WO2010050262A1 - シフトレジスタ回路および表示装置ならびにシフトレジスタ回路の駆動方法 - Google Patents

シフトレジスタ回路および表示装置ならびにシフトレジスタ回路の駆動方法 Download PDF

Info

Publication number
WO2010050262A1
WO2010050262A1 PCT/JP2009/059721 JP2009059721W WO2010050262A1 WO 2010050262 A1 WO2010050262 A1 WO 2010050262A1 JP 2009059721 W JP2009059721 W JP 2009059721W WO 2010050262 A1 WO2010050262 A1 WO 2010050262A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift register
clock signal
switching element
input
control
Prior art date
Application number
PCT/JP2009/059721
Other languages
English (en)
French (fr)
Inventor
明久 岩本
隆行 水永
森井 秀樹
裕己 太田
慶 生田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN2009801329386A priority Critical patent/CN102132356A/zh
Priority to JP2010535700A priority patent/JPWO2010050262A1/ja
Priority to EP09823375A priority patent/EP2341507A4/en
Priority to BRPI0920739A priority patent/BRPI0920739A2/pt
Priority to US12/737,649 priority patent/US20110134090A1/en
Priority to RU2011104244/08A priority patent/RU2011104244A/ru
Publication of WO2010050262A1 publication Critical patent/WO2010050262A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/18Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages
    • G11C19/182Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages in combination with semiconductor elements, e.g. bipolar transistors, diodes
    • G11C19/184Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages in combination with semiconductor elements, e.g. bipolar transistors, diodes with field-effect transistors, e.g. MOS-FET
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit

Definitions

  • the present invention relates to a shift register circuit monolithically built in a display panel.
  • Gate monolithic construction has been promoted to reduce costs by forming gate drivers with amorphous silicon on a liquid crystal panel.
  • Gate monolithic is also referred to as a gate driverless, panel built-in gate driver, gate-in panel, or the like.
  • FIG. 12 shows a configuration example of a shift register circuit constituting a gate driver formed by gate monolithic.
  • each stage (shift register stage) SRk (k is a natural number) includes a set terminal SET, an output terminal GOUT, a reset terminal RESET, a low power input terminal VSS, and clock input terminals CKA and CKB. ing.
  • the output signal GOUT of the previous stage SRk ⁇ 1 (substitute with the sign of the output terminal) is input to the set terminal SET.
  • the gate start pulse GSP is input to the set terminal SET of the first stage SR1.
  • the output terminal GOUT outputs the output signal Gk to the corresponding scanning signal line.
  • the output signal GOUT of the next stage SRk + 1 is input to the reset terminal RESET.
  • a low power supply voltage VSS which is a power supply voltage on the low potential side in each stage SRk, is input to the low power input terminal VSS.
  • the clock signal CK1 is input to one of the clock input terminal CKA and the clock terminal CKB and the clock signal CK2 is input to the other, and the clock signal and the clock input terminal are input to the clock input terminal CKA between adjacent stages.
  • the clock signal CK2 input to CKB is alternately switched.
  • the clock signal CK1 and the clock signal CK2 have a complementary phase relationship such that active clock pulse periods (here, high level periods) do not overlap each other as shown in FIG.
  • the voltage on the high level side (active side) of the clock signals CK1 and CK2 is VGH
  • the voltage on the low level side (inactive side) is VGL.
  • the low power supply voltage VSS is equal to the voltage VGL on the low level side of the clock signals CK1 and CK2.
  • the clock signal CK1 and the clock signal CK2 are in an opposite phase relationship, but it is also possible that the active clock pulse period of one clock signal is included in the inactive period of the other clock signal. It is.
  • FIG. 13 shows a configuration example of each stage SRk of the shift register circuit of FIG.
  • Each stage SRk includes five transistors T1, T2, T3, T4, and T5 and a capacitor C1. All the transistors are n-channel TFTs.
  • the gate and drain are connected to the set terminal SET, and the source is connected to the gate of the transistor T5.
  • the drain is connected to the clock input terminal CKA, and the source is connected to the output terminal GOUT. That is, the transistor T5 serves as a transmission gate and passes and blocks the clock signal input to the clock input terminal CKA.
  • the capacitor C1 is connected between the gate and source of the transistor T5. A node having the same potential as the gate of the transistor T5 is referred to as netA.
  • the gate is connected to the reset terminal RESET, the drain is connected to the node netA, and the source is connected to the low power input terminal VSS.
  • the gate is connected to the reset terminal RESET, the drain is connected to the output terminal GOUT, and the source is connected to the Low power input terminal VSS.
  • the gate is connected to the clock terminal CKB, the drain is connected to the output terminal GOUT, and the source is connected to the low power input terminal VSS.
  • the transistors T4 and T5 are in the high impedance state, and the transistor T2 is turned on every time the clock signal input from the clock input terminal CKB is at the high level.
  • the terminal GOUT is a period for holding Low.
  • the stage SRk When the gate pulse of the output signal GOUT of the previous stage, which is a shift pulse, is input to the set terminal SET, the stage SRk enters a period for generating an output pulse, and the transistor T1 is turned on to charge the capacitor C1.
  • the high level of the gate pulse is VGH
  • the threshold voltage of the transistor T1 is Vth
  • the potential of the node netA rises to VGH ⁇ Vth.
  • the transistor T5 is turned on, and the clock signal input from the clock input terminal CKA appears at the source of the transistor T5.
  • the transistor T1 When the input of the gate pulse to the set terminal SET is completed, the transistor T1 is turned off. Then, in order to cancel the holding of the charge due to the floating of the output terminal GOUT of the node netA and the stage SRk, the transistors T3 and T4 are turned on by the gate pulse Gk + 1 of the next stage SRk + 1 as a reset pulse input to the reset terminal RESET. The node netA and the output terminal GOUT are connected to the low power supply voltage VSS in the ON state. As a result, the transistor T5 is turned off. When the input of the reset pulse ends, the period in which the stage SRk generates the output pulse ends, and the output terminal GOUT becomes a period in which the output terminal GOUT is held low again.
  • the gate pulse Gk is sequentially output to each gate line.
  • the transistors T4 and T5 are in a high impedance state during a period in which the output terminal GOUT is kept low, so that the output terminal GOUT is in a floating state. Therefore, in order to prevent the output terminal GOUT from being unable to hold Low due to noise propagated by the cross coupling between the gate bus line and the source bus line or the like, as shown in FIG. Thus, so-called Low pulling is performed, in which the output terminal GOUT is connected to the Low power supply voltage VSS which is Low level.
  • a low pulling transistor connected to VSS is also provided.
  • Patent Document 1 discloses a configuration for pulling a node netA as shown in FIG.
  • the fifth transistor Q5 and the Six transistors Q6 are provided.
  • the first clock CK1 and the second clock CK2 are in an opposite phase relationship.
  • the transistor Q5 is turned on, and the first node N1 is connected to the output terminal OUT.
  • the transistor Q6 is turned on, and the first node N1 is connected to the input terminal of the first input signal IN1.
  • the transistor Q5 and the transistor Q6 are alternately turned on.
  • this is the first input signal IN1 of the stage
  • the potential of the first node N1 rises when the transistor Q6 of the next stage is turned on. Therefore, the transistor Q5 in the next stage leaks more greatly due to the addition of the bootstrap effect of the capacitor C.
  • the transistor Q5 leaks as shown by z. Abnormal pulses are generated in a chain at each stage, which also causes a malfunction.
  • the conventional shift register has a problem that malfunction occurs due to leakage of the output switching element that outputs the gate pulse.
  • the present invention has been made in view of the above-described conventional problems, and its purpose is to provide a shift register circuit that can prevent malfunction even if there is a leak in the output switching element of the shift register stage, and A display device including the same and a driving method of a shift register are to be realized.
  • the shift register circuit of the present invention is supplied with the first clock signal and the second clock signal having different phases from each other for each of the shift register stages.
  • a shift register circuit that performs a shift operation using a clock signal of two or more phases including the first clock signal and the second clock signal as a whole including the register stages, wherein each of the shift register stages includes: An input gate that conducts only during an active period of the input signal and captures the input signal, a charging node that is charged by the input signal input from the input gate, and a control terminal for conduction and cutoff are connected to the charging node An output switching element comprising one of the conduction paths of the output switching element.
  • the first clock signal is input to the child, and the other terminal of the conduction path is connected to the output switching element connected to the output terminal of each shift register stage, the charging node, and the charging node.
  • a first switching element connected between a power source for supplying an inactive potential level; an inactive potential level of the charging node at the charging node; and the active period of the second clock signal.
  • a control unit that generates a control signal for turning on the first switching element from the active potential level of the second clock signal and outputs the control signal to a control terminal for turning on and off the first switching element; All the above-mentioned shift register stages are provided between each two shift register stages that pass the shift pulse.
  • the output terminals of the shift register stage on the front stage side are connected in cascade by being connected to the input gate of the shift register stage on the rear stage side, and each of the two shift registers for transferring the shift pulse Between the stages, the second clock signal of the shift register stage on the rear stage side is a clock signal input as the first clock signal to the shift register stage on the front stage side.
  • the second corresponding to the first clock signal of the previous stage.
  • the charging node is pulled low by the first switching element, so that the charging node is stabilized to an inactive potential level without being pushed up, and leakage is chained to the subsequent stage side. Is not transmitted.
  • the shift register circuit of the present invention is supplied with the first clock signal and the second clock signal having different phases from each other for each of the shift register stages.
  • a shift register circuit that performs a shift operation using a clock signal of two or more phases including the first clock signal and the second clock signal as a whole including the register stages, wherein each of the shift register stages includes: An input gate that conducts only during an active period of the input signal and captures the input signal, a charging node that is charged by the input signal input from the input gate, and a control terminal for conduction and cutoff are connected to the charging node An output switching element comprising one of the conduction paths of the output switching element.
  • the first clock signal is input to the child, and the other terminal of the conduction path is between the output switching element connected to the output terminal of each shift register stage, and between the charging node and the output terminal.
  • a first switching element connected to the charging node, an inactive potential level of the charging node at the charging node, and an active potential level of the second clock signal during an active period of the second clock signal.
  • a control unit that generates a control signal for turning on the first switching element and outputs the control signal to a control terminal for turning on and off the first switching element.
  • the output terminal of the shift register stage on the front stage side is between each two shift register stages that deliver the shift pulse.
  • the second clock signal is a clock signal input as the first clock signal to the shift register stage on the preceding stage side.
  • the second corresponding to the first clock signal of the previous stage.
  • the charging node is pulled low by the first switching element, so that the charging node is stabilized to an inactive potential level without being pushed up, and leakage is chained to the subsequent stage side. Is not transmitted.
  • the shift register circuit of the present invention is supplied with the first clock signal and the second clock signal having different phases from each other for each of the shift register stages.
  • a shift register circuit that performs a shift operation using a clock signal of two or more phases including the first clock signal and the second clock signal as a whole including the register stages, wherein each of the shift register stages includes: An input gate that conducts only during an active period of the input signal and captures the input signal, a charging node that is charged by the input signal input from the input gate, and a control terminal for conduction and cutoff are connected to the charging node An output switching element comprising one of the conduction paths of the output switching element.
  • the first clock signal is input to the child, and the other terminal of the conduction path is connected to the output switching element connected to the output terminal of each shift register stage, the charging node, and the charging node.
  • a first switching element connected between a power supply for supplying an inactive potential level; an inactive potential level of the charging node at the charging node; and the control terminal of the first switching element.
  • a control unit that generates a control signal for turning on the first switching element from a supply potential of a power source that supplies an active potential level and outputs the control signal to a control terminal for turning on and off the first switching element. All the shift register stages are provided between each two shift register stages that pass the shift pulse.
  • the output terminals of the shift register stage on the front stage side are connected in cascade by being connected to the input gate of the shift register stage on the rear stage side, and each of the two shift registers for transferring the shift pulse Between the stages, the second clock signal of the shift register stage on the rear stage side is a clock signal input as the first clock signal to the shift register stage on the front stage side.
  • the second corresponding to the first clock signal of the previous stage.
  • the charging node is pulled low by the first switching element, so that the charging node is stabilized to an inactive potential level without being pushed up, and leakage is chained to the subsequent stage side. Is not transmitted.
  • the control unit includes a first control element including a diode-type switching element in which a second clock signal is input to an anode, and the first control element.
  • a second control element comprising a switching element connected between a cathode of the element and a power source for supplying an inactive potential level to the control terminal of the first switching element, A connection point between one control element and the second control element is connected to the control terminal of the first switching element.
  • the charging node since the charging node can be pulled low when the second clock signal becomes active, the charging node will follow even if the output terminal of the previous stage is pushed up due to the leakage current. There is an effect that the occurrence of abnormal pulses can be suppressed without being pulled up.
  • the control unit includes a first control element including a capacitor to which a second clock signal is input at one end, and the first control element.
  • a second control element comprising a switching element connected between an end and a power source that supplies an inactive potential level to the control terminal of the first switching element, A connection point between the control element and the second control element is connected to the control terminal of the first switching element.
  • the capacitor is used at the location where the active potential level of the second clock signal is frequently applied, there is no characteristic change such as a shift of the threshold voltage of the transistor, and the reliability of the entire circuit is improved. There is an effect that the property is improved.
  • the control unit is a diode type in which an anode is connected to a power source that supplies an active potential level to the control terminal of the first switching element.
  • a connection point between the first control element and the second control element is connected to the control terminal of the first switching element. It is said.
  • the charging node of the first control element since the anode of the first control element is pulled up by the power supply that supplies the active potential level to the control terminal of the first switching element, the charging node is at the inactive potential level.
  • the first switching element can be turned on, and when the charging node is at an active potential level, the first switching element can be cut off.
  • the control unit includes an inactive potential with respect to the control terminal of the first switching element and the control terminal of the first switching element. And a third control element including a switching element connected to a power source for supplying a level, wherein the third control element is controlled to be turned on and off by the first clock signal. It is said.
  • the third control element becomes conductive every time the first clock signal becomes active during the period in which the control terminal of the first switching element is held at the inactive potential level.
  • the control terminal of the first switching element is pulled low. Therefore, the control terminal of the first switching element is prevented from floating during the period in which the first clock signal is at an active potential level. Therefore, the inactive potential level can be stabilized during the period in which the control terminal of the first switching element is held at the inactive potential level.
  • the first switching element is a transistor made of amorphous silicon
  • a threshold voltage shift phenomenon is likely to occur because the DC bias applied to the gate increases as the ON duty of the transistor increases. .
  • the transistor may not operate due to the shift phenomenon.
  • the control terminal of the first switching element is pulled low as described above, the DC bias applied to the control terminal of the first switching element can be reduced, so that the reliability of the entire circuit is improved. The effect that can be improved more is produced.
  • control unit is connected between an input terminal of the input gate and a power source that supplies an inactive potential level to the input gate. And a control terminal for conducting and shutting off the fourth control element is connected to the control terminal of the first switching element.
  • the output terminal of the previous stage can be pulled low. Therefore, since the output terminal is pulled low, there is an effect that the output terminal can be stabilized at an inactive potential level during a period when the output of each stage is not performed.
  • the shift register circuit of the present invention includes a fourth control element including a switching element connected between the input terminal of the input gate and the output terminal.
  • the control terminal for conducting and shutting off the fourth control element is connected to the control terminal of the first switching element.
  • the output terminal in the previous stage has the fourth control element and the second switching element. As a result, there is an effect that it is pulled low when the second clock signal is active.
  • the shift register circuit according to the present invention is characterized in that, in order to solve the above-described problems, the charging node and the output terminal are coupled by a capacitor.
  • the capacitance that couples the charging node and the output terminal is a capacitance that exhibits a bootstrap effect.
  • a change in the potential level of the charging node can be suppressed. There is an effect.
  • a third switching element is connected between the charging node and a power source that supplies an inactive potential level to the charging node.
  • a fourth switching element is connected between the output terminal and a power source that supplies an inactive potential level to the output terminal, and each of the third switching element and the fourth switching element The control terminal for conduction and interruption is connected to the output terminal at the next stage.
  • the shift register circuit of the present invention uses a two-phase clock signal of the first clock signal and the second clock signal as a whole in which all the shift register stages are combined. It is characterized by performing a shift operation.
  • the shift register circuit of the present invention provides a clock signal having three or more phases including the first clock signal and the second clock signal in total for all the shift register stages. It is characterized by performing a shift operation.
  • the clock signal since the clock signal has three or more phases, in addition to the first clock signal and the second clock signal, another operation of the shift register stage can be added. There is an effect that a fine operation can be defined by the stage.
  • the shift register circuit of the present invention is characterized by being formed using amorphous silicon in order to solve the above problems.
  • the shift register circuit of the present invention is characterized in that it is formed using microcrystalline silicon in order to solve the above problems.
  • the threshold voltage shift phenomenon due to the low pulling is suppressed more advantageously than the amorphous silicon. Being able to do so contributes to stabilizing the operation of the transistor as designed extremely.
  • the shift register circuit of the present invention is characterized in that it is formed using polycrystalline silicon in order to solve the above problems.
  • low pulling for leak compensation is performed in a shift register circuit using polycrystalline silicon having a high mobility but a large variation in threshold voltage, so that a margin for malfunction of a transistor due to leakage is increased as much as possible. As much as possible, it has the effect of contributing to making better use of the advantages of high mobility.
  • the display device of the present invention is characterized by using the shift register circuit for driving a display in order to solve the above-described problems.
  • the display device of the present invention is characterized in that the shift register circuit is used in a scanning signal line driving circuit.
  • the reliability of the operation of the shift register circuit is increased, thereby providing an effect that good display can be performed.
  • the display device of the present invention is characterized in that the shift register circuit is formed monolithically on the display panel with the display area.
  • the shift register circuit is formed monolithically with the display area on the display panel, and the display device that is advantageous for simplification of the configuration is realized by improving the operation of the shift register circuit to achieve high display. There is an effect that it can be performed.
  • the shift register circuit driving method of the present invention is supplied with the first clock signal and the second clock signal having different phases from each other for each of the shift register stages.
  • a shift register circuit that performs a shift operation using two or more phase clock signals including the first clock signal and the second clock signal as a whole, including the shift register stages, each of the shift registers
  • the stage includes an input gate that conducts only during an active period of the input signal and captures the input signal, a charging node that is charged by the input signal input from the input gate, and a conduction and cutoff control terminal that is charged.
  • An output switching element comprising a switching element connected to a node, wherein the output switching element The first clock signal is input to one of the terminals, and the other terminal of the conduction path is the output switching element connected to the output terminal of each shift register stage, the charging node, and the charging node And a first switching element connected between a power supply for supplying a non-active potential level, and all the shift register stages are connected between each of the two shift register stages for passing a shift pulse.
  • a shift register circuit driving method for driving a shift register circuit which is a clock signal input as the first clock signal, the inactive potential level of the charging node at the charging node, and the second clock A control signal for turning on and off the first switching element by generating a control signal for turning on the first switching element from the active potential level of the second clock signal in the active period of the signal. It is characterized by being output to.
  • the second corresponding to the first clock signal of the previous stage.
  • the charging node is pulled low by the first switching element, so that the charging node is stabilized to an inactive potential level without being pushed up, and leakage is chained to the subsequent stage side. Is not transmitted.
  • the shift register circuit driving method of the present invention is supplied with the first clock signal and the second clock signal having different phases from each other for each of the shift register stages.
  • a shift register circuit that performs a shift operation using two or more phase clock signals including the first clock signal and the second clock signal as a whole, including the shift register stages, each of the shift registers
  • the stage includes an input gate that conducts only during an active period of the input signal and captures the input signal, a charging node that is charged by the input signal input from the input gate, and a conduction and cutoff control terminal that is charged.
