WO2010047342A1 - Optical glass - Google Patents

Optical glass Download PDF

Info

Publication number
WO2010047342A1
WO2010047342A1 PCT/JP2009/068113 JP2009068113W WO2010047342A1 WO 2010047342 A1 WO2010047342 A1 WO 2010047342A1 JP 2009068113 W JP2009068113 W JP 2009068113W WO 2010047342 A1 WO2010047342 A1 WO 2010047342A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
less
content
optical
sio
Prior art date
Application number
PCT/JP2009/068113
Other languages
French (fr)
Japanese (ja)
Inventor
聡子 此下
史雄 佐藤
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN200980139406.5A priority Critical patent/CN102171153B/en
Publication of WO2010047342A1 publication Critical patent/WO2010047342A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0092Compositions for glass with special properties for glass with improved high visible transmittance, e.g. extra-clear glass

Definitions

  • the present invention relates to optical glass.
  • Aspherical lenses are widely used as optical pickup lenses for CD, MD, DVD and other optical disk systems, imaging lenses for digital cameras, video cameras, camera-equipped mobile phones, and transmission / reception lenses used for optical communications. It is used.
  • Various glass has been proposed as a glass material for lenses. For example, as an optical glass having a refractive index of 1.56 to 1.65 and an Abbe number of 50 or more, particularly 55 or more, SiO 2 — as shown in Patent Documents 1 to 4 — B 2 O 3 glass has been proposed.
  • molten glass is dropped from the tip of a nozzle to produce droplet glass (droplet molding), and grinding, polishing, and washing are performed to produce a preform glass.
  • a molten glass is rapidly cast to produce a glass ingot, which is then ground, polished and washed to produce a preform glass.
  • the preform glass is heated and softened, pressure-molded with a mold having a highly accurate molding surface, and the surface shape of the mold is transferred to the glass to produce a lens.
  • Such a molding method is generally called a mold press molding method and has been widely adopted in recent years as a method suitable for mass production.
  • JP 2002-187735 A Japanese published patent
  • JP-A-2005-350279 Japanese published patent
  • JP 2007-297269 A Japanese published patent
  • An object of the present invention is to provide an optical glass that hardly causes white turbidity on the lens surface.
  • the optical glass of the present invention is, by mass%, SiO 2 35-60%, B 2 O 3 2-22%, Al 2 O 3 0.5-6%, BaO 12-30%, Li 2 O 4. ⁇ 8%, Li 2 O, Na 2 total amount of O and K 2 O is in the 5 to 12% of SiO 2 -B 2 O 3 -based optical glass, with less than 0.0001% content of Sb 2 O 3 It is characterized by being.
  • the optical glass of the present invention is, by mass%, SiO 2 35 to 60%, B 2 O 3 2 to 22%, Al 2 O 3 0.5 to 5%, BaO 12 to 30%, Li 2 O 4 to In SiO 2 —B 2 O 3 optical glass with 8%, Li 2 O, Na 2 O and K 2 O total content of 5.5 to 12%, Sb 2 O 3 content is less than 0.0001% It is characterized by being.
  • the amount of Pt in the glass is preferably 20 ppm or less.
  • the yield point is preferably 565 ° C. or lower.
  • the basicity of the glass defined by (total number of moles of oxygen atoms / total number of cation field strength) ⁇ 100 is preferably 11 or less.
  • “Field Strength” (hereinafter referred to as “FS”) is obtained by the following Equation 1.
  • Formula 1 F. S. Z / r 2
  • Z represents an ionic valence
  • r represents an ionic radius. Note that the values of Z and r in the present invention are the values in Table 1 (values described in “Science Manual Basic Bias Revised 2nd Edition (published by Maruzen Co., Ltd., 1975)”).
  • it is preferably for mold press molding.
  • the optical lens of the present invention is made of the above optical glass.
  • the manufacturing method of the optical lens of the present invention is, by mass%, SiO 2 35-60%, B 2 O 3 2-22%, Al 2 O 3 0.5-6%, BaO 12-30%, Li 2 O.
  • a preform is made of SiO 2 —B 2 O 3 optical glass containing 4 to 8%, and the total amount of Li 2 O, Na 2 O and K 2 O is 5 to 12%, and then the preform is molded by press
  • glass having a Sb 2 O 3 content of less than 0.0001% is used as the optical glass.
  • the optical glass of the present invention by limiting the content of Sb 2 O 3 , it is possible to obtain a glass that does not cause cloudiness on the glass surface during pressing. For this reason, high surface accuracy of the lens surface is maintained, and the glass is excellent in mass productivity. Moreover, since it is low-viscosity, it is excellent in meltability and clarity, and a homogeneous and stable glass can be obtained. Furthermore, it is possible to easily design a glass having optical characteristics having a refractive index nd of 1.56 to 1.65 and an Abbe number ⁇ d of 50 or more. Furthermore, since it is excellent in weather resistance, a highly reliable optical lens product can be obtained over a long period of time.
  • the optical glass of the present invention includes optical pickup lenses for CD, MD, DVD and other various optical disc systems, imaging lenses for digital cameras, video cameras, camera-equipped mobile phones, transmission / reception lenses used for optical communication, etc. It is suitable as a glass material for optical lenses obtained by mold press molding.
  • mold press molding can be performed without causing white turbidity, it is suitable as a method for producing an optical lens.
  • Table 9 is a transmittance curve (measurement region: 200 to 800 nm) of optical glasses No. 4, 6-1 and 6-2 shown in Table 8.
  • Table 9 7 is a transmittance curve (measurement region: 200 to 800 nm) of optical glasses No. 7, 9-1 and 9-2.
  • No. shown in Table 10 29 is a transmittance curve (measurement region 200 to 800 nm) of optical glasses 29, 30-1 and 30-2.
  • the glass of the present invention is, by mass%, SiO 2 35-60%, B 2 O 3 2-22%, Al 2 O 3 0.5-6%, BaO 12-30%, Li 2 O 4-8%.
  • Li 2 O, Na 2 O and K 2 O have a total content of 5 to 12%, and Sb 2 O 3 is less than 0.0001%.
  • the high viscosity of the SiO 2 -B 2 O 3 based optical glass containing SiO 2 more than 35 wt%, generally Sb 2 O 3 is contained about 0.5 wt% as a fining agent.
  • Sb 2 O 3 in the glass is reduced and deposited to contaminate the mold, which adheres to the glass surface and becomes cloudy.
  • “%” means “% by mass” unless otherwise specified.
  • the present invention prevents white turbidity generated on the glass surface during pressing by limiting Sb 2 O 3 to less than 0.0001%.
  • the lack of fining power due to Sb 2 O 3 being less than 0.0001% can be compensated for by reducing the viscosity of the glass. More specifically, if the viscosity of the glass is adjusted so that the viscosity at 1300 ° C. is 10 2.0 dPa ⁇ s or less, particularly 10 1.8 dPa ⁇ s or less, bubbles are likely to float and the clarity can be improved. .
  • SnO 2 As a clarifying agent other than Sb 2 O 3 , for example, SnO 2 , CeO 2 or the like can be used. However, SnO 2 may cause white turbidity at the time of pressing like Sb 2 O 3 , so addition of a large amount should be avoided.
  • the SnO 2 content is preferably less than 0.1%, particularly preferably less than 0.001%.
  • CeO 2 may be colored, so it should be avoided to add a large amount.
  • the CeO 2 content is preferably less than 0.1%, particularly preferably less than 0.001%.
  • the total amount of SnO 2 and CeO 2 is less than 0.1% and preferably 0.0001% or more. Note that As 2 O 3, which is widely known as a fining agent, is harmful, so it is desirable not to contain it substantially. Here, “substantially not contained” means less than 0.0001%.
  • Sb 2 O 3 is also known as a component for improving the transmittance (Patent Document 4).
  • Sb 2 O 3 is limited to less than 0.0001%, which may cause a decrease in transmittance. Further examination by the present inventors has revealed that this decrease in transmittance is caused by Pt ions mixed in the glass. More specifically, Pt ions can be in an oxidized or reduced state by other elements present in the solution.
  • the redox reaction of Pt ions is represented by the following formula (1).
  • Pt 4+ represents an oxidation state of Pt ions
  • Pt 2+ represents a reduction state of Pt ions.
  • Pt has different absorption wavelengths in the oxidized state and the reduced state. Therefore, the redox state of Pt affects the transmittance of the glass obtained. Specifically, Pt 4+ in the oxidized state absorbs in the ultraviolet region and does not affect the visible region transmittance.
  • Pt 2+ in a reduced state shows absorption in the visible range and lowers the visible range transmittance.
  • the amount of Sb 2 O 3 is limited to less than 0.0001%, the Pt redox state is on the reduction side, that is, many Pt 2+ ions are absorbed in the visible region.
  • the glass of the present invention preferably has a low Pt content in the glass. Specifically, it is desirable to limit the Pt content in the glass to 20 ppm or less. If the Pt content is within this range, as a result, the Pt 2+ content can also be reduced, and a glass excellent in visible region transmittance can be obtained.
  • the glass of the present invention preferably contains 1 to 100 ppm of a metal oxide that functions as an oxidizing agent instead of Sb 2 O 3 .
  • the redox property of Pt ions in the glass may be greatly influenced by the metal oxide that functions as an oxidizing agent added to the glass raw material.
  • the metal oxide functions as an oxidizing agent by changing the valence of the metal element, and also functions as a fining agent by releasing oxygen itself when the valence of the metal element changes.
  • Sb 2 O 3 releases oxygen when the valence of Sb changes from pentavalent to trivalent
  • Fe 2 O 3 releases oxygen when the valence of Fe changes from trivalent to divalent.
  • the Pt ions can be changed to Pt 4+ in an oxidized state, and the visible region transmittance can be improved. It is also possible to ensure a clear clarification effect.
  • the total content of metal oxides functioning as an oxidizing agent is larger than the total Pt content on a mass basis.
  • the metal oxide that functions as an oxidizing agent is preferably Fe 2 O 3 .
  • Fe 2 O 3 itself causes coloring, its content is preferably 100 ppm or less, particularly preferably 50 ppm or less.
  • the difference ⁇ transmittance between the transmittance T 800 at 800 nm and the transmittance T 360 at 360 nm can be made 15% or less. If the ⁇ transmittance is greater than 15%, the visible region transmittance is inferior, making it unsuitable for various optical lens applications.
  • the glass of the present invention can further enjoy the effect when it is a low yield point glass that can be used for mold press molding.
  • the low yield point glass specifically refers to a glass having a glass yield point At of 565 ° C. or lower.
  • Al ions and B ions exist in a four-coordinate configuration.
  • Al ions can be tetracoordinated and hexacoordinated.
  • B ions can be tetracoordinated and tricoordinated. If Al ions are 6-coordinated or B ions are 3-coordinated, oxygen ions in the glass will move more easily than when both ions are 4-coordinated. Easy components, such as Sb ions, are easily reduced during pressing, resulting in white turbidity on the lens surface.
  • Al ions and B ions In order for Al ions and B ions to exist in a four-coordinate configuration, the amounts and types of alkali metal components and alkaline earth metal components may be adjusted. That is, in the B 2 O 3 molecule, 1.5 oxygens exist for one B ion. In order for B ions to exist in a four-coordinate configuration, two oxygens are required for the B ions, and the deficient oxygen is supplied by an alkali metal component (R 2 O) or an alkaline earth metal component (RO). Is done. If sufficient RO or R 2 O is present, B ions can exist in a four-coordinate configuration. Al 2 O 3 is the same as B 2 O 3 , and the deficient oxygen is supplied by RO or R 2 O, and shifts to 4-coordination.
  • R 2 O alkali metal component
  • RO alkaline earth metal component
  • the index ⁇ for the presence of Al ions and B ions in 4-coordination is expressed by the following equation.
  • R 2 O represents the total amount of the alkali metal component
  • RO represents the total amount of the alkaline earth metal component.
  • is preferably 0.8 or more, particularly preferably 1 or more.
  • SiO 2 is a component that constitutes the skeleton of the glass and strengthens the bond of the skeleton. In addition to B 2 O 3 , it is a component having a large effect of increasing the Abbe number and a component that improves weather resistance. If the content of SiO 2 is more than 60%, the glass becomes highly viscous and the clarity is deteriorated. Also, the refractive index is low and the yield point tends to be high. Moreover, when it is less than 35%, acid resistance and weather resistance tend to deteriorate. Furthermore, since the glass skeleton becomes weak, the alkali metal component and ZnO are likely to move, and these components are likely to volatilize during pressing. As a result, the deterioration of the mold is accelerated, or white turbidity of the lens surface is generated. A preferable range of the content of SiO 2 is 41 to 55%, and a more preferable range is 45 to 50%.
  • B 2 O 3 has an effect of increasing the Abbe number, but when it is contained in an amount of more than 22%, the refractive index tends to decrease. In addition, B 2 O 3 volatilizes during pressing, causing white turbidity on the lens surface and causing deterioration of the press mold. On the other hand, if the content is less than 2%, it is difficult to make the Abbe number 50 or more. Moreover, it becomes difficult to make low viscosity, and clarity is reduced. Furthermore, the glass transition point tends to be high and the devitrification resistance tends to deteriorate.
  • a preferred range for the content of B 2 O 3 is 2 to 20%, a more preferred range is 7 to 15%, and a further preferred range is 7 to 12%.
  • the mass ratio of SiO 2 to B 2 O 3 is preferably 10.8 or less. When this ratio exceeds 10.8, SiO 2 remains undissolved when the glass is melted, and the meltability tends to deteriorate. Furthermore, it becomes highly viscous and the clarity is lowered.
  • Al 2 O 3 is a component constituting a glass skeleton together with SiO 2 and has an effect of improving weather resistance.
  • the SiO 2 —B 2 O 3 —R 2 O—RO-based glass has a remarkable effect of suppressing alkaline components from eluting into water. Therefore, 0.5% or more is contained in the present invention.
