WO2010050558A1 - コンデンサ素子の製造方法 - Google Patents

コンデンサ素子の製造方法 Download PDF

Info

Publication number
WO2010050558A1
WO2010050558A1 PCT/JP2009/068601 JP2009068601W WO2010050558A1 WO 2010050558 A1 WO2010050558 A1 WO 2010050558A1 JP 2009068601 W JP2009068601 W JP 2009068601W WO 2010050558 A1 WO2010050558 A1 WO 2010050558A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor element
anode body
freezing point
dielectric layer
niobium
Prior art date
Application number
PCT/JP2009/068601
Other languages
English (en)
French (fr)
Inventor
義紀 渋谷
彰彦 白川
鈴木 雅博
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2010535836A priority Critical patent/JP5411156B2/ja
Priority to US13/126,553 priority patent/US8915974B2/en
Priority to EP09823668.0A priority patent/EP2343716A4/en
Priority to CN2009801436068A priority patent/CN102203890B/zh
Publication of WO2010050558A1 publication Critical patent/WO2010050558A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0032Processes of manufacture formation of the dielectric layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making

Definitions

  • the present invention relates to a method for manufacturing a capacitor element. More specifically, the present invention relates to a method for manufacturing a capacitor element using a niobium anode body that can be formed by a high voltage and has a small change in leakage current when subjected to a thermal history such as reflow.
  • Tantalum or aluminum is frequently used for anode bodies of commercially available electrolytic capacitors.
  • An oxide film (chemical conversion film) of an anode material is formed on the surface of the anode body by an anodic oxidation method (chemical conversion method), and this chemical conversion film becomes a dielectric layer of the electrolytic capacitor.
  • Aluminum electrolytic capacitors have performance characteristics that are significantly different from tantalum electrolytic capacitors, so they are used for different purposes.
  • niobium metal is known as having similar physical and chemical properties to tantalum metal.
  • Niobium is abundant in resources and cheaper than tantalum.
  • Niobium pentoxide has a higher dielectric constant than other metal oxides. Therefore, it has been considered to replace niobium with tantalum used in tantalum electrolytic capacitors.
  • the niobium oxide film obtained by forming an anode body made of niobium was more unstable than the tantalum oxide film.
  • the thickness of the niobium oxide film generated per chemical conversion voltage is twice that of the tantalum oxide film, and the strain generated as the film grows is also twice that of the tantalum oxide film. Therefore, the withstand voltage based on the film thickness was half that of the tantalum oxide film in the niobium oxide film.
  • niobium oxide includes non-stoichiometric lower oxides not found in tantalum oxide. This is considered to promote the diffusion of oxygen in the dielectric layer, give the dielectric layer semiconducting properties, and increase the leakage current.
  • a niobium electrolytic capacitor has a possibility of exhibiting performance exceeding that of a tantalum electrolytic capacitor.
  • a niobium sintered body or a niobium foil is subjected to chemical conversion in an aqueous electrolyte solution containing chlorine ions at a liquid temperature of ⁇ 15 to 100 ° C., and then an electrolytic solution substantially free of halogen ions.
  • a method for producing a niobium electrolytic capacitor that is aged in An aqueous electrolyte solution containing chloride ions is prepared by dissolving a chloride electrolyte, such as hydrogen chloride, metal chloride, ammonium or amine chloride, in water.
  • Patent Document 2 describes that a flaked niobium powder is sintered in a vacuum, and the sintered body is anodized in a 0.1 wt% phosphoric acid aqueous solution to produce an electrolytic capacitor anode.
  • the temperature of the aqueous phosphoric acid solution at the time of anodization is not specifically disclosed, but it is considered to be about 60 to 90 ° C., which is usually employed by those skilled in the art in conventional chemical conversion.
  • Patent Document 3 discloses a method in which a niobium anode body is immersed in an aqueous solution (chemical conversion solution) containing at least one acid selected from phosphoric acid, nitric acid and sulfuric acid as a solute, and is performed at a liquid temperature not lower than the freezing point and not higher than about 40 ° C. Proposed.
  • the freezing point of the chemical conversion liquid is described as being about 0 ° C. (or a temperature slightly lowered from about 0 ° C.) although it varies somewhat depending on the kind and concentration of the solute.
  • the liquid temperature at the time of chemical conversion is set to 5 ° C. to 40 ° C.
  • Patent Document 4 a porous sintered body made of tantalum, which is a metal having a valve action, is immersed in an aqueous solution containing hydrogen peroxide and phosphoric acid, and anodized to form an oxide film on the surface of the sintered body.
  • the manufacturing method of the solid electrolytic capacitor characterized by forming is described.
  • the chemical conversion liquid temperature at the time of anodization is not specifically disclosed, it is considered to be about 60 to 90 ° C., which is usually employed by those skilled in the art in conventional chemical conversion.
  • a dielectric film layer is formed on the surface of an anode body made of niobium or an alloy containing niobium as a main component, and the anode body on which the dielectric film layer is formed has a hydrogen peroxide content of 0.7 to 10%.
  • Polypyrrole or polypyrrole derivative on the dielectric film layer by immersing in a solution containing 0.5% by weight of sulfuric acid and 0.3 to 3% by weight of sulfuric acid and using water as a main solvent, pulling up, and exposing to vapor of pyrrole or pyrrole derivative
  • An electrolytic capacitor manufacturing method includes forming a first conductive polymer layer comprising: The dielectric coating layer is formed by immersing a porous anode element in which niobium powder is sintered in a phosphoric acid aqueous solution at 5 ° C. and chemical conversion treatment at 38V.
  • Patent Document 6 describes a method for manufacturing an anode of an electrolytic capacitor by immersing a valve action metal in an electrolytic solution and anodizing at 40 ° C.
  • an electrolytic solution composed of ethylene glycol or polyethylene glycol, deionized water and phosphoric acid is used.
  • Patent Document 7 discloses an anodic oxidation electrolytic solution for forming a dielectric oxide on a valve action metal, water; phosphorus oxo acid or salt thereof; inorganic acid, inorganic acid salt, carboxylic acid, carboxylic acid And an anodizing electrolyte containing at least one selected from the group consisting of salts thereof and mixtures thereof; and a protic solvent.
  • the protic solvent when the valve metal is tantalum, alkylene glycol, polyalkylene glycol and the like are disclosed.
  • the chemical conversion liquid temperature at the time of anodization is not specifically disclosed, it is considered to be about 60 to 90 ° C., which is usually employed by those skilled in the art in conventional chemical conversion.
  • An object of the present invention is to provide a method for producing a capacitor element or an electrolytic capacitor using a niobium anode body, which can be formed by a high voltage and has a small change in leakage current when subjected to a thermal history such as reflow. It is.
  • a liquid having a composition obtained by removing the freezing point depressant from the electrolytic solution in an electrolytic solution containing an oxygen supply agent, a freezing point depressant, an electrolyte, and a solvent.
  • anode made of niobium or a niobium alloy in an electrolytic solution containing an oxygen supply agent, a freezing point depressant, an electrolyte, and a solvent, at a liquid temperature lower than the freezing point of a solution obtained by removing the freezing point depressant from the electrolytic solution.
  • a method of manufacturing a capacitor element comprising forming a dielectric layer on the surface of the anode body or repairing the dielectric layer formed on the surface of the anode body by forming a body.
  • [2] forming a dielectric layer on the surface of the anode body by forming an anode body made of niobium or a niobium alloy, and forming a semiconductor layer on the dielectric layer; Then, during or after the formation of the semiconductor layer, in an electrolytic solution containing an oxygen supply agent, a freezing point depressant, an electrolyte, and a solvent, at a liquid temperature lower than the freezing point of a liquid having a composition obtained by removing the freezing point depressant from the electrolytic solution.
  • a method of manufacturing a capacitor element comprising repairing the dielectric layer by chemical conversion.
  • [3] The method for producing a capacitor element according to [1] or [2], wherein the oxygen supply agent is hydrogen peroxide or ozone.
  • [4] The method for producing a capacitor element according to any one of [1] to [3], wherein the freezing point depressant is alcohol.
  • the alcohol is at least one compound selected from the group consisting of methanol, ethanol, ethylene glycol, glycerin, 1-propanol, 2-propanol, and butanol.
  • the electrolyte is phosphoric acid, sulfuric acid, nitric acid, boric acid, acetic acid, adipic acid or a salt thereof, and the solvent is water.
  • [7] The method for manufacturing a capacitor element according to any one of [1] to [6], wherein the solute in the electrolytic solution is not supersaturated at the time of chemical conversion.
  • [8] The method for manufacturing a capacitor element according to any one of [1] to [7], wherein the anode body is a sintered body or a foil.
  • the formation voltage is 294 ⁇ exp ( ⁇ 8.4 ⁇ 10 ⁇ 6 ⁇ CV value of anode body [ ⁇ FV / g]) [V] or more, and the CV value of anode body is 40,000 CV / g
  • a capacitor element having a dielectric layer is obtained by the manufacturing method according to any one of [1] to [12], a cathode is formed on the dielectric layer of the capacitor element, and the anode body and the cathode Are electrically connected to external terminals, respectively, and then sealed.
  • the production method of the present invention diffusion of oxygen in the dielectric film is suppressed, a dielectric film free from holes and defects can be formed even at a high formation voltage, and the change in leakage current before and after high-temperature heat treatment is small.
  • a capacitor element or an electrolytic capacitor using the anode body can be obtained.
  • FIG. 4 is a diagram showing current-voltage characteristics of a capacitor element created by the manufacturing method of the present invention. It is the figure which showed the electric current-voltage characteristic of the capacitor
  • FIG. 4 is a scanning electron micrograph image of the surface of niobium foil formed with 200V in Example 2.
  • FIG. 4 is a scanning electron micrograph image of the surface of niobium foil formed with 200V in Example 2.
  • FIG. It is a scanning electron micrograph image of the niobium foil surface formed by 200 V 600 minutes of Comparative Example 3.
  • the method for producing a capacitor element of the present invention includes an oxygen solution containing an oxygen supply agent, a freezing point depressant, an electrolyte, and a solvent, at a liquid temperature lower than the freezing point of a liquid having a composition obtained by removing the freezing point depressant from the electrolyte.
  • This includes forming a dielectric layer on the surface of the anode body or repairing the dielectric layer formed on the surface of the anode body by forming an anode body made of niobium or a niobium alloy.
  • the anode body made of niobium or a niobium alloy used in the present invention is not particularly limited, and those generally available can be used.
