WO2010050272A1 - 感光性樹脂組成物及びそれに用いる感光性樹脂の製造方法 - Google Patents

感光性樹脂組成物及びそれに用いる感光性樹脂の製造方法 Download PDF

Info

Publication number
WO2010050272A1
WO2010050272A1 PCT/JP2009/062446 JP2009062446W WO2010050272A1 WO 2010050272 A1 WO2010050272 A1 WO 2010050272A1 JP 2009062446 W JP2009062446 W JP 2009062446W WO 2010050272 A1 WO2010050272 A1 WO 2010050272A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive resin
compound
reacting
resin composition
mass
Prior art date
Application number
PCT/JP2009/062446
Other languages
English (en)
French (fr)
Inventor
浩志 上井
和重 荻原
Original Assignee
昭和高分子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和高分子株式会社 filed Critical 昭和高分子株式会社
Priority to KR1020117006587A priority Critical patent/KR101267111B1/ko
Priority to CN200980137692.1A priority patent/CN102164977B/zh
Publication of WO2010050272A1 publication Critical patent/WO2010050272A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/681Metal alcoholates, phenolates or carboxylates
    • C08G59/685Carboxylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/10Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers containing more than one epoxy radical per molecule
    • C08F283/105Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers containing more than one epoxy radical per molecule on to unsaturated polymers containing more than one epoxy radical per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/064Polymers containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • C08G59/1455Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
    • C08G59/1461Unsaturated monoacids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • C08G59/1455Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
    • C08G59/1461Unsaturated monoacids
    • C08G59/1466Acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/10Epoxy resins modified by unsaturated compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions

