WO2011043598A2 - 다중 안테나 시스템에서 상향링크 전송 방법 및 장치 - Google Patents

다중 안테나 시스템에서 상향링크 전송 방법 및 장치 Download PDF

Info

Publication number
WO2011043598A2
WO2011043598A2 PCT/KR2010/006846 KR2010006846W WO2011043598A2 WO 2011043598 A2 WO2011043598 A2 WO 2011043598A2 KR 2010006846 W KR2010006846 W KR 2010006846W WO 2011043598 A2 WO2011043598 A2 WO 2011043598A2
Authority
WO
WIPO (PCT)
Prior art keywords
symbols
spatial processing
transmission
transmission symbols
pucch
Prior art date
Application number
PCT/KR2010/006846
Other languages
English (en)
French (fr)
Other versions
WO2011043598A3 (ko
Inventor
한승희
고현수
정재훈
이문일
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US13/380,498 priority Critical patent/US8761090B2/en
Priority to KR1020117026349A priority patent/KR101319726B1/ko
Publication of WO2011043598A2 publication Critical patent/WO2011043598A2/ko
Publication of WO2011043598A3 publication Critical patent/WO2011043598A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2615Reduction thereof using coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for uplink transmission in a wireless communication system.
  • LTE Long term evolution
  • 3GPP 3rd Generation Partnership Project
  • TS Technical Specification
  • the physical channel in LTE is a downlink channel PDSCH (Physical Downlink) It may be divided into a shared channel (PDCCH), a physical downlink control channel (PDCCH), a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) which are uplink channels.
  • PDSCH Physical Downlink
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • a PAPR (Peak-to-Average Power Ratio) / CM (cubic metric) characteristic is important for power management of the UE.
  • the uplink channel needs to maintain low PAPR / CM characteristics.
  • LTE uses a sequence having low PAPR / CM characteristics, such as a Zadoff-Chu (ZC) sequence, for the uplink control channel.
  • ZC Zadoff-Chu
  • PAPR / CM characteristics of an uplink channel may be deteriorated due to the introduction of new technologies such as a multiple input multiple output (MIMO) technology and a multi-carrier technology.
  • MIMO multiple input multiple output
  • An object of the present invention is to provide an uplink transmission method and apparatus for switching spatial processing in a multi-antenna system.
  • Another object of the present invention is to provide an uplink transmission method and apparatus for reducing transmission power imbalance between antennas.
  • an uplink transmission method in a multiple antenna system includes transmitting through a plurality of antennas using first spatial processing to a plurality of first transmission symbols, and transmitting through the plurality of antennas using a second spatial processing to a plurality of second transmission symbols.
  • the spatial processing matrix used for the second spatial processing is configured by switching at least one row or at least one column of the first spatial processing matrix used for the first spatial processing.
  • the first and second spatial processes may be Space-Frequency Block Code (SFBC), and the first and second spatial processes may be SFBC matrices.
  • SFBC Space-Frequency Block Code
  • the first and second spatial processing may be a space-code block code (SCBC), and the first and second spatial processing matrix may be an SCBC matrix.
  • SCBC space-code block code
  • the method further includes modulating encoded bits to generate a plurality of modulation symbols, wherein the plurality of first transmission symbols and the plurality of second transmission symbols may be the plurality of modulation symbols.
  • the plurality of first transmission symbols and the plurality of second transmission symbols may be transmitted on a physical uplink control channel (PUCCH).
  • PUCCH physical uplink control channel
  • the method modulates the encoded bits to produce a plurality of modulation symbols, and the plurality of modulation symbols are spread Fourier transfomr (DFT) to spread the plurality of first transmission symbols and the plurality of second transmission symbols.
  • the method may further include generating.
  • the plurality of first transmission symbols and the plurality of second transmission symbols may be independently DFT.
  • the plurality of first transmission symbols and the plurality of second transmission symbols may be transmitted on a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the terminal includes an RF unit for transmitting and receiving a radio signal, and a processor coupled to the RF unit, the processor processes a plurality of first transmission symbols using a first spatial processing, and Process a plurality of second transmission symbols using second spatial processing, wherein the second spatial processing matrix used for the second spatial processing is at least one row of a first spatial processing matrix used for the first spatial processing or It is configured by switching at least one column.
  • 1 shows a structure of a radio frame and a downlink subframe in 3GPP LTE.
  • FIG 2 shows an example of an uplink subframe in 3GPP LTE.
  • 3 shows PUCCH format 1 in a normal CP in 3GPP LTE.
  • 5 shows an example of performing HARQ.
  • 10 is a block diagram illustrating PUCCH transmission using resource selection.
  • 11 shows a representation of bits when two resources are allocated.
  • SCBC Space-Code Block Code
  • 16 shows an example of an asymmetric multicarrier.
  • 17 shows transmission of PUCCH format 2 using three resources in an MSM.
  • 19 shows another example of transmission of PUCCH format 2 using three resources in SCBC.
  • FIG. 21 shows 1-DFT diffusion of length 12.
  • FIG. 22 shows an example in which SFBC is applied to a PUCCH.
  • FIG. 25 illustrates an example of applying the proposed switching to the SCBC of FIG. 15.
  • FIG. 26 is an example of applying the proposed switching to the embodiment of FIG. 18.
  • 27 and 28 are graphs showing the effect of the present invention.
  • 29 is a block diagram illustrating a transmitter in which an embodiment of the present invention is implemented.
  • FIG. 30 is a block diagram showing a terminal implemented embodiment of the present invention.
  • 31 is a block diagram illustrating a signal processing apparatus for performing SC-FDMA.
  • 34 is a block diagram illustrating a signal processing apparatus for performing clustered SC-FDMA.
  • 35 is a block diagram illustrating another example of a signal processing apparatus.
  • 36 is a block diagram illustrating another example of a signal processing apparatus.
  • the user equipment may be fixed or mobile, and may include a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a personal digital assistant (PDA). It may be called other terms such as digital assistant, wireless modem, handheld device.
  • MS mobile station
  • MT mobile terminal
  • UT user terminal
  • SS subscriber station
  • PDA personal digital assistant
  • a base station generally refers to a fixed station communicating with a terminal, and may be referred to as other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), and an access point.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point an access point
  • Each base station provides communication services for a particular geographic area (commonly called a cell).
  • the cell can in turn be divided into a number of regions (called sectors).
  • 3GPP LTE shows a structure of a radio frame and a downlink subframe in 3GPP LTE. It may be referred to section 6 of 3GPP TS 36.211 V8.7.0 (2009-05) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)".
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • R-UTRA Physical Channels and Modulation
  • a radio frame consists of 10 subframes, and one subframe consists of two slots.
  • the time it takes for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain.
  • the OFDM symbol is merely for representing one symbol period in the time domain, and is not limited to the multiple access scheme or the name.
  • the OFDM symbol may be called another name such as a single carrier-frequency division multiple access (SC-FDMA) symbol, a symbol period, and the like.
  • SC-FDMA single carrier-frequency division multiple access
  • One slot includes 7 OFDM symbols as an example, but the number of OFDM symbols included in one slot may vary according to the length of a cyclic prefix (CP).
  • CP cyclic prefix
  • a resource block is a resource allocation unit and includes a plurality of subcarriers in one slot. For example, if one slot includes 7 OFDM symbols in the time domain and the resource block includes 12 subcarriers in the frequency domain, one resource block includes 7 ⁇ 12 resource elements (REs). It may include.
  • the DL (downlink) subframe is divided into a control region and a data region in the time domain.
  • the control region includes up to three OFDM symbols preceding the first slot in the subframe, but the number of OFDM symbols included in the control region may be changed.
  • PDCCH and other control channels are allocated to the control region, and PDSCH is allocated to the data region.
  • a physical channel is a physical downlink shared channel (PDSCH), a physical downlink shared channel (PUSCH), a physical downlink control channel (PDCCH), and a physical channel (PCFICH). It may be divided into a Control Format Indicator Channel (PHICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • PCFICH physical channel
  • the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • the terminal first receives the CFI on the PCFICH, and then monitors the PDCCH.
  • the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (ACK) signal for an uplink hybrid automatic repeat request (HARQ).
  • ACK positive-acknowledgement
  • ACK negative-acknowledgement
  • HARQ uplink hybrid automatic repeat request
  • the ACK / NACK signal for UL (uplink) data on the PUSCH transmitted by the UE is transmitted on the PHICH.
  • DCI downlink control information
  • PDSCH also called DL grant
  • PUSCH resource allocation also called UL grant
  • VoIP Voice over Internet Protocol
  • the control region in the downlink subframe includes a plurality of control channel elements (CCEs).
  • the CCE is a logical allocation unit used to provide a coding rate according to the state of a radio channel to a PDCCH and corresponds to a plurality of resource element groups (REGs).
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • the uplink subframe may be divided into a control region to which a physical uplink control channel (PUCCH) carrying uplink control information is allocated and a data region to which a physical uplink shared channel (PUSCH) carrying uplink data is allocated.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • PUCCH for one UE is allocated to a resource block pair in a subframe.
  • Resource blocks belonging to a resource block pair occupy different subcarriers in each of a first slot and a second slot.
  • m is a location index indicating a logical frequency domain location of a resource block pair allocated to a PUCCH in a subframe. It is shown that a resource block having the same m value occupies different subcarriers in two slots.
  • PUCCH supports multiple formats.
  • a PUCCH having a different number of bits per subframe may be used according to a modulation scheme dependent on the PUCCH format.
  • Table 1 shows an example of a modulation scheme and the number of bits per subframe according to the PUCCH format.
  • PUCCH format 1 is used for transmission of SR (Scheduling Request)
  • PUCCH format 1a / 1b is used for transmission of ACK / NACK signal for HARQ
  • PUCCH format 2 is used for transmission of CQI
  • PUCCH format 2a / 2b is used for CQI and Used for simultaneous transmission of ACK / NACK signals.
  • PUCCH format 1a / 1b is used when transmitting only the ACK / NACK signal in the subframe
  • PUCCH format 1 is used when the SR is transmitted alone.
  • PUCCH format 1 is used, and an ACK / NACK signal is modulated and transmitted on a resource allocated to the SR.
  • All PUCCH formats use a cyclic shift (CS) of the sequence in each OFDM symbol.
  • the cyclically shifted sequence is generated by cyclically shifting a base sequence by a specific cyclic shift amount.
  • the specific CS amount is indicated by the cyclic shift index (CS index).
  • n is the element index
  • N is the length of the base sequence.
  • b (n) is defined in section 5.5 of 3GPP TS 36.211 V8.7.0.
  • the length of the sequence is equal to the number of elements included in the sequence. u may be determined by a cell identifier (ID), a slot number in a radio frame, or the like.
  • ID cell identifier
  • the length N of the base sequence is 12 since one resource block includes 12 subcarriers. Different base sequences define different base sequences.
  • the cyclically shifted sequence r (n, I cs ) may be generated by cyclically shifting the basic sequence r (n) as shown in the following equation.
  • I cs is a cyclic shift index indicating the CS amount (0 ⁇ I cs ⁇ N-1).
  • the available cyclic shift index of the base sequence refers to a cyclic shift index derived from the base sequence according to the CS interval (CS interval). For example, if the length of the base sequence is 12 and the CS interval is 1, the total number of available cyclic shift indices of the base sequence is 12. Alternatively, if the length of the base sequence is 12 and the CS interval is 2, the total number of available cyclic shift indices of the base sequence is six.
  • the modulation symbol represents a complex-valued symbol representing the position on the constellation of the corresponding encoded bit.
  • the modulation symbol may be represented in various forms.
  • PUCCH format 1 HARQ ACK / NACK signals in PUCCH format 1 / 1a / 1b (hereinafter, collectively referred to as PUCCH format 1)
  • FIG. 3 shows PUCCH format 1 in normal CP in 3GPP LTE
  • FIG. 4 shows PUCCH format 1 in extended CP in 3GPP LTE.
  • the normal CP and the extended CP the number of OFDM symbols included in each slot is different. Only the position and the number of reference signals RS are different, and the structure of ACK / NACK transmission is the same.
  • Modulation symbol d (0) is generated by modulating a 2-bit ACK / NACK signal with Quadrature Phase Shift Keying (QPSK).
  • QPSK modulation is only an example, and various modulation schemes such as binary phase shift keying (BPSK) or quadrature amplitude modulation (m-QAM) may be used.
  • BPSK binary phase shift keying
  • m-QAM quadrature amplitude modulation
  • PUCCH format 1 since there are five OFDM symbols for transmitting an ACK / NACK signal in one slot in a normal CP or an extended CP, a total of 10 OFDM symbols are transmitted in one subframe for transmitting an ACK / NACK signal. have.
  • the modulation symbol d (0) is spread to the cyclically shifted sequence r (n, I cs ).
  • r n, I cs .
  • the one-dimensional spread sequence may be spread using an orthogonal sequence.
  • An orthogonal sequence w i (k) (i is a sequence index, 0 ⁇ k ⁇ K ⁇ 1) having a spreading factor K 4 uses the following sequence.
  • Different spreading coefficients may be used for each slot.
  • the last OFDM symbol in a subframe is used for transmission of a sounding reference signal (SRS).
  • SRS sounding reference signal
  • the two-dimensional spread sequence s (0), s (1), ..., s (9) can be expressed as follows.
  • the cyclic shift index I cs may vary according to the slot number n s in the radio frame and / or the symbol index l in the slot.
  • Two-dimensional spread sequences ⁇ s (0), s (1), ..., s (9) ⁇ are transmitted through corresponding resource blocks after inverse fast Fourier transform (IFFT) is performed.
  • IFFT inverse fast Fourier transform
  • the orthogonal sequence index i, the cyclic shift index I cs, and the resource block index m are parameters necessary for configuring the PUCCH and resources used to distinguish the PUCCH (or terminal). If the number of available cyclic shifts is 12 and the number of available orthogonal sequence indexes is 3, PUCCHs for a total of 36 terminals may be multiplexed into one resource block.
  • the reference signal for PUCCH format 1 also uses a cyclically shifted sequence generated from the base sequence. Two-dimensional spreading using orthogonal sequences is also applied, but the spreading factor is 3 in the normal CP and the spreading factor is 2 in the extended CP.
  • a resource index n (1) PUUCH is defined in order for the UE to obtain the three parameters for configuring the PUCCH.
  • Resource index n (1) PUUCH n CCE + N (1) PUUCH , where n CCE is the corresponding DCI (i.e., downlink resource allocation used for reception of downlink data corresponding to ACK / NACK signal) N (1) PUUCH is a parameter that the base station informs the user equipment by using a higher layer message.
  • the resources used for transmission of the PUCCH for the ACK / NACK signal are implicitly determined depending on the resources of the corresponding PDCCH. This is because the base station indirectly informs the resources used for the PDCCH used for the transmission of the downlink data, without separately informing the resources used for the transmission of the PUCCH for the ACK / NACK signal.
  • the UE monitors the PDCCH and receives the PDCCH 501 including the downlink grant in the nth subframe.
  • the terminal receives a downlink transport block through the PDSCH 502 indicated by the downlink grant.
  • the UE transmits an ACK / NACK signal for the downlink transport block on the PUCCH 511 in the n + 4th subframe.
  • the ACK / NACK signal becomes an ACK signal when the downlink transport block is successfully decoded, and becomes an NACK signal when decoding of the downlink transport block fails.
  • the base station may perform retransmission of the downlink transport block until the ACK signal is received or the maximum number of retransmissions.
  • the CQI may include a wideband CQI, a subband CQI, a precoding matrix indication (PMI) indicating an index of a precoding matrix, and / or a rank indication (RI) indicating a rank.
  • PMI precoding matrix indication
  • RI rank indication
  • FIG. 6 shows PUCCH format 2 in normal CP in 3GPP LTE
  • FIG. 7 shows PUCCH format 2 in extended CP in 3GPP LTE.
  • the normal CP and the extended CP differ in the number of OFDM symbols included per slot, so that the positions and the numbers of the reference signals RS are different, and the structure of the CQI is the same.
  • the encoded CQI is generated by performing channel coding on the CQI payload.
  • the payload of PUCCH format 2 is 13 bits at maximum, and an encoded CQI of 20 bits is always generated regardless of the size of the payload used.
  • Ten modulation symbols d (0), ..., d (9) are generated through Quadrature Phase Shift Keying (QPSK) modulation from the 20-bit encoded CQI. Since there are five OFDM symbols for CQI transmission in one slot in a normal CP or an extended CP, there are a total of 10 OFDM symbols in one subframe for CQI transmission. Accordingly, ten modulation symbols are generated so that one modulation symbol corresponds to one OFDM symbol each.
  • QPSK Quadrature Phase Shift Keying
  • the modulation symbol corresponding to each OFDM symbol is spread in a cyclically shifted sequence r (n, I cs ).
  • a spreading sequence corresponding to the (i + 1) th OFDM symbol in a subframe is s (i)
  • the cyclic shift index I cs may vary according to the slot number n s in the radio frame and / or the symbol index l in the slot.
  • the base station distinguishes the PUCCH received from each terminal through different cyclic shifts and / or orthogonal sequences in the same or different resource blocks. For example, the first terminal transmits the CQI based on the first cyclically shifted sequence, and the second terminal transmits the CQI based on the second cyclically shifted sequence, thereby PUCCH of a plurality of terminals in the same resource block. Is multiplexed. If the number of available cyclic shifts is 12, a total of 12 terminals may be multiplexed into one resource block.
  • the UE In order to configure the PUCCH format 2, the UE needs to know a cyclic shift index I cs and a resource block index m. In 3GPP LTE, and to acquire a resource index n PUCCH (2) the base station notifies to the mobile station, a resource index n PUCCH (2) the base station to the cyclic shift index I cs and the resource block index m.
  • 3GPP LTE supports only a single antenna in uplink transmission.
  • 3GPP LTE-A evolution of 3GPP LTE
  • research is being conducted to increase data rates using multiple antennas and multiple carriers.
  • One technique for uplink multiple antenna transmission is orthogonal space resource spatial multiplexing (OSRSM).
  • OSRSM orthogonal space resource spatial multiplexing
  • the time resource, frequency resource and / or code resource used for PUCCH transmission is called a PUCCH resource.
  • the index of the PUCCH resources (referred to as the ACK / NACK resource index or the PUCCH index) required for transmitting the ACK / NACK signal on the PUCCH is orthogonal sequence index i, cyclic shift index I cs , resource block index m And at least one of the indices for obtaining the three indices.
  • the PUCCH resource may include at least one of an orthogonal sequence, a cyclic shift, a resource block, and a combination thereof.
  • the first modulation symbol d (0) is transmitted through the first antenna 601 using the first PUCCH resource, and the second modulation symbol d (1) uses the second PUCCH resource to transmit the second antenna 602. Is sent through.
  • modulation symbols d (0) and d (0) represent two ACK / NACK signals.
  • the first orthogonal sequence index i 1 , the first cyclic shift index I cs1, and the first resource block index m 1 are obtained from the first PUCCH resource index to configure the first PUCCH.
  • the second orthogonal sequence index i 2 , the second cyclic shift index I cs2, and the second resource block index m 2 are obtained from the second PUCCH resource index, thereby configuring the second PUCCH.
  • the modulation symbol d (0) is transmitted via the first antenna 601 on the first PUCCH
  • the modulation symbol d (1) is transmitted via the second antenna 602 on the second PUCCH.
  • the antenna may represent a physical antenna, a logical antenna and / or a layer, and may also be referred to as an antenna port.
  • Bit-level permutation in which information bits of different control signals are exchanged bit by bit, may be performed.
  • QPSK modulation assume that the first ACK / NACK signal has 2 bits ⁇ a0 a1 ⁇ and the second ACK / NACK signal has 2 bits ⁇ b0 b1 ⁇ .
  • Bit-level permutation is performed before modulation so that d (0) represents ⁇ b0 a1 ⁇ and d (1) may represent ⁇ a0 b1 ⁇ .
  • Symbol-level permutation may be performed. For example, d (0) + d (1) is transmitted through the first antenna 601 using the first PUCCH resource, and d (0) -d (1) is transmitted using the second PUCCH resource. It may be transmitted through two antennas 602. Alternatively, d (0) -d (1) * is transmitted through the first antenna 601 using the first PUCCH resource, and d (0) * + d (1) is transmitted using the second PUCCH resource. It may be transmitted through two antennas 602.
  • d (0) * and d (1) * denote complex complexes of d (0) and d (1), respectively.
  • phase rotation can be applied.
  • d (0) + d (1) exp (j * ⁇ ) is transmitted through the first antenna 601 using the first PUCCH resource
  • d (0) -d (1) exp (j * ⁇ may be transmitted through the second antenna 602 using the second PUCCH resource.
  • ⁇ and ⁇ are phase rotation amounts.
  • ⁇ may be sufficient, and ⁇ ⁇ ⁇ may be sufficient.
  • d (0) -d (1) * exp (j * ⁇ ) is transmitted through the first antenna 601 using the first PUCCH resource, and d (0) * exp (j * ⁇ ) + d (1) may be transmitted through the second antenna 602 using the second PUCCH resource.
  • the number of resources allocated to the control signal may be equal to the number of resources used for the reference signal. For example, if n resources allocated for the transmission of n control signals are allocated, n resources may be allocated for the reference signal. Reference signal sequences transmitted using the allocated n resources may be transmitted for each antenna for channel estimation for each antenna.
  • resource selection is described as an example in PUCCH format 2 of a normal CP having a maximum payload of 13 bits, the technical spirit of the present invention is not limited to the type of control signal or the PUCCH format.
  • the resource is a cyclic shift and the resource index is a cyclic shift index.
  • a control channel such as an orthogonal sequence, a resource block, a frequency domain resource, a time domain resource, a code domain resource, or a combination thereof.
  • one cyclic shift index I cs and a resource block index m are required.
  • two cyclic shift indices I cs1 and I cs2 are considered as PUCCH resources.
  • MSM uses a plurality of resources to increase the size of the payload of the control channel. Since the payload size of the existing PUCCH format 2 is 20 bits, the size of the payload can be increased to 40 bits using two resources (that is, I cs1 and I cs2 ).
  • QPSK modulation of the 40-bit coded bits produces 20 modulation symbols d (0), d (1), ... d (19).
  • the first 10 PUCCH resources I cs1 may be acquired, and the remaining 10 may be obtained using the second PUCCH resource I cs2 .