  • niobium used for the anode body include an alkali metal reduced product of niobium halide, an alkaline earth metal reduced product of niobium oxide, and a pulverized / dehydrogenated product of niobium hydride.
  • the anode body may be an alloy (niobium alloy) having niobium as a base metal as described in WO2002 / 015208, for example.
  • the anode body may be in any form such as a foil, a wire, a sintered body, a sputtered film, and a deposited film. Of these, a sintered body or a foil is preferred. When the anode body is a foil, it is suitable for a wound capacitor.
  • the particle shape of the powder When using a sintered body of niobium or niobium alloy powder as the anode body, it is preferable to pay attention to the particle shape of the powder. For example, assuming that the conversion constant of niobium is 4 nm / V, if 50 V conversion is performed, a total of 0.4 ⁇ m of chemical film will be formed on both sides, and considering the element transport number, a dielectric film of about 0.15 ⁇ m on both sides will penetrate into the anode body. To do. If the dielectric is replaced to the vicinity of the center of the sintered particles, the conductive portion disappears and the capacity decreases.
  • the bonding state between the particles in the sintered body has a great influence on the electrolytic formation.
  • the powder in the sintered body increases as the compressive force when forming the powder into a molded body or the apparent density of the powder in the molded body increases, the higher the temperature at which the powder is sintered or the longer the sintering process is. The fusion between them progresses and the bonded portion becomes fat.
  • the joint portion becomes thicker, it becomes able to withstand the formation and growth of the dielectric film, and can withstand the formation of a higher voltage.
  • the specific surface area of the anode body decreases and the capacitance tends to decrease.
  • distortion is likely to occur due to the difference in curvature between the outer peripheral portion and the inner peripheral portion, which may cause the dielectric coating to break down.
  • the CV value of the anode body (CV value: the product of the capacitance per unit mass of the anode body and the conversion voltage.
  • the unit is represented by ⁇ FV / g. )
  • formation limit voltage the limit of formation voltage (formation limit voltage). Until the CV value is about 40,000 ⁇ FV / g, the formation limit voltage is almost the same, but when the CV value is higher than that, the formation limit voltage decreases.
  • the limit of the conversion voltage was about 120 V, and in the case of an anode body of 200,000 ⁇ FV / g class, the limit of the conversion voltage was.
  • the anode body used in the present invention has a small distortion due to the difference in curvature of the sintered body constituent particles, such as a sintered body of 40,000 ⁇ FV / g class, and is originally a sintered body that is advantageous for high voltage formation. It is not limited.
  • An element having a capacity of about 150 ⁇ F when performing 20V conversion using 1% phosphoric acid in a so-called B case size, in other words, a 150,000 ⁇ FV / g class sintered body or the like can be used.
  • the electrolytic solution used in the present invention is a solution containing an oxygen supply agent, a freezing point depressant, an electrolyte, and a solvent.
  • the electrolyte is an electrolyte that has been generally used in anodic oxidation (chemical conversion).
  • the electrolyte is preferably one that hardly causes a chemical reaction with the oxygen supply agent or the freezing point depressant. Examples thereof include phosphoric acid, sulfuric acid, nitric acid, boric acid, oxalic acid, acetic acid, adipic acid, and salts thereof. Of these, phosphoric acid, sulfuric acid, nitric acid, boric acid, acetic acid, adipic acid and salts thereof are preferable, and phosphoric acid is particularly preferable.
  • the amount of the electrolyte is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass, based on the entire electrolytic solution.
  • the oxygen supply agent is not particularly limited as long as it can supplement oxygen consumed by anodic oxidation.
  • Examples include hydrogen peroxide and ozone. Hydrogen peroxide and ozone are preferably dissolved in a solvent and contained in the electrolytic solution.
  • the amount of the oxygen supply agent is preferably 0.01 to 5% by mass, more preferably 0.1 to 3% by mass, based on the entire electrolyte solution. Water is usually used as the solvent.
  • the liquid having the composition obtained by removing the freezing point depressant from the electrolytic solution used in the present invention has a freezing point of approximately 0 ° C. when water is used as the solvent.
  • the freezing point depressant is not particularly limited as long as it can lower the freezing point of the liquid before addition of the freezing point depressant, but is preferably highly compatible with the solvent.
  • the freezing point depressant is preferably an alcohol, and particularly preferably methanol, ethanol, ethylene glycol, glycerin, 1-propanol, 2-propanol, or butanol.
  • the electrolyte also has an effect of lowering the freezing point, but the freezing point depressant in the present invention does not contain an electrolyte. Since the freezing point depressant is an electric resistance component with respect to the electrolytic solution, it is most preferable to add the minimum necessary amount for preventing the electrolytic solution from freezing at a desired chemical conversion temperature.
  • the amount of the freezing point depressant used is preferably 5 to 40% by mass, more preferably 10 to 30% by mass, based on the entire electrolyte.
  • the anode body is formed by electrolytic oxidation at a liquid temperature of ⁇ 20 ° C. to ⁇ 2 ° C., more preferably ⁇ 13 ° C. to ⁇ 7 ° C.
  • a favorable dielectric layer can be formed on the surface of the anode body, or the dielectric layer formed on the surface of the anode body can be restored to a good one.
  • the solute in electrolyte solution is not a supersaturated state at the time of chemical conversion. When in a supersaturated state, it may shift to a phase equilibrium state due to some trigger (for example, impact), and crystals may precipitate, which may be disadvantageous for high voltage formation.
  • the current density at the start of conversion is preferably 1 ⁇ A / cm 2 to 10 mA / cm 2 per surface area of the capacitor element.
  • the formation voltage is preferably adjusted to 2 to 300V.
  • the voltage is preferably first boosted with a constant current and then held at a constant voltage (formation voltage).
  • the formation time is preferably 30 minutes to 960 minutes.
  • the current value at the end of the formation is preferably 1/20 or less of the current value at the beginning of the constant voltage formation.
  • the capacitor element obtained by the above method is usually washed with pure water and then dried. There is no particular limitation on the drying as long as the temperature and time allow water attached to the element to evaporate. However, if the temperature during drying exceeds 120 ° C., oxygen in the dielectric layer is likely to diffuse, which may affect the electrical characteristics. Therefore, for example, it is preferable to dry under conditions such as holding at a temperature of 105 ° C. for 30 minutes.
  • the dried capacitor element is subjected to wet evaluation, and its electrical characteristics are measured. Unless otherwise specified, the electrical characteristics can be measured in accordance with the Japan Electronic Machinery Manufacturers Standard EIAJ RC-2361A test method for tantalum sintered capacitors for tantalum electrolytic capacitors (revised in February 2000).
  • the electrolytic capacitor manufacturing method of the present invention is a method of obtaining a capacitor element by the method as described above, forming a cathode on the dielectric layer of the capacitor element, electrically connecting the anode body and the cathode to external terminals, respectively. It includes sealing.
  • the cathode can be formed of a cathode material used in conventional electrolytic capacitors.
  • the semiconductor layer can be formed of molybdenum dioxide, tungsten dioxide, lead dioxide, manganese dioxide, which is an inorganic semiconductor, or polypyrrole, which is an organic semiconductor.
  • the conductor layer can be formed by carbon paste, silver paste, or metal plating which is a conductive paste.
  • Repair formation may be performed during or after the formation of the semiconductor layer.
  • a generally used method can be used for the repair formation, but the formation method of the present invention is preferably applied in order to suppress the leakage current.
  • the desired repair formation voltage is a high voltage that cannot be formed by a conventional method
  • the method of the present invention is preferably applied.
  • the cathode lead is connected to the cathode in a state where electricity can be passed, and the cathode lead is exposed outside the exterior of the electrolytic capacitor and becomes a cathode external terminal.
  • the anode lead is connected to the anode body in a state where electricity can be passed, and the anode lead is exposed outside the exterior of the electrolytic capacitor and becomes an anode external terminal.
  • a normal lead frame can be used to attach the cathode lead and the anode lead. Then, an exterior can be formed by sealing with a resin or the like to obtain an electrolytic capacitor.
  • the electrolytic capacitor thus produced can be subjected to an aging treatment as desired.
  • the electrolytic capacitor of the present invention can be used by being mounted on various electric circuits or electronic circuits.
  • the powder compact was sintered at 1230 ° C. for 30 minutes under a reduced pressure of 5 ⁇ 10 ⁇ 4 Pa or less to prepare a niobium sintered body.
  • the sintered body had a CV value of 150,000 ⁇ FV / g.
  • This niobium sintered body was immersed in an aqueous solution containing 3% by mass of phosphoric acid, 1% by mass of hydrogen peroxide and 25% by mass of ethylene glycol as a freezing point depressant, and the liquid temperature was adjusted to ⁇ 10 ° C. in a freezer. .
  • the freezing point of a solution of the composition obtained by removing the freezing point depressant from the aqueous solution was about ⁇ 1.5 ° C.
  • the formation was performed by first boosting with a constant current and then holding at a constant formation voltage for 120 minutes (constant voltage formation).
  • the formation was performed at a current density of 1.5 A / g and a formation voltage of 20 V, 40 V, 60 V and 100 V, respectively. After the formation, it was washed with water and dried to obtain a capacitor element. The electric characteristic value of the obtained capacitor element was measured. The leakage current is a measured value when a voltage 0.7 times the formation voltage is applied. About 100V chemical products, the leakage current when 25V was applied was also measured. The measurement results are shown in Table 1.
  • Example 1 A 150,000 ⁇ FV / g niobium sintered body obtained by the same method as in Example 1 was immersed in a 1 mass% phosphoric acid aqueous solution, and the liquid temperature was adjusted to 80 ° C. The formation was performed by first boosting at a constant current and then holding at a constant formation voltage for 120 minutes. Chemical conversion was performed at a current density of 200 mA / g and a chemical conversion voltage of 20 V, 40 V, 60 V and 100 V, respectively. After the formation, it was washed with water and dried to obtain a capacitor element. The electric characteristic value of the obtained capacitor element was measured. The measurement results are shown in Table 1.
  • Comparative Example 2 A capacitor element was obtained in the same manner as in Comparative Example 1 except that a 150,000 ⁇ FV / g niobium sintered body obtained by the same method as in Example 1 was immersed in a 1% by mass nitric acid aqueous solution and the liquid temperature was adjusted to 30 ° C. It was. The electric characteristic value of the obtained capacitor element was measured. The measurement results are shown in Table 1.
