WO2010058112A1 - Adsorbeurs radiaux monolits en serie - Google Patents

Adsorbeurs radiaux monolits en serie Download PDF

Info

Publication number
WO2010058112A1
WO2010058112A1 PCT/FR2009/052144 FR2009052144W WO2010058112A1 WO 2010058112 A1 WO2010058112 A1 WO 2010058112A1 FR 2009052144 W FR2009052144 W FR 2009052144W WO 2010058112 A1 WO2010058112 A1 WO 2010058112A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbers
bed
adsorber
radial
grids
Prior art date
Application number
PCT/FR2009/052144
Other languages
English (en)
Inventor
Guillaume Rodrigues
Benoit Davidian
Original Assignee
L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to EP09768156A priority Critical patent/EP2358461A1/fr
Priority to JP2011543795A priority patent/JP2012509174A/ja
Priority to US13/129,976 priority patent/US20110219950A1/en
Priority to CA2743951A priority patent/CA2743951A1/fr
Priority to CN2009801459854A priority patent/CN102215937A/zh
Priority to AU2009317089A priority patent/AU2009317089A1/en
Publication of WO2010058112A1 publication Critical patent/WO2010058112A1/fr
Priority to ZA2011/01905A priority patent/ZA201101905B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0431Beds with radial gas flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/41Further details for adsorption processes and devices using plural beds of the same adsorbent in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a process for adsorption purification of a flow of feed gas, in particular air, containing water and carbon dioxide using groups of adsorbers installed in series ,.
  • This process generally precedes a process of separation by cryogenic distillation.
  • the atmospheric air contains compounds to be removed before the introduction of said air into the heat exchangers of the cold box of an air separation unit, in particular the main carbon dioxide (CO 2 ) compounds, and water vapor (H 2 O) as well as so-called secondary impurities such as nitrogen oxides and / or hydrocarbons, for example.
  • the main carbon dioxide (CO 2 ) compounds and water vapor (H 2 O) as well as so-called secondary impurities such as nitrogen oxides and / or hydrocarbons, for example.
  • N x Oy means nitrogen oxides
  • C n H m means hydrocarbons
  • a TSA air purification process cycle comprises the following steps: a) purification of the air by adsorption of the impurities at superatmospheric pressure and at ambient temperature, b) depressurization of the adsorber up to the pressure atmospheric, c) regeneration of the adsorbent at atmospheric pressure, especially by the waste gases, typically impure nitrogen from an air separation unit and heated to a temperature usually between 100 and 250 0 C at by means of one or more heat exchangers, d) cooling at ambient temperature of the adsorbent, in particular by continuing to introduce said waste gas from the air separation unit, but not reheated, and e) repressurization of the adsorber with purified air from, for example, another adsorber in the production phase.
  • the air pretreatment devices comprise two adsorbers, operating alternately, that is to say that one of the adsorbers is in the production phase, while the other is in the regeneration phase.
  • the production phase corresponds to the purification of the gaseous mixture by adsorption of the impurities.
  • the regeneration phase corresponds to the desorption of the impurities, retained on the adsorbent during the adsorption step, by heating the adsorbent by the waste gas heated to a temperature between, for example, 100 ° C. and 250 ° C. It includes the stages of depressurization, heating, cooling and repressurization.
  • a step of placing the two adsorbers in parallel, of more or less long duration, that is to say from a few seconds to several minutes, is generally added at the beginning or at the end of the regeneration phase.
  • TSA air purification processes are described in particular in US-A-3738084 and FR-A-7725845.
  • radial adsorbers allow , reliably and repeatedly, an adsorption purification of large amounts of fluid, especially atmospheric air, while maintaining a good distribution of the treated fluid and fluid circulation speeds compatible with the mechanical properties of the adsorbent particles used .
  • the operation of a radial adsorber is shown in FIG. 1.
  • the fluid to be purified or separated 1 enters the bottom portion of the radial adsorber 10 and passes through the adsorbent mass.
  • the adsorber itself 10 consists of a cylindrical shell of vertical axis AA and 2 funds.
  • the adsorbent mass is held in place by means of a perforated outer grid 11 and an internally perforated internal grid 12 fixed on the upper bottom and a solid plate 13 in the lower part.
  • the gas 1 circulates vertically at the periphery in the outer free zone 14 between the cylindrical shell and the external grid, passes radially through the adsorbent mass 20 and then flows vertically in the internal free zone 15 before leaving the adsorber from above. Regeneration is carried out in the opposite direction.
  • adsorbers are generally used in parallel, each comprising two beds: a first bed of activated alumina or of silica gel, on which the adsorbed agent is preferentially adsorbed; water, and a second bed of molecular sieve, on which CO 2 is preferentially adsorbed.
  • Each adsorber therefore consists of three grids.
  • the use of these 3 grids causes a limitation on the height of the adsorber.
  • the diameter of these radial adsorbers can be up to 6 or 7 meters, although it is sometimes impossible to reach such sizes, often for transport reasons.
  • At fixed adsorber diameter it is not always possible to increase the height of the adsorber to increase the capacity because of the assembly of these 3 grids. This assembly can be performed horizontally, the grids being successively threaded, concentrically, starting from the internal grid. The end of each grid is successively fixed on a bottom, the other end being released to be able to thread the next grid.
  • a flow rate to be treated representing 800,000 Nm 3 / h of air at 6 bar. It is not possible to treat such a flow rate using two three-grid adsorbers. For example, two units each comprising two adsorbers three grids and allowing each to treat half of the flow concerned. It also requires a flow control system to ensure that the flow of air separates well in two between the two units (flowmeters on the air inlet with control valve, and the same thing at the level of regeneration gas), which generates additional pressure drop.
  • each of the two units must be equipped with its own operating valves and its own regeneration heater.
  • a solution of the invention is a process for purifying a feed gas stream comprising a main compound, water (H 2 O) and carbon dioxide (CO 2 ), as well as so-called secondary impurities.
  • the feed gas stream is introduced into at least one radial adsorber 2 grids containing, as sole adsorption bed, a bed of activated alumina or of silica gel, on which the adsorbed is preferentially adsorbed; H 2 O, b) the gas resulting from step a) is introduced into at least one radial adsorber 2 grids containing, as sole adsorption bed, a bed of molecular sieve, on which CO 2 and impurities are preferentially adsorbed; secondary, and c) recovering a gas from step b) enriched in main compound and capable of undergoing cryogenic distillation.
