WO2010049328A2 - Lageranordnung einer vertikal stehenden antriebsspindel - Google Patents

Lageranordnung einer vertikal stehenden antriebsspindel Download PDF

Info

Publication number
WO2010049328A2
WO2010049328A2 PCT/EP2009/063804 EP2009063804W WO2010049328A2 WO 2010049328 A2 WO2010049328 A2 WO 2010049328A2 EP 2009063804 W EP2009063804 W EP 2009063804W WO 2010049328 A2 WO2010049328 A2 WO 2010049328A2
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
angular contact
contact ball
ball bearing
axial
Prior art date
Application number
PCT/EP2009/063804
Other languages
English (en)
French (fr)
Other versions
WO2010049328A3 (de
Inventor
Armin Müller
Richard Negele
Original Assignee
Schaeffler Technologies Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies Gmbh & Co. Kg filed Critical Schaeffler Technologies Gmbh & Co. Kg
Publication of WO2010049328A2 publication Critical patent/WO2010049328A2/de
Publication of WO2010049328A3 publication Critical patent/WO2010049328A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/22Feeding members carrying tools or work
    • B23Q5/34Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission
    • B23Q5/38Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission feeding continuously
    • B23Q5/40Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission feeding continuously by feed shaft, e.g. lead screw
    • B23Q5/404Screw bearings therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/04Headstocks; Working-spindles; Features relating thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/545Systems comprising at least one rolling bearing for radial load in combination with at least one rolling bearing for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/02Relieving load on bearings using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/30Application independent of particular apparatuses related to direction with respect to gravity
    • F16C2300/34Vertical, e.g. bearings for supporting a vertical shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators

Definitions

  • the invention relates to a bearing arrangement of a vertically standing drive spindle, in particular a vertical feed axis of a machine tool.
  • the invention is therefore based on the problem to provide a bearing assembly that provides an accurate and axially well-sustainable spindle bearing.
  • a bearing assembly of the type described by two successively interconnected in the axial direction bearings one of which is an axial angular contact ball bearings and the other is a radial angular contact ball bearings, the axial angular contact ball bearings - seen in the direction of the force applied in the axial direction weight of the drive spindle - the radial angular contact ball bearing is connected downstream.
  • an axial angular contact ball bearing and a radial angular contact ball bearing are combined with particular advantage.
  • the bearing arrangement takes advantage of both types of bearings, namely on the one hand, the high rigidity and accuracy of the axial angular contact ball bearing, on the other hand, the high axial load capacity of the radial angular contact ball bearing. This results in a compact storage unit for vertical drive axles, which makes an integrated weight compensation makes possible and has a very long service life.
  • both angular contact ball bearings are supported directly or indirectly with their outer rings in a common bearing bracket. This makes it possible to build a ready-to-install bearing unit, which is a compact component.
  • a particularly expedient development of the invention provides for biasing the radial angular contact ball bearing against the direction of the weight force via one or more spring elements.
  • the radial angular contact ball bearing thus acts weight relieving the axial angular contact ball bearings, that is, that the axial angular contact ball bearings is relieved of static weight forces by the biased via the springs radial angular contact ball bearings. This is to the advantage of a lifting of the unloaded rows of storage is avoided by a one-sided high load.
  • the axial angular contact ball bearing only needs to absorb the loads from the dynamics of the drive spindle or the moving masses, which offers the opportunity to use a smaller bearing with higher permissible speed for this purpose.
  • the radial angular contact ball bearing primarily absorbs the static weight, so it is designed with respect to this. As a result of the bearing preload via the spring elements, the respective weight force can therefore be incorporated. and thus the load on the warehouse can be further reduced. Overall, in particular from the spring preload of the radial angular contact ball bearing results in a very high bearing life of both bearings with good speed suitability and low installation dimensions.
  • the bearing assembly For concrete realization of the bias voltage and to enable a compact construction of the bearing assembly is further provided to arrange the outer ring of the radial angular contact ball bearing on a preloaded via the spring or the bearing support ring, the one or more spring elements axially on the bearing holder or a support ring of the bearing holder are superimposed.
  • the spring elements themselves are preferably coil springs, which are accommodated in provided on the outer ring of the radial angular contact ball bearing or bearing support ring holes. They are expediently spaced equidistantly in order to realize a symmetrical bias.
  • the figure shows a bearing assembly 1 comprising a bearing holder 2, in which via a radial angular contact ball bearing 3 and a double row axial angular contact ball bearing 4, a drive spindle 5, which extends vertically in the installed position as shown in the figure, is rotatably mounted.
  • the bearing holder 2 has a stepped central bearing receptacle 6, in which the radial angular contact ball bearing 3 is accommodated in a first recess section 6a, while the radial angular contact ball bearing 3 is viewed in the direction of the weight force F G.
  • switched axial angular contact ball bearings 4 is arranged in a recess portion 6b.
  • the radial angular contact ball bearing 3 is rotatably connected with its inner ring 7 via a bearing sleeve 8 with the drive shaft 5.
  • the outer ring 9 of the radial angular contact ball bearing 3 is arranged on a bearing support ring 10.
  • This in turn has a plurality of holes 11, which are designed as blind holes and in which spring elements 12, here in the form of coil springs, are added.
  • the holes 11 as the spring elements 12 are axially directed, that is, the spring elements 12 bias the radial angular contact ball bearing 3 against the weight F G before.
  • the spring elements 12 With its lower end, the spring elements 12 are supported on a support ring 13 of the bearing holder 2, which in turn rests on the shoulder 14 of the recess 6a.
  • the axial angular contact ball bearing in turn is with its inner ring 15 (shown here are two separate inner ring halves) rotatably connected to the drive shaft 5, while the outer ring 16 is received positively in the recess portion 6b.
  • the radial angular contact ball bearing is biased against the weight F G via the equidistantly distributed spring elements 12.
  • the radial angular contact ball bearings can be designed for the respective male, static load, so the static weight and the bearing load can be reduced to a minimum.
  • the radial angular contact ball bearing relieves the axial angular contact ball bearings from the static weight forces, which means that the axial angular contact ball bearings in turn primarily only have to absorb the loads from the drive spindle movement or the mass movement.
  • a relatively small axial angular contact ball bearing can be used, as can be seen in the figure.
  • the requirements for the tolerances of the bearing holder 2, so the housing of the bearing assembly are kept low by the resilient employment of the radial angular contact ball bearing, which is received on the bearing support ring 10 with a slight clearance in the recessed portion 6a, a costly vote of the two Bearing each other is not required.
  • the integrated weight compensation via the spring preload of the radial angular contact ball bearing design requirements continue to apply to the adjacent construction, as would otherwise be required for a mechanical counterbalance with pneumatic or hydraulic elements, gas springs or counterweights.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)
  • Turning (AREA)

Abstract

Lageranordnung einer vertikal stehenden Antriebsspindel, insbesondere einer senkrechten Zustellachse einer Werkzeugmaschine, gekennzeichnet durch zwei einander in Achsrichtung hintereinander geschaltete Wälzlager, von denen eines ein Axial-Schrägkugellager (4) und das andere ein Radial-Schrägkugellager (3) ist, wobei das Axial-Schrägkugellager (4) - gesehen in Richtung der in Achsrichtung anliegenden Gewichtskraft der Antriebsspindel (5) - dem Radial-Schrägkugellager (3) nachgeschaltet.