  • Example 1 The capacitor elements of Example 1, Comparative Example 1 and Comparative Example 2 were heat-treated at 250 ° C. for 20 minutes. Changes in leakage current values before and after the heat treatment are shown in Table 1 and FIG.
  • Example 1 As shown in Table 1, in Comparative Example 1 and Comparative Example 2, formation by 100 V was not possible, but in Example 1, formation by 100 V was possible.
  • the 100V chemical product has a typical leakage current measurement voltage of 70V, but the leakage current value at the rated operating voltage (for example, 25V) set from the chemical voltage is sufficiently low and there is no problem.
  • the capacitance due to the same formation voltage is higher in the capacitor element of Example 1 than the capacitor element of Comparative Example 1 and sufficiently higher than the capacitor element of Comparative Example 2. 1 that the capacitor element of Example 1 has a smaller change in leakage current than the capacitor elements of Comparative Example 1 and Comparative Example 2, and a thermally stable chemical conversion film is formed.
  • Example 2 A commercially available niobium foil having a purity of 3N and a thickness of 100 ⁇ m was cut into 10 mm ⁇ 30 mm, and a niobium wire having a thickness of 0.2 mm was welded to a part of the short side. Furthermore, it was degreased with acetone, washed with nitric acid, washed with water, and then dried to obtain a niobium foil element.
  • This niobium foil element was immersed in an aqueous solution containing 3% by mass of phosphoric acid, 1% by mass of hydrogen peroxide and 25% by mass of ethylene glycol as a freezing point depressant, and the liquid temperature was adjusted to ⁇ 10 ° C. in a freezer.
  • the formation was performed by first increasing the voltage at a constant current and then holding at a constant formation voltage for 120 minutes, 360 minutes, 480 minutes and 600 minutes, respectively.
  • the formation was performed at a current density of 5.5 mA / cm 2 or 0.83 mA / cm 2 and a formation voltage of 60 V to 300 V, respectively. After the formation, it was washed with water and dried to obtain a capacitor element. The electric characteristic value of the obtained capacitor element was measured.
  • FIG. 7 is a high-magnification SEM photographic image. As shown in FIG. 6 and FIG. 7, no defective film formation was observed in the visual field.
  • Example 3 A niobium foil element obtained in the same manner as in Example 2 was immersed in a 1% by mass phosphoric acid aqueous solution, and a capacitor element was obtained in the same manner as in Example 2 except that the liquid temperature was adjusted to 70 ° C. or 60 ° C. The electric characteristic value of the obtained capacitor element was measured. The measurement results are shown in Table 2. Moreover, the SEM photograph image of the niobium foil surface formed by chemical conversion at 200V for 600 minutes is shown in FIGS. FIG. 9 is a high-magnification SEM photographic image. As shown in FIG. 8, a granular pattern was observed in the entire visual field. This granular pattern was a defect in chemical film formation as shown in FIG. Due to this defect, it is considered that the current at the end of chemical formation was not sufficiently low in Comparative Example 3.
  • Example 3 The capacitor element prepared in Example 1 was used as an anode and platinum black as a cathode. These were immersed in 40% by mass sulfuric acid at room temperature, and a DC power source was connected in the forward direction to the anode and the cathode. A direct current was applied at a current of 10 mA and a voltage of 0.5 V, and the current value was measured after 30 seconds. The DC power supply was turned off once, the voltage was raised to 0.5V and set to 1.0V, the DC was applied again, and the current value was measured after 30 seconds. Similarly, the voltage was increased by 0.5 V and the current value was measured each time.
  • FIG. 2 shows the relationship between the applied voltage value and the current value after 30 seconds.
  • FIG. 2 shows the data of the capacitor element created in Example 1. It can be seen that the 100V chemical product has an inflection point (the part marked with a circle) at about 40V. That is, the voltage below the inflection point is a reversible current-voltage characteristic region according to Ohm's law, and when an electrolytic capacitor is used, the rated voltage below this inflection point can be selected.
  • Comparative Example 4 Measurement was performed in the same manner as in Example 3 except that the capacitor element prepared in Comparative Example 1 was used for the anode. The results are shown in FIG. As shown in FIG. 3, the capacitor element of Comparative Example 1 has a voltage value of about 30 V at the inflection point (the part marked with a circle) even with a 60 V chemical product, and does not reach Example 1.
  • Comparative Example 5 Measurement was performed in the same manner as in Example 3 except that the capacitor element prepared in Comparative Example 2 was used for the anode. The results are shown in FIG. From FIG. 4, it can be seen that the data of the 40V chemical product and the 60V chemical product have a current value larger than that of the 20V chemical product from the beginning, and thus an inflection point appears in the vicinity of 30V, but the electrical characteristics are inferior.
  • Example 4 Using niobium powder prepared by an ingot grinding method having an average primary particle size converted from a BET specific surface area of 0.3 ⁇ m to 1 ⁇ m, the niobium powder having the CV values shown in Table 3 in the same manner as in Example 1 Created a ligature. Using this sintered body, chemical conversion was performed in the same manner as in Example 1. However, the formation was performed at various voltages, and the upper limit of the formation voltage at which the current value at the end of formation was 1/20 or less of the current value at the beginning of the constant voltage formation (this was defined as the formation limit voltage) was determined. Table 3 shows the measurement results.
  • Example 6 (Comparative Example 6) Using the sintered body obtained by the same method as in Example 4, chemical conversion was performed by the same method as in Example 4 to determine the formation limit voltage. However, 1 mass% phosphoric acid aqueous solution was used as a chemical conversion liquid, and the temperature of the chemical conversion liquid was 60 degreeC. Table 3 shows the measurement results. The relationship between the formation limit voltage and the CV value in Example 4 and Comparative Example 6 is well represented by exponential approximation as shown in FIG. 5 (solid line) in the region where the CV value exceeds 40,000 ⁇ FV / g. It became a relationship. Table 3 shows constants of the exponential approximation formula (A and B in Formula 1) obtained from the measured values.
  • Formation limit voltage [V] A ⁇ exp (B ⁇ CV value [ ⁇ FV / g]) (Formula 1)
  • a and B in Equation 1 are constants and CV values> 40,000 ⁇ FV / g. Note that the formation limit voltage in the region having a CV value of 40,000 ⁇ FV / g or less is not affected by the CV value and is a constant voltage.
  • Example 5 Chemical conversion was performed in the same manner as in Example 4 using a 170,000 ⁇ FV / g sintered body obtained in the same manner as in Example 4. However, the temperature of the chemical conversion liquid was set to -2 ° C. Table 4 shows the measurement results.
  • Example 6 Chemical conversion was performed in the same manner as in Example 4 using a 170,000 ⁇ FV / g sintered body obtained in the same manner as in Example 4. However, as the chemical conversion solution, an aqueous solution containing 5.6% by mass of phosphoric acid, 1.9% by mass of hydrogen peroxide and 28% by mass of ethanol was used, and the temperature of the chemical conversion solution was set to ⁇ 20 ° C. Table 4 shows the measurement results.
  • Comparative Example 7 Chemical conversion was performed in the same manner as in Comparative Example 6 using a 170,000 ⁇ FV / g sintered body obtained in the same manner as in Example 4. However, the temperature of the chemical conversion solution was 10 ° C, 20 ° C, 30 ° C, and 40 ° C. Table 4 shows the measurement results.
  • Example 4 and Comparative Example 6 among the constants A and B in the exponential approximation formula, the A value was dependent on the conversion temperature, and the B value was constant without depending on the conversion temperature. From this, if the formation limit voltage at a specific formation temperature and CV value is known, the constant A is obtained from this, and the formation limit voltage at each CV value at that formation temperature can be estimated. Table 4 shows the A value at each chemical conversion temperature. Moreover, the formation limit voltage in each formation temperature and CV value was shown in FIG. 5 (dotted line). As shown in FIG. 5, in the conventional chemical conversion method, the formation limit voltage is less than 203 V when the CV value is 40,000 ⁇ FV / g or less.
  • the A value in Equation 1 is a formation limit voltage in the range of less than 285.
  • the CV value when it is 40,000 ⁇ FV / g or less, it can be formed at 210 V or higher, preferably 230 V or higher.
  • Formation voltage [V] a ⁇ exp (b ⁇ CV value [ ⁇ FV / g]) (Formula 2)
  • a and b are constants
  • b ⁇ 8.4 ⁇ 10 ⁇ 6
  • Example 7 A capacitor element formed at 40 V by the same method as Comparative Example 1 was obtained. The operation of immersing the obtained element in a 60% by mass manganese nitrate aqueous solution and then thermally decomposing manganese nitrate adhering to the element at 220 ° C. was repeated 10 times. By this operation, a manganese dioxide layer which is an inorganic semiconductor layer was formed on the element. This element was formed by the same method as the method for forming a niobium sintered body performed in Example 1, and repair conversion was performed. However, the current density was 1.5 A / g, the formation voltage was 30 V, and the holding time was 30 minutes.
  • a carbon layer and a silver paste layer were sequentially laminated, placed on a lead frame, and then entirely sealed with an epoxy resin to produce a chip capacitor.
  • the obtained capacitor had a capacity of 71 ⁇ F and a leakage current of 21 ⁇ A.
  • Comparative Example 8 A capacitor element formed at 40 V by the same method as Comparative Example 1 was obtained. The operation of immersing the obtained element in a 60% by mass manganese nitrate aqueous solution and then thermally decomposing manganese nitrate adhering to the element at 220 ° C. was repeated 10 times. By this operation, a manganese dioxide layer which is an inorganic semiconductor layer was formed on the element. This element was formed by the same method as the conversion method of the niobium sintered body performed in Comparative Example 1 to carry out repair conversion. However, the current density was 200 mA / g, the formation voltage was 30 V, and the holding time was 30 minutes.
  • Example 7 After restoration conversion, a chip capacitor was prepared by the same method as in Example 7, and the electrical characteristics were measured. The obtained capacitor had a capacity of 70 ⁇ F and a leakage current of 35 ⁇ A.
  • the leakage current in Example 7 and Comparative Example 8 is a current value measured after a lapse of 30 seconds from the start of direct current flow at a current of 10 mA and a voltage of 10V.
  • the capacitor created in Example 7 has less leakage current than the capacitor created in Comparative Example 8. That is, it can be seen that the leakage current of the capacitor can be reduced by repairing and forming the dielectric layer formed by the conventional chemical conversion method by the method of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

