WO2010053055A1 - V-type internal combustion engine - Google Patents

V-type internal combustion engine Download PDF

Info

Publication number
WO2010053055A1
WO2010053055A1 PCT/JP2009/068689 JP2009068689W WO2010053055A1 WO 2010053055 A1 WO2010053055 A1 WO 2010053055A1 JP 2009068689 W JP2009068689 W JP 2009068689W WO 2010053055 A1 WO2010053055 A1 WO 2010053055A1
Authority
WO
WIPO (PCT)
Prior art keywords
crankshaft
combustion engine
internal combustion
end side
rotating body
Prior art date
Application number
PCT/JP2009/068689
Other languages
French (fr)
Japanese (ja)
Inventor
威夫 調
安雄 岡本
伸二 吉岡
Original Assignee
トヨタ自動車株式会社
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, ヤマハ発動機株式会社 filed Critical トヨタ自動車株式会社
Publication of WO2010053055A1 publication Critical patent/WO2010053055A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/20Suppression of vibrations of rotating systems by favourable grouping or relative arrangements of the moving members of the system or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/22Compensation of inertia forces
    • F16F15/26Compensation of inertia forces of crankshaft systems using solid masses, other than the ordinary pistons, moving with the system, i.e. masses connected through a kinematic mechanism or gear system
    • F16F15/264Rotating balancer shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement

Definitions

  • the present invention relates to a technique for canceling a primary inertia couple generated with rotation of a crankshaft of a V-type internal combustion engine.
  • a piston is reciprocated by combustion / explosion of an air-fuel mixture in a combustion chamber of each cylinder, and the reciprocating motion of the piston is converted to rotation of a crankshaft by a connecting rod. Is done.
  • a primary inertia couple is generated in the crankshaft by the reciprocating motion of the piston and the connecting rod.
  • This primary inertia couple causes a vibration of the internal combustion engine and is therefore removed. Is preferred.
  • a balancer shaft is provided in parallel below the crankshaft of the internal combustion engine, and the crankshaft and the balancer shaft are connected by a gear,
  • a technique is known in which the balancer shaft is rotated in the direction opposite to the crankshaft as the shaft rotates (see, for example, Patent Documents 1 and 2).
  • a forward rotation balancer device and a reverse rotation balancer device are provided at one end and the other end of the crankshaft in order to remove the unbalanced force of the crankshaft. It has a structure.
  • the present invention provides power for transmitting the rotational power of the crankshaft to a driven device that is rotationally driven using the rotational power of the crankshaft on the front end side and the rear end side of the crankshaft.
  • an object of the present invention is to make the balancer means for canceling the primary inertia couple generated with the rotation of the crankshaft as simple as possible.
  • a power transmission mechanism for transmitting the rotational power of the crankshaft to a driven device that is rotationally driven using the rotational power of the crankshaft is provided on each of the front end side and the rear end side of the crankshaft.
  • a power transmission mechanism for transmitting the rotational power of the crankshaft to a driven device that is rotationally driven using the rotational power of the crankshaft is provided on each of the front end side and the rear end side of the crankshaft.
  • the unbalanced mass is mounted on the front and rear power transmission mechanisms and rotates in the opposite direction to the crankshaft.
  • the rotating body, by being provided by distributing, those which generate reverse rotation fishing alignment couple to said primary inertia couple the each rotary member is characterized by.
  • the front end side of the crankshaft is the upstream side of the crankshaft in the power output direction
  • the rear end side of the crankshaft is the downstream side of the power output direction.
  • the driven device include an auxiliary machine and a valve mechanism.
  • this auxiliary machine is, for example, a fuel pump, an oil pump, a water pump, or the like.
  • each of the unbalanced masses is a projection or weight for making the mass of the installation target member such as the counterweight or the rotating body unbalanced in the rotation direction, or a hollow hole or a recess.
  • the present invention does not bother to install a balancer device that is separate from the internal combustion engine as in the conventional example, but rather to an existing member that is pre-installed in the V-type internal combustion engine. An unbalanced mass necessary to counteract the force is provided.
  • the balancer device itself used in the conventional example is unnecessary.
  • the weight and the outer size of the battery need not be unnecessarily increased, and the increase in cost can be significantly suppressed.
  • the primary inertia couple generated by the rotation of the crankshaft is first reduced by being absorbed by the forward rotation balancing couple generated by the front and rear counterweights provided with the forward rotation unbalance mass.
  • the counter-rotation balancing couple generated by the rotating body before and after the counter-rotating unbalanced mass is balanced with the reduced primary inertia couple, and the primary inertia couple is It will be almost or completely countered.
  • the forward rotation unbalance mass and the reverse rotation unbalance mass are appropriately adjusted to those necessary for canceling the primary inertia couple generated with the rotation of the crankshaft.
  • At least one of the forward rotation unbalance mass and the reverse rotation unbalance mass is a protrusion or weight that becomes a positive mass.
  • the unbalanced mass is specified to increase the mass of the installation target member.
  • the unbalanced mass can be integrally formed at an arbitrary position of the installation target member, or can be provided later, so that the manufacture of the installation target member and the assembly work of the unbalanced mass can be easily performed. Further, because of such an unbalanced mass, the mass can be adjusted relatively easily in accordance with the primary inertia couple generated with the rotation of the crankshaft.
  • At least one of the forward rotation unbalance mass and the reverse rotation unbalance mass is a hole or a recess that becomes a negative mass.
  • the unbalanced mass is specified as one that reduces the mass of the installation target member.
  • the unbalanced mass can be integrally formed at an arbitrary position of the installation target member, or can be provided by post-processing, so that the manufacture of the installation target member and the unbalance mass processing can be easily performed. . Further, because of such an unbalanced mass, the mass can be adjusted relatively easily in accordance with the primary inertia couple generated with the rotation of the crankshaft.
  • any one of the power transmission mechanisms includes a first rotating body attached to a front end side or a rear end side of the crankshaft, a second rotating body attached to an input shaft of the driven device, and both rotating bodies. And a third rotating body for adjusting the degree of winding of the ring-shaped member around the second rotating body, and the third rotating body includes the reverse rotating unbalance mass. It is set as an installation target member.
  • a member that rotates in the direction opposite to the crankshaft is specified as the installation target member of the reverse rotation unbalanced mass.
  • Each of the rotating bodies is, for example, a gear having a tooth on the outer periphery, a sprocket, or a pulley, and the annular member is, for example, a chain or a belt.
  • any one of the power transmission mechanisms is attached to the front end side or the rear end side of the crankshaft and has external teeth, and is attached to the input shaft of the driven device and has external teeth.
  • a member that rotates in the direction opposite to the crankshaft is specified as the installation target member of the reverse rotation unbalanced mass.
  • the rotating body having the external teeth is, for example, a gear or a sprocket, and the ring-shaped member is, for example, a chain or a belt.
  • the balancer means for canceling the primary inertia couple generated with the rotation of the crankshaft as simple as possible. This makes it possible to reduce the weight, outer size, and cost of the V-type internal combustion engine.
  • FIG. 1 is a schematic configuration diagram showing Embodiment 1 of a V-type internal combustion engine according to the present invention.
  • FIG. 2 is a perspective view schematically showing an installation form of the forward rotation unbalance mass and the reverse rotation unbalance mass with respect to the crankshaft shown in FIG.
  • FIG. 3 is a diagram schematically showing a counterweight on the front end side of the crankshaft in FIG. 1, and shows a state seen from the front side.
  • FIG. 4 is a diagram schematically showing a counterweight on the rear end side of the crankshaft in FIG. 1, and shows a state seen from the front side.
  • FIG. 5 is a diagram schematically showing the power transmission mechanism on the front side in FIG. 1, and shows a state seen from the front side.
  • FIG. 6 is a cross-sectional view taken along line (6)-(6) in FIG.
  • FIG. 7 is a diagram schematically showing the power transmission mechanism on the rear side in FIG. 1, and shows a state seen from the front side.
  • FIG. 8 is a cross-sectional view taken along line (8)-(8) in FIG.
  • FIG. 9 is a graph used for explaining the primary inertia couple generated with the rotation of the crankshaft when the balancer means is not used.
  • FIG. 10 is a graph showing the shape of the primary inertia couple shown in FIG. 9 as viewed from one end side.
  • FIG. 11 is a perspective view schematically showing the primary inertia couple shown in FIGS. 9 and 10.
  • FIG. 12 is a graph showing a state in which the primary inertia couple shown in FIG. 11 is absorbed by the positive rotation unbalanced mass.
  • FIG. 13 is a graph showing the shape of the primary inertia couple shown in FIG. 12 as viewed from one end side.
  • FIG. 14 is a perspective view schematically showing the primary inertia couple shown in FIGS. 12 and 13.
  • FIG. 15 is a schematic configuration diagram showing Embodiment 2 of the V-type internal combustion engine according to the present invention.
  • FIG. 16 is a diagram schematically showing the power transmission mechanism on the front side in FIG. 15, and shows a state seen from the front side.
  • FIG. 17 is a schematic configuration diagram showing Embodiment 3 of the V-type internal combustion engine according to the present invention.
  • FIG. 18 is a diagram schematically showing the power transmission mechanism on the front side in FIG. 17, and shows a state seen from the front side.
  • FIG. 19 is a cross-sectional view taken along line (19)-(19) of FIG.
  • FIG. 20 is a diagram schematically showing the power transmission mechanism on the rear side in FIG. 17, and shows a state seen from the front side.
  • FIG. 21 is a cross-sectional view taken along line (21)-(21) in FIG.
  • FIG. 22 is a diagram for explaining another installation mode of the reverse rotation unbalance mass on the rear side in the first embodiment, and corresponds to FIG. 7.
  • 23 is a cross-sectional view taken along line (23)-(23) of FIG.
  • FIG. 24 is a diagram for explaining another installation mode of the reverse rotation unbalance mass on the rear side in the first embodiment, and corresponds to FIG. 7.
  • FIG. 25 is a cross-sectional view taken along line (25)-(25) in FIG.
  • reference numeral 1 denotes a crankshaft.
  • the crank journals 1a, 1b, 1c, and 1d of the crankshaft 1 are rotatably supported by a cylinder block (not shown). Needless to say, the crank journals 1a to 1d serve as the rotational axis of the crankshaft 1.
  • the pistons 3... are attached to the crank pins 1 f to 1 k of the crankshaft 1 via connecting rods 2. Note that the connecting rods 2 ... and the pistons 3 ... are shown only in FIG. In addition, a counterweight is provided at an appropriate position in the crankshaft 1, and the installation location of this counterweight is known according to the number of cylinders of the V-type internal combustion engine and the like. And omit explanations.
  • a plurality of auxiliary machines 5 to 7 serving as driven devices that are rotationally driven using the rotational power of the crankshaft 1 are distributed and attached to the front end side and the rear end side of the crankshaft 1. ing.
  • one auxiliary machine (referred to as a first auxiliary machine) 5 is provided on the front end side of the crankshaft 1, and two auxiliary machines (second auxiliary machines) are provided on the rear end side of the crankshaft 1. 6 and 7).
  • Examples of the first to third auxiliary machines 5 to 7 include a fuel pump, an oil pump, a water pump, and the like, but other appropriate devices generally known as auxiliary machines can also be used.
  • a power transmission mechanism 10 for transmitting the rotational power of the crankshaft 1 to the valve operating mechanism (not shown) and the first auxiliary machine 5 is provided on the front end side of the crankshaft 1. 1 is provided with a power transmission mechanism 20 for transmitting the rotational power of the crankshaft 1 to the second and third auxiliary machines 6 and 7.
  • the front power transmission mechanism 10 mainly includes a front crank sprocket 11, a timing chain (or timing belt) 12, four cam sprockets 13L, 14L, 13R, and 14R, and an idle sprocket. 15, a first auxiliary gear 16, and a small-diameter gear 17.
  • the front crank sprocket 11 is the first rotating body of the claims
  • the cam sprockets 13L, 14L, 13R, 14R and the first auxiliary gear 16 are the second rotating body of the claims
  • the idle sprocket 15 is the first rotating body of the claims.
  • the timing chain 12 corresponds to the three-rotor body and the ring-shaped member in the claims.
  • the front crank sprocket 11 is integrally attached to the front end of the crankshaft 1, and the cam sprockets 13L, 14L, 13R, 14R are intake camshafts and exhaust camshafts mounted on left and right banks (not shown). It is fixed at the front end.
  • the idle sprocket 15 is rotatably supported by a cylinder block (not shown) via an appropriate bracket, and the first auxiliary gear 16 is fixed to the input shaft (not shown) of the first auxiliary device 5. ing.
  • the timing chain 12 is wound around a front crank sprocket 11, cam sprockets 13L, 14L, 13R, 14R and an idle sprocket 15.
  • a small-diameter gear 17 for reduction is integrally provided, and this small-diameter gear 17 is meshed with the first auxiliary gear 16.
  • the timing chain 12 is rotationally driven in the same direction as the crankshaft 1, and the camshafts 13L, 14L, 13R, 14R are driven by this timing chain 12. It will be rotationally driven in the same direction as the crankshaft 1, and the idle sprocket 15 will be rotationally driven in the opposite direction to the crankshaft 1. As the idle sprocket 15 rotates, the first auxiliary gear 16 meshed with the idle sprocket 15 is driven to rotate in the same direction as the crankshaft 1.
  • the rear power transmission mechanism 20 mainly includes a rear crank gear 21, first and second idler gears 22 and 23, first and second small diameter gears 24 and 25, The first and second chains 26 and 27, the second auxiliary gear 28, and the third auxiliary gear 29 are configured.
  • the rear crank gear 21 is the first rotating body of the claims
  • the second and third auxiliary gears 28 and 29 are the second rotating body of the claims
  • the first and second idler gears 22 and 23 are the claims.
  • the first and second chains 26 and 27 correspond to the intermediate rotating body and the ring-shaped members of the claims, respectively.
  • the rear crank gear 21 is integrally attached to the rear end of the crankshaft 1, and the first and second idler gears 22 and 23 are rotatably supported by a cylinder block (not shown) via an appropriate bracket. ing. The first and second idler gears 22 and 23 are meshed with the rear crank gear 21, respectively.
  • the first and second small-diameter gears 24 and 25 are integrally provided on the rear surface side of the first and second idler gears 22 and 23.
  • the second accessory gear 28 is fixed to the input shaft (not shown) of the second accessory 6, and the third accessory gear 29 is fixed to the input shaft (not shown) of the third accessory 7.
  • the first chain 26 is wound around the first small diameter gear 24 and the second auxiliary gear 28, and the second chain 27 is wound around the second small diameter gear 25 and the third auxiliary gear 29. Yes.
  • balancer means for canceling out the primary inertia couple generated by the reciprocating motion of the plurality of pistons 3 accompanying the rotation of the crankshaft 1 does not remain. Since it is provided, the configuration of the balancer means will be described in detail.
  • the primary inertia couple is known, but will be briefly described with reference to FIGS. 9 to 11 prior to detailed description of the balancer means.
  • the primary inertia couple is perpendicular to the y axis and the moment M1y (see the broken line in FIG. 9) generated around the y axis (see FIG. 2) along the vertical direction of the crankshaft 1.
  • 1 is a combined moment with a moment M1x (see the solid line in FIG. 9) generated around the x-axis (see FIG. 2) along a direction orthogonal to the longitudinal direction of 1.
  • this primary inertia couple is a force that generates “grinding” vibration with the center P in the longitudinal direction of the crankshaft 1 as a base point, in other words, with the center P in the longitudinal direction of the crankshaft 1 as a base point.
  • This is a force that swings the front end side and the rear end side in a conical shape (or mortar shape).
  • the shapes of the front end side and the rear end side of the primary inertia couple are not circular, but are elliptical as shown in FIG.
  • the balancer means includes forward rotation unbalance masses 31, 32 and reverse rotation unbalance masses 33, 34A, 34B.
  • the positive rotation unbalance masses 31 and 32 are for reducing the primary inertia couple and for deforming the shapes of the front and rear ends of the primary inertia couple into a circle.
  • the forward rotation unbalance masses 31 and 32 are arranged on the counterweight 4Fr provided on the front end side of the crankshaft 1 as shown in FIG. 3 and on the rear end side of the crankshaft 1 as shown in FIG. It is provided at a predetermined position with respect to the provided counterweight 4Rr.
  • the positive rotation unbalance masses 31 and 32 are, for example, fan-shaped protrusions, that is, have a positive mass.
  • the masses of the counterweights 4Fr and 4Rr in the rotational direction become unbalanced and are generated in the crankshaft 1.
  • a forward rotation balancing couple for the next inertia couple is generated.
  • the forward rotation unbalance mass 31 provided on the front side and the forward rotation unbalance mass 32 provided on the rear side are arranged at positions opposed to each other by 180 degrees around the rotation center O of the crank journals 1a and 1d.
  • Each of the two forward rotation unbalance masses 31 and 32 is set to a mass necessary to generate 1/2 of the required forward rotation balance couple.
  • the reverse rotation unbalance masses 33, 34A, 34B are used to cancel the primary inertia couple (see FIGS. 12 to 14) reduced and deformed by the forward rotation unbalance masses 31, 32.
  • a counter-rotation balancing couple of the same level is generated in the opposite phase to the next inertia couple.
  • the reverse rotation unbalance masses 33, 34 ⁇ / b> A, 34 ⁇ / b> B are connected to the idler gear 15 provided in the front power transmission mechanism 10 and the first and second idler gears 22, 23 provided in the rear power transmission mechanism 20. Is provided.
  • the idler gear 15 is installed on the front end side of the crankshaft 1 and rotates in the direction opposite to the rotation direction of the crankshaft 1, and the first and second idler gears 22 and 23 are arranged at the rear of the crankshaft 1. It is installed on the end side and rotates in the direction opposite to the rotation direction of the crankshaft 1.
  • the idler gear 15 and the first and second idler gears 22 and 23 are provided with an annular plate portion on the outer diameter side of the central cylindrical portion, and a plurality of idler gears are provided on the outer periphery of the annular plate portion. It is said that the tooth is provided.
  • Reverse rotation unbalance masses 33, 34A, 34B are provided near the outer periphery at predetermined circumferential positions of the annular plate portions of the idler gear 15, the first and second idler gears 22, 23.
  • the reverse rotation unbalance masses 33, 34A, and 34B are, for example, fan-shaped protrusions, that is, have a positive mass. If such reverse rotation unbalance masses 33, 34A, 34B are provided in the gears 15, 22, 23, the masses of the gears 15, 22, 23 in the rotational direction become unbalanced and are generated in the crankshaft 1. The counter-rotation balancing couple with respect to the primary inertia couple is generated.
  • One reverse rotation unbalance mass 33 provided on the front side and two reverse rotation unbalance masses 34A, 34B provided on the rear side are the rotation centers O1, O2, O2 of the respective installation target members (15, 22, 23).
  • the rotation centers O1, O2, and O3 are arranged at positions that face each other by 180 degrees.
  • One reverse rotation unbalance mass 33 provided on the front side and two reverse rotation unbalance masses 34A and 34B provided on the rear side generate 1 ⁇ 2 of the required reverse rotation balance couple.
  • Set to the mass required for The two reverse rotation unbalance masses 34A and 34B on the rear side have the same mass and the same shape.
  • the primary inertia couple (see FIGS. 9 to 11) generated with the rotation of the crankshaft 1 is first caused by the counterweights 4Fr before and after the forward rotation unbalance masses 31 and 32 are provided. , 4Rr is absorbed by the positive rotation balancing couple and is reduced and deformed as shown in FIGS. Subsequently, the reverse rotation balancing couple generated by the idler gear 15, the first and second idler gears 22, 23 provided with the reverse rotation unbalance masses 33, 34A, and 34B is reduced and deformed to the primary inertia couple. In balance with the force (see FIGS. 12 to 14), the primary inertia couple is almost or completely canceled.
  • the balancer device separate from the internal combustion engine is not purposely provided as in the conventional example, but the existing members (4Fr, 4Rr, 15, 22, 23) is provided with unbalance masses (31, 32, 33, 34A, 34B) necessary for canceling the primary inertia couple generated in the crankshaft 1.
  • FIGS. 15 and 16 A second embodiment of the present invention will be described with reference to FIGS. 15 and 16.
  • the configuration of the power transmission mechanism 10 disposed on the front side of the V-type internal combustion engine is different from that of the first embodiment, and other configurations are basically the same as those of the first embodiment. ing.
  • the front power transmission mechanism 10 transmits the rotational power of the crankshaft 1 to an intake camshaft or exhaust camshaft of the V-type internal combustion engine (not shown) and the first auxiliary machine 5, and mainly includes a front crank.
  • Gear 11, first and second timing chains (or timing belts) 12A and 12B, cam sprockets 13L, 14L, 13R and 14R, first and second idler gears 15A and 15B, and first and second small diameter gears 17A, 17B and the first auxiliary gear 16 are configured.
  • the front crank gear 51 is the first rotating body of the claims
  • the cam sprockets 13L, 14L, 13R, 14R are the second rotating body of the claims
  • the first and second idler gears 15A, 15B are the intermediate rotation of the claims.
  • the first and second timing chains 12A and 12B correspond to the body and the ring-shaped members of the claims, respectively.
  • the front crank gear 11 is meshed with the first idler gear 15A, and the second idler gear 15B is meshed with the first idler gear 15A.
  • the first and second small-diameter gears 17A and 17B for reduction are integrally provided on the front side of the first and second idler gears 15A and 15B, adjacent to each other in the axial direction and coaxially.
  • the first timing chain 12A is wound around the first small-diameter gear 17A of the first idler gear 15A and the cam sprockets 13L, 13R of one bank, and the second small-diameter gear 17B of the second idler gear 15B and the cam sprocket 14L of the other bank. 14R is wound around the second timing chain 12B.
  • the first idler gear 15A meshing with the front crank gear 11 is driven to rotate in the direction opposite to the rotation direction of the crankshaft 1.
  • the first timing chain 12A wound around the first small-diameter gear 17A that rotates together with the first idler gear 15A is rotationally driven in the opposite direction to the crankshaft 1, and this first timing
  • the two cam sprockets 13L, 14L are rotationally driven in the opposite direction to the crankshaft 1 by the chain 12A.
  • the second idler gear 15B is driven to rotate in the reverse direction.
  • the second timing chain 12B wound around the second small-diameter gear 17B that rotates together with the second idler gear 15B is driven to rotate in the same direction as the crankshaft 1.
  • the two cam sprockets 13R and 14R are rotationally driven in the same direction as the crankshaft 1 by the chain 12B.
  • the reverse rotation unbalance mass 33 is provided in the first auxiliary gear 16 provided in the power transmission mechanism 10 on the front side. Similar to the first embodiment, the reverse rotation unbalance mass 33 is a fan-shaped protrusion having a positive mass, and is additionally provided in the first auxiliary gear 16.
  • a power transmission mechanism 40 having basically the same configuration as that of the rear power transmission mechanism 20 of the first embodiment is disposed on the front side of the V-type internal combustion engine, and a valve operating mechanism is disposed on the rear side of the V-type internal combustion engine.
  • a power transmission mechanism 50 dedicated to the mechanism is provided.
  • the power transmission mechanism 40 on the front side transmits the rotational power of the crankshaft 1 to the two auxiliary machines 6 and 7 arranged on the front side of the V-type internal combustion engine.
  • the front crank gear 41 is the first rotating body of the claims
  • the first and second auxiliary gears 48 and 49 are the second rotating body of the claims
  • the first and second idler gears 42 and 43 are the claims.
  • the first and second chains 46 and 47 correspond to the intermediate rotating body and the ring-shaped members in the claims, respectively.
  • the front crank gear 41 is integrally attached to the front end of the crankshaft 1, and the first and second idler gears 42 and 43 are rotatably supported on a cylinder block (not shown) via an appropriate bracket. Yes.
  • the first and second idler gears 42 and 43 are meshed with the front crank gear 41, respectively.
  • the first and second small diameter gears 44 and 45 are integrally provided on the front side of the first and second idler gears 42 and 43.
  • the first auxiliary gear 48 is fixed to the input shaft (not shown) of the first auxiliary device 5
  • the second auxiliary gear 49 is fixed to the input shaft (not shown) of the second auxiliary device 6.
  • the first chain 46 is wound around the first small diameter gear 44 and the first auxiliary gear 48
  • the second chain 47 is wound around the second small diameter gear 45 and the second auxiliary gear 49. Yes.
  • the first and second idler gears 42 and 43 meshing with the front crank gear 41 are driven to rotate in the direction opposite to the rotation direction of the crankshaft 1.
  • the first and second chains 46 and 47 wound around the first and second small-diameter gears 44 and 45 rotating integrally therewith are opposite to the crankshaft 1.
  • the first auxiliary gear 48 and the second auxiliary gear 49 are rotated in the opposite direction to the crankshaft 1 by the first and second chains 46 and 47.
  • the rear power transmission mechanism 50 transmits the rotational power of the crankshaft 1 to an intake camshaft and an exhaust camshaft of a V-type internal combustion engine (not shown).
  • Rear crank gear 51, first and second idler gears 52 and 53, first and second small diameter gears 54 and 55, first and second timing chains (or timing belts) 56 and 57, and four cams Sprockets 13L, 14L, 13R, and 14R are included.
  • the rear crank gear 51 is the first rotating body of the claims
  • the cam sprockets 13L, 14L, 13R, 14R are the second rotating body of the claims
  • the first and second idler gears 52, 53 are the intermediate rotation of the claims.
  • the first and second timing chains 56 and 57 correspond to the body and the ring-shaped members of the claims, respectively.
  • the rear crank gear 51 is engaged with the first and second idler gears 52 and 53, respectively, so that the rotation direction of the first and second idler gears 52 and 53 is opposite to the rotation direction of the crankshaft 1.
  • the first and second small-diameter gears 54 and 55 for reduction are integrally provided on the rear surfaces of the first and second idler gears 52 and 53 so as to be adjacent to each other in the axial direction and coaxially.
  • a first timing chain 56 is wound around the first small-diameter gear 54 of the first idler gear 52 and the cam sprockets 13L and 13R of one bank, and the second small-diameter gear 55 of the second idler gear 53 and the cam sprocket 14L of the other bank.
  • 14R is wound around the second timing chain 57.
  • the first and second idler gears 52 and 53 engaged with the rear crank gear 51 are driven to rotate in the direction opposite to the rotation direction of the crankshaft 1.
  • the first and second timing chains 56 and 57 wound around the first and second small-diameter gears 54 and 55 rotating integrally therewith are connected to the crankshaft 1.
  • the four cam sprockets 13L, 14L, 13R, and 14R are rotationally driven in the opposite direction to the crankshaft 1 by the first and second timing chains 56 and 57.
  • the reverse rotation unbalance masses 33 ⁇ / b> A and 33 ⁇ / b> B are distributed and provided on the two idler gears 42 and 43 provided on the front power transmission mechanism 40, and the two provided on the rear power transmission mechanism 50 are provided.
  • Reverse rotation unbalance masses 34 ⁇ / b> A and 34 ⁇ / b> B are distributed to idler gears 52 and 53.
  • the front and rear reverse rotation unbalance masses 33A, 33B and 34A, 34B in the third embodiment are fan-shaped projections having a positive mass as in the first embodiment, and are shown in FIGS. 19 and 21.
  • the primary inertia couple in order to cancel the primary inertia couple reduced and deformed by the forward rotation unbalance masses 31 and 32 by being additionally provided in each idler gear 42, 43, 52 and 53, the primary inertia couple
  • the reverse rotation balancing couple (see the broken line in FIG. 12) of the same level and in the opposite phase is generated.
  • the two reverse rotation unbalance masses 33A and 33B on the front side and the two reverse rotation unbalance masses 34A and 34B on the rear side are respectively installed target members (42, 43, 52, 53) in a state where the respective rotation centers O4, O5, O6, and O7 are virtually coincident with each other, the rotation centers O4, O5, O6, and O7 are arranged at positions opposed to each other by 180 degrees.
  • the two reverse rotation unbalance masses 33A and 33B on the front side and the two reverse rotation unbalance masses 34A and 34B on the rear side generate half of the required reverse rotation balance couple.
  • the required mass is set.
  • the forward rotation unbalance masses 31, 32 and the reverse rotation unbalance masses (33, 33A, 33B, 34A, 34B) are protrusions that increase the mass of the installation target member.
  • the reverse rotation unbalance masses 33, 33A, 33B, 34A, 34B
  • a hollow or dent that reduces the mass of the installation target member.
  • reverse rotation unbalance masses 34A and 34B made of circular hollow holes are provided at a plurality of locations on the circumference of the first and second idler gears 22 and 23, respectively.
  • the spacing between the plurality of lightening holes can be made constant within a predetermined angle range, and can be set larger than the above in the remaining predetermined angle range. Thereby, the mass in the rotation direction of the first and second idler gears 22 and 23 becomes non-uniform, and it becomes possible to apply a counter-rotation balance couple to the crankshaft 1.
  • the number, formation position, or shape of the hollow holes as the reverse rotation unbalance masses 34A and 34B can be appropriately set based on the required reverse rotation balance couple.
  • the lightening holes as the reverse rotation unbalance masses 34A and 34B are formed in the small diameter gears 24 and 25 formed integrally with the first and second idler gears 22 and 23. Can also be provided.
  • the small-diameter gears 24 and 25 are provided with the lightening holes 35A and 35B as the reverse rotation unbalanced mass for each predetermined angle only in the predetermined angle range, but the remaining predetermined angle ranges are provided with the lightening holes. I am trying not to.
  • the installation form of the forward rotation unbalance mass and the reverse rotation unbalance mass may be the same as that described in the above embodiments.
  • the present invention can be applied to a V-type internal combustion engine used for an appropriate application other than a vehicle, in addition to a V-type internal combustion engine mounted on a vehicle.
  • the balancer means for canceling the primary inertia couple generated with the rotation of the crankshaft can be made as simple as possible. This is advantageous in that the weight, outer size and cost of the V-type internal combustion engine can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Gears, Cams (AREA)

