WO2010041513A1 - 光学フィルム、光学フィルムの製造方法、偏光板および液晶表示装置 - Google Patents

光学フィルム、光学フィルムの製造方法、偏光板および液晶表示装置 Download PDF

Info

Publication number
WO2010041513A1
WO2010041513A1 PCT/JP2009/064122 JP2009064122W WO2010041513A1 WO 2010041513 A1 WO2010041513 A1 WO 2010041513A1 JP 2009064122 W JP2009064122 W JP 2009064122W WO 2010041513 A1 WO2010041513 A1 WO 2010041513A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
film
resin
cellulose ester
acrylic
Prior art date
Application number
PCT/JP2009/064122
Other languages
English (en)
French (fr)
Inventor
美典 玉川
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2010532853A priority Critical patent/JP5397382B2/ja
Priority to CN2009801388295A priority patent/CN102171020B/zh
Publication of WO2010041513A1 publication Critical patent/WO2010041513A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/9155Pressure rollers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/362Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using static mixing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/69Filters or screens for the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/69Filters or screens for the moulding material
    • B29C48/693Substantially flat filters mounted at the end of an extruder screw perpendicular to the feed axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/256Sheets, plates, blanks or films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0034Polarising
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to an optical film, an optical film manufacturing method, a polarizing plate, and a liquid crystal display device, and more particularly to an optical film, a polarizing plate, and a liquid crystal display device that are less likely to leak light and have good reworkability.
  • a liquid crystal display device is composed of a liquid crystal cell in which a transparent electrode, a liquid crystal layer, a color filter, etc. are sandwiched between glass plates, and two polarizing plates provided on both sides thereof.
  • a polarizer also referred to as a polarizer or a polarizing film
  • two optical films polarizing plate protective films.
  • a cellulose triacetate film is usually used as this polarizing plate protective film.
  • liquid crystal display devices Due to recent technological advances, the enlargement of liquid crystal display devices has accelerated, and the applications of liquid crystal display devices have diversified. For example, it can be used as a large display installed on a street or in a store, or used as an advertising display in a public place using a display device called digital signage.
  • an acrylic resin is combined with an impact-resistant acrylic rubber-methyl methacrylate copolymer or butyl-modified acetyl cellulose in a quantitative ratio of 60 to 90/40 to 10 (patented)
  • the acrylic resin film is prone to breakage and brittleness (brittleness), and it can stabilize optical films for large liquid crystal display devices, especially during film production and breakage during rework processes. It was difficult to manufacture.
  • acrylic resin films represented by polymethyl methacrylate (hereinafter abbreviated as PMMA) generally have a problem that their heat resistance is poor and their shape changes when used at high temperatures or for long-term use.
  • This problem was an important issue not only as a physical property of a single film but also in a polarizing plate and a display device using such a film. That is, in the liquid crystal display device, the polarizing plate curls as the film is deformed, which causes a problem that the entire panel is warped.
  • Patent Document 2 A technique of mixing an acrylic resin with a cellulose ester film to control a plasticizer and optical properties has also been proposed (Patent Document 2).
  • Patent Document 2 A technique of mixing an acrylic resin with a cellulose ester film to control a plasticizer and optical properties has also been proposed (Patent Document 2).
  • the molecular weight of the acrylic resin disclosed here is small, sufficient moisture resistance cannot be obtained, and light leakage due to problems such as deterioration of the polarizing plate and change in the optical value of the optical film in a high humidity environment. It was not possible to improve.
  • Patent Document 3 proposes a film produced by mixing an acrylic resin and a cellulose ester resin and manufactured by a melt casting method. Even with this method, brittleness could not be improved sufficiently.
  • Patent Document 3 also describes an example in which a plasticizer is added. However, heat resistance that is originally necessary is deteriorated, and both brittleness and heat resistance cannot be achieved.
  • the present invention aims to provide an optical film having improved hygroscopicity, heat resistance and even brittleness.