 過酸化水素などの酸素供給剤と、エチレングリコールなどの凝固点降下剤と、リン酸などの電解質とが水に溶解されてなる電解液中で、該電解液から凝固点降下剤を除いた組成の液の凝固点未満の液温で、ニオブまたはニオブ合金からなる陽極体を化成することにより、該陽極体表面に誘電体層を形成または該陽極体表面に形成された誘電体層を修復し、コンデンサ素子を得る。該コンデンサ素子の誘電体層上に陰極を形成し、陽極体および陰極をそれぞれ外部端子に電気的に接続し、次いで封止することによって電解コンデンサを得る。

Description

コンデンサ素子の製造方法
 本発明はコンデンサ素子の製造方法に関する。より詳細には、本発明は、高電圧による化成が可能で、リフローなどの熱履歴を経たときにおける漏れ電流の変化が小さい、ニオブ製陽極体を用いたコンデンサ素子の製造方法に関する。
 市販電解コンデンサの陽極体には、タンタルまたはアルミニウムが多用されている。前記陽極体の表面には、陽極酸化法(化成法)により陽極素材の酸化皮膜(化成皮膜)が形成され、この化成皮膜が電解コンデンサの誘電体層となる。アルミニウム電解コンデンサはタンタル電解コンデンサと大きく異なる性能特性を有するので両者は用途が分けられている。
 ところで、タンタル金属と物理的化学的性質が類似しているものとしてニオブ金属が知られている。ニオブはタンタルに比べて資源的に豊富で、価格が安価である。また五酸化ニオブは他の金属酸化物に比べ誘電率が高い方である。そこで、タンタル電解コンデンサに用いられていたタンタルをニオブに置き換えることが検討されるようになった。
 しかし、ニオブからなる陽極体を化成することによって得られるニオブ酸化皮膜はタンタル酸化皮膜に比べ不安定であった。特に化成電圧当たりに生成するニオブ酸化皮膜の厚みはタンタル酸化皮膜の倍であり、皮膜の成長に伴い発生する歪みもニオブ酸化皮膜はタンタル酸化皮膜の倍になる。そのため膜厚さ基準における耐電圧はニオブ酸化皮膜はタンタル酸化皮膜の半分であった。
 また、ニオブ酸化物にはタンタル酸化物にはない非化学量論的低級酸化物が存在する。これが誘電体層内での酸素の拡散を助長し、誘電体層に半導体的性質を与え、漏れ電流を増加させる原因になっていると考えられている。
 このような不安定な特性を有する酸化皮膜ではあるが、ニオブ電解コンデンサはタンタル電解コンデンサを超える性能を発揮する可能性を持っているので、さらなる多くの研究がなされている。
 例えば、特許文献1には、ニオブ焼結体またはニオブ箔を塩素イオンを含む電解質水溶液中で、液温度-15~100℃で、化成を実施し、次いでハロゲンイオンを実質的に含まない電解液でエージングするニオブ電解コンデンサの製造方法が記載されている。塩素イオンを含む電解質水溶液は、塩化水素、金属塩化物、アンモニウムまたはアミンの塩化物のごとき塩化物電解質を水に溶解することによって調製されている。
 特許文献2には、フレーク化したニオブ粉末を真空中で焼結させ、該焼結体を0.1重量%のリン酸水溶液中で陽極酸化することで、電解コンデンサ陽極を生成することが記載されている。陽極酸化時のリン酸水溶液温度は特に開示されていないが、従来の化成において当業者が通常に採用する温度の60~90℃程度であると考えられる。
 特許文献3には、ニオブ陽極体を、リン酸、硝酸および硫酸から選ばれる少なくとも一つの酸を溶質として含む水溶液(化成液)に浸漬し、凝固点以上約40℃以下の液温で行う方法が提案されている。該化成液の凝固点は、溶質の種類や濃度によって多少異なるが、約0℃(或いは、約0℃から僅かに降下した温度)であると記載されている。実施例では化成時の液温度が5℃~40℃に設定されている。
 特許文献4には、弁作用を有する金属であるタンタルからなる多孔質焼結体を、過酸化水素およびリン酸を含有する水溶液に浸漬し、陽極酸化することによって前記焼結体表面に酸化皮膜を形成することを特徴とする固体電解コンデンサの製造方法が記載されている。陽極酸化時の化成液温度は特に開示されていないが、従来の化成において当業者が通常に採用する温度の60~90℃程度であると考えられる。
 特許文献5には、ニオブまたはニオブを主成分とする合金からなる陽極体の表面に誘電体皮膜層を形成し、前記誘電体皮膜層を形成した陽極体を、過酸化水素0.7~10重量%および硫酸0.3~3重量%を含み、水を主溶媒とする溶液に浸漬し、引き上げ後、ピロールまたはピロール誘導体の蒸気に晒すことにより、前記誘電体皮膜層上にポリピロールまたはポリピロール誘導体からなる第1の導電性ポリマー層を形成することを含む電解コンデンサの製造方法が開示されている。誘電体皮膜層は、ニオブ粉末を焼結させた多孔質陽極素子を、5℃のリン酸水溶液に浸漬し、38Vで化成処理して形成している。
 特許文献6には、弁作用金属を、電解液に浸漬し、40℃で陽極酸化させて、電解コンデンサのアノードを製造する方法が記載されている。弁作用金属であるタンタル粉末においては、エチレングリコールまたはポリエチレングリコール、脱イオン水およびリン酸からなる電解液を用いることが示されている。
 特許文献7には、弁作用金属上に誘電酸化物を形成させるための陽極酸化電解液であって、水;リンのオキソ酸またはその塩;無機酸、無機酸の塩、カルボン酸、カルボン酸の塩およびそれらの混合物からなる群から選択される少なくとも1種;およびプロトン性溶媒を含有する陽極酸化電解液が開示されている。弁作用金属がタンタルである場合のプロトン性溶媒として、アルキレングリコール、ポリアルキレングリコールなどが開示されている。陽極酸化時の化成液温度は特に開示されていないが、従来の化成において当業者が通常に採用する温度の60~90℃程度であると考えられる。
特開昭57-113211号公報 特表2002-507247号公報 特開2002-198266号公報 特開平9-246109号公報 特開2003-59763号公報 特開2000-133557号公報 特開2007-224421号公報
 しかしながら、上記のような従来の陽極酸化法においては、ニオブの化成電圧は40~50V程度が上限である。化成処理で得られるニオブ誘電体皮膜は未だにゆがみが大きいので、該ニオブ製陽極体を用いた電解コンデンサはリフローなどの熱履歴を経たときにおける漏れ電流の変化を十分に小さくできていない。
 本発明の目的は、高電圧による化成が可能で、リフローなどの熱履歴を経たときにおける漏れ電流の変化が小さい、ニオブ製陽極体を用いたコンデンサ素子または電解コンデンサを製造する方法を提供することである。
 本発明者らは前記目的を達成するために鋭意検討した結果、酸素供給剤と凝固点降下剤と電解質と溶媒とを含む電解液中で、該電解液から凝固点降下剤を除いた組成の液の凝固点未満の液温で、ニオブまたはニオブ合金からなる陽極体を化成することにより、該陽極体表面に誘電体層を形成または該陽極体表面に形成された誘電体層を修復すると、ニオブ酸化物中における酸素の熱拡散および結晶化が抑制され、常温では不可能であった高容量および高電圧での化成が可能になり、漏れ電流の変化が小さい、ニオブ製陽極体を用いたコンデンサ素子または電解コンデンサが得られることを見出した。本発明はこの知見に基づいてさらに検討したことによって完成に至ったものである。
 すなわち、本発明は以下の態様を含む。
〔1〕酸素供給剤と凝固点降下剤と電解質と溶媒とを含む電解液中で、該電解液から凝固点降下剤を除いた組成の液の凝固点未満の液温で、ニオブまたはニオブ合金からなる陽極体を化成することにより、該陽極体表面に誘電体層を形成または該陽極体表面に形成された誘電体層を修復することを含むコンデンサ素子の製造方法。
〔2〕ニオブまたはニオブ合金からなる陽極体を化成することにより該陽極体表面に誘電体層を形成し、該誘電体層の上に半導体層を形成し、
 そして、半導体層の形成途中または形成後に、酸素供給剤と凝固点降下剤と電解質と溶媒とを含む電解液中で、該電解液から凝固点降下剤を除いた組成の液の凝固点未満の液温で、化成することにより、前記誘電体層を修復することを含むコンデンサ素子の製造方法。
〔3〕酸素供給剤が過酸化水素またはオゾンである前記〔1〕または〔2〕に記載のコンデンサ素子の製造方法。
〔4〕凝固点降下剤がアルコールである前記〔1〕~〔3〕のいずれか1項に記載のコンデンサ素子の製造方法。
〔5〕アルコールが、メタノール、エタノール、エチレングリコール、グリセリン、1-プロパノール、2-プロパノールおよびブタノールからなる群から選ばれる少なくとも1種の化合物である前記〔4〕に記載のコンデンサ素子の製造方法。
〔6〕電解質がリン酸、硫酸、硝酸、硼酸、酢酸、アジピン酸またはこれらの塩であり、溶媒が水である前記〔1〕~〔5〕のいずれか1項に記載のコンデンサ素子の製造方法。
〔7〕電解液中の溶質が化成時に過飽和状態ではない前記〔1〕~〔6〕のいずれか1項に記載のコンデンサ素子の製造方法。
〔8〕陽極体が焼結体または箔である前記〔1〕~〔7〕のいずれか1項に記載のコンデンサ素子の製造方法。
〔9〕陽極体が多孔質体である前記〔1〕~〔8〕のいずれか1項に記載のコンデンサ素子の製造方法。
〔10〕化成電圧が210V以上であり且つ陽極体のCV値が4万CV/g以下である前記〔1〕~〔9〕のいずれか1項に記載のコンデンサ素子の製造方法。
〔11〕化成電圧が294×exp(-8.4×10-6×陽極体のCV値[μFV/g])[V]以上であり、かつ、陽極体のCV値が4万CV/gより大きい前記〔1〕~〔9〕のいずれか1項に記載のコンデンサ素子の製造方法。
〔12〕化成の終点の電流値が定電圧化成初期の電流値の1/20以下である前記〔1〕~〔11〕のいずれか1項に記載のコンデンサ素子の製造方法。
〔13〕 前記〔1〕~〔12〕のいずれか1項に記載の製造方法で得られるコンデンサ素子。
〔14〕 前記〔1〕~〔12〕のいずれか1項に記載の製造方法で誘電体層を有するコンデンサ素子を得、該コンデンサ素子の誘電体層上に陰極を形成し、陽極体および陰極をそれぞれ外部端子に電気的に接続し、次いで封止することを含む電解コンデンサの製造方法。
〔15〕 前記〔13〕に記載のコンデンサ素子の誘電体層上に陰極を有し、陽極体および陰極がそれぞれ外部端子に電気的に接続され、封止されている電解コンデンサ。
 本発明の製造方法によると、誘電体皮膜中の酸素の拡散が抑えられ、高い化成電圧でも正孔や欠陥のない誘電体皮膜を形成でき、高温熱処理前後における漏れ電流の変化が小さい、ニオブ製陽極体を用いたコンデンサ素子または電解コンデンサを得ることができる。
本発明の製法と従来の製法で作成したコンデンサ素子の加熱前後での漏れ電流の変化を示した図である。 本発明の製法で作成したコンデンサ素子の電流-電圧特性を示した図である。 従来の製法で作成したコンデンサ素子の電流-電圧特性を示した図である。 従来の製法で作成したコンデンサ素子の電流-電圧特性を示した図である。 化成温度及びCV値に対する化成限界電圧を示した図である。 実施例2の200V化成したニオブ箔表面の走査型電子顕微鏡写真像である。 実施例2の200V化成したニオブ箔表面の走査型電子顕微鏡写真像である。 比較例3の200V600分間化成したニオブ箔表面の走査型電子顕微鏡写真像である。 比較例3の200V600分間化成したニオブ箔表面の走査型電子顕微鏡写真像である。
