WO2010056068A9 - 무선 통신 시스템에서 신호 전송 방법 및 장치 - Google Patents

무선 통신 시스템에서 신호 전송 방법 및 장치 Download PDF

Info

Publication number
WO2010056068A9
WO2010056068A9 PCT/KR2009/006696 KR2009006696W WO2010056068A9 WO 2010056068 A9 WO2010056068 A9 WO 2010056068A9 KR 2009006696 W KR2009006696 W KR 2009006696W WO 2010056068 A9 WO2010056068 A9 WO 2010056068A9
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
information
resource
reference signal
resource index
Prior art date
Application number
PCT/KR2009/006696
Other languages
English (en)
French (fr)
Other versions
WO2010056068A2 (ko
WO2010056068A3 (ko
Inventor
한승희
이문일
Original Assignee
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자주식회사 filed Critical 엘지전자주식회사
Priority to CN200980149691.9A priority Critical patent/CN102246446B/zh
Priority to US13/128,867 priority patent/US8908793B2/en
Priority to KR1020117010859A priority patent/KR101243508B1/ko
Publication of WO2010056068A2 publication Critical patent/WO2010056068A2/ko
Publication of WO2010056068A9 publication Critical patent/WO2010056068A9/ko
Publication of WO2010056068A3 publication Critical patent/WO2010056068A3/ko
Priority to US14/533,809 priority patent/US9698953B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J13/18Allocation of orthogonal codes