Definitions

  • the present invention relates to a photosensitive resin composition. More specifically, the present invention relates to a photosensitive resin composition that does not contain a chromium compound, is highly sensitive to ultraviolet exposure, has a good physical property, and can be developed with a dilute alkali.
  • the present invention relates to a conductive resin composition.
  • a liquid solder photoresist ink of a dilute alkali development type has been widely used.
  • a dilute alkali development type photosensitive resin for example, an acid pendant type epoxy acrylate resin obtained by reacting an acid anhydride with a hydroxyl group of an epoxy acrylate resin is known.
  • chromium naphthenate has been used as a synthesis catalyst for such an acid pendant type epoxy acrylate resin in order to obtain good thermal stability and development control width.
  • Patent Document 1 is obtained by using an organophosphorus compound as a synthesis catalyst, reacting a polyfunctional epoxy resin with an unsaturated monobasic acid under predetermined conditions, and further reacting with an acid anhydride. Photosensitive resins have been proposed.
  • the photosensitive resin described in Patent Document 1 balances performances such as sensitivity, thermal stability, development control width, heat resistance, and solvent resistance as required for recent solder resist inks at a high level. There is still room for improvement. Therefore, the present invention does not contain a chromium compound, can be developed with ultraviolet exposure and dilute alkaline aqueous solution, has high sensitivity, has good thermal stability and development control width, and has excellent coating performance. It aims at providing the photosensitive resin composition suitable as a soldering resist ink to show.
  • a polyfunctional epoxy compound and an unsaturated compound are present in the presence of a trivalent organophosphorus compound and at least one of zirconium naphthenate and zirconium octylate.
  • a photosensitive resin obtained by reacting a monoepoxy compound having an unsaturated double bond with a carboxyl group generated by reacting with a monobasic acid and further reacting with a polybasic acid anhydride and a water-soluble monoepoxy compound. It has been found that the blended photosensitive resin composition meets the above-mentioned purpose, and the present invention has been completed.
  • the present invention comprises (A) a reaction between a polyfunctional epoxy compound and an unsaturated monobasic acid in the presence of a trivalent organophosphorus compound and at least one of zirconium naphthenate and zirconium octylate, Photosensitive resin obtained by reacting a monoepoxy compound having an unsaturated double bond with a carboxyl group produced by reacting a basic acid anhydride and a water-soluble monoepoxy compound, (B) epoxy resin, (C) light A photosensitive resin composition comprising a polymerization initiator and (D) a reactive diluent.
  • the present invention also includes a first step of reacting a polyfunctional epoxy compound with an unsaturated monobasic acid in the presence of a trivalent organophosphorus compound and at least one of zirconium naphthenate and zirconium octylate, The second step of reacting the polybasic acid anhydride with the product obtained in one step, the monoepoxy compound having an unsaturated double bond and the water-soluble monoepoxy compound reacting with the product obtained in the second step And a third step of producing a photosensitive resin.
  • the present invention does not contain a chromium compound, can be developed with ultraviolet light exposure and dilute alkaline aqueous solution, is highly sensitive, has good thermal stability and development control width, and has excellent coating performance.
  • a photosensitive resin composition suitable as the solder resist ink shown can be provided.
  • the component (A) in the photosensitive resin composition of the present invention comprises a polyfunctional epoxy compound, an unsaturated monobasic acid, in the presence of a trivalent organic phosphorus compound and at least one of zirconium naphthenate and zirconium octylate.
  • a photosensitive resin obtained by reacting a polyepoxy anhydride with a monoepoxy compound having an unsaturated double bond and a water-soluble monoepoxy compound.
  • the physical properties of the component (A) of the present invention are greatly influenced by the catalyst used in the synthesis, and the development management width tends to be influenced by the catalyst. Further, when catalysts having different characteristics are used in combination, the respective disadvantages tend to appear, but the present inventors have used a trivalent organophosphorus compound in combination with at least one of zirconium naphthenate and zirconium octylate. Contrary to expectations, the inventors have found that physical properties equivalent to those obtained when a chromium-based catalyst is used can be obtained.
  • the amount of the catalyst used is preferably a total amount of trivalent organophosphorus compound and at least one of zirconium naphthenate and zirconium octylate with respect to 100 parts by mass of the total amount of polyfunctional epoxy resin and unsaturated monobasic acid.
  • the amount is from 1.2 parts by mass to 6.0 parts by mass.
  • at least one of zirconium naphthenate and zirconium octylate is preferably used at least 4 times, more preferably 4 to 6 times, the trivalent organophosphorus compound on a mass basis.
  • the total amount of the trivalent organic phosphorus compound and at least one of zirconium naphthenate and zirconium octylate is too small, or the amount of at least one of zirconium naphthenate and zirconium octylate used is four times that of the trivalent organic phosphorus compound. If it is less than 1, it may not function sufficiently as a reaction catalyst. On the other hand, when the amount of the trivalent organophosphorus compound is too large, the thermal stability of the resulting photosensitive resin tends to decrease, and the amount used is too high even if at least one of zirconium naphthenate and zirconium octylate is excessive. It is not economical because there is no effect commensurate with.
  • the polyfunctional epoxy compound used in the present invention is not particularly limited.
  • bisphenol A type, bisphenol F type, phenol novolac type, cresol novolak type, bisphenol A novolak type, cycloaliphatic epoxy resin, heterocyclic ring examples thereof include epoxy resins such as molds and those in which halogen atoms such as bromine atoms and chlorine atoms are introduced.
  • a cresol novolac type epoxy resin is particularly preferable.
  • the unsaturated monobasic acid used in the present invention may be a monobasic acid having one carboxyl group and one or more polymerizable unsaturated groups, such as acrylic acid, methacrylic acid, crotonic acid, Cinnamic acid, sorbitan acid, acrylic acid dimer and the like can be mentioned.
  • acrylic acid is preferable from the viewpoint of obtaining high active energy photocurability.
  • These unsaturated monobasic acids may be used individually by 1 type, and may be used in combination of 2 or more type.
  • These unsaturated monobasic acids are preferably reacted at 0.8 equivalents to 1.1 equivalents with respect to 1.0 equivalent of the epoxy group of the polyfunctional epoxy compound. If the ratio of unsaturated monobasic acid is less than 0.8 equivalent, storage stability may be deteriorated, and problems such as gelation may occur during synthesis. It tends to occur or heat resistance decreases.
  • polybasic acid anhydride used in the present invention examples include maleic anhydride, succinic anhydride, itaconic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride.
  • dibasic acid anhydrides such as acid and chlorendic anhydride
  • polybasic acid anhydrides such as trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride, and biphenyltetracarboxylic anhydride.
  • tetrahydrophthalic anhydride or hexahydrophthalic anhydride is particularly preferred from the viewpoint of excellent electrolytic corrosion properties.
  • the amount of these polybasic acid anhydrides used is 0.4 mol to 0.9 mol with respect to 1.0 mol of hydroxyl group of the product obtained by reacting the polyfunctional epoxy compound and unsaturated monobasic acid. It is preferable that the reaction be performed at a ratio of 0.6 mol to 0.9 mol. If the amount of polybasic acid anhydride used is less than 0.4 mol, sufficient alkali developability may not be obtained. On the other hand, if it exceeds 0.9 mol, the electrical properties of the cured coating will deteriorate. Tend to.
  • Examples of the monoepoxy compound having an unsaturated double bond used in the present invention include alicyclic epoxy groups such as glycidyl methacrylate, glycidyl acrylate, Daicel Chemical Industries, Ltd. Cyclomer A200 and M100 (meth). An acrylate is mentioned.
  • R 1 represents an alkyl group or an aryl group
  • R 2 represents polyethylene oxide or polypropylene oxide having 3 or more repeating units.
  • a monoepoxy compound having an unsaturated double bond that binds to a carboxyl group derived from a polybasic acid anhydride is bonded to the outermost part of the resin, and therefore has a high steric reactivity when irradiated with ultraviolet light. It has high photosensitivity.
  • the water-soluble monoepoxy compound improves the affinity of the resin for alkali, further moderately suppresses the mobility of the unsaturated double bond of the monoepoxy compound having an unsaturated double bond, and preserves the resin during storage. Of stability.
  • the amount of the monoepoxy compound having an unsaturated double bond and the water-soluble monoepoxy compound to be reacted with the carboxyl group produced by the reaction of the polybasic acid anhydride depends on the sensitivity, developability and electrical characteristics of the resulting photosensitive resin. Considering this, it is preferable to react at a ratio of 0.15 mol to 0.25 mol in total with respect to 1 mol of the generated carboxyl group.