 本発明のコンデンサ素子の製造方法は、酸素供給剤と凝固点降下剤と電解質と溶媒とを含む電解液中で、該電解液から凝固点降下剤を除いた組成の液の凝固点未満の液温で、ニオブまたはニオブ合金からなる陽極体を化成することにより、該陽極体表面に誘電体層を形成または該陽極体表面に形成された誘電体層を修復することを含むものである。
 本発明に使用するニオブまたはニオブ合金からなる陽極体は特に制限されず、一般に入手できるものを用いることができる。陽極体に用いられるニオブとしては、例えば、ハロゲン化ニオブのアルカリ金属還元品、酸化ニオブのアルカリ土類金属還元品、水素化ニオブの粉砕・脱水素処理品などが挙げられる。また、陽極体には、例えば、WO2002/015208に記載のごとき、ニオブを母金属とする合金(ニオブ合金)を用いてもよい。
 陽極体は、箔、線、焼結体、スパッタ膜、蒸着膜などのいずれの形態でもよい。これらのうち焼結体または箔が好ましい。陽極体が箔の場合は巻回型コンデンサに好適である。
 ニオブまたはニオブ合金の粉末の焼結体を陽極体として用いる場合、粉末の粒子形状に注意することが好ましい。例えばニオブの化成定数を4nm/Vとすると、仮に50V化成では裏表合計0.4μmの化成皮膜が成長し、元素の輸率を考慮すると陽極体中に表裏約0.15μmの誘電体皮膜が侵入する。焼結された粒子の中心付近まで誘電体に置き換わってしまうと、導電性部分が無くなってしまって容量が低下する。
 焼結体における粒子間の結合状態は、電解化成に大きな影響を与える。粉末を成形体にするときの圧縮力もしくは成形体中の粉末のみかけ成形密度が上がるほど、粉末を焼結させるときの温度が高いほどまたは焼結処理の時間が長くなるほど、焼結体における粉末間の融着が進み結合部分が太る。結合部分が太くなると誘電体皮膜の形成や成長に耐えられるようになり、より高電圧の化成に耐えられるようになる。その反面、陽極体の比表面積が減少し、静電容量が減少する傾向になる。また、曲面において化成皮膜が成長すると外周部と内周部の曲率差から歪みを生じやすく、誘電体皮膜の破壊の原因になることがある。
 そのため使用する陽極体が焼結体の様に多孔質体である場合、陽極体のCV値(CV値:陽極体単位質量あたりの静電容量と化成電圧の積。単位μFV/gで表す。)によって自ずと化成電圧の限界(化成限界電圧)が決まる。CV値が約4万μFV/gまでは化成限界電圧はほぼ同じ高さであるが、CV値がそれよりも高くなると化成限界電圧が低くなってくる。例えば10万μFV/gクラスの陽極体では約120Vが、20万μFV/gクラスの陽極体では約50Vが化成電圧の限界であった。
 本発明に使用する陽極体は、例えば、4万μFV/gクラスの焼結体のように焼結体構成粒子の曲率差による歪みが小さいもので、元々高電圧化成に有利な焼結体に限定されるものではない。いわゆるBケースサイズで1%リン酸を用いて20V化成を実施したときに容量が150μF程度の素子、言い換えると15万μFV/gクラスの焼結体などが使用できる。もちろんより高容量粉末を使用し適切な成型、焼結を実施した焼結体を用いて大容量、高耐圧のコンデンサを設計することができる。
 本発明に使用する電解液は、酸素供給剤と凝固点降下剤と電解質と溶媒とを含む溶液である。
 電解質は、陽極酸化(化成)において従来から一般に用いられている電解質である。電解質は、酸素供給剤または凝固点降下剤と化学反応を起こし難いものであることが好ましい。例えば、リン酸、硫酸、硝酸、硼酸、シュウ酸、酢酸、アジピン酸およびそれらの塩が挙げられる。これらのうちリン酸、硫酸、硝酸、硼酸、酢酸、アジピン酸およびそれらの塩が好ましく、特にリン酸が好ましい。電解質の量は、電解液全体に対して、好ましくは0.01~10質量%、より好ましくは0.1~5質量%である。
 酸素供給剤は、陽極酸化で消費される酸素を補うことができるものであれば特に制限されない。例えば、過酸化水素やオゾンが挙げられる。過酸化水素やオゾンは溶媒に溶解させて電解液に含有させることが好ましい。酸素供給剤の量は、電解液全体に対して、好ましくは0.01~5質量%、より好ましくは0.1~3質量%である。
 溶媒には、水が通常用いられる。本発明に使用する電解液から凝固点降下剤を除いた組成の液は、例えば、溶媒に水を用いた場合には、凝固点がほぼ0℃である。
 凝固点降下剤は、該凝固点降下剤を添加する前の液の凝固点を降下させることができるものであれば特に限定されないが、溶媒との相溶性の高いものが好ましい。例えば、溶媒に水を用いている場合には、凝固点降下剤は、アルコールが好ましく、特にメタノール、エタノール、エチレングリコール、グリセリン、1-プロパノール、2-プロパノール、またはブタノールが好ましい。なお、電解質にも凝固点を降下させる効果があるが、本発明における凝固点降下剤には電解質を含まない。
 凝固点降下剤は、電解液に対して電気抵抗成分となるので、所望の化成温度で電解液が凍結しないようにするための最低必要量を添加することが最も好ましい。凝固点降下剤の使用量は、電解液全体に対して、好ましくは5~40質量%、より好ましくは10~30質量%である。
 本発明のコンデンサ素子の製造方法では、酸素供給剤と凝固点降下剤と電解質と溶媒とを含む電解液から凝固点降下剤を除いた組成の液の凝固点未満、好ましくは-30℃~前記凝固点未満、より好ましくは-20℃~-2℃、さらに好ましくは-13℃~-7℃の液温で、陽極体を電解酸化によって化成する。これによって、該陽極体表面に良好な誘電体層を形成または該陽極体表面に形成された誘電体層を良好なものに修復することができる。
 化成時の液温が電解液から凝固点降下剤を除いた組成の液の凝固点以上になると誘電体皮膜内に結晶が生成し、この結晶が化成皮膜損傷の起点となり高電圧化成に不利になる。温度上昇につれて誘電体皮膜内の酸素拡散が活発になり、誘電体皮膜層が厚くなり静電容量が小さくなる。
 一方、液温を-30℃以下の低い温度に設定すると、高い化成限界電圧が得られる。ただし、添加しなければならない凝固点降下剤の量が増えて、電解液の電気抵抗が高くなる。高電気抵抗の電解液はそれ自体が発熱体となるので、大掛かりな冷却装置を要することになる。
 所望する化成電圧が十分得られる限り、-13℃~-7℃の液温であれば、電解液の抵抗がまだ小さく、印加した電力が効率よく電解化成に使われ、バランスのよい処理条件である。
 なお、電解液中の溶質が化成時に過飽和状態ではないことが好ましい。過飽和状態になっていると何等かのきっかけ(例えば、衝撃など)によって、相平衡状態に移行し、結晶が析出し、高電圧化成に不利になることがある。
 化成開始時の電流密度はコンデンサ素子の表面積当たり1μA/cm2~10mA/cm2であることが望ましい。例えば、陽極体が15万CV/gの焼結体の場合、コンデンサ素子質量当たり3mA/g~30A/gであることが好ましい。化成電圧は2~300Vに調整することが好ましい。電圧は、最初に一定電流で昇圧させ、次いで一定電圧(化成電圧)で保持するのが好ましい。化成時間は30分間~960分間であることが好ましい。
 化成の終点の電流値は定電圧化成初期の電流値の1/20以下であることが好ましい。
 上記方法で得られたコンデンサ素子は、通常、純水で洗浄され、次いで乾燥される。乾燥は素子に付着した水が蒸発する温度および時間であれば特に制限はない。ただし乾燥時の温度が120℃を超えると誘電体層内の酸素が拡散しやすくなり、電気特性に影響が出るおそれがある。そこで、例えば、温度105℃で30分間保持するなどの条件で乾燥することが好ましい。
 乾燥後のコンデンサ素子はウェット評価に供され、その電気特性が測定される。電気特性は、特に指定しない限り、日本電子機械工業会規格 EIAJ RC-2361A タンタル電解コンデンサ用タンタル焼結素子の試験方法(2000年2月改正)に準拠して測定することができる。
 本発明の電解コンデンサの製造方法は、前記のごとき方法でコンデンサ素子を得、該コンデンサ素子の誘電体層上に陰極を形成し、陽極体および陰極をそれぞれ外部端子に電気的に接続し、次いで封止することを含むものである。
 陰極は従来の電解コンデンサに用いられている陰極材料で形成できる。例えば、無機半導体である二酸化モリブデン、二酸化タングステン、二酸化鉛、または二酸化マンガンや;有機半導体であるポリピロールなどで半導体層を形成できる。さらに導電性ペーストであるカーボンペーストや銀ペースト、あるいは金属メッキなどで導電体層を形成できる。
 半導体層の形成途中または形成後に修復化成(再化成)を行ってもよい。修復化成には、一般的に行われている方法を用いることもできるが、漏れ電流をより低く抑えるために本発明の化成方法を適用することが好ましい。特に、所望する修復化成電圧が従来の方法では化成できない高電圧である場合には本発明の方法が好ましく適用される。
 また、従来の方法で誘電体層を形成した場合でも、修復化成に本発明の化成方法を適用することにより、漏れ電流をより低く抑えることができるため好ましい。
 上記陰極に陰極リードが通電可能な状態で接続され、該陰極リードが電解コンデンサの外装の外部に露出して陰極外部端子となる。一方、陽極体には、陽極リードが通電可能な状態で接続され、該陽極リードが電解コンデンサの外装の外部に露出して陽極外部端子となる。陰極リードおよび陽極リードの取り付けには通常のリードフレームを用いることができる。次いで、樹脂等による封止によって外装を形成して電解コンデンサを得ることができる。このようにして作成された電解コンデンサは、所望によりエージング処理を行うことができる。本発明の電解コンデンサは、各種電気回路または電子回路に装着し、使用することができる。
 以下に、実施例および比較例を挙げて、本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1)
 インゴット粉砕法で作成された平均一次粒子径0.5μmのニオブ粉末にポリメタクリル酸イソブチルをトルエンに溶解させたものを粉末質量の5%添加した。よく撹拌後トルエンを蒸発させ除去した。得られた粉末をタンタル粉末成型機TAP-2R(株式会社OPPC製)で縦×横=2.0mm×2.0mmの金型を用い、太さ0.2mmのニオブワイヤを埋設、植立させながら、見かけ成形密度3.0g/cm3、質量22mgの粉末成形体を得た。
 粉末成形体を5×10-4Pa以下の減圧下、1230℃で30分間の焼結処理を実施し、ニオブ焼結体を作成した。この焼結体のCV値は15万μFV/gであった。