  • r (0), r (1), ..., r (9) respectively correspond to the 10th OFDM symbol from the first OFDM symbol (except the OFDM symbol to which the reference signal is mapped in the subframe) and the first This is called a cyclically shifted sequence obtained using the PUCCH resource I cs1 .
  • Let r (10), r (11), ..., r (19) respectively correspond to the 10th OFDM symbol in the first OFDM symbol and are cyclically shifted sequences obtained using the second PUCCH resource I cs1 .
  • the d (0), d (1), ..., d (19) may be represented by a mapping rule using a mapping table as shown in Table 4 below.
  • the payload of the PUCCH can be increased by using a plurality of PUCCH resources.
  • I cs1 is transmitted by the first antenna and I cs2 is transmitted by the second antenna.
  • FIG. 10 is a block diagram illustrating PUCCH transmission using resource selection. Compared with MSM, resource selection only uses some of the allocated resources for PUCCH transmission. If two resources I cs1 and I cs2 are allocated, only one of I cs1 and I cs2 is used for PUCCH transmission.
  • the payload is encoded by encoder 810 to be encoded bits.
  • the encoding scheme is not limited, and well-known schemes such as block coding, convolutional coding, tail-biting convolutional coding (TBCC), and turbo code may be used.
  • the encoded bits are converted into modulation symbols by applying a mapping rule combining a resource selection and a modulation scheme using a plurality of resources allocated by the mapper 820. If the encoded bit is m bits, a plurality of cyclic shift indexes corresponding to n (n ⁇ 1) bits of the m bits and 2 (mn) order of shift shift keying corresponding to (mn) bits (Or Quadrature Amplitude Modulation) can be applied.
  • the modulation symbol may correspond to the first cyclic shift index I cs1 or the second cyclic shift index I cs2 . That is, the resources used are selected as they are converted into modulation symbols.
  • the modulation symbol is spread in a sequence corresponding to the corresponding cyclic shift index to generate a spread sequence.
  • a spread sequence is a sequence in which a modulation symbol is multiplied by a cyclically shifted sequence to have complex valued symbols as elements.
  • the spread sequence is mapped and transmitted to a physical resource by the resource mapper 850.
  • each element d (i) r (n, I cs ) of the spreading sequence is a corresponding resource block.
  • Each subcarrier is mapped and transmitted.
  • Resource selection is to represent bits depending on whether resources are used. 11 shows a representation of bits when two resources are allocated.
  • an information bit of '0' or '1' may be indicated depending on whether I cs1 or I cs2 is turned on or off.
  • the bit "0" is expressed by ON, OFF of the I cs2 I cs1, the bit '1', but represents the OFF, ON of the I cs2 I cs1, the order of the bit values or resource is for exemplary purposes only.
  • the following table shows an example of mapping between encoded bits and modulation symbols using resource selection when two cyclic shift indices (I cs1 and I cs2 ) are allocated and QPSK mapping is used.
  • the mapping method is designed considering the Euclidian distance.
  • Euclidean distance has the greatest position of the diagonal of the constellation. For example, the Euclidean distance between (1 / sqrt (2), 1 / sqrt (2)) and (-1 / sqrt (2),-1 / sqrt (2)) is the largest. The larger the Euclidean distance, the less likely it is that errors will occur. Thus, the bit with the largest Hamming distance is placed where the Euclidean distance is largest.
  • Cyclic shift indices I cs1 , I cs2 may use symbol level hopping and / or slot level hopping. This means that the cyclic shift index can be used by changing the symbol unit and / or the slot unit based on the allocated cyclic shift index. For example, selected ⁇ I cs2 , I cs2 , I cs2 , I cs2 , I cs1 > in the above example perform symbol level hopping to perform ⁇ I cs2 (0), I cs2 (1), I cs2 (2), I cs2 (3), I cs1 (4)> can be used.
  • I cs2 (m) means a cyclic shift index obtained for the m th OFDM symbol based on I cs2 .
  • I cs2 (m) can be expressed simply as I cs2 .
  • the next 42 bits of encoded bits may be generated by applying tail-biting convolutional codding (TBCC) defined in 3GPP LTE to 14 bits of information bits.
  • TBCC tail-biting convolutional codding
  • the next 30 bits of rate matched bits may be generated by performing circular buffer rate matching on the 42 bits of encoded bits.
  • a spreading sequence s (0), ..., s (9) for PUCCH format 2 is as follows.
  • ⁇ s (0), s (1), ..., s (9) ⁇ ⁇ d (0) r (n, I cs1 ), d (1) r (n, I cs2 ), d (2) r (n, I cs2 ), d (3) r (n, I cs1 ), d (4) r (n, I cs1 ), d (5) r (n, I cs2 ), d (6) r ( n, I cs2 ), d (7) r (n, I cs1 ), d (8) r (n, I cs1 ), d (9) r (n, I cs1 ) ⁇
  • the following table shows an example of mapping between encoded bits and modulation symbols using resource selection when two cyclic shift indices (I cs1 and I cs2 ) are allocated and 8PSK mapping is used.
  • the next 42 bits of encoded bits may be generated by applying TBCC to 14 bits of information bits.
  • the next 40 bits of rate matched bits may be generated by performing cyclic buffer rate matching on the 42 bits of encoded bits.
  • a spreading sequence s (0), ..., s (9) for PUCCH format 2 is as follows.
  • ⁇ s (0), s (1), ..., s (9) ⁇ ⁇ d (0) r (n, I cs1 ), d (1) r (n, I cs1 ), d (2) r (n, I cs2 ), d (3) r (n, I cs1 ), d (4) r (n, I cs1 ), d (5) r (n, I cs2 ), d (6) r ( n, I cs1 ), d (7) r (n, I cs1 ), d (8) r (n, I cs1 ), d (9) r (n, I cs1 ) ⁇
  • the MSM and resource selection may be applied to multiple antennas with precoding, which is called a space-code block code (SCBC).
  • SCBC space-code block code
  • SCBC Space-Code Block Code
  • the transmitter 900 includes an encoder 910, a mapper 920, a spatial processor 930, a first diffuser 940, a second diffuser 950, and two antennas 992, 994. do.
  • the transmitter 900 may be part of a terminal, and parts except for the antennas 992 and 994 may be implemented by a processor.
  • the encoder 910 receives the information bits and generates encoded bits.
  • the mapper 920 generates the modulation symbols by mapping the encoded bits to constellations.
  • the mapper 920 may perform mapping on a typical QPSK or 8PSK (or higher order), or may generate modulation symbols on the constellation by the mapping rules by the MSM and / or resource selection described above.
  • the spatial processor 940 processes the SCBC to the modulation symbol, and sends the processed symbols to the first spreader 940 and the second spreader 950.
  • the first spreader 940 and the second spreader 950 spread the processed symbols with a cyclically shifted index by a cyclic shift index.
  • the spread sequence generated by the first spreader 940 is transmitted through the first transmit antenna 992, and the spread sequence generated by the second spreader 950 transmits the second transmit antenna 994. Is sent through.
  • Each row of the SCBC matrix points to a resource (eg, a cyclic shift index), and each column points to an antenna.
  • s 1 and s 2 hereinafter mean modulation symbols, but may also mean a spread sequence.
  • the first column covers the first antenna and the second column covers the second antenna.
  • S 1 in the first column indicates a modulation symbol corresponding to the first cyclic shift index at the first antenna
  • -s 2 * in the first column indicates a negative complex conjugate modulation symbol corresponding to the second cyclic shift index at the first antenna.
  • s 1 and s 2 are reversed, which means that the cyclic shift index at the first antenna and the cyclic shift index at the second antenna are interchanged.
  • a resource corresponding to a transmission symbol of a first antenna and a resource corresponding to a modulation symbol of a second antenna are exchanged with each other, and a modulation symbol is a complex conjugate or a negative complex conjugate between the first antenna and the second antenna.
  • the mapper 920 outputs d (0) corresponding to the second cyclic shift index I cs2 .
  • a spreading sequence of -d (0) * r (n, I cs2 ) is transmitted through the first antenna, and d (0) r (n, The spread sequence of I cs1 ) is transmitted.
  • the modulation symbols of Table 8 can be represented by the following spreading sequence for each antenna.
  • SCBC 15 shows an example of SCBC application.
  • SCBC (6) of Table 9 was applied to the MSM of FIG.
  • the following table shows another example of SCBC that can be used. This sets some elements of the SCBC matrix to zero. That is, the SCBC is processed for each of the two allocated resources.
  • SCBC can obtain full spatial diversity gain as an optimal transmit method. However, since two resources need to be paired with each other for two antennas, SCBC is difficult to apply to an odd number of resources.
  • FIG. 16 shows an example of an asymmetric multicarrier.
  • three downlink component carriers DL CC # 1, DL CC # 2, DL CC # 3
  • one uplink carrier UL CC # 1
  • the number of DL CCs or UL CCs is not limited.
  • the CQI is transmitted for each DL CC.
  • Three PUCCH resources corresponding to each of the DL CCs may be allocated and the CQI may be fed back through multi-sequence transmission like MSM using the three resources.
  • r (0), r (1), ..., r (9) are respectively 10th in the first OFDM symbol. These are called cyclically shifted sequences corresponding to an OFDM symbol (the OFDM symbol to which the reference signal is mapped in the subframe is excluded) and obtained using the first PUCCH resource I cs2 .
  • r (10), r (11), ..., r (19) are referred to as cyclically shifted sequences obtained using the second PUCCH resource I cs2 .
  • r (20), r (21), ..., r (29) are referred to as cyclically shifted sequences obtained using the third PUCCH resource I cs3 .
  • Each of the plurality of resources may use a different modulation scheme.
  • Two resources may use 8PSK modulation and the other may use QPSK modulation.
  • STBC Space-Time Block Code
  • the reference signal may be transmitted in an OSRT form for channel estimation for each antenna. In case of two antennas, only two of three resources are used to configure a reference signal.
  • SCBC is applied to k resources and cyclic delay diversity (CDD), precoding vector switching (PVS), and / or simple Other transmit diversity techniques, such as simple repetition, can be applied.
  • CDD cyclic delay diversity
  • PVS precoding vector switching
  • / or simple Other transmit diversity techniques, such as simple repetition, can be applied.
  • the CCD delay value in symbol units or subframe units or the precoding vector value of PVS may be predefined or the base station may inform the UE.
  • FIG. 19 shows another example of transmission of PUCCH format 2 using three resources in SCBC.
  • simple repetition is applied to I cs3 . That is, the same spreading sequence is transmitted through the first antenna and the second antenna for I cs3 .
  • FIG. 20 shows another example of transmission of PUCCH format 2 using three resources in SCBC.
  • PVS is applied to I cs3 .
  • P (0) is used for the first antenna and p (1) is used for the second antenna.
  • Precoding vectors are exemplary only, and other precoding vectors may be used.
  • FIG. 21 shows 1-DFT diffusion of length 12.
  • the 12 modulation symbols d (0), d (1), ..., d (11) are DFT spread to generate transmission symbols S 0 , S 1 , ..., S 11 . Then, the 12 modulation symbols d (12), d (13 ), ..., d (23) is diffused DFT transmitted symbols S 12, S 13, ..., the S 23 is generated.
  • FIG. 22 shows an example in which SFBC is applied to a PUCCH.
  • Each row of the SFBC matrix points to a frequency (eg, subcarrier), and each column points to an antenna.
  • a frequency eg, subcarrier
  • S i hereinafter means a DFT spread symbol, but may be a modulation symbol before DFT spread or may mean a spread sequence.
  • the CM value of the first antenna 901 is about 1.22 dB and the CM value of the second antenna 902 is about 1.90 dB. Since the CM value of the second antenna 902 is larger, the coverage of the terminal is limited by the CM value of the second antenna 902. In addition, when considering the antenna power imbalance due to the hand grip of the terminal, the coverage may be further reduced.
  • the switched SFBC is to switch the SFBC in symbol units.
  • the transmission symbols are transmitted through a plurality of antennas after performing SFBC using the SFBC matrix of Equation 5 in the first OFDM symbol.
  • the transmission symbols are transmitted through a plurality of antennas after performing an SFBC using an SFBC matrix in which at least one column or at least one row is switched in the SFBC matrix of Equation 5.
  • the first column and the second column may be switched in the SFBC matrix of Equation 5, and then SFBC may be performed using an SFBC matrix as shown in Equation 5 below.
  • SFBC is again performed using the SFBC matrix of Equation 5. Therefore, different SFBCs are performed in symbol units.
  • Spatial processing is performed using different spatial processing matrices (eg, SFBC) in an OFDM symbol and a subsequent OFDM symbol.
  • SFBC spatial processing matrices
  • the transmit power of the antennas can be averaged.
  • the CM value of each antenna is about 1.5 dB.
  • the unbalanced transmission power is averaged.
  • the switched spatial processing may not be applied to the reference signal for channel estimation for each antenna.
  • the SFBC may use at least one of the SFBC matrices shown in the following table.
  • FIG. 23 shows switching of SFBC in PUCCH
  • the proposed invention can be applied to PUSCH, which is a data channel.
  • the encoded bits are modulated to generate a plurality of modulation symbols, and the plurality of modulation symbols are spread Fourier transform (DFT).
  • DFT spread Fourier transform
  • SFBC switching can be performed either before the DFT or after the DFT. In particular, switching performed before the DFT may be referred to as STBC switching.
  • the switching of spatial processing may be performed not only in symbol units but also in slot units, subframe units, and / or radio frame units.
  • the proposed invention can be easily extended.
  • the antennas may be divided into groups and switching may be performed in groups.
  • d (0), d (1), ..., d (9) are modulation symbols transmitted through the first antenna, and d (10), d (11), ..., d (19). Are modulation symbols transmitted via the second antenna.
  • the modulation symbols corresponding to the first and second antennas are exchanged with each other in OFDM symbol units.
  • modulation symbols may not be switched, only switching cyclically shifted sequences.
  • FIG. 25 illustrates an example of applying the proposed switching to the SCBC of FIG. 15. Switching SCBC in symbol units.
  • SCBC is performed using the SCBC matrix (6) of Table 9 and then transmitted through a plurality of antennas.
  • modulation symbols are switched over at least one column in the SCBC matrix, and then transmitted through a plurality of antennas after performing SCBC using the SCBC matrix as shown in the following equation.
  • Different SCBCs may be performed in the OFDM symbol and the subsequent OFDM symbol to average the power imbalance between antennas.
  • the SCBC matrix is only an example, and at least one of the SCBC matrices shown in Table 9 may be used.
  • FIG. 26 is an example of applying the proposed switching to the embodiment of FIG. 18. As described above, in the embodiment of FIG. 19, three resources are allocated and SCBC and STBC are mixed. Switch at least one row (or column) of the SCBC matrix in an OFDM symbol and subsequent OFDM symbols.
  • STBC switching is not performed, not only SCBC switching but also STBC switching may be performed.
  • 27 and 28 are graphs showing the effect of the present invention.
  • FIG. 27 shows the PUSCH structure of the existing 3GPP LTE, the SFBC and the CM value of the proposed invention (denoted as 'SwitchedSFBC').
  • the CM value of PUSCH of 3GPP LTE is about 1.57 dB at 99.9%
  • the CM value of SFBC is about 2.23 dB
  • the CM value of the proposed invention is about 1.91 dB.
  • the average CM per antenna is improved.
  • FIG. 28 shows the PUSCH structure of the existing 3GPP LTE, the STBC and the CM values of the proposed invention (denoted 'SwitchedSFBC').
  • the proposed invention using three resources uses the structure of FIG.
  • the CM value of PUSCH of 3GPP LTE is about 1.57 dB
  • the CM value of STBC is about 1.78 dB
  • the CM value of the proposed invention is about 1.64 dB. It shows that the CM is improved compared to the existing STBC.
  • 29 is a block diagram illustrating a transmitter in which an embodiment of the present invention is implemented.
  • the transmitter may be part of the terminal.
  • the transmitter may be part of a base station.
  • the transmitter 1100 includes an encoder 1110, a mapper 1120, and a signal processor 1130.
  • the encoder 1110 encodes the information bits to generate encoded bits.
  • the mapper 1120 generates modulation symbols by mapping encoded bits into constellations based on the proposed resource selection scheme.
  • the mapper 1120 may perform modulation on a general constellation, and may perform modulation using a mapping rule to which MSM and / or resource selection is applied.
  • the signal processor 1130 processes the modulation symbol and transmits a radio signal.
  • the signal processor 1130 may implement the above-described STBC, SFBC, SCBC and OSRSM. As shown in the embodiments of FIGS. 23 to 26, the signal processor 1130 may perform switching of spatial processing by at least one of STBC, SFBC, SCBC, and OSRSM.
  • FIG. 30 is a block diagram showing a terminal implemented embodiment of the present invention.
  • the terminal 1200 includes a processor 1210, a memory 1220, a display unit 1230, and an RF unit 1240.
  • the RF unit 1240 is connected to the processor 1210 and transmits and / or receives a radio signal.
  • the memory 1220 is connected to the processor 1210 and stores information necessary for the operation of the processor 1210.
  • the display unit 1230 displays various information of the terminal 1200 and may use well-known elements such as a liquid crystal display (LCD) and organic light emitting diodes (OLED).
  • LCD liquid crystal display
  • OLED organic light emitting diodes
  • the processor 1210 may implement a physical layer based on the 3GPP LTE / LTE-A standard, and implement the proposed method.
  • the processor 1210 may implement the encoder 1110, the mapper 1120, and the signal processor 1130.
  • the processor 1210 may include an application-specific integrated circuit (ASIC), another chipset, a logic circuit, and / or a data processing device.
  • the memory 1220 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device.
  • the RF unit 1240 may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memory 1220 and executed by the processor 1210.
  • the memory 1220 may be inside or outside the processor 1210 and may be connected to the processor 1210 by various well-known means.
  • the subblock is a resource unit for mapping time domain symbols and / or frequency domain symbols to radio resources, and may include, for example, 12 subcarriers. Each subblock may or may not be adjacent to each other. The amount (or size) of resources included in each subblock may be all the same or may be different. For example, subblock # 1 may include 12 subcarriers, but subblock # 2 may include 24 subcarriers.
  • the subblock may be called another name such as a cluster, a resource block, a subchannel, and the like. Alternatively, one or more subblocks may correspond to one component carrier. Component carriers are defined by center frequency and bandwidth.
  • FIG. 31 is a block diagram illustrating a signal processing apparatus for performing SC-FDMA.
  • the transmission scheme in which IFFT is performed after DFT spreading is called SC-FDMA.
  • SC-FDMA is also called DFT-s (DFT-sread) OFDM.
  • the signal processing apparatus 2110 includes a discrete fourier transform (DFT) unit 2111, a subcarrier mapper 2112, an inverse fast fourier transform (IFFT) unit 2113, and a CP insertion unit 2114.
  • the DFT unit 2111 performs DFT on the complex-valued symbols to be output and outputs the DFT symbols.
  • Subcarrier mapper 2112 maps the DFT symbols to each subcarrier in the frequency domain.
  • the IFFT unit 2113 performs an IFFT on the symbols mapped in the frequency domain and outputs a time domain signal.
  • the CP inserter 2114 inserts a CP into the time domain signal.
  • the time domain signal in which the CP is inserted becomes an OFDM symbol. If the used sequence is a frequency-domain sequence that has already been DFT spread, IFFT may be performed immediately without performing a DFT separately.
  • DFT symbols output from the DFT unit are mapped to contiguous subcarriers in the frequency domain. This is called localized mapping.
  • the DFT symbols output from the DFT unit are mapped to non-contiguous subcarriers.
  • the DFT symbols may be mapped to subcarriers distributed at equal intervals in the frequency domain. This is called distributed mapping.
  • 34 is a block diagram illustrating a signal processing apparatus for performing clustered SC-FDMA.
  • the manner in which the DFT symbols are divided and processed in units of subblocks is referred to as clustered SC-FDMA or clustered DFT-s OFDM.
  • the signal processing apparatus 2210 includes a DFT unit 2211, a subcarrier mapper 2212, an IFFT unit 2213, and a CP insertion unit 2214.
  • the DFT symbols output from the DFT unit 2211 are divided into N subblocks (N is a natural number).
  • N subblocks may be represented by subblock # 1, subblock # 2, ..., subblock #N.
  • the subcarrier mapper 2212 maps N subblocks to subcarriers in a frequency domain in units of subblocks.
  • the subcarrier mapper 2212 may perform local mapping or distributed mapping on a subblock basis.
  • the IFFT unit 2213 outputs a time domain signal by performing IFFT on the subblocks mapped in the frequency domain.
  • the CP insertion unit 2214 inserts a CP into the time domain signal.
  • the signal processing device 2210 may support a single carrier or a multi-carrier. When only a single carrier is supported, all N subblocks correspond to one carrier. When supporting multiple carriers, at least one subblock of N subblocks may correspond to each carrier.
  • 35 is a block diagram illustrating another example of a signal processing apparatus.
  • the signal processing apparatus 2310 includes a DFT unit 2311, a subcarrier mapper 2312, a plurality of IFFT units 2313-1, 2313-2,..., 2313 -N, and a CP insertion unit 2214. (N is a natural number).
  • the DFT symbols output from the DFT unit 2311 are divided into N subblocks.
  • the subcarrier mapper 2312 maps N subblocks to subcarriers in a frequency domain in units of subblocks.
  • the subcarrier mapper 2312 may perform local mapping or distributed mapping on a subblock basis.
  • IFFT is performed independently for each subblock mapped in the frequency domain.
  • the CP insertion unit 2314 inserts a CP into the time domain signal.
  • the n th time domain signal is multiplied by an n th carrier signal fn to generate an n th radio signal.
  • a CP is inserted by the CP inserter 2314.
  • Each subblock may correspond to each component carrier.
  • Each subblock may correspond to component carriers adjacent to each other or may correspond to component carriers not adjacent to each other.
  • 36 is a block diagram illustrating another example of a signal processing apparatus.
  • the signal processing unit 2410 includes a code block divider 2411, a chunk divider 2412, a plurality of channel coding units 2413-1,..., 2413 -N, and a plurality of modulators 2444-. 1, ..., 2414-N), a plurality of DFT units 2415-1, ..., 2425-N, a plurality of subcarrier mappers 2416-1, ..., 2241-N, a plurality of IFFTs Section 2417-1, ..., 2417-N and CP insertion section 2418 (N is a natural number).
  • N may be the number of multicarriers used by the multicarrier transmitter.
  • the code block divider 2411 divides a transport block into a plurality of code blocks.
  • the chunk divider 2412 divides the code block into a plurality of chunks.
  • the code block may be referred to as data transmitted from the multicarrier transmitter, and the chunk may be referred to as a data segment transmitted through one carrier of the multicarrier.
  • DFT is performed in chunks.
  • a transmission scheme in which DFT is performed in chunks is referred to as chunk specific DFT-s OFDM or Nx SC-FDMA. This may be used in contiguous carrier assignment or non-adjacent carrier assignment.
  • the divided chunks become complex symbols through each of the plurality of channel coding units 2413-1,..., 4241 -N and the plurality of modulators 2414-1,.
  • the complex symbols include a plurality of DFT units 2415-1,..., 2241 -N, respectively, a plurality of subcarrier mappers 2416-1,..., 2241 -N, and a plurality of IFFT units 2417-1. , ..., 2417-N), and then add to each other at the CP insertion unit 2418.
  • the OFDM symbol may be a time domain symbol applied to any multiple access scheme, such as OFDMA, SC-FDMA, DFT-s OFDM, clustered DFT-s OFDM, and / or chunk-specific DFT-s OFDM, and is necessarily limited to a specific multiple access scheme. It does not mean that.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