  • an optical film which hardly causes light leakage and has good reworkability, and its production. It is an object to provide a method, a polarizing plate, and a liquid crystal display device.
  • the acrylic resin (A) and the cellulose ester resin (B) are in a mass ratio of 95: 5 to 30:70, and the weight average molecular weight Mw of the acrylic resin (A) is 110,000 to 1000000, and the cellulose ester resin (B).
  • the acyl ester total substitution degree (T) is 2.0 or more and 3.0 or less, the substitution degree of the acyl group having 3 or more and 7 or less carbon atoms is 1.2 or more and 3.0 or less, and the cellulose ester resin
  • the weight average molecular weight Mw of (B) is from 75,000 to 300,000, the tension softening point is from 105 to 145 ° C., the folding resistance is from 50 to 100 times, and it is produced by a melt casting film forming method.
  • Optical film is from 75,000 to 300,000, the tension softening point is from 105 to 145 ° C.
  • the optical film according to 1 is manufactured by stretching in at least one of a transport direction and a width direction, and a stretching temperature thereof is Tg to Tg + 50 ° C. of the optical film before stretching.
  • a method for producing an optical film is provided.
  • a polarizing plate comprising the optical film described in 1 above.
  • a liquid crystal display device comprising the polarizing plate described in 3 above.
  • an optical film having improved hygroscopicity, heat resistance and brittleness at the same time, thereby providing an optical film which is less likely to leak light and has good reworkability, a method for producing the same, a polarizing plate and a liquid crystal display can do.
  • the acrylic resin (A) and the cellulose ester resin (B) are in a mass ratio of 95: 5 to 30:70, and the weight average molecular weight Mw of the acrylic resin (A) is 110,000 to 1000000.
  • the acyl group total substitution degree (T) of the cellulose ester resin (B) is 2.0 or more and 3.0 or less, and the substitution degree of the acyl group having 3 or more and 7 or less carbon atoms is 1.2 or more and 3.0 or less.
  • the weight-average molecular weight Mw of the cellulose ester resin (B) is 75,000 to 300,000 as a constituent requirement, and its properties are a tension softening point of 105 to 145 ° C. and a folding resistance of 50 to 100 times.
  • the manufacturing method is a melt casting film forming method.
  • the acrylic resin used in the present invention includes a methacrylic resin.
  • the resin is not particularly limited, but a resin comprising 50 to 99% by mass of methyl methacrylate units and 1 to 50% by mass of other monomer units copolymerizable therewith is preferable.
  • Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid.
  • Unsaturated group-containing divalent carboxylic acids such as saturated acid, maleic acid, fumaric acid and itaconic acid, aromatic vinyl compounds such as styrene and ⁇ -methylstyrene, ⁇ , ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile, Examples thereof include maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride and the like, and these can be used alone or in combination of two or more monomers.
  • methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer.
  • n-Butyl acrylate is particularly preferably used.
  • the acrylic resin (A) used in the optical film of the present invention has a weight average molecular weight (Mw) particularly from the viewpoint of improving brittleness as an optical film and improving transparency when it is compatible with the cellulose ester resin (B). Is 120,000 or more and 1000000 or less.
  • the weight average molecular weight (Mw) of the acrylic resin (A) is most preferably in the range of 130,000 to 300,000.
  • the weight average molecular weight of the acrylic resin of the present invention can be measured by gel permeation chromatography (hereinafter abbreviated as GPC).
  • GPC gel permeation chromatography
  • the production method of the acrylic resin (A) in the present invention is not particularly limited, and any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used.
  • a polymerization initiator a normal peroxide type and an azo type can be used, and a redox type can also be used.
  • the polymerization temperature may be 30 to 100 ° C. for suspension or emulsion polymerization, and 80 to 160 ° C. for bulk or solution polymerization.
  • polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.
  • acrylic resins can be used as the acrylic resin according to the present invention.
  • Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dialal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned.
  • Two or more acrylic resins can be used in combination.
  • the cellulose ester resin (B) of the present invention has a total acyl group substitution degree (T) of 2.0 to 3.3 from the viewpoint of transparency particularly when it is improved in brittleness and is compatible with the acrylic resin (A).
  • the substitution degree of the acyl group having 0 and 3 to 7 carbon atoms is preferably 1.2 to 3.0, and the substitution degree of the acyl group having 3 to 7 carbon atoms is preferably 2.0 to 3.0.
  • the cellulose ester resin of the present invention is a cellulose ester resin substituted with an acyl group having 3 to 7 carbon atoms.
  • propionyl, butyryl and the like are preferably used, but a propionyl group is particularly preferably used. .
  • the acrylic ester When the total substitution degree of the acyl group of the cellulose ester resin (B) is less than 2.0, that is, when the residual degree of the hydroxyl groups at the 2, 3, and 6 positions of the cellulose ester molecule is more than 1.0, the acrylic ester When the resin (A) and the acrylic resin (B) are not sufficiently compatible and used as an optical film, haze becomes a problem.
  • the substitution degree of the acyl group having 3 to 7 carbon atoms is less than 1.2, still sufficient compatibility cannot be obtained, Brittleness will decrease.
  • the substitution degree of the acyl group having 2 carbon atoms, that is, the acetyl group is high, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.
  • the compatibility is lowered and the haze is increased.
  • the total substitution degree (T) is 2.0 to 3.0, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.2 to 3. If it is 0.0, there is no problem, but the total degree of substitution of acyl groups other than those having 3 to 7 carbon atoms, that is, acetyl groups or acyl groups having 8 or more carbon atoms, is preferably 1.3 or less.
  • the total substitution degree (T) of the acyl group of the cellulose ester resin (B) is more preferably in the range of 2.5 to 3.0.
  • the acyl group may be an aliphatic acyl group or an aromatic acyl group. In the case of an aliphatic acyl group, it may be linear or branched and may further have a substituent.
  • the number of carbon atoms of the acyl group in the present invention includes an acyl group substituent.
  • the number of substituents X substituted on the aromatic ring is preferably 0 to 5. Also in this case, it is necessary to pay attention so that the degree of substitution of the acyl group having 3 to 7 carbon atoms including the substituent is 1.2 to 3.0. For example, since the benzoyl group has 7 carbon atoms, when it has a substituent containing carbon, the benzoyl group has 8 or more carbon atoms and is not included in the acyl group having 3 to 7 carbon atoms. Become.
  • substituents substituted on the aromatic ring when the number of substituents substituted on the aromatic ring is 2 or more, they may be the same or different from each other, but they may be linked together to form a condensed polycyclic compound (for example, naphthalene, indene, indane, phenanthrene, quinoline). , Isoquinoline, chromene, chroman, phthalazine, acridine, indole, indoline, etc.).
  • a condensed polycyclic compound for example, naphthalene, indene, indane, phenanthrene, quinoline.
  • Isoquinoline chromene, chroman, phthalazine, acridine, indole, indoline, etc.
  • a structure having at least one kind of an aliphatic acyl group having 3 to 7 carbon atoms is used as a structure used in the cellulose resin of the present invention.
  • the substitution degree of the cellulose ester resin (B) according to the present invention is such that the total substitution degree (T) of acyl groups is 2.0 to 3.0, and the substitution degree of acyl groups having 3 to 7 carbon atoms is 1.2 to 3.0. 3.0.
  • the total substitution degree of acyl groups other than an acyl group having 3 to 7 carbon atoms, that is, an acetyl group and an acyl group having 8 or more carbon atoms is 1.3 or less.
  • the cellulose ester resin (B) according to the present invention is preferably at least one selected from cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate benzoate, cellulose propionate, and cellulose butyrate, Those having an acyl group having 3 or 4 carbon atoms as a substituent are preferred.