Definitions

  • the present invention relates to wireless communications, and more particularly, to a method and apparatus for transmitting signals in a wireless communication system.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • the purpose of a wireless communication system is to enable a large number of users to communicate reliably regardless of location and mobility.
  • a wireless channel is a Doppler due to path loss, noise, fading due to multipath, intersymbol interference (ISI), or mobility of UE.
  • ISI intersymbol interference
  • MIMO multiple input multiple output
  • MIMO techniques include spatial multiplexing, transmit diversity, beamforming, and the like.
  • the MIMO channel matrix according to the number of receive antennas and the number of transmit antennas may be decomposed into a plurality of independent channels. Each independent channel is called a transmission layer or stream.
  • the number of transport layers is called rank.
  • ITU International Telecommunication Union
  • IP Internet
  • 3GPP 3rd Generation Partnership Project
  • the LTE-A system is progressing toward improving the completeness of the LTE system, and is expected to maintain backward compatibility with the LTE system. This is because the compatibility between the LTE-A system and the LTE system is convenient from the user's point of view, and the operator can also reuse the existing equipment.
  • a wireless communication system is a single carrier system that supports one carrier. Since the transmission rate is proportional to the transmission bandwidth, the transmission bandwidth must be increased to support the high rate. However, frequency allocation of large bandwidths is not easy except in some regions of the world.
  • spectral aggregation or bandwidth aggregation, also known as carrier aggregation
  • Spectral aggregation technology is a technique that combines a plurality of physically non-continuous bands in the frequency domain and uses the effect of using a logically large band.
  • spectrum aggregation technology multiple carriers can be supported in a wireless communication system.
  • a wireless communication system supporting multiple carriers is called a multiple carrier system.
  • the carrier may be called in other terms such as radio frequency (RF), component carrier (CC), and the like.
  • Time division multiplexing TDM
  • frequency division multiplexing FDM
  • code division multiplexing CDM
  • CDM and / or FDM may be used to simultaneously communicate with each of a base station and a plurality of terminals.
  • a combination of any one or more of (1) time, (2) frequency, and (3) sequence becomes a resource for wireless communication.
  • a method of transmitting signals such as information signals and reference signals using multiple resources may be problematic.
  • An object of the present invention is to provide a signal transmission method and apparatus in a wireless communication system.
  • an information processor generating a first information sequence based on a first transmission symbol and the first resource index, and generating a second information sequence based on a second transmission symbol and the second resource index.
  • a reference signal generator for generating a different reference signal sequence according to whether the first resource block indicated by the first resource index and the second resource block indicated by the second resource index are the same, the first information sequence, and the second information
  • a transmitter comprising an antenna for transmitting a signal generated from a sequence and the reference signal sequence.
  • a signal transmission method performed by a transmitter in a wireless communication system.
  • the method may further include generating a first information sequence based on a first transmission symbol and the first resource index, and generating a second information sequence based on a second transmission symbol and the second resource index.
  • Generating a different reference signal sequence according to whether the first resource block indicated by the index and the second resource block indicated by the second resource index are the same and the first information sequence, the second information sequence, and the reference. Transmitting a signal generated from the signal sequence.
  • FIG. 1 is a block diagram illustrating a wireless communication system.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • FIG. 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • 5 is an exemplary diagram illustrating a resource grid for one uplink slot.
  • FIG. 6 shows an example of a structure of a downlink subframe.
  • FIG. 8 is a block diagram illustrating an example of a transmitter structure.
  • FIG. 9 is a block diagram illustrating an example of an information processor structure included in a transmitter.
  • PUCCH physical uplink control channel
  • CP normal cyclic prefix
  • FIG. 11 illustrates an example of PUCCH format 1 / 1a / 1b transmission in case of an extended CP.
  • FIG. 13 shows an example of PUCCH format 2 transmission in case of an extended CP.
  • FIG. 14 is a block diagram illustrating an example of a transmitter structure including two antennas.
  • 15 is a block diagram illustrating an example of a structure of a part of a transmitter including two antennas.
  • 16 is a block diagram illustrating an example of a structure of a part of a transmitter including a single antenna.
  • FIG 17 shows an example in which the first resource block and the second resource block are different.
  • 19 is a block diagram illustrating another example of a structure of a part of a transmitter including two antennas.
  • 20 is a block diagram illustrating an apparatus for wireless communication in which an embodiment of the present invention is implemented.
  • the following techniques include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), and the like. It can be used for various multiple access schemes.
  • SC-FDMA is a method in which an inverse fast Fourier transform (IFFT) is performed on complex fourier transform (DFT) spread complex symbols, also called DFT spread-orthogonal frequency division multiplexing (DFTS-OFDM).
  • IFFT inverse fast Fourier transform
  • DFT complex fourier transform
  • DFTS-OFDM DFT spread-orthogonal frequency division multiplexing
  • the following technique may be used for a multiple access scheme, such as clustered SC-FDMA, NxSC-FDMA, which is a variation of SC-FDMA.
  • Clustered SC-FDMA is also referred to as clustered DFTS-OFDM, in which DFT spread complex symbols are divided into a plurality of subblocks, and the plurality of subblocks are distributed in a frequency domain and mapped to subcarriers.
  • N ⁇ SC-FDMA is also called a chunk specific DFTS-OFDM in that a code block is divided into a plurality of chunks, and a DFT and an IFFT are performed in chunks.
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented by a wireless technology such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • Wi-Fi Wi-Fi
  • WiMAX IEEE 802.16
  • E-UTRA Evolved UTRA
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A Advanced is the evolution of 3GPP LTE.
  • FIG. 1 is a block diagram illustrating a wireless communication system.
  • the wireless communication system 10 includes at least one base station 11 (BS).
  • Each base station 11 provides a communication service for a particular geographic area (generally called a cell) 15a, 15b, 15c.
  • the cell can in turn be divided into a number of regions (called sectors).
  • a user equipment (UE) 12 may be fixed or mobile, and may include a mobile station (MS), a user terminal (UT), a subscriber station (SS), a wireless device, a personal digital assistant (PDA), It may be called other terms such as a wireless modem and a handheld device.
  • the base station 11 generally refers to a fixed station communicating with the terminal 12, and may be called in other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like. have.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like. have.
  • downlink means communication from the base station to the terminal
  • uplink means communication from the terminal to the base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal, and a receiver may be part of a base station.
  • Heterogeneous network refers to a network in which a relay station, a femto cell and / or a pico cell is disposed.
  • downlink may mean communication from a base station to a repeater, a femto cell, or a pico cell.
  • the downlink may mean communication from the repeater to the terminal.
  • the downlink may mean communication from the first relay to the second relay.
  • uplink may mean communication from a repeater, a femtocell or a picocell to a base station.
  • the uplink may mean communication from the terminal to the repeater.
  • uplink may mean communication from a second repeater to a first repeater.
  • the wireless communication system can support multiple antennas.
  • the transmitter may use a plurality of transmit antennas, and the receiver may use a plurality of receive antennas.
  • a transmit antenna refers to a physical or logical antenna used to transmit one signal or stream
  • a receive antenna refers to a physical or logical antenna used to receive one signal or stream. If the transmitter and receiver use multiple antennas, the wireless communication system may be called a multiple input multiple output (MIMO) system.
  • MIMO multiple input multiple output
  • uplink and / or downlink hybrid automatic repeat request may be supported.
  • a channel quality indicator CQI may be used for link adaptation.
  • the process of wireless communication is preferably implemented in a plurality of vertical independent layers rather than in a single layer.
  • a plurality of vertical hierarchies is called a protocol stack.
  • the protocol stack may refer to an open system interconnection (OSI) model, which is a model for protocol structures well known in communication systems.
  • OSI open system interconnection
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • the user plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • data is moved between different physical layers (PHYs), that is, between physical layers of a transmitting side and a receiving side, through a physical channel.
  • the physical layer is also called a first layer (L1).
  • the physical layer is connected to the upper MAC (medium access control) layer through a transport channel (transport channel).
  • Transport channel transport channel
  • Data is transferred between the MAC layer and the physical layer through a transport channel.
  • the physical layer provides an information transfer service to a MAC layer and a higher layer using a transport channel.
  • the MAC layer provides a service to an RLC layer, which is a higher layer, through a logical channel.
  • the radio link control (RLC) layer supports the transmission of reliable data.
  • the packet data convergence protocol (PDCP) layer performs header compression that reduces the IP packet header size.
  • the MAC layer, RLC layer and PDCP layer are also called second layer (layer 2, L2).
  • the radio resource control (RRC) layer is defined only in the control plane.
  • the RRC layer is also called a third layer (layer 3, L3).
  • the RRC layer serves to control radio resources between the terminal and the network. To this end, the RRC layer exchanges RRC messages between the UE and the network.
  • the RRC layer is responsible for controlling logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
  • the radio bearer refers to a logical path provided by the first layer and the second layer for data transmission between the terminal and the network.
  • the establishment of a radio bearer means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • the radio bearer may be further divided into a signaling radio bearer (SRB) and a data radio bearer (DRB).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane. If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC of the network, the terminal is in the RRC connected mode (RRC connected mode), otherwise it is in the RRC idle mode (RRC idle mode).
  • RRC connection RRC connection
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • a radio frame consists of 10 subframes, and one subframe consists of two slots. Slots in a radio frame are numbered with slots # 0 through # 19. The time taken for one subframe to be transmitted is called a transmission time interval (TTI). TTI may be referred to as a scheduling unit for data transmission. For example, one radio frame may have a length of 10 ms, one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
  • the structure of the radio frame is merely an example, and the number of subframes included in the radio frame or the number of slots included in the subframe may be variously changed.
  • 5 is an exemplary diagram illustrating a resource grid for one uplink slot.
  • an uplink slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in a time domain and an N (UL) resource block (RB) in a frequency domain. It includes.
  • the OFDM symbol is used to represent one symbol period, and may be called another name such as an OFDMA symbol or an SC-FDMA symbol according to a multiple access scheme.
  • the number N (UL) of resource blocks included in an uplink slot depends on an uplink transmission bandwidth set in a cell.
  • One resource block includes a plurality of subcarriers in the frequency domain.
  • Each element on the resource grid is called a resource element (RE).
  • Resource elements on the resource grid may be identified by index pairs (k, l) in the slot.
  • an example of one resource block includes 7 ⁇ 12 resource elements including 7 OFDM symbols in the time domain and 12 subcarriers in the frequency domain, but the number of OFDM symbols and the number of subcarriers in the resource block is equal to this. It is not limited.
  • the number of OFDM symbols may be variously changed according to the length of a cyclic prefix (CP), subcarrier spacing, and the like. For example, the number of OFDM symbols is 7 for a normal CP and the number of OFDM symbols is 6 for an extended CP.
  • CP cyclic prefix
  • the resource grid for one uplink slot of FIG. 5 may also be applied to the resource grid for the downlink slot.
  • FIG. 6 shows an example of a structure of a downlink subframe.
  • the downlink subframe includes two consecutive slots.
  • the preceding 3 OFDM symbols of the first slot (1st slot) in the downlink subframe is a control region, and the remaining OFDM symbols are a data region.
  • the control region includes 3 OFDM symbols.
  • a physical downlink shared channel may be allocated to the data region. Downlink data is transmitted on the PDSCH.
  • the downlink data may be a transport block which is a data block for a downlink shared channel (DL-SCH) which is a transport channel transmitted during TTI.
  • the base station may transmit downlink data through one antenna or multiple antennas to the terminal.
  • a base station may transmit one codeword through one antenna or multiple antennas to a terminal, and may transmit two codewords through multiple antennas. Up to 2 codewords are supported in 3GPP LTE. Codewords are encoded bits in which channel coding is performed on information bits corresponding to information. Modulation may be performed for each codeword.
  • control channels such as a physical control format indicator channel (PCFICH), a physical HARQ indicator channel (PHICH), and a physical downlink control channel (PDCCH) may be allocated.
  • PCFICH physical control format indicator channel
  • PHICH physical HARQ indicator channel
  • PDCCH physical downlink control channel
  • the PCFICH carries information on the number of OFDM symbols used for transmission of PDCCHs in a subframe to the UE.
  • the number of OFDM symbols used for PDCCH transmission may be changed every subframe.
  • the number of OFDM symbols used for PDCCH transmission in a subframe may be one of 1, 2, and 3. If the downlink transmission bandwidth is smaller than a specific threshold, the number of OFDM symbols used for PDCCH transmission in a subframe may be one of 2, 3, and 4.
  • the PHICH carries HARQ acknowledgment (NACK) / negative acknowledgment (NACK) for uplink data.
  • the control region consists of a set of a plurality of control channel elements (CCE). If the total number of CCEs constituting the CCE set in the downlink subframe is N (CCE), the CCE is indexed from 0 to N (CCE) -1.
  • the CCE corresponds to a plurality of resource element groups. Resource element groups are used to define control channel mappings to resource elements. One resource element group is composed of a plurality of resource elements.
  • the PDCCH is transmitted on an aggregation of one or several consecutive CCEs. A plurality of PDCCHs may be transmitted in the control region. According to the number of CCEs constituting the CCE group, the PDCCH format and the number of possible PDCCH bits are determined.
  • the number of CCEs constituting the CCE aggregation used for PDCCH transmission is called a CCE aggregation level.
  • the CCE aggregation level is a CCE unit for searching a PDCCH.
  • the size of the CCE aggregation level is defined by the number of adjacent CCEs.
  • the CCE aggregation level may be an element of ⁇ 1, 2, 4, 8 ⁇ .
  • the PDCCH carries downlink control information.
  • the downlink control information includes downlink scheduling information, uplink scheduling information, or an uplink power control command.
  • the downlink scheduling information is also called a downlink grant, and the uplink scheduling information is also called an uplink grant.
  • the base station does not provide the terminal with information about where the PDCCH of the terminal is in the subframe.
  • the UE finds the PDCCH of the UE by monitoring a set of PDCCH candidates in every subframe.
  • the monitoring means that the terminal attempts to decode each of the PDCCH candidates according to all control information formats monitored. This is called blind decoding or blind detection.
  • the base station when the base station transmits downlink data to the terminal on the PDSCH in the subframe, the base station carries a downlink grant used for scheduling of the PDSCH on the PDCCH in the subframe.
  • the UE may first detect the PDCCH transmitting the downlink grant through blind decoding.
  • the UE may read downlink data transmitted on a PDSCH based on the downlink grant.
  • an uplink subframe may be divided into a control region to which a physical uplink control channel (PUCCH) carrying uplink control information is allocated and a data region to which a physical uplink shared channel (PUSCH) carrying user data is allocated.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • PUCCH for one UE is allocated to an RB pair in a subframe.
  • Resource blocks belonging to a resource block pair occupy different subcarriers in each of a first slot and a second slot.
  • the frequency occupied by RBs belonging to the RB pair allocated to the PUCCH is changed based on a slot boundary. That is, the RBs allocated to the PUCCH are hopped at a slot level.
  • resource block hopping at the slot level is called frequency hopping.
  • m is a position index indicating a frequency domain position of a resource block pair allocated to a PUCCH in a subframe.
  • the PUSCH is mapped to an uplink shared channel (UL-SCH) which is a transport channel.
  • the uplink control information transmitted on the PUCCH includes HARQ ACK / NACK, a CQI indicating a downlink channel state, a scheduling request (SR) which is an uplink radio resource allocation request, and the like.
  • the CQI is a concept including not only the CQI but also a precoding matrix indicator (PMI) and a rank indicator (RI).
  • Time division multiplexing TDM
  • frequency division multiplexing FDM
  • code division multiplexing CDM
  • CDM and / or FDM may be used to simultaneously communicate with each of a base station and a plurality of terminals.
  • CDM is a generic term for multiplexing by orthogonal or quasi-orthogonal sequences. That is, the sequences used for the CDM are not necessarily orthogonal to each other. Sequences with low correlation to each other can also be used for the CDM.
  • resources used for information transmission are sequence and / or frequency resources.
  • the resource is a sequence
  • CDM and FDM are used together, the resource is a sequence and frequency resource.
  • frequency resources and sequences will be described in detail.
  • the resource block described above is an example of frequency resources. If resource blocks are different in the same time, it is because frequency resources are different. Hereinafter, for convenience of description, a resource block is used as a general frequency resource.
  • the sequence can be any sequence, without particular limitation.
  • the sequence may be selected from a sequence set having a plurality of sequences as elements.
  • the plurality of sequences included in the sequence set may be orthogonal to each other or may have low correlation with each other.
  • a sequence set is called an orthogonal sequence set composed of orthogonal sequences.
  • Each orthogonal sequence belonging to an orthogonal sequence set corresponds one to one to one orthogonal sequence index.
  • An orthogonal sequence set having an orthogonal sequence of length 4 as an element may use a Walsh-Hadamard matrix.
  • An orthogonal sequence set may consist only of some orthogonal sequences in the table.
  • 3GPP LTE uses three orthogonal sequences except [+1, +1, -1, -1].
  • the sequence may use a cyclically shifted sequence.
  • the cyclically shifted sequence may be generated by cyclically shifting a base sequence by a specific cyclic shift amount.
  • Various kinds of sequences can be used as the base sequence.
  • a well-known sequence such as a pseudo-random (PN) sequence or a Zadoff-Chu (ZC) sequence may be used as the base sequence.
  • ZC Zadoff-Chu
  • CAZAC constant amplitude zero auto-correlation
  • i ⁇ ⁇ 0,1, ..., 29 ⁇ is the root index
  • n the element index
  • 0 ⁇ n ⁇ N-1 N is the length of the base sequence.
  • i may be determined by a cell ID, a slot number in a radio frame, or the like.
  • N may be 12.
  • Different base sequences define different base sequences.
  • b (n) may be defined as shown in the following table.
  • the cyclically shifted sequence r (n, Ics) may be generated by circularly shifting the basic sequence r (n) as shown in the following equation.
  • Ics is a cyclic shift index indicating the amount of CS (0 ⁇ Ics ⁇ N-1, and Ics is an integer).
  • the available cyclic shift index of the base sequence refers to a cyclic shift index derived from the base sequence according to the CS interval (CS interval). For example, if the length of the base sequence is 12 and the CS interval is 1, the total number of available cyclic shift indices of the base sequence is 12. Alternatively, if the length of the base sequence is 12 and the CS interval is 2, the total number of available cyclic shift indices of the base sequence is six.
  • the CS interval may be determined in consideration of delay spread.
  • the transmitter may be part of the terminal or the base station.
  • the transmitter 100 includes an information processor 110, a reference signal generator 120, a resource element mapper 130, an OFDM signal generator, 140, an RF unit (RF) unit 150, and an antenna 190.
  • the information processor 110 and the reference signal generator 120 are connected to the resource block mapper 130, respectively.
  • the resource block mapper 130 is connected to the OFDM signal generator 140, the OFDM signal generator 140 is connected to the RF unit 150, and the RF unit 150 is connected to the antenna 190.
  • the information processor 110 receives information.
  • the information may be user data, control information, information in which various control information are mixed, or information in which control information and user data are multiplexed.
  • the information may be in the form of bits or bit streams.
  • the transmitter 100 may be implemented at the physical layer. In this case, the information may be derived from a higher layer such as a MAC layer.
  • the information processor 110 is configured to generate an information sequence based on the information and the sequence.
  • the information sequence consists of a plurality of information symbols.
  • the information sequence may also be referred to as an information signal.
  • FIG. 9 is a block diagram illustrating an example of an information processor structure included in a transmitter.
  • the information processor 110 includes a channel coding unit 111, a modulator 112, and an information sequence generator 113.
  • the channel coding unit 111 receives an information bit corresponding to information to be transmitted by the transmitter.
  • the channel coding unit 111 performs channel coding on the information bits to generate encoded bits.
  • turbo coding, convolution coding, block coding, and the like may be used as the channel coding scheme.
  • An example of a block code is the Reed-Muller code family.
  • the size of the coded bits output from the channel coding unit 111 may vary.
  • the modulator 112 generates a modulation symbol by mapping the encoded bits to symbols representing positions on the signal constellation.
  • modulation scheme There is no restriction on the modulation scheme. For example, m-phase shift keying (m-PSK) or m-quadrature amplitude modulation (m-QAM) may be used for the modulation scheme.
  • m-PSK m-phase shift keying
  • m-QAM m-quadrature amplitude modulation
  • the number of modulation symbols output from the modulator 112 may vary depending on the size of the encoded bits input to the modulator 112 and the modulation scheme.
  • the information processor 110 may or may not perform a DFT on the modulation symbol.
  • the information processor 110 may further include a DFT unit (not shown) that performs a DFT on the modulation symbol and outputs a complex-valued symbol.
  • the DFT is not performed, and a modulation symbol is input to the information sequence generator 113.
  • the modulation symbol input to the information sequence generator 113 means a complex symbol corresponding to the information to be transmitted by the transmitter 100.
  • the information sequence generator 113 generates an information sequence based on the modulation symbol and the sequence.
  • the information sequence may be a one-dimensional or two-dimensional spread sequence.
  • the one-dimensional spread sequence is generated based on the modulation symbol and the first sequence.
  • One modulation symbol or each of the plurality of modulation symbols may be multiplied by the first sequence to generate a one-dimensional spread sequence.
  • the following equation is a modulation sequence d (0), ..., d (K-1) and a first sequence x (n) of length N (K and N are natural numbers, n is the element index of the first sequence, 0 ⁇ Based on n ⁇ N-1), K one-dimensional spread sequence s (n) is generated.
  • the modulation symbols d (0), ..., d (K-1) may be K modulation symbols.
  • one modulation symbol d (0) may be repeatedly used K times.
  • the one-dimensional spread sequence s (n) is mapped to the time domain or frequency domain. When mapped to the time domain, the one-dimensional spread sequence s (n) may be mapped to time samples, chips, or OFDM symbols. When mapped to the frequency domain, the one-dimensional spread sequence s (n) may be mapped to subcarriers.
  • the first sequence x (n) is called a time domain sequence.
  • the first sequence x (n) is called a frequency domain sequence.
  • the two-dimensional spread sequence is generated based on the one-dimensional spread sequence and the second sequence. That is, the two-dimensional spread sequence is generated based on the modulation symbol, the first sequence and the second sequence.
  • the one-dimensional spread sequence may be spread into a second sequence to generate a two-dimensional spread sequence.
  • the K one-dimensional spread sequence s (n) is a second sequence y (k) having a length K (k is an element index of the second sequence, 0 ⁇ k ⁇ K-1) and is spread two-dimensionally. This is an example of generating a sequence z (n, k).
  • the two-dimensional spread sequence z (n, k) is mapped to the time domain and the frequency domain.
  • n may correspond to a subcarrier index and k may correspond to a symbol index.
  • n may correspond to a symbol index and k may correspond to a subcarrier index.
  • the reference signal generator 120 generates a reference signal sequence.
  • the reference signal sequence is composed of a plurality of reference symbols.
  • the reference signal sequence may also be referred to as a reference signal (RS).
  • the reference signal is a signal known to both the transmitter and the receiver.
  • the reference signal may be used for information demodulation at the receiver.
  • any sequence may be used without particular limitation.
  • the reference signal sequence may be generated similarly to the information sequence generation method.
  • the first sequence for the reference signal may be used as the reference signal sequence.
  • the reference signal sequence may be generated based on the first sequence for the reference signal and the second sequence for the reference signal.
  • the resource block mapper 130 is configured to map an information sequence and a reference signal sequence to a resource block used for information transmission.
  • One information symbol or one reference symbol may be mapped to one resource element. Since CDM is used, it may be multiplexed on the same resource block.
  • the FDM scheme may be used like the CDM scheme and multiplexed by different resource blocks.
  • the resource block includes an information part and a reference signal part. An information sequence is mapped to the information portion, and a reference signal sequence is mapped to the reference signal portion.
  • Each of the reference signal portion and the information portion may use different OFDM symbols in the resource block.
  • the reference signal portion and the information portion may use different subcarriers in the OFDM symbol.
  • each of the reference signal portion and the information portion uses different OFDM symbols in the resource block.
  • One or more OFDM symbols in a resource block may be part of a reference signal.
  • the plurality of OFDM symbols may be contiguous or not adjacent to each other.
  • the number and location of the OFDM symbols used as the reference signal portion in the resource block is not particularly limited and may vary.
  • the OFDM symbol except for the reference signal portion in the resource block may be used as the information portion.
  • the resource block mapper 130 maps the information sequence and the reference signal sequence to a pair of resource blocks (see FIG. 7) in a subframe allocated for PUCCH transmission.
  • the OFDM signal generator 140 is configured to generate a time-continuous OFDM signal for each OFDM symbol in the resource block.
  • a time-continuous OFDM signal is also called an OFDM baseband signal.
  • the OFDM signal generator 140 may generate an OFDM signal by performing IFFT, CP insertion, or the like for each OFDM symbol.
  • the RF unit 150 converts an OFDM baseband signal into a radio signal.
  • the OFDM baseband signal may be upconverted to a carrier frequency and converted into a wireless signal.
  • the carrier frequency is also called the center frequency.
  • Wireless signals are transmitted via the antenna 190.
  • the transmitter 100 must determine a resource used for the information transmission.
  • the resource may be composed of at least one of (1) a first sequence, (2) a second sequence, and (3) resource blocks.
  • the first sequence may be a cyclically shifted sequence and the second sequence may be an orthogonal sequence.
  • the resource index identifies a resource used for transmitting information. Therefore, the resource is determined from the resource index.
  • the sequence used to generate each of the information sequence and the reference signal sequence is determined from the resource index.
  • the resource block to which the information sequence and the reference signal sequence are mapped may be determined from a resource index.
  • the transmitter 100 must obtain a resource index for information transmission. If the transmitter is part of a base station, the transmitter may determine the resource index through scheduling.
  • the base station may inform the terminal explicitly (implicitly) or implicitly (resource) the resource index.
  • the resource index may change semi-statically or dynamically.
  • the resource index may be set by higher layer signaling.
  • the upper layer may be an RRC layer.
  • the resource index changes semi-statically.
  • the information transmitted by the UE may be SR, semi-persistent scheduling (SPS) ACK / NACK, CQI, or the like.
  • SPS ACK / NACK is HARQ ACK / NACK for downlink data transmitted by semi-static scheduling.
  • a PDCCH corresponding to the PDSCH may not exist.
  • the UE may obtain a resource index from a radio resource through which a control channel for receiving downlink data is transmitted.
  • the information transmitted by the terminal may be dynamic ACK / NACK.
  • Dynamic ACK / NACK is ACK / NACK for downlink data transmitted by dynamic scheduling. In dynamic scheduling, whenever a base station transmits downlink data through a PDSCH, a downlink grant is transmitted to the user equipment through a PDCCH each time.
  • the following equation is an example of determining a resource index (R) for dynamic ACK / NACK transmission.
  • n (CCE) may be the first CCE index used for PDCCH transmission for PDSCH
  • N (PUCCH) may be the number of resource indexes allocated for SR and SPS ACK / NACK.
  • N (PUCCH) may be set by a higher layer such as an RRC layer as a cell specific parameter.
  • the base station may adjust resources for ACK / NACK transmission by adjusting the first CCE index used for PDCCH transmission.
  • An example of a CDM and FDM based information transmission method is a method of transmitting uplink control information on a PUCCH.
  • a method of transmitting uplink control information on a PUCCH will be described.
  • PUCCH may support multiple formats. That is, uplink control information having a different number of bits per subframe may be transmitted according to a modulation scheme dependent on the PUCCH format.
  • the following table shows an example of a modulation scheme and the number of bits per subframe according to the PUCCH format.
  • PUCCH format 1 is used for transmission of SR
  • PUCCH format 1a / 1b is used for transmission of HARQ ACK / NACK
  • PUCCH format 2 is used for transmission of CQI
  • PUCCH format 2a / 2b is used for transmission of CQI and HARQ ACK / NACK. Used.
  • PUCCH format 1a / 1b When HARQ ACK / NACK is transmitted alone in any subframe, PUCCH format 1a / 1b is used, and when SR is transmitted alone, PUCCH format 1 is used.
  • the UE may simultaneously transmit HARQ ACK / NACK and SR in the same subframe. For positive SR transmission, the UE transmits HARQ ACK / NACK through PUCCH resources allocated for SR, and for negative SR transmission, UE transmits HARQ through PUCCH resources allocated for ACK / NACK. Send ACK / NACK.
  • PUCCH format 1a one bit of an ACK / NACK bit is output from the channel coding unit.
  • each ACK may be encoded with a binary '1'
  • each NACK may be encoded with a binary '0'.
  • two bits (b (0) and b (1)) of the ACK / NACK bits may be output from the channel coding unit.
  • b (0) may correspond to the ACK / NACK bit for the first codeword
  • b (1) may correspond to the ACK / NACK bit for the second codeword. That is, PUCCH format 1a is for HARQ ACK / NACK information for one codeword, and PUCCH format 1b is for HARQ ACK / NACK information for two codewords.
  • Each of PUCCH formats 1, 1a, and 1b uses one modulation symbol d (0).
  • the modulation symbol d (0) for the PUCCH format 1a is a modulation symbol that is generated by performing a binary phase shift keying (BPSK) modulation of one bit of coded bits.
  • the complex symbol d (0) for PUCCH format 1b is a modulation symbol generated by quadrature phase shift keying (QPSK) modulation of two bits of encoded bits.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • the following table shows an example of modulation symbols to which ACK / NACK bits are mapped according to a modulation scheme.
  • FIG. 10 illustrates an example of PUCCH format 1 / 1a / 1b transmission in the case of a normal CP.
  • resource blocks belonging to a resource block pair are expressed as occupying the same frequency band in the first slot and the second slot, the resource blocks may be hopped to the slot level as described with reference to FIG. 7.
  • each of the first slot and the second slot includes 7 OFDM symbols.
  • 3 OFDM symbols are a reference signal portion to which a reference signal sequence is mapped, and an information portion to which an information sequence is mapped to the remaining 4 OFDM symbols.
  • the reference signal portion is three adjacent OFDM symbols in the middle of each slot.
  • the number and position of OFDM symbols used as reference signal parts in each slot may vary, and the number and position of OFDM symbols used as information parts may also change accordingly.
  • an information sequence is generated based on the modulation symbol d (0), the cyclically shifted sequence r (n, Ics) and the orthogonal sequence w (k, Ios).
  • the cyclically shifted sequence r (n, Ics) may be referred to as a first sequence
  • the orthogonal sequence w (k, Ios) may be referred to as a second sequence.
  • the information sequence is a two-dimensional spread sequence. By spreading information into a two-dimensional time-frequency domain, UE multiplexing capacity can be increased.
  • the terminal multiplexing capacity is the number of terminals that can be multiplexed on the same resource block.