  • secondary impurities oxides of nitrogen and hydrocarbons.
  • the invention presented here is based in part on the removal of the intermediate gate, involving the use of a single adsorbent per bottle. In the absence of this intermediate gate, we will speak of adsorber "2 grids" or single-bed, thus allowing a much simpler construction, less expensive, allowing an increase in the size of the adsorber and therefore the flow rate of air that it can handle, and solving any problems of regularity of the thickness of the sieve bed.
  • the method according to the invention may have one or more of the following characteristics:
  • the molecular sieve is an X-type zeolite
  • the adsorber used in step b) has a size less than or equal to the size of the adsorber used in step a) in a ratio ranging from 0.4 to 1,
  • each adsorber is subjected to a pressure / temperature cycle, the cycle time of the adsorber or adsorbers used in step a) being between 90 and 600 minutes and the cycle time of the adsorber or adsorbers used in step b) being less than or equal to the duration of the cycle implemented in step a) in a ratio of between 0.4 and 1, preferably between 0.5 and 0.8,
  • the hourly molar flow rate of the treated feed gas stream is between 100,000 Nm 3 / h and 1,000,000 Nm 3 / h, in step b), the secondary impurities are stopped with a stopping rate of between 30% and 100%, preferably between 60% and 100%;
  • step a) two radial adsorbers 2 grids are used, containing as single adsorption bed a bed of activated alumina or of silica gel, and operating alternately (that is to say that the adsorber is in the regeneration phase while the other is in the production phase and vice versa), and / or in step b) two radial adsorbers 2 grids are used, containing as sole adsorption bed a molecular sieve bed, and operating alternately,
  • N pairs of radial adsorbers 2 grids are used, containing as a single adsorption bed a bed of activated alumina or of silica gel, the adsorbers of the same pair operating alternately and the N pairs running in parallel with the same pressure cycle, and / or in that in stage b) N 'pairs of radial adsorbers 2 grids are used, containing as a single adsorption bed a bed of sieves molecular, the adsorbers of the same pair operating alternately and the N pairs parallel to the same pressure cycle, with N> 1 and N' ⁇ 1;
  • the hourly molar flow rate of the treated feed gas stream is between 100,000 Nm 3 / h and 3,000,000 Nm 3 / h
  • the adsorbers used in step a) are regenerated periodically with a regeneration gas heated by means of a first heater and in that the adsorbers used in step b) are regenerated periodically with a gas of regeneration heated by means of a second heater,
  • the adsorbers used in steps a) and b) are regenerated periodically with a regeneration gas heated by means of a single heater,
  • each adsorber has a diameter greater than 4.5 m and up to 7 meters.
  • the pressure of the feed gas stream is preferably between 1 bar and 35 bar absolute.
  • the percentage of secondary impurities entering the purification which has been retained in the adsorber during the cycle is defined as the secondary impurity quench rate.
  • the secondary impurity quench rate the percentage of secondary impurities entering the purification which has been retained in the adsorber during the cycle.
  • the present invention also relates to a plant for purifying a feed gas stream comprising oxygen (O 2 ), water (H 2 O) and carbon dioxide (CO 2 ), said plant comprising at least one radial adsorber containing, as sole adsorption bed, a bed of activated alumina or of silica gel, and at least one radial adsorber containing as sole adsorption bed a bed of molecular sieve, characterized in that the two radial adsorbers are placed in series.
  • said installation comprises at least a first pair of radial adsorbers, containing as sole adsorption bed a bed of activated alumina or of silica gel and operating alternately, and at least a second pair of radial adsorbers containing as a single adsorption bed a molecular sieve bed and operating alternately, the first and second pairs of radial adsorbers being placed in series.
  • FIG. 2 illustrates a "series" installation according to the invention.
  • the adsorbers "A” are adsorbers containing only a bed of activated alumina or silica gel and adsorbers "B” are adsorbers containing only a bed of molecular sieve.
  • adsorbers containing a single adsorbent bed are used. Also, each of these radial adsorbers comprises only two grids and not three grids such as radial adsorbers of the prior art used for a similar purification. The height of these adsorbers two grids are then increased.
  • the maximum flow rate treated with a unit comprising 2 adsorbers 2 grids is about
  • 850,000 Nm / h can be treated with two units, in series, each comprising two adsorbers 2 grids, in other words using four adsorbers. From here, the process according to the invention makes it possible to treat the flow rate under consideration with the same number of adsorbers, while reducing the cost of manufacturing the adsorbers and improving the rate of arrest of secondary impurities.
  • the cycle time of a standard 3-grid unit is set by the regeneration time of the adsorber, which is conditioned, for an available regeneration flow, by the thermal inertia of the adsorber, especially by the quantity of water adsorbed on alumina.
  • the cycle time of the adsorber containing a bed of activated alumina or silica gel will therefore be close to that of the standard unit containing a bed of alumina and a bed of molecular sieve.
  • the cycle time of the adsorber containing a bed of molecular sieve may be reduced when it will correspond essentially to the thermal inertia. Indeed, there is no more water to desorb, but only CO 2 and secondary impurities requiring a very small amount of energy
  • the CO 2 stop adsorber may be a water stop adsorber of a smaller size.
  • This reduction in the cycle may also be of interest for stopping secondary impurities because the zone of mass transfer of CO 2 will be all the more important, relative to the saturation zone, that the cycle time is short.
  • this relative importance of the MTZ with respect to the saturated zone also leads to an unfavorable non-linearity of the CO 2 dimensioning of the bed as a function of the cycle time, in other words a halving of the cycle time will not result in a division by two of the necessary volume of adsorbent due to the adsorption kinetics.
  • each adsorber or pair of adsorbers is equipped with its own operating valves and its own regeneration heater. The size of the heater will be different depending on whether the alumina or sieve is regenerated.
  • the method according to the invention has the advantage of providing a different cycle time depending on the adsorber in question: the cycle time of an adsorber containing only a molecular sieve will be shorter, which will give an advantage in terms of rate of arrest in secondary impurities.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Drying Of Gases (AREA)