  • particularly preferable cellulose ester resins are cellulose acetate propionate and cellulose propionate.
  • the portion not substituted with an acyl group usually exists as a hydroxyl group. These can be synthesized by known methods.
  • substitution degree of the acetyl group and the substitution degree of other acyl groups were determined by the method prescribed in ASTM-D817-96.
  • the weight average molecular weight (Mw) of the cellulose ester resin according to the present invention is 75,000 or more, particularly from the viewpoint of improving compatibility with the acrylic resin (A) and brittleness, and is preferably in the range of 75,000 to 300,000. It is more preferable that it is in the range of ⁇ 24,000, particularly preferably in the range of 160000 to 20,000.
  • Mw weight average molecular weight
  • the important average molecular weight (Mw) of the cellulose ester resin is less than 75,000, the effect of improving heat resistance and brittleness is not sufficient, and the effect of the present invention cannot be obtained.
  • two or more kinds of cellulose resins can be mixed and used.
  • the acrylic resin (A) and the cellulose ester resin (B) are contained in a mass ratio of 95: 5 to 30:70 and in a compatible state, preferably 95: 5 to 50. : 50, and more preferably 90:10 to 60:40.
  • the mass ratio of the acrylic resin (A) and the cellulose ester resin (B) is more than 95: 5
  • the effect of the cellulose ester resin (B) cannot be sufficiently obtained, and the mass ratio is
  • the amount of acrylic resin is less than 30:70, the moisture resistance becomes insufficient.
  • the acrylic resin (A) and the cellulose ester resin (B) are preferably contained in a compatible state.
  • Whether the acrylic resin (A) and the cellulose ester resin (B) are in a compatible state can be determined by, for example, the glass transition temperature Tg.
  • the two resins have different glass transition temperatures
  • there are two or more glass transition temperatures for each resin because there is a glass transition temperature for each resin.
  • the glass transition temperature specific to each resin disappears and becomes one glass transition temperature, which is the glass transition temperature of the compatible resin.
  • the glass transition temperature referred to here is an intermediate value determined according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) at a heating rate of 20 ° C./min.
  • the point glass transition temperature (Tmg) is an intermediate value determined according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) at a heating rate of 20 ° C./min.
  • the point glass transition temperature (Tmg) The point glass transition temperature (Tmg).
  • the acrylic resin (A) and the cellulose ester resin (B) are each preferably an amorphous resin, and either one may be a crystalline polymer or a partially crystalline polymer. In the present invention, the acrylic resin (A) and the cellulose ester resin (B) are preferably compatible with each other to become an amorphous resin.
  • the weight average molecular weight (Mw) of the acrylic resin (A), the weight average molecular weight (Mw) of the cellulose ester resin (B), and the degree of substitution are different in solubility in the solvent of both resins. It is obtained by measuring each after use.
  • fractionated resins can be identified by general structural analysis of polymers.
  • the optical film of the present invention contains a resin other than the acrylic resin (A) and the cellulose ester resin (B), it can be separated by the same method.
  • the weight average molecular weights (Mw) of the compatible resins are different, the high molecular weight substances are eluted earlier by gel permeation chromatography (GPC), and the lower molecular weight substances are eluted after a longer time. Therefore, it can be easily fractionated and the molecular weight can be measured.
  • GPC gel permeation chromatography
  • the molecular weight of the compatible resin is measured by GPC, and at the same time, the resin solution eluted every time is separated, the solvent is distilled off, and the dried resin is different by quantitatively analyzing the structure.
  • the resin composition for each molecular weight fraction it is possible to identify each compatible resin.
  • the molecular weight distribution of each of the resins separated in advance based on the difference in solubility in a solvent by GPC, it is possible to detect each of the compatible resins.