Description

Bezeichnung der Erfindung
Lageranordnung einer vertikal stehenden Antriebsspindel
Beschreibung
Gebiet der Erfindung
Die Erfindung betrifft eine Lageranordnung einer vertikal stehenden Antriebsspindel, insbesondere einer senkrechten Zustellachse einer Werkzeugmaschine.
Viele Maschinen wie beispielsweise Werkzeugmaschinen weisen vertikal ste- hende Antriebsspindeln auf, die beispielsweise im Falle einer Werkzeugmaschine eine vertikale Zustellachse für ein Werkzeug bilden. Solche Antriebsspindeln oder Gewindetriebe sind in der Regel einer hohen einseitigen Belastung ausgesetzt. Die Achse selbst hat oft ein hohes Eigengewicht, soll aber aufgrund von sehr kleinen Zykluszeiten sehr schnell verfahren werden, das heißt, dass die Antriebsspindel wegen ihrer üblicherweise realisierten kleinen Steigung mit hoher Drehzahl betrieben wird, wobei häufig auch hohe Einschaltdauern aufgrund der kurzen Zyklen realisiert sind.
Hintergrund der Erfindung
Der Erfindung liegt damit das Problem zugrunde, eine Lageranordnung anzugeben, die eine genaue und axial gut tragfähige Spindellagerung bietet.
Zur Lösung dieses Problems ist eine Lageranordnung der beschriebenen Art durch zwei einander in Achsrichtung hintereinander geschaltete Wälzlager gekennzeichnet, von denen eines ein Axial-Schrägkugellager und das andere ein Radial-Schrägkugellager ist, wobei das Axial-Schrägkugellager - gesehen in Richtung der in Achsrichtung anliegenden Gewichtskraft der Antriebsspindel - dem Radial-Schrägkugellager nachgeschaltet ist.
Zusammenfassung der Erfindung
Bei der erfindungsgemäßen Lageranordnung ist mit besonderem Vorteil ein Axial-Schrägkugellager und ein Radial-Schrägkugellager kombiniert. Die Lageranordnung nützt die Vorteile beider Lagertypen, nämlich zum einen die hohe Steifigkeit und Genauigkeit des Axial-Schrägkugellagers, zum anderen die hohe axiale Tragfähigkeit des Radial-Schrägkugellagers. Hieraus resultiert eine kompakte Lagereinheit für senkrechte Antriebsachsen, die einen integrierten Gewichtsausgleich möglicht macht und eine sehr hohe Gebrauchsdauer aufweist.
Zur weiteren Kompaktierung der Gesamtbaueinheit ist es vorteilhaft, wenn beide Schrägkugellager mit ihren Außenringen in einer gemeinsamen Lagerhalterung direkt oder indirekt abgestützt sind. Dies ermöglicht es, eine einbaufertige Lagereinheit aufzubauen, die ein kompaktes Bauteil darstellt.
Eine besonders zweckmäßige Weiterbildung der Erfindung sieht vor, das Radial-Schrägkugellager über ein oder mehrere Federelemente entgegen der Richtung der Gewichtskraft vorzuspannen. Das Radial-Schrägkugellager wirkt somit gewichtsentlastend für das Axial-Schrägkugellager, das heißt, dass das Axial-Schrägkugellager durch das über die Federn vorgespannte Radial- Schrägkugellager von statischen Gewichtskräften entlastet wird. Dies ist dahingehend von Vorteil, als ein Abheben der unbelasteten Lagerreihen durch eine einseitig wirkende hohe Belastung vermieden wird. Das Axial- Schrägkugellager braucht also nur noch die Belastungen aus der Dynamik der Antriebsspindel beziehungsweise der bewegten Massen aufzunehmen, was die Möglichkeit bietet, hierfür ein kleineres Lager mit höherer zulässiger Drehzahl einzusetzen. Das Radial-Schrägkugellager nimmt primär die statische Gewichtskraft auf, ist also bezüglich dieser ausgelegt. Durch die Lagervorspannung über die Federelemente kann folglich die jeweilige Gewichtskraft einge- stellt und somit die Belastung des Lagers weiter reduziert werden. Insgesamt resultiert insbesondere aus der Federvorspannung des Radial- Schrägkugellagers eine sehr hohe Lagergebrauchsdauer beider Lager bei guter Drehzahleignung und geringen Einbaumaßen.
