制する状態を示すグラフであって、実施例2と比較例1における腸炎ビブリオ菌の殺菌状態を示すグラフである。 比較例2における光回復現象を示すグラフであって、汚水の殺菌状態を示すグラフである。 本発明の紫外線殺菌装置が光回復現象を抑制する状態を示すグラフであって、実施例3における汚水の殺菌状態を示すグラフである。 本発明の紫外線殺菌装置が光回復現象を抑制する状態を示すグラフであって、実施例4における汚水の殺菌状態を示すグラフである。 本発明の一実施例にかかる紫外線殺菌装置の使用状態を示す概略断面図である。 本発明の他の実施例にかかる紫外線殺菌装置の使用状態を示す概略断面図である。 本発明の他の実施例にかかる紫外線殺菌装置の使用状態を示す概略断面図である。 本発明の他の実施例にかかる紫外線殺菌装置の使用状態を示す概略断面図である。 図8と図10に示す紫外線殺菌装置の内部構造を示す斜視図である。 本発明の他の実施例にかかる紫外線殺菌装置の使用状態を示す概略断面図である。 図12に示す紫外線殺菌装置の内部構造を示す拡大横断面図である。 本発明の他の実施例にかかる紫外線殺菌装置の使用状態を示す概略断面図である。 図14に示す紫外線殺菌装置の内部構造を示す拡大横断面図である。 UVAとUVCを用いた単独、併用照射による細菌の生存率を示すグラフグラフである。 UVA照射量を変化させた時のUVC併用による殺菌効果の変化を示すグラフである。 光触媒の酸化チタンとUVA併用による細菌の生存率を示すグラフである。
  1…紫外線発光ダイオード
  2…UVC光源
  3…外装ケース
  4…反射層
  5…周壁
  6…回路基板
  7…透光プレート
  9…屋外水
 10…水槽
 23…外装ケース
 24…反射層
 25…移送管
 26…回路基板
 28…循環器
 33…容器
 34…反射層
 35…蓋体
 36…固定筒

Claims (23)