  • a cyclically shifted sequence r (n, Ics) is generated from the base sequence for each OFDM symbol used as the information part in the subframe.
  • the basic sequence in one slot is the same.
  • the base sequence of the first slot and the second slot in the subframe may be the same or may be different.
  • the cyclic shift index Ics is determined from the resource index.
  • Ics, which is a cyclic shift index may be CS hopping at a symbol level.
  • CS hopping hopping of the cyclic shift index of the symbol level is referred to as CS hopping.
  • CS hopping may be performed according to the slot number n (s) in the radio frame and the symbol index l in the slot.
  • the cyclic shift index Ics may be expressed as Ics (n (s), l).
  • CS hopping may be performed cell-specific to randomize inter-cell interference.
  • the Ics value for each OFDM symbol of the information portion is merely an example.
  • a first sequence s (n) spread in the frequency domain is generated for each OFDM symbol of the information portion.
  • the first sequence s (n) may be generated by multiplying the modulation symbol d (0) by the cyclically shifted sequence r (n, Ics) as shown in the following equation.
  • the first sequence may be spread in a block manner into an orthogonal sequence w (k, Ios) to generate an information sequence.
  • Elements constituting the orthogonal sequence in turn correspond to 1: 1 in OFDM symbols of the information portion.
  • Each of the elements constituting the orthogonal sequence is multiplied by a first sequence s (n) mapped to a corresponding OFDM symbol to generate an information sequence.
  • the information sequence is mapped to a resource block pair allocated to the PUCCH in the subframe. Resource block pairs are determined from resource indexes.
  • an IFFT is performed for each OFDM symbol of the subframe to output a time domain signal.
  • the orthogonal sequence is multiplied before the IFFT, but the same result can be obtained even if the first sequence s (n) is mapped to the resource block pair and the orthogonal sequence is multiplied after the IFFT.
  • one OFDM symbol on the PUCCH is punctured.
  • the last OFDM symbol of the subframe may be punctured.
  • the information portion of the first slot of the subframe consists of 4 OFDM symbols
  • the information portion of the second slot of the subframe consists of 3 OFDM symbols.
  • Orthogonal sequence Ios is determined from the resource index. Orthogonal sequence index Ios may be hopped to the slot level. Hereinafter, hopping of an orthogonal sequence index of a slot level is referred to as orthogonal sequence remapping. Orthogonal sequence remapping may be performed according to the slot number n (s) in the radio frame. Therefore, the orthogonal sequence index Ios may be represented by Ios (n (s)). Orthogonal sequence remapping may be performed for randomization of intercell interference.
  • I'cs is a cyclic shift index for the reference signal
  • I'os is an orthogonal sequence index for the reference signal.
  • I'cs and I'os are determined from resource indexes, respectively.
  • the cyclically shifted sequence is a frequency domain sequence and the orthogonal sequence is a time domain sequence. Accordingly, the reference signal sequence is a sequence spread in the two-dimensional time-frequency domain like the information sequence.
  • the base sequence for generating a cyclically shifted sequence in the reference signal portion may be the same as the base sequence of the information portion. Both the cyclic shift index Ics of the information portion and the cyclic shift index I'cs of the reference signal portion are determined from the resource index. However, in the method of determining the cyclic shift index from the resource index, the information portion and the reference signal portion may be the same or different.
  • FIG. 11 illustrates an example of PUCCH format 1 / 1a / 1b transmission in case of an extended CP.
  • resource blocks belonging to a resource block pair are expressed as occupying the same frequency band in the first slot and the second slot, the resource blocks may be hopped to the slot level as described with reference to FIG. 7.
  • resources used for PUCCH format 1/1 / a / 1b transmission must be identified by a resource index.
  • Resource blocks for transmitting information from the resource index, cyclic shift index Ics and orthogonal sequence index Ios for generating an information sequence, cyclic shift index I'cs for generating a reference signal sequence, and orthogonal sequence index I'os are determined.
  • the terminal multiplexing capacity is as follows. Since the number of Ics for generating the information sequence is 6 and the number of Ios is 3, 18 terminals may be multiplexed per resource block. However, since the number of I'cs for generating the reference signal sequence is 6 and the number of I'os is 2, 12 terminals may be multiplexed per resource block. Therefore, the terminal multiplexing capacity is limited by the reference signal portion rather than the information portion.
  • FIG. 12 shows an example of PUCCH format 2 transmission in the case of a normal CP.
  • resource blocks belonging to a resource block pair are expressed as occupying the same frequency band in the first slot and the second slot, the resource blocks may be hopped to the slot level as described with reference to FIG. 7.
  • 2 OFDM symbols among 7 OFDM symbols included in each slot are part of a reference signal and an information part to which an information sequence is mapped to the remaining 5 OFDM symbols.
  • the number and position of OFDM symbols used as reference signal parts in each slot may vary, and the number and position of OFDM symbols used as information parts may also change accordingly.
  • the terminal performs channel coding on the CQI information bits to generate encoded CQI bits.
  • a block code may be used.
  • A is the size of the CQI information bits. That is, in 3GPP LTE, 20 bits of encoded CQI bits are always generated regardless of the size of CQI information bits.
  • the following table shows an example of 13 basis sequences for the (20, A) block code.
  • M (i, n) is the base sequence (0 ⁇ n ⁇ 12, n is an integer).
  • the coded bit is generated with a linear combination of 13 basis sequences.
  • the following equation shows an example of coded bit b (i) (0 ⁇ i ⁇ 19, i is an integer).
  • a (0), a (1), ..., a (A-1) are information bits, and A is the size of the information bits (A is a natural number).
  • the 20-bit encoded bit is mapped to 10 modulation symbols d (0), ..., d (9) via QPSK.
  • PUCCH format 2a one bit of HARQ ACK / NACK information is mapped to one modulation symbol d (10) through BPSK modulation.
  • PUCCH format 2b two bits of HARQ ACK / NACK information are mapped to one modulation symbol d (10) through QPSK modulation. That is, in PUCCH format 2a, CQI and 1-bit HARQ ACK / NACK information are simultaneously transmitted. In PUCCH format 2b, CQI and 2-bit HARQ ACK / NACK information are simultaneously transmitted.
  • d (10) is used to generate a reference signal.
  • d (10) corresponds to one OFDM symbol of 2 OFDM symbols carrying a reference signal in each slot.
  • phase modulation is performed on the reference signal carried in the one OFDM symbol in each slot according to the corresponding d (10).
  • PUCCH format 2a / 2b may be supported only for a normal CP. As such, in PUCCH formats 2a and 2b, one modulation symbol is used for reference signal generation.
  • an information sequence is generated based on the modulation symbols d (0),..., D (9) and the cyclically shifted sequence r (n, Ics). Each modulation symbol may be multiplied by a cyclically shifted sequence r (n, Ics).
  • the information sequence is a one-dimensional spread sequence.
  • PUCCH format 2 / 2a / 2b does not use orthogonal sequences unlike PUCCH format 1 / 1a / 1b.
  • a cyclically shifted sequence r (n, Ics) is generated from the base sequence for each OFDM symbol used as the information part in the subframe.
  • the basic sequence in one slot is the same.
  • the base sequence of the first slot and the second slot in the subframe may be the same or may be different.
  • the cyclic shift index Ics is determined from the resource index.
  • Ics which is a cyclic shift index, may be CS-hopped to the symbol level. CS hopping may be performed according to the slot number n (s) in the radio frame and the symbol index l in the slot. Therefore, the cyclic shift index Ics may be expressed as Ics (n (s), l).
  • the Ics value for each OFDM symbol of the information portion is merely an example.
  • a cyclically shifted sequence r (n, I'cs) may be used as the reference signal sequence.
  • I'cs is a cyclic shift index for the reference signal. I'cs is determined from the resource index.
  • the base sequence for generating a cyclically shifted sequence in the reference signal portion may be the same as the base sequence of the information portion. Both the cyclic shift index Ics of the information portion and the cyclic shift index I'cs of the reference signal portion are determined from the resource index. However, in the method of determining the cyclic shift index from the resource index, the information portion and the reference signal portion may be the same or different.
  • d (10) corresponds to one OFDM symbol of the reference signal portion. That is, a reference signal sequence multiplied by d (10) and a cyclically shifted sequence is mapped to one OFDM symbol of the reference signal portion in each slot.
  • FIG. 13 shows an example of PUCCH format 2 transmission in case of an extended CP.
  • resource blocks belonging to a resource block pair are expressed as occupying the same frequency band in the first slot and the second slot, the resource blocks may be hopped to the slot level as described with reference to FIG. 7.
  • each of the first slot and the second slot includes 6 OFDM symbols.
  • One OFDM symbol of 6 OFDM symbols of each slot is a reference signal portion, and the remaining 5 OFDM symbols are information portions. Except for this, the example of the normal CP of FIG. 11 is applied as it is.
  • resources used for PUCCH format 2/2 / a / 2b transmission must be identified by a resource index.
  • a resource block for transmitting information from the resource index, a cyclic shift index Ics for generating an information sequence, and a cyclic shift index I'cs for generating a reference signal sequence are determined.
  • the CS interval is 1, the number of Ics and I'cs is 12, respectively, and 12 terminals may be multiplexed per resource block.
  • the CS interval is 2
  • the number of Ics and I'cs is 6, respectively, and six terminals may be multiplexed per resource block.
  • the CDM and / or FDM scheme may be used as the multiplexing scheme to transmit information.
  • the information transmission method described so far uses only one resource index.
  • a method of transmitting signals generated from information and reference signals using multiple resources may be problematic.
  • a method of transmitting a signal using multiple resources will be described in detail.
  • the transmitter may be part of the terminal or the base station.
  • the transmitter 200 includes an information processor 210, a reference signal generator 220, first and second resource block mappers 230-1 and 230-2, and first and second OFDM signal generators. 240-1 and 240-2, first and second RF units 250-1 and 250-2, and two antennas 290-1 and 290-2.
  • Each of the first and second resource block mappers 230-1 and 230-2 is connected to the first and second OFDM signal generators 240-1 and 240-2, respectively, and the first and second OFDM signal generators ( 240-1 and 240-2 are respectively connected to the first and second RF units 250-1 and 250-2, and each of the first and second RF units 250-1 and 250-2 is two.
  • Two antennas 290-1 and 290-2 That is, the n-th resource block mapper 230-n is connected to the n-th OFDM signal generator 240-n, and the n-th OFDM signal generator 240-n is connected to the n-th RF unit 250-n.
  • the transmitter 200 is assigned two resource indexes.
  • the information processor 210 generates information sequences based on two resource indexes.
  • the description of the information transmission method and apparatus described with reference to FIGS. 8 to 13 may be applied to the information transmission method and apparatus through a plurality of transmission antennas.
  • 15 is a block diagram illustrating an example of a structure of a part of a transmitter including two antennas.
  • the information processor 210 includes a channel coding unit 211, a modulator 212, and first and second information sequence generators 213-1 and 213-2.
  • the first information sequence generator 213-1 is connected to the first resource block mapper 230-1
  • the second information sequence generator 213-2 is connected to the second resource block mapper 230-2.
  • the information processor 210 may generate information sequences in an orthogonal space resource transmit diversity (OSRTD) or orthogonal space resource spatial multiplexing (OSRSM) scheme.
  • OSRTD orthogonal space resource transmit diversity
  • OSRSM orthogonal space resource spatial multiplexing
  • S (1) is assumed to be a complex signal corresponding to the information to be transmitted by the transmitter 200.
  • the complex signal may be any signal, one or more modulation symbols, or a spread sequence.
  • the modulator 212 outputs s (1), and inputs s (1) to each of the first information sequence generator 213-1 and the second information sequence generator 213-2.
  • the first information sequence generator 213-1 generates a first information sequence based on s (1) and the first resource index.
  • the second information sequence generator 213-2 generates a second information sequence based on s (1) and the second resource index.
  • the first information sequence is transmitted through the first antenna 290-1, and the second information sequence is transmitted through the second antenna 290-2. If the first resource index and the second resource index are differently allocated, orthogonality may be maintained between antennas.
  • each resource index may be mapped one-to-one to each antenna. Therefore, the reference signal for the first antenna may be generated based on the first resource index, and the reference signal for the second antenna may be generated based on the second resource index.
  • the OSRTD is a method of allocating resource indexes for each antenna and repeatedly transmitting the same information for each antenna orthogonally. By repeatedly transmitting the same information through a plurality of antennas, diversity gain can be obtained and reliability of wireless communication can be improved.
  • the terminal multiplexing capacity of the OSRTD for the two antennas may be kept the same as the terminal multiplexing capacity of one antenna transmission.
  • 18 terminals per resource block may be multiplexed even in the OSRTD for the two antennas.
  • the second information sequence generator 213-2 may generate the second information sequence by modifying the complex signal s (1).
  • the second information sequence may be generated based on s (1) * and the second resource index.
  • ( * ) * is a complex conjugate.
  • the modified complex signal s (2) processed by the second information sequence generator may be expressed by the following equation.
  • a is a complex scaling factor of the second information sequence generator.
  • the transmission signal matrix may be expressed as the following equation.
  • the rows and / or columns of the transmission signal matrix may correspond to a transmission antenna, a resource index, or the like.
  • each row of the transmission signal matrix may correspond to each resource index
  • each column may correspond to each transmission antenna.
  • y (1) is the first received signal for the first information sequence generated based on the first resource index
  • y (2) is the second received signal for the second information sequence generated based on the second resource index It is called.
  • the reception signal y may be separated into the first reception signal y (1) and the second reception signal y (2) through a despreading action. For convenience of explanation, it is assumed that there is one reception antenna of the receiver.
  • the received signal matrix can be expressed as the following equation.
  • h (1) is a channel for the first antenna 290-1
  • h (2) is a channel for the second antenna 290-2
  • n (1) is a noise of the first received signal. noise
  • n (2) is the noise of the second received signal.
  • the noise may be additive white Gaussian noise (AWGN).
  • a normalization factor corresponding to the number of transmit antennas may be applied.
  • the following equation shows an example of a normalization factor.
  • Ntx is the number of transmit antennas
  • Nc is the number of resources per antenna.
  • the normalization factor is omitted in the following description.
  • the MRC technique is one of signal combining techniques for estimating a transmission signal from received signals received by a plurality of receive antennas.
  • the transmitter When the transmitter includes M antennas (where M is a natural number), M resource indexes may be allocated. Each of the M antennas and each of the M resource indexes may be mapped one-to-one.
  • OSRTD can be used in combination with other transmit diversity techniques such as cyclic delay diversity (CDD) or precoding vector switching (PVS).
  • CDD cyclic delay diversity
  • PVS precoding vector switching
  • the four transmission antennas may be divided into two groups and grouped into two antenna groups. OSRTD is applied to each of the two antenna groups, and CDD or PVS may be applied to each group.
  • S (1) and s (2) are assumed to be complex signals corresponding to information to be transmitted by the transmitter 200.
  • the first information sequence generator 213-1 generates a first information sequence based on s (1) and the first resource index.
  • the second information sequence generator 213-2 generates a second information sequence based on s (2) and the second resource index.
  • the first information sequence is transmitted through the first antenna 290-1, and the second information sequence is transmitted through the second antenna 290-2. If the first resource index and the second resource index are differently allocated, orthogonality may be maintained between antennas.
  • each resource index may be mapped one-to-one to each antenna. Therefore, the reference signal for the first antenna may be generated based on the first resource index, and the reference signal for the second antenna may be generated based on the second resource index.
  • the transmitter may transmit M complex signals.
  • the transmitter may be allocated M resource indexes.
  • Each of the M antennas and each of the M resource indexes may be mapped one-to-one.
  • Different complex signals may be transmitted through each of the M antennas.
  • An information transmission method of such a spatial multiplexing rate M is called OSRSM.
  • Coded bits which are bit-level information output from the channel coding unit 211, may be permutated before being modulated by the modulator 212.
  • the first coded bits are bit-level information of the first ACK / NACK for the first data transmitted on the first downlink carrier
  • the second coded bits are transmitted on the second downlink carrier. Bit-level information of the second ACK / NACK for the second data.
  • the modulator 212 generates a first modulation symbol d (0) by QPSK-modulating the first coded bit, and generates a second modulation symbol e (0) by QPSK-modulating the second coded bit. Can be.
  • the modulator 212 may modulate the bit after the substitution by replacing the first coded bit and the second coded bit. For example, the modulator 212 may swap and replace the first bits a (0) and b (0) of each of the first coded bit and the second coded bit. The modulator modulates b (0) and a (1) to generate a first modulation symbol d (0), modulates a (0) and b (1) to modulate a second modulation symbol e (0) Can be generated.
  • the modulation symbols output from the modulator 212 are input to a splitter (not shown).
  • the divider separates the first complex signal s (1) and the second complex signal s (2) using the first modulation symbol d (0) and the second modulation symbol e (0).
  • the first modulation symbol may correspond to the first complex signal
  • the second modulation symbol may correspond to the second complex signal.
  • the first modulation symbol and the second modulation symbol may be substituted and / or mixed to be separated into a first complex signal and a second complex signal.
  • the first modulation symbol d (0) and the second modulation symbol e (0) are substituted and / or mixed so that the first complex signal s (1) and the second complex signal s (2 Examples are separated by)).
  • the first modulation symbol d (0) or the second modulation symbol e (0) is rotated in an arbitrary phase and then replaced and / or mixed to form the first complex signal s (1) as shown in the following equation. And a second complex signal s (2).
  • a and b may be the same or different.
  • a plurality of antennas and a plurality of resource indices may be mapped one-to-one. Therefore, the information sequence and the reference signal sequence may be generated and transmitted with one resource index for each antenna.
  • the transmitter may be the transmitter 100 of FIG. 8.
  • the information processor 110 includes a channel coding unit 111, a modulator 112, and first and second information sequence generators 113-1 and 113-2.
  • the first and second information sequence generators 113-1 and 113-2 are connected to the resource block mapper 130.
  • the modulator 112 outputs a first complex signal s (1) and a second complex signal s (2).
  • s (1) and s (2) are complex signals corresponding to information to be transmitted by the transmitter 100, respectively.
  • the complex signal may be any signal, one or more modulation symbols, or a spread sequence.
  • the first complex signal may correspond to first information about a first downlink carrier
  • the second complex signal may correspond to second information about a second downlink carrier.
  • the first information and the second information may be transmitted on the same carrier.
  • the first information is a first ACK / NACK for the first data received by the terminal on the first downlink carrier
  • the second information is a second ACK for the second data received by the terminal on the second downlink carrier It may be / NACK.
  • the first information may be a first CQI for the first downlink carrier
  • the second information may be a second CQI for the second downlink carrier. That is, a first resource index may be allocated to the first downlink carrier and a second resource index may be allocated to the second downlink carrier.
  • the transmitter of FIG. 14 may be used in an asymmetric multicarrier system in which the number of downlink carriers is larger than the number of uplink carriers.
  • the number of downlink carriers to the number of uplink carriers may be used in a multicarrier system having a 2: 1 ratio.
  • the first information and the second information may be representative information, respectively.
  • the representative information is one piece of information representing a plurality of pieces of information. Representing a plurality of pieces of information as one representative information is referred to as information bundling.
  • the representative information includes representative CQI, representative ACK / NACK, representative PMI, and the like.
  • the representative CQI may be one CQI for a plurality of downlink carriers.
  • the representative CQI may be an average CQI of respective CQIs for a plurality of downlink carriers.
  • the representative CQI may be one CQI representing respective CQIs for a plurality of codewords.
  • the representative ACK / NACK may be one HARQ ACK / NACK for each data transmitted through a plurality of downlink carriers. For example, when the decoding of each data transmitted through the plurality of downlink carriers is all successful, the representative ACK / NACK is ACK, otherwise the representative ACK / NACK is NACK.
  • the representative ACK / NACK may be one HARQ ACK / NACK representing each ACK / NACK for a plurality of codewords.
  • the first information may be first representative information about the first downlink carrier and the second downlink carrier, and the second information may be second representative information about the third downlink carrier and the fourth downlink carrier.
  • the first information may be first representative information on a plurality of codewords, and the second information may be second representative information on other codewords.
  • the first complex signal s (1) is input to the first information sequence generator 113-1, and the second complex signal s (2) is input to the second information sequence generator 113-2.
  • the first information sequence generator 113-1 generates a first information sequence based on s (1) and the first resource index.
  • the second information sequence generator 113-2 generates a second information sequence based on s (2) and the second resource index.
  • the first information sequence and the second information sequence are respectively input to the resource block mapper 130.
  • the first information sequence and / or the second information sequence may be phase shifted. This is to prevent the first information sequence and the second information sequence from canceling each other when combined.
  • the first resource block 1st RB is determined from the first resource index and the second resource block 2nd RB is determined from the second resource index.
  • the first resource block and the second resource block may be the same or different.
  • FIG 17 shows an example in which the first resource block and the second resource block are different.
  • the resource block mapper 130 maps a first information sequence to an information portion of a first resource block, and maps a second information sequence to an information portion of a second resource block.
  • the reference signal sequence mapped to the reference signal portion of the first resource block is generated based on the first resource index.
  • a reference signal sequence mapped to the reference signal portion of the second resource block is generated based on the second resource index.
  • both the information sequence and the reference sequence are generated based on two resource indexes.
  • the resource block mapper 130 combines the first information sequence and the second information sequence to map the information portion of the resource block.
  • the first information sequence and the second information sequence may be added, or the first information sequence and / or the second information sequence may be added by phase shifting.
  • the reference signal sequence mapped to the reference signal portion of the resource block is generated based on one resource index of the first resource index and the second resource index. Since channel estimation can be performed using only a reference signal sequence generated based on one resource index among two resource indexes, the reference signal sequence may be generated based on one of the resource indexes.
  • the resource index selection method for generating the reference signal sequence can be determined in advance. For example, a reference signal sequence may be generated based on a smaller resource index among two resource indexes. Alternatively, the resource index for generating the RS sequence may be informed through signaling.
  • the reference signal sequence is It is created based on either resource index.
  • 19 is a block diagram illustrating another example of a structure of a part of a transmitter including two antennas.
  • the information processor 210 includes a channel coding unit 211, a modulator 212, and a space-code block code (SCBC) processing unit 214.
  • the SCBC processor 214 is connected to the first and second resource block mappers 230-1 and 230-2.
  • first complex signal s (1) and the second complex signal s (2) are complex signals corresponding to information to be transmitted by the transmitter 200.
  • the SCBC processor 214 generates a first transmission vector and a second transmission vector based on an Alamouti code from the first complex signal s (1) and the second complex signal s (2).
  • the first transmission vector is transmitted through the first antenna 290-1, and the second transmission vector is transmitted through the second antenna 290-2.
  • the first transmission vector consists of a first transmission symbol and a second transmission symbol.
  • the second transmission vector consists of a third transmission symbol and a fourth transmission symbol.
  • a first information sequence is generated based on the first transmission symbol and the first resource index.
  • a second information sequence is generated based on the second transmission symbol and the second resource index.
  • the first information sequence and the second information sequence are input to the first resource block mapper 230-1.
  • a third information sequence is generated based on the third transmission symbol and the first resource index.
  • a fourth information sequence is generated based on the fourth transmission symbol and the second resource index.
  • the third information sequence and the fourth information sequence are input to the second resource block mapper 230-2.
  • the first information sequence and the second information sequence may be combined and transmitted through the first antenna.
  • the second information sequence and the fourth information sequence may be combined and transmitted through the second antenna.
  • the phase of at least one information sequence may be shifted.
  • the phase of the transmission symbol may be converted before generating the information sequence.
  • the second information sequence may be phase-shifted by a specific phase and added to the first information sequence.
  • the fourth information sequence may be phase-shifted by a specific phase and added to the third transmission sequence.
  • the specific phase may be 90 degrees
  • QPSK the specific phase may be 45 degrees.
  • information may be transmitted by applying SCBC using resources.
  • the transmitter can obtain a diversity gain by performing smart repetition using an antenna and resources, and can increase the reliability of wireless communication.
  • This information transmission method is hereinafter referred to as SCBC information transmission method.
  • the resource index allocated to the information portion is not mapped one-to-one with the antenna.
  • the reference signal should be generated for each antenna for channel estimation for each antenna.
  • each resource index may be mapped one-to-one to each antenna. Therefore, the reference signal for the first antenna may be generated based on the first resource index, and the reference signal for the second antenna may be generated based on the second resource index.
  • the transmitter For the transmission of the SCBC information, the transmitter has been described as being allocated a second resource index in addition to the first resource index. However, if different information is already allocated to different resource indexes, it is not necessary to additionally allocate a second resource index.
  • the terminal multiplexing capacity of the SCBC transmission method for the two antennas may be kept the same as the terminal multiplexing capacity of one antenna transmission.
  • 18 terminals per resource block may be multiplexed even in the SCBC transmission method for two antennas.
  • the transmission signal matrix is defined as a 2x2 matrix having a first transmission vector as a first column and a second transmission vector as a second column.
  • (1,1) and (2,1) are the first transmission symbol and the second transmission symbol of the first transmission vector, respectively.
  • (1,2) and (2,2) are the third transmission symbol and the fourth transmission symbol of the second transmission vector, respectively.
  • the rows and / or columns of the transmission signal matrix may correspond to a transmission antenna, a resource index, or the like.
  • Each row of the transmission signal matrix may correspond to each resource index, and each column may correspond to each transmission antenna.
  • the transmission signal matrix expressed in the above equation is merely an example and does not limit the form of the transmission signal matrix.
  • the transmission signal matrix includes all possible unitary transforms of the matrix of the above equation.
  • the unitary transformation is not only for the first complex signal s (1) and the second complex signal s (2), but also for the real part and the imaginary part of s (1) and s (2), respectively. This includes transformations in separate parts.
  • y (1) is the first received signal for the first information sequence generated based on the first resource index
  • y (2) is the second received signal for the second information sequence generated based on the second resource index It is called.
  • the reception signal y may be separated into the first reception signal y (1) and the second reception signal y (2) through a despreading action. For convenience of explanation, it is assumed that there is one reception antenna of the receiver.
  • the received signal matrix can be expressed as the following equation.
  • h (1) is the channel for the first antenna 290-1
  • h (2) is the channel for the second antenna 290-2
  • n (1) is the noise of the first received signal
  • n (2) is the noise of the second received signal.
  • the noise may be an additive white Gaussian noise.
  • a normalization factor corresponding to the number of transmit antennas may be applied.
  • the normalization factor is omitted in the following description.
  • H is a Hermitian matrix.
  • the first complex signal s (1) and the second complex signal s (2) are orthogonally separated.
  • the receiver may obtain a diversity gain as shown in Equation 12. This is a diversity gain such as MRC, which is the optimal combination.
  • the transmitter When the transmitter includes M antennas (where M is a natural number), M resource indexes may be allocated. Each of the M antennas and each of the M resource indexes may be mapped one-to-one.
  • the SCBC information transmission method may be used in combination with other transmit diversity schemes such as CDD or PVS. For example, when four transmission antennas are used, the four transmission antennas may be divided into two groups and grouped into two antenna groups. SCBC information transmission method is applied to each of the two antenna groups, and CDD or PVS may be applied to each group.
  • the commonality between the transmitter of FIG. 16 and the transmitter of FIG. 19 is that two resource indexes are allocated per antenna for the information portion. That is, in the information portion, the antenna and the resource index are not mapped one-to-one. However, in the reference signal portion, the antenna and the resource index may be mapped one-to-one so that channel estimation for each antenna is possible. Therefore, when a plurality of resource indexes are allocated to one antenna, generation of a reference signal for the antenna may be different from an information sequence generation method.
  • the information transmission method described so far is applicable to all CDM / FDM information transmission methods such as PUCCH format 1 / 1a / 1b and format 2 / 2a / 2b.
  • the base station 50 includes a processor 51, a memory 52, and an RF unit 53.
  • the processor 51 implements the proposed functions, processes and / or methods. Layers of the air interface protocol may be implemented by the processor 51.
  • the memory 52 is connected to the processor 51 and stores various information for driving the processor 51.
  • the RF unit 53 is connected to the processor 51 and transmits and / or receives a radio signal.
  • the terminal 60 includes a processor 61, a memory 62, and an RF unit 63.
  • the processor 61 implements the proposed functions, processes and / or methods. Layers of the air interface protocol may be implemented by the processor 61.
  • the memory 62 is connected to the processor 61 and stores various information for driving the processor 61.
  • the RF unit 63 is connected to the processor 61 and transmits and / or receives a radio signal.
  • Processors 51 and 61 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, data processing devices, and / or converters that interconvert baseband signals and wireless signals.
  • ASICs application-specific integrated circuits
  • the transmitter described above may be implemented in the processors 51 and 61.
  • the memory 52, 62 may include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media, and / or other storage devices.
  • the RF unit 53,63 includes one or more antennas for transmitting and / or receiving radio signals.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function. Modules are stored in memories 52 and 62 and can be executed by processors 51 and 61.
  • the memories 52 and 62 may be inside or outside the processors 51 and 61, and may be connected to the processors 51 and 61 by various well-known means.
  • an efficient signal transmission method and apparatus can be provided in a wireless communication system.
  • multiple resources are allocated, ambiguity between the information sequence generation method and the reference signal sequence generation method can be solved using the multiple resources. This can increase the reliability of the wireless communication and can improve the overall system performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