Abstract

Procédé de purification d'un flux de gaz d'alimentation comprenant un composé principal, de l'eau (H2O) et du dioxyde de carbone (CO2), ainsi que des impuretés dites secondaires, dans lequel : a) on introduit le flux de gaz d'alimentation dans au moins un adsorbeur radial 2 grilles contenant comme unique lit d'adsorption un lit d'alumine activée ou de gel de silice, sur lequel s'adsorbe préférentiellement l'H2O, b) on introduit le gaz issu de l'étape a) dans au moins un adsorbeur radial 2 grilles contenant comme unique lit d'adsorption un lit de tamis moléculaire, sur lequel s'adsorbe préférentiellement le CO2 et les impuretés secondaires, et c) on récupère un gaz issu de l'étape b) enrichi en composé principal et apte à subir une distillation cryogénique.

Description

Adsorbeurs radiaux monolits en série
La présente invention concerne un procédé de purification par adsorption d'un flux de gaz d'alimentation, en particulier de l'air, contenant de l'eau et du dioxyde de carbone mettant en œuvre des groupements d' adsorbeurs installés en série,.
Ce procédé précède en général un procédé de séparation par distillation cryogénique.
Il est connu que l'air atmosphérique contient des composés devant être éliminés avant l'introduction dudit air dans les échangeurs thermiques de la boîte froide d'une unité de séparation d'air, notamment les composés principaux dioxyde de carbone (CO2), et vapeur d'eau (H2O) ainsi que les impuretés dites secondaires comme les oxydes d'azote et/ou les hydrocarbures par exemple.
En effet, en l'absence d'un tel prétraitement de l'air pour en éliminer ses impuretés notamment CO2 et eau, on assiste à une solidification en glace de ces impuretés lors du refroidissement de l'air à température cryogénique typiquement inférieure ou égale à environ -1500C, d'où il peut résulter des problèmes de colmatage de l'équipement, notamment des échangeurs thermiques, des colonnes de distillation. De même les impuretés dites secondaires (NxOy et CnHm), si elles ne sont pas arrêtées dans leur majorité dans l'épuration en tête de la boite froide, s'accumulent au sein du rebouilleur de la colonne de distillation basse pression et peuvent conduire à un endommagement de cet échangeur. Par
NxOy, on entend les oxydes d'azote, et par CnHm on entend les hydrocarbures.
Actuellement, ce prétraitement de l'air est effectué, selon le cas, par procédé TSA (Température Swing Adsorption = adsorption avec variation de température) ou par procédé PSA (Pressure Swing Adsorption = adsorption à pression modulée); par procédé PSA, on entend les procédés PSA proprement-dits, les procédés VSA (Vacuum Swing Adsorption = adsorption à pression modulée avec mise sous vide), les procédés VPSA et analogues.
L'invention s'applique aux divers procédés et unités mettant en œuvre des adsorbeurs radiaux, en particulier les procédés et unités fonctionnant en mode TSA, c'est-à- dire avec variation de température. Classiquement, un cycle de procédé TSA de purification d'air comporte les étapes suivantes: a) purification de l'air par adsorption des impuretés à pression super-atmosphérique et à température ambiante, b) dépressurisation de l'adsorbeur jusqu'à la pression atmosphérique, c) régénération de l'adsorbant à pression atmosphérique, notamment par les gaz résiduaires, typiquement de l'azote impur provenant d'une unité de séparation d'air et réchauffé jusqu'à une température habituellement entre 100 et 2500C au moyen d'un ou plusieurs échangeurs thermiques, d) refroidissement à température ambiante de l'adsorbant, notamment en continuant à y introduire ledit gaz résiduaire issu de l'unité de séparation d'air, mais non réchauffé, et e) repressurisation de l'adsorbeur avec de l'air purifié issu, par exemple, d'un autre adsorbeur se trouvant en phase de production.
Généralement, les dispositifs de prétraitement d'air comprennent deux adsorbeurs, fonctionnant de manière alternée, c'est-à-dire que l'un des adsorbeurs est en phase de production, pendant que l'autre est en phase de régénération. La phase de production correspond à la purification du mélange gazeux par adsorption des impuretés.
La phase de régénération correspond à la désorption des impuretés, retenues sur l'adsorbant pendant l'étape d'adsorption, par chauffage de l'adsorbant par les gaz résiduaires réchauffés à une température comprise entre par exemple 1000C et 2500C. Elle comprend notamment les étapes de dépressurisation, chauffage, refroidissement et repressurisation.
Une étape de mise en parallèle des deux adsorbeurs, de durée plus ou moins longue, c'est-à-dire de quelques secondes à plusieurs minutes, est généralement rajoutée au début ou en fin de phase de régénération. De tels procédés TSA de purification d'air sont notamment décrits dans les documents US-A-3738084 et FR-A-7725845.
Dès lors que les débits à purifier deviennent importants, il est connu d'utiliser des adsorbeurs radiaux tel qu'il est enseigné dans les documents US-A-4-541-851 ou EP-A- 1638669. Les adsorbeurs radiaux permettent de réaliser, de façon fiable et répétée, une épuration par adsorption de grandes quantités de fluide, notamment d'air atmosphérique, tout en conservant une bonne distribution du fluide traité et des vitesses de circulation des fluides compatibles avec les propriétés mécaniques des particules d'adsorbant utilisées. Le fonctionnement d'un adsorbeur radial est représenté figure 1. Le fluide à épurer ou à séparer 1 rentre en partie basse de l'adsorbeur radial 10, traverse la masse adsorbante
20 et le produit sort en partie supérieure 2. Lors de la régénération, le fluide de régénération
3 rentre à contre-courant par la partie haute, désorbe les impuretés contenues dans la masse adsorbante 20 et le gaz résiduaire 4 sort en partie basse.
L'adsorbeur lui-même 10 est constitué d'une virole cylindrique d'axe vertical AA et de 2 fonds. La masse adsorbante est maintenue en place au moyen d'une grille externe perforée 11 et d'une grille interne également perforée 12 fixées sur le fond supérieur et d'une tôle pleine 13 en partie inférieure. Le gaz 1 circule verticalement à la périphérie dans la zone libre externe 14 entre la virole cylindrique et la grille externe, traverse radialement la masse adsorbante 20 puis circule verticalement dans la zone libre interne 15 avant de quitter l'adsorbeur par le haut. La régénération s'effectue en sens inverse.
Pour éliminer le CO2 et l'eau de l'air, on utilise généralement des adsorbeurs, en parallèle, comprenant chacun deux lits : - un premier lit d'alumine activée ou de gel de silice, sur lequel s'adsorbe préférentiellement l'eau, et - un deuxième lit de tamis moléculaire, sur lequel s'adsorbe préférentiellement le CO2.
Chaque adsorbeur est donc constitué de trois grilles. Or, pour des raisons de construction mécanique, l'utilisation de ces 3 grilles entraine une limitation sur la hauteur de l'adsorbeur. En effet, le diamètre de ces adsorbeurs radiaux peut aller jusqu'à 6 ou 7 mètres, bien qu'il soit parfois impossible d'atteindre de telles tailles, souvent pour des raisons de transport. A diamètre d'adsorbeur fixé, il n'est pas toujours possible d'augmenter la hauteur de l'adsorbeur pour en augmenter la capacité à cause de l'assemblage de ces 3 grilles. Cet assemblage peut être effectué horizontalement, les grilles étant successivement enfilées, de manière concentrique, en partant de la grille interne. L'extrémité de chaque grille est successivement fixée sur un fond, l'autre extrémité étant libérée pour pouvoir enfiler la grille suivante. La déviation par rapport à l'horizontale de la première grille assemblée, c'est-à-dire la grille interne qui est aussi la plus flexible, ne doit pas excéder une certaine longueur afin de pouvoir passer la grille intermédiaire. Outre les problèmes de construction mécanique, l'emploi d'adsorbeurs radiaux de taille trop importante peut entrainer des mauvaises distributions gazeuses dans les lits du fait du fort gradient de débit le long de ces lits (dans l'espace de distribution externe).