  1.  屋外水(9)に紫外線を照射して殺菌する紫外線殺菌装置であって、
     主発光ピークを320nmないし400nmとするUVAの紫外線を照射する紫外線発光ダイオード(1)を備え、この紫外線発光ダイオード(1)が照射するUVAの紫外線で屋外水(9)が殺菌され、殺菌された屋外水(9)の光回復現象による細菌の増殖を防止するようにしてなる屋外水の紫外線殺菌装置。
  2.  前記屋外水(9)が汚水、屋外プール水、魚の養殖池水のいずれかである請求項1に記載される屋外水の紫外線殺菌装置。
  3.  前記紫外線発光ダイオード(1)の主発光ピークが350nmないし380nmである請求項1に記載される屋外水の紫外線殺菌装置。
  4.  前記紫外線発光ダイオード(1)の出力が、先端から1cm離れた中心線上の放射強度を10mW/cm以上とする請求項1に記載される屋外水の紫外線殺菌装置。
  5.  前記紫外線発光ダイオード(1)に加えて、UVCの紫外線を放射するUVC光源(2)を有する請求項1に記載される屋外水の紫外線殺菌装置。
  6.  前記UVC光源(2)の出力が前記紫外線発光ダイオード(1)の出力よりも小さい請求項5に記載される屋外水の紫外線殺菌装置。
  7.  前記UVC光源(2)の出力が、1cm離れた放射強度を1μW/cm以上としてなる請求項6に記載される屋外水の紫外線殺菌装置。
  8.  前記UVAの照射強度がUVCの照射強度の500倍以上である請求項1に記載される屋外水の紫外線殺菌装置。
  9.  前記UVAの照射強度がUVCの照射強度の1000倍以上である請求項1に記載される屋外水の紫外線殺菌装置。
  10.  前記UVAの照射強度がUVCの照射強度の1500倍以上である請求項1に記載される屋外水の紫外線殺菌装置。
  11.  UVAの紫外線を照射する紫外線発光ダイオード(1)を内蔵してなる外装ケース(3)を有する請求項1に記載される屋外水の紫外線殺菌装置。
  12.  前記紫外線発光ダイオード(1)とUVC光源(2)とを内蔵する外装ケース(3)を有する請求項5に記載される屋外水の紫外線殺菌装置。
  13.  前記外装ケース(3)が、内面で紫外線を反射する反射層(4)を有する請求項12に記載される屋外水の紫外線殺菌装置。
  14.  前記外装ケース(3)が周囲に周壁(5)を有し、前記紫外線発光ダイオード(1)とUVC光源(2)から放射される紫外線を反射して屋外水(9)に照射するようにしてなる請求項12に記載される屋外水の紫外線殺菌装置。
  15.  前記外装ケース(3)が防水構造で、屋外水(9)の液中に配置されてなる請求項12に記載される屋外水の紫外線殺菌装置。
  16.  前記外装ケース(3)が、複数の紫外線発光ダイオード(1)を固定している回路基板(6)と、円筒状の細長い紫外線ランプであるUVC光源(2)とを交互に並べて配置している請求項12に記載される屋外水の紫外線殺菌装置。
  17.  互いに同軸に配置されてなる、円筒状の外装ケース(23)と透光性を有する移送管(25)とを備え、前記外装ケース(23)の内側であって、前記移送管(25)の外側に複数の紫外線発光ダイオード(1)とUVC光源(2)を配置しており、前記移送管(25)で移送される屋外水(9)を殺菌するようにしてなる請求項12に記載される屋外水の紫外線殺菌装置。
  18.  前記移送管(25)に屋外水(9)を移送する循環器(28)を備え、移送管(25)を通過する屋外水(9)に紫外線を照射して屋外水(9)を殺菌する請求項17に記載される屋外水の紫外線殺菌装置。
  19.  前記円筒状の外装ケース(23)が内面に反射層(24)を有する請求項18に記載される屋外水の紫外線殺菌装置。
  20.  水に対する密閉性と防水性を備え、かつ紫外線発光ダイオード(1)から放射される紫外線を透過させる透明性のある容器(33)を備え、この容器(33)に複数の紫外線発光ダイオード(1)とUVC光源(2)を内蔵しており、屋外水(9)の液中に配置されて、屋外水(9)に紫外線を照射して殺菌するようにしてなる請求項5に記載される屋外水の紫外線殺菌装置。
  21.  前記容器(33)が、石英ガラスである請求項20に記載される屋外水の紫外線殺菌装置。
  22.  前記容器(33)の内側に、紫外線発光ダイオード(1)とUVC光源(2)とを取り付けてなる固定筒(36)を有し、固定筒(36)の外側に、紫外線発光ダイオード(1)とUVC光源(2)とを固定してなる請求項21に記載される屋外水の紫外線殺菌装置。
  23.  前記固定筒(36)の外周面に反射層(34)を設けてなる請求項22に記載される屋外水の紫外線殺菌装置。
PCT/JP2009/006295 2008-11-21 2009-11-21 屋外水の紫外線殺菌装置 WO2010058607A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010539163A JPWO2010058607A1 (ja) 2008-11-21 2009-11-21 屋外水の紫外線殺菌装置
US13/130,574 US8324595B2 (en) 2008-11-21 2009-11-21 Outdoor water treatment apparatus to kill bacteria with ultraviolet light
EP09827388.1A EP2394963B1 (en) 2008-11-21 2009-11-21 Ultraviolet sterilization device for outdoor water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008298593 2008-11-21
JP2008-298593 2008-11-21

Publications (1)

Publication Number Publication Date
WO2010058607A1 true WO2010058607A1 (ja) 2010-05-27

Family

ID=42198050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006295 WO2010058607A1 (ja) 2008-11-21 2009-11-21 屋外水の紫外線殺菌装置

Country Status (4)