  • the content of Al 2 O 3 exceeds 6%, the glass becomes highly viscous and the clarity is deteriorated. If it exceeds 5.5%, the refractive index tends to decrease and the yield point tends to increase.
  • a preferable range of Al 2 O 3 content is 0.5 to 5.5%, particularly 0.5 to 5%, and a more preferable range is 1.5 to 4%.
  • BaO is an effective component for achieving a low viscosity among alkaline earth metals. Moreover, it is a component which contributes to making Al ion and B ion survive by 4 coordination. In addition to being a component that increases the refractive index, it is a component that lowers the liquidus temperature of the glass and improves workability. Furthermore, it is a component that lowers the yield point. However, when it is contained in a large amount, the glass surface tends to be altered when exposed to a high temperature and humidity environment for a long period of time. It is also a component that increases the basicity.
  • the range of the content of BaO is 12 to 30%, a preferable range is 15 to 30%, and a more preferable range is 24 to 30%.
  • Li 2 O, Na 2 O and K 2 O have the effect of lowering the viscosity and improving the clarity, lowering the melting temperature and yield point, and improving workability.
  • the total amount of these components is 5 to 12%, preferably 5.5 to 12%, more preferably 5.5 to 10%.
  • the total amount of Li 2 O, Na 2 O and K 2 O increases, the amount of volatilization during pressing increases and white turbidity is generated on the lens surface.
  • the surface tends to be easily altered during the cleaning process.
  • the liquidus temperature rises and the working range is narrowed, which may adversely affect mass productivity.
  • the viscosity is lowered and the clarity is lowered.
  • the yield point tends to be high, and the pressability tends to be impaired.
  • Li 2 O is an effective component for achieving a low viscosity among alkali metal components. Moreover, since it is a component which contributes to making Al ion and B ion survive by 4 coordination, it uses as an essential component. If Li 2 O exceeds 8%, volatilization during pressing increases, and a clean lens surface cannot be obtained. In addition, the phase separation is strong, and the liquidus temperature becomes high, resulting in poor workability. On the other hand, if it is less than 4%, the melting temperature tends to be high. A preferable range of the content of Li 2 O is 4.5 to 8%, and a more preferable range is 5 to 8%.
  • Na 2 O is a component that lowers the viscosity of the glass, but if it is too much, volatiles formed by B 2 O 3 and Na 2 O increase when the glass is melted, causing white turbidity on the lens surface or striae. Tend to promote the generation of.
  • the content of Na 2 O is desirably 5% or less, particularly 3% or less.
  • K 2 O is a component that lowers the viscosity of glass, but if it is too much, volatiles formed by B 2 O 3 and K 2 O increase when the glass melts, causing white turbidity on the lens surface or striae. Tend to promote the generation of.
  • the content of K 2 O is desirably 5% or less, particularly 3% or less.
  • the optical glass according to the present invention can contain various components.
  • CaO, SrO, MgO, ZnO be added TiO 2, ZrO 2, Nb 2 O 5, La 2 O 3, P 2 O 5 or the like.
  • CaO has the effect of lowering viscosity and improving clarity. It also has the effect of lowering the yield point and the effect of increasing the refractive index. However, if contained in a large amount, the glass surface is likely to be altered when exposed to a high temperature and humidity environment for a long period of time.
  • a preferred CaO content range is 0 to 10%, and a more preferred range is 5 to 10%.
  • SrO like BaO, has the effect of lowering viscosity to increase clarity and lowering the yield point. Furthermore, it is a component that increases the weather resistance or increases the refractive index. Further, it is a component that improves the workability by lowering the liquidus temperature of the glass. However, when it is contained in a large amount, the glass surface tends to be altered when exposed to a high temperature and humidity environment for a long period of time.
  • a preferred SrO content range is 0 to 8%, and a more preferred range is 0 to 5%.
  • MgO can be added up to 5% in order to increase the weather resistance and the refractive index. However, if the content is large, the tendency of phase separation is strong, and the liquidus temperature tends to be increased.
  • a preferred range for the content of MgO is 4% or less, a more preferred range is 3% or less, and a particularly preferred range is less than 1%.
  • ZnO is not an essential component, but is preferably a component containing 2% or more because it is a component that increases the refractive index and improves the weather resistance.
  • the content of ZnO increases, the volatilization of Zn during press causes deterioration of the press mold or causes cloudiness on the lens surface.
  • the Abbe number tends to decrease and the tendency to devitrification increases, making it difficult to obtain a homogeneous glass.
  • the upper limit of ZnO is preferably 18% or less, 15% or less, particularly 4.5% or less, more preferably 4% or less.
  • TiO 2 is an effective component for increasing the refractive index, but causes a significant decrease in the Abbe number. Also, the viscosity is remarkably increased and the clarity is greatly reduced. Further, since the yield point is increased, the content is preferably 1% or less, 0.5% or less, and particularly preferably less than 0.1%.
  • ZrO 2 is a component added to increase the refractive index and improve the weather resistance. However, when the content increases, the Abbe number tends to decrease. Further, the tendency to devitrification becomes strong, and a homogeneous glass cannot be obtained. Therefore, ZrO 2 is desirably 3% or less.
  • Nb 2 O 5 is an effective component for increasing the refractive index, but significantly reduces the Abbe number. Therefore, the content is preferably 5% or less, particularly preferably 0.3% or less.
  • La 2 O 3 has the effect of increasing the refractive index without reducing the Abbe number. However, if it is contained excessively, the tendency of devitrification of the glass increases. For this reason, it is preferable that the content is 21% or less. Further, when performing mold press molding, if the content is large, there is a tendency to fuse with the mold.
  • the content of La 2 O 3 is preferably 0 to 21%, 2 to 21%, particularly 2 to 18%.
  • Gd 2 O 3 also has the effect of increasing the refractive index without reducing the Abbe number, like La 2 O 3 .
  • the content is preferably 10% or less, particularly preferably 5% or less.
  • P 2 O 5 is a component added to reduce the liquidus temperature.
  • the content is preferably 5% or less, less than 1%, particularly preferably less than 0.01%.
  • PbO is an effective component for increasing the refractive index, but it is preferably not substantially contained since it is an environmentally hazardous substance.
  • substantially not contained means less than 0.0001%.
  • Lu 2 O is an advantageous component for high refractive index and low dispersion, but tends to increase the coloration of the glass and lower the glass stability. Moreover, it is a rare and expensive material. For this reason, the content of Lu 2 O is preferably 0.1% or less.
  • TeO 2 is an effective component for increasing the refractive index, but tends to enhance the coloring of the glass. Further, Te is volatilized at the time of pressing, and the deterioration of the press die is accelerated. For this reason, the content is preferably 1% or less, particularly preferably less than 0.1%.
  • Bi 2 O 3 has an effect of remarkably increasing the refractive index, but tends to increase the coloring of the glass. It is also a component that causes white turbidity on the lens surface due to volatilization during pressing. Therefore, the content is preferably 10% or less, 5% or less, and particularly preferably 1% or less.
  • the optical glass of the present invention may further have a basicity of the glass defined by (total number of moles of oxygen atoms / total number of cation field strength) ⁇ 100. preferable.
  • the basicity exceeds 11, when a small amount of Sb 2 O 3 is mixed in the glass, Sb ions are easily reduced and precipitated during pressing, and white turbidity is likely to occur.
  • the basicity of glass is an index indicating how much oxygen electrons in glass are attracted to cations in glass.
  • the attraction of oxygen electrons by cations in the glass is weak. Therefore, when a glass having a high basicity is in contact with a cation (mold component) that has a strong tendency to require electrons, the cation in the glass is more easily reduced than a glass having a low basicity.
  • the change in basicity is mainly due to F.A. S.
  • the influence of is great.
  • F. S. When the component having a large value is increased, the basicity tends to decrease.
  • S. When a component having a small value is increased, the basicity tends to increase. For this reason, when it is going to lower the basicity of glass, for example, comparatively F.I. S. Increase the composition ratio of SiO 2 , B 2 O 3, WO 3, etc. having a large F. S. Small Li 2 O with, Na 2 O, SrO, it is sufficient to reduce BaO or the like.
  • a glass material prepared to have a desired composition is melted in a melting container.
  • the melting temperature of the glass is preferably 1150 ° C. or higher. Furthermore, 1200 degreeC or more is preferable, and it is especially preferable that it is 1250 degreeC or more. From the viewpoint of preventing glass coloring due to Pt melting from platinum metal constituting the melting vessel, the melting temperature is preferably 1450 ° C. or lower, more preferably 1400 ° C. or lower, particularly preferably 1350 ° C. or lower, most preferably 1300 ° C. The following is preferred.
  • the melting time is preferably 2 hours or more, and more preferably 3 hours or more. However, from the viewpoint of preventing glass coloring due to Pt penetration from the melting vessel, the melting time is preferably within 8 hours, particularly within 5 hours.
  • the depth of the glass melt in the melting vessel is preferably 30 mm or more, particularly 50 mm or more, because the productivity becomes worse if it is too shallow. On the other hand, if it is too deep, it takes time for the bubbles to rise, and therefore it is 1 m or less, preferably 0.5 m or less.
  • the molten glass is molded into a preform that can be mold-pressed, and the preform is molded and pressed into a desired shape while being softened by heating. Thereafter, it is washed and dried to produce an optical component such as a lens.
  • a method for forming a preform it may be prepared by cutting out into a predetermined shape from a plate-like or lump-like glass piece and polishing and washing. However, a predetermined amount is dropped continuously before grinding, polishing and washing. It is preferable to use a droplet forming method because it can be easily formed.
  • optical glass of the present invention will be described in detail based on examples.
  • Tables 2 to 7 show examples of the present invention (No. 3, 6, 9, 11, 14, 16, 20, 23, 25, 27, 30) and comparative examples (No. 1, 2, 4, 5, 7). , 8, 10, 12, 13, 15, 17-19, 21, 22, 24, 26, 28, 29).
  • each sample as an example of the present invention did not cause white turbidity on the glass surface even when pressed.
  • each sample of the comparative example was confirmed to be cloudy on the glass surface after pressing.
  • the glass yield point was determined from the yield point in the thermal expansion curve.
  • the glass transition point was determined from the intersection of the low temperature line and the high temperature line on the thermal expansion curve.
  • the viscosity of the glass at 1300 ° C. was measured by a well-known platinum ball pulling method.
  • the occurrence of white turbidity was evaluated as follows. First, a glass sample was placed on a WC plate coated with Pt—Ir, heat-treated in an N 2 atmosphere at Tg + 25 ° C. for 1 minute, and then the presence or absence of cloudiness on the glass surface was observed with a microscope. Such evaluation was performed 100 times or 1000 times, and the number of samples in which cloudiness was observed is shown in the table.
  • the refractive index nd is indicated by a measured value at the d-line (wavelength: 587.6 nm) of a helium lamp using a refractometer (KPR-200, manufactured by Kalnew Optical Industry Co., Ltd.).
  • Abbe number ⁇ d was measured using a refractometer (KPR-200, manufactured by Kalnew Optical Industry Co., Ltd.), d line, hydrogen lamp F line (wavelength: 486.1 nm), and hydrogen lamp C line (wavelength: 656).
  • the refractive index measured at 3 nm) was defined as ⁇ (nd-1) / (nF-nC) ⁇ when nd, nF, and nC were used.
  • Tables 8 to 10 show sample numbers. 1 to 4, 6, 7, 9, 19, 20, 26, 27, 29, and 30 show the relationship between the Pt amount and the transmittance.
  • glass with a Pt content of 0 ppm was prepared using a quartz crucible. Glass having Pt of 5 to 30 ppm was prepared by adjusting the melting temperature and the melting time using a Pt container.
  • the amount of Pt was measured as follows. First, the crushed glass sample was decomposed with a mixed acid (HF, HCLO 4 , HNO 3 , HCl) and then evaporated by heating to dryness to obtain a salt. Next, nitric acid was added to the dried salt sample and classified, followed by analysis and quantification using an ICP mass spectrometer.
  • a mixed acid HF, HCLO 4 , HNO 3 , HCl
  • the amount of Fe was determined by ICP emission analysis. In addition to the amount of Fe mixed from the raw material, the amount of Fe was changed by adding a predetermined amount of Fe 2 O 3 .
  • the transmittance was measured with a spectrophotometer on a 10 mm thick sample with both surfaces mirror-polished.
  • the transmittance value at 360 nm was read.
  • 1 to 3 show the numbers shown in Table 8. 4, 6-1 and 6-2, Nos. Shown in Table 9. 7, 9-1 and 9-2, Nos. Shown in Table 10.
  • the transmittance curves (measurement region 200 to 800 nm) of the optical glasses 29, 30-1 and 30-2 are shown respectively.
  • the optical glass of the present invention is excellent in mass productivity because it does not cause white turbidity on the surface even by mold pressing. Therefore, it can be suitably used for optical pickup lenses such as CD and DVD, and optical lenses such as video cameras and digital cameras.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