D'autre part, si l'on considère un gaz contenant une très grande quantité d'eau, c'est à dire un gaz saturé à faible pression et à haute température, la quantité d'alumine nécessaire sera très importante, et relativement à cette quantité d'alumine la quantité de tamis sera faible. Cette disproportion tamis/alumine accentuera les difficultés de construction dudit adsorbeur radial, puisque les diamètres des grilles intérieures et intermédiaires seront rapprochés, ce qui limitera encore la hauteur maximale de l'adsorbeur. Par ailleurs, dans cette situation où les grilles internes et intermédiaires seraient proches, il serait difficile d'assurer une épaisseur régulière du lit de tamis du fait des non-idéalités et diverses déformations des grilles, ce qui pourrait conduire à des passages préférentiels dans les zones où l'épaisseur de tamis serait moindre.
Entant données les limitations mentionnées ci-dessus, plusieurs solutions sont envisagées afin de pouvoir traiter les débits pour lesquels une seule paire d'adsorbeurs 3 grilles ne le permet pas. Ces solutions sont décrites dans le document WO2008/078028, et consistent en l'ajout d'adsorbeurs radiaux en parallèle, l'utilisation de 3 bouteilles traitant chacune un débit moitié ou la mise en place de 2 paires d'adsorbeurs en parallèle.
Si l'on prend, comme exemple un débit à traiter représentant 800 000 Nm3/h d'air à 6 bar. Il n'est pas possible de traiter un tel débit à l'aide de deux adsorbeurs trois grilles. On choisira par exemple d'installer deux unités comprenant chacune deux adsorbeurs trois grilles et permettant de traiter chacune la moitié du débit concerné. Il faut par ailleurs un système de régulation de débit pour s'assurer que le débit d'air se sépare bien en deux entre les deux unités (débitmètres sur l'arrivée d'air avec vanne de régulation, et la même chose au niveau du gaz de régénération), ce qui génère de la perte de charge supplémentaire.
On notera également que chacune des deux unités doit être équipée de ses propres vannes de fonctionnement et de son propre réchauffeur de régénération.
Partant de là, un problème qui se pose est de fournir un procédé simplifié et amélioré de purification d'un flux gazeux, visant à éliminer l'eau et le dioxyde de carbone. Une solution de l'invention est un procédé de purification d'un flux de gaz d'alimentation comprenant un composé principal, de l'eau (H2O) et du dioxyde de carbone (CO2), ainsi que des impuretés dites secondaires, dans lequel : a) on introduit le flux de gaz d'alimentation dans au moins un adsorbeur radial 2 grilles contenant comme unique lit d'adsorption un lit d'alumine activée ou de gel de silice, sur lequel s'adsorbe préférentiellement l'H2O, b) on introduit le gaz issu de l'étape a) dans au moins un adsorbeur radial 2 grilles contenant comme unique lit d'adsorption un lit de tamis moléculaire, sur lequel s'adsorbe préférentiellement le CO2 et les impuretés secondaires, et c) on récupère un gaz issu de l'étape b) enrichi en composé principal et apte à subir une distillation cryogénique.
Par impuretés secondaires, on entend les oxydes d'azote et les hydrocarbures. L'invention présentée ici repose en partie sur la suppression de la grille intermédiaire, impliquant l'utilisation d'un seul adsorbant par bouteille. En l'absence de cette grille intermédiaire, on parlera alors d'adsorbeur « 2 grilles » ou mono-lit, permettant donc une construction beaucoup plus simple, moins coûteuse, autorisant un accroissement de la taille de l'adsorbeur et donc du débit d'air qu'il peut traiter, et solutionnant les éventuels problèmes de régularité de l'épaisseur du lit de tamis.
Selon le cas, le procédé selon l'invention peut présenter une ou plusieurs des caractéristiques suivantes :
- à l'étape b) le tamis moléculaire est une zéolite de type X,
- l'adsorbeur mis en œuvre à l'étape b) présente une taille inférieure ou égale à la taille de l'adsorbeur mis en œuvre à l'étape a) dans un rapport allant de 0,4 à 1,
- chaque adsorbeur est soumis à un cycle de pression/température, la durée de cycle du ou des adsorbeurs mis en œuvre à l'étape a) étant comprise entre 90 et 600 minutes et la durée du cycle du ou des adsorbeurs mis en œuvre dans l'étape b) étant inférieure ou égale à la durée du cycle mis en œuvre à l'étape a) dans un rapport compris entre 0,4 et 1, de préférence compris entre 0.5 et 0.8,
- le débit molaire horaire du flux de gaz d'alimentation traité est compris entre 100 000 Nm3/h et 1000 000 Nm3/h, - à l'étape b), on arrête les impuretés secondaires avec un taux d'arrêt compris entre 30% et 100%, de préférence compris 60 et 100%
- à l'étape a) on met en œuvre deux adsorbeurs radiaux 2 grilles, contenant comme unique lit d'adsorption un lit d'alumine activée ou de gel de silice, et fonctionnant de manière alternée (c'est à dire qu'un des adsorbeur est en phase de régénération pendant que l'autre est en phase de production et vice et versa), et/ou à l'étape b) on met en œuvre deux adsorbeurs radiaux 2 grilles, contenant comme unique lit d'adsorption un lit de tamis moléculaire, et fonctionnant de manière alternée,
- à l'étape a) on met en œuvre N couples d'adsorbeurs radiaux 2 grilles, contenant comme unique lit d'adsorption un lit d'alumine activée ou de gel de silice, les adsorbeurs d'un même couple fonctionnant de manière alternée et les N couples suivant parallèlement le même cycle de pression, et/ou en ce qu'à l'étape b) on met en œuvre N' couples d'adsorbeurs radiaux 2 grilles, contenant comme unique lit d'adsorption un lit de tamis moléculaire, les adsorbeurs d'un même couple fonctionnant de manière alternée et les N couples suivant parallèlement le même cycle de pression, avec N > 1 et N'≥ 1 ;
- le débit molaire horaire du flux de gaz d'alimentation traité est compris entre 100 000 Nm3/h et 3000 000 Nm3/h,
- les adsorbeurs mis en œuvre à l'étape a) sont régénérés périodiquement avec un gaz de régénération chauffé au moyen d'un premier réchauffeur et en ce que les adsorbeurs mis en œuvre à l'étape b) sont régénérés périodiquement avec un gaz de régénération chauffé au moyen d'un second réchauffeur,
- les adsorbeurs mis en œuvre aux étapes a) et b) sont régénérés périodiquement avec un gaz de régénération chauffé au moyen d'un unique réchauffeur,
- le gaz d'alimentation est de l'air et le composé principal de l'oxygène. De préférence, chaque adsorbeur a un diamètre supérieur à 4.5 m et pouvant aller jusqu'à 7 mètres.
D'autre part, la pression du flux de gaz d'alimentation est, de préférence, comprise entre 1 bar et 35 bar absolu.
On définit par taux d'arrêt en impuretés secondaires, le pourcentage d'impuretés secondaires entrées dans l'épuration qui a été retenu dans l'adsorbeur durant le cycle. Selon l'adsorbant et le type d'impureté considéré, durant un cycle, le taux d'impureté secondaires arrêté dans l'épuration varie de 30% à 100%.
Lorsqu'un profil d'impureté de type créneau entre dans un lit d'adsorption, le temps de traversé moyen de l'impureté est directement lié à la capacité d'adsorption du lit, alors que la déformation du front créneau est lié à la cinétique, aux effets thermiques ou aux effets de dispersion pouvant exister dans la colonne d'adsorption considérée. On distingue alors 3 zones dans le lit en question (figure 3) : une zone saturée en impureté où la quantité adsorbée par gramme d'adsorbant est maximale 3-1), une zone où la quantité adsorbée est inférieure à la quantité maximale adsorbable dans les conditions de pression et de température considérées 3-2), ainsi qu'une troisième zone où aucune impureté n'est adsorbée 3-3). La zone 3-1) est appelée zone saturée alors que la deuxième zone 3-2) est appelée « Mass Transfer Zone » = zone de transfert de masse ou MTZ