  • containing acrylic resin (A) and cellulose ester resin (B) in a compatible state means mixing each resin (polymer) and resulting in a compatible state. This means that a state in which a precursor of acrylic resin such as monomer, dimer or oligomer is mixed with cellulose ester resin (B) and then polymerized by polymerization is not included. .
  • the process of obtaining a mixed resin by mixing a precursor of an acrylic resin such as a monomer, dimer or oligomer with the cellulose ester resin (B) and then polymerizing it is complicated by the polymerization reaction.
  • the resin is difficult to control the reaction, and it is difficult to adjust the molecular weight.
  • graft polymerization, cross-linking reaction or cyclization reaction often occurs.
  • the resin is soluble in a solvent or cannot be melted by heating. Since it is difficult to elute the resin and measure the weight average molecular weight (Mw), it is difficult to control the physical properties and it cannot be used as a resin for stably producing an optical film.
  • Mw weight average molecular weight
  • the optical film of the present invention may contain a resin and additives other than the acrylic resin (A) and the cellulose ester resin (B) as long as the function as the optical film is not impaired.
  • the added resin may be mixed without being compatible even if it is in a compatible state.
  • the total mass of the acrylic resin (A) and the cellulose ester resin (B) in the optical film of the present invention is preferably 55% by mass or more of the optical film, more preferably 60% by mass or more, and particularly preferably 70% by mass or more.
  • the optical film of the present invention may contain acrylic particles.
  • the acrylic particles (C) according to the present invention are present in the state of particles (also referred to as incompatible state) in the optical film containing the acrylic resin (A) and the cellulose ester resin (B) in a compatible state. Represents an acrylic component.
  • the acrylic particles (C) are obtained, for example, by collecting a predetermined amount of the produced optical film, dissolving it in a solvent, stirring, and sufficiently dissolving / dispersing it, so that the pore diameter is less than the average particle diameter of the acrylic particles (C). It is preferable that the weight of the insoluble matter filtered and collected using the PTFE membrane filter is 90% by mass or more of the acrylic particles (C) added to the optical film.
  • the acrylic particles (C) used in the present invention are not particularly limited, but are preferably acrylic particles (C) having a layer structure of two or more layers, particularly the following multilayer structure acrylic granular composite. It is preferable.
  • the multilayer structure acrylic granular composite is formed by laminating an innermost hard layer polymer, a cross-linked soft layer polymer exhibiting rubber elasticity, and an outermost hard layer polymer from the center to the outer periphery.
  • the multi-layer structure acrylic granular composite is a multi-layer structure acrylic granular composite composed of an innermost hard layer, a crosslinked soft layer, and an outermost hard layer from the center to the outer periphery.
  • This three-layer core-shell multilayer acrylic granular composite is preferably used.
  • Preferred embodiments of the multilayer structure acrylic granular composite used in the acrylic resin composition according to the present invention include the following.
  • Outermost obtained by polymerizing The layered polymer has a three-layer structure, and the obtained three-layered polymer is the innermost hard layer polymer (a) 5 to 40% by mass, the soft layer polymer (b) 30 to 60% by mass.
  • an outermost hard layer polymer (c) having an insoluble part when fractionated with acetone, and having a methyl ethyl ketone swelling degree of 1.5 to 4.0. Complex.
  • the innermost hard layer polymer (a) constituting the multilayer structure acrylic granular composite is 80 to 98.9% by mass of methyl methacrylate and 1 to 20 mass of alkyl acrylate having 1 to 8 carbon atoms in the alkyl group. % And a mixture of monomers consisting of 0.01 to 0.3% by weight of a polyfunctional grafting agent is preferred.
  • examples of the alkyl acrylate having 1 to 8 carbon atoms in the alkyl group include methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like. And n-butyl acrylate are preferably used.
  • the proportion of the alkyl acrylate unit in the innermost hard layer polymer (a) is 1 to 20% by mass.