 このニオブ焼結体を、リン酸3質量%、過酸化水素1質量%および凝固点降下剤としてのエチレングリコール25質量%を含む水溶液に浸漬し、冷凍装置内で液温度を-10℃に調整した。なお、該水溶液から凝固点降下剤を除いた組成(リン酸4質量%、過酸化水素1.3質量%)の液の凝固点は約-1.5℃であった。化成は、最初に一定電流で昇圧させ、次いで一定の化成電圧で120分間保持して行った(定電圧化成)。電流密度1.5A/g、化成電圧20V、40V、60Vおよび100Vでそれぞれ化成を行った。化成後、水で洗浄し、乾燥して、コンデンサ素子を得た。得られたコンデンサ素子の電気特性値を測定した。なお、漏れ電流は化成電圧の0.7倍の電圧を印加したときの測定値である。100V化成品については25Vを印加したときの漏れ電流も測定した。測定結果を表1に示す。
(比較例1)
 実施例1と同じ方法で得た15万μFV/gのニオブ焼結体を1質量%リン酸水溶液に浸漬し、液温を80℃に調整した。化成は、最初に一定電流で昇圧させ、次いで一定の化成電圧で120分間保持して行った。電流密度200mA/g、化成電圧20V、40V、60Vおよび100Vでそれぞれ化成を行った。化成後、水で洗浄し、乾燥して、コンデンサ素子を得た。得られたコンデンサ素子の電気特性値を測定した。測定結果を表1に示す。
(比較例2)
 実施例1と同じ方法で得た15万μFV/gのニオブ焼結体を1質量%硝酸水溶液に浸漬し、液温を30℃に調整した以外は比較例1と同じ手法でコンデンサ素子を得た。得られたコンデンサ素子の電気特性値を測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1、比較例1および比較例2のコンデンサ素子に250℃で20分間の熱処理を行った。この熱処理前と熱処理後での漏れ電流値の変化を表1および図1に示した。
 表1に示すように、比較例1および比較例2では100Vによる化成ができなかったが、実施例1では100Vでの化成が可能であった。100V化成品は一般的な漏れ電流測定電圧が70Vであるけれど、化成電圧から設定する使用定格電圧(例えば、25V)での漏れ電流値は十分に低く問題がない。同じ化成電圧による静電容量が、実施例1のコンデンサ素子は、比較例1のコンデンサ素子よりも高く、比較例2のコンデンサ素子に比べても遜色なく十分に高い。
 図1より、実施例1のコンデンサ素子は比較例1および比較例2のコンデンサ素子と比べて漏れ電流の変化が小さく、熱的に安定した化成皮膜が形成されていることがわかる。
(実施例2)
 市販の純度3N、厚さ100μmのニオブ箔を10mm×30mmに切断し、短辺の一部に太さ0.2mmのニオブワイヤを溶接した。さらにアセトンで脱脂し、硝酸洗浄し、水洗浄し、次いで乾燥して、ニオブ箔素子を得た。
 このニオブ箔素子を、リン酸3質量%、過酸化水素1質量%および凝固点降下剤としてのエチレングリコール25質量%を含む水溶液に浸漬し、冷凍装置内で液温度を-10℃に調整した。化成は、最初に一定電流で昇圧させ、次いで一定の化成電圧で120分間、360分間、480分間および600分間でそれぞれ保持して行った。電流密度5.5mA/cm2または0.83mA/cm2、化成電圧60V~300Vでそれぞれ化成を行った。化成後、水で洗浄し、乾燥して、コンデンサ素子を得た。得られたコンデンサ素子の電気特性値を測定した。測定結果を表2に示す。
 また、200V化成したニオブ箔表面の走査型電子顕微鏡(SEM)写真像を図6および図7に示した。図7は高倍率のSEM写真像である。図6および図7に示すように、視野内には欠陥のある化成膜が観察されなかった。
(比較例3)
 実施例2と同じ方法で得られたニオブ箔素子を1質量%リン酸水溶液に浸漬し、液温を70℃または60℃に調整した以外は実施例2と同じ手法でコンデンサ素子を得た。得られたコンデンサ素子の電気特性値を測定した。測定結果を表2に示す。また、200Vで600分間化成したニオブ箔表面のSEM写真像を図8および図9に示した。図9は高倍率のSEM写真像である。図8に示すように、視野全体に粒状の模様が観察された。この粒状模様は、図9に示すように、化成膜の欠陥であった。この欠陥のために、比較例3では、化成終了時電流が十分に低くならなかったと考えられる。
Figure JPOXMLDOC01-appb-T000002
 表2より、ニオブ箔において本発明の方法を用いると300V以上での化成が可能であり、CV値の低い素子では高電圧に対応できることがわかる。なお、箔は、CV値数100μFV/gの焼結体に相当すると考えられる。
 また、図6~9より、本発明の方法を用いると誘電体層として欠陥の少ない化成膜が得られることがわかる。
(実施例3)
 実施例1で作成したコンデンサ素子を陽極に、白金黒を陰極に用い、これらを40質量%硫酸に室温で浸漬し、陽極と陰極とに直流電源を順方向に接続した。電流10mA、電圧0.5Vにて直流を流し始め30秒間経過後に電流値を測定した。直流電源を一旦切り、電圧を0.5V上げ1.0Vに設定して直流を再度流し30秒間経過後に電流値を測定した。以下同様に0.5Vずつ電圧を上げてその都度電流値を測定した。印加した電圧値と30秒間経過後の電流値との関係を図2に示した。
 図2は実施例1で作成したコンデンサ素子のデータを示している。100V化成品は約40Vに変曲点(丸で標した部分)を有していることがわかる。すなわち、変曲点以下の電圧ではオームの法則に従う可逆的な電流-電圧特性領域であり、電解コンデンサにした場合この変曲点以下での定格電圧が選択できる。
(比較例4)
 比較例1で作成したコンデンサ素子を陽極に用いた以外は実施例3と同じ手法で測定を行った。結果を図3に示した。
 図3に示すように、比較例1のコンデンサ素子は、60V化成品でも変曲点(丸で標した部分)の電圧値が約30Vになるのがやっとで、実施例1には及ばない。
(比較例5)
 比較例2で作成したコンデンサ素子を陽極に用いた以外は実施例3と同じ手法で測定を行った。結果を図4に示した。
 図4から、40V化成品および60V化成品のデータは、初期から20V化成品より電流値が大きいため、見かけ上30V付近に変曲点が表れるが、電気特性としては劣っていることがわかる。
(実施例4)
 BET比表面積から換算される平均1次粒子径が0.3μm~1μmのインゴット粉砕法で作成されたニオブ粉末を用いて、実施例1と同様の手法で表3に示すCV値を有するニオブ焼結体を作成した。
 この焼結体を用いて、実施例1と同じ手法で化成を行った。ただし、種々の電圧で化成を行い、化成の終点の電流値が定電圧化成初期の電流値の1/20以下となる化成電圧の上限(これを化成限界電圧とした)を求めた。測定結果を表3に示す。
(比較例6)
 実施例4と同じ手法で得られた焼結体を用いて、実施例4と同様の手法で化成を行い、化成限界電圧を求めた。ただし、化成液として1質量%リン酸水溶液を用い、化成液の温度を60℃とした。測定結果を表3に示す。
 実施例4及び比較例6の化成限界電圧とCV値の関係は、CV値4万μFV/gを超える領域で、図5(実線)に示したように良好に指数近似で表され、式1の関係となった。また、測定値より求められる指数近似式の定数(式1のA及びB)を表3に示した。
 化成限界電圧[V]=A × exp(B × CV値[μFV/g])
                          (式1)
 式1中のA,Bは定数、CV値>4万μFV/gである。
 なお、CV値4万μFV/g以下の領域の化成限界電圧は、CV値による影響がほとんど無く、一定の電圧となる。
Figure JPOXMLDOC01-appb-T000003
(実施例5)
 実施例4と同じ手法で得られた17万μFV/gの焼結体を用いて、実施例4と同様の手法で化成を行った。ただし、化成液の温度を-2℃とした。測定結果を表4に示す。
(実施例6)
 実施例4と同じ手法で得られた17万μFV/gの焼結体を用いて、実施例4と同様の手法で化成を行った。ただし、化成液として、リン酸5.6質量%、過酸化水素1.9質量%およびエタノール28質量%を含む水溶液を用い、化成液の温度を-20℃とした。測定結果を表4に示す。
(比較例7)
 実施例4と同じ手法で得られた17万μFV/gの焼結体を用いて、比較例6と同様の手法で化成を行った。ただし、化成液の温度を10℃、20℃、30℃、40℃で実施した。測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例4および比較例6より、指数近似式の定数A,Bの内、A値は化成温度に依存し、B値は化成温度に依存せず、一定であった。これより、特定の化成温度及びCV値での化成限界電圧がわかれば、これより定数Aを求め、その化成温度での各CV値での化成限界電圧が推定できる。各化成温度でのA値を表4に示した。また、各化成温度及びCV値での化成限界電圧を図5(点線)に示した。
 図5に示したように、従来の化成方法では、CV値が4万μFV/g以下では、化成限界電圧が203V未満である。4万μFV/gを超えるCV値では、式1のA値が285未満の範囲の化成限界電圧である。
 一方、本発明の方法を用いることにより、CV値が4万μFV/g以下では、210V以上、好ましくは230V以上で化成することが可能である。4万μFV/gを超えるCV値では、式2でa=294の際の化成電圧以上、好ましくはa=322の際の化成電圧以上で化成することが可能である。
 化成電圧[V]=a × exp(b × CV値[μFV/g])   (式2)
 式2中のa、bは定数、b=-8.4×10-6 、CV値>4万μFV/gである。
(実施例7)
 比較例1と同じ手法にて40Vで化成したコンデンサ素子を得た。得られた素子を、60質量%硝酸マンガン水溶液に浸し、次にこの素子に付着している硝酸マンガンを220℃で熱分解させる操作を10回繰り返した。この操作により、素子に無機半導体層である二酸化マンガン層を形成した。
 この素子を実施例1で行ったニオブ焼結体の化成方法と同じ方法にて化成し修復化成を実施した。ただし、電流密度は1.5A/g、化成電圧は30V、保持時間は30分間とした。修復化成後、カーボン層、および銀ペースト層を順次積層し、リードフレームに載せ、次いで全体をエポキシ樹脂で封止し、チップ型コンデンサを作成した。得られたコンデンサの容量は71μF、漏れ電流は21μAであった。
(比較例8)
 比較例1と同じ手法にて40Vで化成したコンデンサ素子を得た。得られた素子を、60質量%硝酸マンガン水溶液に浸し、次にこの素子に付着している硝酸マンガンを220℃で熱分解させる操作を10回繰り返した。この操作により、素子に無機半導体層である二酸化マンガン層を形成した。
 この素子を比較例1で行ったニオブ焼結体の化成方法と同じ方法にて化成し修復化成を実施した。ただし、電流密度は200mA/g、化成電圧は30Vで、保持時間は30分間とした。修復化成後、実施例7と同じ方法でチップ型コンデンサを作成し電気的特性を測定した。得られたコンデンサの容量は70μF、漏れ電流は35μAであった。
 なお、実施例7および比較例8における漏れ電流は、電流10mA、電圧10Vにて直流を流し始め30秒間経過後に測定した電流値である。
 実施例7で作成したコンデンサは比較例8で作成したコンデンサと比べて、漏れ電流が少ない。すなわち、従来の化成方法で形成された誘電体層を本発明の方法で修復化成することにより、コンデンサの漏れ電流を低減できることがわかる。