  • An output switching element comprising a switching element connected to a node, wherein the output switching element
  • the first clock signal is input to one of the terminals
  • the other terminal of the conduction path is an output switching element connected to the output terminal of each shift register stage, the charging node, and the output terminal All of the shift register stages are connected to each other, and the output terminals of the shift register stages on the preceding stage side between each of the two shift register stages that pass the shift pulse.
  • the second clock signal is a clock that is input as the first clock signal to the shift register stage on the preceding stage side.
  • a shift register circuit driving method for driving a shift register circuit as a signal wherein the charge node has an inactive potential level at the charge node and the second clock signal during an active period of the second clock signal. From the active potential level of the signal, a control signal for making the first switching element conductive is generated and output to a control terminal for conduction and cutoff of the first switching element.
  • the second corresponding to the first clock signal of the previous stage.
  • the charging node is pulled low by the first switching element, so that the charging node is stabilized to an inactive potential level without being pushed up, and leakage is chained to the subsequent stage side. Is not transmitted.
  • the shift register circuit driving method of the present invention is supplied with the first clock signal and the second clock signal having different phases from each other for each of the shift register stages.
  • a shift register circuit that performs a shift operation using two or more phases of clock signals including the first clock signal and the second clock signal in total including the shift register stages, each shift register stage Includes an input gate that conducts only during an active period of the input signal and captures the input signal; a charging node that is charged by the input signal that is input from the input gate; and a conduction and cutoff control terminal that is the charging node
  • An output switching element comprising a switching element connected to the output switching element, wherein the conduction path of the output switching element is The first clock signal is input to the other terminal, and the other terminal of the conduction path is connected to the output switching element connected to the output terminal of each shift register stage, the charging node, and the charging node.
  • a first switching element connected between a power supply for supplying an inactive potential level, and all the shift register stages are connected between each two shift register stages that pass the shift pulse.
  • the output terminals of the shift register stage on the front stage side are connected in cascade by being connected to the inputs of the input gates of the shift register stage on the rear stage side, and each of the two shift register stages passing and receiving the shift pulse.
  • the second clock signal of the shift register stage on the rear stage side is input to the shift register stage on the front stage side.
  • a shift register circuit driving method for driving a shift register circuit which is a clock signal input as a first clock signal, the inactive potential level of the charging node at the charging node, and the first switching element
  • a control signal for bringing the first switching element into a conductive state is generated from a supply potential of a power source that supplies an active potential level to the control terminal of the control terminal, thereby controlling conduction and cutoff of the first switching element. It is characterized by being output to the terminal.
  • the second corresponding to the first clock signal of the previous stage.
  • the charging node is pulled low by the first switching element, so that the charging node is stabilized to an inactive potential level without being pushed up, and leakage is chained to the subsequent stage side. Is not transmitted.
  • the shift register circuit of the present invention is supplied with the first clock signal and the second clock signal having different phases from each other for each of the shift register stages.
  • a shift register circuit that performs a shift operation using clock signals of two or more phases including the first clock signal and the second clock signal as a whole, wherein each of the shift register stages An input gate that conducts only during an active period and captures the input signal, a charging node that is charged by the input signal input from the input gate, and a switching in which a control terminal for conduction and cutoff is connected to the charging node
  • An output switching element comprising an element, wherein one terminal of the conduction path of the output switching element is connected to the terminal 1 clock signal is input, and the other terminal of the conduction path is an output switching element connected to the output terminal of each shift register stage, and the potential level inactive to the charging node and the charging node.
  • a first switching element connected between a power supply for supplying the power supply, an inactive potential level of the charging node at the charging node, and the second clock signal during an active period of the second clock signal.
  • a control unit that generates a control signal for bringing the first switching element into a conductive state from the active potential level of the first switching element, and outputs the control signal to a control terminal for turning on and off the first switching element, and All the above-mentioned shift register stages have a front stage side between each two shift register stages that pass the shift pulse.
  • the output terminals of the shift register stage are cascaded by being connected to the input of the input gate of the shift register stage on the subsequent stage side, and between each of the two shift register stages that pass the shift pulse,
  • the second clock signal of the shift register stage on the rear stage side is a clock signal input as the first clock signal to the shift register stage on the front stage side.
  • FIG. 1 is a circuit diagram showing a configuration of each stage of a shift register circuit.
  • FIG. 2 is a timing chart showing the operation of each stage of the configuration of FIG. 1. 2 is a timing chart for explaining the operation when leakage occurs in an output switching element in each stage of the configuration of FIG. 1.
  • It is a circuit diagram which shows the structure of FIG. 1 in detail. It is a circuit diagram which shows the structure of the 1st modification of FIG. It is a circuit diagram which shows the structure of the 2nd modification of FIG.
  • FIG. 6 is a circuit diagram showing a configuration of a third modification of FIG. 4. It is a circuit diagram which shows the structure of the 4th modification of FIG. It is a circuit diagram which shows the structure of the 5th modification of FIG. FIG.
  • FIG 11 showing the embodiment of the present invention, is a circuit diagram illustrating another configuration of each stage of the shift register circuit.
  • 1, showing an embodiment of the present invention, is a block diagram illustrating a configuration of a display device.
  • FIG. It is a block diagram which shows a prior art and shows the structure of a shift register circuit.
  • FIG. 13 is a circuit diagram illustrating a configuration of each stage included in the shift register circuit of FIG. 12. It is a timing chart which shows the operation
  • movement of each stage of FIG. 13 is a timing chart showing the operation of the shift register circuit of FIG.
  • FIGS. 1 to 11 An embodiment of the present invention will be described with reference to FIGS. 1 to 11 as follows.
  • FIG. 11 shows a configuration of a liquid crystal display device 11 which is a display device according to the present embodiment.
  • the liquid crystal display device 11 includes a display panel 12, a flexible printed circuit board 13, and a control board 14.
  • the display panel 12 uses amorphous silicon on a glass substrate, a display region 12a, a plurality of gate lines (scanning signal lines) GL, a plurality of source lines (data signal lines) SL, and a gate driver (scanning signal lines).
  • This is an active matrix display panel in which a drive circuit 15 is built.
  • the display panel 12 can also be manufactured using polycrystalline silicon, CG silicon, microcrystalline silicon, or the like.
  • the display area 12a is an area in which a plurality of picture elements PIX ... are arranged in a matrix.
  • the picture element PIX includes a TFT 21, which is a picture element selection element, a liquid crystal capacitor CL, and an auxiliary capacitor Cs.
  • the gate of the TFT 21 is connected to the gate line GL, and the source of the TFT 21 is connected to the source line SL.
  • the liquid crystal capacitor CL and the auxiliary capacitor Cs are connected to the drain of the TFT 21.
  • the plurality of gate lines GL are composed of gate lines GL1, GL2, GL3,... GLn, and are connected to the output of the gate driver (scanning signal line drive circuit) 15, respectively.
  • the plurality of source lines SL are made up of source lines SL1, SL2, SL3,..., SLm, and are connected to the output of the source driver 16 described later. Further, although not shown, auxiliary capacitance lines for applying an auxiliary capacitance voltage to the auxiliary capacitances Cs of the picture elements PIX... Are formed.
  • the gate driver 15 is provided in a region adjacent to the display region 12a on one side of the display region 12a in the direction in which the gate lines GL extend, and sequentially applies a gate pulse (scanning) to each of the gate lines GL. Pulse). Further, another gate driver is provided in a region adjacent to the display region 12a on the other side of the display region 12a in the direction in which the gate lines GL extend, and a gate line GL different from the gate driver 15 is provided. You may come to scan.
  • These gate drivers are made monolithically with the display region 12a using amorphous silicon or polycrystalline silicon on the display panel 12, and are called gate monolithic, gate driverless, panel built-in gate driver, gate-in panel, etc. All the gate drivers to be processed can be included in the gate driver 15.
  • the flexible printed circuit board 13 includes a source driver 16.
  • the source driver 16 supplies a data signal to each of the source lines SL.
  • the control board 14 is connected to the flexible printed board 13 and supplies necessary signals and power to the gate driver 15 and the source driver 16. Signals and power supplied to the gate driver 15 output from the control board 14 are supplied from the display panel 12 to the gate driver 15 via the flexible printed board 13.
  • the gate driver When the gate driver is configured in a gate monolithic manner like the gate driver 15, the picture elements PIX ... for one row are all made up of the same color picture elements, and the gate driver 15 sets the gate lines GL ... for each RGB color. Suitable for driving. In this case, it is not necessary to prepare the source driver 16 for each color, which is advantageous because the scale of the source driver 16 and the flexible printed circuit board 13 can be reduced.
  • a stage cascade connection configuration similar to the shift register circuit of FIG. 12 described above can be used. That is, in all the shift register stages, the output terminal of the shift register stage on the front stage side is connected to the input gate of the shift register stage on the rear stage side between each two shift register stages that pass the shift pulse. It is connected in cascade by being connected.
  • the clock signals CK1 and CK2, the low power supply voltage VSS, and the gate start pulse GSP can be the same as those shown in FIGS.
  • the second clock signal of the rear shift register stage is a clock signal that is input to the previous shift register stage as the first clock signal. is there.
  • FIG. 1 shows the configuration of each stage (shift register stage) SRk (k is a natural number) of the shift register circuit of the present embodiment.
  • the clock signal CK1 is the first clock signal
  • the clock signal CK2 is the second clock signal
  • the clock signal CK2 is the first clock signal.
  • the clock signal CK1 is used as the second clock signal. That is, the clock signal input to the clock input terminal CKA is a first clock signal, and the clock signal input to the clock input terminal CKB is a second clock signal.
  • a shift operation is performed using two-phase clock signals of a first clock signal and a second clock signal having different phases.
  • Each stage SRk includes transistors T1, T2, T3, T4, and T5, a control unit 1, and a capacitor C1.
  • Transistor T5 is the output switching element
  • transistor T1 is the input gate
  • transistor T2 is the second switching element
  • transistor T6 is the first switching element
  • transistor T3 is the third switching element
  • transistor T4 is the fourth switching element
  • Each is composed.
  • the control unit 1 includes an AND circuit 2 and a transistor T6.
  • the above transistors are all n-channel TFTs here, but may be p-channel TFTs or a mixture of n-channel and p-channel transistors.
  • each switching element the drain and the source are in a relationship between one terminal and the other terminal of the conduction path of the switching element, and the gate corresponds to a control terminal for conduction and interruption of the conduction path.
  • Each switching element may be a field effect transistor other than a TFT. The same applies to other configuration examples of the present embodiment as to the polarity and type of the transistor and the type of the switching element.
  • the gate and drain are connected to the set terminal SET, and the source is connected to the gate of the transistor T5.
  • the drain is connected to the clock input terminal CKA, and the source is connected to the output terminal GOUT. That is, the transistor T5 serves as a transmission gate and passes and blocks the clock signal input to the clock input terminal CKA.
  • the capacitor C1 is connected between the gate and source of the transistor T5. A node having the same potential as the gate of the transistor T5 is referred to as netA.
  • the gate is connected to the reset terminal RESET, the drain is connected to the node netA, and the source is connected to the low power input terminal VSS.
  • the gate is connected to the reset terminal RESET, the drain is connected to the output terminal GOUT, and the source is connected to the Low power input terminal VSS.
  • the gate is connected to the clock terminal CKB, the drain is connected to the output terminal GOUT, and the source is connected to the low power input terminal VSS.
  • the AND circuit 2 is a two-input gate circuit, and one input is active low and the other input is active high.
  • the active low input is connected to the node netA, and the active high input is connected to the clock terminal CKB.
  • the gate is connected to the output terminal of the AND circuit 2, the drain is connected to the node netA, and the source is connected to the low power input terminal VSS.
  • the transistors T4 and T5 are in a high impedance state, and the clock signal input to the transistor T2 from the clock input terminal CKB is Each time the signal becomes high level, it is turned on, and the output terminal GOUT is in a period for holding low.
  • the node netA which is the charging node also holds Low, but the node which is the output of the AND gate 2 during the period when the clock signal input to the clock input terminal CKB is active (High). Since netB becomes High, the transistor T6 is turned on, so that the node netA is pulled Low to the Low power supply voltage VSS.
  • the low power supply voltage VSS is a power supply that supplies an inactive potential level to the gate of the transistor T5 and the output terminal GOUT.
  • the stage SRk When the gate pulse of the output signal GOUT of the previous stage, which is a shift pulse, is input to the set terminal SET, the stage SRk enters a period for generating an output pulse, and the transistor T1 is turned on to charge the capacitor C1.
  • the high level of the gate pulse is VGH
  • the threshold voltage of the transistor T1 is Vth
  • the potential of the node netA rises to VGH ⁇ Vth.
  • the transistor T5 is turned on, and the clock signal input from the clock input terminal CKA appears at the source of the transistor T5, but at the moment when the clock pulse (High level) is input to the clock input terminal CK, the capacitor C1 Since the potential of the node netA is pushed up by the bootstrap effect, the transistor T5 obtains a large overdrive voltage. As a result, the potential level of VGH of the input clock pulse is transmitted to the output terminal GOUT of the stage SRk and output to become the gate pulse Gk (pulse of the output signal GOUT).
  • the transistor T1 When the input of the gate pulse to the set terminal SET is completed, the transistor T1 is turned off. Then, in order to cancel the holding of the charge due to the floating of the output terminal GOUT of the node netA and the stage SRk, the transistors T3 and T4 are turned on by the gate pulse Gk + 1 of the next stage SRk + 1 as a reset pulse input to the reset terminal RESET. The node netA and the output terminal GOUT are connected to the low power input terminal VSS in the ON state. As a result, the transistor T5 is turned off. When the input of the reset pulse ends, the period in which the stage SRk generates the output pulse ends, and the output terminal GOUT becomes a period in which the output terminal GOUT is held low again.
  • the control unit 1 Since the control unit 1 operates as described above, for example, as shown in FIG. 3, after the node netA is reset by the reset pulse at c, the clock signal input to the clock input terminal CKA becomes active (High). Even if this leaks to the output terminal GOUT side as indicated by a due to the leakage of the transistor T5, the clock signal input to the clock terminal CKB corresponding to the clock signal input to the preceding clock terminal CKA is active (High). ), The node netA is pulled low, so that the node netA is stabilized to the inactive potential level (Low, VSS) without being pushed up as shown by b, and the leak is chained to the subsequent stage side. Is not communicated to.
  • FIG. 4 shows a more detailed configuration of the control unit 1.
  • FIG. 4 shows an example in which the AND circuit 2 includes transistors T7 and T8.
  • the transistor T7 constitutes a first control element
  • the transistor T8 constitutes a second control element.
  • the gate and drain are connected to the clock input terminal CKB, and function as a diode-type switching element in which the gate and drain are anodes and the source is cathode.
  • the gate is connected to the node netA
  • the drain is connected to the source of the transistor T7
  • the source is connected to the low power supply input terminal VSS.
  • the connection point between the transistor T7 and the transistor T8 is the output terminal of the AND circuit 2, that is, the node netB, and is connected to the gate of the transistor T6.
  • the transistor T7 Since the transistor T7 is diode-connected, the node netB is pulled up to the active potential level (High) when the clock signal input to the clock input terminal CKB becomes active (High).
  • the transistor T8 has a function of pulling down the node netB to the inactive potential level (Low) when the node netA is at the active potential level (High) and masking the transistor T6 so as not to be turned on. is doing.
  • the node netA can be pulled low when the clock input terminal CKB is at an active potential level (High) by the transistors T7 and T8, even if the output terminal GOUT in the previous stage is pushed up due to leakage current, the node The netA is no longer pulled up following the movement, and the generation of abnormal pulses can be suppressed.
  • FIG. 5 shows a configuration of a first modification of the control unit 1.
  • a transistor T9 is further added to the control unit 1 of FIG.
  • the transistor T9 constitutes a third control element.
  • the gate is connected to the clock input terminal CKA
  • the drain is connected to the node netA
  • the source is connected to the low power input terminal VSS.
  • the transistor T9 is turned on each time the clock signal input to the clock input terminal CKA becomes active during the period in which the node netB is held at the inactive potential level (Low, VSS), and the node netB Pull Low. Accordingly, the node netB is prevented from floating during a period in which the clock input terminal CKA is at the active potential level (High) of the clock signal. Accordingly, the node netB can be stabilized at the inactive potential level in a period in which the node netB is held at the inactive potential level (Low, VSS).
  • the transistor when the transistor is made of amorphous silicon, the larger the ON duty of the transistor, the larger the DC bias applied to the gate, and thus the threshold voltage Vth shift phenomenon is likely to occur. There is also a risk that the transistor may not operate due to the shift phenomenon. However, if the node netB is pulled low as described above, the DC bias applied to the gate of the transistor T6 can be reduced, so that the reliability of the entire circuit can be further improved.
  • FIG. 6 shows a configuration of a second modification of the control unit 1.
  • a transistor T10 is further added to the control unit 1 of FIG.
  • the transistor T10 constitutes a fourth control element.
  • the gate is connected to the node netB
  • the drain is connected to the set terminal SET
  • the source is connected to the low power input terminal VSS.
  • the output terminal GOUT in the previous stage can be pulled low. Since the output terminal GOUT is pulled low, the output terminal GOUT can be stabilized at an inactive potential level during the period when the gate output of each stage is not performed.
  • FIG. 7 shows a configuration of a third modification of the control unit 1.
  • FIG. 8 shows a configuration of a fourth modification of the control unit 1.
  • FIG. 9 shows a configuration of a fifth modification of the control unit 1.
  • the node netB since the node netB is capacitively coupled to the clock input terminal CKB via the capacitor C2, the clock signal input to the clock input terminal CKB when the node netA is at the inactive potential level (Low). Becomes active (High), the node netB is set to the active potential level (High), and the clock signal input to the clock input terminal CKB is inactive (Low) when the node netA is at the active potential level (High). Then, the node netB can be set to an inactive potential level (Low).
  • the capacitor C2 is used at a location where the active potential level (High) of the clock signal input to the clock input terminal CKB is frequently applied, the threshold voltage of the transistor There is no characteristic change such as shift, and the reliability of the entire circuit is improved.
  • FIG. 10 shows the configuration of another control unit of this embodiment.
  • the 10 has a configuration in which the gate and drain of the transistor T7 in the control unit 1 in FIG. 5 are connected to the high power supply VDD instead of being connected to the clock input terminal CKB.
  • the high power supply VDD is a power supply that supplies an active potential level (High) to the node netB, that is, the gate of the transistor T6.
  • the gate and drain of the transistor T7 are pulled up by the high power supply VDD, when the node netA is at the inactive potential level (Low), the node netB is at the active potential level (High). When netA is at an active potential level (High), the node netB is at an inactive potential level (Low). Therefore, the same effect as the configuration of FIGS. 4 and 5 can be obtained. Further, since the node netB is pulled low at the timing when the clock signal input to the clock input terminal CKA becomes active (High) by the transistor T9, the potential change of the node netB as in FIG. 4 can be made. .
  • the use of the transistors T9 and T10, the selection of the connection destination of the sources of the transistors T6 and T10, the use of the transistor T7 or the use of the capacitor C2, the gate and drain of the transistor T7 are selected.
  • the selection of the connection destination described above can be freely determined.
  • the entire shift operation including all shift register stages can use three or more clock signals having different phases, including the first clock signal and the second clock signal. Two or more phase clock signals can be used. In the case of three or more phases, in addition to the first clock signal and the second clock signal, another operation of the shift register stage can be added, so that a fine operation can be defined by the shift register stage. it can. In the case of the two phases described above, there is an advantage that appropriate leak compensation can be performed in the conventional clock signal supply system.
  • the present embodiment has been described above.
  • the present invention is also applicable to other display devices using a shift register circuit such as an EL display device.
  • the present invention can be particularly suitably used for display devices such as liquid crystal display devices and EL display devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Shift Register Type Memory (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