Zur konkreten Realisierung der Vorspannung sowie zur Ermöglichung eines kompakten Aufbaus der Lageranordnung ist ferner vorgesehen, den Außenring des Radial-Schrägkugellagers an einem über das oder die Federelemente vorgespannten Lagerhalterungsring anzuordnen, wobei das oder die Federele- mente axial an der Lagerhalterung oder einem Stützring der Lagerhalterung aufgelagert sind. Die Federelemente selbst sind vorzugsweise Schraubenfedern, die in am Außenring des Radial-Schrägkugellagers oder am Lagerhalterungsring vorgesehenen Bohrungen aufgenommen sind. Sie sind zweckmäßigerweise äquidistant beabstandet, um eine symmetrische Vorspannung zu rea- lisieren.
Kurze Beschreibung der Zeichnung
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus dem im Folgenden beschriebenen Ausführungsbeispiel sowie anhand der Zeichnung.
Ausführliche Beschreibung der Zeichnung
Die Figur zeigt eine Lageranordnung 1 umfassend eine Lagerhalterung 2, in der über ein Radial-Schrägkugellager 3 sowie ein doppelreihiges Axial- Schrägkugellager 4 eine Antriebsspindel 5, die in der Einbaustellung wie in der Figur gezeigt vertikal verläuft, drehgelagert ist. Die Lagerhalterung 2 weist eine gestufte mittige Lageraufnahme 6, in der die das Radial-Schrägkugellager 3 in einem ersten Ausnehmungsabschnitt 6a aufgenommen ist, während das dem Radial-Schrägkugellager 3 in Richtung der Gewichtskraft FG gesehen nachge- schaltete Axial-Schrägkugellager 4 in einem Ausnehmungsabschnitt 6b angeordnet ist.
Das Radial-Schrägkugellager 3 ist mit seinem Innenring 7 drehfest über eine Lagerhülse 8 mit der Antriebswelle 5 verbunden. Der Außenring 9 des Radial- Schrägkugellagers 3 ist an einem Lagerhalterungsring 10 angeordnet. Dieser wiederum weist eine Vielzahl von Bohrungen 11 auf, die als Sackbohrungen ausgeführt sind und in denen Federelemente 12, hier in Form von Schraubenfedern, aufgenommen sind. Die Bohrungen 11 wie die Federelemente 12 sind axial gerichtet, das heißt, die Federelemente 12 spannen das Radial- Schrägkugellager 3 entgegen der Gewichtskraft FG vor. Mit ihrem unteren Ende sind die Federelemente 12 an einem Stützring 13 der Lagerhalterung 2 aufgelagert, der seinerseits auf der Schulter 14 der Ausnehmung 6a aufliegt.
Das Axial-Schrägkugellager seinerseits ist mit seinem Innenring 15 (gezeigt sind hier zwei separate Innenringhälften) drehfest mit der Antriebswelle 5 verbunden, während der Außenring 16 in dem Ausnehmungsabschnitt 6b formschlüssig aufgenommen ist.
Ersichtlich ist das Radial-Schrägkugellager über die äquidistant verteilten Federelemente 12 entgegen der Gewichtskraft FG vorgespannt. Durch die Wahl der Federelemente und damit die Wahl der Vorspannung kann das Radial- Schrägkugellager auf die jeweilige aufzunehmende, statische Belastung, also die statische Gewichtskraft ausgelegt werden und die Lagerbelastung auf ein Minimum reduziert werden.
Das Radial-Schrägkugellager entlastet das Axial-Schrägkugellager von den statischen Gewichtskräften, das heißt, dass das Axial-Schrägkugellager seinerseits primär nur noch die Belastungen aus der Antriebsspindelbewegung respektive der Massenbewegung aufnehmen muss. Infolgedessen kann ein relativ kleines Axial-Schrägkugellager verwendet werden, wie in der Figur ersichtlich ist. Die Anforderungen an die Toleranzen der Lagerhalterung 2, also des Gehäuses der Lageranordnung, werden durch die federnde Anstellung des Radial- Schrägkugellagers, das über den Lagerhalterungsring 10 mit leichtem Spiel in dem Ausnehmungsabschnitt 6a aufgenommen ist, niedrig gehalten, eine auf- wändige Abstimmung der beiden Lager aufeinander ist nicht erforderlich. Infolge des integrierten Gewichtsausgleichs über die Federvorspannung des Radi- al-Schrägkugellagers entfallen weiterhin konstruktive Anforderungen an die Anschlusskonstruktion, wie sie ansonsten für einen mechanischen Gewichtsausgleich mit pneumatischen oder hydraulischen Elementen, Gasdruck- federn oder Gegengewichten erforderlich wären.
Bezugszahlenliste
1 Lageranordnung
2 Lagerhalterung
3 Radial-Schrägkugellager
4 Axial-Schrägkugellager
5 Antriebsspindel
6 Lageraufnahme
6a Ausnehmungsabschnitt
6b Ausnehmungsabschnitt
7 Innenring
8 Lagerhülse
9 Außenring
10 Lagerhalterungsring
11 Bohrungen
12 Federelemente
13 Stützring
14 Schulter
15 Innenring
16 Außenring