무선 통신 시스템에서 신호 전송 방법 및 장치를 제공한다. 상기 장치는 제1 전송 심벌 및 상기 제1 자원 인덱스를 기반으로 제1 정보 시퀀스를 생성하고, 제2 전송 심벌 및 상기 제2 자원 인덱스를 기반으로 제2 정보 시퀀스를 생성하는 정보 프로세서, 상기 제1 자원 인덱스가 지시하는 제1 자원블록 및 상기 제2 자원 인덱스가 지시하는 제2 자원블록이 동일한지 여부에 따라 다른 참조신호 시퀀스를 생성하는 참조신호 생성기 및 상기 제1 정보 시퀀스, 상기 제2 정보 시퀀스 및 상기 참조신호 시퀀스로부터 생성된 신호를 전송하는 안테나를 포함한다.

Description

무선 통신 시스템에서 신호 전송 방법 및 장치
본 발명은 무선 통신에 관한 것으로, 더욱 상세하게는 무선 통신 시스템에서 신호 전송 방법 및 장치에 관한 것이다.
무선 통신 시스템은 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 무선 통신 시스템의 목적은 다수의 사용자가 위치와 이동성에 관계없이 신뢰할 수 있는(reliable) 통신을 할 수 있도록 하는 것이다. 그런데, 무선 채널(wireless channel)은 경로 손실(path loss), 잡음(noise), 다중 경로(multipath)에 의한 페이딩(fading) 현상, 심벌간 간섭(ISI, intersymbol interference) 또는 단말의 이동성으로 인한 도플러 효과(Doppler effect) 등의 비이상적인 특성이 있다. 따라서, 무선 채널의 비이상적 특성을 극복하고, 무선 통신의 신뢰도(reliability)를 높이기 위해 다양한 기술이 개발되고 있다.
신뢰할 수 있는 고속의 데이터 서비스를 지원하기 위한 기술로 MIMO(multiple input multiple output)가 있다. MIMO 기술은 다중 송신 안테나와 다중 수신 안테나를 사용하여 데이터의 송수신 효율을 향상시킨다. MIMO 기술에는 공간 다중화(spatial multiplexing), 전송 다이버시티(transmit diversity), 빔포밍(beamforming) 등이 있다. 수신 안테나 수와 송신 안테나 수에 따른 MIMO 채널 행렬은 다수의 독립 채널로 분해될 수 있다. 각각의 독립 채널은 전송 레이어(transmission layer) 또는 스트림(stream)이라 한다. 전송 레이어의 개수는 랭크(rank)라 한다.
한편, ITU(International Telecommunication Union)에서는 3세대 이후의 차세대 이동 통신 시스템으로 하향링크 1Gbps(Gigabits per second) 및 상향링크 500Mbps(Megabits per second)인 고속의 전송률(transmission rate)을 제공하여 IP(internet protocol) 기반의 멀티미디어 심리스(seamless) 서비스를 지원하는 것을 목표로 하는 IMT-A(International Mobile Telecommunication-Advanced) 시스템의 표준화를 진행하고 있다. 3GPP(3rd Generation Partnership Project)에서는 IMT-A 시스템을 위한 후보 기술로 3GPP LTE-A(Long Term Evolution-Advanced) 시스템을 고려하고 있다. LTE-A 시스템은 LTE 시스템의 완성도를 높이는 방향으로 진행되고, LTE 시스템과 역호환성(backward compatibility)을 유지할 것으로 예상되고 있다. LTE-A 시스템과 LTE 시스템 사이에 호환성을 두는 것이 사용자의 입장에서 편리하고, 사업자의 입장에서도 기존 장비의 재활용을 도모할 수 있기 때문이다.
일반적으로 무선 통신 시스템은 하나의 반송파를 지원하는 단일 반송파(single carrier) 시스템이다. 전송률은 전송 대역폭(transmission bandwidth)에 비례하므로, 고속의 전송률이 지원되려면 전송 대역폭이 증가되어야 한다. 그러나, 전세계적으로 일부 지역을 제외하고는 큰 대역폭의 주파수 할당이 용이하지 않다. 조각난 작은 밴드를 효율적으로 사용하기 위해, 스펙트럼 집성(또는, 대역폭 집성(bandwidth aggregation), 반송파 집성(carrier aggregation)이라고도 함) 기술이 개발되고 있다. 스펙트럼 집성 기술은 주파수 영역에서 물리적으로 비연속적인(non-continuous) 다수 개의 밴드를 묶어 논리적으로 큰 대역의 밴드를 사용하는 것과 같은 효과를 내는 기술이다. 스펙트럼 집성 기술을 통해 무선 통신 시스템에서 다중 반송파가 지원될 수 있다. 다중 반송파가 지원되는 무선 통신 시스템을 다중 반송파(multiple carrier) 시스템이라 한다. 반송파는 무선 주파수(radio frequency, RF), 구성 반송파(component carrier, CC) 등 다른 용어로 불릴 수 있다.
기지국과 복수의 단말 각각의 통신을 위한 다중화 방식으로 TDM(time division multiplexing), FDM(frequency division multiplexing), CDM(code division multiplexing) 등이 사용될 수 있다. 기지국과 복수의 단말 각각이 동시에 통신하기 위해서는 CDM 및/또는 FDM이 사용될 수 있다.
다중화 방식에 따라 (1) 시간, (2) 주파수, (3) 시퀀스 중 어느 하나 이상의 조합이 무선 통신을 위한 자원이 된다. 그런데, 한번에 전송되는 정보의 양을 증가시키기 위해, 하나의 단말에 대해 다중 자원(multiple resource)을 할당할 필요성이 생길 수 있다. 다중 자원이 할당되는 경우, 다중 자원을 이용해 정보 신호 및 참조신호와 같은 신호를 전송하는 방법이 문제될 수 있다.
따라서, 효율적인 신호 전송 방법 및 장치를 제공할 필요가 있다.
본 발명이 이루고자 하는 기술적 과제는 무선 통신 시스템에서 신호 전송 방법 및 장치를 제공하는 데 있다.
일 양태에서, 제1 전송 심벌 및 상기 제1 자원 인덱스를 기반으로 제1 정보 시퀀스를 생성하고, 제2 전송 심벌 및 상기 제2 자원 인덱스를 기반으로 제2 정보 시퀀스를 생성하는 정보 프로세서, 상기 제1 자원 인덱스가 지시하는 제1 자원블록 및 상기 제2 자원 인덱스가 지시하는 제2 자원블록이 동일한지 여부에 따라 다른 참조신호 시퀀스를 생성하는 참조신호 생성기 및 상기 제1 정보 시퀀스, 상기 제2 정보 시퀀스 및 상기 참조신호 시퀀스로부터 생성된 신호를 전송하는 안테나를 포함하는 전송기를 제공한다.
다른 양태에서, 무선 통신 시스템에서 전송기에 의해 수행되는 신호 전송 방법을 제공한다. 상기 방법은 제1 전송 심벌 및 상기 제1 자원 인덱스를 기반으로 제1 정보 시퀀스를 생성하고, 제2 전송 심벌 및 상기 제2 자원 인덱스를 기반으로 제2 정보 시퀀스를 생성하는 단계, 상기 제1 자원 인덱스가 지시하는 제1 자원블록 및 상기 제2 자원 인덱스가 지시하는 제2 자원블록이 동일한지 여부에 따라 다른 참조신호 시퀀스를 생성하는 단계 및 상기 제1 정보 시퀀스, 상기 제2 정보 시퀀스 및 상기 참조신호 시퀀스로부터 생성된 신호를 전송하는 단계를 포함한다.
무선 통신 시스템에서 효율적인 신호 전송 방법 및 장치를 제공한다. 따라서, 전체 시스템 성능을 향상시킬 수 있다.
도 1은 무선 통신 시스템을 나타낸 블록도이다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다.
도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 4는 무선 프레임(radio frame) 구조의 예를 나타낸다.
도 5는 하나의 상향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
도 6은 하향링크 서브프레임의 구조의 예를 나타낸다.
도 7은 상향링크 서브프레임 구조의 예를 나타낸다.
도 8은 전송기 구조의 예를 나타낸 블록도이다.
도 9는 전송기에 포함되는 정보 프로세서 구조의 예를 나타낸 블록도이다.
도 10은 노멀 CP(cyclic prefix)의 경우, PUCCH(physical uplink control channel) 포맷 1/1a/1b 전송의 예를 나타낸다.
도 11은 확장된 CP의 경우, PUCCH 포맷 1/1a/1b 전송의 예를 나타낸다.
도 12는 노멀 CP의 경우, PUCCH 포맷 2 전송의 예를 나타낸다.
도 13은 확장된 CP의 경우, PUCCH 포맷 2 전송의 예를 나타낸다.
도 14는 2개의 안테나를 포함하는 전송기 구조의 예를 나타낸 블록도이다.
도 15는 2개의 안테나를 포함하는 전송기 일부분의 구조 일 예를 나타낸 블록도이다.
도 16은 단일 안테나를 포함하는 전송기 일부분의 구조 일 예를 나타낸 블록도이다.
도 17은 제1 자원블록과 제2 자원블록이 다른 경우의 예를 나타낸다.
도 18은 제1 자원블록과 제2 자원블록이 동일한 경우의 예를 나타낸다.
도 19는 2개의 안테나를 포함하는 전송기 일부분의 구조 다른 예를 나타낸 블록도이다.
도 20은 본 발명의 실시예가 구현되는 무선 통신을 위한 장치를 나타낸 블록도이다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 다중 접속 방식(multiple access scheme)에 사용될 수 있다. SC-FDMA는 DFT(discrete Fourier transform) 확산(spreading)된 복소수 심벌들에 IFFT(inverse fast Fourier transform)가 수행되는 방식으로, DFTS-OFDM(DFT spread-orthogonal frequency division multiplexing)이라고도 한다. 또한, 이하의 기술은 SC-FDMA의 변형인 클러스터된(clustered) SC-FDMA, N×SC-FDMA 등의 다중 접속 방식에 사용될 수도 있다. 클러스터된 SC-FDMA는 DFT 확산된 복소수 심벌들이 복수의 서브블록(subblock)으로 나뉘고, 상기 복수의 서브블록이 주파수 영역에서 분산되어 부반송파에 맵핑되는 방식으로, 클러스터된 DFTS-OFDM이라고도 한다. N×SC-FDMA는 코드블록이 복수의 청크(chunk)로 나뉘고, 청크 단위로 DFT와 IFFT가 수행되는 방식으로, 청크 특정(chunk specific) DFTS-OFDM이라고도 한다.
CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(Institute of Electrical and Electronics Engineers) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화이다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 무선 통신 시스템을 나타낸 블록도이다.
도 1을 참조하면, 무선 통신 시스템(10)은 적어도 하나의 기지국(11; base station, BS)을 포함한다. 각 기지국(11)은 특정한 지리적 영역(일반적으로 셀이라고 함)(15a, 15b, 15c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다. 단말(12; user equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 기지국(11)은 일반적으로 단말(12)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(access point) 등 다른 용어로 불릴 수 있다.
이하에서 하향링크(downlink, DL)는 기지국에서 단말로의 통신을 의미하며, 상향링크(uplink, UL)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 전송기는 기지국의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 전송기는 단말의 일부분일 수 있고, 수신기는 기지국의 일부분일 수 있다.
이종 네트워크(heterogeneous network)란 중계기(relay station), 펨토 셀(femto cell) 및/또는 피코 셀(pico cell) 등이 배치된 네트워크를 의미한다. 이종 네트워크에서, 하향링크는 기지국에서 중계기, 펨토 셀 또는 피코 셀로의 통신을 의미할 수 있다. 또한, 하향링크는 중계기에서 단말로의 통신을 의미할 수 있다. 또한, 다중 홉 릴레이(multi-hop relay)의 경우 하향링크는 제1 중계기에서 제2 중계기로의 통신을 의미할 수도 있다. 이종 네트워크에서, 상향링크는 중계기, 펨토 셀 또는 피코셀에서 기지국으로의 통신을 의미할 수 있다. 또한, 상향링크는 단말에서 중계기로의 통신을 의미할 수 있다. 또한, 다중 홉 릴레이의 경우 상향링크는 제2 중계기에서 제1 중계기로의 통신을 의미할 수도 있다.
무선 통신 시스템은 다중 안테나를 지원할 수 있다. 전송기는 다수의 전송 안테나(transmit antenna)를 사용하고, 수신기는 다수의 수신 안테나(receive antenna)를 사용할 수 있다. 전송 안테나는 하나의 신호 또는 스트림(stream)을 전송하는 데 사용되는 물리적 또는 논리적 안테나를 의미하고, 수신 안테나는 하나의 신호 또는 스트림을 수신하는 데 사용되는 물리적 또는 논리적 안테나를 의미한다. 전송기 및 수신기가 다수의 안테나를 사용하면, 무선 통신 시스템은 MIMO(multiple input multiple output) 시스템으로 불릴 수 있다.
무선 통신 시스템에서는 상향링크 및/또는 하향링크 HARQ(hybrid automatic repeat request)가 지원될 수 있다. 또한, 링크 적응(link adaptation)을 위해 CQI(channel quality indicator)가 사용될 수 있다.
무선 통신의 과정은 하나의 단일 계층으로 구현되는 것보다 수직적인 복수의 독립적은 계층으로 구현되는 것이 바람직하다. 수직적인 복수의 계층 구조를 프로토콜 스택(protocol stack)이라 한다. 프로토콜 스택은 통신 시스템에서 널리 알려진 프로토콜 구조를 위한 모델인 OSI(open system interconnection) 모델을 참조할 수 있다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다. 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 2 및 3을 참조하면, 서로 다른 물리계층(PHY(physical) layer) 사이, 즉 송신 측과 수신 측의 물리계층 사이는 물리채널(physical channel)을 통해 데이터가 이동한다. 물리계층은 제1 계층(layer 1, L1)이라고도 한다. 물리계층은 상위에 있는 MAC(medium access control) 계층과 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이의 데이터가 이동한다. 물리계층은 전송채널을 이용하여 MAC 계층 및 상위 계층(higher layer)에게 정보 전송 서비스(information transfer service)를 제공한다.
MAC 계층은 논리채널(logical channel)을 통해 상위 계층인 RLC 계층에게 서비스를 제공한다. RLC(radio link control) 계층은 신뢰성 있는 데이터의 전송을 지원한다. PDCP(packet data convergence protocol) 계층은 IP 패킷 헤더 사이즈를 줄여주는 헤더 압축(header compression) 기능을 수행한다. MAC 계층, RLC 계층 및 PDCP 계층은 제2 계층(layer 2, L2)라고도 한다.
RRC(radio resource control) 계층은 제어 평면에서만 정의된다. RRC 계층은 제3 계층(layer 3, L3)이라고도 한다. RRC 계층은 단말과 네트워크 간에 무선 자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 네트워크 간에 RRC 메시지를 서로 교환한다. RRC 계층은 무선 베어러(radio bearer)들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. 무선 베어러는 단말과 네트워크 간의 데이터 전달을 위해 제1 계층 및 제2 계층에 의해 제공되는 논리적 경로를 의미한다. 무선 베어러가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. 무선 베어러는 다시 SRB(signaling radio bearer)와 DRB(data radio bearer) 두 가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다. 단말의 RRC와 네트워크의 RRC 사이에 RRC 연결(RRC connection)이 있을 경우, 단말은 RRC 연결 모드(RRC connected mode)에 있게 되고, 그렇지 못할 경우 RRC 아이들 모드(RRC idle mode)에 있게 된다.
RRC 계층 상위에 위치하는 NAS(non-access stratum) 계층은 연결 관리(session management)와 이동성 관리(mobility management) 등의 기능을 수행한다.
도 4는 무선 프레임(radio frame) 구조의 예를 나타낸다.
도 4를 참조하면, 무선 프레임은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 무선 프레임 내 슬롯은 #0부터 #19까지 슬롯 번호가 매겨진다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)라 한다. TTI는 데이터 전송을 위한 스케줄링 단위라 할 수 있다. 예를 들어, 하나의 무선 프레임의 길이는 10ms이고, 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms일 수 있다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수는 다양하게 변경될 수 있다.
도 5는 하나의 상향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
도 5를 참조하면, 상향링크 슬롯은 시간 영역(time domain)에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 주파수 영역(frequency domain)에서 N(UL) 자원블록(resource block, RB)을 포함한다. OFDM 심벌은 하나의 심벌 구간(symbol period)을 표현하기 위한 것으로, 다중 접속 방식에 따라 OFDMA 심벌, SC-FDMA 심벌 등 다른 명칭으로 불릴 수 있다. 상향링크 슬롯에 포함되는 자원블록의 수 N(UL)은 셀에서 설정되는 상향링크 전송 대역폭(transmission bandwidth)에 종속한다. 하나의 자원블록은 주파수 영역에서 복수의 부반송파를 포함한다.
자원 그리드 상의 각 요소(element)를 자원요소(resource element, RE)라 한다. 자원 그리드 상의 자원요소는 슬롯 내 인덱스 쌍(index pair) (k, l)에 의해 식별될 수 있다. 여기서, k(k=0,...,N(UL)×12-1)는 주파수 영역 내 부반송파 인덱스이고, l(l=0,...,6)은 시간 영역 내 심벌 인덱스이다.
여기서, 하나의 자원블록은 시간 영역에서 7 OFDM 심벌, 주파수 영역에서 12 부반송파로 구성되는 7×12 자원요소를 포함하는 것을 예시적으로 기술하나, 자원블록 내 OFDM 심벌의 수와 부반송파의 수는 이에 제한되는 것은 아니다. OFDM 심벌의 수는 CP(cyclic prefix)의 길이, 부반송파 간격(subcarrier spacing) 등에 따라 다양하게 변경될 수 있다. 예를 들어, 노멀(normal) CP의 경우 OFDM 심벌의 수는 7이고, 확장된(extended) CP의 경우 OFDM 심벌의 수는 6이다.
도 5의 하나의 상향링크 슬롯에 대한 자원 그리드는 하향링크 슬롯에 대한 자원 그리드에도 적용될 수 있다.
도 6은 하향링크 서브프레임의 구조의 예를 나타낸다.
도 6을 참조하면, 하향링크 서브프레임은 2개의 연속적인(consecutive) 슬롯을 포함한다. 하향링크 서브프레임 내의 제1 슬롯(1st slot)의 앞선 3 OFDM 심벌들은 제어영역(control region)이고, 나머지 OFDM 심벌들은 데이터 영역(data region)이 된다. 여기서, 제어영역이 3 OFDM 심벌을 포함하는 것은 예시에 불과하다.
데이터 영역에는 PDSCH(physical downlink shared channel)가 할당될 수 있다. PDSCH 상으로는 하향링크 데이터가 전송된다. 하향링크 데이터는 TTI 동안 전송되는 전송 채널(transport channel)인 DL-SCH(downlink shared channel)를 위한 데이터 블록인 전송블록(transport block)일 수 있다. 기지국은 단말에게 하나의 안테나 또는 다중 안테나를 통해 하향링크 데이터를 전송할 수 있다. 3GPP LTE에서, 기지국은 단말에게 하나의 안테나 또는 다중 안테나를 통해 1 코드워드(codeword)를 전송할 수 있고, 다중 안테나를 통해서 2 코드워드를 전송할 수 있다. 3GPP LTE에서는 2 코드워드까지 지원된다. 코드워드란 정보에 해당하는 정보 비트(information bit)에 채널 코딩이 수행된 부호화된 비트(encoded bits)이다. 코드워드마다 변조가 수행될 수 있다.
제어영역에는 PCFICH(physical control format indicator channel), PHICH(physical HARQ indicator channel), PDCCH(physical downlink control channel) 등의 제어채널이 할당될 수 있다.
PCFICH는 단말에게 서브프레임 내에서 PDCCH들의 전송에 사용되는 OFDM 심벌의 개수에 관한 정보를 나른다(carry). PDCCH 전송에 사용되는 OFDM 심벌의 수는 매 서브프레임마다 변경될 수 있다. 서브프레임에서 PDCCH 전송에 사용되는 OFDM 심벌의 수는 1, 2 및 3 중 하나일 수 있다. 만일, 하향링크 전송 대역폭이 특정 임계치보다 작다면, 서브프레임에서 PDCCH 전송에 사용되는 OFDM 심벌의 수는 2, 3 및 4 중 하나일 수 있다.
PHICH는 상향링크 데이터에 대한 HARQ ACK(acknowledgement)/NACK(negative acknowledgement)을 나른다.
제어영역은 복수의 CCE(control channel elements)들의 집합으로 구성된다. 하향링크 서브프레임에서 CCE 집합을 구성하는 CCE의 총 수가 N(CCE)라면, CCE는 0부터 N(CCE)-1까지 CCE 인덱스가 매겨진다. CCE는 복수의 자원요소 그룹(resource element group)에 대응된다. 자원요소 그룹은 자원요소로의 제어채널 맵핑(mapping)을 정의하기 위해 사용된다. 하나의 자원요소 그룹은 복수의 자원요소로 구성된다. PDCCH는 하나 또는 몇몇 연속적인 CCE의 집단(aggregation) 상으로 전송된다. 제어영역 내에서 복수의 PDCCH가 전송될 수 있다. CCE 집단을 구성하는 CCE의 개수에 따라 PDCCH 포맷 및 가능한 PDCCH의 비트 수가 결정된다. 이하, PDCCH 전송을 위해 사용되는 CCE 집단을 구성하는 CCE의 수를 CCE 집단 레벨(aggregation level)이라 한다. 또한, CCE 집단 레벨은 PDCCH를 검색하기 위한 CCE 단위이다. CCE 집단 레벨의 크기는 인접하는 CCE들의 수로 정의된다. 예를 들어, CCE 집단 레벨은 {1, 2, 4, 8}의 원소일 수 있다.
PDCCH는 하향링크 제어정보를 나른다. 하향링크 제어정보에는 하향링크 스케줄링 정보, 상향링크 스케줄링 정보 또는 상향링크 파워 제어 명령 등이 있다. 하향링크 스케줄링 정보는 하향링크 그랜트(grant)라고도 하고, 상향링크 스케줄링 정보는 상향링크 그랜트라고도 한다.
기지국은 단말에게 상기 단말의 PDCCH가 서브프레임 내 어디에 있는지에 관한 정보를 제공하지 않는다. 일반적으로, 단말은 서브프레임 내 상기 단말의 PDCCH의 위치를 모르는 상태에서, 단말은 매 서브프레임마다 PDCCH 후보들(candidates)의 집합을 모니터링(monitoring)하여 상기 단말의 PDCCH를 찾는다. 여기서, 모니터링이란 단말이 모니터링되는 모든 제어정보 포맷에 따라 PDCCH 후보들 각각에 대해 디코딩을 시도하는 것을 말한다. 이를 블라인드 디코딩(blind decoding) 또는 블라인드 검출(blind detection)이라 한다.
예를 들어, 기지국이 단말에게 서브프레임 내 PDSCH 상으로 하향링크 데이터를 전송하는 경우, 기지국은 상기 서브프레임 내 PDCCH 상으로 상기 PDSCH의 스케줄링을 위해 사용되는 하향링크 그랜트를 나른다. 단말은 블라인드 디코딩을 통해 먼저 하향링크 그랜트를 전송하는 PDCCH를 검출할 수 있다. 단말은 상기 하향링크 그랜트를 기반으로 PDSCH 상으로 전송되는 하향링크 데이터를 읽을 수 있다.
도 7은 상향링크 서브프레임 구조의 예를 나타낸다.
도 7을 참조하면, 상향링크 서브프레임은 상향링크 제어정보를 나르는 PUCCH(physical uplink control channel)가 할당되는 제어영역과 사용자 데이터를 나르는 PUSCH(physical uplink shared channel)가 할당되는 데이터 영역으로 나눌 수 있다. 3GPP LTE(Release 8)에서는 단일 반송파 특성(single carrier property)을 유지하기 위해, 하나의 단말에게 할당되는 자원블록들은 주파수 영역에서 연속된다. 하나의 단말은 PUCCH와 PUSCH를 동시에 전송할 수 없다. LTE-A(Release 10)에서는 PUCCH와 PUSCH의 동시 전송(concurrent transmission)이 고려 중에 있다.
하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)으로 할당된다. 자원블록 쌍에 속하는 자원블록들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. PUCCH에 할당되는 자원블록 쌍에 속하는 자원블록이 차지하는 주파수는 슬롯 경계(slot boundary)를 기준으로 변경된다. 즉, PUCCH에 할당된 자원블록은 슬롯 레벨(slot level)로 홉핑(hopping)된다. 이하, 슬롯 레벨의 자원블록 홉핑을 주파수 홉핑(frequency hopping)이라 한다. 단말이 상향링크 제어정보를 시간에 따라 서로 다른 위치의 주파수를 통해 전송함으로써, 주파수 다이버시티 이득이 얻어질 수 있다. m은 서브프레임 내에서 PUCCH에 할당된 자원블록 쌍의 주파수 영역 위치를 나타내는 위치 인덱스이다.
PUSCH는 전송채널인 UL-SCH(uplink shared channel)에 맵핑된다. PUCCH 상으로 전송되는 상향링크 제어정보는 HARQ ACK/NACK, 하향링크 채널 상태를 나타내는 CQI, 상향링크 무선자원 할당 요청인 SR(scheduling request) 등이 있다. 이하, CQI는 CQI 외에도 PMI(precoding matrix indicator), RI(rank indicator)까지 포함된 개념이다.
기지국과 복수의 단말 각각의 통신을 위한 다중화 방식으로 TDM(time division multiplexing), FDM(frequency division multiplexing), CDM(code division multiplexing) 등이 사용될 수 있다. 기지국과 복수의 단말 각각이 동시에 통신하기 위해서는 CDM 및/또는 FDM이 사용될 수 있다.
CDM이란 직교하는(orthogonal) 시퀀스 또는 의사 직교하는(quasi-orthogonal) 시퀀스에 의한 다중화 방식을 총칭한다. 즉, CDM을 위해 사용되는 시퀀스들은 반드시 서로 직교할 필요는 없다. 서로 상관도(correlation)가 낮은 시퀀스들 역시 CDM을 위해 사용될 수 있다.
이하, 다중화 방식으로 CDM 및/또는 FDM이 사용되는 경우의 정보 전송 방법 및 장치에 대해 설명한다.
다중화 방식으로 CDM 및/또는 FDM이 사용되는 경우, 정보 전송을 위해 사용되는 자원(resource)은 시퀀스 및/또는 주파수 자원이다. 예를 들어, 다중화 방식으로 CDM만이 사용되는 경우 자원은 시퀀스이고, CDM 및 FDM이 같이 사용되는 경우 자원은 시퀀스 및 주파수 자원이다. 이하, 주파수 자원 및 시퀀스에 대해 상술한다.
(1) 주파수 자원
상기에서 설명한 자원블록은 주파수 자원의 일 예이다. 동일 시간 내 자원블록이 다르면, 주파수 자원이 다르기 때문이다. 이하에서는 설명의 편의를 위해, 자원블록은 일반적인 주파수 자원의 의미로 사용된다.
(2) 시퀀스
시퀀스는 특별한 제한없이, 임의의 시퀀스가 사용될 수 있다.
일 예로, 시퀀스는 복수의 시퀀스들을 원소로 하는 시퀀스 집합에서 선택될 수 있다. 시퀀스 집합에 포함되는 상기 복수의 시퀀스들은 서로 직교하거나, 서로 낮은 상관도를 가질 수 있다. 설명의 편의를 위해 시퀀스 집합에 포함되는 복수의 시퀀스들이 서로 직교한다고 가정한다. 이하, 시퀀스 집합을 직교 시퀀스들로 구성된 직교 시퀀스 집합이라 한다. 직교 시퀀스 집합에 속한 직교 시퀀스들 각각은 하나의 직교 시퀀스 인덱스에 일대일로 대응된다.
길이 4인 직교 시퀀스들을 원소로 갖는 직교 시퀀스 집합은 월시-하다마드(Walsh-Hadamard) 행렬을 이용할 수 있다. 다음 표는 길이 K=4인 직교 시퀀스 w(k, Ios) (Ios는 직교 시퀀스 인덱스, k는 직교 시퀀스의 요소 인덱스 0≤k≤K-1)로 구성된 직교 시퀀스 집합의 일 예이다.
[규칙 제26조에 의한 보정 03.05.2010] 
표 1
Figure WO-DOC-TABLE-1
직교 시퀀스 집합은 상기 표에서 일부 직교 시퀀스들로만 구성될 수도 있다. 3GPP LTE에서는 [+1, +1, -1, -1]을 제외한 3개의 직교 시퀀스들을 사용한다.
다음 표는 길이 K=3인 직교 시퀀스 w(k, Ios) (Ios는 직교 시퀀스 인덱스, k는 직교 시퀀스의 요소 인덱스 0≤k≤K-1)로 구성된 직교 시퀀스 집합의 일 예이다.
[규칙 제26조에 의한 보정 03.05.2010] 
표 2
Figure WO-DOC-TABLE-2
다음 표는 길이 K=2인 직교 시퀀스(k, Ios) (Ios는 직교 시퀀스 인덱스, k는 직교 시퀀스의 요소 인덱스 0≤k≤K-1)로 구성된 직교 시퀀스 집합의 일 예이다.
[규칙 제26조에 의한 보정 03.05.2010] 
표 3
Figure WO-DOC-TABLE-3
다른 예로, 시퀀스는 순환 쉬프트된 시퀀스(cyclically shifted sequence)를 이용할 수도 있다. 순환 쉬프트된 시퀀스는 기본 시퀀스(base sequence)를 특정 CS 양(cyclic shift amount) 만큼 순환 쉬프트시켜 생성될 수 있다. 다양한 종류의 시퀀스가 기본 시퀀스로 사용될 수 있다. 예를 들어, PN(pseudo-random) 시퀀스, ZC(Zadoff-Chu) 시퀀스와 같은 잘 알려진 시퀀스가 기본 시퀀스로 사용될 수 있다. 또는, 컴퓨터를 통해 생성되는 CAZAC(Constant Amplitude Zero Auto-Correlation)가 사용될 수 있다. 다음 수학식은 기본 시퀀스의 예이다.
수학식 1
Figure PCTKR2009006696-appb-M000001
여기서, i ∈ {0,1,...,29}는 원시 인덱스(root index), n은 요소 인덱스로 0≤n≤N-1, N은 기본 시퀀스의 길이이다. i는 셀 ID(identitifer), 무선 프레임 내 슬롯 번호 등에 의해 정해질 수 있다. 하나의 자원블록이 12 부반송파를 포함한다고 할 때, N은 12로 할 수 있다. 다른 원시 인덱스에 따라 다른 기본 시퀀스가 정의된다. N=12 일 때, b(n)은 다음 표와 같이 정의될 수 있다.