다중 안테나 시스템에서 상향링크 전송 방법 및 장치가 제공된다. 단말은 복수의 제1 전송 심벌들에 제1 공간 처리를 이용하여 복수의 안테나를 통해 전송하고, 복수의 제2 전송 심벌들에 제2 공간 처리를 이용하여 상기 복수의 안테나를 통해 전송한다. 상기 제2 공간 처리에 사용되는 제2 SFBC 행렬은 상기 제1 공간 처리에 사용되는 제1 공간 처리 행렬의 적어도 하나의 행 또는 적어도 하나의 열을 스위칭하여 구성된다. 낮은 PAPR/CM 특성을 유지하고, 안테나들간 불균형된 전송 파워를 평균화시킬 수 있다.

Description

다중 안테나 시스템에서 상향링크 전송 방법 및 장치
본 발명은 무선 통신에 관한 것으로, 더욱 상세하게는 무선 통신 시스템에서 상향링크 전송 방법 및 장치에 관한 것이다.
3GPP(3rd Generation Partnership Project) TS(Technical Specification) 릴리이즈(Release) 8을 기반으로 하는 LTE(long term evolution)는 유력한 차세대 이동통신 표준이다.
3GPP TS 36.211 V8.7.0 (2009-05) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"에 개시된 바와 같이, LTE에서 물리채널은 하향링크 채널인 PDSCH(Physical Downlink Shared Channel)와 PDCCH(Physical Downlink Control Channel), 상향링크 채널인 PUSCH(Physical Uplink Shared Channel)와 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
상향링크 채널은 단말의 전원 관리를 위해 PAPR(Peak-to-Average Power Ratio)/CM(cubic metric) 특성이 중요하다. 긴 대기 시간과 낮은 배터리 소모를 위해 상향링크 채널은 낮은 PAPR/CM 특성을 유지하는 것이 필요하다. 이를 위해, LTE는 상향링크 제어채널에 ZC(Zadoff-Chu) 시퀀스와 같은 낮은 PAPR/CM 특성을 갖는 시퀀스를 사용하고 있다.
하지만, MIMO(Multiple Input Multiple Output) 기술, 다중 반송파 기술 등의 새로운 기술의 도입으로 인해 상향링크 채널의 PAPR/CM 특성이 악화될 수 있다.
낮은 PAPR/CM 특성을 유지하는 상향링크 전송 방법 및 장치가 필요하다.
본 발명이 이루고자 하는 기술적 과제는 다중 안테나 시스템에서 공간 처리를 스위칭하는 상향링크 전송 방법 및 장치를 제공하는 데 있다.
본 발명이 이루고자 하는 다른 기술적 과제는 안테나들간 전송 파워 불균형을 줄이는 상향링크 전송 방법 및 장치를 제공하는 데 있다.
일 양태에 있어서, 다중 안테나 시스템에서 상향링크 전송 방법이 제공된다. 상기 방법은 복수의 제1 전송 심벌들에 제1 공간 처리를 이용하여 복수의 안테나를 통해 전송하는 단계, 및 복수의 제2 전송 심벌들에 제2 공간 처리를 이용하여 상기 복수의 안테나를 통해 전송하는 단계를 포함하되, 상기 제2 공간 처리에 사용되는 공간 처리 행렬은 상기 제1 공간 처리에 사용되는 제1 공간 처리 행렬의 적어도 하나의 행 또는 적어도 하나의 열을 스위칭하여 구성된다.
상기 제1 및 제2 공간 처리는 SFBC(Space-Frequency Block Code)이고, 상기 제1 및 제2 공간 처리 행렬은 SFBC 행렬일 수 있다.
상기 제1 및 제2 공간 처리는 SCBC(Space-Code Block Code)이고, 상기 제1 및 제2 공간 처리 행렬은 SCBC 행렬일 수 있다.
상기 방법은 인코딩된 비트들을 변조하여 복수의 변조 심벌들을 생성하는 단계를 더 포함하고, 상기 복수의 제1 전송 심벌들 및 상기 복수의 제2 전송 심벌들은 상기 복수의 변조 심벌들일 수 있다.
상기 복수의 제1 전송 심벌들 및 상기 복수의 제2 전송 심벌들은 PUCCH(Physical Uplink Control Channel) 상으로 전송될 수 있다.
상기 방법은 인코딩된 비트들을 변조하여 복수의 변조 심벌들을 생성하는 단계, 및 상기 복수의 변조 심벌들을 DFT(Discrete Fourier transfomr) 확산하여 상기 복수의 제1 전송 심벌들 및 상기 복수의 제2 전송 심벌들을 생성하는 단계를 더 포함할 수 있다.
상기 복수의 제1 전송 심벌들과 상기 복수의 제2 전송 심벌들은 독립적으로 DFT가 수행될 수 있다.
상기 복수의 제1 전송 심벌들 및 상기 복수의 제2 전송 심벌들은 PUSCH(Physical Uplink Shared Channel) 상으로 전송될 수 있다.
다른 양태에 있어서, 단말은 무선 신호를 송신 및 수신하는 RF부, 및 상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는 복수의 제1 전송 심벌들을 제1 공간 처리를 이용하여 처리하고, 및 복수의 제2 전송 심벌들을 제2 공간 처리를 이용하여 처리하되, 상기 제2 공간 처리에 사용되는 제2 공간 처리 행렬은 상기 제1 공간 처리에 사용되는 제1 공간 처리 행렬의 적어도 하나의 행 또는 적어도 하나의 열을 스위칭하여 구성된다.
낮은 PAPR/CM 특성을 유지하고, 안테나들간 불균형된 전송 파워를 평균화시킬 수 있다.
도 1은 3GPP LTE에서 무선 프레임과 하향링크 서브 프레임의 구조를 나타낸다.
도 2는 3GPP LTE에서 상향링크 서브프레임의 일 예를 나타낸다.
도 3은 3GPP LTE에서 노멀 CP에서 PUCCH 포맷 1를 나타낸다.
도 4는 3GPP LTE에서 확장 CP에서 PUCCH 포맷 1를 나타낸다.
도 5는 HARQ 수행의 일 예를 나타낸다.
도 6은 3GPP LTE에서 노멀 CP에서 PUCCH 포맷 2를 나타낸다.
도 7은 3GPP LTE에서 확장 CP에서 PUCCH 포맷 2를 나타낸다.
도 8은 OSRSM의 일 예를 나타낸다.
도 9는 단일 안테나에서 MSM의 일 예를 나타낸다.
도 10은 자원 선택을 이용한 PUCCH 전송을 나타낸 블록도이다.
도 11은 2개의 자원이 할당된 경우 비트의 표현을 나타낸다.
도 12는 표 5의 맵핑 방식에 따른 성상을 나타낸다.
도 13은 표 7의 맵핑 방식에 따른 성상을 나타낸다.
도 14는 SCBC(Space-Code Block Code)를 구현하는 전송기의 블록도이다.
도 15는 SCBC 적용의 일 예를 나타낸다.
도 16은 비대칭 다중 반송파의 예를 나타낸다.
도 17은 MSM에서 3개의 자원을 이용한 PUCCH 포맷 2의 전송을 나타낸다.
도 18은 SCBC에서 3개의 자원을 이용한 PUCCH 포맷 2의 전송의 일 예를 나타낸다.
도 19는 SCBC에서 3개의 자원을 이용한 PUCCH 포맷 2의 전송의 다른 예를 나타낸다.
도 20은 SCBC에서 3개의 자원을 이용한 PUCCH 포맷 2의 전송의 또 다른 예를 나타낸다.
도 21은 길이 12인 1-DFT 확산을 나타낸다.
도 22는 PUCCH에 SFBC가 적용된 예를 나타낸다.
도 23은 제안된 스위칭된(switched) SFBC의 일 예를 나타낸다.
도 24는 도 9의 OSRSM에 제안된 공간 처리의 스위칭을 적용한 예이다.
도 25는 도 15의 SCBC에 제안된 스위칭을 적용한 예이다.
도 26은 도 18의 실시예에 제안된 스위칭을 적용한 예이다.
도 27과 28은 본 발명의 효과를 나타내는 그래프이다.
도 29는 본 발명의 실시예가 구현되는 전송기를 나타낸 블록도이다.
도 30은 본 발명의 실시예가 구현되는 단말을 나타낸 블록도이다.
도 31은 SC-FDMA를 수행하는 신호 처리 장치를 나타낸 블록도이다.
도 32는 부반송파 맵핑의 일 예를 나타낸다.
도 33은 부반송파 맵핑의 다른 예를 나타낸다.
도 34는 클러스터된 SC-FDMA를 수행하는 신호 처리 장치를 나타낸 블록도이다.
도 35는 신호 처리 장치의 다른 예를 나타낸 블록도이다.
도 36은 신호 처리 장치의 또 다른 예를 나타낸 블록도이다.
단말(User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다.
기지국은 일반적으로 단말과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
각 기지국은 특정한 지리적 영역(일반적으로 셀이라고 함)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다.
도 1은 3GPP LTE에서 무선 프레임과 하향링크 서브 프레임의 구조를 나타낸다. 이는 3GPP TS 36.211 V8.7.0 (2009-05) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"의 6절을 참조할 수 있다.
무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함할 수 있다. OFDM 심벌은 시간 영역에서 하나의 심벌 구간(symbol period)을 표현하기 위한 것에 불과할 뿐, 다중 접속 방식이나 명칭에 제한을 두는 것은 아니다. 예를 들어, OFDM 심벌은 SC-FDMA(single carrier-frequency division multiple access) 심벌, 심벌 구간 등 다른 명칭으로 불릴 수 있다.
하나의 슬롯은 7 OFDM 심벌을 포함하는 것을 예시적으로 기술하나, CP(Cyclic Prefix)의 길이에 따라 하나의 슬롯에 포함되는 OFDM 심벌의 수는 바뀔 수 있다. 3GPP TS 36.211 V8.7.0에 의하면, 노멀(normal) CP에서 1 슬롯은 7 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 슬롯은 6 OFDM 심벌을 포함한다.
자원블록(resource block, RB)은 자원 할당 단위로, 하나의 슬롯에서 복수의 부반송파를 포함한다. 예를 들어, 하나의 슬롯이 시간 영역에서 7개의 OFDM 심벌을 포함하고, 자원블록은 주파수 영역에서 12개의 부반송파를 포함한다면, 하나의 자원블록은 7×12개의 자원요소(resource element, RE)를 포함할 수 있다.
DL(downlink) 서브프레임은 시간 영역에서 제어영역(control region)과 데이터영역(data region)으로 나누어진다. 제어영역은 서브프레임내의 첫번째 슬롯의 앞선 최대 3개의 OFDM 심벌을 포함하나, 제어영역에 포함되는 OFDM 심벌의 개수는 바뀔 수 있다. 제어영역에는 PDCCH 및 다른 제어채널이 할당되고, 데이터영역에는 PDSCH가 할당된다.
3GPP TS 36.211 V8.7.0에 개시된 바와 같이, 3GPP LTE에서 물리채널은 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 단말은 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다.
PHICH는 상향링크 HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/ NACK(negative-acknowledgement) 신호를 나른다. 단말에 의해 전송되는 PUSCH상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
하향링크 서브프레임내의 제어영역은 복수의 CCE(control channel element)를 포함한다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위로, 복수의 REG(resource element group)에 대응된다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다.
도 2는 3GPP LTE에서 상향링크 서브프레임의 일 예를 나타낸다. 상향링크 서브프레임은 상향링크 제어정보를 나르는 PUCCH(Physical Uplink Control Channel)가 할당되는 제어영역과 상향링크 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)가 할당되는 데이터 영역으로 나눌 수 있다.
하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍(pair)으로 할당된다. 자원블록 쌍에 속하는 자원블록들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. m은 서브프레임 내에서 PUCCH에 할당된 자원블록 쌍의 논리적인 주파수 영역 위치를 나타내는 위치 인덱스이다. 동일한 m 값을 갖는 자원블록이 2개의 슬롯에서 서로 다른 부반송파를 차지하고 있음을 보이고 있다.
3GPP TS 36.211 V8.7.0에 의하면, PUCCH는 다중 포맷을 지원한다. PUCCH 포맷에 종속된 변조 방식(modulation scheme)에 따라 서브프레임당 서로 다른 비트 수를 갖는 PUCCH를 사용할 수 있다.
다음 표 1은 PUCCH 포맷에 따른 변조 방식 및 서브프레임당 비트 수의 예를 나타낸다.
표 1
PUCCH Format Modulation Scheme Number of Bits per subframe
1 N/A N/A
1a BPSK 1
1b QPSK 2
2 QPSK 20
2a QPSK+BPSK 21
2b QPSK+BPSK 22
PUCCH 포맷 1은 SR(Scheduling Request)의 전송에 사용되고, PUCCH 포맷 1a/1b는 HARQ를 위한 ACK/NACK 신호의 전송에 사용되고, PUCCH 포맷 2는 CQI의 전송에 사용되고, PUCCH 포맷 2a/2b는 CQI 및 ACK/NACK 신호의 동시(simultaneous) 전송에 사용된다. 서브프레임에서 ACK/NACK 신호만을 전송할 때 PUCCH 포맷 1a/1b이 사용되고, SR이 단독으로 전송될 때, PUCCH 포맷 1이 사용된다. SR과 ACK/NACK을 동시에 전송할 때에는 PUCCH 포맷 1이 사용되고, SR에 할당된 자원에 ACK/NACK 신호를 변조하여 전송한다.
모든 PUCCH 포맷은 각 OFDM 심벌에서 시퀀스의 순환 쉬프트(cylic shift, CS)를 사용한다. 순환 쉬프트된 시퀀스는 기본 시퀀스(base sequence)를 특정 CS 양(cyclic shift amount) 만큼 순환 쉬프트시켜 생성된다. 특정 CS 양은 순환 쉬프트 인덱스(CS index)에 의해 지시된다.
기본 시퀀스 ru(n)를 정의한 일 예는 다음 식과 같다.
수학식 1
Figure PCTKR2010006846-appb-M000001
여기서, u는 원시 인덱스(root index), n은 요소 인덱스로 0≤n≤N-1, N은 기본 시퀀스의 길이이다. b(n)은 3GPP TS 36.211 V8.7.0의 5.5절에서 정의되고 있다.
시퀀스의 길이는 시퀀스에 포함되는 요소(element)의 개수와 같다. u는 셀 ID(identifier), 무선 프레임 내 슬롯 번호 등에 의해 정해질 수 있다. 기본시퀀스가 주파수 영역에서 하나의 자원블록에 맵핑된다고 할 때, 하나의 자원블록이 12 부반송파를 포함하므로 기본 시퀀스의 길이 N은 12가 된다. 다른 원시 인덱스에 따라 다른 기본 시퀀스가 정의된다.
기본 시퀀스 r(n)을 다음 수학식과 같이 순환 쉬프트시켜 순환 쉬프트된 시퀀스 r(n, Ics)을 생성할 수 있다.
수학식 2
Figure PCTKR2010006846-appb-M000002
여기서, Ics는 CS 양을 나타내는 순환 쉬프트 인덱스이다(0≤Ics≤N-1).
이하에서 기본 시퀀스의 가용(available) 순환 쉬프트 인덱스는 CS 간격(CS interval)에 따라 기본 시퀀스로부터 얻을 수(derive) 있는 순환 쉬프트 인덱스를 말한다. 예를 들어, 기본 시퀀스의 길이가 12이고, CS 간격이 1이라면, 기본 시퀀스의 가용 순환 쉬프트 인덱스의 총 개수는 12가 된다. 또는, 기본 시퀀스의 길이가 12이고, CS 간격이 2이라면, 기본 시퀀스의 가용 순환 쉬프트 인덱스의 총 수는 6이 된다.
이하에서, 변조 심벌은 대응하는 인코딩된 비트의 성상 상의 위치를 나타내는 복소 값(complex-valued) 심벌을 나타낸다. 하지만, 구현 방식에 따라 변조 심벌은 다양한 형태로 표현될 수 있을 것이다.
이제, PUCCH 포맷 1/1a/1b(이하, 이들을 총칭하여 PUCCH 포맷 1로 함)에서의 HARQ ACK/NACK 신호의 전송에 대해 기술한다.
도 3은 3GPP LTE에서 노멀 CP에서 PUCCH 포맷 1를 나타내고, 도 4는 3GPP LTE에서 확장 CP에서 PUCCH 포맷 1를 나타낸다. 노멀 CP와 확장 CP는 슬롯 당 포함되는 OFDM 심벌의 갯수가 달라, 기준신호(RS)의 위치와 개수가 다를 뿐, ACK/NACK 전송의 구조는 동일하다.
2비트 ACK/NACK 신호를 QPSK(Quadrature Phase Shift Keying) 변조하여 변조 심벌 d(0)가 생성된다. QPSK 변조는 예시에 불과하고, BPSK(Binary Phase Shift Keying) 또는 m-QAM(Quadrature Amplitude Modulation) 등 다양한 변조 방식을 사용할 수 있다.