  • the amount of the water-soluble monoepoxy compound is preferably a ratio of less than 0.03 mol, and a ratio of 0.01 mol to 0.025 mol, with respect to 1 mol of the generated carboxyl group. More preferably.
  • the effect of increasing sensitivity which is one of the objects of the present invention, tends to be insufficient.
  • the alkali developability tends to decrease.
  • the amount of the water-soluble monoepoxy compound is 0.03 mol or more, the effect is low, which is not realistic from the viewpoint of the alkali developability described above.
  • Examples of the epoxy resin as the component (B) in the photosensitive resin composition of the present invention include bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, phenol novolac type epoxy resin, and cresol novolak type epoxy.
  • the compounding amount of these epoxy resins is preferably 3 to 100 parts by mass, more preferably 6 to 75 parts by mass with respect to 100 parts by mass of the photosensitive resin.
  • the blending amount of the epoxy resin is less than 3 parts by mass, the carboxyl group in the photosensitive resin is less than the amount that substantially reacts, so that the water resistance, alkali resistance, and electrical characteristics tend to decrease,
  • the amount exceeds 100 parts by mass a linear polymer having an unreacted epoxy group is generated, and thus heat resistance and solvent resistance may be insufficient.
  • an epoxy curing agent in order to further improve the adhesion, chemical resistance, heat resistance, etc. of the epoxy resin.
  • epoxy curing agents include imidazole derivatives, phenol derivatives, dicyandiamide, dicyandiamide derivatives, melamine, melamine resins, hydrazide derivatives, amines, acid anhydrides, and the like. These epoxy curing agents may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the compounding amount of the epoxy curing agent is preferably such that the amount of active hydrogen in the curing agent is 0.5 mol to 1.2 mol with respect to 1 mol of the epoxy group of the epoxy resin.
  • Examples of the photopolymerization initiator (C) in the photosensitive resin composition of the present invention include benzoin such as benzoin, benzoin methyl ether, benzoin isopropyl ether, benzoin isobutyl ether and derivatives thereof, benzyl such as benzyl and benzyldimethyl ketal.
  • photoinitiators may be used individually by 1 type, and may be used in combination of 2 or more type. Furthermore, it is known that the effect of initiating photopolymerization is promoted by using various amine compounds in combination with these photoinitiators, if necessary, and can also be used in combination in the present invention.
  • the blending amount of these photopolymerization initiators is preferably 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the photosensitive resin.
  • the blending amount of the photopolymerization initiator is less than 0.1 parts by mass, the effect as the photopolymerization initiator may not be sufficiently obtained. On the other hand, even if it exceeds 20 parts by mass, the effect commensurate with the blending amount It is not economical.
  • the reactive diluent which is the component (D) in the photosensitive resin composition of the present invention is intended to improve the curability to active energy rays and / or the coating properties when the photosensitive resin composition is used as a resist ink. It is what is used in.
  • active energy light-curing monomers are preferable, and 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, N-pyrrolidone, N-acryloylmorpholine, N, N-dimethylacrylamide, N, N-diethylacrylamide, N, N-dimethylaminoethyl acrylate, N, N-dimethylaminopropyl acrylate, methoxypolyethylene glycol acrylate, ethoxypolyethylene glycol acrylate, melamine acrylate, phenoxyethyl acrylate, phenoxypropyl acrylate, ethylene glycol diacrylate, di Propylene glycol diacrylate, polydipropylene glycol diacrylate, trimethylolpropane triacrylate, Pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate,
  • the compounding amount of the reactive diluent is preferably 5 parts by mass to 200 parts by mass, and more preferably 10 parts by mass to 100 parts by mass with respect to 100 parts by mass of the photosensitive resin.
  • the compounding amount of the reactive diluent is less than 5 parts by mass, sufficient photosensitivity may not be obtained.
  • the photosensitive resin composition is used as a resist ink. In some cases, the viscosity becomes too low and the resistance as a cured coating film becomes insufficient.
  • a solvent can be used together with a reactive diluent to adjust the coatability.
  • solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, aromatic hydrocarbons such as toluene and xylene, carbitols such as ethyl cellosolve, butyl cellosolve, carbitol, butyl carbitol, ethyl acetate, acetic acid Examples include butyl, cellosolve acetate, butyl cellosolve acetate, and ethyl carbitol acetate. These solvents may be used alone or in combination of two or more.
  • the photosensitive resin composition of the present invention is used as a liquid resist ink, in addition to the above components (A) to (D), if necessary, silica, calcium carbonate, barium sulfate, clay, talc Inorganic fillers such as phthalocyanine green, phthalocyanine blue, titanium oxide and carbon black, various additives such as antifoaming agents and leveling agents, hydroquinone, resorcinol, catechol, pyroganol, hydroquinone monomethyl ether, t-butylcatechol A polymerization inhibitor such as phenothiazine can be added.
  • silica such as phthalocyanine green, phthalocyanine blue, titanium oxide and carbon black
  • various additives such as antifoaming agents and leveling agents, hydroquinone, resorcinol, catechol, pyroganol, hydroquinone monomethyl ether, t-butylcatechol
  • a polymerization inhibitor such as phenothia
  • a polyfunctional epoxy compound and an unsaturated monobasic acid are reacted by a known method in the presence of a trivalent organophosphorus compound and at least one of zirconium naphthenate and zirconium octylate.
  • this reaction is preferably performed while adding a known polymerization inhibitor such as hydroquinone or methylhydroquinone into the system or blowing air into the system from the viewpoint of preventing thermal polymerization during the reaction.
  • the reaction temperature in the first step is preferably 60 ° C. to 150 ° C., and the reaction time is preferably 5 hours to 20 hours.
  • the polyfunctional epoxy compound When the polyfunctional epoxy compound is liquid, it can be reacted without solvent, but when the polyfunctional epoxy compound is solid, it is preferably reacted in a solvent.
  • the solvent used here include ketones such as methyl ethyl ketone and cyclohexanone, aromatic hydrocarbons such as toluene and xylene, glycol ethers such as dipropylene glycol dimethyl ether, ethyl acetate, butyl cellosolve acetate, carbitol acetate, and ethyl.
  • esters such as carbitol acetate, butyl carbitol acetate, and dipropylene glycol monomethyl ether acetate
  • petroleum solvents such as petroleum ether, petroleum naphtha, and solvent naphtha.
  • the product obtained in the first step is reacted with a polybasic acid anhydride by a known method.
  • the reaction temperature in the second step is preferably 80 ° C. to 120 ° C., and the reaction time is preferably 1 hour to 6 hours.
  • the product obtained in the second step is reacted with a monoepoxy compound having an unsaturated double bond and a water-soluble monoepoxy compound by a known method.
  • the reaction temperature in the third step is preferably 60 to 150 ° C., and the reaction time is preferably 0.5 to 20 hours.
  • reaction product epoxy acrylate
  • metal content 3% a reaction product having an acid value of 1.0 mgKOH / g.
  • the above photosensitive resin composition is applied to a surface-treated printed wiring board by a screen printing method so as to have a thickness of 30 ⁇ m to 40 ⁇ m, preliminarily dried at 80 ° C. for 20 minutes, cooled to room temperature, and dried.
  • a membrane was obtained.
  • This coating film was exposed at 250 mJ / cm 2 using an ultra high pressure mercury lamp exposure apparatus manufactured by Oak Seisakusho, and then heated at 150 ° C. for 30 minutes using a hot air dryer to obtain a cured coating film.
  • various physical-property evaluation was performed according to the evaluation test method shown below. These results are shown in Table 2.
  • a step tablet for sensitivity measurement (21 stages of Kodak) is installed on the dried coating film after preliminary drying, exposed at 250 mJ / cm 2 using an ultra high pressure mercury lamp exposure device manufactured by Oak Manufacturing Co., Ltd., and sprayed using a 1% aqueous sodium carbonate solution. After developing for 60 seconds at a pressure of 2.0 kgf / mm 2 , the number of unexposed portions of the exposed portion was measured. The greater the number of steps in the portion that is not removed, the higher the sensitivity.
  • ⁇ Development management width> Using a dry coating film whose pre-drying time was changed to 20 minutes, 40 minutes, 60 minutes or 80 minutes, using a 1% aqueous sodium carbonate solution and developing at a spray pressure of 2.0 kgf / mm 2 , The presence or absence was observed and evaluated according to the following criteria. The development management width is better as development is possible even if the drying time is longer. ⁇ : No coating film visually after 60 seconds of development time. (Triangle
  • ⁇ Solder heat resistance> In accordance with JIS C6481, the cured coating is floated so that the entire surface is immersed in solder, floated three times in a 260 ° C. solder bath for 10 seconds, taken out, and then observed for the state of the coating such as swelling or peeling. The evaluation was based on the following criteria. ⁇ : No change in appearance. X: Appearance changed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Materials For Photolithography (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Epoxy Resins (AREA)