Claims (15)

  1.  酸素供給剤と凝固点降下剤と電解質と溶媒とを含む電解液中で、該電解液から凝固点降下剤を除いた組成の液の凝固点未満の液温で、ニオブまたはニオブ合金からなる陽極体を化成することにより、該陽極体表面に誘電体層を形成または該陽極体表面に形成された誘電体層を修復することを含むコンデンサ素子の製造方法。
  2.  ニオブまたはニオブ合金からなる陽極体を化成することにより該陽極体表面に誘電体層を形成し、該誘電体層の上に半導体層を形成し、
     そして、半導体層の形成途中または形成後に、酸素供給剤と凝固点降下剤と電解質と溶媒とを含む電解液中で、該電解液から凝固点降下剤を除いた組成の液の凝固点未満の液温で、化成することにより、前記誘電体層を修復することを含むコンデンサ素子の製造方法。
  3.  酸素供給剤が過酸化水素またはオゾンである請求項1または2に記載のコンデンサ素子の製造方法。
  4.  凝固点降下剤がアルコールである請求項1~3のいずれか1項に記載のコンデンサ素子の製造方法。
  5.  アルコールが、メタノール、エタノール、エチレングリコール、グリセリン、1-プロパノール、2-プロパノールおよびブタノールからなる群から選ばれる少なくとも1種の化合物である請求項4に記載のコンデンサ素子の製造方法。
  6.  電解質がリン酸、硫酸、硝酸、硼酸、酢酸、アジピン酸またはこれらの塩であり、溶媒が水である、請求項1~5のいずれか1項に記載のコンデンサ素子の製造方法。
  7.  電解液中の溶質が化成時に過飽和状態ではない請求項1~6のいずれか1項に記載のコンデンサ素子の製造方法。
  8.  陽極体が焼結体または箔である請求項1~7のいずれか1項に記載のコンデンサ素子の製造方法。
  9.  陽極体が多孔質体である請求項1~8のいずれか1項に記載のコンデンサ素子の製造方法。
  10.  化成電圧が210V以上であり且つ陽極体のCV値が4万CV/g以下である請求項1~9のいずれか1項に記載のコンデンサ素子の製造方法。
  11.  化成電圧が294×exp(-8.4×10-6×陽極体のCV値[μFV/g])[V]以上であり、かつ、陽極体のCV値が4万CV/gより大きい請求項1~9のいずれか1項に記載のコンデンサ素子の製造方法。
  12.  化成の終点の電流値が定電圧化成初期の電流値の1/20以下である請求項1~11のいずれか1項に記載のコンデンサ素子の製造方法。
  13.  請求項1~12のいずれか1項に記載の製造方法で得られるコンデンサ素子。
  14.  請求項1~12のいずれか1項に記載の製造方法で誘電体層を有するコンデンサ素子を得、該コンデンサ素子の誘電体層上に陰極を形成し、陽極体および陰極をそれぞれ外部端子に電気的に接続し、次いで封止することを含む電解コンデンサの製造方法。
  15.  請求項13に記載のコンデンサ素子の誘電体層上に陰極を有し、陽極体および陰極がそれぞれ外部端子に電気的に接続され、封止されている電解コンデンサ。
PCT/JP2009/068601 2008-10-29 2009-10-29 コンデンサ素子の製造方法 WO2010050558A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010535836A JP5411156B2 (ja) 2008-10-29 2009-10-29 コンデンサ素子の製造方法
US13/126,553 US8915974B2 (en) 2008-10-29 2009-10-29 Method for manufacturing capacitor element
EP09823668.0A EP2343716A4 (en) 2008-10-29 2009-10-29 METHOD FOR PRODUCING A CONDENSER ELEMENT
CN2009801436068A CN102203890B (zh) 2008-10-29 2009-10-29 电容器元件的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-277840 2008-10-29
JP2008277840 2008-10-29