PUCCH 포맷 1에 의하면, 노멀 CP 또는 확장 CP에서 하나의 슬롯에 ACK/NACK 신호의 전송을 위해 5개의 OFDM 심벌이 있으므로, 하나의 서브프레임에는 ACK/NACK 신호의 전송을 위해 총 10개의 OFDM 심벌이 있다.
변조 심벌 d(0)은 순환 쉬프트된 시퀀스 r(n,Ics)로 확산된다. 서브프레임에서 (i+1)번째 OFDM 심벌에 대응하는 일차원 확산된 시퀀스를 m(i)라 할 때,
{m(0), m(1),..., m(9)} = {d(0)r(n,Ics), d(0)r(n,Ics), ..., d(0)r(n,Ics)}
로 나타낼 수 있다.
단말 용량을 증가시키기 위해, 일차원 확산된 시퀀스는 직교 시퀀스를 이용하여 확산될 수 있다. 확산 계수(spreading factor) K=4인 직교 시퀀스 wi(k) (i는 시퀀스 인덱스, 0≤k≤K-1)로 다음과 같은 시퀀스를 사용한다.
표 2
Index (i) [ wi(0), wi(1), wi(2), wi(3) ]
0 [ +1, +1, +1, +1 ]
1 [ +1, -1, +1, -1 ]
2 [ +1, -1, -1, +1 ]
확산 계수 K=3인 직교 시퀀스 wi(k) (i는 시퀀스 인덱스, 0≤k≤K-1)로 다음과 같은 시퀀스를 사용한다.
표 3
Index (i) [ wi(0), wi(1), wi(2) ]
0 [ +1, +1, +1 ]
1 [ +1, ej2π/3, ej4π/3 ]
2 [ +1, ej4π/3, ej2π/3 ]
슬롯마다 다른 확산 계수를 사용할 수 있다. 3GPP LTE에서는 SRS(sounding reference signal)의 전송을 위해 서브프레임 내의 마지막 OFDM 심볼을 사용한다. 이때, PUCCH는 제1 슬롯은 확산 계수 K=4를 사용하고, 제2 슬롯은 확산 계수 K=3을 사용한다.
따라서, 임의의 직교 시퀀스 인덱스 i가 주어질 때, 2차원 확산된 시퀀스 s(0), s(1),..., s(9)는 다음과 같이 나타낼 수 있다.
{s(0), s(1),..., s(9)}={wi(0)m(0), wi(1)m(1), wi(2)m(2), wi(3)m(3), wi(4)m(4), wi(0)m(5), wi(1)m(7), wi(2)m(8), wi(3)m(9)}
순환 쉬프트 인덱스 Ics는 무선 프레임 내 슬롯 번호(ns) 및/또는 슬롯 내 심벌 인덱스(ℓ)에 따라 달라질 수 있다.
설명을 명확히 하기 위해, 최초의 순환 쉬프트 인덱스를 0으로 하고, OFDM 심벌마다 순환 쉬프트 인덱스의 값이 하나씩 증가한다고 할 때, 도 3 및 4에 나타난 바와 같이,
{s(0), s(1),..., s(9)} = {wi(0)d(0)r(n,0), wi(1)d(1)r(n,1), ..., wi(3)d(9)r(n,9)}
로 나타낼 수 있다.
2차원 확산된 시퀀스들 {s(0), s(1),..., s(9)}는 IFFT(inverse fast Fourier transform)가 수행된 후, 대응하는 자원블록을 통해 전송된다. 이로써, ACK/NACK 신호가 PUCCH 상으로 전송되는 것이다.
직교 시퀀스 인덱스 i, 순환 쉬프트 인덱스 Ics 및 자원 블록 인덱스 m은 PUCCH를 구성하기 위해 필요한 파라미터이자, PUCCH(또는 단말)을 구분하는 데 사용되는 자원이다. 가용 순환 쉬프트의 개수가 12이고, 가용한 직교 시퀀스 인덱스의 개수가 3이라면, 총 36개의 단말에 대한 PUCCH가 하나의 자원블록에 다중화될 수 있다.
PUCCH 포맷 1을 위한 기준신호도 기본 시퀀스로부터 생성되는 순환 쉬프트된 시퀀스를 이용한다. 직교 시퀀스를 이용한 2차원 확산도 적용되지만, 노멀 CP에서 확산 계수는 3이고, 확장 CP에서 확산 계수는 2이다.
3GPP LTE에서는 단말이 PUCCH를 구성하기 위한 상기 3개의 파라미터를 획득하기 위해, 자원 인덱스 n(1) PUUCH를 정의한다. 자원 인덱스 n(1) PUUCH = nCCE+N(1) PUUCH로 정의되는 데, nCCE는 대응하는 DCI(즉, ACK/NACK 신호에 대응하는 하향링크 데이터의 수신에 사용된 하향링크 자원 할당)의 전송에 사용되는 첫번째 CCE의 번호이고, N(1) PUUCH는 기지국이 단말에게 상위계층 메시지로 알려주는 파라미터이다.
결과적으로, ACK/NACK 신호를 위한 PUCCH의 전송에 사용되는 자원은 대응하는 PDCCH의 자원에 종속하여 묵시적으로(implicitly) 결정된다고 할 수 있다. 왜냐하면, 기지국은 단말이 ACK/NACK 신호를 위한 PUCCH의 전송에 사용되는 자원을 별도로 알려주지 않고, 하향링크 데이터의 전송에 사용되는 PDCCH에 사용되는 자원을 통해 간접적으로 알려주기 때문이다.
도 5는 HARQ 수행의 일 예를 나타낸다. 단말은 PDCCH를 모니터링하여, n 번째 서브프레임에서 하향링크 그랜트가 포함된 PDCCH(501)를 수신한다. 단말은 하향링크 그랜트에 의해 지시되는 PDSCH(502)를 통해 하향링크 전송 블록(transport block)을 수신한다.
단말은 n+4번째 서브프레임에서 PUCCH(511) 상으로 상기 하향링크 전송 블록에 대한 ACK/NACK 신호를 전송한다. ACK/NACK 신호는 상기 하향링크 전송 블록이 성공적으로 디코딩되면 ACK 신호가 되고, 상기 하향링크 전송 블록의 디코딩에 실패하면 NACK 신호가 된다. 기지국은 NACK 신호가 수신되면, ACK 신호가 수신되거나 최대 재전송 횟수까지 상기 하향링크 전송 블록의 재전송를 수행할 수 있다.
PUCCH(511)를 구성하기 위해, 단말은 PDCCH(501)의 자원 할당을 이용한다. 즉, PDCCH(501)의 전송에 사용되는 가장 낮은 CCE 인덱스가 nCCE가 되고, n(1) PUUCH = nCCE+N(1) PUUCH와 같이 자원 인덱스를 결정하는 것이다.
이제 PUCCH 포맷 2에서의 CQI 전송에 대해 기술한다.
CQI는 전대역(wideband) CQI, 서브밴드(subband) CQI, 프리코딩 행렬의 인덱스를 지시하는 PMI(precoding matrix indication) 및/또는 랭크를 지시하는 RI(rank indication)를 포함할 수 있다.
도 6은 3GPP LTE에서 노멀 CP에서 PUCCH 포맷 2를 나타내고, 도 7은 3GPP LTE에서 확장 CP에서 PUCCH 포맷 2를 나타낸다. 노멀 CP와 확장 CP는 슬롯 당 포함되는 OFDM 심벌의 갯수가 달라, 기준신호(RS)의 위치와 개수가 다를 뿐, CQI의 구조는 동일하다.
CQI 페이로드에 채널 코딩을 수행하여 인코딩된 CQI가 생성된다. 3GPP LTE에서는 PUCCH 포맷 2의 페이로드(payload)는 최대 13비트이고, 사용되는 페이로드의 크기에 상관없이 항상 20비트의 인코딩된 CQI가 생성된다.
20비트의 인코딩된 CQI로부터 QPSK(Quadrature Phase Shift Keying) 변조를 통해 10개의 변조 심벌 d(0),...,d(9)이 생성된다. 노멀 CP 또는 확장 CP에서 하나의 슬롯에 CQI 전송을 위해 5개의 OFDM 심벌이 있으므로, 하나의 서브프레임에는 CQI 전송을 위해 총 10개의 OFDM 심벌이 있다. 따라서, 하나의 변조 심벌이 각각 하나의 OFDM 심벌에 대응하도록 10개의 변조 심벌이 생성된다.
각 OFDM 심벌에 대응하는 변조 심벌은 순환 쉬프트된 시퀀스 r(n,Ics)로 확산된다. 서브프레임에서 (i+1)번째 OFDM 심벌에 대응하는 확산된 시퀀스를 s(i)라 할 때,
{s(0), s(1),..., s(9)} = {d(0)r(n,Ics), d(1)r(n,Ics), ..., d(9)r(n,Ics)}
로 나타낼 수 있다.
순환 쉬프트 인덱스 Ics는 무선 프레임 내 슬롯 번호(ns) 및/또는 슬롯 내 심벌 인덱스(ℓ)에 따라 달라질 수 있다.
설명을 명확히 하기 위해, 최초의 순환 쉬프트 인덱스를 0으로 하고, OFDM 심벌마다 순환 쉬프트 인덱스의 값이 하나씩 증가한다고 할 때, 도 6 및 7에 나타난 바와 같이,
{s(0), s(1),..., s(9)} = {d(0)r(n,0), d(1)r(n,1), ..., d(9)r(n,9)}
로 나타낼 수 있다.
확산된 시퀀스들 {s(0), s(1),..., s(9)}는 대응하는 자원블록을 통해 IFFT가 수행된 후 전송된다. 이로써, CQI가 PUCCH 상으로 전송되는 것이다.
3GPP LTE의 PUCCH에서는 동일한 혹은 서로 다른 자원블록에서 서로 다른 순환 쉬프트 및/또는 직교 시퀀스를 통해 기지국이 각 단말로부터 수신되는 PUCCH를 구분한다. 예를 들어, 제1 단말은 제1 순환 쉬프트된 시퀀스를 기반으로 CQI를 전송하고, 제2 단말은 제2 순환 쉬프트된 시퀀스를 기반으로 CQI를 전송함으로써, 동일한 자원블록 내에서 복수의 단말의 PUCCH가 다중화된다. 가용 순환 쉬프트의 개수가 12라면, 총 12개의 단말이 하나의 자원블록에 다중화될 수 있다.
단말이 PUCCH 포맷 2를 구성하기 위해서는 순환 쉬프트 인덱스 Ics와 자원블록 인덱스 m을 알아야 한다. 3GPP LTE에서는, 하나의 자원 인덱스 nPUCCH (2)를 기지국이 단말에게 알려주고, 자원 인덱스 nPUCCH (2)을 기반으로 단말이 순환 쉬프트 인덱스 Ics와 자원블록 인덱스 m을 획득하도록 한다.
한편, 3GPP LTE에서는 상향링크 전송에서 단일 안테나만을 지원한다. 하지만, 3GPP LTE의 진화인 3GPP LTE-A(advanced)에서는 다중 안테나와 다중 반송파를 이용하여 데이터 레이트를 높이기 위한 연구가 진행되고 있다.
상향링크 다중 안테나 전송을 위한 기법 중 하나로 OSRSM(Orthogonal Space Resource Spatial Multiplexing)이 있다.
도 8은 OSRSM의 일 예를 나타낸다.
PUCCH 전송에 사용되는 시간 자원, 주파수 자원 및/또는 코드 자원을 PUCCH 자원이라 한다. 전술한 바와 같이, ACK/NACK 신호를 PUCCH 상으로 전송하기 위해 필요한 PUCCH 자원의 인덱스(이를 ACK/NACK 자원 인덱스 또는 PUCCH 인덱스라 함)는 직교 시퀀스 인덱스 i, 순환 쉬프트 인덱스 Ics, 자원 블록 인덱스 m 및 상기 3개의 인덱스를 구하기 위한 인덱스 중 적어도 어느 하나로 표현될 수 있다. PUCCH 자원은 직교 시퀀스, 순환 쉬프트, 자원 블록 및 이들의 조합 중 적어도 어느 하나를 포함할 수 있다.
제1 변조 심벌 d(0)는 제1 PUCCH 자원을 이용하여 제1 안테나(601)를 통해 전송되고, 제2 변조 심벌 d(1)는 제2 PUCCH 자원을 이용하여 제2 안테나(602)를 통해 전송된다.
보다 구체적으로, 변조 심벌 d(0)와 d(0)가 2개의 ACK/NACK 신호를 나타낸다고 하자. 제1 PUCCH 자원 인덱스로부터 제1 직교 시퀀스 인덱스 i1, 제1 순환 쉬프트 인덱스 Ics1 및 제1 자원 블록 인덱스 m1를 구하여, 이를 통해 제1 PUCCH를 구성한다. 제2 PUCCH 자원 인덱스로부터 제2 직교 시퀀스 인덱스 i2, 제2 순환 쉬프트 인덱스 Ics2 및 제2 자원 블록 인덱스 m2를 구하여, 이를 통해 제2 PUCCH를 구성한다. 변조 심벌 d(0)는 제1 PUCCH 상으로 제1 안테나(601)를 통해 전송되고, 변조 심벌 d(1)는 제2 PUCCH 상으로 제2 안테나(602)를 통해 전송된다.
2개의 PUCCH 자원과 2개의 안테나만을 예시적으로 기술하나, 적용되는 안테나의 수에 제한이 있는 것은 아니다.
이하에서 안테나는 물리적 안테나, 논리적 안테나 및/또는 계층(layer)을 나타낼 수 있으며, 안테나 포트라고도 할 수 있다.
비트 단위로 서로 다른 제어신호의 정보 비트들이 교환되는 비트-레벨 퍼뮤테이션(bit-level permutation)이 수행될 수 있다. QPSK 변조를 사용하고, 제1 ACK/NACK 신호는 2비트 {a0 a1}를 갖고, 제2 ACK/NACK 신호는 2비트 {b0 b1}를 갖는다고 하자. 변조 전에 비트-레벨 퍼뮤테이션이 수행되어, d(0)는 {b0 a1}을 나타내고, d(1)는 {a0 b1}을 나타낼 수 있는 것이다.
심벌-레벨 퍼뮤테이션(symbol-level permutation)이 수행될 수 있다. 예를 들어, d(0)+d(1)는 제1 PUCCH 자원을 이용하여 제1 안테나(601)를 통해 전송되고, d(0)-d(1)는 제2 PUCCH 자원을 이용하여 제2 안테나(602)를 통해 전송될 수 있다. 또는, d(0)-d(1)*는 제1 PUCCH 자원을 이용하여 제1 안테나(601)를 통해 전송되고, d(0)*+d(1)는 제2 PUCCH 자원을 이용하여 제2 안테나(602)를 통해 전송될 수 있다.
d(0)*과 d(1)*은 각각 d(0), d(1)의 복소 켤레(complex conjugate)를 의미한다.
추가적으로, 위상 회전이 적용될 수 있다. 예를 들어, d(0)+d(1)exp(j*α)는 제1 PUCCH 자원을 이용하여 제1 안테나(601)를 통해 전송되고, d(0)-d(1)exp(j*β)는 제2 PUCCH 자원을 이용하여 제2 안테나(602)를 통해 전송될 수 있다. α, β는 위상 회전 양이다. α=β일 수도 있고, α≠β일 수 있다. 또는, d(0)-d(1)*exp(j*α)는 제1 PUCCH 자원을 이용하여 제1 안테나(601)를 통해 전송되고, d(0)*exp(j*β)+d(1)는 제2 PUCCH 자원을 이용하여 제2 안테나(602)를 통해 전송될 수 있다.
제어신호(ACK/NAK 신호 또는 CQI)에 할당되는 자원의 개수는 기준신호에 사용되는 자원의 개수와 같을 수 있다. 예를 들어, n개의 제어신호의 전송을 위해 할당된 n개의 자원을 할당받았다면, 기준신호를 위해 n개의 자원를 할당받을 수 있다. 할당받은 n개의 자원을 이용하여 전송되는 기준신호 시퀀스들은 안테나별 채널 추정을 위해 각각의 안테나 별로 전송될 수 있다.
이제 MSM(Multi-Sequence Modulation)과 자원 선택(resource selection)을 이용한 PUCCH 전송에 대해 기술한다.
이하에서, 최대 페이로드가 13비트인 노멀 CP의 PUCCH 포맷 2에서 자원 선택을 예시적으로 기술하나, 제어신호의 종류나 PUCCH 포맷에 본 발명의 기술적 사상이 제한되는 것은 아니다.
설명을 명확히 하기 위해, 자원은 순환 쉬프트로 하고, 자원 인덱스는 순환 쉬프트 인덱스로 한다. 그러나, 당업자라면 직교 시퀀스, 자원 블록, 주파수 영역 자원, 시간 영역 자원, 코드 영역 자원, 이들의 조합 등 제어채널을 구성하기 위해 사용되는 어떠한 자원에도 본 발명의 기술적 사상을 적용할 수 있을 것이다.
전술한 바와 같이, PUCCH 포맷 2를 구성하기 위해서는 하나의 순환 쉬프트 인덱스 Ics과 자원 블록 인덱스 m이 필요하다. 이하에서는, PUCCH 자원으로 2개의 순환 쉬프트 인덱스들 Ics1과 Ics2를 고려한다.
도 9는 단일 안테나에서 MSM의 일 예를 나타낸다.
MSM은 복수의 자원을 이용하여 제어채널의 페이로드의 크기를 늘리는 것이다. 기존 PUCCH 포맷 2의 페이로드의 크기가 20비트이므로, 2개의 자원(즉, Ics1과 Ics2)을 이용하면 페이로드의 크기를 40비트로 증가시킬 수 있다.
40비트의 부호화된 비트를 QPSK 변조하면, 20 변조 심벌 d(0), d(1),...d(19)이 생성된다.
각 OFDM 심벌에서의 순환 쉬프트된 시퀀스 r(n,Ics)도 20개 필요하다. 이중 10개의 제1 PUCCH 자원 Ics1을 이용하여 획득하고, 나머지 10개는 제2 PUCCH 자원 Ics2을 이용하여 획득할 수 있다.
편의상 r(0), r(1), ..., r(9)를 각각 첫번째 OFDM 심벌에서 10번째 OFDM 심벌(서브프레임에서 기준신호가 맵핑되는 OFDM 심벌은 제외된 것임)에 대응하고 제1 PUCCH 자원 Ics1을 이용하여 획득된 순환 쉬프트된 시퀀스라 한다. r(10), r(11), ..., r(19)를 각각 첫번째 OFDM 심벌에서 10번째 OFDM 심벌에 대응하고 제2 PUCCH 자원 Ics1을 이용하여 획득된 순환 쉬프트된 시퀀스라 하자.
첫번째 OFDM 심벌에서는 d(0)r(0)+d(10)r(10)이 안테나를 통해 전송되고, 두번째 OFDM 심벌에서는 d(1)r(1)+d(11)r(11)이 안테나를 통해 전송된다. 나머지 OFDM 심벌에 대해서는 도 9에 나타난 바와 같다.
상기 d(0), d(1), ..., d(19)는 다음 표 4와 같은 맵핑 테이블을 이용한 맵핑 룰로 표현될 수 있다.
표 4
Figure PCTKR2010006846-appb-T000001
MSM에 의하면, 복수의 PUCCH 자원을 이용하여 PUCCH의 페이로드를 증가시킬 수 있다.
MSM과 OSRSM은 조합될 수 있다. Ics1은 제1 안테나에서 전송하고, Ics2는 제2 안테나에서 전송되는 것이다.
도 10은 자원 선택을 이용한 PUCCH 전송을 나타낸 블록도이다. MSM과 비교하여, 자원 선택은 할당된 자원들 중 일부만 PUCCH 전송에 사용한다. 2개의 자원들(Ics1과 Ics2)이 할당된다면, Ics1과 Ics2 중 하나만 PUCCH 전송에 사용되는 것이다.