Abstract

A V-type internal combustion engine, wherein a balancer includes forwardly rotating unbalanced masses (31, 32) and reversely rotating unbalanced masses (33, 34A, 34B).  The forwardly rotating unbalanced masses (31, 32) are mounted in a distributed manner to counterweights (4Fr, 4Rr) provided to the front end side and rear end side of a crankshaft (1), and this causes each of the counterweights to generate a forward rotation balancing force couple acting against a primary inertia force couple.  The reversely rotating unbalanced masses (33, 34A, 34B) are mounted in a distributed manner to rotating bodies (15, 22, 23) which are mounted to power transmitting mechanisms (10, 20) arranged at the front and rear of the crankshaft (1) and which rotate in the direction opposite to the direction of rotation of the crankshaft (1), and this causes each of the rotating bodies to generate a reverse rotation balancing force couple acting against the primary inertia force couple.

Description

V型内燃機関V-type internal combustion engine
 本発明は、V型内燃機関のクランクシャフトの回転に伴い発生する1次慣性偶力を打ち消すための技術に関する。 The present invention relates to a technique for canceling a primary inertia couple generated with rotation of a crankshaft of a V-type internal combustion engine.
 一般的に、自動車等に搭載される内燃機関は、各気筒の燃焼室内での混合気の燃焼・爆発によってピストンが往復運動され、そのピストンの往復運動がコネクティングロッドによってクランクシャフトの回転へと変換される。 Generally, in an internal combustion engine mounted on an automobile or the like, a piston is reciprocated by combustion / explosion of an air-fuel mixture in a combustion chamber of each cylinder, and the reciprocating motion of the piston is converted to rotation of a crankshaft by a connecting rod. Is done.
 このような内燃機関においては、ピストンおよびコネクティングロッドの往復動運動によってクランクシャフトに1次慣性偶力が発生するが、この1次慣性偶力は内燃機関の振動の要因となるため、除去するのが好ましい。 In such an internal combustion engine, a primary inertia couple is generated in the crankshaft by the reciprocating motion of the piston and the connecting rod. This primary inertia couple causes a vibration of the internal combustion engine and is therefore removed. Is preferred.
 前記1次慣性偶力を残存させずに除去することを目的として、従来から、内燃機関のクランクシャフトの下方にバランサシャフトを並列に設け、クランクシャフトとバランサシャフトとをギヤで連結させて、クランクシャフトの回転に伴いバランサシャフトをクランクシャフトと逆向きに回転させるようにする技術が知られている(例えば特許文献1,2参照。)。 For the purpose of removing the primary inertia couple without remaining, conventionally, a balancer shaft is provided in parallel below the crankshaft of the internal combustion engine, and the crankshaft and the balancer shaft are connected by a gear, A technique is known in which the balancer shaft is rotated in the direction opposite to the crankshaft as the shaft rotates (see, for example, Patent Documents 1 and 2).
 このようなバランサシャフトを用いる構造では、重量ならびに外形サイズにおいて不利である。このようなバランサシャフトを用いない構造として、例えば特許文献3に示されるような技術がある。 Such a structure using a balancer shaft is disadvantageous in terms of weight and external size. As a structure not using such a balancer shaft, for example, there is a technique as shown in Patent Document 3.
 この特許文献3に係る従来例は、V型内燃機関において、クランクシャフトの不釣合い力を除去するために、クランクシャフトの一端および他端に、正回転用バランサ装置および逆回転用バランサ装置を設けた構造になっている。 In the conventional example according to Patent Document 3, in a V-type internal combustion engine, a forward rotation balancer device and a reverse rotation balancer device are provided at one end and the other end of the crankshaft in order to remove the unbalanced force of the crankshaft. It has a structure.
特開平4-321843号公報Japanese Patent Laid-Open No. 4-321833 特開平11-325185号公報Japanese Patent Laid-Open No. 11-325185 特開2003-269541号公報JP 2003-269541 A
 上記特許文献3に係る従来例では、クランクシャフトに新たにバランサ装置を取り付けるようにしていて、内燃機関を構成する部品点数が多くなるために、重量、外形サイズならびにコストが嵩むことが懸念される。 In the conventional example according to Patent Document 3, a balancer device is newly attached to the crankshaft, and the number of parts constituting the internal combustion engine increases, so there is a concern that the weight, the outer size, and the cost increase. .
 このような事情に鑑み、本発明は、クランクシャフトの前端側および後端側に、クランクシャフトの回転動力を利用して回転駆動される従動機器に前記クランクシャフトの回転動力を伝達するための動力伝達機構がそれぞれ設けられるV型内燃機関において、クランクシャフトの回転に伴い発生する1次慣性偶力を打ち消すためのバランサ手段を、可及的に簡素な構成とすることを目的としている。 In view of such circumstances, the present invention provides power for transmitting the rotational power of the crankshaft to a driven device that is rotationally driven using the rotational power of the crankshaft on the front end side and the rear end side of the crankshaft. In a V-type internal combustion engine provided with a transmission mechanism, an object of the present invention is to make the balancer means for canceling the primary inertia couple generated with the rotation of the crankshaft as simple as possible.
 本発明は、クランクシャフトの前端側および後端側に、クランクシャフトの回転動力を利用して回転駆動される従動機器に前記クランクシャフトの回転動力を伝達するための動力伝達機構がそれぞれ設けられるV型内燃機関であって、前記クランクシャフトの回転に伴い発生する1次慣性偶力を打ち消すための正回転アンバランスマスおよび逆回転アンバランスマスを有し、前記正回転アンバランスマスは、前記クランクシャフトの前端側および後端側に設けられるカウンターウェイトに、振り分けて設けられており、前記逆回転アンバランスマスは、前記前後の動力伝達機構に装備されかつクランクシャフトと逆向きに回転する回転体に、振り分けて設けられていることを特徴としている。 In the present invention, a power transmission mechanism for transmitting the rotational power of the crankshaft to a driven device that is rotationally driven using the rotational power of the crankshaft is provided on each of the front end side and the rear end side of the crankshaft. An internal combustion engine having a forward rotation unbalance mass and a reverse rotation unbalance mass for canceling a primary inertia couple generated by rotation of the crankshaft, the forward rotation unbalance mass being The counterweight provided on the front end side and the rear end side of the shaft is provided separately, and the reverse rotation unbalance mass is mounted on the front and rear power transmission mechanisms and rotates in a direction opposite to the crankshaft. It is characterized by being provided separately.
 本発明は、クランクシャフトの前端側および後端側に、クランクシャフトの回転動力を利用して回転駆動される従動機器に前記クランクシャフトの回転動力を伝達するための動力伝達機構がそれぞれ設けられるV型内燃機関であって、前記クランクシャフトの回転に伴い発生する1次慣性偶力を打ち消すための正回転アンバランスマスおよび逆回転アンバランスマスを有し、前記正回転アンバランスマスは、前記クランクシャフトの前端側および後端側に設けられるカウンターウェイトに、振り分けて設けられることにより、当該各カウンターウェイトに前記1次慣性偶力に対する正回転釣り合わせ偶力を発生させるものであり、前記逆回転アンバランスマスは、前記前後の動力伝達機構に装備されかつクランクシャフトと逆向きに回転する回転体に、振り分けて設けられることにより、当該各回転体に前記1次慣性偶力に対する逆回転釣り合わせ偶力を発生させるものである、ことを特徴としている。 In the present invention, a power transmission mechanism for transmitting the rotational power of the crankshaft to a driven device that is rotationally driven using the rotational power of the crankshaft is provided on each of the front end side and the rear end side of the crankshaft. An internal combustion engine having a forward rotation unbalance mass and a reverse rotation unbalance mass for canceling a primary inertia couple generated by rotation of the crankshaft, the forward rotation unbalance mass being A counterweight provided on the front end side and the rear end side of the shaft is distributed and provided so that each counterweight generates a forward rotation balancing couple with respect to the primary inertia couple, and the reverse rotation The unbalanced mass is mounted on the front and rear power transmission mechanisms and rotates in the opposite direction to the crankshaft. The rotating body, by being provided by distributing, those which generate reverse rotation fishing alignment couple to said primary inertia couple the each rotary member is characterized by.
 なお、クランクシャフトの前端側とは、クランクシャフトにおいて動力出力方向の上流側のことであり、クランクシャフトの後端側とは、前記動力出力方向の下流側のことである。また、前記従動機器とは、補機や動弁機構等が挙げられる。この補機とは、公知のように、例えば燃料ポンプ、オイルポンプ、ウォーターポンプ等のことである。さらに、前記各アンバランスマスは、前記カウンターウェイトや回転体等の設置対象部材の質量を回転方向でアンバランスにさせるための突起または錘、あるいは肉抜き孔または凹み等とされる。 The front end side of the crankshaft is the upstream side of the crankshaft in the power output direction, and the rear end side of the crankshaft is the downstream side of the power output direction. Examples of the driven device include an auxiliary machine and a valve mechanism. As is well known, this auxiliary machine is, for example, a fuel pump, an oil pump, a water pump, or the like. Further, each of the unbalanced masses is a projection or weight for making the mass of the installation target member such as the counterweight or the rotating body unbalanced in the rotation direction, or a hollow hole or a recess.
 本発明では、要するに、従来例のように内燃機関と別体のバランサ装置をわざわざ付設するのではなく、V型内燃機関に予め装備される既存の部材に、クランクシャフトに発生する1次慣性偶力を打ち消すために必要なアンバランスマスを設けるようにしている。 In short, the present invention does not bother to install a balancer device that is separate from the internal combustion engine as in the conventional example, but rather to an existing member that is pre-installed in the V-type internal combustion engine. An unbalanced mass necessary to counteract the force is provided.
 このように、本発明では、既存の部材にアンバランスマスとしての突起または錘、あるいは肉抜き孔または凹みを設けるだけで、前記従来例で用いるバランサ装置そのものが不要であるから、V型内燃機関の重量や外形サイズが不要に大型化せずに済むとともに、コスト上昇を大幅に抑制することが可能になる。 As described above, in the present invention, since the existing member is simply provided with a projection or weight as an unbalanced mass, or a hollow hole or recess, the balancer device itself used in the conventional example is unnecessary. The weight and the outer size of the battery need not be unnecessarily increased, and the increase in cost can be significantly suppressed.
 そして、クランクシャフトの回転に伴い発生する1次慣性偶力は、まず、正回転アンバランスマスを設けた前後のカウンターウェイトによって発生する正回転釣り合せ偶力でもって吸収されることによって低減されることになり、さらに逆回転アンバランスマスを設ける前後の回転体によって発生する逆回転釣り合せ偶力が、前記低減された1次慣性偶力と釣り合うことになって、当該1次慣性偶力がほとんどあるいは完全に打ち消されることになる。 The primary inertia couple generated by the rotation of the crankshaft is first reduced by being absorbed by the forward rotation balancing couple generated by the front and rear counterweights provided with the forward rotation unbalance mass. In addition, the counter-rotation balancing couple generated by the rotating body before and after the counter-rotating unbalanced mass is balanced with the reduced primary inertia couple, and the primary inertia couple is It will be almost or completely countered.
 特に、正回転アンバランスマスや逆回転アンバランスマスは、クランクシャフトの回転に伴い発生する1次慣性偶力を打ち消すために必要なものに適宜に調整される。 Especially, the forward rotation unbalance mass and the reverse rotation unbalance mass are appropriately adjusted to those necessary for canceling the primary inertia couple generated with the rotation of the crankshaft.
 好ましくは、正回転アンバランスマスまたは逆回転アンバランスマスの少なくとも一方は、正の質量となる突起または錘とされる。 Preferably, at least one of the forward rotation unbalance mass and the reverse rotation unbalance mass is a protrusion or weight that becomes a positive mass.
 ここでは、アンバランスマスについて、設置対象部材の質量を増加させるものに特定している。この特定によれば、アンバランスマスを設置対象部材の任意位置に一体に形成するか、あるいは後付けすることで設けることができ、設置対象部材の製造やアンバランスマスの組み付け作業が簡単に行える。また、このようなアンバランスマスであるために、クランクシャフトの回転に伴い発生する1次慣性偶力に応じて、質量の調整を比較的簡易に行えるようになる。 Here, the unbalanced mass is specified to increase the mass of the installation target member. According to this specification, the unbalanced mass can be integrally formed at an arbitrary position of the installation target member, or can be provided later, so that the manufacture of the installation target member and the assembly work of the unbalanced mass can be easily performed. Further, because of such an unbalanced mass, the mass can be adjusted relatively easily in accordance with the primary inertia couple generated with the rotation of the crankshaft.
 好ましくは、前記正回転アンバランスマスまたは逆回転アンバランスマスの少なくとも一方は、負の質量となる肉抜き孔または凹みとされる。 Preferably, at least one of the forward rotation unbalance mass and the reverse rotation unbalance mass is a hole or a recess that becomes a negative mass.
 ここでは、アンバランスマスについて、設置対象部材の質量を減少させるものに特定している。この特定によれば、アンバランスマスを設置対象部材の任意位置に一体に形成するか、あるいは後加工することで設けることができ、設置対象部材の製造やアンバランスマスの加工作業が簡単に行える。また、このようなアンバランスマスであるために、クランクシャフトの回転に伴い発生する1次慣性偶力に応じて、質量の調整を比較的簡易に行えるようになる。 Here, the unbalanced mass is specified as one that reduces the mass of the installation target member. According to this specification, the unbalanced mass can be integrally formed at an arbitrary position of the installation target member, or can be provided by post-processing, so that the manufacture of the installation target member and the unbalance mass processing can be easily performed. . Further, because of such an unbalanced mass, the mass can be adjusted relatively easily in accordance with the primary inertia couple generated with the rotation of the crankshaft.
 好ましくは、前記いずれか一方の動力伝達機構は、前記クランクシャフトの前端側または後端側に取り付けられる第1回転体と、前記従動機器の入力軸に取り付けられる第2回転体と、両回転体に巻き掛けられる輪状部材と、前記第2回転体に対する輪状部材の巻き掛け度合いを調整するための第3回転体とを含む構成とされ、前記第3回転体が、前記逆回転アンバランスマスの設置対象部材とされる。 Preferably, any one of the power transmission mechanisms includes a first rotating body attached to a front end side or a rear end side of the crankshaft, a second rotating body attached to an input shaft of the driven device, and both rotating bodies. And a third rotating body for adjusting the degree of winding of the ring-shaped member around the second rotating body, and the third rotating body includes the reverse rotating unbalance mass. It is set as an installation target member.
 ここでは、逆回転アンバランスマスの設置対象部材として、クランクシャフトと逆向きに回転する部材に特定している。なお、前記各回転体は、例えば外周に歯を有するギヤ、スプロケット、あるいはプーリ等のことであり、また、前記輪状部材は、例えばチェーンやベルト等のことである。 Here, a member that rotates in the direction opposite to the crankshaft is specified as the installation target member of the reverse rotation unbalanced mass. Each of the rotating bodies is, for example, a gear having a tooth on the outer periphery, a sprocket, or a pulley, and the annular member is, for example, a chain or a belt.
 好ましくは、前記いずれか一方の動力伝達機構は、前記クランクシャフトの前端側または後端側に取り付けられかつ外歯を有する第1回転体と、前記従動機器の入力軸に取り付けられかつ外歯を有する第2回転体と、前記第1回転体に噛み合わされる外歯を有しかつ軸方向隣り合わせで同軸上に一体に設けられる減速用の小径部を有する中間回転体と、前記第2回転体と前記小径部とに巻き掛けられる輪状部材とを含む構成とされ、前記中間回転体が、前記逆回転アンバランスマスの設置対象部材とされる。 Preferably, any one of the power transmission mechanisms is attached to the front end side or the rear end side of the crankshaft and has external teeth, and is attached to the input shaft of the driven device and has external teeth. A second rotating body, an intermediate rotating body having external teeth meshed with the first rotating body, and having a small-diameter portion for reduction provided on the same axis and adjacent to each other in the axial direction; and the second rotating body And a ring-shaped member wound around the small-diameter portion, and the intermediate rotating body is an installation target member of the reverse rotation unbalance mass.
 ここでは、逆回転アンバランスマスの設置対象部材として、クランクシャフトと逆向きに回転する部材に特定している。なお、前記外歯を有する回転体とは、例えばギヤやスプロケットのことであり、また、前記輪状部材は、例えばチェーンやベルト等のことである。 Here, a member that rotates in the direction opposite to the crankshaft is specified as the installation target member of the reverse rotation unbalanced mass. The rotating body having the external teeth is, for example, a gear or a sprocket, and the ring-shaped member is, for example, a chain or a belt.
 本発明に係るV型内燃機関では、クランクシャフトの回転に伴い発生する1次慣性偶力を打ち消すためのバランサ手段を、可及的に簡素な構成とすることが可能になる。これにより、V型内燃機関の重量、外形サイズならびにコストを軽減することが可能になる。 In the V-type internal combustion engine according to the present invention, it is possible to make the balancer means for canceling the primary inertia couple generated with the rotation of the crankshaft as simple as possible. This makes it possible to reduce the weight, outer size, and cost of the V-type internal combustion engine.