Disclosed is an optical glass of which the lens surface is rarely clouded. Specifically disclosed is an SiO2-B2O3 optical glass which is characterized by comprising 35-60% by mass of SiO2, 2-22% by mass of B2O3, 0.5-6% by mass of Al2O3, 12-30% by mass of BaO, and 4-8% by mass of Li2O, and containing Li2O, Na2O and K2O in the total amount of 5-12% by mass, wherein the content of Sb2O3 is less than 0.0001% by mass.

Description

光学ガラスOptical glass
 本発明は、光学ガラスに関するものである。 The present invention relates to optical glass.
 CD、MD、DVDその他各種光ディスクシステムの光ピックアップレンズ、デジタルカメラ、ビデオカメラ、カメラ付き携帯電話機等の撮像用レンズ、光通信に使用される送受信用レンズ等のレンズとして非球面形状のレンズが広く用いられている。レンズ用ガラス素材として種々のガラスが提案されており、例えば屈折率1.56~1.65、アッベ数50以上、特に55以上の光学ガラスとして、特許文献1~4に示すようなSiO―B系ガラスが提案されている。 Aspherical lenses are widely used as optical pickup lenses for CD, MD, DVD and other optical disk systems, imaging lenses for digital cameras, video cameras, camera-equipped mobile phones, and transmission / reception lenses used for optical communications. It is used. Various glass has been proposed as a glass material for lenses. For example, as an optical glass having a refractive index of 1.56 to 1.65 and an Abbe number of 50 or more, particularly 55 or more, SiO 2 — as shown in Patent Documents 1 to 4 — B 2 O 3 glass has been proposed.
 この種のレンズの作製方法として、例えば以下のような方法が知られている。 For example, the following methods are known as methods for producing this type of lens.
 まず、溶融ガラスをノズルの先端から滴下して、液滴状ガラスを作製し(液滴成形)、研削、研磨、洗浄してプリフォームガラスを作製する。または、溶融ガラスを急冷鋳造し一旦ガラスインゴットを作製し、研削、研磨、洗浄してプリフォームガラスを作製する。続いて、プリフォームガラスを加熱して軟化させ、高精度な成形表面を持つ金型によって加圧成形し、金型の表面形状をガラスに転写してレンズを作製する。 First, molten glass is dropped from the tip of a nozzle to produce droplet glass (droplet molding), and grinding, polishing, and washing are performed to produce a preform glass. Alternatively, a molten glass is rapidly cast to produce a glass ingot, which is then ground, polished and washed to produce a preform glass. Subsequently, the preform glass is heated and softened, pressure-molded with a mold having a highly accurate molding surface, and the surface shape of the mold is transferred to the glass to produce a lens.
 このような成形方法は一般にモールドプレス成形法と呼ばれており、大量生産に適した方法として近年広く採用されている。 Such a molding method is generally called a mold press molding method and has been widely adopted in recent years as a method suitable for mass production.
日本国公開特許;特開2002-187735号公報Japanese published patent; JP 2002-187735 A 日本国公開特許;特開2005-350279号公報Japanese published patent; JP-A-2005-350279 日本国公開特許;特開2007-297269号公報Japanese published patent; JP 2007-297269 A 日本国公開特許;特開2006-117504号公報Japanese published patent; JP-A-2006-117504
 プリフォームガラスをモールドプレス成形すると、ガラス表面に白濁が生じることがある。レンズ表面の白濁は、レンズを透過する光を遮断、散乱させるため致命的な欠陥となりうる。 When mold glass is used for preform glass, white turbidity may occur on the glass surface. The cloudiness on the lens surface can be a fatal defect because it blocks and scatters light transmitted through the lens.
 本発明の目的は、レンズ表面の白濁が発生しにくい光学ガラスを提供するものである。 An object of the present invention is to provide an optical glass that hardly causes white turbidity on the lens surface.
 本発明者等が行った種々のテストの結果、比較的高粘性のプリフォームガラスをプレスすると白濁が生じることが明らかになった。さらに調査を進めたところ、白濁の原因は高粘性のガラスに清澄剤、或いは消色剤として入っているSbが原因であることを突き止め、本発明を提案するに到った。 As a result of various tests conducted by the present inventors, it became clear that white turbidity occurs when a relatively high viscosity preform glass is pressed. As a result of further investigation, it was found that the cause of white turbidity was caused by Sb 2 O 3 contained as a refining agent or a decoloring agent in high-viscosity glass, and the present invention was proposed.
 即ち、本発明の光学ガラスは、質量%で、SiO 35~60%、B 2~22%、Al 0.5~6%、BaO 12~30%、LiO 4~8%、LiO、NaOおよびKOの合量が5~12%のSiO-B系光学ガラスにおいて、Sbの含有量が0.0001%未満であることを特徴とする。 That is, the optical glass of the present invention is, by mass%, SiO 2 35-60%, B 2 O 3 2-22%, Al 2 O 3 0.5-6%, BaO 12-30%, Li 2 O 4. ~ 8%, Li 2 O, Na 2 total amount of O and K 2 O is in the 5 to 12% of SiO 2 -B 2 O 3 -based optical glass, with less than 0.0001% content of Sb 2 O 3 It is characterized by being.
 また本発明の光学ガラスは、質量%で、SiO 35~60%、B 2~22%、Al 0.5~5%、BaO 12~30%、LiO 4~8%、LiO、NaOおよびKOの合量が5.5~12%のSiO-B系光学ガラスにおいて、Sbの含有量が0.0001%未満であることを特徴とする。 The optical glass of the present invention is, by mass%, SiO 2 35 to 60%, B 2 O 3 2 to 22%, Al 2 O 3 0.5 to 5%, BaO 12 to 30%, Li 2 O 4 to In SiO 2 —B 2 O 3 optical glass with 8%, Li 2 O, Na 2 O and K 2 O total content of 5.5 to 12%, Sb 2 O 3 content is less than 0.0001% It is characterized by being.
 本発明においては、ガラス中のPt量が20ppm以下であることが好ましい。 In the present invention, the amount of Pt in the glass is preferably 20 ppm or less.
 上記構成によれば、Sbの含有量を制限した場合に起こり易いガラスの透過率低下を効果的に抑制することができる。 According to the above configuration, it is possible to effectively suppress the likely decrease transmittance of the glass occur when limiting the content of Sb 2 O 3.
 本発明においては、屈伏点が565℃以下であることが好ましい。 In the present invention, the yield point is preferably 565 ° C. or lower.
 上記したような低屈伏点ガラスである場合にはモールドプレス成形が採用可能であることから、本発明の効果をより一層享受できる。 In the case of the low yield point glass as described above, since the mold press molding can be adopted, the effect of the present invention can be further enjoyed.
 本発明においては、(酸素原子のモル数の総和/陽イオンのField Strengthの総和)×100で定義されるガラスの塩基性度が11以下であることが好ましい。本発明において「Field Strength(以下F.S.と表記する)」とは下記の式1により求められる。 In the present invention, the basicity of the glass defined by (total number of moles of oxygen atoms / total number of cation field strength) × 100 is preferably 11 or less. In the present invention, “Field Strength” (hereinafter referred to as “FS”) is obtained by the following Equation 1.
  式1   F.S.=Z/r
 Zはイオン価数、rはイオン半径を示している。尚、本発明におけるZ、rの数値は表1の値(『科学便覧基礎偏 改訂2版(1975年 丸善株式会社発行)』に記載された値)を用いる。
Formula 1 F. S. = Z / r 2
Z represents an ionic valence, and r represents an ionic radius. Note that the values of Z and r in the present invention are the values in Table 1 (values described in “Science Manual Basic Bias Revised 2nd Edition (published by Maruzen Co., Ltd., 1975)”).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記構成によれば、ガラスの還元性を示す指標である塩基性度が小さくなり、Sbに起因するプレス時の白濁をより確実に抑制することが可能になる。 According to the above arrangement, the smaller the basicity is an index indicating reduction of the glass, it is possible to more reliably suppress the clouding during pressing due to the Sb 2 O 3.
 本発明においては、モールドプレス成形用であることが好ましい。 In the present invention, it is preferably for mold press molding.
 上記構成によれば、本発明の効果を的確に享受することができる。 According to the above configuration, the effects of the present invention can be enjoyed accurately.
 本発明の光学レンズは、上記光学ガラスからなることを特徴とする。 The optical lens of the present invention is made of the above optical glass.
 本発明の光学レンズの製造方法は、質量%で、SiO 35~60%、B 2~22%、Al 0.5~6%、BaO 12~30%、LiO 4~8%、LiO、NaOおよびKOの合量が5~12%含有するSiO-B系光学ガラスでプリフォームを作製し、次いで前記プリフォームをモールドプレスする光学レンズの製造方法において、光学ガラスとしてSbの含有量が0.0001%未満のガラスを使用することを特徴とする。 The manufacturing method of the optical lens of the present invention is, by mass%, SiO 2 35-60%, B 2 O 3 2-22%, Al 2 O 3 0.5-6%, BaO 12-30%, Li 2 O. A preform is made of SiO 2 —B 2 O 3 optical glass containing 4 to 8%, and the total amount of Li 2 O, Na 2 O and K 2 O is 5 to 12%, and then the preform is molded by press In the method for producing an optical lens, glass having a Sb 2 O 3 content of less than 0.0001% is used as the optical glass.
 本発明の光学ガラスは、Sbの含有量を制限することで、プレス時にガラス表面に白濁が生じないガラスを得ることができる。このため、レンズ表面の高い面精度が維持され、量産性に優れたガラスとなる。また低粘性であることから、溶融性や清澄性に優れており、均質で安定したガラスを得ることができる。さらに屈折率ndが1.56~1.65、アッベ数νdが50以上の光学特性を有するガラスを容易に設計することができる。さらに耐候性に優れているために、長期間にわたって信頼性の高い光学レンズ製品を得ることができる。 In the optical glass of the present invention, by limiting the content of Sb 2 O 3 , it is possible to obtain a glass that does not cause cloudiness on the glass surface during pressing. For this reason, high surface accuracy of the lens surface is maintained, and the glass is excellent in mass productivity. Moreover, since it is low-viscosity, it is excellent in meltability and clarity, and a homogeneous and stable glass can be obtained. Furthermore, it is possible to easily design a glass having optical characteristics having a refractive index nd of 1.56 to 1.65 and an Abbe number νd of 50 or more. Furthermore, since it is excellent in weather resistance, a highly reliable optical lens product can be obtained over a long period of time.
 それゆえ本発明の光学ガラスは、CD、MD、DVDその他各種光ディスクシステムの光ピックアップレンズ、デジタルカメラ、ビデオカメラ、カメラ付き携帯電話機等の撮像用レンズ、光通信に使用される送受信用レンズ等といったモールドプレス成形で得られる光学レンズ用硝材として好適である。 Therefore, the optical glass of the present invention includes optical pickup lenses for CD, MD, DVD and other various optical disc systems, imaging lenses for digital cameras, video cameras, camera-equipped mobile phones, transmission / reception lenses used for optical communication, etc. It is suitable as a glass material for optical lenses obtained by mold press molding.
 また本発明の方法によれば、白濁を生じさせることなくモールドプレス成形を行うことができることから、光学レンズの製造方法として好適である。 Further, according to the method of the present invention, since mold press molding can be performed without causing white turbidity, it is suitable as a method for producing an optical lens.
表8に示すNo4、6-1および6-2の各光学ガラスの透過率曲線(測定領域200~800nm)である。9 is a transmittance curve (measurement region: 200 to 800 nm) of optical glasses No. 4, 6-1 and 6-2 shown in Table 8. 表9に示すNo.7、9-1および9-2の各光学ガラスの透過率曲線(測定領域200~800nm)である。No. shown in Table 9 7 is a transmittance curve (measurement region: 200 to 800 nm) of optical glasses No. 7, 9-1 and 9-2. 表10に示すNo.29、30-1および30-2の各光学ガラスの透過率曲線(測定領域200~800nm)である。No. shown in Table 10 29 is a transmittance curve (measurement region 200 to 800 nm) of optical glasses 29, 30-1 and 30-2.
 本発明のガラスは、質量%で、SiO 35~60%、B 2~22%、Al 0.5~6%、BaO 12~30%、LiO 4~8%、LiO、NaOおよびKOの合量が5~12%、Sbが0.0001%未満であることを特徴とする。 The glass of the present invention is, by mass%, SiO 2 35-60%, B 2 O 3 2-22%, Al 2 O 3 0.5-6%, BaO 12-30%, Li 2 O 4-8%. , Li 2 O, Na 2 O and K 2 O have a total content of 5 to 12%, and Sb 2 O 3 is less than 0.0001%.
 SiOを35質量%以上含有する高粘性のSiO―B系光学ガラスには、一般的にSbが清澄剤として0.5質量%程度含まれる。ところがプレス時にガラスが高温の金型と接触すると、ガラス中のSbが還元されて析出して金型を汚染し、これがガラス表面に付着して白濁となる。なお以下の記載において、「%」は特に断りがない限り「質量%」を意味する。 The high viscosity of the SiO 2 -B 2 O 3 based optical glass containing SiO 2 more than 35 wt%, generally Sb 2 O 3 is contained about 0.5 wt% as a fining agent. However, when the glass comes into contact with a high-temperature mold during pressing, Sb 2 O 3 in the glass is reduced and deposited to contaminate the mold, which adheres to the glass surface and becomes cloudy. In the following description, “%” means “% by mass” unless otherwise specified.
 そこで本発明はSbを0.0001%未満に制限することによって、プレス時にガラス表面で発生する白濁を防止している。なおSbを0.0001%未満とすることによる清澄力不足は、ガラスを低粘性化することにより補うことができる。詳述すると1300℃における粘性が102.0dPa・s以下、特に101.8dPa・s以下となるようにガラスの粘性を調節すれば、泡が浮上しやすくなって清澄性が改善できる。ガラスを低粘性化するには、アルカリ酸化物であるLiOやアルカリ土類酸化物であるBaOやSrOの量を調整することで容易に達成できる。また溶融時間を長くする、溶融温度を高くする、溶融時のガラス融液の深さを浅くする(溶融容器の深さを浅くする)、Sb以外の清澄剤を使用することなどで補完することができる。 Accordingly, the present invention prevents white turbidity generated on the glass surface during pressing by limiting Sb 2 O 3 to less than 0.0001%. Note that the lack of fining power due to Sb 2 O 3 being less than 0.0001% can be compensated for by reducing the viscosity of the glass. More specifically, if the viscosity of the glass is adjusted so that the viscosity at 1300 ° C. is 10 2.0 dPa · s or less, particularly 10 1.8 dPa · s or less, bubbles are likely to float and the clarity can be improved. . To reduce the viscosity of the glass, it can be easily achieved by adjusting the amount of Li 2 O that is an alkali oxide or BaO or SrO that is an alkaline earth oxide. In addition, by increasing the melting time, increasing the melting temperature, decreasing the glass melt depth at the time of melting (decreasing the depth of the melting vessel), using a clarifier other than Sb 2 O 3 , etc. Can be complemented.