페이로드는 인코더(810)에 의해 인코딩되어 인코딩된 비트가 된다. 인코딩 방식에는 제한이 없으며, 블록 코딩, 컨벌류션 코딩(convolutional coding), TBCC(tail-biting convolutional coding), 터보 코드 등 잘 알려진 방식을 사용할 수 있다.
인코딩된 비트는 맵퍼(820)에 의해 할당된 복수의 자원을 이용한 자원 선택 및 변조 방식이 결합된 맵핑 룰이 적용되어 변조 심벌로 변환된다. 인코딩된 비트가 m개의 비트라면, m개의 비트 중 n개(n≥1)의 비트에 대응하는 복수의 순환 쉬프트 인덱스 및 (m-n)개의 비트에 대응하는 2(m-n) 차수의 PSK(Phase Shift Keying)(또는 QAM(Quadrature Amplitude Modulation))을 적용할 수 있다.
2개의 순환 쉬프트 인덱스(Ics1, Ics2)가 할당되면, 변조 심벌은 제1 순환 쉬프트 인덱스(Ics1) 또는 제2 순환 쉬프트 인덱스(Ics2)에 대응될 수 있다. 즉, 변조 심벌로 변환됨에 따라 사용되는 자원이 선택되는 것이다.
변조 심벌은 해당되는 순환 쉬프트 인덱스에 대응하는 시퀀스로 확산되어 확산된 시퀀스를 생성한다. 확산된 시퀀스는 변조 심벌에 순환 쉬프트된 시퀀스가 곱해져 복소 값 심벌들을 요소로 갖는 시퀀스이다. 확산된 시퀀스는 자원 맵퍼(850)에 의해 물리적 자원에 맵핑되어 전송된다. 예를 들어, 0≤n≤11일 때, 확산된 시퀀스 s(i)=d(i)r(n, Ics)={d(i)r(0, Ics), d(i)r(1, Ics), ...., d(i)r(11, Ics)}가 되고, 확산된 시퀀스의 각 요소 d(i)r(n, Ics)는 대응하는 자원블록의 부반송파 각각에 맵핑되어 전송된다.
자원 선택은 자원 사용 여부에 따라 비트를 표현하는 것이다. 도 11은 2개의 자원이 할당된 경우 비트의 표현을 나타낸다. Ics1과 Ics2이 할당되었을 때, Ics1 또는 Ics2의 ON/OFF 여부에 따라 '0' 또는 '1'의 정보 비트를 나타낼 수 있다. 여기서는 비트 '0'은 Ics1의 ON, Ics2의 OFF로 나타내고, 비트 '1'은 Ics1의 OFF, Ics2의 ON으로 나타내고 있으나, 비트 값이나 자원의 순서는 예시에 불과하다.
다음 표는 2개의 순환 쉬프트 인덱스 (Ics1, Ics2)가 할당되고, QPSK 맵핑을 사용할 때, 자원 선택을 이용한 인코딩된 비트와 변조 심벌간의 맵핑의 일 예를 나타낸다.
표 5
Figure PCTKR2010006846-appb-T000002
도 12는 표 5의 맵핑 방식에 따른 성상을 나타낸다.
맵핑 방식은 유클리디안 거리(eucledian distance)를 서로 고려하여 설계되었다. 유클리디안 거리는 성상의 대각선의 위치가 가장 크다. 예를 들어, (1/sqrt(2),1/sqrt(2))와 (-1/sqrt(2),-1/sqrt(2))의 유클리디안 거리가 가장 크다. 유클리디안 거리가 클수록 상호간으로 오류가 발생할 확률이 적다. 따라서, 유클리디안 거리가 가장 큰 곳에 해밍 거리(Hamming distance)가 가장 큰 비트가 배치된다.
순환 쉬프트 인덱스 Ics1, Ics2는 심벌 레벨 호핑(hopping) 및/또는 슬롯 레벨 호핑을 사용할 수 있다. 이는 할당된 순환 쉬프트 인덱스를 기반으로 심벌 단위 및/또는 슬롯 단위로 바꾸어가며 순환 쉬프트 인덱스를 사용할 수 있다는 것이다. 예를 들어, 전술한 예의 선택된 <Ics2, Ics2, Ics2, Ics2, Ics1>는 심벌 레벨 호핑을 수행하여 <Ics2(0), Ics2(1), Ics2(2), Ics2(3), Ics1(4)>와 같이 사용할 수 있다. Ics2(m)는 Ics2를 기반으로 m번째의 OFDM 심볼에 대해 얻어진 순환 쉬프트 인덱스를 의미한다.
이하에서는 설명을 명확히 하기 위해 순환 쉬프트 인덱스의 심벌/슬롯 레벨 호핑은 생략한다. 따라서, Ics2(m)는 Ics2과 같이 간략히 하여 표현될 수 있다.
이제 보다 구체적으로 자원 선택을 적용하는 예를 기술한다.
다음 14비트의 정보 비트를 고려한다.
<1,1,0,0,0,0,0,0,0,1,0,0,0,0>
14비트의 정보 비트에 3GPP LTE에 정의되어 있는 TBCC(tail-biting convolutional codding)를 적용하여 다음 42비트의 부호화된 비트가 생성될 수 있다.
<0,1,1,0,1,1,1,0,0,0,0,1,1,1,1,1,0,1,0,1,1,1,1,1,0,0,0,1,1,1,0,1,1,1,1,1,1,1,0,0,0,1>
42비트의 부호화된 비트에 순환 버퍼 레이트 매칭(circular buffer rate matching)을 수행하여 다음 30비트의 레이트 매칭된 비트가 생성될 수 있다.
<1,0,1,0,1,1,0,0,1,0,0,0,1,1,1,0,1,1,1,0,0,1,0,1,1,0,1,,1,1,1>
이 30비트의 레이트 매칭된 비트를 상기 표 5에 따른 맵핑 룰을 수행하면 다음 표와 같이 10 변조 심벌 d(0),...,d(9)가 생성된다.
표 6
Figure PCTKR2010006846-appb-T000003
상기 변조 심벌들을 이용하여, PUCCH 포맷 2를 위한 확산된 시퀀스 s(0), ..., s(9)로 나타내면 다음과 같다.
{s(0), s(1), ..., s(9)} = {d(0)r(n,Ics1), d(1)r(n,Ics2), d(2)r(n,Ics2), d(3)r(n,Ics1), d(4)r(n,Ics1), d(5)r(n,Ics2), d(6)r(n,Ics2), d(7)r(n,Ics1), d(8)r(n,Ics1), d(9)r(n,Ics1)}
다음 표는 2개의 순환 쉬프트 인덱스 (Ics1, Ics2)가 할당되고, 8PSK 맵핑을 사용할 때, 자원 선택을 이용한 인코딩된 비트와 변조 심벌간의 맵핑의 일 예를 나타낸다.
표 7
Figure PCTKR2010006846-appb-T000004
도 13은 표 7의 맵핑 방식에 따른 성상을 나타낸다.
다음 14비트의 정보 비트를 고려한다.
<1,0,1,1,1,0,0,1,0,1,1,1,1,1>
14 비트의 정보 비트에 TBCC를 적용하여 다음 42비트의 부호화된 비트가 생성될 수 있다.
<0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,1,1,1,1,0,0,0,0,1,0,1,1,1,0,1,0,1,0,0,0,1,0,1,1>
42비트의 부호화된 비트에 순환 버퍼 레이트 매칭을 수행하여 다음 40비트의 레이트 매칭된 비트가 생성될 수 있다.
<1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,1,0,1>
상기 40비트의 레이트 매칭된 비트를 상기 표 7에 따른 맵핑 룰을 수행하면 다음 표와 같이 10 변조 심벌 d(0),...,d(9)가 생성된다.
표 8
Figure PCTKR2010006846-appb-T000005
상기 변조 심벌들을 이용하여, PUCCH 포맷 2를 위한 확산된 시퀀스 s(0), ..., s(9)로 나타내면 다음과 같다.
{s(0), s(1), ..., s(9)} = {d(0)r(n,Ics1), d(1)r(n,Ics1), d(2)r(n,Ics2), d(3)r(n,Ics1), d(4)r(n,Ics1), d(5)r(n,Ics2), d(6)r(n,Ics1), d(7)r(n,Ics1), d(8)r(n,Ics1), d(9)r(n,Ics1)}
상기 MSM과 자원 선택은 프리코딩과 함께 다중 안테나에 적용될 수 있으며, 이를 SCBC(Space-Code Block Code)라 한다.
도 14는 SCBC(Space-Code Block Code)를 구현하는 전송기의 블록도이다.
전송기(900)는 인코더(910), 맵퍼(920), 공간 처리부(Spatial Processor, 930), 제1 확산부(940), 제2 확산부(950) 및 2개의 안테나(992, 994)를 포함한다. 전송기(900)는 단말의 일부일 수 있으며, 안테나(992, 994)를 제외한 파트들은 프로세서에 의해 구현될 수 있다.
인코더(910)는 정보 비트를 입력받아 인코딩된 비트(encoded bits)를 생성한다. 맵퍼(920)는 인코딩된 비트를 성상 상으로 맵핑하여 변조 심벌을 생성한다. 맵퍼(920)는 통상적인 QPSK 또는 8PSK (또는 그 이상의 차수) 상의 맵핑을 수행할 수 있고, 또는 전술한 MSM 및/또는 자원 선택에 의한 맵핑 룰에 의해 성상 상에서 변조 심벌을 생성할 수 있다.
공간 처리부(940)는 변조 심벌에 SCBC를 처리하고, 처리된 심벌들을 제1 확산부(940)와 제2 확산부(950)로 보낸다. 제1 확산부(940)와 제2 확산부(950)는 순환 쉬프트 인덱스에 의한 순환 쉬프트된 인덱스로 상기 처리된 심벌들을 확산시킨다. 제1 확산부(940)에 의해 생성된 확산된 시퀀스는 제1 전송 안테나(992)를 통해 전송되고, 제2 확산부(950)에 의해 생성된 확산된 시퀀스는 제2 전송 안테나(994)를 통해 전송된다.
다음 식은 SCBC의 일 예를 나타낸다.
수학식 3
Figure PCTKR2010006846-appb-M000003
SCBC 행렬의 각 행(row)은 자원(예, 순환 쉬프트 인덱스)를 가리키고, 각 열(column)은 안테나를 가리킨다. s1과 s2는 이하에서 변조 심벌을 의미하지만, 확산된 시퀀스를 의미할 수도 있다.
상기 SCBC 행렬에서, 첫번째 열은 제1 안테나, 두번째 열은 제2 안테나를 가린다. 첫번째 열의 s1은 제1 안테나에서 제1 순환 쉬프트 인덱스에 대응하는 변조 심벌을 가리키고, 첫번째 열의 -s2 *는 제1 안테나에서 제2 순환 쉬프트 인덱스에 대응하는 음의 복소 켤레 변조 심벌을 가리킨다. 두번째 열에서 s1과 s2는 순서가 바뀌는 데, 이는 제1 안테나에서의 순환 쉬프트 인덱스와 제2 안테나에서의 순환 쉬프트 인덱스가 서로 바뀌는 것을 의미한다.
SCBC는 제1 안테나의 전송 심벌에 대응하는 자원과 제2 안테나의 변조 심벌에 대응하는 자원이 서로 바뀌고, 또한, 제1 안테나와 제2 안테나 사이에서 변조 심벌은 복소 켤레 또는 음의 복소 켤레의 관계가 되도록 처리하는 것이다.
도 14의 하단에 나타난 바와 같이, 맵퍼(920)에 의해 제2 순환 쉬프트 인덱스 Ics2에 대응하는 d(0)가 출력된다고 하자. 식 3의 SCBC를 적용할 때, 제1 안테나를 통해서는 -d(0)*r(n, Ics2)의 확산된 시퀀스가 전송되고, 제2 안테나를 통해서는 d(0)r(n, Ics1)의 확산된 시퀀스가 전송된다.
식 3의 SCBC를 적용할 때, 상기 표 8의 의한 변조 심벌들은 안테나 별로 다음과 같은 확산된 시퀀스로 나타낼 수 있다.
제1 안테나: {s1(0), s1(1), ..., s1(9)} = {d(0)r(n,Ics1), d(1)r(n,Ics1), -d(2)*r(n,Ics2), d(3)r(n,Ics1), d(4)r(n,Ics1), -d(5)*r(n,Ics2), d(6)r(n,Ics1), d(7)r(n,Ics1), d(8)r(n,Ics1), d(9)r(n,Ics1)}
제2 안테나: {s2(0), s2(1), ..., s2(9)} = {d(0)*r(n,Ics2), d(1)*r(n,Ics2), d(2)r(n,Ics1), d(3)*r(n,Ics2), d(4)*r(n,Ics2), d(5)r(n,Ics1), d(6)*r(n,Ics2), d(7)*r(n,Ics2), d(8)*r(n,Ics2), d(9)*r(n,Ics2)}
다음 표는 다양한 SCBC 행렬의 예들을 나타낸다.
표 9
Figure PCTKR2010006846-appb-T000006
도 15는 SCBC 적용의 일 예를 나타낸다. 도 9의 MSM에 표 9의 SCBC (6)을 적용한 것이다.
다음 표는 사용가능한 SCBC의 다른 예를 보여준다. 이는 SCBC 행렬의 일부 요소를 0으로 둔 것이다. 즉, 할당된 2개의 자원 중 해당되는 자원별로 SCBC를 처리하는 것이다.
표 10
Figure PCTKR2010006846-appb-T000007
SCBC는 최적의 전송 방법(optimal transmit method)으로서 전체 공간 다이버시티 이득(full spatial diversity gain)을 얻을 수 있다. 그러나, 2개의 안테나를 위해 2개의 자원이 서로 페어링(pairing)되는 것이 필요하므로, SCBC가 홀수 개의 자원에 대해 적용되기는 힘들다.
도 16은 비대칭 다중 반송파의 예를 나타낸다. 다중 반송파 시스템은 3개의 하향링크 요소 반송파(downlink component carrier)(DL CC #1, DL CC #2, DL CC #3)와 1개의 상향링크 반송파(UL CC #1)로 구성되는 것을 예시하고 있으나, DL CC나 UL CC의 개수에 제한이 있는 것은 아니다..
각 DL CC 별로 CQI를 전송한다고 하자. DL CC 각각에 대응하는 3개의 PUCCH 자원을 할당하고, 3개의 자원을 이용하여 MSM과 같이 다중 시퀀스(multi-sequence) 전송을 통해 CQI를 피드백할 수 있다.
도 17은 MSM에서 3개의 자원을 이용한 PUCCH 포맷 2의 전송을 나타낸다. 3개의 DL CC를 위한 CQI의 인코딩된 비트 수를 60비트라 하자. QPSK 변조를 사용하면, d(0)~d(29) 30개의 변조 심벌을 생성할 수 있다.
할당된 3개의 자원을 3개의 순환 쉬프트 인덱스 Ics1, Ics2, Ics3 이라 할 때, 편의상 r(0), r(1), ..., r(9)를 각각 첫번째 OFDM 심벌에서 10번째 OFDM 심벌(서브프레임에서 기준신호가 맵핑되는 OFDM 심벌은 제외된 것임)에 대응하고 제1 PUCCH 자원 Ics2을 이용하여 획득된 순환 쉬프트된 시퀀스들이라 한다. r(10), r(11), ..., r(19)를 제2 PUCCH 자원 Ics2을 이용하여 획득된 순환 쉬프트된 시퀀스들이라 한다. r(20), r(21), ..., r(29)를 제3 PUCCH 자원 Ics3을 이용하여 획득된 순환 쉬프트된 시퀀스들이라 한다. ㄹ
첫번째 OFDM 심벌에서는 d(0)r(0)+d(10)r(10)+d(20)r(20)이 안테나를 통해 전송되고, 두번째 OFDM 심벌에서는 d(1)r(1)+d(11)r(11)+d(21)r(10)이 안테나를 통해 전송된다. 나머지 OFDM 심벌에 대해서는 도 9에 나타나 있다.
복수의 자원 각각은 서로 다른 변조 방식을 사용할 수 있다. 2개의 자원은 8PSK 변조를 사용하고, 나머지는 QPSK 변조를 사용할 수 있다.
도 18은 SCBC에서 3개의 자원을 이용한 PUCCH 포맷 2의 전송의 일 예를 나타낸다.
Ics1와 Ics2에 대해서는, 다음 식과 같은 표 9의 SCBC (6)을 적용한다.
수학식 4
Figure PCTKR2010006846-appb-M000004
Ics3에 대해서는, 상기 식 4와 동일한 형태의 STBC(Space-Time Block Code)를 적용한다. STBC 행렬의 각 행(row)은 OFDM 심벌을 가리키고, 각 열(column)은 안테나를 가리킨다.
기준신호는 안테나별 채널 추정을 위해 OSRT 형태로 전송될 수 있다. 안테나가 2개인 경우, 3개의 자원들 중 2개만 이용하여 기준신호를 구성하는 것이다.
k+1 (k는 짝수) 개의 자원이 할당될 때, k개의 자원에 대해서는 SCBC를 적용하고, 나머지 자원에 대해서는 상기의 STBC 외에 CDD(cyclic delay diversity), PVS(precoding vector switching) 및/또는 단순 반복(simple repetition)과 같은 다른 전송 다이버시티 기법이 적용될 수 있다. 심벌 단위 또는 서브프레임 단위의 CCD 지연값 또는 PVS의 프리코딩 벡터 값은 미리 정의되거나, 기지국이 단말에게 알려줄 수 있다.
도 19는 SCBC에서 3개의 자원을 이용한 PUCCH 포맷 2의 전송의 다른 예를 나타낸다. 도 18의 실시예와 비교하여, Ics3에 대해서는 단순 반복을 적용한다. 즉, Ics3에 대해 제1 안테나 및 제2 안테나를 통해 동일한 확산 시퀀스가 전송된다.
도 20은 SCBC에서 3개의 자원을 이용한 PUCCH 포맷 2의 전송의 또 다른 예를 나타낸다. 도 18의 실시예와 비교하여, Ics3에 대해서는 PVS를 적용한다. 프리코딩 벡터로 p(0)=[1 1]T, p(1)=[1 -1]T가 사용된다. 제1 안테나에 대해서는 p(0)가 사용되고, 제2 안테나에 대해서는 p(1)이 사용된다.
프리코딩 벡터들은 예시에 불과하고, 다른 프리코딩 벡터가 사용될 수도 있다.
이제 기존 PUCCH와 PUSCH에서 SFBC(Space-Frequency Block Code)의 적용에 대해 기술한다.
도 21은 길이 12인 1-DFT 확산을 나타낸다.
12개의 변조 심벌들 d(0), d(1), ..., d(11)은 DFT 확산되어 전송 심벌들 S0, S1, ..., S11이 생성된다. 그리고, 12개의 변조 심벌들 d(12), d(13), ..., d(23)은 DFT 확산되어 전송 심벌들 S12, S13, ..., S23이 생성된다.