Abstract

 本発明の感光性樹脂組成物は、(A)三価の有機リン化合物とナフテン酸ジルコニウム及びオクチル酸ジルコニウムの少なくとも1種との存在下で、多官能エポキシ化合物と不飽和-塩基酸とを反応させ、更に多塩基酸無水物を反応させることにより生成したカルボキシル基に、不飽和二重結合を有するモノエポキシ化合物及び水溶性モノエポキシ化合物を反応させて得られる感光性樹脂、(B)エポキシ樹脂、(C)光重合開始剤並びに(D)反応性希釈剤を含有する。本発明の感光性樹脂組成物は、クロム化合物を含まず、紫外線露光及び希アルカリ水溶液による現像が可能であって、高感度であり、しかも熱安定性及び現像管理幅が良好で、塗膜が優れた性能を示すソルダーレジストインクとして好適である。

Description

感光性樹脂組成物及びそれに用いる感光性樹脂の製造方法
 本発明は、感光性樹脂組成物に関し、さらに詳しくは、クロム化合物を含まず、紫外線露光に対し高感度であり、得られた塗膜が良好な物性を有し、希アルカリにより現像可能な感光性樹脂組成物に関するものである。
 近年、各種プリント配線板のソルダーレジストインクとしては、希アルカリ現像型の液状ソルダーフォトレジストインクが広く用いられている。希アルカリ現像型の感光性樹脂としては、例えば、エポキシアクリレート樹脂の水酸基に酸無水物を反応させて得られる酸ペンダント型エポキシアクリレート樹脂が知られている。従来、こうした酸ペンダント型エポキシアクリレート樹脂の合成触媒には、良好な熱安定性及び現像管理幅を得るために、ナフテン酸クロムが使用されてきた。ところが、昨今の環境問題に対する意識の高まりや現像後の廃液処理の煩雑さの点からみて、ナフテン酸クロムのようなクロム化合物を合成触媒として使用することは好ましくない。そこで、例えば、特許文献1には、有機リン化合物を合成触媒として使用し、所定の条件下で多官能エポキシ樹脂と不飽和一塩基酸とを反応させ、更に酸無水物を反応させて得られる感光性樹脂が提案されている。
特開2005-41958号公報
 しかしながら、特許文献1に記載される感光性樹脂は、最近のソルダーレジストインクに要求されるような感度、熱安定性、現像管理幅、耐熱性、耐溶剤性等の性能を高いレベルでバランスさせることはできておらず、未だ改良の余地がある。
 従って、本発明は、クロム化合物を含まず、紫外線露光及び希アルカリ水溶液による現像が可能であって、高感度であり、しかも熱安定性及び現像管理幅が良好で、塗膜が優れた性能を示すソルダーレジストインクとして好適な感光性樹脂組成物を提供することを目的とするものである。
 本発明者らは、前記した問題点を解消すべく鋭意検討した結果、三価の有機リン化合物とナフテン酸ジルコニウム及びオクチル酸ジルコニウムの少なくとも1種との存在下で、多官能エポキシ化合物と不飽和一塩基酸とを反応させ、更に多塩基酸無水物を反応させることにより生成したカルボキシル基に不飽和二重結合を有するモノエポキシ化合物及び水溶性モノエポキシ化合物を反応させて得られる感光性樹脂を配合した感光性樹脂組成物が上記の目的に合致することを見出し、本発明を完成するに至った。
 すなわち、本発明は、(A)三価の有機リン化合物とナフテン酸ジルコニウム及びオクチル酸ジルコニウムの少なくとも1種との存在下で、多官能エポキシ化合物と不飽和一塩基酸とを反応させ、更に多塩基酸無水物を反応させることにより生成したカルボキシル基に不飽和二重結合を有するモノエポキシ化合物及び水溶性モノエポキシ化合物を反応させて得られる感光性樹脂、(B)エポキシ樹脂、(C)光重合開始剤並びに(D)反応性希釈剤を含有することを特徴とする感光性樹脂組成物である。
 また、本発明は、三価の有機リン化合物とナフテン酸ジルコニウム及びオクチル酸ジルコニウムの少なくとも1種との存在下で、多官能エポキシ化合物と不飽和一塩基酸とを反応させる第一工程と、第一工程で得られた生成物に多塩基酸無水物を反応させる第二工程と、第二工程で得られた生成物に不飽和二重結合を有するモノエポキシ化合物及び水溶性モノエポキシ化合物を反応させる第三工程とを含むことを特徴とする感光性樹脂の製造方法である。
 本発明によれば、クロム化合物を含まず、紫外線露光及び希アルカリ水溶液による現像が可能であって、高感度であり、しかも熱安定性及び現像管理幅が良好で、塗膜が優れた性能を示すソルダーレジストインクとして好適な感光性樹脂組成物を提供することができる。
 以下、本発明を詳細に説明する。
 まず、本発明の感光性樹脂組成物について説明する。
 本発明の感光性樹脂組成物における(A)成分は、三価の有機リン化合物とナフテン酸ジルコニウム及びオクチル酸ジルコニウムの少なくとも1種との存在下で、多官能エポキシ化合物と不飽和一塩基酸とを反応させ、更に多塩基酸無水物を反応させ、これにより生成したカルボキシル基に不飽和二重結合を有するモノエポキシ化合物及び水溶性モノエポキシ化合物を反応させて得られる感光性樹脂である。
 本発明の(A)成分の物性は、合成時に使用する触媒の影響が大きく、現像管理幅も触媒の影響を受ける傾向にある。また、異なる特性を持つ触媒を併用した場合、それぞれの短所が出る傾向にあるが、本発明者らは、三価の有機リン化合物をナフテン酸ジルコニウム及びオクチル酸ジルコニウムの少なくとも1種と併用した場合、予想に反し、クロム系触媒を用いた場合と同等の物性が得られることを見出した。
 触媒の使用量は、多官能エポキシ樹脂及び不飽和一塩基酸の総量100質量部に対して、好ましくは、三価の有機リン化合物とナフテン酸ジルコニウム及びオクチル酸ジルコニウムの少なくとも1種との総量が1.2質量部~6.0質量部となる量である。その際、ナフテン酸ジルコニウム及びオクチル酸ジルコニウムの少なくとも1種は、質量基準で、三価の有機リン化合物の少なくとも4倍使用することが好ましく、4倍~6倍使用することが更に好ましい。三価の有機リン化合物とナフテン酸ジルコニウム及びオクチル酸ジルコニウムの少なくとも1種との総量が少な過ぎたり、ナフテン酸ジルコニウム及びオクチル酸ジルコニウムの少なくとも1種の使用量が三価の有機リン化合物の4倍未満であったりすると、反応触媒として十分に機能しない場合がある。一方、三価の有機リン化合物が多過ぎると、得られる感光性樹脂の熱安定性が低下する傾向があり、また、ナフテン酸ジルコニウム及びオクチル酸ジルコニウムの少なくとも1種が多過ぎても、使用量に見合った効果はなく経済的でない。
 本発明で使用される多官能エポキシ化合物としては、特に制限はないが、例えば、ビスフェノールA型、ビスフェノールF型、フェノールノボラック型、クレゾールノボラック型、ビスフェノールAノボラック型、環状脂肪族エポキシ樹脂、複素環型などのエポキシ樹脂及びこれらに臭素原子や塩素原子等のハロゲン原子を導入したもの等が挙げられる。これらの中で、特に、クレゾールノボラック型エポキシ樹脂が好適である。
 本発明で使用される不飽和一塩基酸としては、1個のカルボキシル基と1個以上の重合性不飽和基を有する一塩基酸であればよく、例えば、アクリル酸、メタクリル酸、クロトン酸、桂皮酸、ソルビタン酸、アクリル酸ダイマー等が挙げられる。これらの中で、特に、高い活性エネルギー光硬化性を得るという点から、アクリル酸の使用が好ましい。これらの不飽和一塩基酸は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 これら不飽和一塩基酸は、多官能エポキシ化合物のエポキシ基1.0当量に対して、0.8当量~1.1当量反応させるのが好ましい。不飽和一塩基酸の割合が0.8当量未満であると、保存安定性が悪くなったり、合成時にゲル化等の問題が起こる場合があり、一方、1.1当量を越えると、臭気が発生したり、耐熱性が低下する傾向がある。
 本発明で使用する多塩基酸無水物としては、無水マレイン酸、無水コハク酸、無水イタコン酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水クロレンド酸等の二塩基酸無水物、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、ビフェニルテトラカルボン酸無水物等の多塩基酸無水物が挙げられる。これらの中で、特に、電食性に優れるという点から、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸の使用が好ましい。