[규칙 제26조에 의한 보정 03.05.2010] 
표 4
Figure WO-DOC-TABLE-4
기본 시퀀스 r(n)을 다음 수학식과 같이 순환 쉬프트시켜 순환 쉬프트된 시퀀스 r(n, Ics)을 생성할 수 있다.
수학식 2
Figure PCTKR2009006696-appb-M000002
여기서, Ics는 CS 양을 지시하는 순환 쉬프트 인덱스이다(0≤Ics≤N-1, Ics는 정수).
이하에서 기본 시퀀스의 가용(available) 순환 쉬프트 인덱스는 CS 간격(CS interval)에 따라 기본 시퀀스로부터 얻을 수(derive) 있는 순환 쉬프트 인덱스를 말한다. 예를 들어, 기본 시퀀스의 길이가 12이고, CS 간격이 1이라면, 기본 시퀀스의 가용 순환 쉬프트 인덱스의 총 수는 12가 된다. 또는, 기본 시퀀스의 길이가 12이고, CS 간격이 2이라면, 기본 시퀀스의 가용 순환 쉬프트 인덱스의 총 수는 6이 된다. CS 간격은 지연 스프레드(delay spread)를 고려하여 결정될 수 있다.
도 8은 전송기 구조의 예를 나타낸 블록도이다. 여기서, 전송기는 단말 또는 기지국의 일부분일 수 있다.
도 8을 참조하면, 전송기(100)는 정보 프로세서(information processor, 110), 참조신호 생성기(reference signal generator, 120), 자원블록 맵퍼(resource element mapper, 130), OFDM 신호 생성기(OFDM signal generator, 140), RF부(RF(radio frequency) unit, 150) 및 안테나(190)를 포함한다.
정보 프로세서(110) 및 참조신호 생성기(120)는 각각 자원블록 맵퍼(130)에 연결된다. 자원블록 맵퍼(130)는 OFDM 신호 생성기(140)에 연결되고, OFDM 신호 생성기(140)는 RF부(150)에 연결되고, RF부(150)는 안테나(190)에 연결된다.
정보 프로세서(110)는 정보를 입력받는다. 정보는 사용자 데이터, 제어정보, 여러 제어정보가 혼합된 정보 또는 제어정보와 사용자 데이터가 다중화된 정보 등이 될 수 있다. 정보는 비트(bit) 또는 비트열(bit stream)의 형태일 수 있다. 전송기(100)는 물리계층에서 구현될 수 있다. 이 경우, 정보는 MAC 계층과 같은 상위 계층으로부터 유래된 것일 수 있다.
정보 프로세서(110)는 정보 및 시퀀스를 기반으로 정보 시퀀스를 생성하도록 형성된다. 정보 시퀀스는 복수의 정보심벌들로 구성된다. 정보 시퀀스는 정보신호라고도 할 수 있다.
도 9는 전송기에 포함되는 정보 프로세서 구조의 예를 나타낸 블록도이다.
도 9를 참조하면, 정보 프로세서(110)는 채널 코딩부(channel coding unit, 111), 변조기(modulator, 112) 및 정보 시퀀스 생성기(113)를 포함한다.
채널 코딩부(111)는 전송기가 전송하려는 정보에 해당하는 정보 비트를 입력받는다. 채널 코딩부(111)는 정보 비트에 채널 코딩을 수행하여 부호화된 비트를 생성한다. 채널 코딩 방식에는 제한이 없다. 예를 들어, 채널 코딩 방식에는 터보 코딩(turbo coding), 콘볼루션 코딩(convolution coding), 블록 코딩(block coding) 등이 사용될 수 있다. 블록 코드의 예로 리드 뮬러 코드(Reed-Muller code) 패밀리가 있다. 채널 코딩부(111)에서 출력된 부호화된 비트의 크기는 다양할 수 있다.
변조기(112)는 부호화된 비트를 신호 성상(signal constellation) 상의 위치를 표현하는 심벌로 맵핑하여 변조 심벌을 생성한다. 변조 방식(modulation scheme)에는 제한이 없다. 예를 들어, 변조 방식에는 m-PSK(m-phase shift keying) 또는 m-QAM(m-quadrature amplitude modulation) 등이 사용될 수 있다. 변조기(112)에서 출력되는 변조 심벌의 개수는 변조기(112)에 입력되는 부호화된 비트의 크기 및 변조 방식에 따라 다양할 수 있다.
정보 프로세서(110)는 변조 심벌에 DFT를 수행할 수도 있고, 수행하지 않을 수도 있다. DFT가 수행되는 경우, 정보 프로세서(110)는 변조 심벌에 DFT를 수행하여 복소수 심벌(complex-valued symbol)을 출력하는 DFT부(미도시)를 더 포함할 수 있다. 여기서는 DFT가 수행되지 않고, 변조 심벌이 정보 시퀀스 생성기(113)으로 입력된다. 이하, 정보 시퀀스 생성기(113)에 입력되는 변조 심벌은 전송기(100)가 전송하고자 하는 정보에 대응하는 복소수 심벌을 의미한다.
정보 시퀀스 생성기(113)는 변조 심벌 및 시퀀스를 기반으로 정보 시퀀스를 생성한다. 정보 시퀀스는 1차원 확산된 시퀀스이거나 2차원 확산된 시퀀스일 수 있다.
(1) 1차원 확산된 시퀀스
1차원 확산된 시퀀스는 변조 심벌 및 제1 시퀀스를 기반으로 생성된다. 하나의 변조 심벌 또는 복수의 변조 심벌 각각이 제1 시퀀스와 곱해져 1차원 확산된 시퀀스가 생성될 수 있다.
다음 수학식은 변조 심벌 d(0),...,d(K-1) 및 길이 N인 제1 시퀀스 x(n) (K 및 N은 각각 자연수, n은 제1 시퀀스의 요소 인덱스, 0≤n≤N-1)를 기반으로 K개의 1차원 확산된 시퀀스 s(n)가 생성되는 예이다.
수학식 3
Figure PCTKR2009006696-appb-M000003
여기서, 변조 심벌 d(0),...,d(K-1)는 K개의 변조 심벌일 수 있다. 또는, 하나의 변조 심벌 d(0)를 K번 반복 사용한 것일 수도 있다.
1차원 확산된 시퀀스 s(n)은 시간 영역 또는 주파수 영역으로 맵핑된다. 시간 영역으로 맵핑되는 경우, 1차원 확산된 시퀀스 s(n)은 타임 샘플들, 칩들(chips) 또는 OFDM 심벌들에 맵핑될 수 있다. 주파수 영역으로 맵핑되는 경우, 1차원 확산된 시퀀스 s(n)은 부반송파들에 맵핑될 수 있다.
이하, 1차원 확산된 시퀀스 s(n)이 시간 영역으로 맵핑되는 경우, 제1 시퀀스 x(n)을 시간 영역 시퀀스라 한다. 1차원 확산된 시퀀스 s(n)이 주파수 영역으로 맵핑되는 경우, 제1 시퀀스 x(n)을 주파수 영역 시퀀스라 한다.
(2) 2차원 확산된 시퀀스
2차원 확산된 시퀀스는 1차원 확산된 시퀀스 및 제2 시퀀스를 기반으로 생성된다. 즉, 2차원 확산된 시퀀스는 변조 심벌, 제1 시퀀스 및 제2 시퀀스를 기반으로 생성된다. 1차원 확산된 시퀀스는 제2 시퀀스로 확산되어 2차원 확산된 시퀀스가 생성될 수 있다.
다음 수학식은 K개의 1차원 확산된 시퀀스 s(n)가 길이 K인 제2 시퀀스 y(k) (k는 제2 시퀀스의 요소 인덱스, 0≤k≤K-1)로 확산되어 2차원 확산된 시퀀스 z(n,k)가 생성되는 예이다.
수학식 4
Figure PCTKR2009006696-appb-M000004
2차원 확산된 시퀀스 z(n,k)는 시간 영역 및 주파수 영역으로 맵핑된다. 예를 들어, n은 부반송파 인덱스, k는 심벌 인덱스에 대응될 수 있다. 또는, n은 심벌 인덱스, k는 부반송파 인덱스에 대응될 수도 있다.
다시 도 8을 참조하면, 참조신호 생성기(120)는 참조신호 시퀀스를 생성한다. 참조신호 시퀀스는 복수의 참조심벌들로 구성된다. 참조신호 시퀀스는 참조신호(reference signal, RS)라고도 할 수 있다. 참조신호는 전송기와 수신기가 모두 알고 있는 신호이다. 참조신호는 수신기에서 정보 복조(demodulation)를 위해 사용될 수 있다. 참조신호 시퀀스는 특별한 제한없이, 임의의 시퀀스가 사용될 수 있다.
참조신호 시퀀스는 정보 시퀀스 생성 방식과 유사하게 생성될 수 있다. 정보 시퀀스가 1차원 확산된 시퀀스인 경우, 참조신호 시퀀스로 참조신호를 위한 제1 시퀀스가 사용될 수 있다. 정보 시퀀스가 2차원 확산된 시퀀스인 경우, 참조신호 시퀀스는 참조신호를 위한 제1 시퀀스 및 참조신호를 위한 제2 시퀀스를 기반으로 생성될 수 있다.
자원블록 맵퍼(130)는 정보 전송을 위해 사용되는 자원블록에 정보 시퀀스 및 참조신호 시퀀스를 맵핑하도록 형성된다. 하나의 정보심벌 또는 하나의 참조심벌은 하나의 자원요소에 맵핑될 수 있다. CDM이 사용되므로 동일 자원블록에 다중화될 수도 있다. 물론, FDM 방식이 CDM 방식과 같이 사용되어 서로 다른 자원블록에 의해 다중화될 수도 있다.
정보 전송을 위해 사용되는 자원블록은 하나 이상일 수 있다. 자원블록은 정보 부분(part)과 참조신호 부분을 포함한다. 정보 부분에는 정보 시퀀스가 맵핑되고, 참조신호 부분에는 참조신호 시퀀스가 맵핑된다.
참조신호 부분과 정보 부분 각각은 자원블록 내 서로 다른 OFDM 심벌을 사용할 수 있다. 또는 참조신호 부분과 정보 부분은 OFDM 심벌 내 서로 다른 부반송파를 사용할 수도 있다.
이하에서는 설명의 편의를 위해, 참조신호 부분과 정보 부분 각각은 자원블록 내 서로 다른 OFDM 심벌을 사용한다고 가정한다. 자원블록 내 하나 이상의 OFDM 심벌은 참조신호 부분일 수 있다. 자원블록 내 복수의 OFDM 심벌이 참조신호 부분인 경우, 복수의 OFDM 심벌은 서로 인접(contiguous)할 수도 있고, 인접하지 않을 수도 있다. 자원블록 내 참조신호 부분으로 사용되는 OFDM 심벌의 개수 및 위치는 특별히 제한되지 않으며 다양할 수 있다. 자원블록 내 참조신호 부분을 제외한 OFDM 심벌은 정보 부분으로 사용될 수 있다.
예를 들어, 전송기가 단말의 일부분이고, PUCCH 상으로 정보를 전송하는 경우를 가정한다. 자원블록 맵퍼(130)는 PUCCH 전송을 위해 할당되는 서브프레임 내 자원블록 쌍(도 7 참조)에 정보 시퀀스 및 참조신호 시퀀스를 맵핑한다.
OFDM 신호 생성기(140)는 자원블록 내 OFDM 심벌마다 시간-연속적인(time-continuous) OFDM 신호를 생성하도록 형성된다. 시간-연속적인 OFDM 신호는 OFDM 베이스밴드(baseband) 신호라고도 한다. OFDM 신호 생성기(140)는 OFDM 심벌마다 IFFT 수행, CP 삽입 등을 통해 OFDM 신호를 생성할 수 있다.
RF부(150)는 OFDM 베이스밴드 신호를 무선 신호(radio signal)로 변환한다. OFDM 베이스밴드 신호는 반송파 주파수(carrier frequency)로 업컨버젼(upconversion)되어 무선 신호로 변환될 수 있다. 반송파 주파수는 중심 주파수(center frequency)라고도 한다.
안테나(190)를 통해 무선 신호가 전송된다.
이와 같이, 정보 전송을 위해 전송기(100)는 정보 전송에 사용되는 자원을 결정해야 한다. 자원은 (1) 제1 시퀀스, (2) 제2 시퀀스, (3) 자원블록들 중 적어도 하나 이상으로 구성될 수 있다. 예를 들어, 제1 시퀀스는 순환 쉬프트된 시퀀스이고, 제2 시퀀스는 직교 시퀀스일 수 있다.
자원 인덱스(resource index)는 정보 전송에 사용되는 자원을 식별한다. 따라서 자원 인덱스로부터 자원이 결정된다. 정보 시퀀스 및 참조신호 시퀀스 각각의 생성에 사용되는 시퀀스는 자원 인덱스로부터 결정된다. 또한 정보 시퀀스 및 참조신호 시퀀스가 맵핑되는 자원블록은 자원 인덱스로부터 결정될 수 있다.
따라서, 전송기(100)는 정보 전송을 위해 자원 인덱스를 획득해야 한다. 전송기가 기지국의 일부분인 경우, 전송기는 스케줄링을 통해 자원 인덱스를 결정할 수 있다.
전송기가 단말의 일부분인 경우, 단말의 자원 인덱스 획득 방법이 문제된다. 기지국은 단말에게 자원 인덱스를 명시적으로(explicitly) 또는 암시적으로(implicitly) 알려줄 수 있다. 또한, 자원 인덱스는 반정적(semi-static)으로 변하거나, 동적(dynamic)으로 변할 수 있다.
일 예로, 자원 인덱스는 상위 계층(higher layer) 시그널링에 의해 설정될 수 있다. 상위 계층은 RRC 계층일 수 있다. 이 경우, 자원 인덱스는 반정적으로 변한다. 단말이 전송하는 정보는 SR, SPS(semi-persistent scheduling) ACK/NACK, CQI 등일 수 있다. SPS ACK/NACK은 반정적 스케줄링으로 전송된 하향링크 데이터에 대한 HARQ ACK/NACK이다. 상기 하향링크 데이터가 PDSCH를 통해 전송될 경우, 상기 PDSCH에 대응하는 PDCCH가 존재하지 않을 수 있다.
다른 예로, 단말은 자원 인덱스를 하향링크 데이터 수신을 위한 제어채널이 전송되는 무선 자원으로부터 얻을 수 있다. 이 경우, 단말이 전송하는 정보는 동적 ACK/NACK일 수 있다. 동적 ACK/NACK은 동적 스케줄링으로 전송된 하향링크 데이터에 대한 ACK/NACK이다. 동적 스케줄링은 기지국이 PDSCH를 통한 하향링크 데이터를 전송할 때마다 단말에게 PDCCH를 통해 하향링크 그랜트를 매번 전송하는 것이다.
다음 수학식은 동적 ACK/NACK 전송을 위한 자원 인덱스(R)를 결정하는 예이다.
수학식 5
Figure PCTKR2009006696-appb-M000005
여기서, n(CCE)는 PDSCH에 대한 PDCCH 전송에 사용된 첫번째 CCE 인덱스이고, N(PUCCH)는 SR과 SPS ACK/NACK을 위해 할당되는 자원 인덱스의 개수일 수 있다. N(PUCCH)는 셀 특정 파라미터로 RRC 계층과 같은 상위 계층에 의해 설정될 수 있다.
따라서, 기지국은 PDCCH 전송에 사용되는 첫번째 CCE 인덱스를 조절하여 ACK/NACK 전송을 위한 자원을 조절할 수 있다.
CDM 및 FDM 기반의 정보 전송 방법의 예로 PUCCH 상으로 상향링크 제어정보를 전송하는 방법이 있다. 이하, PUCCH 상으로 상향링크 제어정보를 전송하는 방법을 설명한다.
PUCCH는 다중 포맷을 지원할 수 있다. 즉, PUCCH 포맷에 종속된 변조 방식에 따라 서브프레임당 서로 다른 비트 수를 갖는 상향링크 제어정보를 전송할 수 있다. 다음 표는 PUCCH 포맷에 따른 변조 방식 및 서브프레임당 비트 수의 예를 나타낸다.
[규칙 제26조에 의한 보정 03.05.2010] 
표 5
Figure WO-DOC-TABLE-5
PUCCH 포맷 1은 SR의 전송에 사용되고, PUCCH 포맷 1a/1b는 HARQ ACK/NACK의 전송에 사용되고, PUCCH 포맷 2는 CQI의 전송에 사용되고, PUCCH 포맷 2a/2b는 CQI 및 HARQ ACK/NACK의 전송에 사용된다.
임의의 서브프레임에서 HARQ ACK/NACK이 단독으로 전송되는 경우에는 PUCCH 포맷 1a/1b를 사용되고, SR이 단독으로 전송되는 경우에는 PUCCH 포맷 1을 사용한다. 단말은 HARQ ACK/NACK 및 SR을 동일 서브프레임에서 동시에 전송할 수 있다. 긍정적인(positive) SR 전송을 위해 단말은 SR용으로 할당된 PUCCH 자원을 통해 HARQ ACK/NACK을 전송하고, 부정적인(negative) SR 전송을 위해서는 단말은 ACK/NACK용으로 할당된 PUCCH 자원을 통해 HARQ ACK/NACK을 전송한다.
PUCCH 포맷 1a의 경우, 채널 코딩부로부터 1비트의 ACK/NACK 비트가 출력된다. 예를 들어, 각각의 ACK은 이진수(binary) '1'로 부호화되고, 각각의 NACK은 이진수 '0'으로 부호화될 수 있다. PUCCH 포맷 1b의 경우, 채널 코딩부로부터 2비트(b(0), b(1))의 ACK/NACK 비트가 출력될 수 있다. b(0)는 제1 코드워드를 위한 ACK/NACK 비트에 대응되고, b(1)은 제2 코드워드에 대한 ACK/NACK 비트에 대응될 수 있다. 즉, PUCCH 포맷 1a는 1 코드워드에 대한 HARQ ACK/NACK 정보를 위한 것이고, PUCCH 포맷 1b는 2 코드워드에 대한 HARQ ACK/NACK 정보를 위한 것이다.
PUCCH 포맷 1, 1a 및 1b 각각은 하나의 변조 심벌 d(0)를 사용한다. 기지국은 SR을 단말로부터의 PUCCH 포맷 1 전송의 존재 또는 부존재만으로 알 수 있다. 즉, SR 전송에는 OOK(on-off keying) 변조 방식이 사용될 수 있다. 따라서, PUCCH 포맷 1을 위한 변조 심벌 d(0)의 값으로는 임의의 복소수를 사용할 수 있다. 예를 들어, d(0)=1을 사용할 수 있다. PUCCH 포맷 1a를 위한 변조 심벌 d(0)는 1비트의 부호화된 비트가 BPSK(binary phase shift keying) 변조되어 생성되는 변조 심벌이다. PUCCH 포맷 1b를 위한 복소 심벌 d(0)는 2비트의 부호화된 비트가 QPSK(quadrature phase shift keying) 변조되어 생성되는 변조 심벌이다.
다음 표는 변조 방식에 따라 ACK/NACK 비트가 맵핑되는 변조 심벌의 예를 나타낸다.
[규칙 제26조에 의한 보정 03.05.2010] 
표 6
Figure WO-DOC-TABLE-6
도 10은 노멀 CP의 경우, PUCCH 포맷 1/1a/1b 전송의 예를 나타낸다. 여기서는, 자원블록 쌍에 속하는 자원블록들이 제1 슬롯과 제2 슬롯에서 동일한 주파수 대역을 차지하는 것처럼 표현하였으나, 도 7에서 설명한 것과 같이 자원블록은 슬롯 레벨로 홉핑될 수 있다.
도 10을 참조하면, 제1 슬롯과 제2 슬롯 각각은 7 OFDM 심벌을 포함한다. 각 슬롯에 포함되는 7 OFDM 심벌 중 3 OFDM 심벌은 참조신호 시퀀스가 맵핑되는 참조신호 부분이고, 나머지 4 OFDM 심벌에는 정보 시퀀스가 맵핑되는 정보 부분이다. 참조신호 부분은 각 슬롯 중간의 3개의 인접하는 OFDM 심벌이다. 각 슬롯 내 참조신호 부분으로 사용되는 OFDM 심벌의 개수 및 위치는 달라질 수 있으며, 정보 부분으로 사용되는 OFDM 심벌의 개수 및 위치도 그에 따라 변경될 수 있다.
정보 부분에서, 변조 심벌 d(0), 순환 쉬프트된 시퀀스 r(n,Ics) 및 직교 시퀀스 w(k, Ios)를 기반으로 정보 시퀀스가 생성된다. 순환 쉬프트된 시퀀스 r(n, Ics)는 제1 시퀀스, 직교 시퀀스 w(k, Ios)는 제2 시퀀스라 할 수 있다. 따라서, 정보 시퀀스는 2차원 확산된 시퀀스이다. 정보를 2차원의 시간-주파수 영역으로 확산시킴으로써, 단말 다중화 용량(UE multiplexing capacity)이 증가될 수 있다. 단말 다중화 용량이란, 동일한 자원블록에 다중화될 수 있는 단말의 개수이다.
서브프레임 내 정보 부분으로 사용되는 OFDM 심벌마다 기본 시퀀스로부터 순환 쉬프트된 시퀀스 r(n,Ics)가 생성된다. 한 슬롯 내 기본 시퀀스는 동일하다. 서브프레임 내 제1 슬롯의 기본 시퀀스와 제2 슬롯의 기본 시퀀스는 동일할 수도 있고, 다를 수도 있다. 순환 쉬프트 인덱스 Ics는 자원 인덱스로부터 결정된다. 순환 쉬프트 인덱스인 Ics는 심벌 레벨(symbol level)로 CS 홉핑(CS hopping)될 수 있다. 이하, 심벌 레벨의 순환 쉬프트 인덱스의 홉핑을 CS 홉핑이라 한다. CS 홉핑은 무선 프레임 내 슬롯 번호(n(s)) 및 슬롯 내 심벌 인덱스(l)에 따라 수행될 수 있다. 따라서, 순환 쉬프트 인덱스 Ics는 Ics(n(s),l)로 표현될 수 있다. CS 홉핑은 셀 간 간섭(inter-cell interference)을 랜덤화(randomization)시키기 위해 셀 특정하게 수행될 수 있다. 도 10에서 정보 부분의 OFDM 심벌마다의 Ics 값은 예시에 불과하다.
변조 심벌 d(0) 및 순환 쉬프트된 시퀀스 r(n,Ics)를 기반으로 정보 부분의 OFDM 심벌마다 주파수 영역으로 확산된 제1 시퀀스 s(n)가 생성된다. 다음 수학식과 같이 순환 쉬프트된 시퀀스 r(n,Ics)에 변조 심벌 d(0)를 곱하여 제1 시퀀스 s(n)가 생성될 수 있다.
수학식 6
Figure PCTKR2009006696-appb-M000006
정보 부분의 OFDM 심벌마다 생성된 제1 시퀀스 s(n) 및 길이 K=4인 직교 시퀀스 w(k, Ios)를 기반으로 시간-주파수 영역으로 확산된 정보 시퀀스가 생성된다. 제1 시퀀스는 직교 시퀀스 w(k, Ios)로 블록 방식으로 확산되어 정보 시퀀스가 생성될 수 있다. 직교 시퀀스를 구성하는 요소들은 차례대로 정보 부분의 OFDM 심벌들에 1:1로 대응된다. 직교 시퀀스를 구성하는 요소들 각각은 대응하는 OFDM 심벌에 맵핑되는 제1 시퀀스 s(n)에 곱해져 정보 시퀀스가 생성된다.
정보 시퀀스는 서브프레임 내 PUCCH에 할당되는 자원블록 쌍에 맵핑된다. 자원블록 쌍은 자원 인덱스로부터 결정된다. 정보 시퀀스가 자원블록 쌍에 맵핑된 후, 상기 서브프레임의 OFDM 심벌마다 IFFT가 수행되어 시간 영역 신호가 출력된다. 여기서는, IFFT 수행 전에 직교 시퀀스가 곱해지나, 제1 시퀀스 s(n)을 자원블록 쌍에 맵핑하고 IFFT 수행 후에 직교 시퀀스가 곱해져도 동일한 결과가 얻어질 수 잇다.
사운딩 참조신호(sounding reference signal, SRS)와 PUCCH 포맷 1/1a/1b이 하나의 서브프레임에서 동시에 전송되는 경우, PUCCH 상의 하나의 OFDM 심벌이 천공(puncturing)된다. 예를 들어, 서브프레임의 마지막 OFDM 심벌이 천공될 수 있다. 이 경우, 상기 서브프레임의 제1 슬롯에서 정보 부분은 4 OFDM 심벌로 구성되고, 상기 서브프레임의 제2 슬롯에서는 정보 부분은 3 OFDM 심벌로 구성된다. 따라서, 제1 슬롯에 대해서는 길이 K=4인 직교 시퀀스가 이용되고, 제2 슬롯에 대해서는 길이 K=3인 직교 시퀀스가 이용된다.
직교 시퀀스 Ios는 자원 인덱스로부터 결정된다. 직교 시퀀스 인덱스 Ios는 슬롯 레벨로 홉핑될 수 있다. 이하, 슬롯 레벨의 직교 시퀀스 인덱스의 홉핑을 직교 시퀀스 리맵핑(OS remapping)이라 한다. 직교 시퀀스 리맵핑은 무선 프레임 내 슬롯 번호(n(s))에 따라 수행될 수 있다. 따라서, 직교 시퀀스 인덱스 Ios는 Ios(n(s))로 표현될 수 있다. 직교 시퀀스 리맵핑은 셀 간 간섭의 랜덤화를 위해 수행될 수 있다.
참조신호 부분에서, 순환 쉬프트된 시퀀스 r(n,I'cs) 및 길이 K=3인 직교 시퀀스 w(k, I'os)를 기반으로 참조신호 시퀀스가 생성된다. I'cs는 참조신호를 위한 순환 쉬프트 인덱스이고, I'os는 참조신호를 위한 직교 시퀀스 인덱스이다. I'cs 및 I'os는 각각 자원 인덱스로부터 결정된다. 순환 쉬프트된 시퀀스는 주파수 영역 시퀀스이고, 직교 시퀀스는 시간 영역 시퀀스이다. 따라서, 참조신호 시퀀스는 정보 시퀀스와 마찬가지로 2차원의 시간-주파수 영역으로 확산된 시퀀스이다.
참조신호 부분에서 순환 쉬프트된 시퀀스를 생성하기 위한 기본 시퀀스는 정보 부분의 기본 시퀀스와 동일할 수 있다. 정보 부분의 순환 쉬프트 인덱스 Ics와 참조신호 부분의 순환 쉬프트 인덱스 I'cs 모두 자원 인덱스로부터 결정된다. 다만, 자원 인덱스로부터 순환 쉬프트 인덱스를 결정하는 방법은 정보 부분과 참조신호 부분이 동일할 수도 있고, 다를 수도 있다.
도 11은 확장된 CP의 경우, PUCCH 포맷 1/1a/1b 전송의 예를 나타낸다. 여기서는, 자원블록 쌍에 속하는 자원블록들이 제1 슬롯과 제2 슬롯에서 동일한 주파수 대역을 차지하는 것처럼 표현하였으나, 도 7에서 설명한 것과 같이 자원블록은 슬롯 레벨로 홉핑될 수 있다.
도 11을 참조하면, 제1 슬롯과 제2 슬롯 각각은 6 OFDM 심벌을 포함한다. 각 슬롯의 6 OFDM 심벌 중 2 OFDM 심벌은 참조신호 부분이고, 나머지 4 OFDM 심벌은 정보 부분이다. 이를 제외하면, 도 10의 노멀 CP의 경우의 예가 그대로 적용될 수 있다. 다만, 참조신호 부분에서, 순환 쉬프트된 시퀀스 및 길이 K=2인 직교 시퀀스를 기반으로 참조신호 시퀀스를 생성한다.
상술한 바와 같이, 노멀 CP, 확장된 CP의 경우 모두 PUCCH 포맷 1/1/a/1b 전송을 위해 사용되는 자원이 자원 인덱스에 의해 식별되어야 한다. 자원 인덱스로부터 정보가 전송되는 자원블록, 정보 시퀀스 생성을 위한 순환 쉬프트 인덱스 Ics 및 직교 시퀀스 인덱스 Ios, 참조신호 시퀀스 생성을 위한 순환 쉬프트 인덱스 I'cs 및 직교 시퀀스 인덱스 I'os가 결정된다.
예를 들어, 확장된 CP에서 CS 간격이 2인 경우, 단말 다중화 용량은 다음과 같다. 정보 시퀀스 생성을 위한 Ics의 개수는 6이고, Ios의 개수는 3이므로, 하나의 자원블록당 18개의 단말이 다중화될 수 있다. 그러나, 참조신호 시퀀스 생성을 위한 I'cs의 개수는 6이고, I'os의 개수는 2이므로, 하나의 자원블록당 12개의 단말이 다중화될 수 있다. 따라서, 단말 다중화 용량은 정보 부분보다는 참조신호 부분에 의해 제한된다.
도 12는 노멀 CP의 경우, PUCCH 포맷 2 전송의 예를 나타낸다. 여기서는, 자원블록 쌍에 속하는 자원블록들이 제1 슬롯과 제2 슬롯에서 동일한 주파수 대역을 차지하는 것처럼 표현하였으나, 도 7에서 설명한 것과 같이 자원블록은 슬롯 레벨로 홉핑될 수 있다.
도 12를 참조하면, 각 슬롯에 포함되는 7 OFDM 심벌 중 2 OFDM 심벌은 참조신호 부분이고, 나머지 5 OFDM 심벌에는 정보 시퀀스가 맵핑되는 정보 부분이다. 각 슬롯 내 참조신호 부분으로 사용되는 OFDM 심벌의 개수 및 위치는 달라질 수 있으며, 정보 부분으로 사용되는 OFDM 심벌의 개수 및 위치도 그에 따라 변경될 수 있다.
단말은 CQI 정보 비트에 채널 코딩을 수행하여 부호화된 CQI 비트를 생성한다. 이때, 블록 코드가 사용될 수 있다. 3GPP LTE에서는 (20, A) 블록 코드가 사용된다. 여기서, A는 CQI 정보 비트의 크기이다. 즉, 3GPP LTE에서는 CQI 정보 비트의 크기에 상관없이 항상 20비트의 부호화된 CQI 비트가 생성된다.
다음 표는 (20, A) 블록 코드를 위한 13 기저 시퀀스(basis sequence)의 예를 나타낸다.
표 7
Figure PCTKR2009006696-appb-T000007
여기서, M(i,n)은 기저 시퀀스이다(0≤n≤12, n은 정수). 부호화된 비트는 13 기저 시퀀스들의 선형 결합(linear combination)으로 생성된다. 다음 수학식은 부호화된 비트 b(i)의 예를 나타낸다(0≤i≤19, i는 정수).
수학식 7
Figure PCTKR2009006696-appb-M000007
여기서, a(0),a(1),...,a(A-1)은 정보 비트이고, A는 정보 비트의 크기이다(A는 자연수).
20비트의 부호화된 비트는 QPSK를 통해 10개의 변조 심벌들 d(0),...,d(9)로 맵핑된다. PUCCH 포맷 2a에서는 1비트의 HARQ ACK/NACK 정보가 BPSK 변조를 통해 1개의 변조 심벌 d(10)으로 맵핑된다. PUCCH 포맷 2b에서는 2비트의 HARQ ACK/NACK 정보가 QPSK 변조를 통해 1개의 변조 심벌 d(10)으로 맵핑된다. 즉, PUCCH 포맷 2a에서는 CQI 및 1비트의 HARQ ACK/NACK 정보가 동시에 전송되고, PUCCH 포맷 2b에서는 CQI 및 2비트의 HARQ ACK/NACK 정보가 동시에 전송된다. 여기서, d(10)은 참조신호 생성에 사용된다. d(10)은 각 슬롯 내 참조신호가 실리는 2 OFDM 심벌 중 하나의 OFDM 심벌에 대응된다. 다시 말하면, 각 슬롯 내 상기 하나의 OFDM 심벌에 실리는 참조신호에는 해당 d(10)에 따라 위상 변조(phase modulation)가 수행된다. PUCCH 포맷 2a/2b는 노멀 CP에만 지원될 수 있다. 이와 같이, PUCCH 포맷 2a 및 2b 각각에서, 1개의 변조 심벌은 참조신호 생성에 사용된다.
정보 부분에서, 변조 심벌 d(0),...,d(9) 및 순환 쉬프트된 시퀀스 r(n,Ics)를 기반으로 정보 시퀀스가 생성된다. 각 변조 심벌은 순환 쉬프트된 시퀀스 r(n,Ics)와 곱해질 수 있다. 정보 시퀀스는 1차원 확산된 시퀀스이다. PUCCH 포맷 2/2a/2b는 PUCCH 포맷 1/1a/1b와 달리 직교 시퀀스는 사용하지 않는다.
서브프레임 내 정보 부분으로 사용되는 OFDM 심벌마다 기본 시퀀스로부터 순환 쉬프트된 시퀀스 r(n,Ics)가 생성된다. 한 슬롯 내 기본 시퀀스는 동일하다. 서브프레임 내 제1 슬롯의 기본 시퀀스와 제2 슬롯의 기본 시퀀스는 동일할 수도 있고, 다를 수도 있다. 순환 쉬프트 인덱스 Ics는 자원 인덱스로부터 결정된다. 순환 쉬프트 인덱스인 Ics는 심벌 레벨로 CS 홉핑될 수 있다. CS 홉핑은 무선 프레임 내 슬롯 번호(n(s)) 및 슬롯 내 심벌 인덱스(l)에 따라 수행될 수 있다. 따라서, 순환 쉬프트 인덱스 Ics는 Ics(n(s),l)로 표현될 수 있다. 도 12에서 정보 부분의 OFDM 심벌마다의 Ics 값은 예시에 불과하다.
참조신호 부분에서, 순환 쉬프트된 시퀀스 r(n,I'cs)가 참조신호 시퀀스로 이용될 수 있다. I'cs는 참조신호를 위한 순환 쉬프트 인덱스이다. I'cs는 자원 인덱스로부터 결정된다.
참조신호 부분에서 순환 쉬프트된 시퀀스를 생성하기 위한 기본 시퀀스는 정보 부분의 기본 시퀀스와 동일할 수 있다. 정보 부분의 순환 쉬프트 인덱스 Ics와 참조신호 부분의 순환 쉬프트 인덱스 I'cs 모두 자원 인덱스로부터 결정된다. 다만, 자원 인덱스로부터 순환 쉬프트 인덱스를 결정하는 방법은 정보 부분과 참조신호 부분이 동일할 수도 있고, 다를 수도 있다.
PUCCH 포맷 2a/2b에서는, d(10)이 참조신호 부분의 하나의 OFDM 심벌에 대응된다. 즉, 각 슬롯 내 참조신호 부분의 하나의 OFDM 심벌에는 d(10)과 순환 쉬프트된 시퀀스가 곱해진 참조신호 시퀀스가 맵핑된다.
도 13은 확장된 CP의 경우, PUCCH 포맷 2 전송의 예를 나타낸다. 여기서는, 자원블록 쌍에 속하는 자원블록들이 제1 슬롯과 제2 슬롯에서 동일한 주파수 대역을 차지하는 것처럼 표현하였으나, 도 7에서 설명한 것과 같이 자원블록은 슬롯 레벨로 홉핑될 수 있다.
도 13을 참조하면, 제1 슬롯과 제2 슬롯 각각은 6 OFDM 심벌을 포함한다. 각 슬롯의 6 OFDM 심벌 중 1 OFDM 심벌은 참조신호 부분이고, 나머지 5 OFDM 심벌은 정보 부분이다. 이를 제외하면, 도 11의 노멀 CP의 경우의 예가 그대로 적용된다.
상술한 바와 같이, 노멀 CP, 확장된 CP의 경우 모두 PUCCH 포맷 2/2/a/2b 전송을 위해 사용되는 자원이 자원 인덱스에 의해 식별되어야 한다. 자원 인덱스로부터 정보가 전송되는 자원블록, 정보 시퀀스 생성을 위한 순환 쉬프트 인덱스 Ics 및 참조신호 시퀀스 생성을 위한 순환 쉬프트 인덱스 I'cs가 결정된다. CS 간격이 1인 경우, Ics 및 I'cs의 개수는 각각 12이고, 하나의 자원블록당 12개의 단말이 다중화될 수 있다. CS 간격이 2인 경우, Ics 및 I'cs의 개수는 각각 6이고, 하나의 자원블록당 6개의 단말이 다중화될 수 있다.
이와 같이, 다중화 방식으로 CDM 및/또는 FDM 방식이 사용되어 정보가 전송될 수 있다. 지금까지 설명한 정보 전송 방법은 하나의 자원 인덱스만을 사용한다. 그런데, 한번에 전송되는 정보의 양을 증가시키기 위해, 하나의 단말에 대해 다중 자원(multiple resource)을 할당할 필요성이 생길 수 있다. 다중 자원이 할당되는 경우, 다중 자원을 이용해 정보 및 참조신호로 부터 생성된 신호를 전송하는 방법이 문제될 수 있다. 이하, 다중 자원을 이용해 신호를 전송하는 방법에 대해 상술한다.
도 14는 2개의 안테나를 포함하는 전송기 구조의 예를 나타낸 블록도이다. 여기서, 전송기는 단말 또는 기지국의 일부분일 수 있다.
도 14를 참조하면, 전송기(200)는 정보 프로세서(210), 참조신호 생성기(220), 제1 및 제2 자원블록 맵퍼(230-1, 230-2), 제1 및 제2 OFDM 신호 생성기(240-1, 240-2), 제1 및 제2 RF부(250-1, 250-2) 및 2개의 안테나(290-1, 290-2)를 포함한다.