Country Link
US (1) US8324595B2 (ja)
EP (1) EP2394963B1 (ja)
JP (1) JPWO2010058607A1 (ja)
WO (1) WO2010058607A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20100659A1 (it) * 2010-12-14 2012-06-15 Antonio Maria Calabro' Dispositivo e metodo per la riduzione della carica batterica in fluidi quali acqua e aria
NL2006265C2 (nl) * 2011-02-21 2012-08-22 Stichting Wetsus Ct Excellence Sustainable Water Technology Inrichting en werkwijze voor het fotokatalytisch behandelen van een fluã¯dum.
WO2012114027A1 (fr) * 2011-02-24 2012-08-30 Universite D'aix-Marseille Reacteur utilisable pour la depollution des fluides et procede d'utilisation
US20130323375A1 (en) * 2010-11-05 2013-12-05 The University Of Tokushima Method for sterilizing fruits and vegetables
WO2014068912A1 (ja) * 2012-10-30 2014-05-08 株式会社トクヤマ 紫外線発光モジュール及び紫外線照射装置
WO2014068913A1 (ja) * 2012-10-31 2014-05-08 株式会社トクヤマ 紫外線殺菌装置及び殺菌方法
WO2014115146A1 (en) * 2013-01-24 2014-07-31 Atlantium Technologies Ltd. Method and apparatus for liquid disinfection by light emitted from light emitting diodes
JP2014233712A (ja) * 2013-06-05 2014-12-15 Ckd株式会社 紫外線殺菌装置
US20150158741A1 (en) * 2012-03-21 2015-06-11 Seoul Viosys Co., Ltd. Water purification system using ultraviolet leds
JP2015136686A (ja) * 2014-01-24 2015-07-30 シャープ株式会社 水処理装置及び当該水処理装置を用いたウエット清掃機
WO2016056370A1 (ja) * 2014-10-09 2016-04-14 東レ株式会社 光照射装置及びそれを用いた光反応方法並びにラクタムの製造方法
WO2016056371A1 (ja) * 2014-10-09 2016-04-14 東レ株式会社 光化学反応装置及びそれを用いた光化学反応方法とその方法を用いたラクタムの製造方法
JP2016525932A (ja) * 2013-05-22 2016-09-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 表面汚染防止のための方法及びシステム
JP2017505227A (ja) * 2014-02-11 2017-02-16 フィリップス ライティング ホールディング ビー ヴィ Uvによる浄水用の可変幾何形状を有する受容器
JP2017192433A (ja) * 2016-04-18 2017-10-26 三菱電機株式会社 殺菌装置及び空調装置
JP2018023935A (ja) * 2016-08-10 2018-02-15 学校法人立命館 水処理方法
JP2019517305A (ja) * 2016-05-31 2019-06-24 シーダーズ−サイナイ メディカル センター 内部の紫外線治療法
KR102070000B1 (ko) * 2019-08-16 2020-01-23 김태유 물 살균 장치
JP2020179376A (ja) * 2019-04-26 2020-11-05 三菱電機株式会社 殺菌装置および給湯装置
JP2020185515A (ja) * 2019-05-13 2020-11-19 三菱ケミカルアクア・ソリューションズ株式会社 放射線モジュールを用いた水処理方法、放射線モジュールが配置された水槽、及び液体殺菌用放射線モジュール
JP6816907B1 (ja) * 2020-03-02 2021-01-20 学校法人関東学院 菌糸体等発生防止方法及び菌糸体等発生防止装置
US20220118140A1 (en) * 2018-01-31 2022-04-21 Sensor Electronic Technology, Inc. Humidifier Disinfection Using Ultraviolet Light
JP7286034B1 (ja) * 2022-05-19 2023-06-02 三菱電機株式会社 紫外光照射装置、およびこれを用いた空気調和装置
WO2024106532A1 (ja) * 2022-11-18 2024-05-23 株式会社シェルタージャパン 二酸化炭素削減インテリア
US11992699B2 (en) 2019-10-15 2024-05-28 Cedars-Sinai Medical Center Internal ultraviolet therapy
JP7508131B2 (ja) 2015-03-02 2024-07-01 株式会社飯田照明 紫外線照射装置