Lors de l'adsorption commune du CO2 et des impuretés secondaires, il se produit un effet d'adsorption compétitive, appelé coadsorption, où le CO2, du fait de l'importance des interactions électrostatiques avec l'adsorbant et de sa pression partielle très largement supérieure à celle des impuretés secondaires (par exemple, la pression partielle du N2O est environ 100 fois inférieure à celle du CO2 alors que leurs affinités respectives avec l'adsorbant sont similaires), gêne l'adsorption des impuretés secondaires. Au sein de la zone 3-1) saturée en CO2, la quantité adsorbée en impuretés secondaires est alors minimale, alors que dans la zone de transfert de masse 3-2), la quantité adsorbée d'impuretés secondaires est d'autant plus grande que la quantité adsorbée de CO2 est basse. On peut même observer localement une augmentation de la quantité adsorbée en impureté secondaire au niveau ou légèrement en aval de la MTZ du CO2 liée à l'augmentation de la pression partielle des impuretés secondaires poussées par l'avancement du front de CO2. On comprend dès lors que plus le cycle est court moins la zone saturée en CO2 sera importante relativement à la zone de transfert de masse, ce qui aura pour effet d'augmenter le taux d'arrêt en impuretés secondaires. Ce phénomène est illustré par la figure 4, représentant ce que deviendraient les importances relatives des zones saturée et de transfert de masse si le temps de cycle était divisé par 2. La présente invention a également pour objet une installation de purification d'un flux de gaz d'alimentation comprenant de l'oxygène, (O2), de l'eau (H2O) et du dioxyde de carbone (CO2), ladite installation comprenant au moins un adsorbeur radial contenant comme unique lit d'adsorption un lit d'alumine activée ou de gel de silice, et au moins un adsorbeur radial contenant comme unique lit d'adsorption un lit de tamis moléculaire, caractérisé en ce que les deux adsorbeurs radiaux sont placés en série.
De préférence, ladite installation comprend au moins un premier couple d'adsorbeurs radiaux, contenant comme unique lit d'adsorption un lit d'alumine activée ou de gel de silice et fonctionnant de manière alternée, et au moins un second couple d'adsorbeur radiaux, contenant comme unique lit d'adsorption un lit de tamis moléculaire et fonctionnant de manière alternée, le premier et le second couples d'adsorbeurs radiaux étant placés en série.
La figure 2 illustre une installation « en série » selon l'invention. Les adsorbeurs « A » sont des adsorbeurs contenant uniquement un lit d'alumine activée ou de gel de silice et les adsorbeurs « B » sont des adsorbeurs contenant uniquement un lit de tamis moléculaire.
Dans le procédé et l'installation selon l'invention, on met en œuvre des adsorbeurs contenant un seul lit d'adsorbant. Aussi, chacun de ces adsorbeurs radiaux ne comprend que deux grilles et non pas trois grilles comme les adsorbeurs radiaux de l'art antérieur mis en œuvre pour une purification similaire. La hauteur de ces adsorbeurs deux grilles se trouvent alors augmentées.
A titre d'exemple, à 6 bar, 300C et pour un diamètre proche de 6 mètres, le débit maximum traité à l'aide d'une unité comprenant 2 adsorbeurs 2 grilles est d'environ
700 000 Nm3/h, Afin de traiter un débit plus grand on choisirait d'utiliser 2 unités, en parallèle, comprenant chacune deux adsorbeurs 2 grilles, autrement dit à l'aide de quatre adsorbeurs.
Dans le procédé selon l'invention on peut traiter 850 000 Nm /h à l'aide de deux unités, en série, comprenant chacune deux adsorbeurs 2 grilles, autrement dit à l'aide de quatre adsorbeurs. De là, le procédé selon l'invention permet de traiter avec le même nombre d'adsorbeurs le débit considéré, tout en réduisant le coût de fabrication des adsorbeurs et en améliorant le taux d'arrêt en impuretés secondaires.
Le temps de cycle d'une unité standard 3 grilles est fixé par le temps de régénération de l'adsorbeur, lequel est conditionné, pour un débit de régénération disponible, par l'inertie thermique de l'adsorbeur surtout par la quantité d'eau adsorbée sur l'alumine. Dans le procédé selon l'invention, le temps de cycle de l'adsorbeur contenant un lit d'alumine activée ou de gel de silice sera donc proche de celui de l'unité standard contenant un lit d'alumine et un lit de tamis moléculaire. Le temps de cycle de l'adsorbeur contenant un lit de tamis moléculaire, pourra quand à lui être réduit puisqu'il correspondra essentiellement à l'inertie thermique. En effet, il n'y a ici plus d'eau à désorber, mais seulement du CO2 et des impuretés secondaires requérant une quantité d'énergie très faible
(en comparaison de l'énergie de désorption demandée par la régénération de l'importante quantité d'eau sur l'alumine). Ce temps de cycle plus court permettra de diminuer la taille de l'adsorbeur et donc son coût.
Dans le cadre d'une standardisation des tailles des adsorbeurs (et de gammes d'appareils), l'adsorbeur d'arrêt du CO2 pourra être un adsorbeur d'arrêt de l'eau d'une taille inférieure.
Cette réduction du cycle pourra également présenter un intérêt pour l'arrêt des impuretés secondaires car la zone de transfert de masse du CO2 sera d'autant plus importante, relativement à la zone de saturation, que le temps de cycles est court. La coadsorption de CO2 et des impuretés secondaires étant moins compétitive dans la MTZ, le taux d'arrêt des impuretés secondaires en sera amélioré. Bien entendu cette importance relative de la MTZ par rapport à la zone saturée entraîne également une non-linéarité défavorable du dimensionnement en CO2 du lit en fonction du temps de cycle, autrement dit une division par deux du temps de cycle n'entrainera pas une division par deux du volume d'adsorbant nécessaire du fait de la cinétique d'adsorption.
Dans le procédé selon l'invention, on n'a plus besoin d'un système de régulation de débit car tout le débit d'air traverse les adsorbeurs en série. On notera que chaque adsorbeur ou couple d'adsorbeurs est équipée de ses propres vannes de fonctionnement et de son propre réchauffeur de régénération. La taille du réchauffeur sera différente selon qu'on régénère l'alumine ou le tamis.
En partant du principe que les adsorbeurs contenant un seul lit seront dimensionnées de telle sorte que la perte de charge des deux adsorbeurs en série soit proche de celle que l'on aurait sur des adsorbeurs standards (contenant deux lits) en parallèle (l'épaisseur de lit de l' adsorbeur tout-tamis sera relativement faible), avec une régénération indépendante des deux couples d'adsorbeurs, on s'attendra à une diminution de la perte de charge en régénération. On peut aussi imaginer des temps de cycle et de chauffage tel qu'un seul réchauffeur est utile pour régénérer l'alumine ou le gel de silice et le tamis, soit séquentiellement, soit en même temps (la durée pour le tamis restant néanmoins plus courte que celle pour l'alumine).
En conclusion, outre l'avantage en termes de coût et simplicité de fabrication cité précédemment, le procédé selon l'invention présente l'avantage de proposer un temps de cycle différent selon l'adsorbeur considéré : le temps de cycle d'un adsorbeur contenant uniquement un tamis moléculaire sera plus court, ce qui donnera un avantage en termes de taux d'arrêt en impuretés secondaires.