 制御部(1)は、充電ノード(netA)における充電ノード(netA)の非アクティブな電位レベルと、第2のクロック信号のアクティブな期間における第2のクロック信号のアクティブな電位レベルとから、第1のスイッチング素子(T6)を導通状態にする制御信号を生成して第1のスイッチング素子(T6)の導通および遮断の制御端子(netB)に出力する。

Description

シフトレジスタ回路および表示装置ならびにシフトレジスタ回路の駆動方法
 本発明は、表示パネルにモノリシックに作り込まれるシフトレジスタ回路に関する。
 近年、ゲートドライバを液晶パネル上にアモルファスシリコンで形成しコスト削減を図るゲートモノリシック化が進められている。ゲートモノリシックは、ゲートドライバレス、パネル内蔵ゲートドライバ、ゲートインパネルなどとも称される。
 図12に、ゲートモノリシックにより形成されるゲートドライバを構成するシフトレジスタ回路の構成例を示す。
 当該シフトレジスタ回路においては、各段(シフトレジスタ段)SRk(kは自然数)が、セット端子SET、出力端子GOUT、リセット端子RESET、Low電源入力端子VSS、および、クロック入力端子CKA・CKBを備えている。各段SRk(k≧2)において、セット端子SETには前段SRk-1の出力信号GOUT(出力端子の符号で代用する)が入力される。初段SR1のセット端子SETにはゲートスタートパルスGSPが入力される。出力端子GOUTは、対応する走査信号線に出力信号Gkを出力する。リセット端子RESETには、次段SRk+1の出力信号GOUTが入力される。Low電源入力端子VSSには、各段SRkにおける低電位側の電源電圧であるLow電源電圧VSSが入力される。クロック入力端子CKAとクロック端子CKBとのうちの一方にクロック信号CK1が入力されるとともに他方にクロック信号CK2が入力され、隣接する段間でクロック入力端子CKAに入力されるクロック信号とクロック入力端子CKBに入力されるクロック信号CK2とが交互に入れ替わるようになっている。
 クロック信号CK1とクロック信号CK2とは、図15に示すような、アクティブなクロックパルス期間(ここではHighレベル期間)が互いに重ならない相補的な位相関係を有している。クロック信号CK1・CK2のHighレベル側(アクティブ側)の電圧はVGHで、Lowレベル側(非アクティブ側)の電圧はVGLである。Low電源電圧VSSはクロック信号CK1・CK2のLowレベル側の電圧VGLに等しい。この例ではクロック信号CK1とクロック信号CK2とが互いに逆相の関係にあるが、一方のクロック信号のアクティブなクロックパルス期間が、他方のクロック信号の非アクティブな期間内に包含される関係も可能である。
 図13に、図12のシフトレジスタ回路の各段SRkの構成例を示す。
 各段SRkは、5つのトランジスタT1・T2・T3・T4・T5および容量C1を備えている。上記トランジスタは全てnチャネル型のTFTである。
 トランジスタT1において、ゲートおよびドレインはセット端子SETに、ソースはトランジスタT5のゲートに、それぞれ接続されている。各段SRkの出力トランジスタであるトランジスタT5において、ドレインはクロック入力端子CKAに、ソースは出力端子GOUTに、それぞれ接続されている。すなわち、トランジスタT5は伝送ゲートとして、クロック入力端子CKAに入力されるクロック信号の通過および遮断を行う。容量C1は、トランジスタT5のゲートとソースとの間に接続されている。トランジスタT5のゲートと同電位のノードをnetAと称する。
 トランジスタT3において、ゲートはリセット端子RESETに、ドレインはノードnetAに、ソースはLow電源入力端子VSSに、それぞれ接続されている。トランジスタT4において、ゲートはリセット端子RESETに、ドレインは出力端子GOUTに、ソースはLow電源入力端子VSSに、それぞれ接続されている。
 トランジスタT2において、ゲートはクロック端子CKBに、ドレインは出力端子GOUTに、ソースはLow電源入力端子VSSに、それぞれ接続されている。
 次に、図14を用いて、各段SRkの動作について説明する。
 セット端子SETにシフトパルスが入力されるまでは、トランジスタT4・T5がハイインピーダンス状態であるとともに、トランジスタT2がクロック入力端子CKBから入力されるクロック信号がHighレベルになるたびにON状態となり、出力端子GOUTはLowを保持する期間となる。
 セット端子SETにシフトパルスである前段の出力信号GOUTのゲートパルスが入力されると、段SRkは出力パルスを生成する期間となり、トランジスタT1がON状態となって容量C1を充電する。容量C1が充電されることにより、ゲートパルスのHighレベルをVGH、トランジスタT1の閾値電圧をVthとして、ノードnetAの電位がVGH-Vthまで上昇する。この結果、トランジスタT5がON状態になり、クロック入力端子CKAから入力されたクロック信号がトランジスタT5のソースに現れるが、クロック入力端子CKAにクロックパルス(Highレベル)が入力された瞬間に容量C1のブートストラップ効果によってノードnetAの電位が突き上げられるので、トランジスタT5は大きなオーバドライブ電圧を得ることとなる。これにより、入力されたクロックパルスのVGHの電位レベルが段SRkの出力端子GOUTに伝送されて出力され、ゲートパルスGk(出力信号GOUTのパルス)となる。
 セット端子SETへのゲートパルスの入力が終了すると、トランジスタT1がOFF状態となる。そして、ノードnetAおよび段SRkの出力端子GOUTがフローティングとなることによる電荷の保持を解除するために、リセット端子RESETに入力されるリセットパルスとしての次段SRk+1のゲートパルスGk+1によってトランジスタT3・T4をON状態とし、ノードnetAおよび出力端子GOUTをLow電源電圧VSSに接続する。これによりトランジスタT5がOFF状態となる。リセットパルスの入力が終了すると、段SRkが出力パルスを生成する期間は終了し、出力端子GOUTは再びLowを保持する期間となる。
 このようにして、図15に示すように、各ゲートラインに順次ゲートパルスGkが出力されていく。
 上記のシフトレジスタ回路では、出力端子GOUTがLowを保持する期間にトランジスタT4・T5がハイインピーダンス状態となることにより、出力端子GOUTがフローティング状態となる。従って、出力端子GOUTがゲートバスラインとソースバスラインとのクロスカップリングなどにより伝搬されるノイズなどでLowを保持できなくなることを防ぐために、図13に示すように、当該Low保持期間にトランジスタT2によって出力端子GOUTをLowレベルであるLow電源電圧VSSに接続する、いわゆるLow引きを行っている。また、当該Low保持期間には、トランジスタT3もハイインピーダンス状態となることによりノードnetAがフローティング状態となるため、トランジスタT5がリークしないように、当該Low保持期間にノードnetAをLowレベルである電源電圧VSSに接続するLow引き用のトランジスタを設けることも行われる。
 特許文献1には、図16に示すようなノードnetAをLow引きする構成が開示されている。
 この構成では、第1ノードN1の電位が、トランジスタQ2のゲート・ドレイン間寄生容量を介して、第1クロックCK1の電位の影響を受けることにより変動することを防ぐために、第5トランジスタQ5および第6トランジスタQ6が備えられている。第1クロックCK1と第2クロックCK2とは互いに逆相の関係にある。第1クロックCK1がHighレベルになるとトランジスタQ5がON状態となり、第1ノードN1は出力端子OUTと接続される。第2クロックCK2がHighレベルになるとトランジスタQ6がON状態となり、第1ノードN1は第1入力信号IN1の入力端子に接続される。
 従って、第1入力信号IN1または出力端子OUTがHighレベルではなく、第1クロックCK1がHighレベルであるときに、第1ノードN1は第5トランジスタQ5により第1電圧VOFFに維持され、第2クロックCK2がHighレベルであるときに、第1ノードN1は第6トランジスタQ6により第1電圧VOFFに維持される。特許文献1では、これによって、第2トランジスタQ2のゲートがフローティングになることを防止しようとしている。
特開2005-50502(2005年2月24日公開)
 しかしながら、前記図13の段構成では、トランジスタの温度特性に起因して高温時にトランジスタT5のドレイン-ソース間にリークが発生するため、図17にxで示すように例えばクロック信号CK1のHighレベルが出力端子GOUT側に漏出すると、容量C1を介してノードnetAの電位が上昇してしまう。ノードnetAの電位が上昇すると、トランジスタT5のリークがより大きくなるため、この正帰還作用によってシフトレジスタが誤動作を起こしてしまう。トランジスタがTFTであれば特に上記のリークは大きい。
 また、引用文献1に記載された構成では、トランジスタQ5とトランジスタQ6とが交互にON状態となるが、トランジスタQ2のドレイン-ソース間リークにより第1クロックCK1が出力端子OUTに漏出すると、これが次段の第1入力信号IN1となるので、当該次段のトランジスタQ6がON状態となったときに第1ノードN1の電位が上昇する。従って、当該次段のトランジスタQ5が容量Cのブートストラップ効果も加わってより大きくリークしてしまい、図17にyで示す正常なゲート出力Gkの他に、zで示すようなトランジスタQ5のリークによる異常パルスが各段で連鎖的に発生することとなってやはり誤動作を起こしてしまう。
 このように、従来のシフトレジスタでは、ゲートパルスを出力する出力スイッチング素子のリークにより、誤動作が生じるという問題があった。
 本発明は、上記従来の問題点に鑑みなされたものであり、その目的は、シフトレジスタ段の出力スイッチング素子にリークがあっても誤動作を起こすことを防止することのできるシフトレジスタ回路、および、それを備える表示装置ならびにシフトレジスタの駆動方法を実現することにある。
 本発明のシフトレジスタ回路は、上記課題を解決するために、各シフトレジスタ段のそれぞれについて、互いに位相が異なる第1のクロック信号と第2のクロック信号とが供給されるとともに、全ての上記シフトレジスタ段を合せた全体で上記第1のクロック信号と上記第2のクロック信号とを含む2相以上のクロック信号を用いてシフト動作を行うシフトレジスタ回路であって、各上記シフトレジスタ段は、入力信号のアクティブな期間にのみ導通して上記入力信号を取り込む入力ゲートと、上記入力ゲートから入力された上記入力信号によって充電される充電ノードと、導通および遮断の制御端子が上記充電ノードに接続されたスイッチング素子からなる出力スイッチング素子であって、上記出力スイッチング素子の導通経路の一方の端子には上記第1のクロック信号が入力されるとともに、上記導通経路の他方の端子は各上記シフトレジスタ段の出力端子に接続された出力スイッチング素子と、上記充電ノードと上記充電ノードに対して非アクティブな電位レベルを供給する電源との間に接続された第1のスイッチング素子と、上記充電ノードにおける上記充電ノードの非アクティブな電位レベルと、上記第2のクロック信号のアクティブな期間における上記第2のクロック信号のアクティブな電位レベルとから、上記第1のスイッチング素子を導通状態にする制御信号を生成して上記第1のスイッチング素子の導通および遮断の制御端子に出力する制御部と、を備えており、全ての上記シフトレジスタ段は、シフトパルスを受け渡しする各2つのシフトレジスタ段間において前段側の上記シフトレジスタ段の上記出力端子が、後段側の上記シフトレジスタ段の上記入力ゲートの入力に接続されていることにより縦続接続されており、シフトパルスを受け渡しする各2つのシフトレジスタ段間において、後段側の上記シフトレジスタ段の上記第2のクロック信号は、前段側の上記シフトレジスタ段に上記第1のクロック信号として入力されるクロック信号である、ことを特徴としている。
 上記の発明によれば、前段の出力スイッチング素子のリークにより自段の入力ゲートの入力端子に異常パルスが発生し入力ゲートを導通させようとしても、前段の第1のクロック信号に相当する第2のクロック信号がアクティブになる度に充電ノードが第1のスイッチング素子によってLow引きされていることにより、充電ノードは突き上げを受けることなく非アクティブな電位レベルに安定化され、リークは後段側へ連鎖的には伝達されない。
 以上により、シフトレジスタ段の出力スイッチング素子にリークがあっても誤動作を起こすことを防止することのできるシフトレジスタ回路を実現することができるという効果を奏する。
 本発明のシフトレジスタ回路は、上記課題を解決するために、各シフトレジスタ段のそれぞれについて、互いに位相が異なる第1のクロック信号と第2のクロック信号とが供給されるとともに、全ての上記シフトレジスタ段を合せた全体で上記第1のクロック信号と上記第2のクロック信号とを含む2相以上のクロック信号を用いてシフト動作を行うシフトレジスタ回路であって、各上記シフトレジスタ段は、入力信号のアクティブな期間にのみ導通して上記入力信号を取り込む入力ゲートと、上記入力ゲートから入力された上記入力信号によって充電される充電ノードと、導通および遮断の制御端子が上記充電ノードに接続されたスイッチング素子からなる出力スイッチング素子であって、上記出力スイッチング素子の導通経路の一方の端子には上記第1のクロック信号が入力されるとともに、上記導通経路の他方の端子は各上記シフトレジスタ段の出力端子に接続された出力スイッチング素子と、上記充電ノードと上記出力端子との間に接続された第1のスイッチング素子と、上記充電ノードにおける上記充電ノードの非アクティブな電位レベルと、上記第2のクロック信号のアクティブな期間における上記第2のクロック信号のアクティブな電位レベルとから、上記第1のスイッチング素子を導通状態にする制御信号を生成して上記第1のスイッチング素子の導通および遮断の制御端子に出力する制御部と、を備えており、全ての上記シフトレジスタ段は、シフトパルスを受け渡しする各2つのシフトレジスタ段間において前段側の上記シフトレジスタ段の上記出力端子が、後段側の上記シフトレジスタ段の上記入力ゲートの入力に接続されていることにより縦続接続されており、シフトパルスを受け渡しする各2つのシフトレジスタ段間において、後段側の上記シフトレジスタ段の上記第2のクロック信号は、前段側の上記シフトレジスタ段に上記第1のクロック信号として入力されるクロック信号である、ことを特徴としている。
 上記の発明によれば、前段の出力スイッチング素子のリークにより自段の入力ゲートの入力端子に異常パルスが発生し入力ゲートを導通させようとしても、前段の第1のクロック信号に相当する第2のクロック信号がアクティブになる度に充電ノードが第1のスイッチング素子によってLow引きされていることにより、充電ノードは突き上げを受けることなく非アクティブな電位レベルに安定化され、リークは後段側へ連鎖的には伝達されない。
 以上により、シフトレジスタ段の出力スイッチング素子にリークがあっても誤動作を起こすことを防止することのできるシフトレジスタ回路を実現することができるという効果を奏する。
 本発明のシフトレジスタ回路は、上記課題を解決するために、各シフトレジスタ段のそれぞれについて、互いに位相が異なる第1のクロック信号と第2のクロック信号とが供給されるとともに、全ての上記シフトレジスタ段を合せた全体で上記第1のクロック信号と上記第2のクロック信号とを含む2相以上のクロック信号を用いてシフト動作を行うシフトレジスタ回路であって、各上記シフトレジスタ段は、入力信号のアクティブな期間にのみ導通して上記入力信号を取り込む入力ゲートと、上記入力ゲートから入力された上記入力信号によって充電される充電ノードと、導通および遮断の制御端子が上記充電ノードに接続されたスイッチング素子からなる出力スイッチング素子であって、上記出力スイッチング素子の導通経路の一方の端子には上記第1のクロック信号が入力されるとともに、上記導通経路の他方の端子は各上記シフトレジスタ段の出力端子に接続された出力スイッチング素子と、上記充電ノードと上記充電ノードに対して非アクティブな電位レベルを供給する電源との間に接続された第1のスイッチング素子と、上記充電ノードにおける上記充電ノードの非アクティブな電位レベルと、上記第1のスイッチング素子の上記制御端子に対してアクティブな電位レベルを供給する電源の供給電位とから、上記第1のスイッチング素子を導通状態にする制御信号を生成して上記第1のスイッチング素子の導通および遮断の制御端子に出力する制御部と、を備えており、全ての上記シフトレジスタ段は、シフトパルスを受け渡しする各2つのシフトレジスタ段間において前段側の上記シフトレジスタ段の上記出力端子が、後段側の上記シフトレジスタ段の上記入力ゲートの入力に接続されていることにより縦続接続されており、シフトパルスを受け渡しする各2つのシフトレジスタ段間において、後段側の上記シフトレジスタ段の上記第2のクロック信号は、前段側の上記シフトレジスタ段に上記第1のクロック信号として入力されるクロック信号である、ことを特徴としている。
 上記の発明によれば、前段の出力スイッチング素子のリークにより自段の入力ゲートの入力端子に異常パルスが発生し入力ゲートを導通させようとしても、前段の第1のクロック信号に相当する第2のクロック信号がアクティブになる度に充電ノードが第1のスイッチング素子によってLow引きされていることにより、充電ノードは突き上げを受けることなく非アクティブな電位レベルに安定化され、リークは後段側へ連鎖的には伝達されない。
 以上により、シフトレジスタ段の出力スイッチング素子にリークがあっても誤動作を起こすことを防止することのできるシフトレジスタ回路を実現することができるという効果を奏する。
 本発明のシフトレジスタ回路は、上記課題を解決するために、上記制御部は、アノードに第2のクロック信号が入力されるダイオード型スイッチング素子からなる第1の制御素子と、上記第1の制御素子のカソードと上記第1のスイッチング素子の上記制御端子に対して非アクティブな電位レベルを供給する電源との間に接続されたスイッチング素子からなる第2の制御素子とを備えており、上記第1の制御素子と上記第2の制御素子との接続点が上記第1のスイッチング素子の上記制御端子に接続されていることを特徴としている。
 上記の発明によれば、第2のクロック信号がアクティブになるときに充電ノードをLow引きすることができるので、前段の出力端子にリーク電流による突き上げが発生しても、充電ノードは追従して引き上げられることがなくなり、異常パルスの発生を抑制することができるという効果を奏する。
 本発明のシフトレジスタ回路は、上記課題を解決するために、上記制御部は、一端に第2のクロック信号が入力される容量からなる第1の制御素子と、上記第1の制御素子の他端と上記第1のスイッチング素子の上記制御端子に対して非アクティブな電位レベルを供給する電源との間に接続されたスイッチング素子からなる第2の制御素子とを備えており、上記第1の制御素子と上記第2の制御素子との接続点が上記第1のスイッチング素子の上記制御端子に接続されていることを特徴としている。
 上記の発明によれば、第2のクロック信号のアクティブな電位レベルが頻繁に印加される箇所に容量を用いているので、トランジスタの閾値電圧のシフトのような特性変化がなく、回路全体の信頼性が向上するという効果を奏する。
 本発明のシフトレジスタ回路は、上記課題を解決するために、上記制御部は、アノードが上記第1のスイッチング素子の上記制御端子に対してアクティブな電位レベルを供給する電源に接続されたダイオード型スイッチング素子からなる第1の制御素子と、上記第1の制御素子のカソードと上記第1のスイッチング素子の上記制御端子に対して非アクティブな電位レベルを供給する電源との間に接続されたスイッチング素子からなる第2の制御素子とを備えており、上記第1の制御素子と上記第2の制御素子との接続点は上記第1のスイッチング素子の上記制御端子に接続されていることを特徴としている。
 上記の発明によれば、第1の制御素子のアノードが第1のスイッチング素子の制御端子に対してアクティブな電位レベルを供給する電源によってプルアップされるので、充電ノードが非アクティブな電位レベルであるときは第1のスイッチング素子を導通させることができるとともに、充電ノードがアクティブな電位レベルであるときは第1のスイッチング素子が遮断することができるという効果を奏する。