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005003802A1 (de) * 2004-12-10 2006-06-14 Nütro Maschinen- und Anlagenbau GmbH & Co. KG Strahlungsgerät sowie Pulverauftragsstation und Anordnung zur Beschichtung von temperatursensiblen Materialien und Verfahren hierzu
JPWO2010058607A1 (ja) * 2008-11-21 2012-04-19 国立大学法人徳島大学 屋外水の紫外線殺菌装置
WO2013082294A1 (en) 2011-12-02 2013-06-06 AquaMost, Inc. Apparatus and method for treating aqueous solutions and contaminants therein
US8398828B1 (en) 2012-01-06 2013-03-19 AquaMost, Inc. Apparatus and method for treating aqueous solutions and contaminants therein
US9376333B2 (en) * 2011-12-09 2016-06-28 Mag Aerospace Industries, Llc Inline UV LED water disinfection and heating
US9045357B2 (en) 2012-01-06 2015-06-02 AquaMost, Inc. System for reducing contaminants from a photoelectrocatalytic oxidization apparatus through polarity reversal and method of operation
ITTR20120001A1 (it) * 2012-02-22 2013-08-23 Igienein Srl Dispositivo ad immersione, a raggi uv-c, per la disinfezione e decalcificazione dell'acqua contenuta all'interno di qualsiasi serbatoio
CN104735980A (zh) * 2012-08-14 2015-06-24 中国电力株式会社 附着期幼虫的游泳或匍匐停止方法
US20140229414A1 (en) 2013-02-08 2014-08-14 Ebay Inc. Systems and methods for detecting anomalies
WO2014124393A1 (en) 2013-02-11 2014-08-14 AquaMost, Inc. Apparatus and method for treating aqueous solutions and contaminants therein
EP2959210B1 (en) * 2013-02-25 2016-12-07 Philips Lighting Holding B.V. Lighting device comprising a roll
RU2663244C2 (ru) * 2013-03-15 2018-08-03 Атлантиум Текнолоджиз Лтд. Система и способ для инактивации вируса инфекционного панкреатического некроза (ipnv) посредством оптимизированного ультрафиолетового излучения
US10787375B2 (en) * 2013-07-08 2020-09-29 Sensor Electronics Technology, Inc. Ultraviolet water disinfection system
US10040699B2 (en) 2013-07-08 2018-08-07 Sensor Electronics Technology, Inc. Ultraviolet water disinfection system
US20150064061A1 (en) 2013-09-01 2015-03-05 Fariborz Taghipour Air Purifier for Transportation Vehicles
CN110422906A (zh) * 2013-09-05 2019-11-08 首尔伟傲世有限公司 杀菌装置
US9938165B2 (en) 2013-10-28 2018-04-10 The University Of British Columbia UV-LED collimated radiation photoreactor
WO2015145526A1 (ja) 2014-03-24 2015-10-01 中国電力株式会社 付着期幼生の遊泳または匍匐停止方法
JP6215967B2 (ja) 2014-03-24 2017-10-18 中国電力株式会社 光照射によって翼形類およびフジツボ類を殺す方法
DE202014009076U1 (de) * 2014-11-17 2016-02-18 PURION GmbH Vorrichtung zur Behandlung eines Mediums mit UV-Strahlung
CN106793769B (zh) 2014-12-08 2020-10-23 中国电力株式会社 藤壶类的附着抑制方法
EP3181759B1 (en) 2015-03-27 2021-01-27 The Chugoku Electric Power Co., Inc. Method for preventing adhesion of fouling organisms
US10448537B2 (en) * 2015-06-11 2019-10-15 Toray Industries, Inc. Power supply device, photochemical reaction device and method in which same is used, and lactam production method
US10180248B2 (en) 2015-09-02 2019-01-15 ProPhotonix Limited LED lamp with sensing capabilities
SE539934C2 (en) * 2016-06-22 2018-01-23 Lightlab Sweden Ab System for treating a fluid with non-mercury-based UV light