Claims

Patentansprüche
1. Lageranordnung einer vertikal stehenden Antriebsspindel, insbesondere einer senkrechten Zustellachse einer Werkzeugmaschine, gekennzeich- net durch zwei einander in Achsrichtung hintereinander geschaltete
Wälzlager, von denen eines ein Axial-Schrägkugellager (4) und das andere ein Radial-Schrägkugellager (3) ist, wobei das Axial- Schrägkugellager (4) - gesehen in Richtung der in Achsrichtung anliegenden Gewichtskraft der Antriebsspindel (5) - dem Radial- Schrägkugellager (3) nachgeschaltet ist.
2. Lageranordnung nach Anspruch 1 , dadurch gekennzeichnet, dass beide Schrägkugellager (3, 4) mit ihren Außenringen (9, 16) in einer gemeinsamen Lagerhalterung (2) direkt oder indirekt abgestützt sind.
3. Lageranordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Radial-Schrägkugellager (3) über ein oder mehrere Federelemente (12) entgegen der Richtung der Gewichtskraft (FG) vorgespannt ist.
4. Lageranordnung nach Anspruch 3, dadurch gekennzeichnet, dass der Außenring (9) des Radial-Schrägkugellagers (3) an einem über das oder die Federelemente (12) vorgespannten Lagerhalterungsring (10) angeordnet ist, wobei das oder die Federelemente (12) axial an der Lagerhal- terung (2) oder einem Stützring (13) der Lagerhalterung (2) aufgelagert sind.
5. Lageranordnung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass das oder die Federelemente (12) Schraubenfedern sind, das oder die in am Außenring des Radial-Schrägkugellagers oder des Lagerhalterungsrings (10) vorgesehenen Bohrungen (11 ) aufgenommen sind.
PCT/EP2009/063804 2008-10-30 2009-10-21 Lageranordnung einer vertikal stehenden antriebsspindel WO2010049328A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008054013.7 2008-10-30
DE102008054013A DE102008054013A1 (de) 2008-10-30 2008-10-30 Lageranordnung einer vertikal stehenden Antriebsspindel

Publications (2)

Publication Number Publication Date
WO2010049328A2 true WO2010049328A2 (de) 2010-05-06
WO2010049328A3 WO2010049328A3 (de) 2011-01-20

Family

ID=42062961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/063804 WO2010049328A2 (de) 2008-10-30 2009-10-21 Lageranordnung einer vertikal stehenden antriebsspindel

Country Status (2)

Country Link
DE (1) DE102008054013A1 (de)
WO (1) WO2010049328A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103328837A (zh) * 2010-11-12 2013-09-25 Skf公司 滚动轴承支架模块和压缩机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105805174A (zh) * 2016-05-19 2016-07-27 江苏凌特精密机械销售有限公司 一种耐磨耐压滚动轴承座