Claims

Revendications
1. Procédé de purification d'un flux de gaz d'alimentation comprenant un composé principal, de l'eau (H2O) et du dioxyde de carbone (CO2), ainsi que des impuretés dites secondaires, dans lequel : a) on introduit le flux de gaz d'alimentation dans au moins un adsorbeur radial 2 grilles contenant comme unique lit d'adsorption un lit d'alumine activée ou de gel de silice, sur lequel s'adsorbe préférentiellement l'H2O, b) on introduit le gaz issu de l'étape a) dans au moins un adsorbeur radial 2 grilles contenant comme unique lit d'adsorption un lit de tamis moléculaire, sur lequel s'adsorbe préférentiellement le CO2 et les impuretés secondaires, et c) on récupère un gaz issu de l'étape b) enrichi en composé principal et apte à subir une distillation cryogénique.
2. Procédé selon la revendication 1, caractérisé en ce qu'à l'étape b) le tamis moléculaire est une zéolite de type X.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que l'adsorbeur mis en œuvre à l'étape b) présente une taille inférieure ou égale à la taille de l'adsorbeur mis en œuvre à l'étape a) dans un rapport allant de 0,4 à 1.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que chaque adsorbeur est soumis à un cycle de pression/température, la durée de cycle du ou des adsorbeurs mis en œuvre à l'étape a) étant comprise entre 90 et 600 minutes et la durée du cycle du ou des adsorbeurs mis en œuvre dans l'étape b) étant inférieure ou égale à la durée du cycle mis en œuvre à l'étape a) dans un rapport compris entre 0,4 et 1.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'à l'étape a) on met en œuvre deux adsorbeurs radiaux 2 grilles, contenant comme unique lit d'adsorption un lit d'alumine activée ou de gel de silice, et fonctionnant de manière alternée, et/ou en ce qu'à l'étape b) on met en œuvre deux adsorbeurs radiaux 2 grilles, contenant comme unique lit d'adsorption un lit de tamis moléculaire, et fonctionnant de manière alternée.
6. Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'à l'étape a) on met en œuvre N couples d'adsorbeurs radiaux 2 grilles, contenant comme unique lit d'adsorption un lit d'alumine activée ou de gel de silice, les adsorbeurs d'un même couple fonctionnant de manière alternée et les N couples suivant parallèlement le même cycle de pression , et/ou en ce qu'à l'étape b) on met en œuvre N' couples d'adsorbeurs radiaux 2 grilles, contenant comme unique lit d'adsorption un lit de tamis moléculaire, les adsorbeurs d'un même couple fonctionnant de manière alternée et les N' couples suivant parallèlement le même cycle de pression, avec N > 1 et N'≥ 1.
7. Procédé selon la revendication 6, caractérisé en ce que le débit molaire horaire du flux de gaz d'alimentation traité est compris entre 100 000 NmVh et 3 000 000 Nm3/h.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que les adsorbeurs mis en œuvre à l'étape a) sont régénérés périodiquement avec un gaz de régénération chauffé au moyen d'un premier réchauffeur et en ce que les adsorbeurs mis en œuvre à l'étape b) sont régénérés périodiquement avec un gaz de régénération chauffé au moyen d'un second réchauffeur.
9. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que les adsorbeurs mis en œuvre aux étapes a) et b) sont régénérés périodiquement avec un gaz de régénération chauffé au moyen d'un unique réchauffeur.
10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que le gaz d'alimentation est de l'air et le composé principal de l'oxygène.
11. Installation de purification d'un flux de gaz d'alimentation comprenant un composé principal, de l'eau (H2O) et du dioxyde de carbone (CO2) ainsi que des impuretés dites secondaires (CnHm, Oxydes d'azotes), ladite installation comprenant au moins un adsorbeur radial 2 grilles contenant comme unique lit d'adsorption un lit d'alumine activée ou de gel de silice, et au moins un adsorbeur radial 2 grilles contenant comme unique lit d'adsorption un lit de tamis moléculaire, caractérisé en ce que les deux adsorbeurs radiaux sont placés en série.
12. Installation selon la revendication 11, caractérisé en ce que ladite installation comprend au moins un premier couple d'adsorbeurs radiaux 2 grilles, contenant comme unique lit d'adsorption un lit d'alumine activée ou de gel de silice et fonctionnant de manière alternée, et au moins un second couple d'adsorbeur radiaux 2 grilles, contenant comme unique lit d'adsorption un lit de tamis moléculaire et fonctionnant de manière alternée, le premier et le second couples d'adsorbeurs radiaux étant placés en série.
PCT/FR2009/052144 2008-11-18 2009-11-06 Adsorbeurs radiaux monolits en serie WO2010058112A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP09768156A EP2358461A1 (fr) 2008-11-18 2009-11-06 Adsorbeurs radiaux monolits en serie
JP2011543795A JP2012509174A (ja) 2008-11-18 2009-11-06 直列の単床半径方向吸着装置
US13/129,976 US20110219950A1 (en) 2008-11-18 2009-11-06 Single-bed radial adsorbers in series
CA2743951A CA2743951A1 (fr) 2008-11-18 2009-11-06 Adsorbeurs radiaux monolits en serie
CN2009801459854A CN102215937A (zh) 2008-11-18 2009-11-06 串联式单床层径向吸附塔
AU2009317089A AU2009317089A1 (en) 2008-11-18 2009-11-06 Single-bed radial adsorbers in series
ZA2011/01905A ZA201101905B (en) 2008-11-18 2011-03-11 Single-bed radial adsorbers in series