 これら多塩基酸無水物の使用量は、多官能エポキシ化合物と不飽和一塩基酸とを反応させて得られた生成物の水酸基1.0モルに対して0.4モル~0.9モルとなる割合であることが好ましく、0.6モル~0.9モルの割合で反応させることが更に好ましい。多塩基酸無水物の使用量が0.4モル未満であると、十分なアルカリ現像性が得られない場合があり、一方、0.9モルを超えると、硬化塗膜の電気特性等が低下する傾向がある。
 本発明で使用する不飽和二重結合を有するモノエポキシ化合物としては、例えば、グリシジルメタクリレート、グリシジルアクリレート、ダイセル化学工業株式会社製サイクロマーA200、M100のような脂環式エポキシ基を有する(メタ)アクリレートが挙げられる。
 水溶性モノエポキシ化合物としては、下記式(I)
Figure JPOXMLDOC01-appb-C000001
(式中、R1はアルキル基又はアリール基を示し、R2は繰り返し単位3以上のポリエチレンオキサイド又はポリプロピレンオキサイドを示す。)
で表される化合物(例えば、ナガセケムテックス株式会社製デナコール(登録商標)EX-145、EX-171等)、下記式(II)
Figure JPOXMLDOC01-appb-C000002
で表される化合物(例えば、坂本薬品工業株式会社製、SY-GTA80)等が挙げられる。多塩基酸無水物由来のカルボキシル基と結合する不飽和二重結合を有するモノエポキシ化合物は、樹脂の最外部に結合しているため、紫外線照射時の反応性が立体的に高く、紫外線照射に対して高い光感度を有する。また、水溶性モノエポキシ化合物は、樹脂のアルカリへの親和性を向上し、更に不飽和二重結合を有するモノエポキシ化合物の不飽和二重結合の運動性を適度に抑制し、保存時の樹脂の安定性を付与する。
 多塩基酸無水物の反応により生成したカルボキシル基に反応させる不飽和二重結合を有するモノエポキシ化合物及び水溶性モノエポキシ化合物の量は、得られる感光性樹脂の感度、現像性及び電気特性等を考慮すると、生成したカルボキシル基1モルに対して、総量で0.15モル~0.25モルの割合で反応させるのが好ましい。但し、その際、水溶性モノエポキシ化合物の量は、生成したカルボキシル基1モルに対して、0.03モル未満の割合であることが好ましく、0.01モル~0.025モルの割合であることが更に好ましい。不飽和二重結合を有するモノエポキシ化合物及び水溶性モノエポキシ化合物の総量が0.15モル未満であると、本発明の目的の一つである高感度化の効果が不十分になる傾向があり、一方、0.25モルを超えると、アルカリ現像性が低下するする傾向がある。また、水溶性モノエポキシ化合物の量を0.03モル以上としても加えた効果は低く、前述のアルカリ現像性の面からも現実的ではない。
 本発明の感光性樹脂組成物における(B)成分であるエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン-フェノールノボラック型エポキシ樹脂、フェノール-クレゾールノボラック共縮合型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂あるいはそれらのハロゲン化エポキシ化合物、トリフェニロールメタン型エポキシ樹脂、アルキル置換トリフェニロールメタン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂等の多官能フェノールにエピクロルヒドリンを反応させて得られるエポキシ樹脂、多官能ヒドロキシナフタレン類エピクロルヒドリンを反応させて得られるエポキシ樹脂、シリコーン変成エポキシ樹脂、ε-カプロラクトン変成エポキシ樹脂、エピクロルヒドリンと一級又は二級アミンとの反応によって得られるグリシジルアミン型エポキシ樹脂、トリグリシジルイソシアネート等の複素環式エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 これらエポキシ樹脂の配合量は、感光性樹脂100質量部に対して、好ましくは3質量部~100質量部、更に好ましくは6質量部~75質量部である。エポキシ樹脂の配合量が3質量部未満であると、感光性樹脂中のカルボキシル基が実質的に反応する量に満たないため、耐水性、耐アルカリ性、電気特性が低下する傾向があり、一方、100質量部を超えると、未反応のエポキシ基を有する線状重合体が生成するため、耐熱性、耐溶剤性が不十分となる場合がある。
 また、エポキシ樹脂の密着性、耐薬品性、耐熱性等をより向上させるために、エポキシ硬化剤を併用することが好ましい。このようなエポキシ硬化剤としては、イミダゾール誘導体、フェノール誘導体、ジシアンジアミド、ジシアンジアミド誘導体、メラミン、メラミン樹脂、ヒドラジド誘導体、アミン類、酸無水物等が挙げられる。これらのエポキシ硬化剤は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。エポキシ硬化剤の配合量は、エポキシ樹脂のエポキシ基1モルに対して、硬化剤の活性水素量が0.5モル~1.2モルとなる割合であることが好ましい。
 本発明の感光性樹脂組成物における(C)成分である光重合開始剤としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン及びその誘導体、ベンジル、ベンジルジメチルケタール等のベンジル及びその誘導体、アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-メチルチオフィル)-2-モルフォリノプロパン-1-オン等のアセトフェノン及びその誘導体、2-メチルアントラキノン、2-クロロアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン等のアントラキノン及びその誘導体、チオキサントン、2,4-ジメチルチオキサントン、2-クロロチオキサントン等のチオキサントン及びその誘導体、ベンゾフェノン、N,N-ジメチルアミノベンゾフェノン等のベンゾフェノン及びその誘導体が挙げられる。これらの光重合開始剤は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。さらに必要に応じて、各種のアミン化合物をこれら光重合開始剤と併用することにより、光重合開始効果が促進されることが公知であり、本発明においても、組み合わせて使用することができる。
 これら光重合開始剤の配合量は、感光性樹脂100質量部に対して、好ましくは0.1質量部~20質量部、更に好ましくは1質量部~10質量部である。光重合開始剤の配合量が0.1質量部未満であると、光重合開始剤としての効果が十分に得られない場合があり、一方、20質量部を超えても配合量に見合った効果はなく経済的でない。
 本発明の感光性樹脂組成物における(D)成分である反応性希釈剤は、活性エネルギー光線に対する硬化性及び/又は感光性樹脂組成物をレジストインクとして使用する場合の塗工性を向上させる目的で使用するものである。反応性希釈剤としては、活性エネルギー光線硬化性のあるモノマー類が好ましく、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、N-ピロリドン、N-アクリロイルモルフォリン、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、N,N-ジメチルアミノエチルアクリレート、N,N-ジメチルアミノプロピルアクリレート、メトキシポリエチレングリコールアクリレート、エトキシポリエチレングリコールアクリレート、メラミンアクリレート、フェノキシエチルアクリレート、フェノキシプロピルアクリレート、エチレングリコールジアクリレート、ジプロピレングリコールジアクリレート、ポリジプロピレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、グリセリンジアクリレート、イソボロニルアクリレート、ジシクロペンテニルオキシエチルアクリレート及びこれらに対応する各種メタクリレートが挙げられる。これらの反応性希釈剤は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 反応性希釈剤の配合量は、感光性樹脂100質量部に対して、好ましくは5質量部~200質量部、更に好ましくは10質量部~100質量部である。反応性希釈剤の配合量が、5質量部未満であると、光感度が十分に得られない場合があり、一方、200質量部を超えると、感光性樹脂組成物をレジストインキとして使用する場合に粘度が低くなり過ぎ、硬化塗膜としての耐性が不十分になる場合がある。