도 22는 PUCCH에 SFBC가 적용된 예를 나타낸다.
다음 식과 같은 SFBC 행렬을 이용한다.
수학식 5
Figure PCTKR2010006846-appb-M000005
SFBC 행렬의 각 행(row)은 주파수(예, 부반송파)를 가리키고, 각 열(column)은 안테나를 가리킨다.
Si는 이하에서 DFT 확산된 심벌을 의미하지만, DFT 확산되기 전의 변조 심벌일 수도 있고, 확산된 시퀀스를 의미할 수도 있다.
QPSK 변조를 사용할 때, 제1 안테나(901)의 CM 값은 약 1.22dB이고, 제2 안테나(902)의 CM 값은 약 1.90dB이다. 제2 안테나(902)의 CM 값이 더 크므로, 단말의 커버리지는 제2 안테나(902)의 CM 값에 의해 제한된다. 또한, 단말의 핸드 그립(hand grip)으로 인한 안테나 파워 불균형(imbalance)를 고려할 때, 커버리지는 더 줄어들 수 있다.
따라서, SFBC를 적용할 때 안테나 간의 파워 불균형을 해소할 방법이 필요하다.
이제 공간 처리의 스위칭에 대해 기술한다. 안테나 간 파워 불균형을 해소하기 위해, 심벌/슬롯/서브프레임 단위의 공간 처리의 스위칭을 제안한다.
도 23은 제안된 스위칭된(switched) SFBC의 일 예를 나타낸다. 스위칭된 SFBC는 심벌 단위로 SFBC를 스위칭하는 것이다.
도 23의 예에서, 첫번째 OFDM 심벌에서 전송 심벌들을 상기 식 5의 SFBC 행렬을 사용하여 SFBC를 수행한 후 복수의 안테나를 통해 전송한다. 두번째 OFDM 심벌에서는 전송 심벌들을 식 5의 SFBC 행렬에서 적어도 하나의 열(column) 또는 적어도 하나의 행을 스위칭한 SFBC 행렬을 사용하여 SFBC를 수행한 후 복수의 안테나를 통해 전송한다.
예를 들어, 식 5의 SFBC 행렬에서 제1열과 제2열을 스위칭한 다음 식과 같은 SFBC 행렬을 사용하여 SFBC를 수행할 수 있다.
수학식 6
Figure PCTKR2010006846-appb-M000006
세번째 OFDM 심벌에서는 다시 상기 식 5의 SFBC 행렬을 사용하여 SFBC를 수행한다. 따라서, 심벌 단위로 서로 다른 SFBC가 수행된다.
OFDM 심벌과 후속하는 OFDM 심벌에서 서로 다른 공간 처리 행렬(예, SFBC)를 이용하여 공간 처리를 수행한다. 따라서, 안테나들의 전송 파워가 평균화될 수 있다. 상기 도 23의 예에서 각 안테나의 CM 값은 약 1.5dB가 된다. 따라서, 불균형된 전송 파워가 평균화된다(average).
기준신호에 대해서는 각 안테나 별 채널 추정을 위해 스위칭된 공간 처리가 적용되지 않을 수 있다.
SFBC는 식 5의 SFBC 행렬 외에도 다음 표에 나타난 SFBC 행렬들 중 적어도 어느 하나가 사용될 수 있다.
표 11
Figure PCTKR2010006846-appb-T000008
도 23의 실시예는 PUCCH에서 SFBC의 스위칭을 보이고 있으나, 제안된 발명은 데이터 채널인 PUSCH에도 적용될 수 있다. PUSCH에서의 적용을 위해, 인코딩된 비트들을 변조하여 복수의 변조 심벌들을 생성하고, 상기 복수의 변조 심벌들을 DFT(Discrete Fourier transform) 확산시킨다. SFBC 스위칭은 DFT 전단 또는 DFT 후단에서 수행될 수 있다. 특별히 DFT 전단에서 수행하는 스위칭은 STBC 스위칭이라고 불리울 수 있다.
공간 처리의 스위칭은 심벌 단위 뿐만 아니라 슬롯 단위, 서브프레임 단위 및/또는 무선 프레임 단위로 이루어질 수 있다.
4개 이상의 안테나를 사용하는 경우에도 제안된 발명은 용이하게 확장될 수 있다. 예를 들어, 안테나들을 그룹으로 나누어 그룹 단위로 스위칭을 수행할 수 있다.
도 24는 도 9의 OSRSM에 제안된 공간 처리의 스위칭을 적용한 예이다. 도 9에서 d(0), d(1), ..., d(9)이 제1 안테나를 통해 전송되는 변조 심벌들이고, d(10), d(11), ..., d(19)이 제2 안테나를 통해 전송되는 변조 심벌들이다. OFDM 심벌 단위로 서로 제1 및 제2 안테나에 대응되는 변조 심벌들을 서로 교환한다.
스위칭되는 변조 심벌들을 위한 순환 쉬프트된 시퀀스들도 함께 교환되는 것을 보이고 있으나, 변조 심벌들만 스위칭될 수 있다.
또는, 변조 심벌들은 스위칭되지 않고, 순환 쉬프트된 시퀀스들만을 스위칭할 수 있다.
도 25는 도 15의 SCBC에 제안된 스위칭을 적용한 예이다. 심벌 단위로 SCBC를 스위칭하는 것이다.
첫번째 OFDM 심벌에서 전송 심벌들을 표 9의 SCBC 행렬 (6)을 사용하여 SCBC를 수행한 후 복수의 안테나를 통해 전송한다.
두번째 OFDM 심벌에서는 변조 심벌들을 상기 SCBC 행렬에서 적어도 하나의 열(column)을 스위칭한 다음 식과 같은 SCBC 행렬을 사용하여 SCBC를 수행한 후 복수의 안테나를 통해 전송한다.
수학식 7
Figure PCTKR2010006846-appb-M000007
OFDM 심벌과 후속하는 OFDM 심벌에서 서로 다른 SCBC가 수행되어 안테나간의 파워 불균형을 평균화 시킬 수 있다.
SCBC 행렬은 예시에 불과하고, 표 9에 나타난 SCBC 행렬들 중 적어도 어느 하나가 사용될 수 있다.
도 26은 도 18의 실시예에 제안된 스위칭을 적용한 예이다. 전술한 바와 같이 도 19의 실시예는 3개의 자원이 할당되어, SCBC와 STBC가 혼용된 것이다. OFDM 심벌과 후속하는 OFDM 심벌에서 SCBC 행렬의 적어도 하나의 행(또는 열)을 스위칭한다.
STBC 스위칭이 수행되지 않고 있으나, SCBC 스위칭 뿐만 아니라 STBC 스위칭도 수행될 수 있다.
도 27과 28은 본 발명의 효과를 나타내는 그래프이다.
도 27은 기존 3GPP LTE의 PUSCH 구조, SFBC 및 제안된 발명('SwitchedSFBC'로 표시)의 CM 값을 나타낸다. 3GPP LTE의 PUSCH의 CM 값은 99.9%에서 약 1.57dB, SFBC의 CM 값은 약 2.23dB, 제안된 발명의 CM 값은 약 1.91dB를 나타낸다. 기존 SFBC에 비해 안테나 별 평균 CM이 개선되는 것을 보여준다.
도 28은 기존 3GPP LTE의 PUSCH 구조, STBC 및 제안된 발명('SwitchedSFBC'로 표시)의 CM 값을 나타낸다. 3개의 자원을 이용하여 제안된 발명은 도 25의 구조를 사용한다. 3GPP LTE의 PUSCH의 CM 값은 약 1.57dB, STBC의 CM 값은 약 1.78dB, 제안된 발명의 CM 값은 약 1.64dB를 나타낸다. 기존 STBC에 비해 CM이 개선되는 것을 보여준다.
도 29는 본 발명의 실시예가 구현되는 전송기를 나타낸 블록도이다. 상향링크에서 전송기는 단말의 일부일 수 있다. 하향링크에서 전송기는 기지국의 일부일 수 있다.
전송기(1100)는 인코더(1110), 맵퍼(1120) 및 신호처리기(1130)을 포함한다.
인코더(1110)는 정보비트를 인코딩하여 인코딩된 비트를 생성한다.
맵퍼(1120)는 제안된 자원 선택 기법을 기반으로 인코딩된 비트를 성상상으로 맵핑하여 변조 심벌을 생성한다. 맵퍼(1120)는 통상적인 성상 상의 변조를 수행할 수 있고, MSM 및/또는 자원 선택이 적용된 맵핑 룰을 이용한 변조를 수행할 수도 있다.
신호처리기(1130)는 변조심벌을 처리하여 무선 신호를 전송한다. 신호처리기(1130)는 전술한 STBC, SFBC, SCBC과 OSRSM을 구현할 수 있다. 신호처리기(1130)는 도 23 내지 26의 실시예에 나타난 바와 같이, STBC, SFBC, SCBC 및 OSRSM 중 적어도 어느 하나에 의한 공간 처리의 스위칭을 수행할 수 있다.
도 30은 본 발명의 실시예가 구현되는 단말을 나타낸 블록도이다.
단말(1200)는 프로세서(processor, 1210), 메모리(memory, 1220), 디스플레이부(display unit, 1230) 및 RF부(Radio Frequency unit, 1240)를 포함한다. RF부(1240)는 프로세서(1210)와 연결되어, 무선 신호(radio signal)를 전송 및/또는 수신한다. 메모리(1220)는 프로세서(1210)와 연결되어, 프로세서(1210)의 동작에 필요한 정보를 저장한다. 디스플레이부(1230)는 단말(1200)의 여러 정보를 디스플레이하며, LCD(Liquid Crystal Display), OLED(Organic Light Emitting Diodes) 등 잘 알려진 요소를 사용할 수 있다.
프로세서(1210)는 3GPP LTE/LTE-A 표준에 기반한 물리계층을 구현할 수 있으며, 제안된 방법을 구현한다. 프로세서(1210)는 인코더(1110), 맵퍼(1120) 및 신호처리기(1130)를 구현할 수 있다.
프로세서(1210)은 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리(1220)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(1240)은 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(1220)에 저장되고, 프로세서(1210)에 의해 실행될 수 있다. 메모리(1220)는 프로세서(1210) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1210)와 연결될 수 있다.
이제 본 발명의 실시예가 구현될 수 있는 전송 방식에 대해 기술한다.
서브블록(subblock)은 시간 영역 심벌들 및/또는 주파수 영역 심벌들을 무선자원들로 맵핑하기 위한 자원 단위로, 예를 들어 12개의 부반송파를 포함할 수 있다. 각 서브블록은 서로 인접할 수 있고 또는 인접하지 않을 수 있다. 각 서브블록에 포함되는 자원의 양(또는 크기)은 모두 동일할 수 있고, 또는 다를 수 있다. 예를 들어, 서브블록 #1은 12 부반송파를 포함하지만, 서브블록 #2는 24 부반송파를 포함할 수 있다. 서브블록은 클러스터(cluster), 자원블록(resource block), 서브채널(subchannel) 등 다른 이름으로 불릴 수도 있다. 또는 하나 또는 그 이상의 서브블록은 하나의 요소 반송파(component carrier)에 대응될 수 있다. 요소 반송파는 중심 주파수와 대역폭으로 정의된다.
도 31은 SC-FDMA를 수행하는 신호 처리 장치를 나타낸 블록도이다. DFT 확산(spreading) 후 IFFT가 수행되는 전송 방식을 SC-FDMA라 한다. SC-FDMA는 DFT-s(DFT-spread) OFDM이라고도 불리운다.
신호 처리 장치(2110)는 DFT(Discrete Fourier Transform)부(2111), 부반송파 맵퍼(2112), IFFT(Inverse Fast Fourier Transform)부(2113) 및 CP 삽입부(2114)를 포함한다. DFT부(2111)는 입력되는 복소 심벌들(complex-valued symbols)에 DFT를 수행하여 DFT 심벌들을 출력한다. 부반송파 맵퍼(2112)는 DFT 심벌들을 주파수 영역의 각 부반송파에 맵핑시킨다. IFFT부(2113)는 주파수 영역에서 맵핑된 심벌들에 대해 IFFT를 수행하여 시간 영역 신호를 출력한다. CP 삽입부(2114)는 시간 영역 신호에 CP를 삽입한다. CP가 삽입된 시간 영역 신호가 OFDM 심벌이 된다. 사용되는 시퀀스가 이미 DFT 확산된 주파수 영역 시퀀스라면 별도로 DFT를 수행하지 않고 바로 IFFT가 수행될 수도 있다.
도 32는 부반송파 맵핑의 일 예를 나타낸다. DFT 부로부터 출력된 DFT 심벌들이 주파수 영역에서 인접한(contiguous) 부반송파들에 맵핑된다. 국부적 맵핑(localized mapping)이라 한다.
도 33은 부반송파 맵핑의 다른 예를 나타낸다. DFT부로부터 출력된 DFT 심벌들은 인접하지 않는 부반송파에 맵핑된다. DFT 심벌들은 주파수 영역에서 등간격으로 분산된 부반송파들에 맵핑될 수 있다. 이를 분산된 맵핑(distributed mapping)이라 한다.
도 34는 클러스터된 SC-FDMA를 수행하는 신호 처리 장치를 나타낸 블록도이다. DFT된 심벌들이 서브블록 단위로 나누어 처리되는 방식을 클러스터된(clustered) SC-FDMA 또는 클러스터된 DFT-s OFDM이라고 한다.
신호 처리 장치(2210)는 DFT부(2211), 부반송파 맵퍼(2212), IFFT부(2213) 및 CP 삽입부(2214)를 포함한다.
DFT부(2211)로부터 출력되는 DFT 심벌들은 N개의 서브블록으로 나뉜다(N은 자연수). 여기서, N개의 서브블록은 서브블록#1, 서브블록#2, ..., 서브블록#N으로 나타낼 수 있다. 부반송파 맵퍼(2212)는 N개의 서브블록들을 서브블록 단위로 주파수 영역의 부반송파들로 맵핑한다. 부반송파 맵퍼(2212)는 서브블록 단위로 국부적 맵핑 또는 분산적 맵핑을 수행할 수 있다. IFFT부(2213)는 주파수 영역에서 맵핑된 서브블록들에 대해 IFFT를 수행하여 시간 영역 신호를 출력한다. CP 삽입부(2214)는 시간 영역 신호에 CP를 삽입한다.
신호 처리 장치(2210)는 단일 반송파(single carrier) 또는 다중 반송파(multi-carrier)를 지원할 수 있다. 단일 반송파만을 지원할 때, N개의 서브블록들이 모두 하나의 반송파에 대응된다. 다중 반송파를 지원할 때, N개의 서브블록들 중 적어도 하나의 서브블록이 각 반송파에 대응될 수 있다.
도 35는 신호 처리 장치의 다른 예를 나타낸 블록도이다.
신호 처리 장치(2310)는 DFT부(2311), 부반송파 맵퍼(2312), 복수의 IFFT부(2313-1, 2313-2, ..., 2313-N) 및 CP 삽입부(2214)를 포함한다(N은 자연수).
DFT부(2311)로부터 출력되는 DFT 심벌들은 N개의 서브블록으로 나뉜다. 부반송파 맵퍼(2312)는 N개의 서브블록들을 서브블록 단위로 주파수 영역의 부반송파들로 맵핑한다. 부반송파 맵퍼(2312)는 서브블록 단위로 국부적 맵핑 또는 분산적 맵핑을 수행할 수 있다. 주파수 영역에서 맵핑된 각 서브블록들에 대해 독립적으로 IFFT가 수행된다. CP 삽입부(2314)는 시간 영역 신호에 CP를 삽입한다. 제n IFFT부(2313-n)는 서브블록#n에 IFFT를 수행하여 제n 시간 영역 신호를 출력한다(n=1,2,..,N). 제n 시간 영역 신호에는 제n 반송파(fn) 신호가 곱해져 제n 무선 신호가 생성된다. N개의 서브블록들로부터 생성된 N개의 무선 신호들은 더해진 후, CP 삽입부(2314)에 의해 CP가 삽입된다.
각 서브블록은 각 요소 반송파에 대응할 수 있다. 각 서브블록은 서로 인접한 요소 반송파에 대응할 수 있고, 인접하지 않는 요소 반송파에 대응할 수도 있다.
도 36은 신호 처리 장치의 또 다른 예를 나타낸 블록도이다.
신호 처리 장치(2410)는 코드 블록 분할부(2411), 청크(chunk) 분할부(2412), 복수의 채널 코딩부(2413-1, ..., 2413-N), 복수의 변조기(2414-1,..., 2414-N), 복수의 DFT부(2415-1,...,2415-N), 복수의 부반송파 맵퍼(2416-1,...,2416-N), 복수의 IFFT부(2417-1,...,2417-N) 및 CP 삽입부(2418)를 포함한다(N은 자연수). 여기서, N은 다중 반송파 전송기가 사용하는 다중 반송파의 개수일 수 있다.
코드 블록 분할부(2411)는 전송 블록을 복수의 코드 블록으로 분할한다. 청크 분할부(2412)는 코드 블록을 복수의 청크로 분할한다. 여기서, 코드 블록은 다중 반송파 전송기로부터 전송되는 데이터라 할 수 있고, 청크는 다중 반송파 중 하나의 반송파를 통해 전송되는 데이터 조각(segment)이라 할 수 있다. 청크 단위로 DFT가 수행된다. 청크 단위로 DFT가 수행되는 전송 방식을 청크 특정(chunk specific) DFT-s OFDM 또는 Nx SC-FDMA라 한다. 이는 인접된 반송파 할당 또는 비인접된 반송파 할당에서 사용될 수 있다. 분할된 청크들은 복수의 채널 코딩부(2413-1,...,2413-N) 각각과 복수의 변조기(2414-1,...,2414-N) 각각을 순차적으로 거쳐 복소 심벌들이 된다. 복소 심벌들은 복수의 DFT부(2415-1,...,2415-N)는 각각, 복수의 부반송파 맵퍼(2416-1,...,2416-N) 각각 , 복수의 IFFT부(2417-1,...,2417-N) 각각을 거친 후 합해져, CP 삽입부(2418)에서 CP를 더한다.
OFDM 심벌은 OFDMA, SC-FDMA, DFT-s OFDM, 클러스터된 DFT-s OFDM 및/또는 청크 특정 DFT-s OFDM 등 어느 다중 접속 방식이나 적용된 시간 영역 심벌일 수 있으며, 반드시 특정 다중 접속 방식에 한정된 것을 의미하는 것은 아니다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (12)