제1 및 제2 자원블록 맵퍼(230-1, 230-2) 각각은 제1 및 제2 OFDM 신호 생성기(240-1, 240-2) 각각에 연결되고, 제1 및 제2 OFDM 신호 생성기(240-1, 240-2) 각각은 제1 및 제2 RF부(250-1, 250-2) 각각에 연결되고, 제1 및 제2 RF부(250-1, 250-2) 각각은 2개의 안테나(290-1, 290-2) 각각에 연결된다. 즉, 제n 자원블록 맵퍼(230-n)는 제n OFDM 신호 생성기(240-n)에 연결되고, 제n OFDM 신호 생성기(240-n)는 제n RF부(250-n)에 연결되고, 제n RF부는 제n 안테나(290-n)에 연결된다(n=1, 2). 다중 안테나 전송의 경우, 안테나마다 정의된 하나의 자원 그리드가 존재할 수 있다.
전송기(200)는 2개의 자원 인덱스를 할당받는다. 정보 프로세서(210)는 2개의 자원 인덱스들을 기반으로 정보 시퀀스들을 생성한다. 그 외에는 도 8 내지 도 13에서 설명된 정보 전송 방법 및 장치에 관한 설명이 다수의 전송 안테나를 통한 정보 전송 방법 및 장치에도 적용될 수 있다.
이하, 정보 프로세서(210)에서 2개의 자원 인덱스들을 기반으로 정보 시퀀스들을 생성하는 방법에 대해 상술한다.
도 15는 2개의 안테나를 포함하는 전송기 일부분의 구조 일 예를 나타낸 블록도이다.
도 15를 참조하면, 정보 프로세서(210)는 채널 코딩부(211), 변조기(212) 및 제1 및 제2 정보 시퀀스 생성기(213-1, 213-2)를 포함한다. 제1 정보 시퀀스 생성기(213-1)은 제1 자원블록 맵퍼(230-1)에 연결되고, 제2 정보 시퀀스 생성기(213-2)는 제2 자원블록 맵퍼(230-2)에 연결된다.
정보 프로세서(210)는 OSRTD(orthogonal space resource transmit diversity) 또는 OSRSM(orthogonal space resource spatial multiplexing) 방식으로 정보 시퀀스들을 생성할 수 있다.
1. OSRTD
s(1)은 전송기(200)가 전송하려는 정보에 대응하는 복소수 신호라 가정한다. 여기서, 복소수 신호란 임의의 신호, 하나 이상의 변조 심벌 또는 확산된 시퀀스일 수도 있다.
변조기(212)는 s(1)을 출력하여, 제1 정보 시퀀스 생성기(213-1) 및 제2 정보 시퀀스 생성기(213-2) 각각에 s(1)을 입력한다.
제1 정보 시퀀스 생성기(213-1)는 s(1) 및 제1 자원 인덱스를 기반으로 제1 정보 시퀀스를 생성한다. 제2 정보 시퀀스 생성기(213-2)는 s(1) 및 제2 자원 인덱스를 기반으로 제2 정보 시퀀스를 생성한다. 제1 정보 시퀀스는 제1 안테나(290-1)을 통해 전송되고, 제2 정보 시퀀스는 제2 안테나(290-2)를 통해 전송된다. 제1 자원 인덱스와 제2 자원 인덱스를 서로 다르게 할당하면, 안테나들 간에는 직교성이 유지될 수 있다.
안테나별로 채널 추정을 위해, 참조신호는 각 안테나별로 생성되어야 한다. 이를 위해, 각 자원 인덱스는 각 안테나에 일대일 맵핑되도록 할 수 있다. 따라서, 제1 안테나를 위한 참조신호는 제1 자원 인덱스를 기반으로 생성되고, 제2 안테나를 위한 참조신호는 제2 자원 인덱스를 기반으로 생성될 수 있다.
이와 같이 OSRTD는 안테나마다 자원 인덱스를 할당하고, 각 안테나별로 동일한 정보를 서로 직교하게 반복 전송하는 방법이다. 복수의 안테나를 통해 동일한 정보를 반복 전송함으로써, 다이버시티 이득을 얻을 수 있고, 무선 통신의 신뢰도(reliability)를 높일 수 있다.
하나의 안테나 전송의 경우, 하나의 자원블록당 18개의 단말이 다중화될 수 있다고 가정하면, 2개의 안테나에 대한 OSRTD의 경우, 하나의 자원블록당 9개의 단말이 다중화될 수 있다. PUCCH 포맷 1/1a/1b의 경우, 제1 슬롯과 제2 슬롯에서 동일한 정보가 전송된다. PUCCH에 할당된 자원블록은 슬롯 레벨로 홉핑된다. 즉, 정보가 시간에 따라 서로 다른 부반송파를 통해 전송됨으로써, 주파수 다이버시티 이득을 얻을 수 있다. 그런데, OSRTD로 충분한 다이버시티 이득을 얻을 수 있다면, 굳이 제2 슬롯에서 제1 슬롯과 동일한 제어정보를 전송할 필요가 없다. 따라서, 제1 슬롯과 제2 슬롯이 서로 다른 정보를 전송할 수 있다. 이 경우, 2개의 안테나에 대한 OSRTD의 단말 다중화 용량이 하나의 안테나 전송의 단말 다중화 용량과 동일하게 유지될 수 있다. 예를 들어, 하나의 안테나 전송의 경우, 하나의 자원블록당 18개의 단말이 다중화되면, 2개의 안테나에 대한 OSRTD에서도 하나의 자원블록당 18개의 단말이 다중화될 수 있다.
제2 정보 시퀀스 생성기(213-2)는 복소수 신호 s(1)을 변형시켜 제2 정보 시퀀스를 생성할 수도 있다. 예를 들어, s(1)* 및 제2 자원 인덱스를 기반으로 제2 정보 시퀀스를 생성할 수 있다. 여기서, (ㆍ)*는 복소 켤레(complex conjugate)이다. 또는, 제2 정보 시퀀스 생성기가 처리하는 변형된 복소수 신호 s(2)는 다음 수학식과 같이 나타낼 수도 있다.
수학식 8
Figure PCTKR2009006696-appb-M000008
여기서, a는 제2 정보 시퀀스 생성기의 복소수 스케일링 팩터(scaling factor)이다.
전송 신호 행렬은 다음 수학식과 같이 나타낼 수 있다.
수학식 9
Figure PCTKR2009006696-appb-M000009
여기서, 전송 신호 행렬의 행(row) 및/또는 열(column)은 전송 안테나, 자원 인덱스 등에 대응할 수 있다. 예를 들어, 전송 신호 행렬의 각 행은 각 자원 인덱스에 대응되고, 각 열은 각 전송 안테나에 대응될 수 있다.
y(1)은 제1 자원 인덱스를 기반으로 생성된 제1 정보 시퀀스에 대한 제1 수신 신호이고, y(2)는 제2 자원 인덱스를 기반으로 생성된 제2 정보 시퀀스에 대한 제2 수신 신호라 한다. 실제 수신 신호(y)는 제1 수신 신호(y(1))와 제2 수신 신호(y(2))가 결합된다(y=y(1)+y(2)). 다만, 디스프레딩(despreading) 작용을 통해 수신 신호(y)는 제1 수신 신호(y(1))와 제2 수신 신호(y(2))로 분리 가능하다고 가정한다. 설명의 편의를 위해, 수신기의 수신 안테나는 1개로 가정한다.
수신 신호 행렬은 다음 수학식과 같이 나타낼 수 있다.
수학식 10
Figure PCTKR2009006696-appb-M000010
여기서, h(1)은 제1 안테나(290-1)에 대한 채널이고, h(2)는 제2 안테나(290-2)에 대한 채널이고, n(1)은 제1 수신 신호의 잡음(noise)이고, n(2)는 제2 수신 신호의 잡음이다. 여기서, 잡음은 부가백색 가우시안 잡음(AWGN: additive white Gaussian noise)일 수 있다.
일반적으로 전송 파워(transmit power)가 제한되는 경우, 전송 안테나 개수에 상응하는 정규화 팩터(normalization factor)가 적용될 수 있다. 다음 수학식은 정규화 팩터의 예를 나타낸다.
수학식 11
Figure PCTKR2009006696-appb-M000011
여기서, Ntx는 전송 안테나의 개수이고, Nc는 안테나 당 자원의 개수이다. 다만, 설명의 편의를 위해 이하의 설명에서는 정규화 팩터를 생략한다.
수신 신호로부터 각 자원 인덱스에 대해 디스프레딩을 수행하면, 다음 수학식과 같은 다이버시티 이득을 얻을 수 있다.
수학식 12
Figure PCTKR2009006696-appb-M000012
이는 최적 결합(optimal combining)인 MRC(maximal ratio combining)와 같은 다이버시티 이득이다. MRC 기법은 복수의 수신 안테나로 수신된 수신 신호로부터 전송 신호를 추정하는 신호 결합 기법의 하나이다.
설명의 편의를 위해 2개의 전송 안테나를 가정하고 설명하였으나, 전송 안테나 개수는 제한되지 않는다.
전송기가 M(M은 자연수)개의 안테나를 포함하는 경우, M개의 자원 인덱스가 할당될 수 있다. M개의 안테나 각각과 M개의 자원 인덱스 각각은 일대일 맵핑될 수 있다. 아니면, 3개 이상의 전송 안테나를 사용하는 경우, OSRTD는 CDD(cyclic delay diversity) 또는 PVS(precoding vector switching)와 같은 다른 전송 다이버시티 기법과 결합하여 사용될 수 있다. 예를 들어, 4개의 전송 안테나를 사용하는 경우, 4 전송 안테나를 2개씩 나누어 2 안테나 그룹으로 그룹핑할 수 있다. 2 안테나 그룹에는 각각 OSRTD가 적용되고, 각 그룹 간에는 CDD나 PVS가 적용될 수 있다.
2. OSRSM
s(1), s(2)는 전송기(200)가 전송하려는 정보에 대응하는 복소수 신호라 가정한다.
제1 정보 시퀀스 생성기(213-1)는 s(1) 및 제1 자원 인덱스를 기반으로 제1 정보 시퀀스를 생성한다. 제2 정보 시퀀스 생성기(213-2)는 s(2) 및 제2 자원 인덱스를 기반으로 제2 정보 시퀀스를 생성한다. 제1 정보 시퀀스는 제1 안테나(290-1)을 통해 전송되고, 제2 정보 시퀀스는 제2 안테나(290-2)를 통해 전송된다. 제1 자원 인덱스와 제2 자원 인덱스를 서로 다르게 할당하면, 안테나들 간에는 직교성이 유지될 수 있다.
안테나별로 채널 추정을 위해, 참조신호는 각 안테나별로 생성되어야 한다. 이를 위해, 각 자원 인덱스는 각 안테나에 일대일 맵핑되도록 할 수 있다. 따라서, 제1 안테나를 위한 참조신호는 제1 자원 인덱스를 기반으로 생성되고, 제2 안테나를 위한 참조신호는 제2 자원 인덱스를 기반으로 생성될 수 있다.
설명의 편의를 위해 2개의 전송 안테나를 가정하고 설명하나, 전송 안테나 개수는 제한되지 않는다.
전송기가 M(M은 자연수)개의 안테나를 포함하는 경우, 전송기는 M개의 복소수 신호를 전송할 수 있다. 전송기는 M개의 자원 인덱스를 할당받을 수 있다. M개의 안테나 각각과 M개의 자원 인덱스 각각은 일대일 맵핑될 수 있다. M개의 안테나 각각을 통해 서로 다른 복소수 신호를 전송할 수 있다. 이와 같은 공간 다중화 전송률(spatial multiplexing rate)이 M인 정보 전송 방법을 OSRSM이라 한다.
채널 코딩부(211)로부터 출력된 비트-레벨 정보인 부호화된 비트는 변조기(212)에서 변조되기 전에 치환(permutation)될 수 있다.
변조기(212)에 2비트의 제1 부호화된 비트(a(0),a(1)) 및 2비트의 제2 부호화된 비트(b(0),b(1))이 입력된다고 가정한다. 예를 들어, 제1 부호화된 비트는 제1 하향링크 반송파를 통해 전송된 제1 데이터에 대한 제1 ACK/NACK의 비트-레벨 정보이고, 제2 부호화된 비트는 제2 하향링크 반송파를 통해 전송된 제2 데이터에 대한 제2 ACK/NACK의 비트-레벨 정보일 수 있다.
변조기(212)는 제1 부호화된 비트를 QPSK 변조하여 제1 변조 심벌(d(0))을 생성하고, 제2 부호화된 비트를 QPSK 변조하여 제2 변조 심벌(e(0))을 생성할 수 있다.
또는, 변조기(212)는 제1 부호화된 비트와 제2 부호화된 비트를 치환하여, 치환된 후의 비트를 변조할 수 있다. 예를 들어, 변조기(212)는 제1 부호화된 비트 및 제2 부호화된 비트 각각의 첫번째 비트(a(0),b(0))를 교환(swapping)하여 치환할 수 있다. 변조기는 b(0), a(1)을 변조하여 제1 변조 심벌(d(0))을 생성하고, a(0), b(1)을 변조하여 제2 변조 심벌(e(0))을 생성할 수 있다.
변조기(212)에서 출력된 변조 심벌들은 분할기(splitter, 미도시)로 입력된다. 분할기는 제1 변조 심벌(d(0))과 제2 변조 심벌(e(0))을 이용하여 제1 복소수 신호 s(1), 제2 복소수 신호 s(2)로 분리한다. 일 예로, 제1 변조 심벌은 제1 복소수 신호에 대응되고, 제2 변조 심벌은 제2 복소수 신호에 대응될 수 있다. 다른 예로, 제1 변조 심벌과 제2 변조 심벌은 치환 및/또는 혼합(mixing)되어 제1 복소수 신호 및 제2 복소수 신호로 분리될 수 있다.
다음 수학식은 제1 변조 심벌(d(0))과 제2 변조 심벌(e(0))이 치환 및/또는 혼합되어 제1 복소수 신호(s(1)) 및 제2 복소수 신호(s(2))로 분리되는 예들을 나타낸다.
수학식 13
Figure PCTKR2009006696-appb-M000013
또는 다음 수학식과 같이 제1 변조 심벌(d(0)) 또는 제2 변조 심벌(e(0))이 임의의 위상으로 회전된 후 치환 및/또는 혼합되어 제1 복소수 신호(s(1)) 및 제2 복소수 신호(s(2))로 분리될 수 있다.
수학식 14
Figure PCTKR2009006696-appb-M000014
여기서, a와 b는 동일할 수도 있고, 다를 수도 있다.
OSRTD 및 OSRSM 방법은 모두 복수의 안테나와 복수의 자원 인덱스가 일대일로 맵핑될 수 있다. 따라서, 안테나마다 하나의 자원 인덱스로 정보 시퀀스 및 참조신호 시퀀스를 각각 생성해 전송하면 된다.
도 16은 단일 안테나를 포함하는 전송기 일부분의 구조 일 예를 나타낸 블록도이다. 여기서, 전송기는 도 8의 전송기(100)일 수 있다.
도 16을 참조하면, 정보 프로세서(110)는 채널 코딩부(111), 변조기(112) 및 제1 및 제2 정보 시퀀스 생성기(113-1, 113-2)를 포함한다. 제1 및 제2 정보 시퀀스 생성기(113-1, 113-2)는 자원블록 맵퍼(130)에 연결된다.
변조기(112)는 제1 복소수 신호 s(1) 및 제2 복소수 신호 s(2)를 출력한다. s(1), s(2)는 각각 전송기(100)가 전송하려는 정보에 대응하는 복소수 신호이다. 여기서, 복소수 신호란 임의의 신호, 하나 이상의 변조 심벌 또는 확산된 시퀀스일 수 있다.
제1 복소수 신호는 제1 하향링크 반송파에 대한 제1 정보에 대응되고, 제2 복소수 신호는 제2 하향링크 반송파에 대한 제2 정보에 대응될 수 있다. 제1 정보 및 제2 정보는 동일한 반송파를 통해 전송될 수 있다. 제1 정보는 단말이 제1 하향링크 반송파를 통해 수신한 제1 데이터에 대한 제1 ACK/NACK이고, 제2 정보는 단말이 제2 하향링크 반송파를 통해 수신한 제2 데이터에 대한 제2 ACK/NACK일 수 있다. 또는, 제1 정보는 제1 하향링크 반송파에 대한 제1 CQI이고, 제2 정보는 제2 하향링크 반송파에 대한 제2 CQI일 수 있다. 즉, 제1 하향링크 반송파에 대해서는 제1 자원 인덱스를 할당받고, 제2 하향링크 반송파에 대해서는 제2 자원 인덱스를 할당받을 수 있다. 이 경우, 제1 하향링크 반송파 및 제2 하향링크 반송파 각각에 대한 정보가 하나의 상향링크 반송파를 통해 전송될 수 있다. 따라서, 도 14의 전송기는 하향링크 반송파의 수가 상향링크 반송파의 수보다 많은 비대칭적(asymmetric) 다중 반송파 시스템에서 사용될 수 있다. 예를 들어, 하향링크 반송파 수 대 상향링크 반송파 수가 2 대 1인 다중 반송파 시스템에서 사용될 수 있다.
또는, 제1 정보 및 제2 정보는 각각 대표 정보일 수 있다. 대표 정보란 복수의 정보를 대표하는 하나의 정보이다. 복수의 정보를 하나의 대표 정보로 나타내는 것을 정보 묶음(bundling)이라 한다. 대표 정보에는 대표 CQI, 대표 ACK/NACK, 대표 PMI 등이 있다. 대표 CQI는 복수의 하향링크 반송파 전체에 대한 하나의 CQI일 수 있다. 예를 들어, 대표 CQI는 복수의 하향링크 반송파에 대한 각각의 CQI들의 평균 CQI일 수 있다. 또는, 대표 CQI는 복수의 코드워드에 대한 각각의 CQI들을 대표하는 하나의 CQI일 수 있다. 대표 ACK/NACK은 복수의 하향링크 반송파를 통해 전송된 각각의 데이터들에 대한 하나의 HARQ ACK/NACK일 수 있다. 예를 들어, 복수의 하향링크 반송파를 통해 전송된 각각의 데이터에 대한 디코딩이 모두 성공한 경우, 대표 ACK/NACK은 ACK이 되고, 그 외의 경우에는 대표 ACK/NACK은 NACK이 된다. 또는, 대표 ACK/NACK은 복수의 코드워드에 대한 각각의 ACK/NACK을 대표하는 하나의 HARQ ACK/NACK일 수 있다.
예를 들어, 제1 정보는 제1 하향링크 반송파 및 제2 하향링크 반송파에 대한 제1 대표 정보이고, 제2 정보는 제3 하향링크 반송파 및 제4 하향링크 반송파에 대한 제2 대표 정보일 수 있다. 또 다른 예로, 제1 정보는 복수의 코드워드에 대한 제1 대표 정보이고, 제2 정보는 다른 코드워드들에 대한 제2 대표 정보일 수 있다.
제1 복소수 신호 s(1)은 제1 정보 시퀀스 생성기(113-1)에 입력되고, 제2 복소수 신호 s(2)는 제2 정보 시퀀스 생성기(113-2)에 입력된다.
제1 정보 시퀀스 생성기(113-1)는 s(1) 및 제1 자원 인덱스를 기반으로 제1 정보 시퀀스를 생성한다. 제2 정보 시퀀스 생성기(113-2)는 s(2) 및 제2 자원 인덱스를 기반으로 제2 정보 시퀀스를 생성한다.
제1 정보 시퀀스 및 제2 정보 시퀀스는 각각 자원블록 맵퍼(130)에 입력된다. 이때, 제1 정보 시퀀스 및/또는 제2 정보 시퀀스는 위상 변환될 수 있다. 제1 정보 시퀀스와 제2 정보 시퀀스가 결합될 때 서로 상쇄되는 것을 방지하기 위해서이다.
제1 자원 인덱스로부터 제1 자원블록(1st RB), 제2 자원 인덱스로부터 제2 자원블록(2nd RB)가 결정된다. 이때, 제1 자원블록 및 제2 자원블록은 동일하거나, 서로 다를 수 있다.
도 17은 제1 자원블록과 제2 자원블록이 다른 경우의 예를 나타낸다.
도 17을 참조하면, 자원블록 맵퍼(130)는 제1 정보 시퀀스를 제1 자원블록의 정보 부분에 맵핑하고, 제2 정보 시퀀스를 제2 자원블록의 정보 부분에 맵핑한다.
이때, 제1 자원블록의 참조신호 부분에 맵핑되는 참조신호 시퀀스는 제1 자원 인덱스를 기반으로 생성된다. 제2 자원블록의 참조신호 부분에 맵핑되는 참조신호 시퀀스는 제2 자원 인덱스를 기반으로 생성된다.
제1 자원 인덱스가 지시하는 제1 자원블록 및 제2 자원 인덱스가 지시하는 제2 자원블록이 서로 다른 경우, 정보 시퀀스 및 참조 시퀀스 모두 2개의 자원 인덱스를 기반으로 생성된다.
도 18은 제1 자원블록과 제2 자원블록이 동일한 경우의 예를 나타낸다.
도 18을 참조하면, 자원블록 맵퍼(130)는 제1 정보 시퀀스 및 제2 정보 시퀀스를 합쳐 자원블록의 정보 부분에 맵핑한다. 이때, 제1 정보 시퀀스 및 제2 정보 시퀀스는 더해지거나, 제1 정보 시퀀스 및/또는 제2 정보 시퀀스가 위상 변환되어 더해질 수 있다.
자원블록의 참조신호 부분에 맵핑되는 참조신호 시퀀스는 제1 자원 인덱스 및 제2 자원 인덱스 중 하나의 자원 인덱스를 기반으로 생성된다. 2개의 자원 인덱스 중 하나의 자원 인덱스를 기반으로 생성된 참조신호 시퀀스만으로 채널 추정이 가능하기 때문에, 참조신호 시퀀스는 둘 중 하나의 자원 인덱스를 기반으로 생성하면 된다.
제1 자원 인덱스 및 제2 자원 인덱스 중 어느 자원 인덱스를 기반으로 참조신호 시퀀스가 생성되는지는 특별한 제한이 없다. 다만, 채널 추정을 위해 참조신호 시퀀스가 어느 자원 인덱스를 기반으로 생성되었는지 수신기에서 알 수 있어야 한다. 따라서, 참조신호 시퀀스를 생성할 자원 인덱스 선택 방법을 미리 규약으로 정해놓을 수 있다. 예를 들어, 두 자원 인덱스 중 작은 자원 인덱스를 기반으로 참조신호 시퀀스를 생성할 수 있다. 아니면, 참조신호 시퀀스를 생성한 자원 인덱스를 시그널링을 통해 알려줄 수도 있다.
이와 같이, 제1 자원 인덱스가 지시하는 제1 자원블록 및 제2 자원 인덱스가 지시하는 제2 자원블록이 동일한 경우, 2개의 자원 인덱스를 기반으로 2개의 정보 시퀀스가 생성되는 반면, 참조신호 시퀀스는 둘 중 하나의 자원 인덱스를 기반으로 생성된다.
도 19는 2개의 안테나를 포함하는 전송기 일부분의 구조 다른 예를 나타낸 블록도이다.
도 19를 참조하면, 정보 프로세서(210)는 채널 코딩부(211), 변조기(212) 및 SCBC(space-code block code) 처리부(214)를 포함한다. SCBC 처리부(214)는 제1 및 제2 자원블록 맵퍼(230-1, 230-2)에 연결된다.
제1 복소수 신호 s(1) 및 제2 복소수 신호 s(2)는 전송기(200)가 전송하려는 정보에 대응하는 복소수 신호라 가정한다.
SCBC 처리부(214)는 제1 복소수 신호 s(1) 및 제2 복소수 신호 s(2)로부터 알라무티 코드(Alamouti code)를 기반으로 제1 전송 벡터 및 제2 전송 벡터를 생성한다. 제1 전송 벡터는 제1 안테나(290-1)를 통해 전송되고, 제2 전송 벡터는 제2 안테나(290-2)를 통해 전송된다.
제1 전송 벡터는 제1 전송 심벌 및 제2 전송 심벌로 구성된다. 제2 전송 벡터는 제3 전송 심벌 및 제4 전송 심벌로 구성된다.
(1) 제1 전송 벡터
제1 전송 심벌 및 제1 자원 인덱스를 기반으로 제1 정보 시퀀스가 생성된다.
제2 전송 심벌 및 제2 자원 인덱스를 기반으로 제2 정보 시퀀스가 생성된다.
제1 정보 시퀀스 및 제2 정보 시퀀스는 제1 자원블록 맵퍼(230-1)에 입력된다.
(2) 제2 전송 벡터
제3 전송 심벌 및 제1 자원 인덱스를 기반으로 제3 정보 시퀀스가 생성된다.
제4 전송 심벌 및 제2 자원 인덱스를 기반으로 제4 정보 시퀀스가 생성된다.
제3 정보 시퀀스 및 제4 정보 시퀀스는 제2 자원블록 맵퍼(230-2)에 입력된다.
따라서, 제1 정보 시퀀스 및 제2 정보 시퀀스가 결합되어 제1 안테나를 통해 전송될 수 있다. 제2 정보 시퀀스 및 제4 정보 시퀀스가 결합되어 제2 안테나를 통해 전송될 수 있다. CM(cubic metric)을 낮추기 위해, 하나의 정보 시퀀스와 다른 정보 시퀀스를 결합할 때, 적어도 하나의 정보 시퀀스의 위상을 변환시킬 수 있다. 또는 정보 시퀀스 생성 전 전송 심벌의 위상을 변환시킬 수도 있다. 예를 들어, 제2 정보 시퀀스는 특정 위상만큼 위상 변환시켜 제1 정보 시퀀스와 더해질 수 있다. 또, 제4 정보 시퀀스를 특정 위상만큼 위상 변환시켜 제3 전송 시퀀스와 더해질 수 있다. BPSK인 경우 특정 위상은 90도이고, QPSK인 경우 특정 위상은 45도일 수 있다.
이와 같이 다중화 방식으로 CDM/FDM이 사용되는 경우, 자원을 이용하여 SCBC를 적용하여 정보를 전송할 수 있다. 전송기는 안테나 및 자원을 이용하여 스마트한 반복(smart repetition)을 수행하여 다이버시티 이득을 얻을 수 있고, 무선 통신의 신뢰도를 높일 수 있다. 이하, 이와 같은 정보 전송 방법을 SCBC 정보 전송 방법이라 한다.
SCBC 정보 전송 방법에서는 정보 부분에 할당된 자원 인덱스는 안테나와 일대일로 맵핑되지 않는다. 그런데 참조신호는 안테나별로 채널 추정을 위해 각 안테나별로 생성되어야 한다. 이를 위해, 각 자원 인덱스는 각 안테나에 일대일 맵핑되도록 할 수 있다. 따라서, 제1 안테나를 위한 참조신호는 제1 자원 인덱스를 기반으로 생성되고, 제2 안테나를 위한 참조신호는 제2 자원 인덱스를 기반으로 생성될 수 있다.
SCBC 정보 전송을 위해, 전송기는 제1 자원 인덱스 외 제2 자원 인덱스를 더 할당받는 것으로 설명하였다. 그러나 만약 이미 서로 다른 정보를 서로 다른 자원 인덱스로 할당 받았다면 제2 자원 인덱스를 추가적으로 할당 받을 필요는 없다.
하나의 안테나 전송의 경우, 하나의 자원블록당 18개의 단말이 다중화될 수 있다고 가정하면, 2개의 안테나에 대한 SCBC 전송 방법의 경우, 하나의 자원블록당 9개의 단말이 다중화될 수 있다. PUCCH 포맷 1/1a/1b의 경우, 제1 슬롯과 제2 슬롯에서 동일한 정보가 전송된다. PUCCH에 할당된 자원블록은 슬롯 레벨로 홉핑된다. 즉, 정보가 시간에 따라 서로 다른 부반송파를 통해 전송됨으로써, 주파수 다이버시티 이득을 얻을 수 있다. 그런데, SCBC 전송 방법으로 충분한 다이버시티 이득을 얻을 수 있다면, 굳이 제2 슬롯에서 제1 슬롯과 동일한 제어정보를 전송할 필요가 없다. 따라서, 제1 슬롯과 제2 슬롯이 서로 다른 정보를 전송할 수 있다. 이 경우, 2개의 안테나에 대한 SCBC 전송 방법의 단말 다중화 용량이 하나의 안테나 전송의 단말 다중화 용량과 동일하게 유지될 수 있다. 예를 들어, 하나의 안테나 전송의 경우, 하나의 자원블록당 18개의 단말이 다중화되면, 2개의 안테나에 대한 SCBC 전송 방법에서도 하나의 자원블록당 18개의 단말이 다중화될 수 있다.
이하, 전송 신호 행렬은 제1 전송 벡터를 제1 열, 제2 전송 벡터를 제2 열로 하는 2×2 행렬로 정의한다. 전송 행렬의 i행 j열 원소(element)를 (i,j)로 나타낸다(i=1,2 및 j=1,2). (1,1)과 (2,1)은 각각 제1 전송 벡터의 제1 전송 심벌 및 제2 전송 심벌이다. (1,2)와 (2,2)는 각각 제2 전송 벡터의 제3 전송 심벌 및 제4 전송 심벌이다.
다음 수학식은 전송 신호 행렬의 일 예이다.
수학식 15
Figure PCTKR2009006696-appb-M000015
여기서, 전송 신호 행렬의 행 및/또는 열은 전송 안테나, 자원 인덱스 등에 대응할 수 있다. 전송 신호 행렬의 각 행은 각 자원 인덱스에 대응되고, 각 열은 각 전송 안테나에 대응될 수 있다.
상기 수학식에서 표현된 전송 신호 행렬은 예시일뿐, 전송 신호 행렬의 형태를 제한하는 것은 아니다. 전송 신호 행렬은 상기 수학식의 행렬의 모든 가능한 유니터리 변환(unitary transform)을 포함한다. 이때 유니터리 변환은 제1 복소수 신호 s(1) 및 제2 복소수 신호 s(2)에 대한 것뿐만 아니라, s(1) 및 s(2)를 각각 실수 부분(real part) 및 허수 부분(imaginary part)으로 분리된 상태에서의 변환도 포함한다.
y(1)은 제1 자원 인덱스를 기반으로 생성된 제1 정보 시퀀스에 대한 제1 수신 신호이고, y(2)는 제2 자원 인덱스를 기반으로 생성된 제2 정보 시퀀스에 대한 제2 수신 신호라 한다. 실제 수신 신호(y)는 제1 수신 신호(y(1))와 제2 수신 신호(y(2))가 결합된다(y=y(1)+y(2)). 다만, 디스프레딩 작용을 통해 수신 신호(y)는 제1 수신 신호(y(1))와 제2 수신 신호(y(2))로 분리 가능하다고 가정한다. 설명의 편의를 위해, 수신기의 수신 안테나는 1개로 가정한다.
수신 신호 행렬은 다음 수학식과 같이 나타낼 수 있다.
수학식 16
Figure PCTKR2009006696-appb-M000016
여기서, h(1)은 제1 안테나(290-1)에 대한 채널이고, h(2)는 제2 안테나(290-2)에 대한 채널이고, n(1)은 제1 수신 신호의 잡음이고, n(2)는 제2 수신 신호의 잡음이다. 여기서, 잡음은 부가백색 가우시안 잡음일 수 있다.
일반적으로 전송 파워가 제한되는 경우, 전송 안테나 개수에 상응하는 정규화 팩터가 적용될 수 있다. 설명의 편의를 위해 이하의 설명에서는 정규화 팩터를 생략한다.
위 수학식은 등가적으로(equivalently) 다음 수학식과 같이 나타낼 수 있다.
수학식 17
Figure PCTKR2009006696-appb-M000017
위 수학식을 변형하여 다음 수학식과 같이 나타낼 수 있다.
수학식 18
Figure PCTKR2009006696-appb-M000018
여기서, (ㆍ)H는 허미션(Hermitian) 행렬이다. 제1 복소수 신호 s(1)과 제2 복소수 신호 s(2)는 직교하게 분리된다. 수신기는 수학식 12와 같은 다이버시티 이득을 얻을 수 있다. 이는 최적 결합인 MRC와 같은 다이버시티 이득이다.
설명의 편의를 위해 2개의 전송 안테나를 가정하고 설명하였으나, 전송 안테나 개수는 제한되지 않는다.
전송기가 M(M은 자연수)개의 안테나를 포함하는 경우, M개의 자원 인덱스가 할당될 수 있다. M개의 안테나 각각과 M개의 자원 인덱스 각각은 일대일 맵핑될 수 있다. 아니면, 3개 이상의 전송 안테나를 사용하는 경우, SCBC 정보 전송 방법은 CDD 또는 PVS와 같은 다른 전송 다이버시티 기법과 결합하여 사용될 수 있다. 예를 들어, 4개의 전송 안테나를 사용하는 경우, 4 전송 안테나를 2개씩 나누어 2 안테나 그룹으로 그룹핑할 수 있다. 2 안테나 그룹에는 각각 SCBC 정보 전송 방법이 적용되고, 각 그룹 간에는 CDD나 PVS가 적용될 수 있다.
도 16의 전송기 및 도 19의 전송기의 공통점은 정보 부분을 위해 안테나당 2개의 자원 인덱스가 할당된다는 점이다. 즉, 정보 부분에서는 안테나와 자원 인덱스가 일대일로 맵핑되지 않는다. 그러나, 참조신호 부분에서는 안테나별 채널 추정이 가능하도록 안테나와 자원 인덱스가 일대일로 맵핑될 수 있다. 따라서, 하나의 안테나에 복수의 자원 인덱스가 할당되는 경우, 안테나를 위한 참조신호 생성은 정보 시퀀스 생성 방식과 달라질 수 있다.
지금까지 설명된 정보 전송 방법은 PUCCH 포맷 1/1a/1b 및 포맷 2/2a/2b 등 모든 CDM/FDM 방식의 정보 전송 방법에 적용 가능하다.
도 20은 본 발명의 실시예가 구현되는 무선 통신을 위한 장치를 나타낸 블록도이다. 기지국(50)은 프로세서(processor, 51), 메모리(memory, 52) 및 RF부(RF(radio frequency) unit, 53)를 포함한다. 프로세서(51)는 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(51)에 의해 구현될 수 있다. 메모리(52)는 프로세서(51)와 연결되어, 프로세서(51)를 구동하기 위한 다양한 정보를 저장한다. RF부(53)는 프로세서(51)와 연결되어, 무선 신호를 전송 및/또는 수신한다. 단말(60)은 프로세서(61), 메모리(62) 및 RF부(63)를 포함한다. 프로세서(61)는 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(61)에 의해 구현될 수 있다. 메모리(62)는 프로세서(61)와 연결되어, 프로세서(61)를 구동하기 위한 다양한 정보를 저장한다. RF부(63)는 프로세서(61)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
프로세서(51,61)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 및/또는 베이스밴드 신호 및 무선 신호를 상호 변환하는 변환기를 포함할 수 있다. 앞서 설명한 전송기는 프로세서(51,61) 내에 구현될 수 있다. 메모리(52,62)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(53,63)는 무선 신호를 전송 및/또는 수신하는 하나 이상의 안테나를 포함한다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(52,62)에 저장되고, 프로세서(51,61)에 의해 실행될 수 있다. 메모리(52,62)는 프로세서(51,61) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(51,61)와 연결될 수 있다.
이와 같이, 무선 통신 시스템에서 효율적인 신호 전송 방법 및 장치를 제공할 수 있다. 다중 자원이 할당되는 경우, 다중 자원을 이용해 정보 시퀀스 생성 방법 및 참조신호 시퀀스 생성 방법의 모호성을 해결할 수 있다. 이를 통해 무선 통신의 신뢰도를 높일 수 있고, 전체 시스템 성능이 향상될 수 있다.
당업자는 상술한 설명을 통해 또는 상술한 설명에 기반하여 본 발명을 실시함에 따라 본 발명의 부가적인 장점, 목적, 특징들을 용이하게 알 수 있다. 또한, 본 발명은 당업자가 상술한 설명에 기반하여 본 발명을 실시함에 따라 예측치 않은 장점을 가질 수도 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
상술한 실시예들은 다양한 양태의 예시들을 포함한다. 다양한 양태들을 나타내기 위한 모든 가능한 조합을 기술할 수는 없지만, 해당 기술 분야의 통상의 지식을 가진 자는 다른 조합이 가능함을 인식할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.