図1は、本発明に係るV型内燃機関の実施形態1を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing Embodiment 1 of a V-type internal combustion engine according to the present invention. 図2は、図1に示すクランクシャフトに対する正回転アンバランスマスおよび逆回転アンバランスマスの設置形態を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing an installation form of the forward rotation unbalance mass and the reverse rotation unbalance mass with respect to the crankshaft shown in FIG. 図3は、図1のクランクシャフトの前端側のカウンターウェイトを模式的に示す図で、前側から見た状態を示している。FIG. 3 is a diagram schematically showing a counterweight on the front end side of the crankshaft in FIG. 1, and shows a state seen from the front side. 図4は、図1のクランクシャフトの後端側のカウンターウェイトを模式的に示す図で、前側から見た状態を示している。FIG. 4 is a diagram schematically showing a counterweight on the rear end side of the crankshaft in FIG. 1, and shows a state seen from the front side. 図5は、図1における前側の動力伝達機構を模式的に示す図で、前側から見た状態を示している。FIG. 5 is a diagram schematically showing the power transmission mechanism on the front side in FIG. 1, and shows a state seen from the front side. 図6は、図5の(6)-(6)線断面の矢視図である。6 is a cross-sectional view taken along line (6)-(6) in FIG. 図7は、図1における後側の動力伝達機構を模式的に示す図で、前側から見た状態を示している。FIG. 7 is a diagram schematically showing the power transmission mechanism on the rear side in FIG. 1, and shows a state seen from the front side. 図8は、図7の(8)-(8)線断面の矢視図である。FIG. 8 is a cross-sectional view taken along line (8)-(8) in FIG. 図9は、バランサ手段を用いない場合にクランクシャフトの回転に伴い発生する1次慣性偶力の説明に用いるグラフである。FIG. 9 is a graph used for explaining the primary inertia couple generated with the rotation of the crankshaft when the balancer means is not used. 図10は、図9に示す1次慣性偶力を一端側から見た形状を示すグラフである。FIG. 10 is a graph showing the shape of the primary inertia couple shown in FIG. 9 as viewed from one end side. 図11は、図9および図10に示す1次慣性偶力を模式的に表す斜視図である。FIG. 11 is a perspective view schematically showing the primary inertia couple shown in FIGS. 9 and 10. 図12は、図11に示す1次慣性偶力を正回転アンバランスマスで吸収させた状態を示すグラフである。FIG. 12 is a graph showing a state in which the primary inertia couple shown in FIG. 11 is absorbed by the positive rotation unbalanced mass. 図13は、図12に示す1次慣性偶力を一端側から見た形状を示すグラフである。FIG. 13 is a graph showing the shape of the primary inertia couple shown in FIG. 12 as viewed from one end side. 図14は、図12および図13に示す1次慣性偶力を模式的に表す斜視図である。FIG. 14 is a perspective view schematically showing the primary inertia couple shown in FIGS. 12 and 13. 図15は、本発明に係るV型内燃機関の実施形態2を示す概略構成図である。FIG. 15 is a schematic configuration diagram showing Embodiment 2 of the V-type internal combustion engine according to the present invention. 図16は、図15における前側の動力伝達機構を模式的に示す図で、前側から見た状態を示している。FIG. 16 is a diagram schematically showing the power transmission mechanism on the front side in FIG. 15, and shows a state seen from the front side. 図17は、本発明に係るV型内燃機関の実施形態3を示す概略構成図である。FIG. 17 is a schematic configuration diagram showing Embodiment 3 of the V-type internal combustion engine according to the present invention. 図18は、図17における前側の動力伝達機構を模式的に示す図で、前側から見た状態を示している。FIG. 18 is a diagram schematically showing the power transmission mechanism on the front side in FIG. 17, and shows a state seen from the front side. 図19は、図18の(19)-(19)線断面の矢視図である。FIG. 19 is a cross-sectional view taken along line (19)-(19) of FIG. 図20は、図17における後側の動力伝達機構を模式的に示す図で、前側から見た状態を示している。FIG. 20 is a diagram schematically showing the power transmission mechanism on the rear side in FIG. 17, and shows a state seen from the front side. 図21は、図20の(21)-(21)線断面の矢視図である。FIG. 21 is a cross-sectional view taken along line (21)-(21) in FIG. 図22は、実施形態1における後側の逆回転アンバランスマスの他の設置形態を説明するための図で、図7に対応する図である。FIG. 22 is a diagram for explaining another installation mode of the reverse rotation unbalance mass on the rear side in the first embodiment, and corresponds to FIG. 7. 図23は、図22の(23)-(23)線断面の矢視図である。23 is a cross-sectional view taken along line (23)-(23) of FIG. 図24は、実施形態1における後側の逆回転アンバランスマスの他の設置形態を説明するための図で、図7に対応する図である。FIG. 24 is a diagram for explaining another installation mode of the reverse rotation unbalance mass on the rear side in the first embodiment, and corresponds to FIG. 7. 図25は、図24の(25)-(25)線断面の矢視図である。FIG. 25 is a cross-sectional view taken along line (25)-(25) in FIG.
 以下、本発明の最良の実施の形態について添付図面を参照して詳細に説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the accompanying drawings.
 (実施形態1)
 図1から図14を参照して、本発明の実施形態1を説明する。この実施形態1では、V型内燃機関として気筒数を6個にしたものを例に挙げている。
(Embodiment 1)
A first embodiment of the present invention will be described with reference to FIGS. In the first embodiment, a V-type internal combustion engine having six cylinders is taken as an example.
 図中、符号1はクランクシャフトを示している。このクランクシャフト1のクランクジャーナル1a,1b,1c,1dは、図示していないシリンダブロックに回転自在に支持されている。言うまでもないが、クランクジャーナル1a~1dがクランクシャフト1の回転軸心となる。 In the figure, reference numeral 1 denotes a crankshaft. The crank journals 1a, 1b, 1c, and 1d of the crankshaft 1 are rotatably supported by a cylinder block (not shown). Needless to say, the crank journals 1a to 1d serve as the rotational axis of the crankshaft 1.
 このクランクシャフト1のクランクピン1f~1kには、コネクティングロッド2・・・を介してピストン3・・・が取り付けられている。なお、コネクティングロッド2・・・およびピストン3・・・は、図1のみに記載している。また、クランクシャフト1において適宜の位置には、カウンターウェイトが設けられるが、このカウンターウェイトについては、V型内燃機関の気筒数等に応じて設置場所が公知であるので、ここでの詳細な図示や説明を割愛している。 The pistons 3... Are attached to the crank pins 1 f to 1 k of the crankshaft 1 via connecting rods 2. Note that the connecting rods 2 ... and the pistons 3 ... are shown only in FIG. In addition, a counterweight is provided at an appropriate position in the crankshaft 1, and the installation location of this counterweight is known according to the number of cylinders of the V-type internal combustion engine and the like. And omit explanations.
 この実施形態1では、クランクシャフト1の前端側と後端側とに、クランクシャフト1の回転動力を利用して回転駆動される従動機器としての複数の補機5~7が振り分けられて付設されている。 In the first embodiment, a plurality of auxiliary machines 5 to 7 serving as driven devices that are rotationally driven using the rotational power of the crankshaft 1 are distributed and attached to the front end side and the rear end side of the crankshaft 1. ing.
 具体的に、クランクシャフト1の前端側には、1つの補機(第1補機という)5が設けられており、また、クランクシャフト1の後端側には、2つの補機(第2、第3補機という)6,7が設けられている。 Specifically, one auxiliary machine (referred to as a first auxiliary machine) 5 is provided on the front end side of the crankshaft 1, and two auxiliary machines (second auxiliary machines) are provided on the rear end side of the crankshaft 1. 6 and 7).
 第1~第3補機5~7としては、例えば燃料ポンプ、オイルポンプ、ウォーターポンプ等が挙げられるが、それら以外に補機として一般的に知られる適宜の機器とすることも可能である。 Examples of the first to third auxiliary machines 5 to 7 include a fuel pump, an oil pump, a water pump, and the like, but other appropriate devices generally known as auxiliary machines can also be used.
 そして、クランクシャフト1の前端側には、クランクシャフト1の回転動力を動弁機構(図示省略)や第1補機5へ伝達するための動力伝達機構10が設けられており、また、クランクシャフト1の後端側には、クランクシャフト1の回転動力を第2、第3補機6,7へ伝達するための動力伝達機構20が設けられている。 A power transmission mechanism 10 for transmitting the rotational power of the crankshaft 1 to the valve operating mechanism (not shown) and the first auxiliary machine 5 is provided on the front end side of the crankshaft 1. 1 is provided with a power transmission mechanism 20 for transmitting the rotational power of the crankshaft 1 to the second and third auxiliary machines 6 and 7.
 まず、前側の動力伝達機構10は、図5に示すように、主として、フロントクランクスプロケット11と、タイミングチェーン(またはタイミングベルト)12と、4つのカムスプロケット13L,14L,13R,14Rと、アイドルスプロケット15と、第1補機ギヤ16と、小径ギヤ17とを含んで構成されている。 First, as shown in FIG. 5, the front power transmission mechanism 10 mainly includes a front crank sprocket 11, a timing chain (or timing belt) 12, four cam sprockets 13L, 14L, 13R, and 14R, and an idle sprocket. 15, a first auxiliary gear 16, and a small-diameter gear 17.
 なお、フロントクランクスプロケット11が請求項の第1回転体に、カムスプロケット13L,14L,13R,14Rおよび第1補機ギヤ16が請求項の第2回転体に、アイドルスプロケット15が請求項の第3回転体に、タイミングチェーン12が請求項の輪状部材に、それぞれ相当する。 The front crank sprocket 11 is the first rotating body of the claims, the cam sprockets 13L, 14L, 13R, 14R and the first auxiliary gear 16 are the second rotating body of the claims, and the idle sprocket 15 is the first rotating body of the claims. The timing chain 12 corresponds to the three-rotor body and the ring-shaped member in the claims.
 フロントクランクスプロケット11は、クランクシャフト1の前端に一体に取り付けられ、また、カムスプロケット13L,14L,13R,14Rは、図示していない左右のバンクに搭載される吸気カムシャフトや排気カムシャフトの各前端に固定されている。アイドルスプロケット15は、図示していないシリンダブロック等に適宜のブラケットを介して回転自在に支持され、また、第1補機ギヤ16は、第1補機5の入力軸(図示省略)に固定されている。 The front crank sprocket 11 is integrally attached to the front end of the crankshaft 1, and the cam sprockets 13L, 14L, 13R, 14R are intake camshafts and exhaust camshafts mounted on left and right banks (not shown). It is fixed at the front end. The idle sprocket 15 is rotatably supported by a cylinder block (not shown) via an appropriate bracket, and the first auxiliary gear 16 is fixed to the input shaft (not shown) of the first auxiliary device 5. ing.
 タイミングチェーン12は、フロントクランクスプロケット11と、カムスプロケット13L,14L,13R,14Rと、アイドルスプロケット15とに巻き掛けられている。アイドルスプロケット15の後面側には、減速用の小径ギヤ17が一体に設けられており、この小径ギヤ17が第1補機ギヤ16に噛合されている。 The timing chain 12 is wound around a front crank sprocket 11, cam sprockets 13L, 14L, 13R, 14R and an idle sprocket 15. On the rear surface side of the idle sprocket 15, a small-diameter gear 17 for reduction is integrally provided, and this small-diameter gear 17 is meshed with the first auxiliary gear 16.
 このような構成の動力伝達機構10の動作を説明する。 The operation of the power transmission mechanism 10 having such a configuration will be described.
 クランクシャフト1の回転に伴いフロントクランクスプロケット11が一体回転すると、タイミングチェーン12がクランクシャフト1と同方向に回転駆動されることになり、このタイミングチェーン12によってカムスプロケット13L,14L,13R,14Rがクランクシャフト1と同方向に回転駆動されることになり、また、アイドルスプロケット15がクランクシャフト1と逆向きに回転駆動されることになる。このアイドルスプロケット15の回転に伴い、このアイドルスプロケット15に噛合している第1補機ギヤ16がクランクシャフト1と同方向に回転駆動されるようになる。 When the front crank sprocket 11 rotates integrally with the rotation of the crankshaft 1, the timing chain 12 is rotationally driven in the same direction as the crankshaft 1, and the camshafts 13L, 14L, 13R, 14R are driven by this timing chain 12. It will be rotationally driven in the same direction as the crankshaft 1, and the idle sprocket 15 will be rotationally driven in the opposite direction to the crankshaft 1. As the idle sprocket 15 rotates, the first auxiliary gear 16 meshed with the idle sprocket 15 is driven to rotate in the same direction as the crankshaft 1.
 次いで、後側の動力伝達機構20は、図7に示すように、主として、リアクランクギヤ21と、第1、第2アイドラギヤ22,23と、第1、第2小径ギヤ24,25と、第1、第2チェーン26,27と、第2補機ギヤ28と、第3補機ギヤ29とを含んで構成されている。 Next, as shown in FIG. 7, the rear power transmission mechanism 20 mainly includes a rear crank gear 21, first and second idler gears 22 and 23, first and second small diameter gears 24 and 25, The first and second chains 26 and 27, the second auxiliary gear 28, and the third auxiliary gear 29 are configured.
 なお、リアクランクギヤ21が請求項の第1回転体に、第2、第3補機ギヤ28,29が請求項の第2回転体に、第1、第2アイドラギヤ22,23が請求項の中間回転体に、第1、第2チェーン26,27が請求項の輪状部材に、それぞれ相当する。 The rear crank gear 21 is the first rotating body of the claims, the second and third auxiliary gears 28 and 29 are the second rotating body of the claims, and the first and second idler gears 22 and 23 are the claims. The first and second chains 26 and 27 correspond to the intermediate rotating body and the ring-shaped members of the claims, respectively.
 リアクランクギヤ21は、クランクシャフト1の後端に一体に取り付けられ、また、第1、第2アイドラギヤ22,23は、図示していないシリンダブロック等に適宜のブラケットを介して回転自在に支持されている。この第1、第2アイドラギヤ22,23がリアクランクギヤ21にそれぞれ噛み合わされている。 The rear crank gear 21 is integrally attached to the rear end of the crankshaft 1, and the first and second idler gears 22 and 23 are rotatably supported by a cylinder block (not shown) via an appropriate bracket. ing. The first and second idler gears 22 and 23 are meshed with the rear crank gear 21, respectively.
 第1、第2小径ギヤ24,25は、第1、第2アイドラギヤ22,23の後面側に一体に設けられている。第2補機ギヤ28は、第2補機6の入力軸(図示省略)に固定され、また、第3補機ギヤ29は、第3補機7の入力軸(図示省略)に固定されている。第1チェーン26は、第1小径ギヤ24と第2補機ギヤ28とに巻き掛けられており、第2チェーン27は、第2小径ギヤ25と第3補機ギヤ29とに巻き掛けられている。 The first and second small-diameter gears 24 and 25 are integrally provided on the rear surface side of the first and second idler gears 22 and 23. The second accessory gear 28 is fixed to the input shaft (not shown) of the second accessory 6, and the third accessory gear 29 is fixed to the input shaft (not shown) of the third accessory 7. Yes. The first chain 26 is wound around the first small diameter gear 24 and the second auxiliary gear 28, and the second chain 27 is wound around the second small diameter gear 25 and the third auxiliary gear 29. Yes.
 このような構成の動力伝達機構20の動作を説明する。 The operation of the power transmission mechanism 20 having such a configuration will be described.
 クランクシャフト1の回転に伴いリアクランクギヤ21が一体回転すると、このリアクランクギヤ21と噛合している第1、第2アイドラギヤ22,23がクランクシャフト1と逆向きに回転駆動されることになる。この第1、第2アイドラギヤ22,23の回転に伴い、それと一体回転する第1、第2小径ギヤ24,25に巻き掛けられている第1、第2チェーン26,27がクランクシャフト1と逆向きに回転駆動されることになり、この第1、第2チェーン26,27によって第2補機ギヤ28および第3補機ギヤ29がクランクシャフト1と逆向きに回転駆動される。 When the rear crank gear 21 rotates together with the rotation of the crankshaft 1, the first and second idler gears 22 and 23 meshing with the rear crank gear 21 are driven to rotate in the opposite direction to the crankshaft 1. . As the first and second idler gears 22 and 23 rotate, the first and second chains 26 and 27 wound around the first and second small-diameter gears 24 and 25 rotating integrally therewith are opposite to the crankshaft 1. The second auxiliary gear 28 and the third auxiliary gear 29 are rotationally driven in the opposite direction to the crankshaft 1 by the first and second chains 26 and 27.
 次に、上述したようなV型内燃機関では、クランクシャフト1の回転に伴う複数のピストン3の往復運動によって発生する1次慣性偶力を残存させないように打ち消すためのバランサ手段(符号省略)を設けているので、このバランサ手段の構成について、詳細に説明する。 Next, in the V-type internal combustion engine as described above, balancer means (not shown) for canceling out the primary inertia couple generated by the reciprocating motion of the plurality of pistons 3 accompanying the rotation of the crankshaft 1 does not remain. Since it is provided, the configuration of the balancer means will be described in detail.
 前記の1次慣性偶力については、公知であるが、バランサ手段の詳細説明に先立ち、図9から図11を参照して、簡単に説明する。 The primary inertia couple is known, but will be briefly described with reference to FIGS. 9 to 11 prior to detailed description of the balancer means.
 つまり、1次慣性偶力は、クランクシャフト1の鉛直方向に沿うy軸(図2参照)周りに発生するモーメントM1y(図9の破線参照)と、このy軸に対して直交しかつクランクシャフト1の長手方向に対して直交する方向に沿うx軸(図2参照)周りに発生するモーメントM1x(図9の実線参照)との合成モーメントのことである。 That is, the primary inertia couple is perpendicular to the y axis and the moment M1y (see the broken line in FIG. 9) generated around the y axis (see FIG. 2) along the vertical direction of the crankshaft 1. 1 is a combined moment with a moment M1x (see the solid line in FIG. 9) generated around the x-axis (see FIG. 2) along a direction orthogonal to the longitudinal direction of 1.
 この1次慣性偶力は、図11に示すように、クランクシャフト1の長手方向中央Pを基点とする「すりこぎ」振動を発生する力、言い換えればクランクシャフト1の長手方向中央Pを基点として前端側および後端側をそれぞれ円錐状(またはすり鉢状)に振り動かす力となる。この1次慣性偶力の前端側および後端側の形状は、円形ではなく、図10に示すように楕円形になる。 As shown in FIG. 11, this primary inertia couple is a force that generates “grinding” vibration with the center P in the longitudinal direction of the crankshaft 1 as a base point, in other words, with the center P in the longitudinal direction of the crankshaft 1 as a base point. This is a force that swings the front end side and the rear end side in a conical shape (or mortar shape). The shapes of the front end side and the rear end side of the primary inertia couple are not circular, but are elliptical as shown in FIG.