  1. 다중 안테나 시스템에서 상향링크 전송 방법에 있어서,
    복수의 제1 전송 심벌들에 제1 공간 처리를 이용하여 복수의 안테나를 통해 전송하는 단계; 및
    복수의 제2 전송 심벌들에 제2 공간 처리를 이용하여 상기 복수의 안테나를 통해 전송하는 단계를 포함하되,
    상기 제2 공간 처리에 사용되는 공간 처리 행렬은 상기 제1 공간 처리에 사용되는 제1 공간 처리 행렬의 적어도 하나의 행 또는 적어도 하나의 열을 스위칭하여 구성되는 상향링크 전송 방법.
  2. 제 1 항에 있어서,
    상기 제1 및 제2 공간 처리는 SFBC(Space-Frequency Block Code)이고, 상기 제1 및 제2 공간 처리 행렬은 SFBC 행렬인 것을 특징으로 하는 상향링크 전송 방법.
  3. 제 1 항에 있어서,
    상기 제1 및 제2 공간 처리는 SCBC(Space-Code Block Code)이고, 상기 제1 및 제2 공간 처리 행렬은 SCBC 행렬인 것을 특징으로 하는 상향링크 전송 방법.
  4. 제 1 항에 있어서,
    인코딩된 비트들을 변조하여 복수의 변조 심벌들을 생성하는 단계를 더 포함하고,
    상기 복수의 제1 전송 심벌들 및 상기 복수의 제2 전송 심벌들은 상기 복수의 변조 심벌들인 것을 특징으로 하는 상향링크 전송 방법.
  5. 제 4 항에 있어서, 상기 복수의 제1 전송 심벌들 및 상기 복수의 제2 전송 심벌들은 PUCCH(Physical Uplink Control Channel) 상으로 전송되는 것을 특징으로 하는 상향링크 전송 방법.
  6. 제 1 항에 있어서,
    인코딩된 비트들을 변조하여 복수의 변조 심벌들을 생성하는 단계; 및
    상기 복수의 변조 심벌들을 DFT(Discrete Fourier transfomr) 확산하여 상기 복수의 제1 전송 심벌들 및 상기 복수의 제2 전송 심벌들을 생성하는 단계를 더 포함하는 것을 특징으로 하는 상향링크 전송 방법.
  7. 제 6 항에 있어서, 상기 복수의 제1 전송 심벌들과 상기 복수의 제2 전송 심벌들은 독립적으로 DFT가 수행되는 것을 특징으로 하는 상향링크 전송 방법.
  8. 제 6 항에 있어서, 상기 복수의 제1 전송 심벌들 및 상기 복수의 제2 전송 심벌들은 PUSCH(Physical Uplink Shared Channel) 상으로 전송되는 것을 특징으로 하는 상향링크 전송 방법.
  9. 제 1 항에 있어서, 상기 복수의 제1 전송 심벌들과 상기 복수의 제2 전송 심벌들은 서로 다른 OFDM(orthogonal frequency division multiplexing) 심벌에서 전송되는 것을 특징으로 하는 상향링크 전송 방법.
  10. 무선 신호를 송신 및 수신하는 RF부; 및
    상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는
    복수의 제1 전송 심벌들을 제1 공간 처리를 이용하여 처리하고; 및
    복수의 제2 전송 심벌들을 제2 공간 처리를 이용하여 처리하되,
    상기 제2 공간 처리에 사용되는 제2 공간 처리 행렬은 상기 제1 공간 처리에 사용되는 제1 공간 처리 행렬의 적어도 하나의 행 또는 적어도 하나의 열을 스위칭하여 구성되는 단말.
  11. 제 10 항에 있어서, 상기 복수의 제1 전송 심벌들 및 상기 복수의 제2 전송 심벌들은 PUCCH(Physical Uplink Control Channel) 상으로 전송되는 단말.
  12. 제 10 항에 있어서, 상기 복수의 제1 전송 심벌들 및 상기 복수의 제2 전송 심벌들은 PUSCH(Physical Uplink Shared Channel) 상으로 전송되는 단말.
PCT/KR2010/006846 2009-10-08 2010-10-07 다중 안테나 시스템에서 상향링크 전송 방법 및 장치 WO2011043598A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/380,498 US8761090B2 (en) 2009-10-08 2010-10-07 Method and apparatus for uplink transmission in multi-antenna system
KR1020117026349A KR101319726B1 (ko) 2009-10-08 2010-10-07 다중 안테나 시스템에서 상향링크 전송 방법 및 장치