Publications (1)

Publication Number Publication Date
WO2010050558A1 true WO2010050558A1 (ja) 2010-05-06

Family

ID=42128917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068601 WO2010050558A1 (ja) 2008-10-29 2009-10-29 コンデンサ素子の製造方法

Country Status (5)

Country Link
US (1) US8915974B2 (ja)
EP (1) EP2343716A4 (ja)
JP (1) JP5411156B2 (ja)
CN (1) CN102203890B (ja)
WO (1) WO2010050558A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179996A1 (ja) * 2012-05-29 2013-12-05 昭和電工株式会社 固体電解コンデンサ素子の製造方法
CN105026078B (zh) * 2013-03-13 2017-10-24 凯米特电子公司 低能量研磨以制备片状粉末
CN103295783B (zh) * 2013-05-16 2015-09-09 中国振华(集团)新云电子元器件有限责任公司 一种电解电容器的制造方法
WO2017163727A1 (ja) * 2016-03-24 2017-09-28 パナソニックIpマネジメント株式会社 電解コンデンサ
CN106206033B (zh) * 2016-06-29 2019-01-08 江苏百福能源科技有限公司 一种太阳能电池
CN106206036B (zh) * 2016-06-29 2018-11-27 泰州市邦富环保科技有限公司 一种基于自供能的显示装置
CN106882775A (zh) * 2017-03-10 2017-06-23 苏州博洋化学股份有限公司 一种低凝点磷酸
US11081288B1 (en) 2018-08-10 2021-08-03 Avx Corporation Solid electrolytic capacitor having a reduced anomalous charging characteristic
US11380492B1 (en) 2018-12-11 2022-07-05 KYOCERA AVX Components Corporation Solid electrolytic capacitor
US11756742B1 (en) 2019-12-10 2023-09-12 KYOCERA AVX Components Corporation Tantalum capacitor with improved leakage current stability at high temperatures
CN111600080A (zh) * 2020-05-28 2020-08-28 南开大学 一种提高水系电池低温性能的电解液添加剂及电解液
US11763998B1 (en) 2020-06-03 2023-09-19 KYOCERA AVX Components Corporation Solid electrolytic capacitor

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113211A (en) 1981-01-06 1982-07-14 Tokyo Shibaura Electric Co Method of producing niobium electrolytic condenser
JPH09246109A (ja) 1996-03-04 1997-09-19 Matsushita Electric Ind Co Ltd 固体電解コンデンサの製造方法
JPH09306791A (ja) * 1996-05-13 1997-11-28 Matsushita Electric Ind Co Ltd 固体電解コンデンサの製造方法
JP2000133557A (ja) 1998-10-01 2000-05-12 Wilson Greatbatch Ltd 電解コンデンサ―のアノ―ド酸化タンタルペレット
WO2002015208A1 (fr) 2000-08-10 2002-02-21 Showa Denko K.K. Poudre de niobium, agglomere correspondant, et condensateur utilisant ceux-ci
JP2002507247A (ja) 1996-11-07 2002-03-05 キャボット コーポレイション ニオブ粉末とニオブ電解コンデンサー
JP2002198266A (ja) 2000-12-27 2002-07-12 Sanyo Electric Co Ltd 電解コンデンサの製造方法
JP2003059763A (ja) 2001-08-20 2003-02-28 Sanyo Electric Co Ltd 固体電解コンデンサの製造方法
WO2007061034A1 (ja) * 2005-11-25 2007-05-31 Showa Denko K. K. コンデンサ素子製造用冶具及びコンデンサ素子の製造方法
JP2007224421A (ja) 2006-02-23 2007-09-06 Greatbetch Ltd 高電圧電解コンデンサアノードのための二重酸システムを使用した陽極酸化電解液
JP2008519440A (ja) * 2004-10-29 2008-06-05 メドトロニック・インコーポレーテッド バルブ金属アノードに高電圧陽極酸化物を形成する方法及びシステム
JP2008235895A (ja) * 2007-03-20 2008-10-02 Avx Corp 湿式電解コンデンサ用の中性電解質

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2882233A (en) * 1956-03-02 1959-04-14 Kurt O Otley Forming electrolyte for capacitors
CN101510468B (zh) * 2001-04-12 2012-01-18 昭和电工株式会社 铌电容器的制备方法
US20030104923A1 (en) * 2001-05-15 2003-06-05 Showa Denko K.K. Niobium oxide powder, niobium oxide sintered body and capacitor using the sintered body
US6788523B1 (en) 2003-05-30 2004-09-07 Kemet Electronics Electrolyte for electrolytic capacitor
US6859354B2 (en) * 2003-05-30 2005-02-22 Kemet Electronic Corporation Low freezing electrolyte for an electrolytic capacitor
ATE440373T1 (de) * 2003-10-17 2009-09-15 Starck H C Gmbh Elektrolytkondensatoren mit polymerer aussenschicht
US7952853B2 (en) 2004-04-27 2011-05-31 Medtronic, Inc. Capacitor electrolyte
US7649730B2 (en) * 2007-03-20 2010-01-19 Avx Corporation Wet electrolytic capacitor containing a plurality of thin powder-formed anodes

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113211A (en) 1981-01-06 1982-07-14 Tokyo Shibaura Electric Co Method of producing niobium electrolytic condenser
JPH09246109A (ja) 1996-03-04 1997-09-19 Matsushita Electric Ind Co Ltd 固体電解コンデンサの製造方法
JPH09306791A (ja) * 1996-05-13 1997-11-28 Matsushita Electric Ind Co Ltd 固体電解コンデンサの製造方法
JP2002507247A (ja) 1996-11-07 2002-03-05 キャボット コーポレイション ニオブ粉末とニオブ電解コンデンサー
JP2000133557A (ja) 1998-10-01 2000-05-12 Wilson Greatbatch Ltd 電解コンデンサ―のアノ―ド酸化タンタルペレット
WO2002015208A1 (fr) 2000-08-10 2002-02-21 Showa Denko K.K. Poudre de niobium, agglomere correspondant, et condensateur utilisant ceux-ci
JP2002198266A (ja) 2000-12-27 2002-07-12 Sanyo Electric Co Ltd 電解コンデンサの製造方法
JP2003059763A (ja) 2001-08-20 2003-02-28 Sanyo Electric Co Ltd 固体電解コンデンサの製造方法
JP2008519440A (ja) * 2004-10-29 2008-06-05 メドトロニック・インコーポレーテッド バルブ金属アノードに高電圧陽極酸化物を形成する方法及びシステム
WO2007061034A1 (ja) * 2005-11-25 2007-05-31 Showa Denko K. K. コンデンサ素子製造用冶具及びコンデンサ素子の製造方法
JP2007224421A (ja) 2006-02-23 2007-09-06 Greatbetch Ltd 高電圧電解コンデンサアノードのための二重酸システムを使用した陽極酸化電解液
JP2008235895A (ja) * 2007-03-20 2008-10-02 Avx Corp 湿式電解コンデンサ用の中性電解質

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2343716A4 *

Also Published As

Publication number Publication date
CN102203890A (zh) 2011-09-28
US20110239424A1 (en) 2011-10-06
EP2343716A1 (en) 2011-07-13
JP5411156B2 (ja) 2014-02-12
CN102203890B (zh) 2013-03-20
US8915974B2 (en) 2014-12-23
EP2343716A4 (en) 2015-08-19
JPWO2010050558A1 (ja) 2012-03-29

Similar Documents

Publication Publication Date Title
JP5411156B2 (ja) コンデンサ素子の製造方法
JPWO2013186970A1 (ja) コンデンサ素子およびその製造方法
JP2003229330A (ja) 固体電解コンデンサとその製造方法
US9607770B2 (en) Method for producing capacitor
US8512423B2 (en) Method for producing solid electrolytic capacitor
US10032563B2 (en) Capacitor element
JP2010003996A (ja) アルミニウム電解コンデンサ用電極箔の製造方法
JP2006108192A (ja) 固体電解コンデンサの製造方法
JP5273736B2 (ja) 固体電解コンデンサの製造方法
JP2009182027A (ja) 固体電解コンデンサの製造方法
JP2007088144A (ja) 固体電解コンデンサ用陽極体および固体電解コンデンサ
JP4863509B2 (ja) 固体電解コンデンサの製造方法
JP2010267778A (ja) ニオブ固体電解コンデンサ及びその製造方法
JP2009194266A (ja) 固体電解コンデンサおよびその製造方法
JP4241495B2 (ja) 導電性高分子の製造方法と製造装置
JP2007234836A (ja) 固体電解コンデンサ及び固体電解コンデンサの製造方法
JP2008270552A (ja) 固体電解コンデンサの製造方法
WO2015016066A1 (ja) 固体電解コンデンサ素子の陽極体及びその製造方法
WO2011145372A1 (ja) コンデンサの製造方法
JP5502563B2 (ja) 固体電解コンデンサの製造方法
JP4947888B2 (ja) 固体電解コンデンサの製造方法
JP2008226971A (ja) 固体電解コンデンサの製造方法
JP2007311629A (ja) 固体電解コンデンサの製造方法
JP2009206426A (ja) 固体電解コンデンサの製造方法
JP2008153585A (ja) 固体電解コンデンサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980143606.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823668

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010535836

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009823668

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13126553

Country of ref document: US