 Sb以外の清澄剤としては、例えばSnO、CeO等を使用することができる。ただしSnOは、Sbと同様にプレス時の白濁の原因になる恐れがあるため、多量の添加は避けるべきである。SnOの含有量は0.1%未満、特に0.001%未満であることが好ましい。またCeOは着色する恐れがあるので、やはり多量の添加は避けるべきである。CeOの含有量は0.1%未満、特に0.001%未満であることが好ましい。さらにSnO及びCeOの合量は、0.1%未満で0.0001%以上が好ましい。なお清澄剤として広く知られているAsは有害であるので、実質的に含有しないことが望ましい。ここで実質的に含有しないとは0.0001%未満であることを意味する。 As a clarifying agent other than Sb 2 O 3 , for example, SnO 2 , CeO 2 or the like can be used. However, SnO 2 may cause white turbidity at the time of pressing like Sb 2 O 3 , so addition of a large amount should be avoided. The SnO 2 content is preferably less than 0.1%, particularly preferably less than 0.001%. Moreover, CeO 2 may be colored, so it should be avoided to add a large amount. The CeO 2 content is preferably less than 0.1%, particularly preferably less than 0.001%. Furthermore, the total amount of SnO 2 and CeO 2 is less than 0.1% and preferably 0.0001% or more. Note that As 2 O 3, which is widely known as a fining agent, is harmful, so it is desirable not to contain it substantially. Here, “substantially not contained” means less than 0.0001%.
 ところでSbは、透過率を向上させる成分としても知られている(特許文献4)。本発明のガラスにおいては、Sbを0.0001%未満に制限していることから、透過率の低下を生じることがある。本発明者等がさらに検討したところ、この透過率の低下は、ガラス中に混入するPtイオンに原因があることが明らかになった。
詳述すると、Ptイオンは、溶液中に存在する他の元素によって、酸化状態または還元状態になり得る。Ptイオンの酸化還元反応は下記式(1)によって表される。
By the way, Sb 2 O 3 is also known as a component for improving the transmittance (Patent Document 4). In the glass of the present invention, Sb 2 O 3 is limited to less than 0.0001%, which may cause a decrease in transmittance. Further examination by the present inventors has revealed that this decrease in transmittance is caused by Pt ions mixed in the glass.
More specifically, Pt ions can be in an oxidized or reduced state by other elements present in the solution. The redox reaction of Pt ions is represented by the following formula (1).
  Pt4+ + 1/2O2- ⇔ M2+ + 1/4O ・・・(1) Pt 4+ + 1 / 2O 2 − M M 2+ + 1 / 4O 2 (1)
 式中のPt4+はPtイオンの酸化状態であり、Pt2+はPtイオンの還元状態を表す。Ptは、酸化状態と還元状態で吸収波長が異なる。したがって、Ptの酸化還元状態が、得られるガラスの透過率に影響を及ぼすこととなる。具体的には、酸化状態であるPt4+は、それぞれ紫外域に吸収を示し、可視域透過率には影響を与えない。一方、還元状態であるPt2+は可視域に吸収を示し、可視域透過率を低下させる。そしてSb量を0.0001%未満に制限すると、Ptの酸化還元状態が還元側、即ち可視領域に吸収のあるPt2+イオンが多く存在することになる。これが透過率の低下の原因と考えられる。この観点から、本発明のガラスは、ガラス中のPt含有量が少ないことが好ましい。具体的にはガラス中のPt含有量を20ppm以下に制限することが望ましい。Pt含有量をこの範囲内にしておけば、結果としてPt2+の含有量も低減でき、可視域透過率に優れたガラスを得ることが可能となる。 In the formula, Pt 4+ represents an oxidation state of Pt ions, and Pt 2+ represents a reduction state of Pt ions. Pt has different absorption wavelengths in the oxidized state and the reduced state. Therefore, the redox state of Pt affects the transmittance of the glass obtained. Specifically, Pt 4+ in the oxidized state absorbs in the ultraviolet region and does not affect the visible region transmittance. On the other hand, Pt 2+ in a reduced state shows absorption in the visible range and lowers the visible range transmittance. When the amount of Sb 2 O 3 is limited to less than 0.0001%, the Pt redox state is on the reduction side, that is, many Pt 2+ ions are absorbed in the visible region. This is considered to be the cause of the decrease in transmittance. From this viewpoint, the glass of the present invention preferably has a low Pt content in the glass. Specifically, it is desirable to limit the Pt content in the glass to 20 ppm or less. If the Pt content is within this range, as a result, the Pt 2+ content can also be reduced, and a glass excellent in visible region transmittance can be obtained.
 また、本発明のガラスは、Sbの代わりに酸化剤として機能する金属酸化物を1~100ppm含有することが好ましい。 The glass of the present invention preferably contains 1 to 100 ppm of a metal oxide that functions as an oxidizing agent instead of Sb 2 O 3 .
 ガラス中のPtイオンの酸化還元性は、ガラス原料中に添加される酸化剤として機能する金属酸化物により大きく左右される場合がある。当該金属酸化物は、金属元素の価数変化により酸化剤として機能するとともに、金属元素の価数変化の際に自ら酸素を放出して清澄剤としての機能も果たす。例えば、SbはSbの価数が5価→3価に変化する際に酸素を放出し、FeはFeの価数が3価→2価に変化する際に酸素を放出する。本発明では、酸化剤として機能する金属酸化物の含有量を上記範囲で添加することにより、Ptイオンを酸化状態であるPt4+に変化させ、可視域透過率を向上させることができるとともに、良好な清澄効果を確保することも可能となる。 The redox property of Pt ions in the glass may be greatly influenced by the metal oxide that functions as an oxidizing agent added to the glass raw material. The metal oxide functions as an oxidizing agent by changing the valence of the metal element, and also functions as a fining agent by releasing oxygen itself when the valence of the metal element changes. For example, Sb 2 O 3 releases oxygen when the valence of Sb changes from pentavalent to trivalent, and Fe 2 O 3 releases oxygen when the valence of Fe changes from trivalent to divalent. To do. In the present invention, by adding the content of the metal oxide functioning as an oxidizing agent in the above range, the Pt ions can be changed to Pt 4+ in an oxidized state, and the visible region transmittance can be improved. It is also possible to ensure a clear clarification effect.
 本発明のガラスは、質量基準で、酸化剤として機能する金属酸化物の総含有量がPt総含有量よりも多いことが好ましい。 In the glass of the present invention, it is preferable that the total content of metal oxides functioning as an oxidizing agent is larger than the total Pt content on a mass basis.
 ガラス中において、酸化剤として機能する金属酸化物の含有量が多くなると、上記式(1)の平衡状態が左方向に偏り、酸化状態であるPt4+が多くなる。本発明者等が検討した結果、質量基準で、酸化剤として機能する金属酸化物の総含有量がPtの総含有量よりも多い場合に、特に可視域透過率が良好なガラスが得られることがわかった。 In the glass, when the content of the metal oxide functioning as an oxidizing agent increases, the equilibrium state of the above formula (1) is biased to the left, and the Pt 4+ in the oxidized state increases. As a result of studies by the present inventors, when the total content of metal oxides functioning as an oxidant is larger than the total content of Pt on the mass basis, a glass with particularly good visible range transmittance can be obtained. I understood.
 本発明のガラスにおいて、酸化剤として機能する金属酸化物がFeであることが好ましい。ただし、Fe自身も着色の原因となるため、その含有量は100ppm以下が好ましく、特に50ppm以下が好ましい。 In the glass of the present invention, the metal oxide that functions as an oxidizing agent is preferably Fe 2 O 3 . However, since Fe 2 O 3 itself causes coloring, its content is preferably 100 ppm or less, particularly preferably 50 ppm or less.
 本発明によると、800nmにおける透過率T800と360nmにおける透過率T360の差Δ透過率が15%以下にすることが可能である。Δ透過率が15%より大きくなると、可視域透過率に劣り、種々の光学レンズ用途に不適切になる。 According to the present invention, the difference Δ transmittance between the transmittance T 800 at 800 nm and the transmittance T 360 at 360 nm can be made 15% or less. If the Δ transmittance is greater than 15%, the visible region transmittance is inferior, making it unsuitable for various optical lens applications.
 本発明のガラスは、モールドプレス成形が採用可能な低屈伏点ガラスである場合に、その効果をより一層享受できる。低屈伏点ガラスとは、具体的にガラス屈伏点Atが565℃以下のガラスを指す。 The glass of the present invention can further enjoy the effect when it is a low yield point glass that can be used for mold press molding. The low yield point glass specifically refers to a glass having a glass yield point At of 565 ° C. or lower.
 また本発明の光学ガラスは、AlイオンとBイオンを4配位で存在させることが好ましい。ガラス中でAlイオンは4配位と6配位をとり得る。Bイオンは4配位と3配位をとり得る。Alイオンを6配位、もしくはBイオンを3配位で存在させておくと、両イオンを4配位で存在させておく場合と比べてガラス中の酸素イオンが移動しやすくなるため、還元され易い成分、例えばSbイオンなどがプレス時に容易に還元されてレンズ表面に白濁が生じる。 In the optical glass of the present invention, it is preferable that Al ions and B ions exist in a four-coordinate configuration. In the glass, Al ions can be tetracoordinated and hexacoordinated. B ions can be tetracoordinated and tricoordinated. If Al ions are 6-coordinated or B ions are 3-coordinated, oxygen ions in the glass will move more easily than when both ions are 4-coordinated. Easy components, such as Sb ions, are easily reduced during pressing, resulting in white turbidity on the lens surface.
 AlイオンとBイオンを4配位で存在させるためには、アルカリ金属成分とアルカリ土類金属成分の量と種類を調整すればよい。つまりB分子内にはBイオン一つに対して酸素が1.5個存在する。Bイオンが4配位で存在するためには、Bイオンに2個の酸素が必要であり、不足している酸素はアルカリ金属成分(RO)やアルカリ土類金属成分(RO)によって供給される。十分なROやROが存在すれば、Bイオンは4配位で存在することが可能になる。AlもBと同様であり、不足している酸素がROやROにより供給され、4配位へと移行する。Alイオンの4配位はBイオンの4配位よりも安定しているため、ROやROから供給される酸素は初めにAlイオンの4配位へ消費される。次にBイオンの4配位へと消費されるため、Alイオン、Bイオン両者が4配位で存在するためには後述の指標ψが0.8以上になるようなアルカリ金属成分やアルカリ土類金属成分の量が必要になる。 In order for Al ions and B ions to exist in a four-coordinate configuration, the amounts and types of alkali metal components and alkaline earth metal components may be adjusted. That is, in the B 2 O 3 molecule, 1.5 oxygens exist for one B ion. In order for B ions to exist in a four-coordinate configuration, two oxygens are required for the B ions, and the deficient oxygen is supplied by an alkali metal component (R 2 O) or an alkaline earth metal component (RO). Is done. If sufficient RO or R 2 O is present, B ions can exist in a four-coordinate configuration. Al 2 O 3 is the same as B 2 O 3 , and the deficient oxygen is supplied by RO or R 2 O, and shifts to 4-coordination. Since the 4-coordinate of Al ions is more stable than the 4-coordinate of B ions, oxygen supplied from RO or R 2 O is first consumed to the 4-coordinate of Al ions. Next, since Al ions and B ions are both tetracoordinated because they are consumed into tetracoordinate B ions, alkali metal components and alkaline earths whose index ψ described later is 0.8 or more are used. The amount of a similar metal component is required.
 AlイオンとBイオンが4配位で存在するための指標ψは以下の式で示される。ここでROはアルカリ金属成分の合量、ROはアルカリ土類金属成分の合量を示す。本発明においてはψが0.8以上、特に1以上であることが好ましい。 The index ψ for the presence of Al ions and B ions in 4-coordination is expressed by the following equation. Here, R 2 O represents the total amount of the alkali metal component, and RO represents the total amount of the alkaline earth metal component. In the present invention, ψ is preferably 0.8 or more, particularly preferably 1 or more.
    ψ=(RO+RO-Al)/B ψ = (RO + R 2 O—Al 2 O 3 ) / B 2 O 3
 以下、本発明においてガラス組成を上記のように限定した理由を述べる。 Hereinafter, the reason why the glass composition is limited as described above in the present invention will be described.
 SiOは、ガラスの骨格を構成し、骨格の結合を強固にする成分である。またBに次いでアッベ数を高める効果の大きい成分であり、耐候性を向上させる成分でもある。SiOの含有量が60%よりも多いとガラスが高粘性になり清澄性が悪化する。また屈折率が低く、屈伏点が高くなる傾向にある。また、35%よりも少ないと、耐酸性や耐候性が悪化する傾向がある。さらにガラス骨格が弱くなるため、アルカリ金属成分やZnOが動きやすくなり、プレス時にこれらの成分が揮発しやすくなる。その結果、金型の劣化を早めたり、レンズ表面の白濁を発生させたりする。好ましいSiOの含有量の範囲は41~55%、より好ましい範囲は45~50%である。 SiO 2 is a component that constitutes the skeleton of the glass and strengthens the bond of the skeleton. In addition to B 2 O 3 , it is a component having a large effect of increasing the Abbe number and a component that improves weather resistance. If the content of SiO 2 is more than 60%, the glass becomes highly viscous and the clarity is deteriorated. Also, the refractive index is low and the yield point tends to be high. Moreover, when it is less than 35%, acid resistance and weather resistance tend to deteriorate. Furthermore, since the glass skeleton becomes weak, the alkali metal component and ZnO are likely to move, and these components are likely to volatilize during pressing. As a result, the deterioration of the mold is accelerated, or white turbidity of the lens surface is generated. A preferable range of the content of SiO 2 is 41 to 55%, and a more preferable range is 45 to 50%.
 Bは、アッベ数を高める効果を有するが、22%よりも多く含有すると屈折率が低下する傾向にある。またプレス時にBが揮発し、レンズ表面の白濁を発生させたり、プレス金型の劣化を引き起こしたりする。一方、2%よりも含有量が少ないとアッベ数を50以上の値にすることが困難となる。また低粘性にすることが難しくなって、清澄性が低下する。さらにガラス転移点が高くなったり、耐失透性が悪化したりする傾向がある。好ましいBの含有量の範囲は2~20%、より好ましい範囲は7~15%、さらに好ましい範囲は7~12%である。 B 2 O 3 has an effect of increasing the Abbe number, but when it is contained in an amount of more than 22%, the refractive index tends to decrease. In addition, B 2 O 3 volatilizes during pressing, causing white turbidity on the lens surface and causing deterioration of the press mold. On the other hand, if the content is less than 2%, it is difficult to make the Abbe number 50 or more. Moreover, it becomes difficult to make low viscosity, and clarity is reduced. Furthermore, the glass transition point tends to be high and the devitrification resistance tends to deteriorate. A preferred range for the content of B 2 O 3 is 2 to 20%, a more preferred range is 7 to 15%, and a further preferred range is 7 to 12%.
 SiOとBの質量比(SiO/B)は10.8以下が好ましい。この比が10.8を超えるとガラスを溶融する際にSiOが溶け残り、溶融性が悪化する傾向にある。さらに高粘性になり、清澄性が低下する。 The mass ratio of SiO 2 to B 2 O 3 (SiO 2 / B 2 O 3 ) is preferably 10.8 or less. When this ratio exceeds 10.8, SiO 2 remains undissolved when the glass is melted, and the meltability tends to deteriorate. Furthermore, it becomes highly viscous and the clarity is lowered.