 前記のバランサ手段は、正回転アンバランスマス31,32と、逆回転アンバランスマス33,34A,34Bとを含んで構成されている。 The balancer means includes forward rotation unbalance masses 31, 32 and reverse rotation unbalance masses 33, 34A, 34B.
 まず、正回転アンバランスマス31,32は、前記1次慣性偶力を低減するとともに当該1次慣性偶力の前後両端側の形状を円形に変形させるためのものである。 First, the positive rotation unbalance masses 31 and 32 are for reducing the primary inertia couple and for deforming the shapes of the front and rear ends of the primary inertia couple into a circle.
 具体的に、正回転アンバランスマス31,32は、図3に示すように、クランクシャフト1の前端側に設けられるカウンターウェイト4Frと、図4に示すように、クランクシャフト1の後端側に設けられるカウンターウェイト4Rrとの所定位置に、振り分けて設けられる。 Specifically, the forward rotation unbalance masses 31 and 32 are arranged on the counterweight 4Fr provided on the front end side of the crankshaft 1 as shown in FIG. 3 and on the rear end side of the crankshaft 1 as shown in FIG. It is provided at a predetermined position with respect to the provided counterweight 4Rr.
 この正回転アンバランスマス31,32は、例えば扇形の突起、つまり正の質量を持つものとされている。このような正回転アンバランスマス31,32を各カウンターウェイト4Fr,4Rrの所定位置に設けると、各カウンターウェイト4Fr,4Rrの回転方向での質量がアンバランスになり、クランクシャフト1に発生する1次慣性偶力に対する正回転釣り合わせ偶力を発生するようになる。 The positive rotation unbalance masses 31 and 32 are, for example, fan-shaped protrusions, that is, have a positive mass. When such forward rotation unbalance masses 31 and 32 are provided at predetermined positions of the counterweights 4Fr and 4Rr, the masses of the counterweights 4Fr and 4Rr in the rotational direction become unbalanced and are generated in the crankshaft 1. A forward rotation balancing couple for the next inertia couple is generated.
 前側に設けられる正回転アンバランスマス31と、後側に設けられる正回転アンバランスマス32とは、クランクジャーナル1a,1dの回転中心Oを中心として180度対向した位置に配置されている。 The forward rotation unbalance mass 31 provided on the front side and the forward rotation unbalance mass 32 provided on the rear side are arranged at positions opposed to each other by 180 degrees around the rotation center O of the crank journals 1a and 1d.
 そして、前後2つの正回転アンバランスマス31,32の個々は、要求される正回転釣り合わせ偶力の1/2を発生するのに必要な質量に設定される。 Each of the two forward rotation unbalance masses 31 and 32 is set to a mass necessary to generate 1/2 of the required forward rotation balance couple.
 次に、逆回転アンバランスマス33,34A,34Bは、前記正回転アンバランスマス31,32により低減かつ変形させた1次慣性偶力(図12から図14参照)を打ち消すために、当該1次慣性偶力と逆位相で同レベルの逆回転釣り合せ偶力を発生するものである。 Next, the reverse rotation unbalance masses 33, 34A, 34B are used to cancel the primary inertia couple (see FIGS. 12 to 14) reduced and deformed by the forward rotation unbalance masses 31, 32. A counter-rotation balancing couple of the same level is generated in the opposite phase to the next inertia couple.
 具体的に、逆回転アンバランスマス33,34A,34Bは、前側の動力伝達機構10に装備するアイドラギヤ15と、後側の動力伝達機構20に装備する第1、第2アイドラギヤ22,23とに設けられている。 Specifically, the reverse rotation unbalance masses 33, 34 </ b> A, 34 </ b> B are connected to the idler gear 15 provided in the front power transmission mechanism 10 and the first and second idler gears 22, 23 provided in the rear power transmission mechanism 20. Is provided.
 なお、アイドラギヤ15は、クランクシャフト1の前端側に設置されてクランクシャフト1の回転方向と逆向きに回転するものであり、また、第1、第2アイドラギヤ22,23は、クランクシャフト1の後端側に設置されてクランクシャフト1の回転方向と逆向きに回転するものである。 The idler gear 15 is installed on the front end side of the crankshaft 1 and rotates in the direction opposite to the rotation direction of the crankshaft 1, and the first and second idler gears 22 and 23 are arranged at the rear of the crankshaft 1. It is installed on the end side and rotates in the direction opposite to the rotation direction of the crankshaft 1.
 このアイドラギヤ15、第1、第2アイドラギヤ22,23は、例えば図6および図8に示すように、中心の円筒部の外径側に環状板部を設けるとともに、この環状板部の外周に複数の歯を設けたようなものとされている。このアイドラギヤ15、第1、第2アイドラギヤ22,23の環状板部の円周所定位置において外周寄りに、逆回転アンバランスマス33,34A,34Bが設けられている。 As shown in FIGS. 6 and 8, for example, the idler gear 15 and the first and second idler gears 22 and 23 are provided with an annular plate portion on the outer diameter side of the central cylindrical portion, and a plurality of idler gears are provided on the outer periphery of the annular plate portion. It is said that the tooth is provided. Reverse rotation unbalance masses 33, 34A, 34B are provided near the outer periphery at predetermined circumferential positions of the annular plate portions of the idler gear 15, the first and second idler gears 22, 23.
 逆回転アンバランスマス33,34A,34Bは、例えば扇形の突起、つまり正の質量を持つものとされている。このような逆回転アンバランスマス33,34A,34Bを各ギヤ15,22,23に設けると、各ギヤ15,22,23の回転方向での質量がアンバランスになり、クランクシャフト1に発生する1次慣性偶力に対する逆回転釣り合わせ偶力を発生するようになる。 The reverse rotation unbalance masses 33, 34A, and 34B are, for example, fan-shaped protrusions, that is, have a positive mass. If such reverse rotation unbalance masses 33, 34A, 34B are provided in the gears 15, 22, 23, the masses of the gears 15, 22, 23 in the rotational direction become unbalanced and are generated in the crankshaft 1. The counter-rotation balancing couple with respect to the primary inertia couple is generated.
 前側に設けられる1つの逆回転アンバランスマス33と、後側に設けられる2つの逆回転アンバランスマス34A,34Bとは、各設置対象部材(15,22,23)の回転中心O1,O2,O3それぞれを仮想で一致させた状態において、当該回転中心O1,O2,O3を中心として180度対向した位置に配置されている。 One reverse rotation unbalance mass 33 provided on the front side and two reverse rotation unbalance masses 34A, 34B provided on the rear side are the rotation centers O1, O2, O2 of the respective installation target members (15, 22, 23). In a state where O3 is virtually matched, the rotation centers O1, O2, and O3 are arranged at positions that face each other by 180 degrees.
 そして、前側に設けられる1つの逆回転アンバランスマス33と、後側に設けられる2つの逆回転アンバランスマス34A,34Bとは、要求される逆回転釣り合せ偶力の1/2を発生するのに必要な質量に設定される。なお、後側の2つの逆回転アンバランスマス34A,34Bは、互いに同一質量でかつ同一形状とされている。 One reverse rotation unbalance mass 33 provided on the front side and two reverse rotation unbalance masses 34A and 34B provided on the rear side generate ½ of the required reverse rotation balance couple. Set to the mass required for The two reverse rotation unbalance masses 34A and 34B on the rear side have the same mass and the same shape.
 このような実施形態1では、クランクシャフト1の回転に伴い発生する1次慣性偶力(図9~図11参照)が、まず、正回転アンバランスマス31,32を設けた前後のカウンターウェイト4Fr,4Rrによって発生する正回転釣り合せ偶力でもって吸収されることによって図12~図14に示すように低減されるとともに、変形されることになる。次いで、逆回転アンバランスマス33,34A,34Bを設けたアイドラギヤ15、第1、第2アイドラギヤ22,23によって発生する逆回転釣り合せ偶力が、前記低減されるとともに変形された1次慣性偶力(図12~図14参照)と釣り合うことになって、当該1次慣性偶力がほとんどあるいは完全に打ち消されることになる。 In the first embodiment, the primary inertia couple (see FIGS. 9 to 11) generated with the rotation of the crankshaft 1 is first caused by the counterweights 4Fr before and after the forward rotation unbalance masses 31 and 32 are provided. , 4Rr is absorbed by the positive rotation balancing couple and is reduced and deformed as shown in FIGS. Subsequently, the reverse rotation balancing couple generated by the idler gear 15, the first and second idler gears 22, 23 provided with the reverse rotation unbalance masses 33, 34A, and 34B is reduced and deformed to the primary inertia couple. In balance with the force (see FIGS. 12 to 14), the primary inertia couple is almost or completely canceled.
 以上説明したように、本発明の特徴を適用した実施形態1に係るV型内燃機関では、クランクシャフト1の回転に伴い発生する1次慣性偶力を残存させずに打ち消すことが可能になる。したがって、本発明によれば、V型内燃機関の静粛性の向上、ならびに回転上昇の円滑化を図るうえで有利となる。 As described above, in the V-type internal combustion engine according to the first embodiment to which the features of the present invention are applied, it is possible to cancel the primary inertia couple generated with the rotation of the crankshaft 1 without remaining. Therefore, according to the present invention, it is advantageous in improving the quietness of the V-type internal combustion engine and smoothing the increase in rotation.
 しかも、この実施形態1では、従来例のように内燃機関と別体のバランサ装置をわざわざ付設するのではなく、V型内燃機関に予め装備される既存の部材(4Fr,4Rr,15,22,23)に、クランクシャフト1に発生する1次慣性偶力を打ち消すために必要なアンバランスマス(31,32,33,34A,34B)を設けるようにしている。これにより、前記従来例で用いるバランサ装置そのものが不要であるから、V型内燃機関の重量や外形サイズが不要に大型化せずに済むとともに、コスト上昇を大幅に抑制することが可能になる。 Moreover, in the first embodiment, the balancer device separate from the internal combustion engine is not purposely provided as in the conventional example, but the existing members (4Fr, 4Rr, 15, 22, 23) is provided with unbalance masses (31, 32, 33, 34A, 34B) necessary for canceling the primary inertia couple generated in the crankshaft 1. This eliminates the need for the balancer device itself used in the conventional example, so that the weight and the outer size of the V-type internal combustion engine do not need to be unnecessarily increased, and the cost increase can be significantly suppressed.
 (実施形態2)
 図15および図16を参照して、本発明の実施形態2を説明する。この実施形態2では、V型内燃機関の前側に配置される動力伝達機構10の構成が上記実施形態1と相違しており、それ以外の構成については上記実施形態1と基本的に同じになっている。
(Embodiment 2)
A second embodiment of the present invention will be described with reference to FIGS. 15 and 16. In the second embodiment, the configuration of the power transmission mechanism 10 disposed on the front side of the V-type internal combustion engine is different from that of the first embodiment, and other configurations are basically the same as those of the first embodiment. ing.
 前側の動力伝達機構10は、図示していないV型内燃機関の吸気カムシャフトや排気カムシャフトと第1補機5とにクランクシャフト1の回転動力を伝達するものであって、主として、フロントクランクギヤ11と、第1、第2タイミングチェーン(またはタイミングベルト)12A,12Bと、カムスプロケット13L,14L,13R,14Rと、第1、第2アイドラギヤ15A,15Bと、第1、第2小径ギヤ17A,17Bと、第1補機ギヤ16とを含んで構成されている。 The front power transmission mechanism 10 transmits the rotational power of the crankshaft 1 to an intake camshaft or exhaust camshaft of the V-type internal combustion engine (not shown) and the first auxiliary machine 5, and mainly includes a front crank. Gear 11, first and second timing chains (or timing belts) 12A and 12B, cam sprockets 13L, 14L, 13R and 14R, first and second idler gears 15A and 15B, and first and second small diameter gears 17A, 17B and the first auxiliary gear 16 are configured.
 なお、フロントクランクギヤ51が請求項の第1回転体に、カムスプロケット13L,14L,13R,14Rが請求項の第2回転体に、第1、第2アイドラギヤ15A,15Bが請求項の中間回転体に、第1、第2タイミングチェーン12A,12Bが請求項の輪状部材に、それぞれ相当する。 The front crank gear 51 is the first rotating body of the claims, the cam sprockets 13L, 14L, 13R, 14R are the second rotating body of the claims, and the first and second idler gears 15A, 15B are the intermediate rotation of the claims. The first and second timing chains 12A and 12B correspond to the body and the ring-shaped members of the claims, respectively.
 フロントクランクギヤ11は、第1アイドラギヤ15Aに噛合されており、この第1アイドラギヤ15Aには第2アイドラギヤ15Bが噛合されている。 The front crank gear 11 is meshed with the first idler gear 15A, and the second idler gear 15B is meshed with the first idler gear 15A.
 第1、第2アイドラギヤ15A,15Bの前面側には、それぞれ減速用の第1、第2小径ギヤ17A,17Bが軸方向隣り合わせにかつ同軸上に一体に設けられている。 The first and second small-diameter gears 17A and 17B for reduction are integrally provided on the front side of the first and second idler gears 15A and 15B, adjacent to each other in the axial direction and coaxially.
 第1アイドラギヤ15Aの第1小径ギヤ17Aと一方バンクのカムスプロケット13L,13Rとに第1タイミングチェーン12Aが巻き掛けられており、第2アイドラギヤ15Bの第2小径ギヤ17Bと他方バンクのカムスプロケット14L,14Rとに第2タイミングチェーン12Bが巻き掛けられている。 The first timing chain 12A is wound around the first small-diameter gear 17A of the first idler gear 15A and the cam sprockets 13L, 13R of one bank, and the second small-diameter gear 17B of the second idler gear 15B and the cam sprocket 14L of the other bank. 14R is wound around the second timing chain 12B.
 このような構成の動力伝達機構10の動作を説明する。 The operation of the power transmission mechanism 10 having such a configuration will be described.
 クランクシャフト1の回転に伴いフロントクランクギヤ11が一体回転すると、このフロントクランクギヤ11と噛合している第1アイドラギヤ15Aがクランクシャフト1の回転方向と逆向きに回転駆動される。この第1アイドラギヤ15Aの回転に伴い、それと一体回転する第1小径ギヤ17Aに巻き掛けられている第1タイミングチェーン12Aがクランクシャフト1と逆向きに回転駆動されることになり、この第1タイミングチェーン12Aによって2つのカムスプロケット13L,14Lがクランクシャフト1と逆向きに回転駆動される。 When the front crank gear 11 rotates together with the rotation of the crankshaft 1, the first idler gear 15A meshing with the front crank gear 11 is driven to rotate in the direction opposite to the rotation direction of the crankshaft 1. As the first idler gear 15A rotates, the first timing chain 12A wound around the first small-diameter gear 17A that rotates together with the first idler gear 15A is rotationally driven in the opposite direction to the crankshaft 1, and this first timing The two cam sprockets 13L, 14L are rotationally driven in the opposite direction to the crankshaft 1 by the chain 12A.
 また、第1アイドラギヤ15Aの回転に伴い第2アイドラギヤ15Bが逆向きに回転駆動される。この第2アイドラギヤ15Bの回転に伴い、それと一体回転する第2小径ギヤ17Bに巻き掛けられている第2タイミングチェーン12Bがクランクシャフト1と同じ向きに回転駆動されることになり、この第2タイミングチェーン12Bによって2つのカムスプロケット13R,14Rがクランクシャフト1と同じ向きに回転駆動される。 Further, as the first idler gear 15A rotates, the second idler gear 15B is driven to rotate in the reverse direction. As the second idler gear 15B rotates, the second timing chain 12B wound around the second small-diameter gear 17B that rotates together with the second idler gear 15B is driven to rotate in the same direction as the crankshaft 1. The two cam sprockets 13R and 14R are rotationally driven in the same direction as the crankshaft 1 by the chain 12B.
 このような構成において、前側の動力伝達機構10に備える第1補機ギヤ16に、逆回転アンバランスマス33が設けられている。この逆回転アンバランスマス33は、実施形態1と同様に、正の質量となる扇形の突起とされており、第1補機ギヤ16に付加的に設けられている。 In such a configuration, the reverse rotation unbalance mass 33 is provided in the first auxiliary gear 16 provided in the power transmission mechanism 10 on the front side. Similar to the first embodiment, the reverse rotation unbalance mass 33 is a fan-shaped protrusion having a positive mass, and is additionally provided in the first auxiliary gear 16.
 この実施形態2の場合も、上記実施形態1と同様の作用、効果を得ることができる。 In the case of the second embodiment, the same actions and effects as those of the first embodiment can be obtained.
 (実施形態3)
 図17から図21を参照して、本発明の実施形態3を説明する。この実施形態3では、V型内燃機関の前後に配置される動力伝達機構40,50の構成が上記実施形態1と相違しており、それ以外の構成については上記実施形態1と基本的に同じになっている。
(Embodiment 3)
A third embodiment of the present invention will be described with reference to FIGS. In the third embodiment, the configurations of the power transmission mechanisms 40 and 50 arranged before and after the V-type internal combustion engine are different from those of the first embodiment, and other configurations are basically the same as those of the first embodiment. It has become.
 つまり、V型内燃機関の前側に、上記実施形態1の後側の動力伝達機構20と基本的に同じ構成の動力伝達機構40が配置されており、V型内燃機関の後側に、動弁機構専用の動力伝達機構50が設けられている。 That is, a power transmission mechanism 40 having basically the same configuration as that of the rear power transmission mechanism 20 of the first embodiment is disposed on the front side of the V-type internal combustion engine, and a valve operating mechanism is disposed on the rear side of the V-type internal combustion engine. A power transmission mechanism 50 dedicated to the mechanism is provided.
 まず、前側の動力伝達機構40は、図18に示すように、V型内燃機関の前側に配置される2つの補機6,7にクランクシャフト1の回転動力を伝達するものであって、主として、フロントクランクギヤ41と、第1、第2アイドラギヤ42,43と、第1、第2小径ギヤ44,45と、第1、第2チェーン(またはベルト)46,47と、第1補機ギヤ48と、第2補機ギヤ49とを含んで構成されている。 First, as shown in FIG. 18, the power transmission mechanism 40 on the front side transmits the rotational power of the crankshaft 1 to the two auxiliary machines 6 and 7 arranged on the front side of the V-type internal combustion engine. The front crank gear 41, the first and second idler gears 42 and 43, the first and second small diameter gears 44 and 45, the first and second chains (or belts) 46 and 47, and the first auxiliary gears 48 and a second auxiliary gear 49.