EP3504161A4 (en) * 2016-08-23 2020-02-19 Reiber, Braden, A. PORTABLE DISINFECTOR DEVICE
EP3431867A1 (en) * 2017-07-18 2019-01-23 Koninklijke Philips N.V. Light guides with coating for use in water
US11400173B2 (en) 2019-01-20 2022-08-02 Luma Hydration Inc. Sanitizing bottle
US20220040365A1 (en) * 2019-04-22 2022-02-10 Crystal Is, Inc. Air disinfection chamber
CN110081973B (zh) * 2019-04-23 2021-03-05 深圳清华大学研究院 一种紫外线灯水下发射功率的测量方法及测量装置
CN110282695A (zh) * 2019-07-31 2019-09-27 上海应用技术大学 一种紫外/氯组合工艺去除水中苯脲类除草剂异丙隆的方法
US11426476B2 (en) * 2019-12-12 2022-08-30 United States Of America As Represented By The Secretary Of The Navy Internal ultraviolet LED antifouling
WO2021150934A1 (en) * 2020-01-24 2021-07-29 Hubbell Incorporated Antimicrobial apparatus for tubing
US11852899B2 (en) 2020-10-06 2023-12-26 International Business Machines Corporation Ultrasound emitting contact lens
US11333344B1 (en) * 2021-04-30 2022-05-17 Shenzhen Cootway Technology Co., Ltd. Multifunctional lamp
US20230071898A1 (en) * 2021-09-03 2023-03-09 Aquisense Technologies, Llc Apparatus and method for irradiation
CN114651773B (zh) * 2022-03-02 2023-03-14 江西省水产科学研究所(江西省鄱阳湖渔业研究中心、江西省渔业资源生态环境监测中心) 一种精准控制的循环水养殖***
CN115520931A (zh) * 2022-10-20 2022-12-27 中国人民解放军军事科学院军事医学研究院 一种基于uva-led的微生物灭活方法
CN116534951A (zh) * 2023-05-11 2023-08-04 清华大学 一种去除水中抗生素抗性菌和/或抗性基因的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003154379A (ja) * 2001-11-20 2003-05-27 Japan Science & Technology Corp 殺菌水製造方法
JP2004057845A (ja) * 2002-07-24 2004-02-26 Ishikawajima Harima Heavy Ind Co Ltd 飲料物殺菌方法及びその装置
JP2007069204A (ja) * 2005-08-12 2007-03-22 Toray Ind Inc 水処理方法、水処理装置、及び再生水の製造方法
WO2007043592A1 (ja) * 2005-10-11 2007-04-19 K2R Co., Ltd 光触媒反応水生成装置
JP2007152304A (ja) * 2005-12-08 2007-06-21 Hitachi Ltd 液体処理方法および液体処理装置
JP2007307544A (ja) * 2006-05-20 2007-11-29 Koshu Shinyo Koshin Gijutsu Yugenkoshi 紫外線液体浄化処理器
JP2008136940A (ja) 2006-12-01 2008-06-19 Toshiba Corp 紫外線消毒装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010727A (en) * 1997-12-31 2000-01-04 Rosenthal; Richard A. Actinic process for cold pasteurization of fresh foods and beverages
US6254625B1 (en) * 1998-07-02 2001-07-03 Cenayda V. Rosenthal Hand sanitizer
US6447720B1 (en) * 2000-07-31 2002-09-10 Remotelight, Inc. Ultraviolet fluid disinfection system and method
US6403030B1 (en) * 2000-07-31 2002-06-11 Horton, Iii Isaac B. Ultraviolet wastewater disinfection system and method
US6569386B1 (en) * 2000-10-05 2003-05-27 Jong Ho Ko Process for providing a titanium dioxide layer on a material that contains a light absorbing substance and the product so formed
EP1337280B1 (en) * 2000-11-13 2013-09-04 Bayer Intellectual Property GmbH Method of inactivating microorganisms in a fluid using ultraviolet radiation
US20080206095A1 (en) * 2001-07-11 2008-08-28 Duthie Robert E Micro-organism reduction in liquid by use of a metal halide ultraviolet lamp