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US24997709P 2009-10-08 2009-10-08
US61/249,977 2009-10-08
US25305809P 2009-10-19 2009-10-19
US61/253,058 2009-10-19
KR1020100096312A KR20110038585A (ko) 2009-10-08 2010-10-04 다중 안테나 시스템에서 상향링크 전송 방법 및 장치
KR10-2010-0096312 2010-10-04

Publications (2)

Publication Number Publication Date
WO2011043598A2 true WO2011043598A2 (ko) 2011-04-14
WO2011043598A3 WO2011043598A3 (ko) 2011-11-03

Family

ID=43857282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006846 WO2011043598A2 (ko) 2009-10-08 2010-10-07 다중 안테나 시스템에서 상향링크 전송 방법 및 장치

Country Status (3)

Country Link
US (1) US8761090B2 (ko)
KR (2) KR20110038585A (ko)
WO (1) WO2011043598A2 (ko)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923161B1 (ja) 2010-09-29 2012-04-25 シャープ株式会社 移動通信システム、移動局装置、基地局装置、通信方法および集積回路
US9515781B2 (en) * 2012-08-09 2016-12-06 Lg Electronics Inc. Method and apparatus for transmitting acknowledgement
US10439692B2 (en) 2013-06-05 2019-10-08 Lg Electronics Inc. Method and apparatus for transmitting channel state information in wireless communication system
EP3294025B1 (en) * 2015-06-04 2021-08-04 Huawei Technologies Co., Ltd. Method, device and system for information transmission
EP3353926A1 (en) 2015-09-24 2018-08-01 IDAC Holdings, Inc. Methods for enhanced multiplexing in wireless systems
KR101987207B1 (ko) * 2015-12-10 2019-06-10 엘지전자 주식회사 짧은 전송 시간 간격을 지원하는 무선 통신 시스템에서 상향링크 신호를 전송하기 위한 방법 및 이를 지원하는 장치
WO2017156734A1 (en) * 2016-03-16 2017-09-21 Lenovo Innovations Limited (Hong Kong) Reference signal sequence determination in a wireless communication system
CN110036589B (zh) * 2016-09-30 2022-11-15 瑞典爱立信有限公司 使用处于预定功率级的参考信号序列的方法、无线装置和网络节点
US10020839B2 (en) 2016-11-14 2018-07-10 Rampart Communications, LLC Reliable orthogonal spreading codes in wireless communications
EP3605933B1 (en) * 2017-05-03 2022-03-09 LG Electronics Inc. Method by which terminal and base station transmit/receive signal in wireless communication system, and device for supporting same
EP3618551B1 (en) * 2017-06-16 2021-04-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Channel transmission method and terminal device
US10873361B2 (en) * 2019-05-17 2020-12-22 Rampart Communications, Inc. Communication system and methods using multiple-in-multiple-out (MIMO) antennas within unitary braid divisional multiplexing (UBDM)
US11533214B2 (en) * 2019-06-14 2022-12-20 Qatar Foundation For Education, Science And Community Development Spectral efficient uplink multiple access techniques using index modulation
US10917148B2 (en) 2019-07-01 2021-02-09 Rampart Communications, Inc. Systems, methods and apparatus for secure and efficient wireless communication of signals using a generalized approach within unitary braid division multiplexing
US11050604B2 (en) 2019-07-01 2021-06-29 Rampart Communications, Inc. Systems, methods and apparatuses for modulation-agnostic unitary braid division multiplexing signal transformation
US11025470B2 (en) 2019-07-01 2021-06-01 Rampart Communications, Inc. Communication system and method using orthogonal frequency division multiplexing (OFDM) with non-linear transformation
US10833749B1 (en) 2019-07-01 2020-11-10 Rampart Communications, Inc. Communication system and method using layered construction of arbitrary unitary matrices
US11641269B2 (en) 2020-06-30 2023-05-02 Rampart Communications, Inc. Modulation-agnostic transformations using unitary braid divisional multiplexing (UBDM)
US10951442B2 (en) 2019-07-31 2021-03-16 Rampart Communications, Inc. Communication system and method using unitary braid divisional multiplexing (UBDM) with physical layer security
US10735062B1 (en) 2019-09-04 2020-08-04 Rampart Communications, Inc. Communication system and method for achieving high data rates using modified nearly-equiangular tight frame (NETF) matrices
US10965352B1 (en) 2019-09-24 2021-03-30 Rampart Communications, Inc. Communication system and methods using very large multiple-in multiple-out (MIMO) antenna systems with extremely large class of fast unitary transformations
US11159220B2 (en) 2020-02-11 2021-10-26 Rampart Communications, Inc. Single input single output (SISO) physical layer key exchange

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090059884A1 (en) * 2007-08-03 2009-03-05 Jianzhong Zhang Transmission methods for downlink ACK/NACK channels

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100781969B1 (ko) * 2001-03-26 2007-12-06 삼성전자주식회사 직교 주파수 분할 다중 접속에 기반한 데이타 통신 장치및 방법
US7542446B2 (en) 2002-07-31 2009-06-02 Mitsubishi Electric Research Laboratories, Inc. Space time transmit diversity with subgroup rate control and subgroup antenna selection in multi-input multi-output communications systems
US7477698B2 (en) 2004-08-16 2009-01-13 Beceem Communications Inc. Method and system for rate-2 transmission
US7586997B2 (en) 2004-08-16 2009-09-08 Beceem Communications Inc. Method and system for maximum transmit diversity
WO2006019253A1 (en) 2004-08-17 2006-02-23 Samsung Electronics Co., Ltd Apparatus and method for space-time-frequency block coding for increasing performance
KR20060035941A (ko) 2004-10-21 2006-04-27 삼성전자주식회사 개선된 파일럿 심볼 배치 장치 및 방법을 구현한 다중송신 다중 수신 통신 시스템
JP4884722B2 (ja) 2005-03-31 2012-02-29 株式会社エヌ・ティ・ティ・ドコモ 無線通信装置及び無線通信方法
US8706048B2 (en) 2006-07-14 2014-04-22 Broadcom Corporation Method and system for explicit feedback with sounding packet for wireless local area networks (WLAN)
KR100790359B1 (ko) * 2005-06-08 2008-01-02 한국전자통신연구원 공간/코드블록코딩 송신 다이버시티 장치 및 그 방법, 그를 이용한 cdma다이버시티 송신기와, 그에 따른 cdma이동국 수신기
US7839760B2 (en) * 2005-12-09 2010-11-23 Electronics And Telecommunications Research Institute Transmitting and receiving systems for increasing service coverage in orthogonal frequency division multiplexing wireless local area network, and method thereof
US7940640B2 (en) 2006-01-20 2011-05-10 Nortel Networks Limited Adaptive orthogonal scheduling for virtual MIMO system
US7849456B2 (en) * 2006-06-01 2010-12-07 International Business Machines Corporation Method, system and computer program product for synchronizing source code repositories
US8670777B2 (en) 2006-09-08 2014-03-11 Qualcomm Incorporated Method and apparatus for fast other sector interference (OSI) adjustment
US8571120B2 (en) 2006-09-22 2013-10-29 Texas Instruments Incorporated Transmission of acknowledge/not acknowledge (ACK/NACK) bits and their embedding in the reference signal
KR100910707B1 (ko) 2006-10-19 2009-08-04 엘지전자 주식회사 제어신호 전송 방법
US8457039B2 (en) 2006-10-24 2013-06-04 Texas Instruments Incorporated Random access channel design with hybrid CDM and FDM multiplexing of access
US9065714B2 (en) 2007-01-10 2015-06-23 Qualcomm Incorporated Transmission of information using cyclically shifted sequences
KR20080071065A (ko) 2007-01-29 2008-08-01 한국전자통신연구원 무선통신 시스템에서 순방향 링크 채널을 위한 송신다이버시티 방법 및 신호처리 방법
US20080233966A1 (en) 2007-03-22 2008-09-25 Comsys Communication & Signal Processing Ltd. Resource allocation apparatus and method in an orthogonal frequency division multiple access communication system
CN101682466A (zh) * 2007-05-16 2010-03-24 汤姆森特许公司 编码和解码信号的装置和方法
KR20090025129A (ko) 2007-09-05 2009-03-10 엘지전자 주식회사 다중 안테나 통신 시스템에서 다중 부호어를 송수신하는방법
CN101796749B (zh) * 2007-09-14 2014-05-14 Lg电子株式会社 在无线通信***中传送控制信息的方法
US8023524B2 (en) 2007-10-09 2011-09-20 Nokia Corporation Cooperative relay system enabling simultaneous broadcast-unicast operation with efficient automatic repeat request functionality
US9893859B2 (en) 2007-10-30 2018-02-13 Texas Instruments Incorporated Transmission of sounding reference signal and scheduling request in single carrier systems
US8059524B2 (en) 2008-01-04 2011-11-15 Texas Instruments Incorporated Allocation and logical to physical mapping of scheduling request indicator channel in wireless networks
US8248910B2 (en) * 2008-01-29 2012-08-21 Nokia Corporation Physical layer and data link layer signalling in digital video broadcast preamble symbols
KR101563000B1 (ko) * 2008-03-17 2015-10-26 엘지전자 주식회사 무선 통신 시스템에서 상향링크 데이터 전송 방법
US9008188B2 (en) * 2008-03-28 2015-04-14 Thomson Licensing, LLC Apparatus and method for decoding signals
WO2010056069A2 (ko) * 2008-11-14 2010-05-20 엘지전자주식회사 다중 안테나 시스템에서 복수의 자원을 이용한 데이터 전송 방법 및 장치
US7940740B2 (en) 2009-02-03 2011-05-10 Motorola Mobility, Inc. Apparatus and method for communicating and processing a positioning reference signal based on identifier associated with a base station
US20120093139A1 (en) * 2009-04-20 2012-04-19 Kari Juhani Hooli Methods, Apparatuses and Computer Program Products

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090059884A1 (en) * 2007-08-03 2009-03-05 Jianzhong Zhang Transmission methods for downlink ACK/NACK channels

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. GHOSH ET AL.: 'Multi-Antenna System Design for 3GPP LTE' IEEE INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS 2008 24 October 2008, pages 478 - 482 *
Y. MENG ET AL.: 'A Novel Space-Frequency Block Coding Scheme for SC-FDMA' 2009 IEEE 70TH VEHICULAR TECHNOLOGY CONFERENCE FALL 23 September 2009, pages 1 - 5 *

Also Published As

Publication number Publication date
KR20110038585A (ko) 2011-04-14
US8761090B2 (en) 2014-06-24
US20120093090A1 (en) 2012-04-19
KR20120022874A (ko) 2012-03-12
WO2011043598A3 (ko) 2011-11-03
KR101319726B1 (ko) 2013-10-17

Similar Documents

Publication Publication Date Title
WO2011043598A2 (ko) 다중 안테나 시스템에서 상향링크 전송 방법 및 장치
WO2010018977A2 (en) Method and apparatus of transmitting information in wireless communication system
WO2010056069A2 (ko) 다중 안테나 시스템에서 복수의 자원을 이용한 데이터 전송 방법 및 장치
WO2010018979A2 (ko) 무선 통신 시스템에서 정보 전송 방법 및 장치
AU2017367666B2 (en) Method and apparatus for multistream transmission
WO2010056078A2 (ko) 무선 통신 시스템에서 정보 전송 방법 및 장치
WO2010018980A2 (ko) 무선 통신 시스템에서 제어신호 전송 방법 및 장치
WO2016064218A2 (ko) Mtc 기기의 상향링크 채널 및 복조 참조 신호 전송 방법
WO2010056068A2 (ko) 무선 통신 시스템에서 신호 전송 방법 및 장치
WO2019199121A1 (en) Method and apparatus for transmitting and receiving signal in wireless communication system
WO2016093573A1 (ko) 5개를 초과하는 셀들을 반송파 집성에 따라 사용할 때의 pucch 전송 방법 및 사용자 장치
WO2011105813A2 (ko) 상향링크 다중 안테나 전송을 지원하는 무선 통신 시스템에서 상향링크 전송을 위한 제어정보를 제공하는 방법 및 장치
WO2012070831A2 (en) Method and user equipment for transmitting uplink control information, and method and base station for receiving uplink control information
WO2010056079A2 (ko) 무선 통신 시스템에서 정보 전송 방법 및 장치
WO2012005516A2 (ko) 무선통신 시스템에서 제어정보의 전송 방법 및 장치
WO2011152673A2 (en) Method and system for transmitting channel state information in wireless communication systems
WO2010147435A2 (en) Method and system for indicating method used to scramble dedicated reference signals
WO2011159131A2 (en) Method and system for mapping harq-ack bits
WO2012086932A1 (en) Method and user equipment for transmitting ack/nack information, and method and base station for receiving ack/nack information
WO2012081920A2 (ko) Tdd 기반 무선 통신 시스템에서 ack/nack 전송 방법 및 장치
WO2016099057A1 (ko) 상향링크 데이터의 복조를 위한 dmrs를 전송하는 방법 및 mtc 기기
WO2012074335A2 (ko) Tdd 기반 무선 통신 시스템에서 ack/nack 전송 방법 및 장치
WO2011046355A2 (en) Method and system of multi-layer beamforming
WO2010087645A2 (en) Method and apparatus for receiving and transmitting signals in wireless communication system
WO2010047512A2 (ko) 무선통신 시스템에서 신호 전송 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10822243

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117026349

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13380498

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10822243

Country of ref document: EP

Kind code of ref document: A2