 なお、フロントクランクギヤ41が請求項の第1回転体に、第1、第2補機ギヤ48,49が請求項の第2回転体に、第1、第2アイドラギヤ42,43が請求項の中間回転体に、第1、第2チェーン46,47が請求項の輪状部材に、それぞれ相当する。 The front crank gear 41 is the first rotating body of the claims, the first and second auxiliary gears 48 and 49 are the second rotating body of the claims, and the first and second idler gears 42 and 43 are the claims. The first and second chains 46 and 47 correspond to the intermediate rotating body and the ring-shaped members in the claims, respectively.
 フロントクランクギヤ41は、クランクシャフト1の前端に一体に取り付けられ、また、第1、第2アイドラギヤ42,43は、図示していないシリンダブロック等に適宜のブラケットを介して回転自在に支持されている。この第1、第2アイドラギヤ42,43がフロントクランクギヤ41にそれぞれ噛み合わされている。 The front crank gear 41 is integrally attached to the front end of the crankshaft 1, and the first and second idler gears 42 and 43 are rotatably supported on a cylinder block (not shown) via an appropriate bracket. Yes. The first and second idler gears 42 and 43 are meshed with the front crank gear 41, respectively.
 第1、第2小径ギヤ44,45は、第1、第2アイドラギヤ42,43の前面側に一体に設けられている。第1補機ギヤ48は、第1補機5の入力軸(図示省略)に固定され、また、第2補機ギヤ49は、第2補機6の入力軸(図示省略)に固定されている。第1チェーン46は、第1小径ギヤ44と第1補機ギヤ48とに巻き掛けられており、第2チェーン47は、第2小径ギヤ45と第2補機ギヤ49とに巻き掛けられている。 The first and second small diameter gears 44 and 45 are integrally provided on the front side of the first and second idler gears 42 and 43. The first auxiliary gear 48 is fixed to the input shaft (not shown) of the first auxiliary device 5, and the second auxiliary gear 49 is fixed to the input shaft (not shown) of the second auxiliary device 6. Yes. The first chain 46 is wound around the first small diameter gear 44 and the first auxiliary gear 48, and the second chain 47 is wound around the second small diameter gear 45 and the second auxiliary gear 49. Yes.
 このような構成の動力伝達機構40の動作を説明する。 The operation of the power transmission mechanism 40 having such a configuration will be described.
 クランクシャフト1の回転に伴いフロントクランクギヤ41が一体回転すると、このフロントクランクギヤ41と噛合している第1、第2アイドラギヤ42,43がクランクシャフト1の回転方向と逆向きに回転駆動される。この第1、第2アイドラギヤ42,43の回転に伴い、それと一体回転する第1、第2小径ギヤ44,45に巻き掛けられている第1、第2チェーン46,47がクランクシャフト1と逆向きへ回転駆動されることになり、この第1、第2チェーン46,47によって第1補機ギヤ48および第2補機ギヤ49がクランクシャフト1と逆向きに回転駆動される。 When the front crank gear 41 rotates integrally with the rotation of the crankshaft 1, the first and second idler gears 42 and 43 meshing with the front crank gear 41 are driven to rotate in the direction opposite to the rotation direction of the crankshaft 1. . As the first and second idler gears 42 and 43 rotate, the first and second chains 46 and 47 wound around the first and second small-diameter gears 44 and 45 rotating integrally therewith are opposite to the crankshaft 1. The first auxiliary gear 48 and the second auxiliary gear 49 are rotated in the opposite direction to the crankshaft 1 by the first and second chains 46 and 47.
 一方、後側の動力伝達機構50は、図20に示すように、図示していないV型内燃機関の吸気カムシャフトや排気カムシャフトにクランクシャフト1の回転動力を伝達するものであって、主として、リアクランクギヤ51と、第1、第2アイドラギヤ52,53と、第1、第2小径ギヤ54,55と、第1、第2タイミングチェーン(またはタイミングベルト)56,57と、4つのカムスプロケット13L,14L,13R,14Rとを含んで構成されている。 On the other hand, as shown in FIG. 20, the rear power transmission mechanism 50 transmits the rotational power of the crankshaft 1 to an intake camshaft and an exhaust camshaft of a V-type internal combustion engine (not shown). , Rear crank gear 51, first and second idler gears 52 and 53, first and second small diameter gears 54 and 55, first and second timing chains (or timing belts) 56 and 57, and four cams Sprockets 13L, 14L, 13R, and 14R are included.
 なお、リアクランクギヤ51が請求項の第1回転体に、カムスプロケット13L,14L,13R,14Rが請求項の第2回転体に、第1、第2アイドラギヤ52,53が請求項の中間回転体に、第1、第2タイミングチェーン56,57が請求項の輪状部材に、それぞれ相当する。 The rear crank gear 51 is the first rotating body of the claims, the cam sprockets 13L, 14L, 13R, 14R are the second rotating body of the claims, and the first and second idler gears 52, 53 are the intermediate rotation of the claims. The first and second timing chains 56 and 57 correspond to the body and the ring-shaped members of the claims, respectively.
 リアクランクギヤ51は、第1、第2アイドラギヤ52,53にそれぞれ噛合されており、これによって第1、第2アイドラギヤ52,53の回転方向がクランクシャフト1の回転方向と逆向きとなる。 The rear crank gear 51 is engaged with the first and second idler gears 52 and 53, respectively, so that the rotation direction of the first and second idler gears 52 and 53 is opposite to the rotation direction of the crankshaft 1.
 第1、第2アイドラギヤ52,53の後面側には、それぞれ減速用の第1、第2小径ギヤ54,55が軸方向隣り合わせにかつ同軸上に一体に設けられている。第1アイドラギヤ52の第1小径ギヤ54と一方バンクのカムスプロケット13L,13Rとに第1タイミングチェーン56が巻き掛けられており、第2アイドラギヤ53の第2小径ギヤ55と他方バンクのカムスプロケット14L,14Rとに第2タイミングチェーン57が巻き掛けられている。 The first and second small-diameter gears 54 and 55 for reduction are integrally provided on the rear surfaces of the first and second idler gears 52 and 53 so as to be adjacent to each other in the axial direction and coaxially. A first timing chain 56 is wound around the first small-diameter gear 54 of the first idler gear 52 and the cam sprockets 13L and 13R of one bank, and the second small-diameter gear 55 of the second idler gear 53 and the cam sprocket 14L of the other bank. , 14R is wound around the second timing chain 57.
 このような構成の動力伝達機構50の動作を説明する。 The operation of the power transmission mechanism 50 having such a configuration will be described.
 クランクシャフト1の回転に伴いリアクランクギヤ51が一体回転すると、このリアクランクギヤ51と噛合している第1、第2アイドラギヤ52,53がクランクシャフト1の回転方向と逆向きに回転駆動される。この第1、第2アイドラギヤ52,53の回転に伴い、それと一体回転する第1、第2小径ギヤ54,55に巻き掛けられている第1、第2タイミングチェーン56,57がクランクシャフト1と逆向きに回転駆動されることになり、この第1、第2タイミングチェーン56,57によって4つのカムスプロケット13L,14L,13R,14Rがクランクシャフト1と逆向きに回転駆動される。 When the rear crank gear 51 rotates together with the rotation of the crankshaft 1, the first and second idler gears 52 and 53 engaged with the rear crank gear 51 are driven to rotate in the direction opposite to the rotation direction of the crankshaft 1. . As the first and second idler gears 52 and 53 rotate, the first and second timing chains 56 and 57 wound around the first and second small-diameter gears 54 and 55 rotating integrally therewith are connected to the crankshaft 1. The four cam sprockets 13L, 14L, 13R, and 14R are rotationally driven in the opposite direction to the crankshaft 1 by the first and second timing chains 56 and 57.
 このような構成において、前側の動力伝達機構40に備える2つのアイドラギヤ42,43に、逆回転アンバランスマス33A,33Bが振り分けられて設けられており、後側の動力伝達機構50に備える2つのアイドラギヤ52,53に、逆回転アンバランスマス34A,34Bが振り分けられて設けられている。 In such a configuration, the reverse rotation unbalance masses 33 </ b> A and 33 </ b> B are distributed and provided on the two idler gears 42 and 43 provided on the front power transmission mechanism 40, and the two provided on the rear power transmission mechanism 50 are provided. Reverse rotation unbalance masses 34 </ b> A and 34 </ b> B are distributed to idler gears 52 and 53.
 そして、この実施形態3における前後の逆回転アンバランスマス33A,33Bおよび34A,34Bは、実施形態1と同様に、正の質量となる扇形の突起とされており、図19および図21に示すように、各アイドラギヤ42,43,52,53に付加的に設けられることにより、正回転アンバランスマス31,32により低減かつ変形した1次慣性偶力を打ち消すために、当該1次慣性偶力と逆位相で同レベルの逆回転釣り合せ偶力(図12の破線参照)を発生させるようになっている。 The front and rear reverse rotation unbalance masses 33A, 33B and 34A, 34B in the third embodiment are fan-shaped projections having a positive mass as in the first embodiment, and are shown in FIGS. 19 and 21. As described above, in order to cancel the primary inertia couple reduced and deformed by the forward rotation unbalance masses 31 and 32 by being additionally provided in each idler gear 42, 43, 52 and 53, the primary inertia couple The reverse rotation balancing couple (see the broken line in FIG. 12) of the same level and in the opposite phase is generated.
 また、実施形態3において前側の2つの逆回転アンバランスマス33A,33Bと、後側の2つの逆回転アンバランスマス34A,34Bとは、実施形態1と同様に、各設置対象部材(42,43,52,53)の回転中心O4,O5,O6,O7それぞれを仮想で一致させた状態において、当該回転中心O4,O5,O6,O7を中心として180度対向した位置に配置されている。 Further, in the third embodiment, the two reverse rotation unbalance masses 33A and 33B on the front side and the two reverse rotation unbalance masses 34A and 34B on the rear side are respectively installed target members (42, 43, 52, 53) in a state where the respective rotation centers O4, O5, O6, and O7 are virtually coincident with each other, the rotation centers O4, O5, O6, and O7 are arranged at positions opposed to each other by 180 degrees.
 さらに、前側の2つの逆回転アンバランスマス33A,33Bと、後側の2つの逆回転アンバランスマス34A,34Bとは、要求される逆回転釣り合せ偶力の1/2を発生するのに必要な質量に設定される。 Further, the two reverse rotation unbalance masses 33A and 33B on the front side and the two reverse rotation unbalance masses 34A and 34B on the rear side generate half of the required reverse rotation balance couple. The required mass is set.
 この実施形態3の場合も、上記実施形態1と同様の作用、効果を得ることができる。 In the case of the third embodiment, the same actions and effects as those of the first embodiment can be obtained.
 なお、本発明は、上述した実施形態のみに限定されるものではなく、特許請求の範囲内および当該範囲と均等の範囲で包含されるすべての変形や応用が可能である。以下で例を挙げる。 Note that the present invention is not limited to the above-described embodiments, and all modifications and applications within the scope of the claims and within the scope equivalent to the scope are possible. Examples are given below.
 (1)上記実施形態1~3では、正回転アンバランスマス31,32や逆回転アンバランスマス(33,33A,33B,34A,34B)は、その設置対象部材の質量を増加させる突起等とした例を挙げているが、図示していないが、例えば設置対象部材の質量を減少させる肉抜き孔または凹みとすることが可能である。 (1) In the first to third embodiments, the forward rotation unbalance masses 31, 32 and the reverse rotation unbalance masses (33, 33A, 33B, 34A, 34B) are protrusions that increase the mass of the installation target member. Although not shown, although it is not illustrated, for example, it is possible to use a hollow or dent that reduces the mass of the installation target member.
 具体的に、図1に示す後側の動力伝達機構20の第1、第2アイドラギヤ22,23を例に挙げて、応用例を説明する。 Specifically, an application example will be described by taking the first and second idler gears 22 and 23 of the rear power transmission mechanism 20 shown in FIG. 1 as an example.
 例えば図22および図23に示すように、第1、第2アイドラギヤ22,23の円周上の複数箇所に、円形の肉抜き孔からなる逆回転アンバランスマス34A,34Bを設けるようにしておき、複数の肉抜き孔の離隔間隔を所定角度範囲で一定とし、残りの所定角度範囲で前記よりも大きく設定することができる。これにより、第1、第2アイドラギヤ22,23の回転方向の質量が不均一となり、クランクシャフト1に逆回転釣り合い偶力を付与することが可能になる。 For example, as shown in FIG. 22 and FIG. 23, reverse rotation unbalance masses 34A and 34B made of circular hollow holes are provided at a plurality of locations on the circumference of the first and second idler gears 22 and 23, respectively. The spacing between the plurality of lightening holes can be made constant within a predetermined angle range, and can be set larger than the above in the remaining predetermined angle range. Thereby, the mass in the rotation direction of the first and second idler gears 22 and 23 becomes non-uniform, and it becomes possible to apply a counter-rotation balance couple to the crankshaft 1.
 このような逆回転アンバランスマス34A,34Bとしての肉抜き孔の形成数、形成位置あるいは形状については、要求される逆回転釣り合い偶力に基づいて、適宜に設定することができる。 The number, formation position, or shape of the hollow holes as the reverse rotation unbalance masses 34A and 34B can be appropriately set based on the required reverse rotation balance couple.
 なお、逆回転アンバランスマス34A,34Bとしての肉抜き孔は、例えば図24および図25に示すように、第1、第2アイドラギヤ22,23に一体に形成されている小径ギヤ24,25にも設けることが可能である。 In addition, as shown in FIG. 24 and FIG. 25, for example, as shown in FIGS. 24 and 25, the lightening holes as the reverse rotation unbalance masses 34A and 34B are formed in the small diameter gears 24 and 25 formed integrally with the first and second idler gears 22 and 23. Can also be provided.
 図示例では、小径ギヤ24,25に所定角度範囲にのみ一定角度ごとに逆回転アンバランスマスとしての肉抜き孔35A,35Bを設けているが、残りの所定角度範囲には肉抜き孔を設けないようにしている。 In the illustrated example, the small-diameter gears 24 and 25 are provided with the lightening holes 35A and 35B as the reverse rotation unbalanced mass for each predetermined angle only in the predetermined angle range, but the remaining predetermined angle ranges are provided with the lightening holes. I am trying not to.
 このような場合でも、上記実施形態1,2と略同様の作用、効果が得られる。また、上記実施形態2の構成に対しても、この応用技術を適用することが可能である。 Even in such a case, substantially the same operations and effects as in the first and second embodiments can be obtained. Also, this applied technology can be applied to the configuration of the second embodiment.
 (2)上記各実施形態では、自動車等の車両に搭載されるV型6気筒エンジンに本発明を適用した例を挙げているが、V型内燃機関であれば、その気筒数や、バンク角(挟み角)等といった諸仕様については特に限定されるものではない。 (2) In each of the above embodiments, an example is given in which the present invention is applied to a V-type 6-cylinder engine mounted on a vehicle such as an automobile. There are no particular restrictions on various specifications such as (clipping angle).
 その場合でも、正回転アンバランスマスや逆回転アンバランスマスの設置形態については、上記各実施形態で説明した形態と同様とすればよい。また、本発明は、車両搭載用のV型内燃機関の他に、車両以外の適宜の用途に用いられるV型内燃機関にも適用することが可能である。 Even in this case, the installation form of the forward rotation unbalance mass and the reverse rotation unbalance mass may be the same as that described in the above embodiments. Further, the present invention can be applied to a V-type internal combustion engine used for an appropriate application other than a vehicle, in addition to a V-type internal combustion engine mounted on a vehicle.
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。 The present invention can be implemented in various other forms without departing from the spirit or main features thereof. For this reason, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is shown by the scope of claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.
 なお、この出願は、日本で2008年11月5日に出願された特願2008-284711号に基づく優先権を請求する。その内容はこれに言及することにより、本出願に組み込まれるものである。また、本明細書に引用された文献は、これに言及することにより、その全部が具体的に組み込まれるものである。 This application claims priority based on Japanese Patent Application No. 2008-284711 filed on November 5, 2008 in Japan. The contents of which are hereby incorporated by reference into this application. In addition, the documents cited in the present specification are specifically incorporated in their entirety by referring to them.
 本発明に係るV型内燃機関によれば、クランクシャフトの回転に伴い発生する1次慣性偶力を打ち消すためのバランサ手段を、可及的に簡素な構成とすることが可能になる。これにより、V型内燃機関の重量、外形サイズならびにコストを軽減することが可能になる点で有益である。 According to the V-type internal combustion engine of the present invention, the balancer means for canceling the primary inertia couple generated with the rotation of the crankshaft can be made as simple as possible. This is advantageous in that the weight, outer size and cost of the V-type internal combustion engine can be reduced.
       1   クランクシャフト
    1a~1d  クランクジャーナル
    1f~1k  クランクピン
       2   コネクティングロッド
       3   ピストン
       4Fr 前側のカウンターウェイト
       4Rr 後側のカウンターウェイト
       5   第1補機
       6   第2補機
       7   第3補機
      10   前側の動力伝達機構
      11   フロントクランクスプロケット
      15   アイドルスプロケット
      20   後側の動力伝達機構
      21   リアクランクギヤ
      22   第1アイドラギヤ
      23   第2アイドラギヤ
      31   前側の正回転アンバランスマス
      32   後側の正回転アンバランスマス
      33   前側の逆回転アンバランスマス
  34A,34B  後側の逆回転アンバランスマス
DESCRIPTION OF SYMBOLS 1 Crankshaft 1a-1d Crank journal 1f-1k Crankpin 2 Connecting rod 3 Piston 4Fr Front counterweight 4Rr Rear counterweight 5 First auxiliary machine 6 Second auxiliary machine 7 Third auxiliary machine 10 Front power transmission mechanism DESCRIPTION OF SYMBOLS 11 Front crank sprocket 15 Idle sprocket 20 Rear power transmission mechanism 21 Rear crank gear 22 1st idler gear 23 2nd idler gear 31 Front forward rotation unbalance mass 32 Rear forward rotation unbalance mass 33 Front reverse rotation unbalance Mass 34A, 34B Reverse rotation unbalance mass on the rear side