Claims (13)

  1. 제1 전송 심벌 및 상기 제1 자원 인덱스를 기반으로 제1 정보 시퀀스를 생성하고, 제2 전송 심벌 및 상기 제2 자원 인덱스를 기반으로 제2 정보 시퀀스를 생성하는 정보 프로세서;
    상기 제1 자원 인덱스가 지시하는 제1 자원블록 및 상기 제2 자원 인덱스가 지시하는 제2 자원블록이 동일한지 여부에 따라 다른 참조신호 시퀀스를 생성하는 참조신호 생성기; 및
    상기 제1 정보 시퀀스, 상기 제2 정보 시퀀스 및 상기 참조신호 시퀀스로부터 생성된 신호를 전송하는 안테나를 포함하는 것을 특징으로 하는 전송기.
  2. 제 1 항에 있어서,
    상기 참조신호 생성기는 상기 제1 자원블록 및 상기 제2 자원블록이 서로 다른 경우, 상기 제1 자원 인덱스를 기반으로 제1 참조신호 시퀀스를 생성하고, 상기 제2 자원 인덱스를 기반으로 제2 참조신호 시퀀스를 생성하는 것을 특징으로 하는 전송기.
  3. 제 1 항에 있어서,
    상기 참조신호 생성기는 상기 제1 자원블록 및 상기 제2 자원블록이 동일한 경우, 상기 제1 자원 인덱스를 기반으로 제3 참조신호 시퀀스를 생성하는 것을 특징으로 하는 전송기.
  4. 제 2 항에 있어서,
    상기 제1 자원블록의 정보 부분에는 상기 제1 정보 시퀀스가 맵핑되고, 상기 제1 자원블록의 참조신호 부분에는 상기 제1 참조신호 시퀀스가 맵핑되고,
    상기 제2 자원블록의 정보 부분에는 상기 제2 정보 시퀀스가 맵핑되고, 상기 제2 자원블록의 참조신호 부분에는 상기 제2 참조신호 시퀀스가 맵핑되는 것을 특징으로 하는 전송기.
  5. 제 3 항에 있어서,
    상기 제1 자원블록의 정보 부분에는 상기 제1 정보 시퀀스 및 상기 제2 정보 시퀀스가 결합되어 맵핑되고,
    상기 제1 자원블록의 참조신호 부분에는 상기 제3 참조신호 시퀀스가 맵핑되는 것을 특징으로 하는 전송기.
  6. 제 1 항에 있어서,
    자원 인덱스가 지시하는 자원블록은 M개의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하되(M은 2 이상의 자연수), 상기 M개의 OFDM 심벌 중 N개의 OFDM 심벌은 정보 시퀀스가 맵핑되는 정보 부분이고, 나머지 M-N개의 OFDM 심벌은 참조신호 시퀀스가 맵핑되는 참조신호 부분인 것을 특징으로 하는 전송기.
  7. 제 1 항에 있어서,
    자원 인덱스로부터 시퀀스 및 자원블록이 결정되고,
    정보 및 상기 시퀀스를 기반으로 확산된 정보 시퀀스가 생성되고,
    상기 확산된 정보 시퀀스는 상기 자원블록에 맵핑되는 것을 특징으로 하는 전송기.
  8. 제 7 항에 있어서,
    상기 시퀀스는 순환 쉬프트된 시퀀스인 것을 특징으로 하는 전송기.
  9. 제 1 항에 있어서,
    자원 인덱스로부터 제1 시퀀스, 제2 시퀀스 및 자원블록이 결정되고,
    정보, 상기 제1 시퀀스 및 상기 제2 시퀀스를 기반으로 2차원으로 확산된 정보 시퀀스가 생성되고,
    상기 2차원으로 확산된 정보 시퀀스는 상기 자원블록에 맵핑되는 것을 특징으로 하는 전송기.
  10. 제 9 항에 있어서,
    상기 제1 시퀀스는 순환 쉬프트된 시퀀스이고, 상기 제2 시퀀스는 직교 시퀀스인 것을 특징으로 하는 전송기.
  11. 무선 통신 시스템에서 전송기에 의해 수행되는 신호 전송 방법에 있어서,
    제1 전송 심벌 및 상기 제1 자원 인덱스를 기반으로 제1 정보 시퀀스를 생성하고, 제2 전송 심벌 및 상기 제2 자원 인덱스를 기반으로 제2 정보 시퀀스를 생성하는 단계;
    상기 제1 자원 인덱스가 지시하는 제1 자원블록 및 상기 제2 자원 인덱스가 지시하는 제2 자원블록이 동일한지 여부에 따라 다른 참조신호 시퀀스를 생성하는 단계; 및
    상기 제1 정보 시퀀스, 상기 제2 정보 시퀀스 및 상기 참조신호 시퀀스로부터 생성된 신호를 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
  12. 정보에 해당하는 제1 심벌 및 제2 심벌로부터 알라무티 코드(Alamouti code)를 기반으로 제1 전송 벡터 및 제2 전송 벡터를 생성하는 정보 프로세서;
    상기 제1 전송 벡터를 제1 자원 인덱스 및 제2 자원 인덱스를 기반으로 전송하고, 상기 제1 자원 인덱스를 기반으로 생성된 제1 참조신호를 전송하는 제1 안테나; 및
    상기 제2 전송 벡터를 상기 제1 자원 인덱스 및 상기 제2 자원 인덱스를 기반으로 전송하고, 상기 제2 자원 인덱스를 기반으로 생성된 제2 참조신호를 전송하는 제2 안테나를 포함하는 것을 특징으로 하는 전송기.
  13. 무선 통신 시스템에서 전송기에 의해 수행되는 신호 전송 방법에 있어서,
    정보에 해당하는 제1 심벌 및 제2 심벌로부터 알라무티 코드(Alamouti code)를 기반으로 제1 전송 벡터 및 제2 전송 벡터를 생성하는 단계;
    제1 안테나를 통해 상기 제1 전송 벡터를 제1 자원 인덱스 및 제2 자원 인덱스를 기반으로 전송하고,
    제2 안테나를 통해 상기 제2 전송 벡터를 상기 제1 자원 인덱스 및 상기 제2 자원 인덱스를 기반으로 전송하는 단계; 및
    상기 제1 안테나를 통해 상기 제1 자원 인덱스를 기반으로 생성된 제1 참조신호를 전송하고, 상기 제2 안테나를 통해 상기 제2 자원 인덱스를 기반으로 생성된 제2 참조신호를 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
PCT/KR2009/006696 2008-11-14 2009-11-13 무선 통신 시스템에서 신호 전송 방법 및 장치 WO2010056068A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980149691.9A CN102246446B (zh) 2008-11-14 2009-11-13 用于在无线通信***中发送信号的方法和装置
US13/128,867 US8908793B2 (en) 2008-11-14 2009-11-13 Method and apparatus for signal transmission in wireless communication system
KR1020117010859A KR101243508B1 (ko) 2008-11-14 2009-11-13 무선 통신 시스템에서 신호 전송 방법 및 장치
US14/533,809 US9698953B2 (en) 2008-11-14 2014-11-05 Method and apparatus for signal transmission in wireless communication system

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US11447908P 2008-11-14 2008-11-14
US11448108P 2008-11-14 2008-11-14
US61/114,481 2008-11-14
US61/114,479 2008-11-14
US11511308P 2008-11-17 2008-11-17
US61/115,113 2008-11-17
US11629808P 2008-11-20 2008-11-20
US61/116,298 2008-11-20
US11723708P 2008-11-24 2008-11-24
US61/117,237 2008-11-24
US11847308P 2008-11-27 2008-11-27
US61/118,473 2008-11-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/128,867 A-371-Of-International US8908793B2 (en) 2008-11-14 2009-11-13 Method and apparatus for signal transmission in wireless communication system
US14/533,809 Continuation US9698953B2 (en) 2008-11-14 2014-11-05 Method and apparatus for signal transmission in wireless communication system

Publications (3)

Publication Number Publication Date
WO2010056068A2 WO2010056068A2 (ko) 2010-05-20
WO2010056068A9 true WO2010056068A9 (ko) 2010-07-29
WO2010056068A3 WO2010056068A3 (ko) 2010-09-16

Family

ID=42170539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006696 WO2010056068A2 (ko) 2008-11-14 2009-11-13 무선 통신 시스템에서 신호 전송 방법 및 장치

Country Status (4)

Country Link
US (2) US8908793B2 (ko)
KR (1) KR101243508B1 (ko)
CN (2) CN104218985B (ko)
WO (1) WO2010056068A2 (ko)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102090006B (zh) * 2008-05-13 2014-08-06 株式会社Ntt都科摩 基站、用户装置和方法
CN104218985B (zh) * 2008-11-14 2017-12-08 Lg电子株式会社 用于在无线通信***中发送信号的方法和装置
EP2575406B1 (en) 2008-12-02 2015-01-14 Samsung Electronics Co., Ltd Reception of scheduling assignments in multiple operating bandwidths
KR20100066255A (ko) * 2008-12-09 2010-06-17 엘지전자 주식회사 다중안테나를 갖는 무선 통신 시스템에서 상향링크 기준 신호 전송 및 수신 방법
AR075865A1 (es) 2009-03-17 2011-05-04 Interdigital Patent Holdings Metodo y aparato para control de potencia de transmision de senal de referencia de sonido (srs)
CN101931485B (zh) * 2009-06-19 2014-02-12 北京三星通信技术研究有限公司 一种专用参考信号生成方法和装置
BR112012017856B8 (pt) * 2010-01-18 2023-04-25 Ericsson Telefon Ab L M Método e equipamento de usuário para transmitir informações de controle de enlace ascendente e método e estação rádio base para receber informações de controle de enlace ascendente
CN102281133B (zh) * 2010-06-13 2014-02-19 华为技术有限公司 一种在物理上行控制信道上传输信息的方法及装置
US10135595B2 (en) * 2010-06-21 2018-11-20 Telefonaktiebolaget L M Ericsson (Publ) Uplink control information (UCI) mapping indicator for long term evolution (LTE) carrier aggregation
US8532047B2 (en) * 2010-08-12 2013-09-10 Samsung Electronics Co., Ltd. Methods and apparatus for uplink control transmit diversity
JP4923161B1 (ja) 2010-09-29 2012-04-25 シャープ株式会社 移動通信システム、移動局装置、基地局装置、通信方法および集積回路
TW201322813A (zh) * 2011-08-11 2013-06-01 Research In Motion Ltd 正交資源選擇傳輸分集及資源指派
WO2013048108A2 (ko) * 2011-09-28 2013-04-04 엘지전자 주식회사 무선통신시스템에서 제어정보 획득 방법 및 장치
US9554368B2 (en) 2011-10-10 2017-01-24 Lg Electronics Inc. Method and apparatus for transceiving control information in a wireless communication system
US20130114514A1 (en) * 2011-11-04 2013-05-09 Nokia Siemens Networks Oy DMRS Arrangements For Coordinated Multi-Point Communication
CN105490781B (zh) * 2011-12-21 2019-05-28 华为技术有限公司 传输控制信息的方法、用户设备和基站
CN104272636B (zh) * 2012-03-16 2019-01-11 瑞典爱立信有限公司 用于管理无线网络中的反馈的***和方法
KR20130143283A (ko) 2012-06-21 2013-12-31 주식회사 팬택 제어 신호 동시 전송 방법, 그 단말, 제어 신호 수신 방법, 및 그 기지국
US9615379B2 (en) 2012-10-30 2017-04-04 Telefonaktiebolaget Lm Ericson (Publ) Scheduling request transmission method and apparatus for decoupled downlink-uplink
CN104041158B (zh) 2012-12-27 2019-02-01 华为技术有限公司 信号处理方法和设备
JP6176801B2 (ja) * 2013-09-26 2017-08-09 株式会社日立国際電気 無線通信システム及び送信機
CN104579456B (zh) * 2013-10-18 2018-09-04 ***通信集团公司 异构网络通信方法及相应设备
CN104158635B (zh) * 2014-08-01 2018-03-23 南方电网科学研究院有限责任公司 一种基于mimo的巡线无人机高可靠遥控信息发射方法
ES2970136T3 (es) 2015-12-31 2024-05-27 Nec Corp Método y aparatos para transmitir y recibir información de enlace ascendente
CN105827363B (zh) * 2016-03-11 2019-03-12 北京航空航天大学 Lte/lte-a***中上行pucch信道格式盲检的方法
US10568055B2 (en) * 2017-03-03 2020-02-18 Motorola Mobility Llc Method and apparatus for communicating synchronization signals
US10659207B2 (en) 2017-05-15 2020-05-19 Qualcomm Incorporated Uplink power control in new radio (NR)
CN108111285B (zh) * 2017-11-17 2021-10-26 中兴通讯股份有限公司 一种传输参考信号的方法及装置
CN110035507B (zh) * 2018-01-12 2021-04-30 中国信息通信研究院 一种移动通讯上行信息传输方法和***
US11082279B2 (en) 2018-09-27 2021-08-03 At&T Intellectual Property I, L.P. Facilitation of reduction of peak to average power ratio for 5G or other next generation network
US10659270B2 (en) 2018-10-10 2020-05-19 At&T Intellectual Property I, L.P. Mapping reference signals in wireless communication systems to avoid repetition
US11418992B2 (en) 2018-11-02 2022-08-16 At&T Intellectual Property I, L.P. Generation of demodulation reference signals in advanced networks
CN112422149B (zh) * 2020-11-19 2021-08-24 厦门大学 I/q双支路索引调制多序列扩频***与方法