 また、塗工性の調整のために、反応性希釈剤と共に溶剤を使用することができる。このような溶剤としては、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、トルエン、キシレン等の芳香族炭化水素、エチルセロソルブ、ブチルセロソルブ、カルビトール、ブチルカルビトール等のカルビトール類、酢酸エチル、酢酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、エチルカルビトールアセテートなどが挙げられる。これらの溶剤は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 本発明の感光性樹脂組成物を液状レジストインキとして使用する場合には、上記の(A)~(D)成分の他に、さらに必要に応じて、シリカ、炭酸カルシウム、硫酸バリウム、クレー、タルク等の無機充填剤、フタロシアニングリーン、フタロシアニンブルー、酸化チタン、カーボンブラック等の着色顔料、消泡剤、レベリング剤等の各種添加剤、ハイドロキノン、レゾルシノール、カテコール、ピロガノール、ハイドロキノンモノメチルエーテル、t-ブチルカテコール、フェノチアジン等の重合防止剤を添加することができる。
 次に、本発明の感光性樹脂の製造方法について説明する。
 第一工程では、三価の有機リン化合物とナフテン酸ジルコニウム及びオクチル酸ジルコニウムの少なくとも1種との存在下で、多官能エポキシ化合物と不飽和一塩基酸とを公知の方法で反応させる。また、この反応は、反応時の熱重合を防ぐという点から、ハイドロキノン、メチルハイドロキノンなどの公知の重合禁止剤を系内に添加したり、系内に空気を吹き込みながら行うことが好ましい。
 第一工程における反応温度は、好ましくは60℃~150℃であり、反応時間は、好ましくは5時間~20時間である。多官能エポキシ化合物が液状の場合、無溶剤で反応させることが可能であるが、多官能エポキシ化合物が固形の場合、溶剤中で反応させることが好ましい。ここで使用する溶剤としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、トルエン、キシレン等の芳香族炭化水素類、ジプロピレングリコールジメチルエーテル等のグリコールエーテル類、酢酸エチル、ブチルセロソルブアセテート、カルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、ジプロピレングリコールモノメチルエーテルアセテート等のエステル類、石油エーテル、石油ナフサ、ソルベントナフサ等の石油系溶剤が挙げられる。
 第二工程では、第一工程で得られた生成物に多塩基酸無水物を公知の方法で反応させる。第二工程における反応温度は、好ましくは80℃~120℃であり、反応時間は、好ましくは1時間~6時間である。
 第三工程では、第二工程で得られた生成物に不飽和二重結合を有するモノエポキシ化合物及び水溶性モノエポキシ化合物を公知の方法で反応させる。第三工程における反応温度は、好ましくは60℃~150℃であり、反応時間は、好ましくは0.5時間~20時間である。
 以下、本発明を実施例によって更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
<合成例1>
 攪拌機、気体導入管及び還流管を備えたフラスコ内に、エチルカルビトールアセテート192質量部を仕込み、そこにクレゾールノボラック型エポキシ樹脂(東都化成株式会社製エポトート(登録商標)YDCN704、エポキシ当量206)206質量部(1当量)を溶解させた。更に、アクリル酸72質量部(1.0モル)、ハイドロキノン0.23質量部、トリフェニルホスフィン0.4質量部及びナフテン酸ジルコニウム(金属含有量6質量%)2質量部を仕込み、液面下部の気体導入管から空気を吹き込みながら130℃で10時間反応を続け、酸価0.5mgKOH/gの反応物(エポキシアクリレート)を得た。これにテトラヒドロ無水フタル酸111.03質量部(0.73モル)を加え、120℃で更に2時間反応させ、固形分酸価105.3mgKOH/gの反応物を得た。これにグリシジルメタクリレート22.72質量部(0.16モル)及びデナコール(登録商標)EX-145(ナガセケムテックス株式会社製、エポキシ当量450)9質量部(0.02モル)を加え、120℃で更に3時間反応させ、更に不揮発分が60%になるようにエチルカルビトールアセテートを追加し、固形分酸価73.4mgKOH/gの感光性樹脂Aを得た。
<合成例2>
 ナフテン酸ジルコニウム(金属含有量6質量%)2質量部の代わりにオクチル酸ジルコニウム(金属含有量12質量)2質量部を用いる以外は、合成例1と同様の操作を行い、感光性樹脂Bを得た。
<比較合成例1(特許文献1の実施例1に相当する)>
 攪拌機、気体導入管及び還流管を備えたフラスコ内に、エチルカルビトールアセテート192質量部を仕込み、そこにクレゾールノボラック型エポキシ樹脂(東都化成株式会社製エポトート(登録商標)YDCN704、エポキシ当量206)206質量部(1当量)を溶解させた。更に、アクリル酸72質量部(1.0モル)、2、6-ジ-t-ブチル-4-メトキシフェノール2.17質量部、トリフェニルホスフィン0.415質量部を仕込み、液面下部の気体導入管から空気を吹き込みながら130℃で10時間反応を続け、酸価1.0mgKOH/gの反応物(エポキシアクリレート)を得た。これにテトラヒドロ無水フタル酸111.03質量部(0.73モル)及びナフテン酸リチウム(金属含有量3%)0.707質量部を加え、120℃で更に2時間反応させ、固形分酸価105.3mgKOH/gの反応物を得た。これにグリシジルメタクリレート22.72質量部(0.16モル)及びデナコール(登録商標)EX-145(ナガセケムテックス株式会社製、エポキシ当量450)9質量部(0.02モル)を加え、120℃で更に3時間反応させ、更に不揮発分が60%になるようにエチルカルビトールアセテートを追加し、固形分酸価73.4mgKOH/gの感光性樹脂Cを得た。
 表1に示す配合比率に従って各成分を配合し、3本ロールによって充分混練し、感光性樹脂組成物を調製した。なお、表1中の感光性樹脂の質量は、樹脂固形分の値で示した。
 次いで、予め面処理済のプリント配線基板に、上記の感光性樹脂組成物を30μm~40μmになるようにスクリーン印刷法により塗工し、80℃で20分間予備乾燥後、室温まで冷却し乾燥塗膜を得た。この塗膜を、オーク製作所製超高圧水銀灯露光装置を用いて250mJ/cm2で露光し、その後、熱風乾燥器を用い150℃で30分間加熱して硬化塗膜を得た。得られた塗膜について、以下に示す評価試験方法に従って、各種物性評価を行なった。これらの結果を表2に示した。
<感度>
 予備乾燥後の乾燥塗膜に感度測定用ステップタブレット(コダック21段)を設置し、オーク製作所製超高圧水銀灯露光装置を用いて250mJ/cm2で露光し、1%炭酸ナトリウム水溶液を用い、スプレー圧2.0kgf/mm2で60秒間現像を行なった後の露光部分の除去されない部分の段数を測定した。除去されない部分の段数が大きいほど高感度である。
<現像管理幅>
 予備乾燥時間を20分、40分、60分又は80分に変更した乾燥塗膜を用い、1%炭酸ナトリウム水溶液を用い、スプレー圧2.0kgf/mm2で現像を行い現像後の塗膜の有無を観察し、下記の基準で評価した。乾燥時間が長くても現像可能なものほど現像管理幅が良好である。
  ○:現像時間60秒後、目視で塗膜無し。
  △:現像時間120秒後、目視で塗膜無し。
  ×:現像時間120秒後、目視で残膜有り。
<半田耐熱性>
 硬化塗膜を、JIS C6481に準じて、全面が半田に浸かるように浮かべ、260℃の半田浴に10秒間、3回浮かせ、取り出した後、膨れ又は剥れなどの塗膜の状態を観察し、下記の基準で評価した。
  ○:外観変化無し。
  ×:外観変化有り。
<耐溶剤性>
 硬化塗膜を塩化メチレンに30分浸せきした後の塗膜状態を評価した。
  ○:外観変化なし
  △:外観わずかに変化あり
  ×:塗膜が剥離したもの
<熱安定性>
 感光性樹脂A~Cそれぞれの樹脂固形分100質量部に対して、トリメチロールプロパントリアクリレート10質量部を加えて十分混合し、試験管に入れ、120℃で流動性がなくなるまでの時間をゲル化時間として評価した。結果を表3に示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005