 Alは、SiOと共にガラスの骨格を構成する成分であり、耐候性を向上させる効果がある。また、SiO-B-RO-RO系ガラスにおいて、アルカリ成分が水に溶出することを抑制する顕著な効果を有する。それゆえ本発明では0.5%以上含有させる。しかし、Alの含有量が6%を超えるとガラスが高粘性になって清澄性が悪化する。また5.5%を超えると屈折率が低くなる傾向や、屈伏点が高くなる傾向が現れる。好ましいAlの含有量の範囲は0.5~5.5%、特に0.5~5%、より好ましい範囲は1.5~4%である。 Al 2 O 3 is a component constituting a glass skeleton together with SiO 2 and has an effect of improving weather resistance. In addition, the SiO 2 —B 2 O 3 —R 2 O—RO-based glass has a remarkable effect of suppressing alkaline components from eluting into water. Therefore, 0.5% or more is contained in the present invention. However, if the content of Al 2 O 3 exceeds 6%, the glass becomes highly viscous and the clarity is deteriorated. If it exceeds 5.5%, the refractive index tends to decrease and the yield point tends to increase. A preferable range of Al 2 O 3 content is 0.5 to 5.5%, particularly 0.5 to 5%, and a more preferable range is 1.5 to 4%.
 BaOは、アルカリ土類金属の中でも特に低粘性を達成するために有効な成分である。またAlイオン、Bイオンを4配位で存続させることに寄与する成分である。また屈折率を高める成分であるとともに、ガラスの液相温度を低下させて、作業性を向上させる成分である。さらに屈伏点を下げる成分である。ただし、多量に含有すると、長期間にわたって高温多湿環境下に曝された場合、ガラス表面が変質しやすくなる。また塩基性度を高める成分でもある。BaOの含有量の範囲は12~30%であり、好ましい範囲は15~30%、より好ましい範囲は24~30%である。 BaO is an effective component for achieving a low viscosity among alkaline earth metals. Moreover, it is a component which contributes to making Al ion and B ion survive by 4 coordination. In addition to being a component that increases the refractive index, it is a component that lowers the liquidus temperature of the glass and improves workability. Furthermore, it is a component that lowers the yield point. However, when it is contained in a large amount, the glass surface tends to be altered when exposed to a high temperature and humidity environment for a long period of time. It is also a component that increases the basicity. The range of the content of BaO is 12 to 30%, a preferable range is 15 to 30%, and a more preferable range is 24 to 30%.
 LiO、NaOおよびKOは、粘度を下げて清澄性を高めるとともに、溶融温度や屈伏点を低下させ、作業性を高める効果を有する。これらの成分の合量は5~12%、好ましくは5.5~12%、さらに好ましくは5.5~10%である。LiO、NaOおよびKO合量が多くなると、プレス時の揮発量が多くなり、レンズ表面に白濁を生じさせる。また洗浄工程において表面が変質し易くなる傾向がある。さらに、液相温度が上昇して作業範囲が狭くなり、量産性に悪影響を及ぼすおそれもある。一方、これらの合量が少なくなると粘度が低くなり清澄性が低下する。また屈伏点が高くなり、プレス性が損なわれる傾向がある。 Li 2 O, Na 2 O and K 2 O have the effect of lowering the viscosity and improving the clarity, lowering the melting temperature and yield point, and improving workability. The total amount of these components is 5 to 12%, preferably 5.5 to 12%, more preferably 5.5 to 10%. When the total amount of Li 2 O, Na 2 O and K 2 O increases, the amount of volatilization during pressing increases and white turbidity is generated on the lens surface. In addition, the surface tends to be easily altered during the cleaning process. Furthermore, the liquidus temperature rises and the working range is narrowed, which may adversely affect mass productivity. On the other hand, when the total amount of these is reduced, the viscosity is lowered and the clarity is lowered. Also, the yield point tends to be high, and the pressability tends to be impaired.
 LiOは、アルカリ金属成分の中でも特に低粘性を達成するために有効な成分である。またAlイオン、Bイオンを4配位で存続させることに寄与する成分であることから必須成分として使用する。LiOが8%を越えるとプレス時の揮発が多くなり、清浄なレンズ表面を得られなくなる。また分相性が強く、液相温度が高くなって作業性が悪くなる。一方、4%より少ないと溶融温度が高くなる傾向がある。好ましいLiOの含有量の範囲は4.5~8%、より好ましい範囲は5~8%である。 Li 2 O is an effective component for achieving a low viscosity among alkali metal components. Moreover, since it is a component which contributes to making Al ion and B ion survive by 4 coordination, it uses as an essential component. If Li 2 O exceeds 8%, volatilization during pressing increases, and a clean lens surface cannot be obtained. In addition, the phase separation is strong, and the liquidus temperature becomes high, resulting in poor workability. On the other hand, if it is less than 4%, the melting temperature tends to be high. A preferable range of the content of Li 2 O is 4.5 to 8%, and a more preferable range is 5 to 8%.
 NaOはガラスを低粘性化する成分であるが、多すぎるとガラス溶融時にBとNaOで形成される揮発物が多くなり、レンズ表面に白濁を生じさせたり、脈理の生成を助長したりする傾向にある。NaOの含有量は5%以下、特に3%以下が望ましい。 Na 2 O is a component that lowers the viscosity of the glass, but if it is too much, volatiles formed by B 2 O 3 and Na 2 O increase when the glass is melted, causing white turbidity on the lens surface or striae. Tend to promote the generation of. The content of Na 2 O is desirably 5% or less, particularly 3% or less.
 KOはガラスを低粘性化する成分であるが、多すぎるとガラス溶融時にBとKOで形成される揮発物が多くなり、レンズ表面に白濁を生じさせたり、脈理の生成を助長したりする傾向にある。KOの含有量は5%以下、特に3%以下であることが望ましい。 K 2 O is a component that lowers the viscosity of glass, but if it is too much, volatiles formed by B 2 O 3 and K 2 O increase when the glass melts, causing white turbidity on the lens surface or striae. Tend to promote the generation of. The content of K 2 O is desirably 5% or less, particularly 3% or less.
 本発明に係る光学ガラスは上記以外にも種々の成分を含有することができる。例えばCaO、SrO、MgO、ZnO、TiO、ZrO、Nb、La、P等を添加することができる。 In addition to the above, the optical glass according to the present invention can contain various components. For example, CaO, SrO, MgO, ZnO, be added TiO 2, ZrO 2, Nb 2 O 5, La 2 O 3, P 2 O 5 or the like.
 CaOは粘度を下げて清澄性を高める効果がある。また屈伏点を下げる効果や屈折率を高める効果を有する。ただし、多量に含有すると、長期間にわたって高温多湿環境下に曝された場合、ガラス表面が変質しやすい。好ましいCaOの含有量の範囲は0~10%、より好ましい範囲は5~10%である。 CaO has the effect of lowering viscosity and improving clarity. It also has the effect of lowering the yield point and the effect of increasing the refractive index. However, if contained in a large amount, the glass surface is likely to be altered when exposed to a high temperature and humidity environment for a long period of time. A preferred CaO content range is 0 to 10%, and a more preferred range is 5 to 10%.
 SrOは、BaOと同様に粘度を下げて清澄性を高め、また屈伏点を下げる効果を有する。さらに耐候性を高めたり、屈折率を高めたりする成分である。さらにガラスの液相温度を低下させて、作業性を向上させる成分である。ただし、多量に含有すると、長期間にわたって高温多湿環境下に曝された場合にガラス表面が変質し易くなる。好ましいSrOの含有量の範囲は0~8%、より好ましい範囲は0~5%である。 SrO, like BaO, has the effect of lowering viscosity to increase clarity and lowering the yield point. Furthermore, it is a component that increases the weather resistance or increases the refractive index. Further, it is a component that improves the workability by lowering the liquidus temperature of the glass. However, when it is contained in a large amount, the glass surface tends to be altered when exposed to a high temperature and humidity environment for a long period of time. A preferred SrO content range is 0 to 8%, and a more preferred range is 0 to 5%.
 MgOは、耐候性を高めるとともに、屈折率を高めるために5%まで添加することができる。しかし、含有量が多いと分相する傾向が強く、また液相温度を高める傾向がある。MgOの含有量の好ましい範囲は4%以下、より好ましい範囲は3%以下、特に好ましい範囲は1%未満である。 MgO can be added up to 5% in order to increase the weather resistance and the refractive index. However, if the content is large, the tendency of phase separation is strong, and the liquidus temperature tends to be increased. A preferred range for the content of MgO is 4% or less, a more preferred range is 3% or less, and a particularly preferred range is less than 1%.
 ZnOは必須成分ではないが、屈折率を高めるとともに、耐候性を向上させる成分であることから、2%以上含有させることが好ましい。しかし、ZnOの含有量が多くなると、プレス時のZnの揮発によりプレス金型の劣化を引き起こしたり、レンズ表面に白濁を生じさせたりする。またアッベ数が低下する傾向があるとともに、失透傾向も強くなり、均質なガラスが得にくくなる。このため、ZnOの上限は18%以下、15%以下、特に4.5%以下、さらに特に4%以下であることが好ましい。 ZnO is not an essential component, but is preferably a component containing 2% or more because it is a component that increases the refractive index and improves the weather resistance. However, when the content of ZnO increases, the volatilization of Zn during press causes deterioration of the press mold or causes cloudiness on the lens surface. In addition, the Abbe number tends to decrease and the tendency to devitrification increases, making it difficult to obtain a homogeneous glass. For this reason, the upper limit of ZnO is preferably 18% or less, 15% or less, particularly 4.5% or less, more preferably 4% or less.
 TiOは、屈折率を高めるために有効な成分であるが、一方でアッベ数の著しい低下を引き起こす。また粘性を著しく上昇させ、清澄性を大きく低下させてしまう。さらに屈伏点が高くなったりするため、その含有量は1%以下、0.5%以下、特に0.1%未満とすることが好ましい。 TiO 2 is an effective component for increasing the refractive index, but causes a significant decrease in the Abbe number. Also, the viscosity is remarkably increased and the clarity is greatly reduced. Further, since the yield point is increased, the content is preferably 1% or less, 0.5% or less, and particularly preferably less than 0.1%.
 ZrOは、屈折率を高めるとともに、耐候性を向上させるために添加する成分である。しかし、含有量が多くなるとアッベ数が低下する傾向がある。また失透傾向が強くなり、均質なガラスが得られなくなる。よってZrOは3%以下であることが望ましい。 ZrO 2 is a component added to increase the refractive index and improve the weather resistance. However, when the content increases, the Abbe number tends to decrease. Further, the tendency to devitrification becomes strong, and a homogeneous glass cannot be obtained. Therefore, ZrO 2 is desirably 3% or less.
 Nbは、屈折率を高めるために有効な成分であるが、一方でアッベ数を著しく低下させる。よってその含有量は5%以下、特に0.3%以下とすることが好ましい。 Nb 2 O 5 is an effective component for increasing the refractive index, but significantly reduces the Abbe number. Therefore, the content is preferably 5% or less, particularly preferably 0.3% or less.
 Laは、アッベ数を低下させることなく屈折率を高める効果がある。しかし、過剰に含有するとガラスの失透傾向が強まる。このため、その含有量は21%以下であることが好ましい。また、モールドプレス成形を行なう場合、含有量が多いと金型と融着する傾向もある。Laの含有量は0~21%、2~21%、特に2~18%であることが好ましい。 La 2 O 3 has the effect of increasing the refractive index without reducing the Abbe number. However, if it is contained excessively, the tendency of devitrification of the glass increases. For this reason, it is preferable that the content is 21% or less. Further, when performing mold press molding, if the content is large, there is a tendency to fuse with the mold. The content of La 2 O 3 is preferably 0 to 21%, 2 to 21%, particularly 2 to 18%.
 GdもLaと同様に、アッベ数を低下させることなく屈折率を高める効果がある。ただし過剰に含有するとガラスの失透傾向が強まる。このためその含有量は10%以下であることが好ましく、特に5%以下が好ましい。 Gd 2 O 3 also has the effect of increasing the refractive index without reducing the Abbe number, like La 2 O 3 . However, when it contains excessively, the tendency of devitrification of glass will become strong. Therefore, the content is preferably 10% or less, particularly preferably 5% or less.
 Pは、液相温度を低下させるために添加する成分である。ただし、その含有量が多くなるとガラスが分相しやすくなるとともに、洗浄工程で表面がくもる傾向にある。このため、その含有量は5%以下、1%未満、特に0.01%未満であることが好ましい。 P 2 O 5 is a component added to reduce the liquidus temperature. However, when the content increases, the glass tends to phase-separate and the surface tends to become cloudy in the cleaning process. For this reason, the content is preferably 5% or less, less than 1%, particularly preferably less than 0.01%.
 PbOは、屈折率を高めるために有効な成分であるが、環境負荷物質であるため実質的に含有しないことが好ましい。ここで実質的に含有しないとは0.0001%未満であることを意味する。 PbO is an effective component for increasing the refractive index, but it is preferably not substantially contained since it is an environmentally hazardous substance. Here, “substantially not contained” means less than 0.0001%.
 LuOは高屈折率低分散化に有利な成分であるが、ガラスの着色を強め、ガラス安定性を低下させる傾向がある。また、稀少高価な材料である。このためLuOの含有量は0.1%以下であることが好ましい。 Lu 2 O is an advantageous component for high refractive index and low dispersion, but tends to increase the coloration of the glass and lower the glass stability. Moreover, it is a rare and expensive material. For this reason, the content of Lu 2 O is preferably 0.1% or less.
 TeOは屈折率を高めるために有効な成分であるが、ガラスの着色を強める傾向がある。またプレス時にTeが揮発してプレス金型の劣化を早めてしまう。このため、その含有量は1%以下、特に0.1%未満であることが好ましい。 TeO 2 is an effective component for increasing the refractive index, but tends to enhance the coloring of the glass. Further, Te is volatilized at the time of pressing, and the deterioration of the press die is accelerated. For this reason, the content is preferably 1% or less, particularly preferably less than 0.1%.
 Biは屈折率を顕著に高める効果があるが、ガラスの着色を強める傾向がある。またプレス時の揮発によるレンズ表面の白濁を生じさせる成分でもある。よって、その含有量は10%以下、5%以下、特に1%以下であることが好ましい。 Bi 2 O 3 has an effect of remarkably increasing the refractive index, but tends to increase the coloring of the glass. It is also a component that causes white turbidity on the lens surface due to volatilization during pressing. Therefore, the content is preferably 10% or less, 5% or less, and particularly preferably 1% or less.