Family Cites Families (166)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010016504A1 (en) * 1998-04-03 2001-08-23 Henrik Dam Method and system for handling radio signals in a radio base station
US6393012B1 (en) * 1999-01-13 2002-05-21 Qualcomm Inc. System for allocating resources in a communication system
US6141393A (en) 1999-03-03 2000-10-31 Motorola, Inc. Method and device for channel estimation, equalization, and interference suppression
US20020110108A1 (en) 2000-12-07 2002-08-15 Younglok Kim Simple block space time transmit diversity using multiple spreading codes
US20030048753A1 (en) 2001-08-30 2003-03-13 Ahmad Jalali Method and apparatus for multi-path elimination in a wireless communication system
US6566948B1 (en) 2002-02-26 2003-05-20 Agilent Technologies, Inc. Method and system for reducing non-linearities
US6636568B2 (en) 2002-03-01 2003-10-21 Qualcomm Data transmission with non-uniform distribution of data rates for a multiple-input multiple-output (MIMO) system
DE60313158D1 (de) 2002-05-17 2007-05-24 St Microelectronics Nv Zeitbereichsentzerrung unter verwendung von frequenzbereichsoperationen
US7095709B2 (en) 2002-06-24 2006-08-22 Qualcomm, Incorporated Diversity transmission modes for MIMO OFDM communication systems
US6996189B1 (en) 2002-07-26 2006-02-07 Jabil Circuit, Inc. Symmetric spherical QAM constellation
US8218609B2 (en) 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
FI20031200A0 (fi) 2003-08-26 2003-08-26 Nokia Corp Menetelmä ja tukiasema siirtoyhteyden sovituksen ja pakettiajoituksen ohjaamiseksi HSDPA-radiojärjestelmässä
DE10341107B3 (de) 2003-09-05 2005-05-19 Infineon Technologies Ag Verfahren und Empfangseinheit zur Kompensation eines Frequenzversatzes und/oder einer zeitlichen Änderung der Phase eines Übertragungskanals durch empfängerseitiges Auswerten von Randsymbolen eines empfangenen Datenbursts
US8040986B2 (en) 2003-11-26 2011-10-18 Texas Instruments Incorporated Frequency-domain subchannel transmit antenna selection and power pouring for multi-antenna transmission
CN1898888B (zh) * 2003-12-24 2011-01-12 日本电气株式会社 无线通信***、无线通信装置和用于其的资源分配方法
KR100929091B1 (ko) 2004-02-14 2009-11-30 삼성전자주식회사 이동통신 시스템에서 제어 정보 전송 장치 및 방법
US7564814B2 (en) 2004-05-07 2009-07-21 Qualcomm, Incorporated Transmission mode and rate selection for a wireless communication system
US7620096B2 (en) 2004-05-25 2009-11-17 New Jersey Institute Of Technology Equal BER power control for uplink MC-CDMA with MMSE successive interference cancellation
JP2005341317A (ja) 2004-05-27 2005-12-08 Toshiba Corp 無線通信装置
CN1973459A (zh) * 2004-06-25 2007-05-30 Lg电子株式会社 在正交频分复用***中无线资源的分配
US7583982B2 (en) 2004-08-06 2009-09-01 Interdigital Technology Corporation Method and apparatus to improve channel quality for use in wireless communications systems with multiple-input multiple-output (MIMO) antennas
US7680212B2 (en) 2004-08-17 2010-03-16 The Board Of Trustees Of The Leland Stanford Junior University Linear precoding for multi-input systems based on channel estimate and channel statistics
WO2006019253A1 (en) 2004-08-17 2006-02-23 Samsung Electronics Co., Ltd Apparatus and method for space-time-frequency block coding for increasing performance
KR100774290B1 (ko) 2004-08-17 2007-11-08 삼성전자주식회사 성능 향상위한 시공간 블록 부호화 장치 및 방법
US7894548B2 (en) 2004-09-03 2011-02-22 Qualcomm Incorporated Spatial spreading with space-time and space-frequency transmit diversity schemes for a wireless communication system
EP2518920A1 (en) 2004-09-13 2012-10-31 Panasonic Corporation Automatic retransmission request control system and retransmission method in MIMO-OFDM system
US8040968B2 (en) * 2004-09-30 2011-10-18 Intel Corporation High rate, high diversity transmission on multiple transmit antennas
KR100938091B1 (ko) * 2004-10-13 2010-01-21 삼성전자주식회사 직교주파수다중분할 이동통신시스템에서 블록 부호화기법과 순환 지연 다이버시티 기법을 사용하는 기지국송신 장치 및 방법
KR100719840B1 (ko) 2004-11-04 2007-05-18 삼성전자주식회사 시공간 주파수 블록 부호화 장치 및 방법
US8130855B2 (en) 2004-11-12 2012-03-06 Interdigital Technology Corporation Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a MIMO-OFDM system
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
WO2006135187A2 (en) 2005-06-15 2006-12-21 Lg Electronics Inc. A method of allocating wireless resources in a multi-carrier system
US8730877B2 (en) 2005-06-16 2014-05-20 Qualcomm Incorporated Pilot and data transmission in a quasi-orthogonal single-carrier frequency division multiple access system
US20070183386A1 (en) 2005-08-03 2007-08-09 Texas Instruments Incorporated Reference Signal Sequences and Multi-User Reference Signal Sequence Allocation
US8331216B2 (en) 2005-08-09 2012-12-11 Qualcomm Incorporated Channel and interference estimation in single-carrier and multi-carrier frequency division multiple access systems
US20070041457A1 (en) 2005-08-22 2007-02-22 Tamer Kadous Method and apparatus for providing antenna diversity in a wireless communication system
WO2007051028A1 (en) 2005-10-27 2007-05-03 Qualcomm Incorporated A method and apparatus for modulating r-dpich in wireless communication systems
JPWO2007052767A1 (ja) 2005-11-04 2009-04-30 パナソニック株式会社 無線送信装置および無線送信方法
KR101084144B1 (ko) 2005-11-09 2011-11-17 엘지전자 주식회사 Ofdm 또는 ofdma 통신 시스템에서의 첨두전력 대평균전력비 개선 방법 및 그 장치
KR100918729B1 (ko) 2006-01-09 2009-09-24 삼성전자주식회사 단반송파 주파수 분할 다중 접속 시스템에서 역방향 제어정보와 데이터의 시간적 다중화 방법 및 장치
US8130857B2 (en) 2006-01-20 2012-03-06 Qualcomm Incorporated Method and apparatus for pilot multiplexing in a wireless communication system
KR100913089B1 (ko) 2006-02-07 2009-08-21 엘지전자 주식회사 다중 반송파 시스템에 적용되는 파일럿 신호 전송 방법
US7848438B2 (en) 2006-02-14 2010-12-07 Motorola Mobility, Inc. Method and apparatus for pilot signal transmission
AU2007219067A1 (en) 2006-02-27 2007-08-30 Cohda Wireless Pty Ltd Method and system for communication in a wireless network
KR20070091889A (ko) 2006-03-08 2007-09-12 삼성전자주식회사 다중 안테나 시스템에서 전송 모드를 결정하기 위한 장치및 방법
KR101227490B1 (ko) 2006-03-13 2013-01-29 엘지전자 주식회사 최대 전력 대 평균 전력 제어 방법 및 장치
CN101043311B (zh) 2006-03-20 2011-01-26 松下电器产业株式会社 实现混合频分多址的频率分配和检测方法
KR101253162B1 (ko) 2006-06-16 2013-04-10 엘지전자 주식회사 무선통신 시스템 상향링크에서의 제어정보 전송방법,제어정보 전송장치 및 dft-s-ofdm 방식 무선통신시스템의 사용자 기기
US7916775B2 (en) 2006-06-16 2011-03-29 Lg Electronics Inc. Encoding uplink acknowledgments to downlink transmissions
JP4430052B2 (ja) 2006-06-19 2010-03-10 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、ユーザ装置及び送信方法
US7620373B2 (en) 2006-06-23 2009-11-17 Sierra Monolithics, Inc. Apparatus and method for calibration of gain and/or phase imbalance and/or DC offset in a communication system
US8839362B2 (en) 2006-07-31 2014-09-16 Motorola Mobility Llc Method and apparatus for managing transmit power for device-to-device communication
US8295243B2 (en) 2006-08-21 2012-10-23 Qualcomm Incorporated Method and apparatus for random access in an orthogonal multiple-access communication system
US20080049692A1 (en) 2006-08-23 2008-02-28 Motorola, Inc. Apparatus and Method For Resource Allocation and Data Transmission Using Heterogeneous Modulation Formats in a Wireless Packet Communication System
US8670777B2 (en) 2006-09-08 2014-03-11 Qualcomm Incorporated Method and apparatus for fast other sector interference (OSI) adjustment
CN101542938B (zh) 2006-09-18 2012-12-12 马维尔国际贸易有限公司 用于无线mimo通信***中的隐式波束形成的校准校正
US8279909B2 (en) 2006-09-26 2012-10-02 Lg Electronics Inc. Method for transmitting information using sequence
KR100830614B1 (ko) 2006-10-10 2008-05-22 한국전자통신연구원 다중 안테나 송신 시스템 및 이를 이용한 신호 전송 방법
US8630256B2 (en) 2006-12-05 2014-01-14 Qualcomm Incorporated Method and system for reducing backhaul utilization during base station handoff in wireless networks
KR101002247B1 (ko) 2006-12-18 2010-12-20 삼성전자주식회사 무선통신 시스템에서 상향링크를 통해 데이터 및 제어정보를 송수신하는 방법 및 장치
WO2008075890A1 (en) 2006-12-18 2008-06-26 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving data and control information through an uplink in a wireless communication system
KR100946875B1 (ko) 2006-12-21 2010-03-09 삼성전자주식회사 통신 시스템에서 데이터 수신 장치 및 방법
CN104052566B (zh) 2007-01-05 2017-06-16 三星电子株式会社 单载波频分多址***中发送和接收控制信息的方法和装置
KR101386214B1 (ko) 2007-01-09 2014-04-18 삼성전자주식회사 무선통신 시스템에서 ack/nak 신호의 송수신 방법
KR101430472B1 (ko) 2007-01-09 2014-08-18 엘지전자 주식회사 무선 통신 시스템에서의 데이터 재전송 제어 방법
US9065714B2 (en) 2007-01-10 2015-06-23 Qualcomm Incorporated Transmission of information using cyclically shifted sequences
KR101384078B1 (ko) 2007-01-10 2014-04-09 삼성전자주식회사 무선통신 시스템에서 애크/내크 채널 자원을 할당하고시그널링하는 방법 및 장치
US8625652B2 (en) 2007-01-11 2014-01-07 Qualcomm Incorporated Collision-free group hopping in a wireless communication system
US8520607B2 (en) 2007-01-17 2013-08-27 Qualcomm Incorported Hopping structure for control channels
US8169956B2 (en) 2007-01-26 2012-05-01 Qualcomm Incorporated Mapping uplink acknowledgement transmission based on downlink virtual resource blocks
JP2008193414A (ja) 2007-02-05 2008-08-21 Nec Corp 無線通信システム、その上りリンクにおけるデータ送信方法、基地局装置及び移動局装置
JP4935993B2 (ja) * 2007-02-05 2012-05-23 日本電気株式会社 無線通信システムにおけるリファレンス信号生成方法および装置
KR101345505B1 (ko) 2007-02-06 2013-12-27 삼성전자주식회사 무선통신 시스템에서 상향링크 제어채널의 송수신 방법 및장치
EP1959603A1 (en) 2007-02-15 2008-08-20 Mitsubishi Electric Information Technology Center Europe B.V. Method of radio data emission, emitter and receiver using the method
CN101247171A (zh) 2007-02-16 2008-08-20 北京三星通信技术研究有限公司 使用约定资源发送控制信道的设备和方法
KR20090122203A (ko) 2007-02-28 2009-11-26 가부시키가이샤 엔티티 도코모 기지국장치 및 통신제어방법
BRPI0808396A2 (pt) 2007-03-01 2015-06-23 Ntt Docomo Inc Aparelho da estação de base e método de controle de comunicação.
WO2008111785A1 (en) 2007-03-12 2008-09-18 Electronics And Telecommunications Research Institute Radio resource allocation and data transmission in packet based mobile communication system
US8077596B2 (en) 2007-03-12 2011-12-13 Qualcomm Incorporated Signaling transmission and reception in wireless communication systems
US8068457B2 (en) 2007-03-13 2011-11-29 Samsung Electronics Co., Ltd. Methods for transmitting multiple acknowledgments in single carrier FDMA systems
KR101049138B1 (ko) 2007-03-19 2011-07-15 엘지전자 주식회사 이동 통신 시스템에서, 수신확인신호 수신 방법
US8553594B2 (en) 2007-03-20 2013-10-08 Motorola Mobility Llc Method and apparatus for resource allocation within a multi-carrier communication system
US8451915B2 (en) 2007-03-21 2013-05-28 Samsung Electronics Co., Ltd. Efficient uplink feedback in a wireless communication system
US20080233966A1 (en) 2007-03-22 2008-09-25 Comsys Communication & Signal Processing Ltd. Resource allocation apparatus and method in an orthogonal frequency division multiple access communication system
CN101272179A (zh) 2007-03-23 2008-09-24 Nxp股份有限公司 无线通信的方法、订户站和基站
GB2449230B (en) 2007-04-24 2009-09-02 Multitone Electronics Plc Telecommunications system and method
KR101381095B1 (ko) 2007-04-26 2014-04-02 삼성전자주식회사 무선통신 시스템에서 응답 신호 송수신 방법 및 장치
KR101350134B1 (ko) 2007-04-26 2014-01-08 엘지전자 주식회사 기준신호 전송 방법
US8254245B2 (en) 2007-04-27 2012-08-28 Lg Electronics Inc. Method for transmitting downlink control channel in a mobile communications system and a method for mapping the control channel to physical resource using block interleaver in a mobile communications system
KR100968223B1 (ko) 2007-05-01 2010-07-06 한국전자통신연구원 무선통신 시스템에서 ack/nak 제어정보의 송수신방법 및 장치
WO2008136615A1 (en) 2007-05-02 2008-11-13 Samsung Electronics Co., Ltd. Apparatus and method for allocating resources in a mobile communication system
US9084277B2 (en) 2007-05-04 2015-07-14 Qualcomm Incorporated Method and apparatus for UL ACK allocation
WO2008147131A1 (en) 2007-05-30 2008-12-04 Lg Electronics Inc. Method of transmitting control signal in wireless communication system
US8031688B2 (en) 2007-06-11 2011-10-04 Samsung Electronics Co., Ltd Partitioning of frequency resources for transmission of control signals and data signals in SC-FDMA communication systems
US8493873B2 (en) 2007-06-18 2013-07-23 Qualcomm Incorporated Multiplexing of sounding signals in ACK and CQI channels
US8102809B2 (en) 2007-06-19 2012-01-24 Texas Instruments Incorporated Time-sharing of sounding resources
JP5024533B2 (ja) 2007-06-19 2012-09-12 日本電気株式会社 移動通信システムにおけるリファレンス信号系列の割当方法および装置
US8160177B2 (en) 2007-06-25 2012-04-17 Samsung Electronics Co., Ltd. Transmit methods with delay diversity and space-frequency diversity
US20090028261A1 (en) 2007-07-26 2009-01-29 Interdigital Technology Corporation Method and apparatus for reducing signaling overhead during a dual codeword hybrid automatic repeat request operation
US8149938B2 (en) * 2007-08-07 2012-04-03 Texas Instruments Incorporated Transmission of ACK/NACK bits and their embedding in the CQI reference signal
KR20090015778A (ko) 2007-08-08 2009-02-12 엘지전자 주식회사 스케줄링 요청 신호 전송 방법
US20090046645A1 (en) * 2007-08-13 2009-02-19 Pierre Bertrand Uplink Reference Signal Sequence Assignments in Wireless Networks
KR20100063055A (ko) 2007-08-14 2010-06-10 가부시키가이샤 엔티티 도코모 유저장치 및 기지국장치 및 송신제어방법
KR101405974B1 (ko) 2007-08-16 2014-06-27 엘지전자 주식회사 다중입력 다중출력 시스템에서 코드워드를 전송하는 방법
KR101513196B1 (ko) 2007-09-03 2015-04-20 삼성전자주식회사 단일 반송파 주파수 분할 다중 접속 통신 시스템에서의 시퀀스 홉핑
US7714781B2 (en) 2007-09-05 2010-05-11 Samsung Electronics Co., Ltd. Method and system for analog beamforming in wireless communication systems
US8077693B2 (en) 2007-09-19 2011-12-13 Samsung Electronics Co., Ltd. Resource remapping and regrouping in a wireless communication system
US8023524B2 (en) 2007-10-09 2011-09-20 Nokia Corporation Cooperative relay system enabling simultaneous broadcast-unicast operation with efficient automatic repeat request functionality
KR101447750B1 (ko) 2008-01-04 2014-10-06 엘지전자 주식회사 랜덤 액세스 과정을 수행하는 방법
CN101222291B (zh) 2008-01-05 2013-06-12 中兴通讯股份有限公司 用于物理上行控制信道的发送方法和装置
WO2009095889A2 (en) 2008-01-31 2009-08-06 Nokia Corporation Mimo-ofdm wireless communication system
CN104868980B (zh) 2008-02-04 2019-06-21 诺基亚通信公司 将循环移位映射到用于ack/nack资源分配的信道索引
US8155683B2 (en) 2008-02-05 2012-04-10 Motorola Mobility, Inc. Physical downlink control channel specific scrambling
KR100943908B1 (ko) 2008-02-19 2010-02-24 엘지전자 주식회사 Pdcch를 통한 제어 정보 송수신 방법
KR100925450B1 (ko) 2008-03-03 2009-11-06 엘지전자 주식회사 상향링크 신호의 충돌 해결 방법
KR101349830B1 (ko) 2008-03-05 2014-01-09 엘지전자 주식회사 간섭 측정 방법
US7957329B2 (en) 2008-03-16 2011-06-07 Lg Electronics Inc. Method of performing hybrid automatic repeat request (HARQ) in wireless communication system
KR101563000B1 (ko) 2008-03-17 2015-10-26 엘지전자 주식회사 무선 통신 시스템에서 상향링크 데이터 전송 방법
US8606336B2 (en) 2008-03-20 2013-12-10 Blackberry Limited System and method for uplink timing synchronization in conjunction with discontinuous reception
US8477734B2 (en) 2008-03-25 2013-07-02 Qualcomm Incorporated Reporting of ACK and CQI information in a wireless communication system
US9036564B2 (en) 2008-03-28 2015-05-19 Qualcomm Incorporated Dynamic assignment of ACK resource in a wireless communication system
US9030948B2 (en) 2008-03-30 2015-05-12 Qualcomm Incorporated Encoding and decoding of control information for wireless communication
KR101507834B1 (ko) 2008-04-17 2015-04-03 엘지전자 주식회사 다중 안테나를 이용한 동기 채널 전송 방법
CN102017499B (zh) 2008-04-25 2013-10-16 美国博通公司 用于为2×2多入多出无线***中的最大似然检测预测信道质量指数值的方法和***
KR101467512B1 (ko) 2008-04-30 2014-12-02 삼성전자주식회사 피투피 네트워크 시스템 및 그의 운용 방법
US8675573B2 (en) 2008-05-05 2014-03-18 Qualcomm Incorporated Uplink resource management in a wireless communication system
US20090276675A1 (en) 2008-05-05 2009-11-05 Jussi Ojala Signaling of redundancy version and new data indication
US8626223B2 (en) 2008-05-07 2014-01-07 At&T Mobility Ii Llc Femto cell signaling gating
RU2493656C2 (ru) 2008-05-15 2013-09-20 Телефонактиеболагет Л М Эрикссон (Пабл) Повышение надежности протокола гибридного автоматического запроса на повторную передачу данных
JP4511611B2 (ja) 2008-05-29 2010-07-28 株式会社エヌ・ティ・ティ・ドコモ 無線リソース選択方法、無線基地局及び移動局
JP5425901B2 (ja) 2008-06-23 2014-02-26 ノキア シーメンス ネットワークス オサケユキチュア 確認応答バンドリングを実現するための方法及び装置
EP2292027A4 (en) 2008-06-25 2014-08-06 Nokia Corp ACK / NACK INDEX FOR A PHYSICAL UPLINK CONTROL CHANNEL
US20100150081A1 (en) 2008-06-30 2010-06-17 Nokia Corporation Physical upling control channel compression supporting ack/nack bundling
US8537763B2 (en) 2008-06-30 2013-09-17 Motorola Mobility Llc Frame allocation to support legacy wireless communication protocols on uplink transmission
EP2321941A4 (en) 2008-08-04 2015-09-16 Nxp Bv ITERATIVE CHANNEL ESTIMATION METHOD AND DEVICE FOR ICI ERASURE IN MULTI-SUPPLY SYSTEMS
KR101565417B1 (ko) 2008-08-08 2015-11-03 엘지전자 주식회사 다중 주파수 대역 시스템에서의 자원 할당하는 방법 및 장치
KR101603338B1 (ko) * 2008-08-11 2016-03-15 엘지전자 주식회사 무선 통신 시스템에서 정보 전송 방법 및 장치
KR20100019947A (ko) 2008-08-11 2010-02-19 엘지전자 주식회사 무선 통신 시스템에서 정보 전송 방법
KR101520708B1 (ko) 2008-08-12 2015-05-15 엘지전자 주식회사 다중반송파 무선통신시스템에서 하향링크 제어정보를 송수신하는 방법 및 장치
US9094910B2 (en) 2008-09-09 2015-07-28 Htc Corporation Methods utilized in mobile device for handling situations when time alignment timer expires, and mobile device thereof
US8842617B2 (en) 2008-10-01 2014-09-23 Lg Electronics Inc. Method and device for wireless subframe resource allocation
EP2335372B1 (en) 2008-10-08 2018-02-14 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for selecting control channel elements for physical downlink control channel
US8249201B2 (en) 2008-10-13 2012-08-21 Qualcomm Incorporated Methods and systems for MIMO preamble detection
US8824347B2 (en) 2008-10-17 2014-09-02 Telefonaktiebolaget L M Ericsson (Publ) Method for improving battery life and HARQ retransmissions in wireless communications systems
EP4013163A3 (en) 2008-10-20 2022-06-29 Interdigital Patent Holdings, Inc. Uplink channel control information signaling in lte-a
TWI491291B (zh) 2008-10-20 2015-07-01 Interdigital Patent Holdings 載波聚合控制頻道信令及獲得
KR101648775B1 (ko) 2008-10-30 2016-08-17 엘지전자 주식회사 무선 통신 시스템에서 harq 확인 응답 전송 및 전송 블록 재전송 방법
KR101215690B1 (ko) 2008-10-31 2012-12-26 엘지전자 주식회사 무선통신 시스템에서 harq 수행 방법 및 장치
US8488535B2 (en) 2008-11-04 2013-07-16 Nokia Corporation Apparatus and method to allocate communication resources for an aperiodic data packet in a communication system
WO2010051662A1 (en) 2008-11-04 2010-05-14 Huawei Technologies Co., Ltd. Method, apparatus and system for determining resource indices
CN104218985B (zh) * 2008-11-14 2017-12-08 Lg电子株式会社 用于在无线通信***中发送信号的方法和装置
US8743783B2 (en) 2008-11-14 2014-06-03 Lg Electronics Inc. Method and apparatus for information transmission in wireless communication system
EP2197138B1 (en) 2008-12-15 2019-03-20 Mitsubishi Electric R&D Centre Europe B.V. Space-frequency block coding for a multiuser system
CA2749373C (en) 2009-01-12 2017-04-04 Battelle Memorial Institute Nested, hierarchical resource allocation schema for management and control of an electric power grid
KR20100091876A (ko) 2009-02-11 2010-08-19 엘지전자 주식회사 다중안테나 전송을 위한 단말 동작
KR101729550B1 (ko) 2009-03-23 2017-04-24 엘지전자 주식회사 Ack/nack을 전송하는 방법 및 장치
KR101731333B1 (ko) 2009-03-25 2017-04-28 엘지전자 주식회사 Ack/nack을 전송하는 방법 및 장치
WO2010137469A1 (ja) 2009-05-26 2010-12-02 シャープ株式会社 移動通信システム、基地局装置、移動局装置、および、移動通信方法
US20100329200A1 (en) 2009-06-24 2010-12-30 Industrial Tehnology Research Institute Apparatus and method for allocating uplink resources
US8891480B2 (en) 2009-07-01 2014-11-18 Qualcomm Incorporated Positioning reference signals in a telecommunication system
US8290074B2 (en) 2010-01-21 2012-10-16 Mitsubishi Electric Research Laboratories, Inc. OFDM networks with pseudo-random phase precoding
US20120045024A1 (en) 2010-02-24 2012-02-23 Qualcomm Incorporated Methods and apparatus for iterative decoding in multiple-input-multiple-output (mimo) communication systems
KR101599074B1 (ko) 2010-05-11 2016-03-02 삼성전자주식회사 직교주파수분할다중화 방식을 지원하는 수신기에서 위상 잡음 보상장치 및 방법
JP5801093B2 (ja) 2011-04-27 2015-10-28 シャープ株式会社 基地局、端末、通信システムおよび通信方法
KR101244354B1 (ko) 2011-07-21 2013-03-18 고려대학교 산학협력단 다중 안테나 시스템에서의 빔-포밍 장치 및 방법
US8885569B2 (en) 2011-12-19 2014-11-11 Ofinno Technologies, Llc Beamforming signaling in a wireless network

Also Published As

Publication number Publication date
CN102246446B (zh) 2014-10-29
CN104218985B (zh) 2017-12-08
KR101243508B1 (ko) 2013-03-20
KR20110087285A (ko) 2011-08-02
US8908793B2 (en) 2014-12-09
WO2010056068A2 (ko) 2010-05-20
WO2010056068A3 (ko) 2010-09-16
US20150055619A1 (en) 2015-02-26
CN104218985A (zh) 2014-12-17
CN102246446A (zh) 2011-11-16
US20110228877A1 (en) 2011-09-22
US9698953B2 (en) 2017-07-04

Similar Documents

Publication Publication Date Title
WO2010056068A9 (ko) 무선 통신 시스템에서 신호 전송 방법 및 장치
WO2010056078A2 (ko) 무선 통신 시스템에서 정보 전송 방법 및 장치
WO2010056079A2 (ko) 무선 통신 시스템에서 정보 전송 방법 및 장치
WO2016064218A2 (ko) Mtc 기기의 상향링크 채널 및 복조 참조 신호 전송 방법
WO2010018979A2 (ko) 무선 통신 시스템에서 정보 전송 방법 및 장치
WO2010018977A2 (en) Method and apparatus of transmitting information in wireless communication system
WO2010018980A2 (ko) 무선 통신 시스템에서 제어신호 전송 방법 및 장치
WO2019199121A1 (en) Method and apparatus for transmitting and receiving signal in wireless communication system
WO2010087645A2 (en) Method and apparatus for receiving and transmitting signals in wireless communication system
WO2011043598A2 (ko) 다중 안테나 시스템에서 상향링크 전송 방법 및 장치
WO2016093573A1 (ko) 5개를 초과하는 셀들을 반송파 집성에 따라 사용할 때의 pucch 전송 방법 및 사용자 장치
WO2016099057A1 (ko) 상향링크 데이터의 복조를 위한 dmrs를 전송하는 방법 및 mtc 기기
WO2011105813A2 (ko) 상향링크 다중 안테나 전송을 지원하는 무선 통신 시스템에서 상향링크 전송을 위한 제어정보를 제공하는 방법 및 장치
WO2011096755A2 (ko) 사운딩 참조신호 전송방법 및 장치
WO2016144100A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 수행하는 장치
WO2015163645A1 (ko) 무선 통신 시스템에서의 사운딩 참조 신호 전송 방법 및 단말
WO2011053051A2 (en) Methods and apparatus for multi-user mimo transmissions in wireless communication systems
WO2012128505A2 (ko) 장치-대-장치 통신 방법 및 장치
WO2010047512A2 (ko) 무선통신 시스템에서 신호 전송 방법 및 장치
WO2010090415A2 (en) Apparatus and method for transmitting signal in wireless communication system
WO2014069945A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하는 방법 및 장치
WO2011074923A2 (ko) 다중 반송파 지원 무선 통신 시스템에서 효율적인 채널 상태 정보 전송 방법 및 장치
WO2018026181A1 (ko) 무선 통신 시스템에서 단말 및 기지국의 신호 송수신 방법 및 이를 지원하는 장치
WO2010056069A2 (ko) 다중 안테나 시스템에서 복수의 자원을 이용한 데이터 전송 방법 및 장치
WO2010008245A2 (en) Method and apparatus for transmitting reference signal in multiple antenna system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980149691.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826300

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13128867

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117010859

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09826300

Country of ref document: EP

Kind code of ref document: A2