Claims (5)

  1.  (A)三価の有機リン化合物とナフテン酸ジルコニウム及びオクチル酸ジルコニウムの少なくとも1種との存在下で、多官能エポキシ化合物と不飽和一塩基酸とを反応させ、更に多塩基酸無水物を反応させることにより生成したカルボキシル基に不飽和二重結合を有するモノエポキシ化合物及び水溶性モノエポキシ化合物を反応させて得られる感光性樹脂、(B)エポキシ樹脂、(C)光重合開始剤並びに(D)反応性希釈剤を含有することを特徴とする感光性樹脂組成物。
  2.  前記感光性樹脂が、前記カルボキシル基1モルに対して、前記不飽和二重結合を有するモノエポキシ化合物及び前記水溶性モノエポキシ化合物を総量で0.15モル~0.25モル(但し、水溶性モノエポキシ化合物は0.03モル未満)反応させて得られたものであることを特徴とする請求項1に記載の感光性樹脂組成物。
  3.  前記ナフテン酸ジルコニウム及びオクチル酸ジルコニウムの少なくとも1種を、質量基準で、三価の有機リン化合物の少なくとも4倍使用することを特徴とする請求項1又は2に記載の感光性樹脂組成物。
  4.  三価の有機リン化合物とナフテン酸ジルコニウム及びオクチル酸ジルコニウムの少なくとも1種との存在下で、多官能エポキシ化合物と不飽和一塩基酸とを反応させる第一工程と、
     第一工程で得られた生成物に多塩基酸無水物を反応させる第二工程と、
     第二工程で得られた生成物に不飽和二重結合を有するモノエポキシ化合物及び水溶性モノエポキシ化合物を反応させる第三工程と
    を含むことを特徴とする感光性樹脂の製造方法。
  5.  空気を吹き込みながら前記第一工程における反応を行うことを特徴とする請求項4に記載の感光性樹脂の製造方法。
PCT/JP2009/062446 2008-10-27 2009-07-08 感光性樹脂組成物及びそれに用いる感光性樹脂の製造方法 WO2010050272A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020117006587A KR101267111B1 (ko) 2008-10-27 2009-07-08 감광성 수지 조성물 및 그것에 사용되는 감광성 수지의 제조방법
CN200980137692.1A CN102164977B (zh) 2008-10-27 2009-07-08 感光性树脂组合物及其中使用的感光性树脂的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-276084 2008-10-27
JP2008276084A JP5161032B2 (ja) 2008-10-27 2008-10-27 感光性樹脂組成物、それに用いる感光性樹脂の製造方法及び硬化塗膜の製造方法

Publications (1)

Publication Number Publication Date
WO2010050272A1 true WO2010050272A1 (ja) 2010-05-06

Family

ID=42128642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062446 WO2010050272A1 (ja) 2008-10-27 2009-07-08 感光性樹脂組成物及びそれに用いる感光性樹脂の製造方法

Country Status (4)