 上記組成範囲に加えて、本発明の光学ガラスは、さらに(酸素原子のモル数の総和/陽イオンのField  Strengthの総和)×100で定義されるガラスの塩基性度が11以下であることが好ましい。塩基性度が11を超えると、ガラス中にSbが微量混入している場合には、プレス時にSbイオンが容易に還元されて析出し、白濁が発生しやすくなる。 In addition to the above composition range, the optical glass of the present invention may further have a basicity of the glass defined by (total number of moles of oxygen atoms / total number of cation field strength) × 100. preferable. When the basicity exceeds 11, when a small amount of Sb 2 O 3 is mixed in the glass, Sb ions are easily reduced and precipitated during pressing, and white turbidity is likely to occur.
 ガラスの塩基性度は、ガラス中の酸素の電子がガラス中の陽イオンにどの程度引きつけられているかを示す指標になる。塩基性度の高いガラスではガラス中の陽イオンによる酸素の電子の引きつけが弱い。したがって、塩基性度の高いガラスは、電子を求める傾向の強い陽イオン(金型成分)と接した際、塩基性度の低いガラスに比べガラス中の陽イオンが還元されやすい。 The basicity of glass is an index indicating how much oxygen electrons in glass are attracted to cations in glass. In a glass having a high basicity, the attraction of oxygen electrons by cations in the glass is weak. Therefore, when a glass having a high basicity is in contact with a cation (mold component) that has a strong tendency to require electrons, the cation in the glass is more easily reduced than a glass having a low basicity.
 金型にWCが使われる場合、ガラスの塩基性度が11以下、好ましくは9.5以下であればガラス中のSbイオンが還元され難くなると考えられる。ガラスの塩基性度が11を超えていると、ガラス中にSbが少しでも含まれている場合には容易にSbイオンが還元され、ガラス表面に白濁を生じ、量産性が悪化する可能性がある。 When WC is used for the mold, it is considered that Sb ions in the glass are difficult to be reduced if the basicity of the glass is 11 or less, preferably 9.5 or less. When the basicity of the glass exceeds 11, if Sb 2 O 3 is contained in the glass even slightly, Sb ions are easily reduced, causing white turbidity on the glass surface, resulting in deterioration of mass productivity. there is a possibility.
 塩基性度の変化は主としてF.S.の影響が大きい。つまりF.S.が大きい成分を増加させると塩基性度が低下する傾向があり、逆にF.S.が小さい成分を増加させると塩基性度が上昇する傾向がある。このためガラスの塩基性度を下げようとする場合、例えば比較的F.S.の大きいSiO、B3、WO等の組成比を増加させるか、または比較的F.S.の小さいLiO、NaO、SrO、BaO等を減少させればよい。 The change in basicity is mainly due to F.A. S. The influence of is great. F. S. When the component having a large value is increased, the basicity tends to decrease. S. When a component having a small value is increased, the basicity tends to increase. For this reason, when it is going to lower the basicity of glass, for example, comparatively F.I. S. Increase the composition ratio of SiO 2 , B 2 O 3, WO 3, etc. having a large F. S. Small Li 2 O with, Na 2 O, SrO, it is sufficient to reduce BaO or the like.
 次に、本発明の光学ガラスを用いたレンズ等の光学部品の製造方法について説明する。 Next, a method for manufacturing an optical component such as a lens using the optical glass of the present invention will be described.
 まず、所望の組成を有するように調合したガラス原料を溶融容器内で溶融する。 First, a glass material prepared to have a desired composition is melted in a melting container.
 ガラスの溶融温度は1150℃以上であることが好ましい。さらに1200℃以上が好ましく、特に1250℃以上であることが好ましい。なお溶融容器を構成する白金金属からのPt溶け込みによるガラス着色を防止する観点から、溶融温度は1450℃以下が好ましく、さらには1400℃以下が好ましく、特に1350℃以下が好ましく、最適には1300℃以下が好ましい。 The melting temperature of the glass is preferably 1150 ° C. or higher. Furthermore, 1200 degreeC or more is preferable, and it is especially preferable that it is 1250 degreeC or more. From the viewpoint of preventing glass coloring due to Pt melting from platinum metal constituting the melting vessel, the melting temperature is preferably 1450 ° C. or lower, more preferably 1400 ° C. or lower, particularly preferably 1350 ° C. or lower, most preferably 1300 ° C. The following is preferred.
 また溶融時間が短すぎると、十分に清澄できない可能性がある。それゆえ、溶融時間は2時間以上であることが好ましく、さらに3時間以上が好ましい。ただし溶融容器からのPt溶け込みによるガラス着色を防止する観点から、溶融時間は8時間以内、特に5時間以内であることが好ましい。 Also, if the melting time is too short, there is a possibility that it cannot be clarified sufficiently. Therefore, the melting time is preferably 2 hours or more, and more preferably 3 hours or more. However, from the viewpoint of preventing glass coloring due to Pt penetration from the melting vessel, the melting time is preferably within 8 hours, particularly within 5 hours.
 また溶融容器内のガラス融液の深さは、浅すぎると生産性が悪くなるため、30mm以上、特に50mm以上であることが好ましい。一方、深すぎると泡の浮上に時間がかかるため、1m以下、好ましくは0.5m以下が好ましい。 Also, the depth of the glass melt in the melting vessel is preferably 30 mm or more, particularly 50 mm or more, because the productivity becomes worse if it is too shallow. On the other hand, if it is too deep, it takes time for the bubbles to rise, and therefore it is 1 m or less, preferably 0.5 m or less.
 続いて、溶融ガラスをモールドプレス可能な大きさのプリフォームに成形し、プリフォームを加熱軟化させながらモールドプレスして所望の形状に加工する。その後、洗浄、乾燥してレンズ等の光学部品を作製する。 Subsequently, the molten glass is molded into a preform that can be mold-pressed, and the preform is molded and pressed into a desired shape while being softened by heating. Thereafter, it is washed and dried to produce an optical component such as a lens.
 プリフォームの成形方法としては、板状や塊状のガラス片から所定の形状に切り出して研磨、洗浄して作製してもよいが、連続的に所定量ずつ滴下してから研削、研磨、洗浄する液滴成形法を用いると、容易に成形できるため好ましい。 As a method for forming a preform, it may be prepared by cutting out into a predetermined shape from a plate-like or lump-like glass piece and polishing and washing. However, a predetermined amount is dropped continuously before grinding, polishing and washing. It is preferable to use a droplet forming method because it can be easily formed.
 以下、本発明の光学ガラスを実施例に基づいて詳細に説明する。 Hereinafter, the optical glass of the present invention will be described in detail based on examples.
 表2~7は本発明の実施例(No.3、6、9、11、14、16、20、23、25、27、30)及び比較例(No.1、2、4、5、7、8、10、12、13、15、17-19、21、22、24、26、28、29)を示す。 Tables 2 to 7 show examples of the present invention (No. 3, 6, 9, 11, 14, 16, 20, 23, 25, 27, 30) and comparative examples (No. 1, 2, 4, 5, 7). , 8, 10, 12, 13, 15, 17-19, 21, 22, 24, 26, 28, 29).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 各試料は、次のようにして作製した。 Each sample was prepared as follows.
 表2~7に記載の組成となるように調合したガラス原料を、ガラス融液深さが50mmになるよう白金ルツボに入れ、1300℃で3時間溶融した。なお表中で「-」と表示した成分は、含有量が0.0001%未満であることを意味している。 Glass raw materials prepared so as to have the compositions shown in Tables 2 to 7 were placed in a platinum crucible so that the glass melt depth was 50 mm, and melted at 1300 ° C. for 3 hours. In addition, the component indicated as “−” in the table means that the content is less than 0.0001%.
 次に、溶融ガラスをカーボン板上に流し出し、冷却固化した後、アニールを行って試料を作製した。このようにして得られた試料について、ガラス屈伏点(At)、ガラス転移点(Tg)、1300℃におけるガラスの粘度(粘度)、プレス後のレンズ表面白濁の有無、屈折率及びアッベ数を評価した。また塩基性度を算出した。結果を表2~7に示す。 Next, molten glass was poured out on a carbon plate, cooled and solidified, and then annealed to prepare a sample. About the sample obtained in this way, the glass yield point (At), the glass transition point (Tg), the viscosity (viscosity) of the glass at 1300 ° C., the presence or absence of clouding of the lens surface after pressing, the refractive index and the Abbe number did. The basicity was calculated. The results are shown in Tables 2-7.
 本発明の実施例である各試料は、プレスしてもガラス表面に白濁が発生しなかった。これに対して比較例の各試料はプレス後にガラス表面に白濁が確認された。 Each sample as an example of the present invention did not cause white turbidity on the glass surface even when pressed. On the other hand, each sample of the comparative example was confirmed to be cloudy on the glass surface after pressing.
 なおガラス屈伏点は熱膨張曲線における屈伏した点より求めた。 The glass yield point was determined from the yield point in the thermal expansion curve.
 ガラス転移点は熱膨張曲線における低温度域の直線と高温度域の直線の交点より求めた。 The glass transition point was determined from the intersection of the low temperature line and the high temperature line on the thermal expansion curve.
 1300℃におけるガラスの粘度は周知の白金球引き上げ法で測定した。 The viscosity of the glass at 1300 ° C. was measured by a well-known platinum ball pulling method.
 白濁発生は次のようにして評価した。まずPt-IrがコートされたWC板の上にガラス試料を載置し、Tg+25℃のN雰囲気にて1分間熱処理した後、ガラス表面の白濁の有無を顕微鏡で観察した。このような評価を100回又は1000回行い、白濁が認められた試料の個数を表に示した。 The occurrence of white turbidity was evaluated as follows. First, a glass sample was placed on a WC plate coated with Pt—Ir, heat-treated in an N 2 atmosphere at Tg + 25 ° C. for 1 minute, and then the presence or absence of cloudiness on the glass surface was observed with a microscope. Such evaluation was performed 100 times or 1000 times, and the number of samples in which cloudiness was observed is shown in the table.
 屈折率ndは、屈折率計(カルニュー光学工業社製 KPR-200)を用いて、ヘリウムランプのd線(波長:587.6nm)における測定値で示した。 The refractive index nd is indicated by a measured value at the d-line (wavelength: 587.6 nm) of a helium lamp using a refractometer (KPR-200, manufactured by Kalnew Optical Industry Co., Ltd.).
 アッベ数νdは、屈折率計(カルニュー光学工業社製 KPR-200)を用いて、上記したd線、水素ランプのF線(波長:486.1nm)、および水素ランプのC線(波長:656.3nm)における屈折率をそれぞれ測定した値を、それぞれnd、nF、nCとした際の{(nd-1)/(nF-nC)}の値とした。 Abbe number νd was measured using a refractometer (KPR-200, manufactured by Kalnew Optical Industry Co., Ltd.), d line, hydrogen lamp F line (wavelength: 486.1 nm), and hydrogen lamp C line (wavelength: 656). The refractive index measured at 3 nm) was defined as {(nd-1) / (nF-nC)} when nd, nF, and nC were used.
 表8~10は、試料No.1~4、6、7、9、19、20、26、27、29、30において、Pt量と透過率の関係を示している。なお表8において、Pt量が0ppmのガラスは石英坩堝を用いて作製した。Ptが5~30ppmのガラスはPt製容器を用いて溶融温度や溶融時間を調節して作製した。 Tables 8 to 10 show sample numbers. 1 to 4, 6, 7, 9, 19, 20, 26, 27, 29, and 30 show the relationship between the Pt amount and the transmittance. In Table 8, glass with a Pt content of 0 ppm was prepared using a quartz crucible. Glass having Pt of 5 to 30 ppm was prepared by adjusting the melting temperature and the melting time using a Pt container.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 Pt量は次のようにして測定した。まず粉砕したガラス試料を混酸(HF、HCLO4、HNO3、HCl)により分解後、加熱蒸発して乾固させ、塩を得た。次いで乾固した塩の試料に硝酸を加え、分級した後、ICP質量分析装置により分析定量した。 The amount of Pt was measured as follows. First, the crushed glass sample was decomposed with a mixed acid (HF, HCLO 4 , HNO 3 , HCl) and then evaporated by heating to dryness to obtain a salt. Next, nitric acid was added to the dried salt sample and classified, followed by analysis and quantification using an ICP mass spectrometer.
 Fe量はICP発光分析法にて求めた。原料から混入してくるFe量の他、Feを所定量足すことで、Fe量を変えた。 The amount of Fe was determined by ICP emission analysis. In addition to the amount of Fe mixed from the raw material, the amount of Fe was changed by adding a predetermined amount of Fe 2 O 3 .
 透過率は、両面を鏡面研磨仕上げした10mm厚試料を分光光度計にて測定した。その透過率曲線において360nmでの透過率の値を読み取った。図1~3に、表8に示すNo.4、6-1および6-2、表9に示すNo.7、9-1および9-2、表10に示すNo.29、30-1および30-2の各光学ガラスの透過率曲線(測定領域200~800nm)をそれぞれ示す。 The transmittance was measured with a spectrophotometer on a 10 mm thick sample with both surfaces mirror-polished. In the transmittance curve, the transmittance value at 360 nm was read. 1 to 3 show the numbers shown in Table 8. 4, 6-1 and 6-2, Nos. Shown in Table 9. 7, 9-1 and 9-2, Nos. Shown in Table 10. The transmittance curves (measurement region 200 to 800 nm) of the optical glasses 29, 30-1 and 30-2 are shown respectively.
 また得られた透過率曲線から800nmにおける透過率T800および360nmにおける透過率T360を読み取り、その差Δ透過率(=T800-T360)を求めた。 Further, the transmittance T 800 at 800 nm and the transmittance T 360 at 360 nm were read from the obtained transmittance curve, and the difference Δ transmittance (= T 800 −T 360 ) was obtained.
 本発明の光学用ガラスは、モールドプレスしても表面に白濁を生じないことから、量産性に優れている。よってCD、DVD等の光ピックアップレンズや、ビデオカメラ、デジタルカメラ等の光学レンズに好適に使用できる。 The optical glass of the present invention is excellent in mass productivity because it does not cause white turbidity on the surface even by mold pressing. Therefore, it can be suitably used for optical pickup lenses such as CD and DVD, and optical lenses such as video cameras and digital cameras.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2008年10月21日付けで出願された日本特許出願(特願2008-270534)および2009年6月24日付けで出願された日本特許出願(特願2009-149554)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
The present application is based on a Japanese patent application (Japanese Patent Application No. 2008-270534) filed on October 21, 2008 and a Japanese patent application (Japanese Patent Application No. 2009-149554) filed on June 24, 2009. Which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.