US7118852B2 (en) * 2002-04-11 2006-10-10 Throwleigh Technologies, L.L.C. Methods and apparatus for decontaminating fluids
EP1586539A1 (de) * 2004-04-13 2005-10-19 Araiza, Rafael Vorrichtung zur Behandlung eines flüssigen oder gasförmigen Mediums mittels UV-Strahlen
US8186004B2 (en) * 2006-02-22 2012-05-29 Oreck Holdings Llc Disinfecting device utilizing ultraviolet radiation
GB0606604D0 (en) * 2006-04-01 2006-05-10 P W Circuts Ltd Treatment apparatus
US7396491B2 (en) * 2006-04-06 2008-07-08 Osram Sylvania Inc. UV-emitting phosphor and lamp containing same
US8067778B2 (en) * 2006-09-28 2011-11-29 Seoul Opto Device Co., Ltd. Ultraviolet light emitting diode package
US8203124B2 (en) * 2007-04-27 2012-06-19 Hand Held Products, Inc. Sterilization apparatus
JPWO2010058607A1 (ja) * 2008-11-21 2012-04-19 国立大学法人徳島大学 屋外水の紫外線殺菌装置
BRPI1006208A2 (pt) * 2009-03-26 2021-02-23 Koninklijke Philips Electronics N. V. dispositivo de desinfecção
DE102009034359A1 (de) * 2009-07-17 2011-02-17 Forschungsverbund Berlin E.V. P-Kontakt und Leuchtdiode für den ultravioletten Spektralbereich
US8662705B2 (en) * 2010-03-30 2014-03-04 Virwall Systems, Inc. Flexible ultraviolet LED sanitizing apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003154379A (ja) * 2001-11-20 2003-05-27 Japan Science & Technology Corp 殺菌水製造方法
JP2004057845A (ja) * 2002-07-24 2004-02-26 Ishikawajima Harima Heavy Ind Co Ltd 飲料物殺菌方法及びその装置
JP2007069204A (ja) * 2005-08-12 2007-03-22 Toray Ind Inc 水処理方法、水処理装置、及び再生水の製造方法
WO2007043592A1 (ja) * 2005-10-11 2007-04-19 K2R Co., Ltd 光触媒反応水生成装置
JP2007152304A (ja) * 2005-12-08 2007-06-21 Hitachi Ltd 液体処理方法および液体処理装置
JP2007307544A (ja) * 2006-05-20 2007-11-29 Koshu Shinyo Koshin Gijutsu Yugenkoshi 紫外線液体浄化処理器
JP2008136940A (ja) 2006-12-01 2008-06-19 Toshiba Corp 紫外線消毒装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2394963A4 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130323375A1 (en) * 2010-11-05 2013-12-05 The University Of Tokushima Method for sterilizing fruits and vegetables
ITRM20100659A1 (it) * 2010-12-14 2012-06-15 Antonio Maria Calabro' Dispositivo e metodo per la riduzione della carica batterica in fluidi quali acqua e aria
NL2006265C2 (nl) * 2011-02-21 2012-08-22 Stichting Wetsus Ct Excellence Sustainable Water Technology Inrichting en werkwijze voor het fotokatalytisch behandelen van een fluã¯dum.
WO2012115509A1 (en) * 2011-02-21 2012-08-30 Stichting Wetsus Centre Of Excellence For Sustainable Water Technology Device and method for photocatalytic treatment of a fluid
WO2012114027A1 (fr) * 2011-02-24 2012-08-30 Universite D'aix-Marseille Reacteur utilisable pour la depollution des fluides et procede d'utilisation
FR2972005A1 (fr) * 2011-02-24 2012-08-31 Univ Provence Aix Marseille 1 Reacteur utilisable pour la depollution des fluides et procede d'utilisation
US20150158741A1 (en) * 2012-03-21 2015-06-11 Seoul Viosys Co., Ltd. Water purification system using ultraviolet leds
US10676375B2 (en) * 2012-03-21 2020-06-09 Seoul Viosys Co., Ltd. Water purification system using ultraviolet LEDs