Country Link
JP (1) JP5161032B2 (ja)
KR (1) KR101267111B1 (ja)
CN (1) CN102164977B (ja)
WO (1) WO2010050272A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189464A (ja) * 2009-02-16 2010-09-02 Showa Highpolymer Co Ltd 感光性樹脂組成物及びそれに用いる感光性樹脂の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101349622B1 (ko) * 2011-08-26 2014-01-10 롬엔드하스전자재료코리아유한회사 광중합성 불포화 수지, 이를 포함하는 감광성 수지 조성물 및 이로부터 형성되는 차광성 스페이서와 액정 디스플레이 장치
CN105086602B (zh) * 2015-07-02 2017-06-16 深圳市容大感光科技股份有限公司 光固化热固化树脂组合物油墨、用途及使用其的线路板
CN105086605B (zh) * 2015-07-13 2018-07-27 深圳市容大感光科技股份有限公司 一种光固化热固化组合物油墨、用途及含有其的线路板
CN105086604A (zh) * 2015-07-13 2015-11-25 深圳市容大感光科技股份有限公司 一种油墨组合物、其应用及印刷电路板
JP2017088538A (ja) * 2015-11-10 2017-05-25 日本メナード化粧品株式会社 フィラグリン産生促進剤
CN108164686B (zh) 2018-02-01 2020-01-21 江南大学 一种改性环氧丙烯酸酯、含该改性环氧丙烯酸酯的阻焊剂

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026624A (ja) * 1999-07-15 2001-01-30 Tamura Kaken Co Ltd 感光性樹脂、感光性樹脂組成物及びプリント配線板
JP2001247649A (ja) * 1999-12-28 2001-09-11 Dainippon Ink & Chem Inc 感光性樹脂、その製造方法、及びソルダーレジストインキ組成物
JP2002308957A (ja) * 2001-04-17 2002-10-23 Showa Highpolymer Co Ltd 変性ノボラック樹脂および感光性樹脂組成物
JP2004131526A (ja) * 2002-10-08 2004-04-30 Great Eastern Resins Industrial Co Ltd 感光性熱硬化型樹脂およびその製造方法ならびにその樹脂を含む耐ソルダー性インク組成物
JP2007041502A (ja) * 2005-06-30 2007-02-15 Dainippon Ink & Chem Inc 感光性樹脂組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057821A (ja) * 2001-08-13 2003-02-28 Showa Highpolymer Co Ltd 感光性樹脂および感光性樹脂組成物
JP4682340B2 (ja) 2003-07-25 2011-05-11 昭和電工株式会社 感光性樹脂の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026624A (ja) * 1999-07-15 2001-01-30 Tamura Kaken Co Ltd 感光性樹脂、感光性樹脂組成物及びプリント配線板
JP2001247649A (ja) * 1999-12-28 2001-09-11 Dainippon Ink & Chem Inc 感光性樹脂、その製造方法、及びソルダーレジストインキ組成物
JP2002308957A (ja) * 2001-04-17 2002-10-23 Showa Highpolymer Co Ltd 変性ノボラック樹脂および感光性樹脂組成物
JP2004131526A (ja) * 2002-10-08 2004-04-30 Great Eastern Resins Industrial Co Ltd 感光性熱硬化型樹脂およびその製造方法ならびにその樹脂を含む耐ソルダー性インク組成物
JP2007041502A (ja) * 2005-06-30 2007-02-15 Dainippon Ink & Chem Inc 感光性樹脂組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189464A (ja) * 2009-02-16 2010-09-02 Showa Highpolymer Co Ltd 感光性樹脂組成物及びそれに用いる感光性樹脂の製造方法
JP4723658B2 (ja) * 2009-02-16 2011-07-13 昭和電工株式会社 感光性樹脂組成物及びそれに用いる感光性樹脂の製造方法

Also Published As

Publication number Publication date
CN102164977A (zh) 2011-08-24
JP5161032B2 (ja) 2013-03-13
CN102164977B (zh) 2014-01-29
KR20110044326A (ko) 2011-04-28
KR101267111B1 (ko) 2013-05-24
JP2010102270A (ja) 2010-05-06

Similar Documents

Publication Publication Date Title
JP4008273B2 (ja) アルカリ現像型感光性樹脂組成物及びそれを用いたプリント配線基板
JP5161032B2 (ja) 感光性樹脂組成物、それに用いる感光性樹脂の製造方法及び硬化塗膜の製造方法
WO2002077058A1 (fr) Résine durcissant aux rayonnements actiniques, composition de résine photodurcissante ou thermodurcissante la contenant, et article durci ainsi obtenu
JP4865911B2 (ja) カルボキシル基含有樹脂を含有する硬化性組成物及びその硬化物並びにカルボキシル基含有樹脂を得る方法
TWI516869B (zh) An alkali developing type photosensitive resin composition, a dry film thereof and a cured product thereof, and a printed circuit board formed using one another
JP4655362B2 (ja) 感光性樹脂の製造方法
JP4431155B2 (ja) プリント配線板のレジストパターン製造方法
JP4655928B2 (ja) 感光性樹脂組成物
JP4978787B2 (ja) 感光性樹脂組成物及び新規酸基含有ビニルエステル樹脂
JP2010077283A (ja) 多分岐ポリエステル(メタ)アクリレート化合物
JP2005091783A (ja) カルボキシル基含有感光性樹脂を含有する組成物
JP2802801B2 (ja) 感光性熱硬化性樹脂組成物及びソルダーレジストパターン形成方法
JP2004359729A (ja) カルボキシル基含有感光性樹脂を含有する硬化性組成物
JP4316093B2 (ja) 感光性樹脂組成物
JP2007176987A (ja) アルカリ現像可能な硬化性組成物及びその硬化物
JP4723658B2 (ja) 感光性樹脂組成物及びそれに用いる感光性樹脂の製造方法
JP5356211B2 (ja) 感光性樹脂の製造方法、その製造方法から得られる感光性樹脂および感光性樹脂組成物
JPH11327150A (ja) 感光性樹脂組成物
JP4682340B2 (ja) 感光性樹脂の製造方法
JP2007219334A (ja) 感光性樹脂組成物、並びにその硬化物
JP4167599B2 (ja) 硬化性樹脂及びそれを含有する硬化性樹脂組成物
JP2003280189A (ja) 光硬化性・熱硬化性樹脂組成物
JP4572753B2 (ja) レジストインキ組成物
WO2003032090A1 (fr) Composition de resine photosensible
JPH05287036A (ja) 樹脂組成物、ソルダーレジスト樹脂組成物及びその硬化物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980137692.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823385

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117006587

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09823385

Country of ref document: EP

Kind code of ref document: A1