Claims (8)

  1.  質量%で、SiO 35~60%、B 2~22%、Al 0.5~6%、BaO 12~30%、LiO 4~8%、LiO、NaOおよびKOの合量が5~12%のSiO-B系光学ガラスにおいて、Sbの含有量が0.0001%未満であることを特徴とする光学ガラス。 By mass%, SiO 2 35 ~ 60% , B 2 O 3 2 ~ 22%, Al 2 O 3 0.5 ~ 6%, BaO 12 ~ 30%, Li 2 O 4 ~ 8%, Li 2 O, Na An optical glass characterized in that the content of Sb 2 O 3 is less than 0.0001% in a SiO 2 —B 2 O 3 optical glass having a total content of 2 O and K 2 O of 5 to 12%.
  2.  質量%で、SiO 35~60%、B 2~22%、Al 0.5~5%、BaO 12~30%、LiO 4~8%、LiO、NaOおよびKOの合量が5.5~12%のSiO-B系光学ガラスにおいて、Sbの含有量が0.0001%未満であることを特徴とする請求項1に記載の光学ガラス。 By mass%, SiO 2 35 ~ 60% , B 2 O 3 2 ~ 22%, Al 2 O 3 0.5 ~ 5%, BaO 12 ~ 30%, Li 2 O 4 ~ 8%, Li 2 O, Na The SiO 2 —B 2 O 3 optical glass having a total content of 2 O and K 2 O of 5.5 to 12% is characterized in that the Sb 2 O 3 content is less than 0.0001%. Item 5. The optical glass according to Item 1.
  3.  Pt含有量が20ppm以下であることを特徴とする請求項1又は2に記載の光学ガラス。 The optical glass according to claim 1, wherein the Pt content is 20 ppm or less.
  4.  屈伏点が565℃以下であることを特徴とする請求項1~3の何れかに記載の光学ガラス。 The optical glass according to any one of claims 1 to 3, wherein a yield point is 565 ° C or lower.
  5.  ガラスの塩基性度が11以下であることを特徴とする請求項1~4の何れかに記載の光学ガラス。 5. The optical glass according to claim 1, wherein the basicity of the glass is 11 or less.
  6.  モールドプレス成形用であることを特徴とする請求項1~5の何れかに記載の光学ガラス。 6. The optical glass according to claim 1, wherein the optical glass is used for mold press molding.
  7.  請求項1~6の何れかに記載の光学ガラスからなることを特徴とする光学レンズ。 An optical lens comprising the optical glass according to any one of claims 1 to 6.
  8.  質量%で、SiO 35~60%、B 2~22%、Al 0.5~6%、BaO 12~30%、LiO 4~8%、LiO、NaOおよびKOの合量が5~12%含有するSiO-B系光学ガラスでプリフォームを作製し、次いで前記プリフォームをモールドプレスする光学レンズの製造方法において、光学ガラスとしてSbの含有量が0.0001%未満のガラスを使用することを特徴とする光学レンズの製造方法。 By mass%, SiO 2 35 ~ 60% , B 2 O 3 2 ~ 22%, Al 2 O 3 0.5 ~ 6%, BaO 12 ~ 30%, Li 2 O 4 ~ 8%, Li 2 O, Na In a method for producing an optical lens, a preform is made of a SiO 2 —B 2 O 3 optical glass containing a total amount of 2 O and K 2 O of 5 to 12%, and then the preform is mold-pressed. A glass having a Sb 2 O 3 content of less than 0.0001% is used.
PCT/JP2009/068113 2008-10-21 2009-10-21 Optical glass WO2010047342A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980139406.5A CN102171153B (en) 2008-10-21 2009-10-21 Opticglass