WO2014068912A1 (ja) * 2012-10-30 2014-05-08 株式会社トクヤマ 紫外線発光モジュール及び紫外線照射装置
JP2014089898A (ja) * 2012-10-30 2014-05-15 Tokuyama Corp 紫外線発光モジュール及び紫外線照射装置
US9303841B2 (en) 2012-10-30 2016-04-05 Tokuyama Corporation Ultraviolet light-emitting module and ultraviolet irradiation device
CN104736921A (zh) * 2012-10-30 2015-06-24 株式会社德山 紫外线发光模块以及紫外线照射装置
JP2014087544A (ja) * 2012-10-31 2014-05-15 Tokuyama Corp 紫外線殺菌装置
WO2014068913A1 (ja) * 2012-10-31 2014-05-08 株式会社トクヤマ 紫外線殺菌装置及び殺菌方法
WO2014115146A1 (en) * 2013-01-24 2014-07-31 Atlantium Technologies Ltd. Method and apparatus for liquid disinfection by light emitted from light emitting diodes
US10294124B2 (en) 2013-01-24 2019-05-21 Atlantium Technologies Ltd. Method and apparatus for liquid disinfection by light emitted from light emitting diodes
JP2016511138A (ja) * 2013-01-24 2016-04-14 アトランティウム テクノロジーズ リミテッド 発光ダイオードから放射された光による液体消毒方法及び装置
CN105164056A (zh) * 2013-01-24 2015-12-16 安特蓝德公司 用于通过从发光二极管发射的光进行液体消毒的方法和装置
JP2022001366A (ja) * 2013-05-22 2022-01-06 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 表面汚染防止のための方法及びシステム
JP2016525932A (ja) * 2013-05-22 2016-09-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 表面汚染防止のための方法及びシステム
JP2014233712A (ja) * 2013-06-05 2014-12-15 Ckd株式会社 紫外線殺菌装置
JP2015136686A (ja) * 2014-01-24 2015-07-30 シャープ株式会社 水処理装置及び当該水処理装置を用いたウエット清掃機
JP2017505227A (ja) * 2014-02-11 2017-02-16 フィリップス ライティング ホールディング ビー ヴィ Uvによる浄水用の可変幾何形状を有する受容器
US10221080B2 (en) 2014-02-11 2019-03-05 Philips Lighting Holding B.V. Recipient with variable geometry for UV water purification
JPWO2016056371A1 (ja) * 2014-10-09 2017-04-27 東レ株式会社 光化学反応装置及びそれを用いた光化学反応方法とその方法を用いたラクタムの製造方法
WO2016056371A1 (ja) * 2014-10-09 2016-04-14 東レ株式会社 光化学反応装置及びそれを用いた光化学反応方法とその方法を用いたラクタムの製造方法
US10414724B2 (en) 2014-10-09 2019-09-17 Toray Industries, Inc. Photochemical reaction device, photochemical reaction method using same, and lactam production method using said method
WO2016056370A1 (ja) * 2014-10-09 2016-04-14 東レ株式会社 光照射装置及びそれを用いた光反応方法並びにラクタムの製造方法
JP7508131B2 (ja) 2015-03-02 2024-07-01 株式会社飯田照明 紫外線照射装置
JP2017192433A (ja) * 2016-04-18 2017-10-26 三菱電機株式会社 殺菌装置及び空調装置
JP2019517305A (ja) * 2016-05-31 2019-06-24 シーダーズ−サイナイ メディカル センター 内部の紫外線治療法
JP2018023935A (ja) * 2016-08-10 2018-02-15 学校法人立命館 水処理方法
US20220118140A1 (en) * 2018-01-31 2022-04-21 Sensor Electronic Technology, Inc. Humidifier Disinfection Using Ultraviolet Light
JP2020179376A (ja) * 2019-04-26 2020-11-05 三菱電機株式会社 殺菌装置および給湯装置
JP2020185515A (ja) * 2019-05-13 2020-11-19 三菱ケミカルアクア・ソリューションズ株式会社 放射線モジュールを用いた水処理方法、放射線モジュールが配置された水槽、及び液体殺菌用放射線モジュール
KR102070000B1 (ko) * 2019-08-16 2020-01-23 김태유 물 살균 장치
US11992699B2 (en) 2019-10-15 2024-05-28 Cedars-Sinai Medical Center Internal ultraviolet therapy
JP6816907B1 (ja) * 2020-03-02 2021-01-20 学校法人関東学院 菌糸体等発生防止方法及び菌糸体等発生防止装置
JP2021137695A (ja) * 2020-03-02 2021-09-16 学校法人関東学院 菌糸体等発生防止方法及び菌糸体等発生防止装置
JP7286034B1 (ja) * 2022-05-19 2023-06-02 三菱電機株式会社 紫外光照射装置、およびこれを用いた空気調和装置
WO2024106532A1 (ja) * 2022-11-18 2024-05-23 株式会社シェルタージャパン 二酸化炭素削減インテリア