 本発明のシフトレジスタ回路は、上記課題を解決するために、上記制御部は、上記第1のスイッチング素子の上記制御端子と、上記第1のスイッチング素子の上記制御端子に対して非アクティブな電位レベルを供給する電源との間に接続されたスイッチング素子からなる第3の制御素子を備えており、上記第3の制御素子は上記第1のクロック信号によって導通および遮断が制御されることを特徴としている。
 上記の発明によれば、第1のスイッチング素子の制御端子を非アクティブな電位レベルに保持する期間に、第1のクロック信号がアクティブになる度に第3の制御素子が導通状態となって、第1のスイッチング素子の制御端子をLow引きする。従って、第1のクロック信号がアクティブな電位レベルとなる期間に、第1のスイッチング素子の制御端子がフローティングとなることを防止する。従って、第1のスイッチング素子の制御端子を非アクティブな電位レベルに保持する期間に、当該非アクティブな電位レベルに安定化させることができるという効果を奏する。
 また、第1のスイッチング素子がアモルファスシリコンで作製されたトランジスタである場合には、トランジスタのONデューティが大きいほど、ゲートに印加される直流バイアスが大きくなるため、閾値電圧のシフト現象が発生しやすい。シフト現象によってトランジスタが動作しなくなる虞もある。しかし、上記のように第1のスイッチング素子の制御端子をLow引きするようにすれば、第1のスイッチング素子の制御端子に印加される直流バイアスを小さくすることができるので、回路全体の信頼性をより向上させることができるという効果を奏する。
 本発明のシフトレジスタ回路は、上記課題を解決するために、上記制御部は、上記入力ゲートの入力端子と、上記入力ゲートに対して非アクティブな電位レベルを供給する電源との間に接続されたスイッチング素子からなる第4の制御素子を備えており、上記第4の制御素子の導通および遮断の制御端子は上記第1のスイッチング素子の上記制御端子に接続されていることを特徴としている。
 上記の発明によれば、上記第1のスイッチング素子の制御端子がアクティブな電位レベルになる度に、前段の出力端子をLow引きすることができる。従って、出力端子がLow引きされるので、各段の出力が行われない期間に、出力端子を非アクティブな電位レベルに安定化させることができるという効果を奏する。
 本発明のシフトレジスタ回路は、上記課題を解決するために、上記制御部は、上記入力ゲートの入力端子と、上記出力端子との間に接続されたスイッチング素子からなる第4の制御素子を備えており、上記第4の制御素子の導通および遮断の制御端子は上記第1のスイッチング素子の上記制御端子に接続されていることを特徴としている。
 上記の発明によれば、出力端子は第2のクロック信号がアクティブのときに第2のスイッチング素子によってLow引きされているので、前段の出力端子は第4の制御素子および第2のスイッチング素子を介して第2のクロック信号がアクティブのときにLow引きされるという効果を奏する。
 本発明のシフトレジスタ回路は、上記課題を解決するために、上記充電ノードと上記出力端子とが容量によって結合されていることを特徴としている。
 上記の発明によれば、充電ノードと出力端子とを結合する容量はブートストラップ効果を奏する容量となるが、出力スイッチング素子にリークがあっても充電ノードの電位レベルの変化を抑制することができるという効果を奏する。
 本発明のシフトレジスタ回路は、上記課題を解決するために、上記充電ノードと上記充電ノードに対して非アクティブな電位レベルを供給する電源との間に第3のスイッチング素子が接続されており、上記出力端子と上記出力端子に対して非アクティブな電位レベルを供給する電源との間に第4のスイッチング素子が接続されており、上記第3のスイッチング素子および上記第4のスイッチング素子のそれぞれの導通および遮断の制御端子は、次段の上記出力端子に接続されていることを特徴としている。
 上記の発明によれば、次段の出力によって、自段の充電ノードを非アクティブな電位レベルにリセットすることができるという効果を奏する。
 本発明のシフトレジスタ回路は、上記課題を解決するために、全ての上記シフトレジスタ段を合せた全体で上記第1のクロック信号と上記第2のクロック信号との2相のクロック信号を用いてシフト動作を行うことを特徴としている。
 上記の発明によれば、従来からある2相のクロック信号供給システムにおいて、適正なリーク補償を行うことができるという効果を奏する。
 本発明のシフトレジスタ回路は、上記課題を解決するために、全ての上記シフトレジスタ段を合せた全体で上記第1のクロック信号と上記第2のクロック信号とを含む3相以上のクロック信号を用いてシフト動作を行うことを特徴としている。
 上記の発明によれば、クロック信号を3相以上とするので、第1のクロック信号および第2のクロック信号の他に、さらにシフトレジスタ段の他の動作を追加することができるので、シフトレジスタ段により細かい動作を規定することができるという効果を奏する。
 本発明のシフトレジスタ回路は、上記課題を解決するために、アモルファスシリコンを用いて形成されていることを特徴としている。
 上記の発明によれば、アモルファスシリコンを用いたシフトレジスタ回路において、スイッチング素子としてトランジスタを採用する場合に、閾値電圧のシフト現象を抑制して安定にLow引きすることができるという効果を奏する。
 本発明のシフトレジスタ回路は、上記課題を解決するために、微結晶シリコンを用いて形成されていることを特徴としている。
 上記の発明によれば、閾値電圧のばらつきが小さい微結晶シリコンを用いたシフトレジスタ回路においてリーク補償を行うLow引きを行うので、Low引きによる閾値電圧のシフト現象をアモルファスシリコンよりもさらに有利に抑制することができることが、トランジスタの動作を極めて設計通りに安定させることに寄与するという効果を奏する。
 本発明のシフトレジスタ回路は、上記課題を解決するために、多結晶シリコンを用いて形成されていることを特徴としている。
 上記の発明によれば、移動度は大きいが閾値電圧のばらつきが大きい多結晶シリコンを用いたシフトレジスタ回路においてリーク補償を行うLow引きを行うので、リークによるトランジスタの誤動作のマージンを少しでも大きくすることができる分、移動度が大きいことの利点をよりよく活かすことに寄与するという効果を奏する。
 本発明の表示装置は、上記課題を解決するために、上記シフトレジスタ回路を表示の駆動に用いることを特徴としている。
 上記の発明によれば、シフトレジスタ段の出力スイッチング素子にリークがあっても誤動作を起こすことを防止することのできるシフトレジスタ回路を備えた表示装置を実現することができるという効果を奏する。
 本発明の表示装置は、上記課題を解決するために、上記シフトレジスタ回路が走査信号線駆動回路に用いられていることを特徴としている。
 上記の発明によれば、シフトレジスタ回路の動作の信頼性が高まることにより、良好な表示を行うことができるという効果を奏する。
 本発明の表示装置は、上記課題を解決するために、上記シフトレジスタ回路が、表示パネルに表示領域とモノリシックに形成されていることを特徴としている。
 上記の発明によれば、シフトレジスタ回路が表示パネルに表示領域とモノリシックに形成された、構成簡略化に有利な表示装置に、シフトレジスタ回路の動作を高信頼化させることにより、良好な表示を行わせることができるという効果を奏する。
 本発明のシフトレジスタ回路の駆動方法は、上記課題を解決するために、各シフトレジスタ段のそれぞれについて、互いに位相が異なる第1のクロック信号と第2のクロック信号とが供給されるとともに、全ての上記シフトレジスタ段を合せた全体で上記第1のクロック信号と上記第2のクロック信号とを含む2相以上のクロック信号を用いてシフト動作を行うシフトレジスタ回路であって、各上記シフトレジスタ段は、入力信号のアクティブな期間にのみ導通して上記入力信号を取り込む入力ゲートと、上記入力ゲートから入力された上記入力信号によって充電される充電ノードと、導通および遮断の制御端子が上記充電ノードに接続されたスイッチング素子からなる出力スイッチング素子であって、上記出力スイッチング素子の導通経路の一方の端子には上記第1のクロック信号が入力されるとともに、上記導通経路の他方の端子は各上記シフトレジスタ段の出力端子に接続された出力スイッチング素子と、上記充電ノードと上記充電ノードに対して非アクティブな電位レベルを供給する電源との間に接続された第1のスイッチング素子とを備えており、全ての上記シフトレジスタ段は、シフトパルスを受け渡しする各2つのシフトレジスタ段間において前段側の上記シフトレジスタ段の上記出力端子が、後段側の上記シフトレジスタ段の上記入力ゲートの入力に接続されていることにより縦続接続されており、シフトパルスを受け渡しする各2つのシフトレジスタ段間において、後段側の上記シフトレジスタ段の上記第2のクロック信号は、前段側の上記シフトレジスタ段に上記第1のクロック信号として入力されるクロック信号であるシフトレジスタ回路を駆動するシフトレジスタ回路の駆動方法であって、上記充電ノードにおける上記充電ノードの非アクティブな電位レベルと、上記第2のクロック信号のアクティブな期間における上記第2のクロック信号のアクティブな電位レベルとから、上記第1のスイッチング素子を導通状態にする制御信号を生成して上記第1のスイッチング素子の導通および遮断の制御端子に出力することを特徴としている。
 上記の発明によれば、前段の出力スイッチング素子のリークにより自段の入力ゲートの入力端子に異常パルスが発生し入力ゲートを導通させようとしても、前段の第1のクロック信号に相当する第2のクロック信号がアクティブになる度に充電ノードが第1のスイッチング素子によってLow引きされていることにより、充電ノードは突き上げを受けることなく非アクティブな電位レベルに安定化され、リークは後段側へ連鎖的には伝達されない。
 以上により、シフトレジスタ段の出力スイッチング素子にリークがあっても誤動作を起こすことを防止することのできるシフトレジスタ回路の駆動方法を実現することができるという効果を奏する。
 本発明のシフトレジスタ回路の駆動方法は、上記課題を解決するために、各シフトレジスタ段のそれぞれについて、互いに位相が異なる第1のクロック信号と第2のクロック信号とが供給されるとともに、全ての上記シフトレジスタ段を合せた全体で上記第1のクロック信号と上記第2のクロック信号とを含む2相以上のクロック信号を用いてシフト動作を行うシフトレジスタ回路であって、各上記シフトレジスタ段は、入力信号のアクティブな期間にのみ導通して上記入力信号を取り込む入力ゲートと、上記入力ゲートから入力された上記入力信号によって充電される充電ノードと、導通および遮断の制御端子が上記充電ノードに接続されたスイッチング素子からなる出力スイッチング素子であって、上記出力スイッチング素子の導通経路の一方の端子には上記第1のクロック信号が入力されるとともに、上記導通経路の他方の端子は各上記シフトレジスタ段の出力端子に接続された出力スイッチング素子と、上記充電ノードと上記出力端子との間に接続された第1のスイッチング素子とを備えており、全ての上記シフトレジスタ段は、シフトパルスを受け渡しする各2つのシフトレジスタ段間において前段側の上記シフトレジスタ段の上記出力端子が、後段側の上記シフトレジスタ段の上記入力ゲートの入力に接続されていることにより縦続接続されており、シフトパルスを受け渡しする各2つのシフトレジスタ段間において、後段側の上記シフトレジスタ段の上記第2のクロック信号は、前段側の上記シフトレジスタ段に上記第1のクロック信号として入力されるクロック信号であるシフトレジスタ回路を駆動するシフトレジスタ回路の駆動方法であって、上記充電ノードにおける上記充電ノードの非アクティブな電位レベルと、上記第2のクロック信号のアクティブな期間における上記第2のクロック信号のアクティブな電位レベルとから、上記第1のスイッチング素子を導通状態にする制御信号を生成して上記第1のスイッチング素子の導通および遮断の制御端子に出力することを特徴としている。
 上記の発明によれば、前段の出力スイッチング素子のリークにより自段の入力ゲートの入力端子に異常パルスが発生し入力ゲートを導通させようとしても、前段の第1のクロック信号に相当する第2のクロック信号がアクティブになる度に充電ノードが第1のスイッチング素子によってLow引きされていることにより、充電ノードは突き上げを受けることなく非アクティブな電位レベルに安定化され、リークは後段側へ連鎖的には伝達されない。
 以上により、シフトレジスタ段の出力スイッチング素子にリークがあっても誤動作を起こすことを防止することのできるシフトレジスタ回路の駆動方法を実現することができるという効果を奏する。
 本発明のシフトレジスタ回路の駆動方法は、上記課題を解決するために、各シフトレジスタ段のそれぞれについて、互いに位相が異なる第1のクロック信号と第2のクロック信号とが供給されるとともに、全ての上記シフトレジスタ段を合せた全体で上記第1のクロック信号と上記第2のクロック信号とを含む2相以上のクロック信号を用いてシフト動作を行うシフトレジスタ回路であって、各シフトレジスタ段は、入力信号のアクティブな期間にのみ導通して上記入力信号を取り込む入力ゲートと、上記入力ゲートから入力された上記入力信号によって充電される充電ノードと、導通および遮断の制御端子が上記充電ノードに接続されたスイッチング素子からなる出力スイッチング素子であって、上記出力スイッチング素子の導通経路の一方の端子には上記第1のクロック信号が入力されるとともに、上記導通経路の他方の端子は各上記シフトレジスタ段の出力端子に接続された出力スイッチング素子と、上記充電ノードと上記充電ノードに対して非アクティブな電位レベルを供給する電源との間に接続された第1のスイッチング素子とを備えており、全ての上記シフトレジスタ段は、シフトパルスを受け渡しする各2つのシフトレジスタ段間において前段側の上記シフトレジスタ段の上記出力端子が、後段側の上記シフトレジスタ段の上記入力ゲートの入力に接続されていることにより縦続接続されており、シフトパルスを受け渡しする各2つのシフトレジスタ段間において、後段側の上記シフトレジスタ段の上記第2のクロック信号は、前段側の上記シフトレジスタ段に上記第1のクロック信号として入力されるクロック信号であるシフトレジスタ回路を駆動するシフトレジスタ回路の駆動方法であって、上記充電ノードにおける上記充電ノードの非アクティブな電位レベルと、上記第1のスイッチング素子の上記制御端子に対してアクティブな電位レベルを供給する電源の供給電位とから、上記第1のスイッチング素子を導通状態にする制御信号を生成して上記第1のスイッチング素子の導通および遮断の制御端子に出力することを特徴としている。
 上記の発明によれば、前段の出力スイッチング素子のリークにより自段の入力ゲートの入力端子に異常パルスが発生し入力ゲートを導通させようとしても、前段の第1のクロック信号に相当する第2のクロック信号がアクティブになる度に充電ノードが第1のスイッチング素子によってLow引きされていることにより、充電ノードは突き上げを受けることなく非アクティブな電位レベルに安定化され、リークは後段側へ連鎖的には伝達されない。
 以上により、シフトレジスタ段の出力スイッチング素子にリークがあっても誤動作を起こすことを防止することのできるシフトレジスタ回路の駆動方法を実現することができるという効果を奏する。
 本発明のシフトレジスタ回路は、以上のように、各シフトレジスタ段のそれぞれについて、互いに位相が異なる第1のクロック信号と第2のクロック信号とが供給されるとともに、全ての上記シフトレジスタ段を合せた全体で上記第1のクロック信号と上記第2のクロック信号とを含む2相以上のクロック信号を用いてシフト動作を行うシフトレジスタ回路であって、各上記シフトレジスタ段は、入力信号のアクティブな期間にのみ導通して上記入力信号を取り込む入力ゲートと、上記入力ゲートから入力された上記入力信号によって充電される充電ノードと、導通および遮断の制御端子が上記充電ノードに接続されたスイッチング素子からなる出力スイッチング素子であって、上記出力スイッチング素子の導通経路の一方の端子には上記第1のクロック信号が入力されるとともに、上記導通経路の他方の端子は各上記シフトレジスタ段の出力端子に接続された出力スイッチング素子と、上記充電ノードと上記充電ノードに対して非アクティブな電位レベルを供給する電源との間に接続された第1のスイッチング素子と、上記充電ノードにおける上記充電ノードの非アクティブな電位レベルと、上記第2のクロック信号のアクティブな期間における上記第2のクロック信号のアクティブな電位レベルとから、上記第1のスイッチング素子を導通状態にする制御信号を生成して上記第1のスイッチング素子の導通および遮断の制御端子に出力する制御部と、を備えており、全ての上記シフトレジスタ段は、シフトパルスを受け渡しする各2つのシフトレジスタ段間において前段側の上記シフトレジスタ段の上記出力端子が、後段側の上記シフトレジスタ段の上記入力ゲートの入力に接続されていることにより縦続接続されており、シフトパルスを受け渡しする各2つのシフトレジスタ段間において、後段側の上記シフトレジスタ段の上記第2のクロック信号は、前段側の上記シフトレジスタ段に上記第1のクロック信号として入力されるクロック信号である。
 以上により、シフトレジスタ段の出力スイッチング素子にリークがあっても誤動作を起こすことを防止することのできるシフトレジスタ回路を実現することができるという効果を奏する。
本発明の実施形態を示すものであり、シフトレジスタ回路の各段の構成を示す回路図である。 図1の構成の各段の動作を示すタイミングチャートである。 図1の構成の各段の、出力スイッチング素子にリークが発生した場合の動作を説明するタイミングチャートである。 図1の構成をより詳細に示す回路図である。 図4の第1の変形例の構成を示す回路図である。 図4の第2の変形例の構成を示す回路図である。 図4の第3の変形例の構成を示す回路図である。 図4の第4の変形例の構成を示す回路図である。 図4の第5の変形例の構成を示す回路図である。 本発明の実施形態を示すものであり、シフトレジスタ回路の各段の他の構成を示す回路図である。 本発明の実施形態を示すものであり、表示装置の構成を示すブロック図である。 従来技術を示すものであり、シフトレジスタ回路の構成を示すブロック図である。 図12のシフトレジスタ回路が備える各段の構成を示す回路図である。 図13の各段の動作を示すタイミングチャートである。 図12のシフトレジスタ回路の動作を示すタイミングチャートである。 従来技術を示すものであり、シフトレジスタ回路の各段の他の構成を示すブロック図である。 従来技術を示すものであり、シフトレジスタ回路のリークを伴う動作を示すタイミングチャートである。
 本発明の一実施形態について図1ないし図11に基づいて説明すると以下の通りである。
 図11に、本実施形態に係る表示装置である液晶表示装置11の構成を示す。
 液晶表示装置11は、表示パネル12、フレキシブルプリント基板13、および、コントロール基板14を備えている。
 表示パネル12は、ガラス基板上にアモルファスシリコンを用いて表示領域12a、複数のゲートライン(走査信号線)GL…、複数のソースライン(データ信号線)SL…、および、ゲートドライバ(走査信号線駆動回路)15が作りこまれたアクティブマトリクス型の表示パネルである。多結晶シリコン、CGシリコン、微結晶シリコンなどをもちいて表示パネル12を作製することもできる。表示領域12aは、複数の絵素PIX…がマトリクス状に配置された領域である。絵素PIXは、絵素の選択素子であるTFT21、液晶容量CL、および、補助容量Csを備えている。TFT21のゲートはゲートラインGLに接続されており、TFT21のソースはソースラインSLに接続されている。液晶容量CLおよび補助容量CsはTFT21のドレインに接続されている。