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-270534 2008-10-21
JP2008270534 2008-10-21
JP2009149554A JP5660270B2 (en) 2008-10-21 2009-06-24 Optical glass
JP2009-149554 2009-06-24

Publications (1)

Publication Number Publication Date
WO2010047342A1 true WO2010047342A1 (en) 2010-04-29

Family

ID=42119379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068113 WO2010047342A1 (en) 2008-10-21 2009-10-21 Optical glass

Country Status (3)

Country Link
JP (1) JP5660270B2 (en)
CN (1) CN102171153B (en)
WO (1) WO2010047342A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103097316A (en) * 2010-08-30 2013-05-08 日本电气硝子株式会社 Optical glass
WO2021220581A1 (en) * 2020-04-28 2021-11-04 Agc株式会社 Glass

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7109739B2 (en) * 2017-09-20 2022-08-01 日本電気硝子株式会社 Glass substrate for laser-assisted etching and method for manufacturing perforated glass substrate using the same
JP7409636B2 (en) * 2019-11-27 2024-01-09 株式会社住田光学ガラス Multi-component oxide glass, optical element, optical fiber, and method for producing multi-component oxide glass

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035341A (en) * 1989-05-31 1991-01-11 Hoya Corp Optical glass
JPH0337130A (en) * 1989-07-04 1991-02-18 Sumita Kogaku Glass:Kk Optical glass for precise press molding
JPH0812368A (en) * 1994-06-30 1996-01-16 Hoya Corp Optical glass
JPH0977519A (en) * 1995-09-18 1997-03-25 Hooya Precision Kk Production of glass optical element
JP2006008470A (en) * 2004-06-29 2006-01-12 Hoya Corp Glass material for mold pressing, manufacturing method therefor and method for manufacturing optical element
JP2007126298A (en) * 2005-10-31 2007-05-24 Ohara Inc Optical glass

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2739095B1 (en) * 1995-09-25 1997-11-14 Saint Gobain Vitrage OPTICAL LENSES AND MANUFACTURING METHODS
JP3583598B2 (en) * 1996-11-14 2004-11-04 株式会社オハラ Optical glass for mold press
JP4789358B2 (en) * 2001-07-03 2011-10-12 株式会社オハラ Optical glass
US20030147157A1 (en) * 2002-01-30 2003-08-07 Yoichiro Kamimura Optical glass for prism, process for the production thereof, and optical part for prism
CN100337955C (en) * 2002-12-25 2007-09-19 日本电气硝子株式会社 Optical glass for molding shape
JP4924978B2 (en) * 2005-11-16 2012-04-25 日本電気硝子株式会社 Optical glass for mold press molding
CN101454251B (en) * 2006-05-22 2012-04-04 旭硝子株式会社 Optical glass

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035341A (en) * 1989-05-31 1991-01-11 Hoya Corp Optical glass
JPH0337130A (en) * 1989-07-04 1991-02-18 Sumita Kogaku Glass:Kk Optical glass for precise press molding
JPH0812368A (en) * 1994-06-30 1996-01-16 Hoya Corp Optical glass
JPH0977519A (en) * 1995-09-18 1997-03-25 Hooya Precision Kk Production of glass optical element
JP2006008470A (en) * 2004-06-29 2006-01-12 Hoya Corp Glass material for mold pressing, manufacturing method therefor and method for manufacturing optical element
JP2007126298A (en) * 2005-10-31 2007-05-24 Ohara Inc Optical glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103097316A (en) * 2010-08-30 2013-05-08 日本电气硝子株式会社 Optical glass
WO2021220581A1 (en) * 2020-04-28 2021-11-04 Agc株式会社 Glass

Also Published As

Publication number Publication date
JP5660270B2 (en) 2015-01-28
CN102171153B (en) 2015-12-02
CN102171153A (en) 2011-08-31
JP2010120837A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
JP5850384B2 (en) Glass
JP6009709B1 (en) Optical glass and manufacturing method thereof
JP5740778B2 (en) Manufacturing method of optical glass
US8207074B2 (en) Optical glass
JP7228023B2 (en) Optical glasses and optical elements
JP5290528B2 (en) Optical glass for precision press molding
JP5704503B2 (en) Optical glass
JP5835642B2 (en) Optical glass
TW201404752A (en) Glass, optical glass, glass raw material for press molding, and optical element
JPWO2009099230A1 (en) Optical glass
TW201904903A (en) Optical glass, preforms, and optical components
WO2010147072A1 (en) Optical glass for mold press forming
JP5826429B1 (en) Glass, optical glass, glass material for press molding and optical element
JP2011225418A (en) Optical glass
WO2010047342A1 (en) Optical glass
JP2005015302A (en) Optical glass for mold press molding
JP2010215444A (en) Optical glass
JP2024019356A (en) Optical glass and optical element
JP7401236B2 (en) Optical glass and optical elements
JP2018002520A (en) Optical glass, optical element blank and optical element
JP5224087B2 (en) Optical glass for mold press molding
JP6812148B2 (en) Optical glass, optics blank, and optics
JP5729532B2 (en) Optical glass
JP5700350B2 (en) Optical glass
TW202114956A (en) Optical glass and optical element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980139406.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09822039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09822039

Country of ref document: EP

Kind code of ref document: A1