Also Published As

Publication number Publication date
JPWO2010058607A1 (ja) 2012-04-19
US20110226966A1 (en) 2011-09-22
US8324595B2 (en) 2012-12-04
EP2394963B1 (en) 2016-02-17
EP2394963A4 (en) 2012-12-05
EP2394963A1 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
WO2010058607A1 (ja) 屋外水の紫外線殺菌装置
Nyangaresi et al. Comparison of the performance of pulsed and continuous UVC-LED irradiation in the inactivation of bacteria
Prasad et al. Applications of light-emitting diodes (LEDs) in food processing and water treatment
Sichel et al. Lethal synergy of solar UV-radiation and H2O2 on wild Fusarium solani spores in distilled and natural well water
Rubio et al. Comparative effect of simulated solar light, UV, UV/H2O2 and photo-Fenton treatment (UV–Vis/H2O2/Fe2+, 3+) in the Escherichia coli inactivation in artificial seawater
Gárcia-Fernández et al. Bacteria and fungi inactivation using Fe3+/sunlight, H2O2/sunlight and near neutral photo-Fenton: A comparative study
Ortega-Gómez et al. Water disinfection using photo-Fenton: Effect of temperature on Enterococcus faecalis survival
KR20100126208A (ko) 항미생물성 자외선 역변환 조성물
WO2019025808A1 (en) IMPROVED BIOREACTORS
JP5975602B2 (ja) 微細藻類連続培養装置およびこの装置を用いた微細藻類連続培養方法
Yeh et al. Applications of light-emitting diodes in researches conducted in aquatic environment
Angarano et al. Visible light as an antimicrobial strategy for inactivation of Pseudomonas fluorescens and Staphylococcus epidermidis biofilms
Giannakis et al. Elucidating bacterial regrowth: Effect of disinfection conditions in dark storage of solar treated secondary effluent
EP2111374B1 (en) Method and system for selective ultraviolet disinfection
Giannakis et al. Impact of different light intermittence regimes on bacteria during simulated solar treatment of secondary effluent: Implications of the inserted dark periods
Lee et al. Understanding possible underlying mechanism in declining germicidal efficiency of UV-LED reactor
Miñán et al. Photodynamic inactivation induced by carboxypterin: a novel non-toxic bactericidal strategy against planktonic cells and biofilms of Staphylococcus aureus
Bartlett Small scale experimental systems for coral research: Considerations, planning, and recommendations
Barrett et al. Sterilization of sea lice eggs with ultraviolet C light: towards a new preventative technique for aquaculture
WO2011141559A1 (en) Apparatus for incubating eggs and/or embryos of aquatic organisms and a method thereof
CN1589238A (zh) 采用光敏性试剂净化水的微生物污染的方法
Liltved et al. UV inactivation and photoreactivation of bacterial fish pathogens
Wijesekara et al. Electrochemical removal of ammonia, chemical oxygen demand and energy consumption from aquaculture waters containing different marine algal species
Edward et al. Water quality requirement and management for live feed culture
JP2003339270A (ja) 用水の殺菌と活性化により生物を生育する方法及び前記方法に使用される処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827388

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2010539163

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13130574

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009827388

Country of ref document: EP