Claims (6)

  1.  クランクシャフトの前端側および後端側に、クランクシャフトの回転動力を利用して回転駆動される従動機器に前記クランクシャフトの回転動力を伝達するための動力伝達機構がそれぞれ設けられるV型内燃機関であって、
     前記クランクシャフトの回転に伴い発生する1次慣性偶力を打ち消すための正回転アンバランスマスおよび逆回転アンバランスマスを有し、
     前記正回転アンバランスマスは、前記クランクシャフトの前端側および後端側に設けられるカウンターウェイトに、振り分けて設けられており、
     前記逆回転アンバランスマスは、前記前後の動力伝達機構に装備されかつクランクシャフトと逆向きに回転する回転体に、振り分けて設けられていることを特徴とするV型内燃機関。
    A V-type internal combustion engine in which a power transmission mechanism for transmitting the rotational power of the crankshaft to a driven device that is rotationally driven using the rotational power of the crankshaft is provided on the front end side and the rear end side of the crankshaft, respectively. There,
    A forward rotation unbalance mass and a reverse rotation unbalance mass for canceling a primary inertia couple generated with rotation of the crankshaft;
    The forward rotation unbalance mass is distributed and provided on counterweights provided on the front end side and the rear end side of the crankshaft,
    The V-type internal combustion engine, wherein the reverse rotation unbalance mass is distributed and provided on a rotating body that is mounted on the front and rear power transmission mechanisms and rotates in a direction opposite to the crankshaft.
  2.  クランクシャフトの前端側および後端側に、クランクシャフトの回転動力を利用して回転駆動される従動機器に前記クランクシャフトの回転動力を伝達するための動力伝達機構がそれぞれ設けられるV型内燃機関であって、
     前記クランクシャフトの回転に伴い発生する1次慣性偶力を打ち消すための正回転アンバランスマスおよび逆回転アンバランスマスを有し、
     前記正回転アンバランスマスは、前記クランクシャフトの前端側および後端側に設けられるカウンターウェイトに、振り分けて設けられることにより、当該各カウンターウェイトに前記1次慣性偶力に対する正回転釣り合わせ偶力を発生させるものであり、
     前記逆回転アンバランスマスは、前記前後の動力伝達機構に装備されかつクランクシャフトと逆向きに回転する回転体に、振り分けて設けられることにより、当該各回転体に前記1次慣性偶力に対する逆回転釣り合わせ偶力を発生させるものである、ことを特徴とするV型内燃機関。
    A V-type internal combustion engine in which a power transmission mechanism for transmitting the rotational power of the crankshaft to a driven device that is rotationally driven using the rotational power of the crankshaft is provided on the front end side and the rear end side of the crankshaft, respectively. There,
    A forward rotation unbalance mass and a reverse rotation unbalance mass for canceling a primary inertia couple generated with rotation of the crankshaft;
    The forward rotation unbalanced mass is distributed and provided to counterweights provided on the front end side and the rear end side of the crankshaft, so that each counterweight has a forward rotation balancing couple with respect to the primary inertia couple. Is generated,
    The reverse rotation unbalanced mass is provided on the rotary body that is mounted on the front and rear power transmission mechanisms and rotates in the direction opposite to the crankshaft, so that each rotary body has a reverse force against the primary inertia couple. A V-type internal combustion engine characterized by generating a rotational balancing couple.
  3.  請求項1または2に記載のV型内燃機関において、
     前記正回転アンバランスマスまたは逆回転アンバランスマスの少なくとも一方は、正の質量となる突起または錘とされる、ことを特徴とするV型内燃機関。
    The V-type internal combustion engine according to claim 1 or 2,
    At least one of the forward rotation unbalance mass and the reverse rotation unbalance mass is a protrusion or a weight that becomes a positive mass.
  4.  請求項1または2に記載のV型内燃機関において、
     前記正回転アンバランスマスまたは逆回転アンバランスマスの少なくとも一方は、負の質量となる肉抜き孔または凹みとされる、ことを特徴とするV型内燃機関。
    The V-type internal combustion engine according to claim 1 or 2,
    The V-type internal combustion engine, wherein at least one of the forward rotation unbalance mass and the reverse rotation unbalance mass is a hollow hole or a recess having a negative mass.
  5.  請求項1から4のいずれか1つに記載のV型内燃機関において、
     前記いずれか一方の動力伝達機構は、前記クランクシャフトの前端側または後端側に取り付けられる第1回転体と、前記従動機器の入力軸に取り付けられる第2回転体と、両回転体に巻き掛けられる輪状部材と、前記第2回転体に対する輪状部材の巻き掛け度合いを調整するための第3回転体とを含む構成とされ、
     前記第3回転体が、前記逆回転アンバランスマスの設置対象部材とされる、ことを特徴とするV型内燃機関。
    The V-type internal combustion engine according to any one of claims 1 to 4,
    One of the power transmission mechanisms is wound around the first rotating body attached to the front end side or the rear end side of the crankshaft, the second rotating body attached to the input shaft of the driven device, and both rotating bodies. And a third rotating body for adjusting the degree of winding of the annular member around the second rotating body,
    The V-type internal combustion engine, wherein the third rotating body is an installation target member of the reverse rotation unbalance mass.
  6.  請求項1から4のいずれか1つに記載のV型内燃機関において、
     前記いずれか一方の動力伝達機構は、前記クランクシャフトの前端側または後端側に取り付けられかつ外歯を有する第1回転体と、前記従動機器の入力軸に取り付けられかつ外歯を有する第2回転体と、前記第1回転体に噛み合わされる外歯を有しかつ軸方向隣り合わせで同軸上に一体に設けられる減速用の小径部を有する中間回転体と、前記第2回転体と前記小径部とに巻き掛けられる輪状部材とを含む構成とされ、
     前記中間回転体が、前記逆回転アンバランスマスの設置対象部材とされる、ことを特徴とするV型内燃機関。
    The V-type internal combustion engine according to any one of claims 1 to 4,
    One of the power transmission mechanisms is a first rotating body attached to the front end side or the rear end side of the crankshaft and having external teeth, and a second rotating body attached to the input shaft of the driven device and having external teeth. A rotating body, an intermediate rotating body having external teeth meshed with the first rotating body, and having a small-diameter portion for reduction provided on the same axis and adjacent to each other in the axial direction; the second rotating body; and the small diameter And a ring-shaped member wound around the part,
    The V-type internal combustion engine, wherein the intermediate rotating body is an installation target member of the reverse rotation unbalanced mass.
PCT/JP2009/068689 2008-11-05 2009-10-30 V-type internal combustion engine WO2010053055A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008284711A JP2010112240A (en) 2008-11-05 2008-11-05 V-type internal combustion engine
JP2008-284711 2008-11-05