 複数のゲートラインGL…はゲートラインGL1・GL2・GL3・…・GLnからなり、それぞれゲートドライバ(走査信号線駆動回路)15の出力に接続されている。複数のソースラインSL…はソースラインSL1・SL2・SL3・…・SLmからなり、それぞれ後述するソースドライバ16の出力に接続されている。また、図示しないが、絵素PIX…の各補助容量Csに補助容量電圧を与える補助容量配線が形成されている。
 ゲ-トドライバ15は、表示パネル12上で表示領域12aに対してゲートラインGL…の延びる方向の一方側に隣接する領域に設けられており、ゲートラインGL…のそれぞれに順次ゲートパルス(走査パルス)を供給する。さらに他のゲ-トドライバが、表示パネル12上で表示領域12aに対してゲートラインGL…の延びる方向の他方側に隣接する領域に設けられて、上記ゲートドライバ15と互いに異なるゲートラインGLを走査するようになっていてもよい。これらのゲートドライバは表示パネル12に、アモルファスシリコンや多結晶シリコンを用いて、表示領域12aとモノリシックに作りこまれており、ゲートモノリシック、ゲートドライバレス、パネル内蔵ゲートドライバ、ゲートインパネルなどと称されるゲートドライバは全てゲートドライバ15に含まれ得る。
 フレキシブルプリント基板13は、ソースドライバ16を備えている。ソースドライバ16はソースラインSL…のそれぞれにデータ信号を供給する。コントロール基板14はフレキシブルプリント基板13に接続されており、ゲートドライバ15およびソースドライバ16に必要な信号や電源を供給する。コントロール基板14から出力されたゲートドライバ15へ供給する信号および電源は、フレキシブルプリント基板13を介して表示パネル12上からゲートドライバ15へ供給される。
 ゲ-トドライバ15のようにゲートドライバをゲートモノリシックで構成する場合には、一行分の絵素PIX…を全て同色絵素で構成し、ゲートドライバ15がRGBの色ごとにゲートラインGL…を駆動するのに適している。この場合には、ソースドライバ16を色ごとに用意する必要がないので、ソースドライバ16やフレキシブルプリント基板13の規模を縮小することができるので有利である。
 ゲートドライバ15の構成には、前述の図12のシフトレジスタ回路と同様の段縦続接続構成を用いることができる。すなわち、全ての上記シフトレジスタ段は、シフトパルスを受け渡しする各2つのシフトレジスタ段間において前段側の上記シフトレジスタ段の上記出力端子が、後段側の上記シフトレジスタ段の上記入力ゲートの入力に接続されていることにより縦続接続されている。クロック信号CK1・CK2、Low電源電圧VSS、および、ゲートスタートパルスGSPも、図12~図15と同様のものを用いることができる。特に、シフトパルスを受け渡しする各2つのシフトレジスタ段間において、後段側のシフトレジスタ段の第2のクロック信号は、前段側のシフトレジスタ段に上記第1のクロック信号として入力されるクロック信号である。
 図1に、本実施形態のシフトレジスタ回路の各段(シフトレジスタ段)SRk(kは自然数)の構成を示す。
 本実施形態では、kが奇数の段SRkにおいては、クロック信号CK1を第1のクロック信号、クロック信号CK2を第2のクロック信号とし、kが偶数の段SRkにおいては、クロック信号CK2を第1のクロック信号、クロック信号CK1を第2のクロック信号とする。すなわち、クロック入力端子CKAに入力されるクロック信号を第1のクロック信号とし、クロック入力端子CKBに入力されるクロック信号を第2のクロック信号とする。シフトレジスタ回路全体では、互いに位相の異なる第1のクロック信号と第2のクロック信号との2相のクロック信号を用いてシフト動作を行う。
 各段SRkは、トランジスタT1・T2・T3・T4・T5、制御部1、および容量C1を備えている。トランジスタT5は出力スイッチング素子、トランジスタT1は入力ゲート、トランジスタT2は第2のスイッチング素子、トランジスタT6は第1のスイッチング素子、トランジスタT3は第3のスイッチング素子、トランジスタT4は第4のスイッチング素子を、それぞれ構成している。また、制御部1は、AND回路2およびトランジスタT6を備えている。上記トランジスタはここでは全てnチャネル型のTFTであるが、pチャネル型でもよいし、nチャネル型とpチャネル型とが混ざっていてもよい。なお、各スイッチング素子において、ドレインとソースとは互いに、スイッチング素子の導通経路の一方の端子と他方の端子との関係にあり、ゲートは上記導通経路の導通および遮断の制御端子に相当している。また、各スイッチング素子は、TFT以外の電界効果トランジスタでもよい。このようなトランジスタの極性および型、スイッチング素子の種類については、本実施形態の他の構成例でも同様である。
 トランジスタT1において、ゲートおよびドレインはセット端子SETに、ソースはトランジスタT5のゲートに、それぞれ接続されている。各段SRkの出力トランジスタであるトランジスタT5において、ドレインはクロック入力端子CKAに、ソースは出力端子GOUTに、それぞれ接続されている。すなわち、トランジスタT5は伝送ゲートとして、クロック入力端子CKAに入力されるクロック信号の通過および遮断を行う。容量C1は、トランジスタT5のゲートとソースとの間に接続されている。トランジスタT5のゲートと同電位のノードをnetAと称する。
 トランジスタT3において、ゲートはリセット端子RESETに、ドレインはノードnetAに、ソースはLow電源入力端子VSSに、それぞれ接続されている。トランジスタT4において、ゲートはリセット端子RESETに、ドレインは出力端子GOUTに、ソースはLow電源入力端子VSSに、それぞれ接続されている。
 トランジスタT2において、ゲートはクロック端子CKBに、ドレインは出力端子GOUTに、ソースはLow電源入力端子VSSに、それぞれ接続されている。
 制御部1において、AND回路2は2入力のゲート回路であり、一方の入力がアクティブLow、他方の入力がアクティブHighである。アクティブLowの入力はノードnetAに接続されており、アクティブHighの入力はクロック端子CKBに接続されている。また、制御部1のトランジスタT6において、ゲートはAND回路2の出力端子に、ドレインはノードnetAに、ソースはLow電源入力端子VSSに、それぞれ接続されている。
 次に、図2および図3を用いて、各段SRkの動作について説明する。
 入力ゲート(トランジスタT1)の入力端子であるセット端子SETにシフトパルスが入力されるまでは、トランジスタT4・T5がハイインピーダンス状態であるとともに、トランジスタT2がクロック入力端子CKBから入力されるクロック信号がHighレベルになるたびにON状態となり、出力端子GOUTはLowを保持する期間となる。また、この期間には、充電ノードであるノードnetAもLowを保持する期間となるが、クロック入力端子CKBに入力されるクロック信号がアクティブ(High)である期間にANDゲート2の出力であるノードnetBがHighとなることから、トランジスタT6がON状態となるので、ノードnetAはLow電源電圧VSSにLow引きされる。ここではLow電源電圧VSSは、トランジスタT5のゲートおよび出力端子GOUTに対して非アクティブな電位レベルを供給する電源である。
 セット端子SETにシフトパルスである前段の出力信号GOUTのゲートパルスが入力されると、段SRkは出力パルスを生成する期間となり、トランジスタT1がON状態となって容量C1を充電する。容量C1が充電されることにより、ゲートパルスのHighレベルをVGH、トランジスタT1の閾値電圧をVthとして、ノードnetAの電位がVGH-Vthまで上昇する。この結果、トランジスタT5がON状態になり、クロック入力端子CKAから入力されたクロック信号がトランジスタT5のソースに現れるが、クロック入力端子CKにクロックパルス(Highレベル)が入力された瞬間に容量C1のブートストラップ効果によってノードnetAの電位が突き上げられるので、トランジスタT5は大きなオーバドライブ電圧を得ることとなる。これにより、入力されたクロックパルスのVGHの電位レベルが段SRkの出力端子GOUTに伝送されて出力され、ゲートパルスGk(出力信号GOUTのパルス)となる。
 ノードnetAの電位がこのようにトランジスタT5のゲートに対してアクティブな電位レベルにあるときには、AND回路2の出力はLowとなるので、トランジスタT6はOFF状態にある。
 セット端子SETへのゲートパルスの入力が終了すると、トランジスタT1がOFF状態となる。そして、ノードnetAおよび段SRkの出力端子GOUTがフローティングとなることによる電荷の保持を解除するために、リセット端子RESETに入力されるリセットパルスとしての次段SRk+1のゲートパルスGk+1によってトランジスタT3・T4をON状態とし、ノードnetAおよび出力端子GOUTをLow電源入力端子VSSに接続する。これによりトランジスタT5がOFF状態となる。リセットパルスの入力が終了すると、段SRkが出力パルスを生成する期間は終了し、出力端子GOUTは再びLowを保持する期間となる。
 出力端子GOUTがLowを保持する期間になると、再び、クロック入力端子CKBに入力されるクロック信号のアクティブな期間に、AND回路2の出力がHighレベルとなってトランジスタT6がON状態となって、ノードnetAがLow引きされる。
 上記のように制御部1が動作するので、例えば図3に示すように、cでリセットパルスによってノードnetAがリセットされた後に、クロック入力端子CKAに入力されるクロック信号がアクティブ(High)になってこれがトランジスタT5のリークによってaで示すように出力端子GOUT側に漏出したとしても、前段のクロック端子CKAに入力されるクロック信号に相当する、クロック端子CKBに入力されるクロック信号がアクティブ(High)になる度にノードnetAがLow引きされることにより、bで示すようにノードnetAは突き上げを受けることなく非アクティブな電位レベル(Low、VSS)に安定化され、リークは後段側へ連鎖的には伝達されない。
 以上により、シフトレジスタ段の出力スイッチング素子にリークがあっても誤動作を起こすことを防止することのできるシフトレジスタ回路、および、それを備える表示装置ならびにシフトレジスタの駆動方法を実現することができる。
 また、このようなリークによる誤動作の防止を、シフトレジスタ回路のシフト動作に用いる信号以外に特別な信号を供給することなく、行うことができる。
 次に、図4に、制御部1のさらに詳しい構成を示す。
 図4では、AND回路2がトランジスタT7・T8で構成された例が示されている。トランジスタT7は第1の制御素子、トランジスタT8は第2の制御素子を構成している。トランジスタT7において、ゲートおよびドレインはクロック入力端子CKBに接続されており、ゲートおよびドレインがアノードであってソースがカソードとなるダイオード型スイッチング素子として機能する。トランジスタT8において、ゲートはノードnetAに、ドレインはトランジスタT7のソースに、ソースはLow電源入力端子VSSに、それぞれ接続されている。トランジスタT7とトランジスタT8との接続点はAND回路2の出力端子すなわちノードnetBであり、トランジスタT6のゲートに接続されている。
 トランジスタT7はダイオード接続されているので、クロック入力端子CKBに入力されるクロック信号がアクティブ(High)になるときに、ノードnetBをアクティブな電位レベル(High)にプルアップする。トランジスタT8はノードnetAがアクティブな電位レベル(High)になっているときに、ノードnetBを非アクティブな電位レベル(Low)にプルダウンして、トランジスタT6がON状態とならないようにマスクをかける役割をしている。
 トランジスタT7・T8により、クロック入力端子CKBがアクティブな電位レベル(High)になるときにノードnetAをLow引きすることができるので、前段の出力端子GOUTにリーク電流による突き上げが発生しても、ノードnetAは追従して引き上げられることがなくなり、異常パルスの発生を抑制することができる。
 次に、図5に、制御部1の第1の変形例の構成を示す。
 図5の制御部1では、図4の制御部1に、さらにトランジスタT9が追加されている。トランジスタT9は第3の制御素子を構成している。トランジスタT9において、ゲートはクロック入力端子CKAに、ドレインはノードnetAに、ソースはLow電源入力端子VSSに、それぞれ接続されている。
 これにより、ノードnetBを非アクティブな電位レベル(Low、VSS)に保持する期間に、クロック入力端子CKAに入力されるクロック信号がアクティブになる度にトランジスタT9がON状態となって、ノードnetBをLow引きする。従って、クロック入力端子CKAがクロック信号のアクティブな電位レベル(High)となる期間に、ノードnetBがフローティングとなることを防止する。従って、ノードnetBを非アクティブな電位レベル(Low、VSS)に保持する期間に、当該非アクティブな電位レベルに安定化させることができる。
 また、トランジスタがアモルファスシリコンで作製されている場合には、トランジスタのONデューティが大きいほど、ゲートに印加される直流バイアスが大きくなるため、閾値電圧Vthのシフト現象が発生しやすい。シフト現象によってトランジスタが動作しなくなる虞もある。しかし、上記のようにノードnetBをLow引きするようにすれば、トランジスタT6のゲートに印加される直流バイアスを小さくすることができるので、回路全体の信頼性をより向上させることができる。
 次に、図6に、制御部1の第2の変形例の構成を示す。
 図6の制御部1では、図5の制御部1に、さらにトランジスタT10が追加されている。トランジスタT10は第4の制御素子を構成している。トランジスタT10において、ゲートはノードnetBに、ドレインはセット端子SETに、ソースはLow電源入力端子VSSに、それぞれ接続されている。
 これにより、ノードnetBがアクティブな電位レベル(High)になる度に、前段の出力端子GOUTをLow引きすることができる。出力端子GOUTがLow引きされるので、各段のゲート出力が行われない期間に、出力端子GOUTを非アクティブな電位レベルに安定化させることができる。
 次に、図7に、制御部1の第3の変形例の構成を示す。
 図7の制御部1は、図5の制御部1におけるトランジスタT6のソースがLow電源入力端子VSSの代わりに出力端子GOUTに接続された構成である。これによれば、出力端子GOUTはクロック入力端子CKBに入力されるクロック信号がアクティブ(High)のときにトランジスタT2によってLow引きされているので、ノードnetAはトランジスタT6・T2を介してクロック入力端子CKBに入力されるクロック信号がアクティブ(High)のときにLow引きされる。従って、図5の構成と同様の効果が得られる。
 また、トランジスタT6のソースを出力端子GOUTに接続する代わりにクロック入力端子CKAに接続するようにしても、クロック入力端子CKBに入力されるクロック信号がアクティブ(High)のときにはクロック入力端子CKAに入力されるクロック信号は非アクティブ(Low、VSS)になっているため、同様の効果が得られる。
 次に、図8に、制御部1の第4の変形例の構成を示す。
 図8の制御部1は、図6の制御部1におけるトランジスタT10のソースがLow電源入力端子VSSの代わりに出力端子GOUTに接続された構成である。これによれば、出力端子GOUTはクロック入力端子CKBに入力されるクロック信号がアクティブ(High)のときにトランジスタT2によってLow引きされているので、前段の出力端子GOUTはトランジスタT10・T2を介してクロック入力端子CKBに入力されるクロック信号がアクティブ(High)のときにLow引きされる。従って、図6の構成と同様の効果が得られる。
 また、トランジスタT6のソースを出力端子GOUTに接続する代わりにクロック入力端子CKAに接続するようにしても、クロック入力端子CKBに入力されるクロック信号がアクティブ(High)のときにはクロック入力端子CKAに入力されるクロック信号は非アクティブ(Low、VSS)になっているため、同様の効果が得られる。
 次に、図9に、制御部1の第5の変形例の構成を示す。
 図9の制御部1は、図4の制御部1におけるクロック入力端子CKBとトランジスタT8のドレインとの間に、第1の制御素子としてトランジスタT7の代わりに容量C2が接続された構成である。
 これによれば、ノードnetBは容量C2を介してクロック入力端子CKBと容量結合しているので、ノードnetAが非アクティブな電位レベル(Low)であるときにクロック入力端子CKBに入力されるクロック信号がアクティブ(High)になればノードnetBをアクティブな電位レベル(High)とし、ノードnetAがアクティブな電位レベル(High)であるときにクロック入力端子CKBに入力されるクロック信号が非アクティブ(Low)になればノードnetBを非アクティブな電位レベル(Low)とすることができる。
 この場合に、図4とは異なって、クロック入力端子CKBに入力されるクロック信号のアクティブな電位レベル(High)が頻繁に印加される箇所に容量C2を用いているので、トランジスタの閾値電圧のシフトのような特性変化がなく、回路全体の信頼性が向上する。
 次に、図10に、本実施形態の他の制御部の構成を示す。
 図10の制御部は、図5の制御部1においてトランジスタT7のゲートおよびドレインが、クロック入力端子CKBに接続される代わりにHigh電源VDDに接続された構成である。High電源VDDは、ノードnetB、すなわちトランジスタT6のゲートに対して、アクティブな電位レベル(High)を供給する電源である。
 これによれば、トランジスタT7のゲートおよびドレインがHigh電源VDDによってプルアップされるので、ノードnetAが非アクティブな電位レベル(Low)であるときはノードnetBがアクティブな電位レベル(High)となり、ノードnetAがアクティブな電位レベル(High)であるときはノードnetBが非アクティブな電位レベル(Low)となる。従って、図4および図5の構成と同様の効果を得ることができる。また、ノードnetBは、トランジスタT9によって、クロック入力端子CKAに入力されるクロック信号がアクティブ(High)になるタイミングでLow引きされるので、図4と同様のノードnetBの電位変化を作ることができる。
 なお、以上の各構成において、トランジスタT9・T10のそれぞれの使用、トランジスタT6・T10のソースの上述した接続先の選択、トランジスタT7の使用または容量C2の使用の選択、トランジスタT7のゲートおよびドレインの上述した接続先の選択、などは、自由に決定することが可能である。
 また、全てのシフトレジスタ段を合わせた全体のシフト動作には、第1のクロック信号と第2のクロック信号とを含む、互いに位相の異なる3相以上のクロック信号を用いることができ、一般には2相以上のクロック信号とすることが可能である。3相以上の場合には、第1のクロック信号および第2のクロック信号の他に、さらにシフトレジスタ段の他の動作を追加することができるので、シフトレジスタ段により細かい動作を規定することができる。前述した2相の場合には、従来のクロック信号供給システムにおいて、適正なリーク補償を行うことができるという利点がある。
 以上、本実施形態について述べた。本発明はEL表示装置など、シフトレジスタ回路を用いる他の表示装置にも適用可能である。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、液晶表示装置やEL表示装置などの表示装置に特に好適に使用することができる。
 1       制御部
 2       AND回路
 11      液晶表示装置(表示装置)
 15      ゲートドライバ(走査信号線駆動回路)
 SR      段
 CK1、CK2 クロック信号(第1のクロック信号、第2のクロック信号)
 netA    ノード(充電ノード)
 GOUT    出力端子
 T1      トランジスタ(入力ゲート、ダイオード型スイッチング素子)
 T2      トランジスタ(第2のスイッチング素子)
 T5      トランジスタ(出力スイッチング素子)
 T6      トランジスタ(第1のスイッチング素子)