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2626842A (en) * 1950-07-06 1953-01-27 Decatur Pump Company Load equalizing device for thrust bearings
JPS61103012A (ja) * 1984-10-23 1986-05-21 Ntn Toyo Bearing Co Ltd 高速転がり軸受装置
EP1972410A1 (de) * 2007-03-23 2008-09-24 JTEKT Corporation Spindelvorrichtung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE166796C (de) *
US2556317A (en) * 1948-04-06 1951-06-12 Laval Separator Co De Bearing assembly for centrifuges and the like
US2656227A (en) * 1952-02-01 1953-10-20 A V Roe Canada Ltd Compensating metallic thrust ring
SE439961B (sv) * 1983-04-22 1985-07-08 Alfa Laval Separation Ab Upphengningsanordning for en roterbar spindel
US4730995A (en) * 1986-09-25 1988-03-15 American Standard Inc. Screw compressor bearing arrangement with positive stop to accommodate thrust reversal
SE469396B (sv) * 1991-11-13 1993-06-28 Svenska Rotor Maskiner Ab Skruvrotormaskin med axialbalanserade lager
ES2266144T3 (es) * 2001-04-25 2007-03-01 Tornos S.A. Estructura de motohusillo.
DE102006046173A1 (de) * 2006-09-29 2008-04-03 Schaeffler Kg Einreihiges Schrägkugellager zur Lagerung einer Vorschubspindel einer Werkzeugmaschine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2626842A (en) * 1950-07-06 1953-01-27 Decatur Pump Company Load equalizing device for thrust bearings
JPS61103012A (ja) * 1984-10-23 1986-05-21 Ntn Toyo Bearing Co Ltd 高速転がり軸受装置
EP1972410A1 (de) * 2007-03-23 2008-09-24 JTEKT Corporation Spindelvorrichtung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103328837A (zh) * 2010-11-12 2013-09-25 Skf公司 滚动轴承支架模块和压缩机

Also Published As

Publication number Publication date
DE102008054013A1 (de) 2010-05-06
WO2010049328A3 (de) 2011-01-20

Similar Documents

Publication Publication Date Title
DE10324621A1 (de) Elektrische Maschine
DE102019103384A1 (de) Planetenwälzgewindetrieb
DE102011014079A1 (de) Radiales Mehrpunktlager mit axialer Loslagerfunktion für hohe Drehzahlen
DE102016120357A1 (de) Schneckengetriebe
DE102008013128A1 (de) Kugelgewindetrieb mit drehangetriebener Kugelmutter
DE102007009453A1 (de) Mehrring-Exzenterwälzlager, insbesondere zur Wälzlagerung der Hauptzylinder von Druckmaschinen
DE3027263C2 (de) Lagerung von Zapfen in Gabelaugen von Kreuzgelenken mittels eines Zylinderrollenlagers
DE102011056031A1 (de) Kugelgewindetrieb
DE102007015421A1 (de) Axial-Schrägwälzlager, insbesondere zur Rundtischlagerung an Werkzeugmaschinen
DE4404535C2 (de) Lenkventil
DE3914552A1 (de) Waelzlagerung
WO2010049328A2 (de) Lageranordnung einer vertikal stehenden antriebsspindel
DE102009037392A1 (de) Wälzlageranordnung zu Axial- und/oder Radiallagerung mit Lagerentlastungsmitteln
DE102015221556A1 (de) Planetenwälzgewindespindel (PWG) eines Aktors
DE102019105114A1 (de) Planetengetriebe
DE102012221725A1 (de) Rundtischlager
DE2630035C3 (de) Vorrichtung zum selbsttätigen Anstellen von paarweise gegeneinander angestellten Schrägwälzlagern einer Lagerung
DE202012007700U1 (de) Vakuumpumpe
DE4301178C2 (de) Kreuzzapfengelenk einer zur Übertragung hoher Drehmomente geeigneten Gelenkwelle
DE102010045322A1 (de) Käfig für ein Rollenlager
DE102019110299A1 (de) Kegelrollenlager
DE202011004718U1 (de) Glattwalzkopf
DE1239542B (de) Lagerung fuer Werkzeugspindeln
DE102009051307A1 (de) Ladeeinrichtung
DE19802566C2 (de) Lageranordnung

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09737432

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 09737432

Country of ref document: EP

Kind code of ref document: A2