Publications (1)

Publication Number Publication Date
WO2010053055A1 true WO2010053055A1 (en) 2010-05-14

Family

ID=42152865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068689 WO2010053055A1 (en) 2008-11-05 2009-10-30 V-type internal combustion engine

Country Status (2)

Country Link
JP (1) JP2010112240A (en)
WO (1) WO2010053055A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094567A (en) * 2009-10-30 2011-05-12 Daihatsu Motor Co Ltd Internal combustion engine
ITBO20130196A1 (en) * 2013-05-03 2014-11-04 Ferrari Spa "V" INTERNAL COMBUSTION ENGINE EQUIPPED WITH BALANCING TREE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5696741B2 (en) * 2013-05-22 2015-04-08 三菱自動車工業株式会社 engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5458501U (en) * 1977-09-30 1979-04-23
JP2002242692A (en) * 2001-02-14 2002-08-28 Toyota Motor Corp Horizontal opposed four cylinder engine
JP2007100540A (en) * 2005-09-30 2007-04-19 Honda Motor Co Ltd Balancer mechanism of internal combustion engine
JP2007224836A (en) * 2006-02-24 2007-09-06 Honda Motor Co Ltd Internal combustion engine with balancer
JP2007263371A (en) * 2002-02-20 2007-10-11 Yamaha Motor Co Ltd Balancer device for engine
JP2007303439A (en) * 2006-05-15 2007-11-22 Yamaha Motor Co Ltd Automobile engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3903995A (en) * 1971-01-21 1975-09-09 Outboard Marine Corp Balancing system
US4545341A (en) * 1984-05-01 1985-10-08 Mechanical Technology Incorporated Means and method of balancing multi-cylinder reciprocating machines
JPS6469719A (en) * 1987-09-10 1989-03-15 Fuji Heavy Ind Ltd Balancer device for v-type six-cylinder engine
JP2869786B2 (en) * 1996-09-30 1999-03-10 ヤマハ発動機株式会社 Timing belt device for internal combustion engine
JP3170207B2 (en) * 1996-10-29 2001-05-28 川崎重工業株式会社 Two-stroke engine and personal watercraft equipped with this engine
JP2003042230A (en) * 2001-07-26 2003-02-13 Suzuki Motor Corp Balancer structure of v-engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5458501U (en) * 1977-09-30 1979-04-23
JP2002242692A (en) * 2001-02-14 2002-08-28 Toyota Motor Corp Horizontal opposed four cylinder engine
JP2007263371A (en) * 2002-02-20 2007-10-11 Yamaha Motor Co Ltd Balancer device for engine
JP2007100540A (en) * 2005-09-30 2007-04-19 Honda Motor Co Ltd Balancer mechanism of internal combustion engine
JP2007224836A (en) * 2006-02-24 2007-09-06 Honda Motor Co Ltd Internal combustion engine with balancer
JP2007303439A (en) * 2006-05-15 2007-11-22 Yamaha Motor Co Ltd Automobile engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094567A (en) * 2009-10-30 2011-05-12 Daihatsu Motor Co Ltd Internal combustion engine
ITBO20130196A1 (en) * 2013-05-03 2014-11-04 Ferrari Spa "V" INTERNAL COMBUSTION ENGINE EQUIPPED WITH BALANCING TREE
EP2801698A1 (en) * 2013-05-03 2014-11-12 FERRARI S.p.A. "V" internal combustion engine provided with balancing countershaft
US9303720B2 (en) 2013-05-03 2016-04-05 Ferrari S.P.A. “V” internal combustion engine provided with balancing countershaft

Also Published As

Publication number Publication date
JP2010112240A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
US8757123B2 (en) Balancing an opposed-piston, opposed-cylinder engine
JP6659679B2 (en) Power unit
US9103396B2 (en) Balancer device for parallel twin cylinder internal combustion engine
JP2011163252A (en) Engine
JP6516213B2 (en) Balancer device for internal combustion engine
KR20090117517A (en) Two cylinder engine
JP5172421B2 (en) Engine balancer equipment
WO2010053055A1 (en) V-type internal combustion engine
US20090223469A1 (en) Balance shaft drive system
CN105626179A (en) Variable-valve timing system and electric driving device thereof
JP5190808B2 (en) Engine primary balancer
KR101316370B1 (en) Balance shaft module of v6 engine
EP1628042B1 (en) Engine with balancing shaft
JP4373195B2 (en) Engine balancer equipment
JP2007002698A (en) 6-cylinder engine
JP2011102602A (en) Balance device in internal combustion engine
JP2011122510A (en) Valve driving device for internal combustion engine
JP6233256B2 (en) Valve operating device for internal combustion engine
JP2016044727A (en) Non-stage transmission
JP2009216142A (en) Drive mechanism, and valve system drive mechanism for internal combustion engine
JP3955161B2 (en) Engine with sub-chain
JP5333171B2 (en) Variable compression ratio engine
JP4546604B2 (en) Balancer shaft structure of internal combustion engine
JP2007285495A (en) Internal combustion engine
JP2001343047A (en) Flywheel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09824755

Country of ref document: EP

Kind code of ref document: A1