Claims (24)

  1.  各シフトレジスタ段のそれぞれについて、互いに位相が異なる第1のクロック信号と第2のクロック信号とが供給されるとともに、全ての上記シフトレジスタ段を合せた全体で上記第1のクロック信号と上記第2のクロック信号とを含む2相以上のクロック信号を用いてシフト動作を行うシフトレジスタ回路であって、
     各上記シフトレジスタ段は、
     入力信号のアクティブな期間にのみ導通して上記入力信号を取り込む入力ゲートと、
     上記入力ゲートから入力された上記入力信号によって充電される充電ノードと、導通および遮断の制御端子が上記充電ノードに接続されたスイッチング素子からなる出力スイッチング素子であって、上記出力スイッチング素子の導通経路の一方の端子には上記第1のクロック信号が入力されるとともに、上記導通経路の他方の端子は各上記シフトレジスタ段の出力端子に接続された出力スイッチング素子と、
     上記充電ノードと上記充電ノードに対して非アクティブな電位レベルを供給する電源との間に接続された第1のスイッチング素子と、
     上記充電ノードにおける上記充電ノードの非アクティブな電位レベルと、上記第2のクロック信号のアクティブな期間における上記第2のクロック信号のアクティブな電位レベルとから、上記第1のスイッチング素子を導通状態にする制御信号を生成して上記第1のスイッチング素子の導通および遮断の制御端子に出力する制御部と、
    を備えており、
     全ての上記シフトレジスタ段は、シフトパルスを受け渡しする各2つのシフトレジスタ段間において前段側の上記シフトレジスタ段の上記出力端子が、後段側の上記シフトレジスタ段の上記入力ゲートの入力に接続されていることにより縦続接続されており、
     シフトパルスを受け渡しする各2つのシフトレジスタ段間において、後段側の上記シフトレジスタ段の上記第2のクロック信号は、前段側の上記シフトレジスタ段に上記第1のクロック信号として入力されるクロック信号である、
    ことを特徴とするシフトレジスタ回路。
  2.  各シフトレジスタ段のそれぞれについて、互いに位相が異なる第1のクロック信号と第2のクロック信号とが供給されるとともに、全ての上記シフトレジスタ段を合せた全体で上記第1のクロック信号と上記第2のクロック信号とを含む2相以上のクロック信号を用いてシフト動作を行うシフトレジスタ回路であって、
     各上記シフトレジスタ段は、
     入力信号のアクティブな期間にのみ導通して上記入力信号を取り込む入力ゲートと、
     上記入力ゲートから入力された上記入力信号によって充電される充電ノードと、導通および遮断の制御端子が上記充電ノードに接続されたスイッチング素子からなる出力スイッチング素子であって、上記出力スイッチング素子の導通経路の一方の端子には上記第1のクロック信号が入力されるとともに、上記導通経路の他方の端子は各上記シフトレジスタ段の出力端子に接続された出力スイッチング素子と、
     上記充電ノードと上記出力端子との間に接続された第1のスイッチング素子と、
     上記充電ノードにおける上記充電ノードの非アクティブな電位レベルと、上記第2のクロック信号のアクティブな期間における上記第2のクロック信号のアクティブな電位レベルとから、上記第1のスイッチング素子を導通状態にする制御信号を生成して上記第1のスイッチング素子の導通および遮断の制御端子に出力する制御部と、
    を備えており、
     全ての上記シフトレジスタ段は、シフトパルスを受け渡しする各2つのシフトレジスタ段間において前段側の上記シフトレジスタ段の上記出力端子が、後段側の上記シフトレジスタ段の上記入力ゲートの入力に接続されていることにより縦続接続されており、
     シフトパルスを受け渡しする各2つのシフトレジスタ段間において、後段側の上記シフトレジスタ段の上記第2のクロック信号は、前段側の上記シフトレジスタ段に上記第1のクロック信号として入力されるクロック信号である、
    ことを特徴とするシフトレジスタ回路。
  3.  各シフトレジスタ段のそれぞれについて、互いに位相が異なる第1のクロック信号と第2のクロック信号とが供給されるとともに、全ての上記シフトレジスタ段を合せた全体で上記第1のクロック信号と上記第2のクロック信号とを含む2相以上のクロック信号を用いてシフト動作を行うシフトレジスタ回路であって、
     各上記シフトレジスタ段は、
     入力信号のアクティブな期間にのみ導通して上記入力信号を取り込む入力ゲートと、
     上記入力ゲートから入力された上記入力信号によって充電される充電ノードと、導通および遮断の制御端子が上記充電ノードに接続されたスイッチング素子からなる出力スイッチング素子であって、上記出力スイッチング素子の導通経路の一方の端子には上記第1のクロック信号が入力されるとともに、上記導通経路の他方の端子は各上記シフトレジスタ段の出力端子に接続された出力スイッチング素子と、
     上記充電ノードと上記充電ノードに対して非アクティブな電位レベルを供給する電源との間に接続された第1のスイッチング素子と、
     上記充電ノードにおける上記充電ノードの非アクティブな電位レベルと、上記第1のスイッチング素子の上記制御端子に対してアクティブな電位レベルを供給する電源の供給電位とから、上記第1のスイッチング素子を導通状態にする制御信号を生成して上記第1のスイッチング素子の導通および遮断の制御端子に出力する制御部と、
    を備えており、
     全ての上記シフトレジスタ段は、シフトパルスを受け渡しする各2つのシフトレジスタ段間において前段側の上記シフトレジスタ段の上記出力端子が、後段側の上記シフトレジスタ段の上記入力ゲートの入力に接続されていることにより縦続接続されており、
     シフトパルスを受け渡しする各2つのシフトレジスタ段間において、後段側の上記シフトレジスタ段の上記第2のクロック信号は、前段側の上記シフトレジスタ段に上記第1のクロック信号として入力されるクロック信号である、
    ことを特徴とするシフトレジスタ回路。
  4.  上記制御部は、アノードに第2のクロック信号が入力されるダイオード型スイッチング素子からなる第1の制御素子と、上記第1の制御素子のカソードと上記第1のスイッチング素子の上記制御端子に対して非アクティブな電位レベルを供給する電源との間に接続されたスイッチング素子からなる第2の制御素子とを備えており、上記第1の制御素子と上記第2の制御素子との接続点が上記第1のスイッチング素子の上記制御端子に接続されていることを特徴とする請求項1または2に記載のシフトレジスタ回路。
  5.  上記制御部は、一端に第2のクロック信号が入力される容量からなる第1の制御素子と、上記第1の制御素子の他端と上記第1のスイッチング素子の上記制御端子に対して非アクティブな電位レベルを供給する電源との間に接続されたスイッチング素子からなる第2の制御素子とを備えており、上記第1の制御素子と上記第2の制御素子との接続点が上記第1のスイッチング素子の上記制御端子に接続されていることを特徴とする請求項1または2に記載のシフトレジスタ回路。
  6.  上記制御部は、アノードが上記第1のスイッチング素子の上記制御端子に対してアクティブな電位レベルを供給する電源に接続されたダイオード型スイッチング素子からなる第1の制御素子と、上記第1の制御素子のカソードと上記第1のスイッチング素子の上記制御端子に対して非アクティブな電位レベルを供給する電源との間に接続されたスイッチング素子からなる第2の制御素子とを備えており、上記第1の制御素子と上記第2の制御素子との接続点は上記第1のスイッチング素子の上記制御端子に接続されていることを特徴とする請求項3に記載のシフトレジスタ回路。
  7.  上記制御部は、上記第1のスイッチング素子の上記制御端子と、上記第1のスイッチング素子の上記制御端子に対して非アクティブな電位レベルを供給する電源との間に接続されたスイッチング素子からなる第3の制御素子を備えており、上記第3の制御素子は上記第1のクロック信号によって導通および遮断が制御されることを特徴とする請求項4から6までのいずれか1項に記載のシフトレジスタ回路。
  8.  上記制御部は、上記入力ゲートの入力端子と、上記入力ゲートに対して非アクティブな電位レベルを供給する電源との間に接続されたスイッチング素子からなる第4の制御素子を備えており、上記第4の制御素子の導通および遮断の制御端子は上記第1のスイッチング素子の上記制御端子に接続されていることを特徴とする請求項4から7までのいずれか1項に記載のシフトレジスタ回路。
  9.  上記制御部は、上記入力ゲートの入力端子と、上記出力端子との間に接続されたスイッチング素子からなる第4の制御素子を備えており、上記第4の制御素子の導通および遮断の制御端子は上記第1のスイッチング素子の上記制御端子に接続されていることを特徴とする請求項4から7までのいずれか1項に記載のシフトレジスタ回路。
  10.  上記充電ノードと上記出力端子とが容量によって結合されていることを特徴とする請求項1から9までのいずれか1項に記載のシフトレジスタ回路。
  11.  上記出力端子と上記出力端子に対して非アクティブな電位レベルを供給する電源との間に第2のスイッチング素子が接続されており、
     上記第2のスイッチング素子は上記第2のクロック信号によって導通および遮断が制御されることを特徴とする請求項1から10までのいずれか1項に記載のシフトレジスタ回路。
  12.  上記充電ノードと上記充電ノードに対して非アクティブな電位レベルを供給する電源との間に第3のスイッチング素子が接続されており、
     上記第3のスイッチング素子の導通および遮断の制御端子は、次段の上記出力端子に接続されていることを特徴とする請求項1から11までのいずれか1項に記載のシフトレジスタ回路。
  13.  上記出力端子と上記出力端子に対して非アクティブな電位レベルを供給する電源との間に第4のスイッチング素子が接続されており、
     上記第4のスイッチング素子の導通および遮断の制御端子は、次段の上記出力端子に接続されていることを特徴とする請求項1から12までのいずれか1項に記載のシフトレジスタ回路。
  14.  全ての上記シフトレジスタ段を合せた全体で上記第1のクロック信号と上記第2のクロック信号との2相のクロック信号を用いてシフト動作を行うことを特徴とする請求項1から13までのいずれか1項に記載のシフトレジスタ回路。
  15.  全ての上記シフトレジスタ段を合せた全体で上記第1のクロック信号と上記第2のクロック信号とを含む3相以上のクロック信号を用いてシフト動作を行うことを特徴とする請求項1から13までのいずれか1項に記載のシフトレジスタ回路。
  16.  アモルファスシリコンを用いて形成されていることを特徴とする請求項1から15までのいずれか1項に記載のシフトレジスタ回路。
  17.  微結晶シリコンを用いて形成されていることを特徴とする請求項1から15までのいずれか1項に記載のシフトレジスタ回路。
  18.  多結晶シリコンを用いて形成されていることを特徴とする請求項1から15までのいずれか1項に記載のシフトレジスタ回路。
  19.  請求項1から18までのいずれか1項に記載のシフトレジスタ回路を表示の駆動に用いることを特徴とする表示装置。
  20.  上記シフトレジスタ回路が走査信号線駆動回路に用いられていることを特徴とする請求項19に記載の表示装置。
  21.  上記シフトレジスタ回路が、表示パネルに表示領域とモノリシックに形成されていることを特徴とする請求項19または20に記載の表示装置。
  22.  各シフトレジスタ段のそれぞれについて、互いに位相が異なる第1のクロック信号と第2のクロック信号とが供給されるとともに、全ての上記シフトレジスタ段を合せた全体で上記第1のクロック信号と上記第2のクロック信号とを含む2相以上のクロック信号を用いてシフト動作を行うシフトレジスタ回路であって、
     各上記シフトレジスタ段は、
     入力信号のアクティブな期間にのみ導通して上記入力信号を取り込む入力ゲートと、
     上記入力ゲートから入力された上記入力信号によって充電される充電ノードと、導通および遮断の制御端子が上記充電ノードに接続されたスイッチング素子からなる出力スイッチング素子であって、上記出力スイッチング素子の導通経路の一方の端子には上記第1のクロック信号が入力されるとともに、上記導通経路の他方の端子は各上記シフトレジスタ段の出力端子に接続された出力スイッチング素子と、
     上記充電ノードと上記充電ノードに対して非アクティブな電位レベルを供給する電源との間に接続された第1のスイッチング素子とを備えており、
     全ての上記シフトレジスタ段は、シフトパルスを受け渡しする各2つのシフトレジスタ段間において前段側の上記シフトレジスタ段の上記出力端子が、後段側の上記シフトレジスタ段の上記入力ゲートの入力に接続されていることにより縦続接続されており、
     シフトパルスを受け渡しする各2つのシフトレジスタ段間において、後段側の上記シフトレジスタ段の上記第2のクロック信号は、前段側の上記シフトレジスタ段に上記第1のクロック信号として入力されるクロック信号であるシフトレジスタ回路を駆動するシフトレジスタ回路の駆動方法であって、
     上記充電ノードにおける上記充電ノードの非アクティブな電位レベルと、上記第2のクロック信号のアクティブな期間における上記第2のクロック信号のアクティブな電位レベルとから、上記第1のスイッチング素子を導通状態にする制御信号を生成して上記第1のスイッチング素子の導通および遮断の制御端子に出力することを特徴とするシフトレジスタ回路の駆動方法。
  23.  各シフトレジスタ段のそれぞれについて、互いに位相が異なる第1のクロック信号と第2のクロック信号とが供給されるとともに、全ての上記シフトレジスタ段を合せた全体で上記第1のクロック信号と上記第2のクロック信号とを含む2相以上のクロック信号を用いてシフト動作を行うシフトレジスタ回路であって、
     各上記シフトレジスタ段は、
     入力信号のアクティブな期間にのみ導通して上記入力信号を取り込む入力ゲートと、
     上記入力ゲートから入力された上記入力信号によって充電される充電ノードと、導通および遮断の制御端子が上記充電ノードに接続されたスイッチング素子からなる出力スイッチング素子であって、上記出力スイッチング素子の導通経路の一方の端子には上記第1のクロック信号が入力されるとともに、上記導通経路の他方の端子は各上記シフトレジスタ段の出力端子に接続された出力スイッチング素子と、
     上記充電ノードと上記出力端子との間に接続された第1のスイッチング素子とを備えており、
     全ての上記シフトレジスタ段は、シフトパルスを受け渡しする各2つのシフトレジスタ段間において前段側の上記シフトレジスタ段の上記出力端子が、後段側の上記シフトレジスタ段の上記入力ゲートの入力に接続されていることにより縦続接続されており、
     シフトパルスを受け渡しする各2つのシフトレジスタ段間において、後段側の上記シフトレジスタ段の上記第2のクロック信号は、前段側の上記シフトレジスタ段に上記第1のクロック信号として入力されるクロック信号であるシフトレジスタ回路を駆動するシフトレジスタ回路の駆動方法であって、
     上記充電ノードにおける上記充電ノードの非アクティブな電位レベルと、上記第2のクロック信号のアクティブな期間における上記第2のクロック信号のアクティブな電位レベルとから、上記第1のスイッチング素子を導通状態にする制御信号を生成して上記第1のスイッチング素子の導通および遮断の制御端子に出力することを特徴とするシフトレジスタ回路の駆動方法。
  24.  各シフトレジスタ段のそれぞれについて、互いに位相が異なる第1のクロック信号と第2のクロック信号とが供給されるとともに、全ての上記シフトレジスタ段を合せた全体で上記第1のクロック信号と上記第2のクロック信号とを含む2相以上のクロック信号を用いてシフト動作を行うシフトレジスタ回路であって、
     各シフトレジスタ段は、
     入力信号のアクティブな期間にのみ導通して上記入力信号を取り込む入力ゲートと、
     上記入力ゲートから入力された上記入力信号によって充電される充電ノードと、導通および遮断の制御端子が上記充電ノードに接続されたスイッチング素子からなる出力スイッチング素子であって、上記出力スイッチング素子の導通経路の一方の端子には上記第1のクロック信号が入力されるとともに、上記導通経路の他方の端子は各上記シフトレジスタ段の出力端子に接続された出力スイッチング素子と、
     上記充電ノードと上記充電ノードに対して非アクティブな電位レベルを供給する電源との間に接続された第1のスイッチング素子とを備えており、
     全ての上記シフトレジスタ段は、シフトパルスを受け渡しする各2つのシフトレジスタ段間において前段側の上記シフトレジスタ段の上記出力端子が、後段側の上記シフトレジスタ段の上記入力ゲートの入力に接続されていることにより縦続接続されており、シフトパルスを受け渡しする各2つのシフトレジスタ段間において、後段側の上記シフトレジスタ段の上記第2のクロック信号は、前段側の上記シフトレジスタ段に上記第1のクロック信号として入力されるクロック信号であるシフトレジスタ回路を駆動するシフトレジスタ回路の駆動方法であって、
     上記充電ノードにおける上記充電ノードの非アクティブな電位レベルと、上記第1のスイッチング素子の上記制御端子に対してアクティブな電位レベルを供給する電源の供給電位とから、上記第1のスイッチング素子を導通状態にする制御信号を生成して上記第1のスイッチング素子の導通および遮断の制御端子に出力することを特徴とするシフトレジスタ回路の駆動方法。
PCT/JP2009/059721 2008-10-30 2009-05-27 シフトレジスタ回路および表示装置ならびにシフトレジスタ回路の駆動方法 WO2010050262A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2009801329386A CN102132356A (zh) 2008-10-30 2009-05-27 移位寄存器电路和显示装置以及移位寄存器电路的驱动方法
JP2010535700A JPWO2010050262A1 (ja) 2008-10-30 2009-05-27 シフトレジスタ回路および表示装置ならびにシフトレジスタ回路の駆動方法
EP09823375A EP2341507A4 (en) 2008-10-30 2009-05-27 SLIDING GATE SWITCHING, DISPLAY DEVICE AND METHOD FOR CONTROLLING SLIDING STARTER SWITCHING
BRPI0920739A BRPI0920739A2 (pt) 2008-10-30 2009-05-27 circuito de registro de deslocamento e dispositivo de exibição, e método para acionar circuito de registro
US12/737,649 US20110134090A1 (en) 2008-10-30 2009-05-27 Shift register circuit and display device, and method for driving shift register circuit
RU2011104244/08A RU2011104244A (ru) 2008-10-30 2009-05-27 Схема сдвигового регистра, дисплейное устройство и способ управления схемой сдвигового регистра