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0857819A FR2938451B1 (fr) 2008-11-18 2008-11-18 Adsorbeurs radiaux monolits en serie
FR0857819 2008-11-18

Publications (1)

Publication Number Publication Date
WO2010058112A1 true WO2010058112A1 (fr) 2010-05-27

Family

ID=40810714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/052144 WO2010058112A1 (fr) 2008-11-18 2009-11-06 Adsorbeurs radiaux monolits en serie

Country Status (9)

Country Link
US (1) US20110219950A1 (fr)
EP (1) EP2358461A1 (fr)
JP (1) JP2012509174A (fr)
CN (1) CN102215937A (fr)
AU (1) AU2009317089A1 (fr)
CA (1) CA2743951A1 (fr)
FR (1) FR2938451B1 (fr)
WO (1) WO2010058112A1 (fr)
ZA (1) ZA201101905B (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3024376B1 (fr) * 2014-08-01 2020-07-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Adsorbeur avec secheur rotatif
CN104475067A (zh) * 2014-11-25 2015-04-01 复旦大学 一种利用超临界二氧化碳清洗大孔吸附树脂的方法
TWI552957B (zh) * 2014-12-15 2016-10-11 財團法人工業技術研究院 二氧化碳吸附與回收系統及方法
CN104958992B (zh) * 2015-07-06 2017-12-29 陶器 延长活性炭使用寿命的装置、其使用方法及应用
CN104958994B (zh) * 2015-07-06 2018-05-01 陶器 含VOCs废气的处理***及处理方法
RU2613914C9 (ru) * 2015-12-11 2017-07-18 Игорь Анатольевич Мнушкин Способ переработки природного углеводородного газа
CN106925077A (zh) * 2015-12-29 2017-07-07 青岛道空优科技有限公司 一种高原延长分子筛使用寿命的方法
CN111947395A (zh) * 2020-06-30 2020-11-17 日照钢铁控股集团有限公司 一种大型空分用离心空压机***
US11596895B2 (en) 2020-07-17 2023-03-07 Air Products And Chemicals, Inc. Radial adsorber, adsorption system, and adsorption methods
RU2765821C1 (ru) * 2021-06-01 2022-02-03 Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный технологический университет» (ФГБОУ ВО «КубГТУ») Установка для подготовки природного газа
US20230027070A1 (en) 2021-07-21 2023-01-26 Air Products And Chemicals, Inc. Air separation apparatus, adsorber, and method
US20230087673A1 (en) 2021-09-23 2023-03-23 Air Products And Chemicals, Inc. Pre-purification arrangement for air separation and method of hybrid air purification
CN114939326B (zh) * 2022-06-07 2023-07-28 中冶华天工程技术有限公司 一塔双用新型分子筛吸附器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3738084A (en) 1971-02-24 1973-06-12 Air Liquide Adsorption process and an installation therefor
US4249915A (en) * 1979-05-30 1981-02-10 Air Products And Chemicals, Inc. Removal of water and carbon dioxide from air
US4541851A (en) 1983-02-28 1985-09-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Reactor and apparatus for purifying by adsorption
US5593475A (en) * 1995-04-13 1997-01-14 Liquid Air Engineering Corporation Mixed bed adsorber
WO2003041858A1 (fr) * 2001-11-12 2003-05-22 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Adsorbant zeolitique au baryum et calcium pour la purification de gaz, en particulier de l'air
US6638340B1 (en) * 2002-03-27 2003-10-28 Uop Llc Composite adsorbents for air purification
EP1417995A1 (fr) * 2002-10-30 2004-05-12 Air Products And Chemicals, Inc. Procédé et dispositif d'adsorption d'oxyde nitreux d'un courant gazeux d'alimentation
EP1638669A1 (fr) 2003-06-27 2006-03-29 L'Air Liquide Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et Exploitation des Procédés Georges Claude Procede de prepurification d'air par cycle tsa accelere
WO2008078028A2 (fr) 2006-12-14 2008-07-03 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Adsorbeurs radiaux installes en parallele
FR2911077A1 (fr) * 2007-01-05 2008-07-11 Air Liquide Procede de purification ou de separatiion utilisant plusieurs adsorbeurs decales en phase