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-280344 2008-10-30
JP2008280344 2008-10-30

Publications (1)

Publication Number Publication Date
WO2010050262A1 true WO2010050262A1 (ja) 2010-05-06

Family

ID=42128632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059721 WO2010050262A1 (ja) 2008-10-30 2009-05-27 シフトレジスタ回路および表示装置ならびにシフトレジスタ回路の駆動方法

Country Status (7)

Country Link
US (1) US20110134090A1 (ja)
EP (1) EP2341507A4 (ja)
JP (1) JPWO2010050262A1 (ja)
CN (1) CN102132356A (ja)
BR (1) BRPI0920739A2 (ja)
RU (1) RU2011104244A (ja)
WO (1) WO2010050262A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055569A1 (ja) * 2009-11-04 2011-05-12 シャープ株式会社 シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置
WO2011055570A1 (ja) * 2009-11-04 2011-05-12 シャープ株式会社 シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置
WO2011148655A1 (ja) * 2010-05-24 2011-12-01 シャープ株式会社 シフトレジスタ
WO2012008186A1 (ja) * 2010-07-13 2012-01-19 シャープ株式会社 シフトレジスタおよびこれを備えた表示装置
WO2012147637A1 (ja) * 2011-04-28 2012-11-01 シャープ株式会社 液晶表示装置
JP2012221551A (ja) * 2011-04-07 2012-11-12 Beijing Boe Optoelectronics Technology Co Ltd シフトレジスタとゲートライン駆動装置
WO2013021930A1 (ja) * 2011-08-10 2013-02-14 シャープ株式会社 液晶表示装置およびその駆動方法
WO2014061574A1 (ja) 2012-10-19 2014-04-24 シャープ株式会社 表示装置およびその駆動方法
JP2014131263A (ja) * 2012-11-28 2014-07-10 Semiconductor Energy Lab Co Ltd 半導体装置、表示装置、及び電子機器
US9311881B2 (en) 2011-12-15 2016-04-12 Sharp Kabushiki Kaisha Liquid crystal display device and drive method for same
WO2017006815A1 (ja) * 2015-07-09 2017-01-12 シャープ株式会社 シフトレジスタ、それを備えた表示装置、およびシフトレジスタの駆動方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011036911A1 (ja) * 2009-09-25 2011-03-31 シャープ株式会社 液晶表示装置
US20130222422A1 (en) * 2012-02-29 2013-08-29 Mediatek Inc. Data buffering apparatus capable of alternately transmitting stored partial data of input images merged in one merged image to image/video processing device and related data buffering method
CN102651208B (zh) * 2012-03-14 2014-12-03 京东方科技集团股份有限公司 一种栅极驱动电路及显示器
TWI539435B (zh) 2014-08-29 2016-06-21 友達光電股份有限公司 驅動電路
CN104318904B (zh) * 2014-11-20 2017-08-01 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、移位寄存器、显示装置
CN105489156B (zh) * 2016-01-29 2019-01-25 京东方科技集团股份有限公司 移位寄存单元及驱动方法、栅极驱动电路和显示装置
CN106356015B (zh) * 2016-10-31 2020-05-12 合肥鑫晟光电科技有限公司 移位寄存器及驱动方法、显示装置
CN106652882B (zh) * 2017-03-17 2019-09-06 京东方科技集团股份有限公司 移位寄存器单元、阵列基板和显示装置
CN108717844B (zh) * 2018-06-29 2020-08-04 京东方科技集团股份有限公司 移位寄存器单元、驱动方法、栅极驱动电路和显示装置
US10854163B2 (en) * 2018-10-30 2020-12-01 Sharp Kabushiki Kaisha Display device suppressing display failure caused by residual charge
CN110415637B (zh) * 2019-08-29 2022-08-26 合肥鑫晟光电科技有限公司 移位寄存器单元及其驱动方法、栅极驱动电路、显示装置
CN115437449B (zh) * 2021-06-02 2024-01-26 合肥格易集成电路有限公司 时钟升压电路、片上高压生成电路和电子装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050502A (ja) 2003-07-09 2005-02-24 Samsung Electronics Co Ltd シフトレジスタとこれを有するスキャン駆動回路及び表示装置
JP2005293817A (ja) * 2004-03-31 2005-10-20 Lg Phillips Lcd Co Ltd シフトレジスタとその駆動方法及び液晶表示パネルの駆動装置
JP2006024350A (ja) * 2004-06-30 2006-01-26 Samsung Electronics Co Ltd シフトレジスタ、それを有する表示装置、及び、そのシフトレジスタの駆動方法
JP2006221694A (ja) * 2005-02-08 2006-08-24 Toshiba Matsushita Display Technology Co Ltd シフトレジスタ及びこれを用いた平面表示装置
JP2006228312A (ja) * 2005-02-16 2006-08-31 Alps Electric Co Ltd シフトレジスタ及び液晶駆動回路
JP2006309893A (ja) * 2005-04-28 2006-11-09 Alps Electric Co Ltd シフトレジスタ及び液晶駆動回路
JP2008251094A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp シフトレジスタ回路およびそれを備える画像表示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2787913B1 (fr) * 1998-10-21 2004-08-27 Lg Philips Lcd Co Ltd Registre a decalage
JP3958271B2 (ja) * 2003-09-19 2007-08-15 シャープ株式会社 レベルシフタ及びそれを用いた表示装置
KR101061846B1 (ko) * 2004-08-19 2011-09-02 삼성전자주식회사 표시 장치용 구동 장치
TW200735027A (en) * 2006-01-05 2007-09-16 Mitsubishi Electric Corp Shift register and image display apparatus containing the same
JP5079350B2 (ja) * 2006-04-25 2012-11-21 三菱電機株式会社 シフトレジスタ回路
KR101272337B1 (ko) * 2006-09-01 2013-06-07 삼성디스플레이 주식회사 부분 화면 표시가 가능한 표시장치 및 그 구동방법
JP4932415B2 (ja) * 2006-09-29 2012-05-16 株式会社半導体エネルギー研究所 半導体装置
JP5079301B2 (ja) * 2006-10-26 2012-11-21 三菱電機株式会社 シフトレジスタ回路およびそれを備える画像表示装置
JP4912186B2 (ja) * 2007-03-05 2012-04-11 三菱電機株式会社 シフトレジスタ回路およびそれを備える画像表示装置
JP2008276849A (ja) * 2007-04-27 2008-11-13 Mitsubishi Electric Corp 画像表示装置および半導体装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050502A (ja) 2003-07-09 2005-02-24 Samsung Electronics Co Ltd シフトレジスタとこれを有するスキャン駆動回路及び表示装置
JP2005293817A (ja) * 2004-03-31 2005-10-20 Lg Phillips Lcd Co Ltd シフトレジスタとその駆動方法及び液晶表示パネルの駆動装置
JP2006024350A (ja) * 2004-06-30 2006-01-26 Samsung Electronics Co Ltd シフトレジスタ、それを有する表示装置、及び、そのシフトレジスタの駆動方法
JP2006221694A (ja) * 2005-02-08 2006-08-24 Toshiba Matsushita Display Technology Co Ltd シフトレジスタ及びこれを用いた平面表示装置
JP2006228312A (ja) * 2005-02-16 2006-08-31 Alps Electric Co Ltd シフトレジスタ及び液晶駆動回路
JP2006309893A (ja) * 2005-04-28 2006-11-09 Alps Electric Co Ltd シフトレジスタ及び液晶駆動回路
JP2008251094A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp シフトレジスタ回路およびそれを備える画像表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2341507A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055570A1 (ja) * 2009-11-04 2011-05-12 シャープ株式会社 シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置
WO2011055569A1 (ja) * 2009-11-04 2011-05-12 シャープ株式会社 シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置
US8519764B2 (en) 2009-11-04 2013-08-27 Sharp Kabushiki Kaisha Shift register, scanning signal line drive circuit provided with same, and display device
US8531224B2 (en) 2009-11-04 2013-09-10 Sharp Kabushiki Kaisha Shift register, scanning signal line drive circuit provided with same, and display device
JP5404807B2 (ja) * 2009-11-04 2014-02-05 シャープ株式会社 シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置
JP5420072B2 (ja) * 2010-05-24 2014-02-19 シャープ株式会社 シフトレジスタ
WO2011148655A1 (ja) * 2010-05-24 2011-12-01 シャープ株式会社 シフトレジスタ
US8781059B2 (en) 2010-05-24 2014-07-15 Sharp Kabushiki Kaisha Shift register
WO2012008186A1 (ja) * 2010-07-13 2012-01-19 シャープ株式会社 シフトレジスタおよびこれを備えた表示装置
US9330782B2 (en) 2010-07-13 2016-05-03 Sharp Kabushiki Kaisha Shift register and display device having the same
JP2012221551A (ja) * 2011-04-07 2012-11-12 Beijing Boe Optoelectronics Technology Co Ltd シフトレジスタとゲートライン駆動装置
WO2012147637A1 (ja) * 2011-04-28 2012-11-01 シャープ株式会社 液晶表示装置
CN103703507A (zh) * 2011-08-10 2014-04-02 夏普株式会社 液晶显示装置及其驱动方法
WO2013021930A1 (ja) * 2011-08-10 2013-02-14 シャープ株式会社 液晶表示装置およびその駆動方法
JPWO2013021930A1 (ja) * 2011-08-10 2015-03-05 シャープ株式会社 液晶表示装置およびその駆動方法
CN103703507B (zh) * 2011-08-10 2016-04-27 夏普株式会社 液晶显示装置及其驱动方法
US9311881B2 (en) 2011-12-15 2016-04-12 Sharp Kabushiki Kaisha Liquid crystal display device and drive method for same
WO2014061574A1 (ja) 2012-10-19 2014-04-24 シャープ株式会社 表示装置およびその駆動方法
US9570030B2 (en) 2012-10-19 2017-02-14 Sharp Kabushiki Kaisha Display device and method of driving the same
JP2014131263A (ja) * 2012-11-28 2014-07-10 Semiconductor Energy Lab Co Ltd 半導体装置、表示装置、及び電子機器
US10032428B2 (en) 2012-11-28 2018-07-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic device
WO2017006815A1 (ja) * 2015-07-09 2017-01-12 シャープ株式会社 シフトレジスタ、それを備えた表示装置、およびシフトレジスタの駆動方法

Also Published As

Publication number Publication date
RU2011104244A (ru) 2012-12-10
EP2341507A4 (en) 2013-03-13
US20110134090A1 (en) 2011-06-09
JPWO2010050262A1 (ja) 2012-03-29
CN102132356A (zh) 2011-07-20
BRPI0920739A2 (pt) 2015-12-29
EP2341507A1 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
WO2010050262A1 (ja) シフトレジスタ回路および表示装置ならびにシフトレジスタ回路の駆動方法
US10803823B2 (en) Shift register unit, gate driving circuit, and driving method
US10593286B2 (en) Shift register, gate driving circuit, display panel and driving method
US11081061B2 (en) Shift register, gate driving circuit, display device and gate driving method
US9824656B2 (en) Gate driver unit, gate driver circuit and driving method thereof, and display device
KR100847091B1 (ko) 시프트 레지스터 회로 및 그것을 구비한 화상표시장치
US7978809B2 (en) Shift register of a display device
US9881688B2 (en) Shift register
KR101301500B1 (ko) 쉬프트 레지스터 유닛, 게이트 구동 장치 및 액정 디스플레이
CN110660362B (zh) 移位寄存器及栅极驱动电路
US20110001732A1 (en) Shift register circuit, display device, and method for driving shift register circuit
US11094239B2 (en) Shift register and driving method thereof, gate driving circuit and display device
US11545093B2 (en) Shift register, gate driving circuit, display device and gate driving method
WO2010097986A1 (ja) シフトレジスタおよび表示装置
WO2014092011A1 (ja) 表示装置およびその駆動方法
TWI625718B (zh) 高穩定性的脈衝寬度可調式移位暫存器
JP2005293817A (ja) シフトレジスタとその駆動方法及び液晶表示パネルの駆動装置
WO2011092924A1 (ja) シフトレジスタおよび表示装置
KR20080081822A (ko) 시프트 레지스터 회로 및 그것을 구비한 화상표시장치
US20160240159A1 (en) Shift register and display device
US10490156B2 (en) Shift register, gate driving circuit and display panel
JP2009181612A (ja) シフトレジスタ回路及び液晶表示装置
US20210335200A1 (en) Or logic operation circuit and driving method, shift register unit, gate drive circuit, and display device
KR101143803B1 (ko) 쉬프트 레지스터 및 그 구동 방법
KR101073263B1 (ko) 쉬프트 레지스터 및 그 구동 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980132938.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823375

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010535700

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12737649

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009823375

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 972/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011104244

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0920739

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110328