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259097A (en) * 1979-12-26 1981-03-31 Siemens-Allis, Inc. Filtering means for arc suppressing gas system
JPS607919A (ja) * 1983-06-25 1985-01-16 Kawasaki Steel Corp 吸着法を使用して一酸化炭素を含む混合ガス中の二酸化炭素を分離除去する方法
DE3518367A1 (de) * 1985-05-22 1986-11-27 Linde Ag, 6200 Wiesbaden Adsorbereinheit
US4689062A (en) * 1986-02-24 1987-08-25 The Boc Group, Inc. Argon recovery from ammonia plant purge gas utilizing a combination of cryogenic and non-cryogenic separating means
JPH01176416A (ja) * 1987-12-29 1989-07-12 Osaka Gas Co Ltd 燃焼排ガスの清浄化方法
FR2679787B1 (fr) * 1991-07-31 1994-04-15 Air Liquide Adsorbeur a lits d'adsorbants annulaires superposes.
DE4232000C2 (de) * 1991-09-24 1995-05-11 Matsushita Electric Works Ltd Vorrichtung zur Zuführung eines konzentrierten CO¶2¶ Gases in ein System zur Einmischung von CO¶2¶ in Badewasser
GB9303844D0 (en) * 1993-02-25 1993-04-14 Boc Group Plc Purification method and apparatus
JPH09168715A (ja) * 1995-12-20 1997-06-30 Hitachi Ltd 空気分離用の前処理装置
US6086659A (en) * 1999-01-29 2000-07-11 Air Products And Chemicals, Inc. Radial flow adsorption vessel
US7311763B2 (en) * 2005-04-22 2007-12-25 David Lloyd Neary Gas separation vessel apparatus
CN201150836Y (zh) * 2008-01-15 2008-11-19 刘金治 二氧化碳吸附干燥塔
US8101133B2 (en) * 2010-02-25 2012-01-24 Praxair Technology, Inc. Radial flow reactor
US8313561B2 (en) * 2010-10-05 2012-11-20 Praxair Technology, Inc. Radial bed vessels having uniform flow distribution

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3738084A (en) 1971-02-24 1973-06-12 Air Liquide Adsorption process and an installation therefor
US4249915A (en) * 1979-05-30 1981-02-10 Air Products And Chemicals, Inc. Removal of water and carbon dioxide from air
US4541851A (en) 1983-02-28 1985-09-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Reactor and apparatus for purifying by adsorption
US5593475A (en) * 1995-04-13 1997-01-14 Liquid Air Engineering Corporation Mixed bed adsorber
WO2003041858A1 (fr) * 2001-11-12 2003-05-22 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Adsorbant zeolitique au baryum et calcium pour la purification de gaz, en particulier de l'air
US6638340B1 (en) * 2002-03-27 2003-10-28 Uop Llc Composite adsorbents for air purification
EP1417995A1 (fr) * 2002-10-30 2004-05-12 Air Products And Chemicals, Inc. Procédé et dispositif d'adsorption d'oxyde nitreux d'un courant gazeux d'alimentation
EP1638669A1 (fr) 2003-06-27 2006-03-29 L'Air Liquide Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et Exploitation des Procédés Georges Claude Procede de prepurification d'air par cycle tsa accelere
WO2008078028A2 (fr) 2006-12-14 2008-07-03 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Adsorbeurs radiaux installes en parallele
FR2911077A1 (fr) * 2007-01-05 2008-07-11 Air Liquide Procede de purification ou de separatiion utilisant plusieurs adsorbeurs decales en phase

Also Published As

Publication number Publication date
AU2009317089A1 (en) 2010-05-27
EP2358461A1 (fr) 2011-08-24
JP2012509174A (ja) 2012-04-19
ZA201101905B (en) 2011-12-28
CN102215937A (zh) 2011-10-12
US20110219950A1 (en) 2011-09-15
FR2938451A1 (fr) 2010-05-21
FR2938451B1 (fr) 2019-11-01
CA2743951A1 (fr) 2010-05-27

Similar Documents

Publication Publication Date Title
FR2938451B1 (fr) Adsorbeurs radiaux monolits en serie
FR2775198A1 (fr) Procede et dispositif de purification de gaz par adsorption a lits horizontaux fixes
EP2129449B1 (fr) Procédé et installation de purification ou de séparation utilisant plusieurs adsorbeurs décalés en phase
EP1638669A1 (fr) Procede de prepurification d'air par cycle tsa accelere
WO2015145001A1 (fr) Installation et procede de purification par adsorption d'un flux gazeux comprenant une impurete corrosive
WO2010001038A2 (fr) Traitement de gaz humide contenant des poussieres
WO2016016543A1 (fr) Adsorbeur avec secheur rotatif
EP1458461A1 (fr) Procede de traitement par adsorption d'un melange gazeux
EP3928043A1 (fr) Installation et procédé de séparation des gaz de l'air mettant en oeuvre un adsorbeur de forme parallélépipédique
JP4590287B2 (ja) 空気液化分離装置における原料空気の精製方法
EP2139807A2 (fr) Ecretement des pics d'impurete
FR3093008A1 (fr) Installation et procédé de séparation des gaz de l’air à basse pression
EP2179776B1 (fr) Repressurisation d'un VSA CO2 traitant un mélange gazeux comprenant un combustible
WO2013004932A1 (fr) Procédé de purification d'un flux gazeux avec contrôle de la pureté
WO2008078028A2 (fr) Adsorbeurs radiaux installes en parallele
FR3110722A3 (fr) Procédé de gestion d’une unité de traitement d’un gaz par adsorption à modulation de pression
FR2790823A1 (fr) Procede et installation de purification et de separation d'air par voie cryogenique sans pre-refroidissement
WO1999054023A1 (fr) Procede de purification de gaz par adsorption avec pressions et temperatures controllees
WO2023134998A1 (fr) Installation de récupération de co2 contenu dans un flux gazeux d'alimentation
FR2977506A1 (fr) Procede de purification d'un flux gazeux avec controle de la purete
EP3274073A1 (fr) Procédé de production d'oxygène par vpsa
WO2016030602A1 (fr) Épuration avec circulation d'un adsorbant dans un échangeur
FR2837722A1 (fr) Procede psa de purification par adsorption d'un gaz pauvre en hydrogene
JPH0483508A (ja) 窒素酸化物を含む原料ガスからの二酸化炭素回収用圧力スイング吸着装置
FR3013608A1 (fr) Materiau adsorbant zeolitique de type x ou lsx

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980145985.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09768156

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009768156

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1902/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2743951

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2011543795

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009317089

Country of ref document: AU

Ref document number: 13129976

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2009317089

Country of ref document: AU

Date of ref document: 20091106

Kind code of ref document: A