  • the thermal decomposability of the polymer is increased, while the unit is 20% by mass. If it exceeds 50%, the glass transition temperature of the innermost hard layer polymer (c) is lowered, and the impact resistance imparting effect of the three-layer structure acrylic granular composite is lowered.
  • polyfunctional grafting agent examples include polyfunctional monomers having different polymerizable functional groups, such as allyl esters of acrylic acid, methacrylic acid, maleic acid, and fumaric acid, and allyl methacrylate is preferably used.
  • the polyfunctional grafting agent is used to chemically bond the innermost hard layer polymer and the soft layer polymer, and the ratio used during the innermost hard layer polymerization is 0.01 to 0.3% by mass. .
  • the crosslinked soft layer polymer (b) constituting the acrylic granular composite is an alkyl acrylate having from 9 to 8 carbon atoms having an alkyl group of 1 to 8 in the presence of the innermost hard layer polymer (a). What is obtained by polymerizing a mixture of monomers comprising, by mass, 0.01 to 5% by mass of a polyfunctional crosslinking agent and 0.5 to 5% by mass of a polyfunctional grafting agent is preferred.
  • n-butyl acrylate or 2-ethylhexyl acrylate is preferably used as the alkyl acrylate having 4 to 8 carbon atoms in the alkyl group.
  • Examples of other monofunctional monomers that can be copolymerized include styrene and substituted styrene derivatives.
  • styrene and substituted styrene derivatives Regarding the ratio of alkyl acrylate having 4 to 8 carbon atoms in the alkyl group and styrene, the more the former, the lower the glass transition temperature of the polymer (b), that is, the softer it is.
  • the refractive index of the soft layer polymer (b) at room temperature is set to the innermost hard layer polymer (a), the outermost hard layer polymer (c), and the hard heat. It is more advantageous to make it closer to the plastic acrylic resin, and the ratio between them is selected in consideration of these.
  • polyfunctional grafting agent those mentioned in the section of the innermost layer hard polymer (a) can be used.
  • the polyfunctional grafting agent used here is used to chemically bond the soft layer polymer (b) and the outermost hard layer polymer (c), and the proportion used during the innermost hard layer polymerization is impact resistance. From the viewpoint of the effect of imparting properties, 0.5 to 5% by mass is preferable.
  • polyfunctional crosslinking agent generally known crosslinking agents such as divinyl compounds, diallyl compounds, diacrylic compounds, dimethacrylic compounds and the like can be used, but polyethylene glycol diacrylate (molecular weight 200 to 600) is preferably used.
  • the polyfunctional cross-linking agent used here is used to generate a cross-linked structure during the polymerization of the soft layer (b) and to exhibit the effect of imparting impact resistance.
  • the polyfunctional crosslinking agent is not an essential component because the crosslinked structure of the soft layer (b) is generated to some extent. Is preferably 0.01 to 5% by weight from the viewpoint of imparting impact resistance.
  • the outermost hard layer polymer (c) constituting the multi-layer structure acrylic granular composite has a methyl methacrylate of 80 to 99 mass in the presence of the innermost hard layer polymer (a) and the soft layer polymer (b). % And a mixture of monomers consisting of 1 to 20% by mass of an alkyl acrylate having 1 to 8 carbon atoms in the alkyl group is preferred.
  • the acrylic alkylate those described above are used, but methyl acrylate and ethyl acrylate are preferably used.
  • the proportion of the alkyl acrylate unit in the outermost hard layer (c) is preferably 1 to 20% by mass.
  • an alkyl mercaptan or the like can be used as a chain transfer agent to adjust the molecular weight for the purpose of improving the compatibility with the acrylic resin (A).
  • the outermost hard layer with a gradient such that the molecular weight gradually decreases from the inside toward the outside in order to improve the balance between elongation and impact resistance.
  • the outermost hard layer is divided into two or more monomer mixtures for forming the outermost hard layer, and the amount of chain transfer agent to be added each time is increased sequentially. It is possible to decrease the molecular weight of the polymer forming the layer from the inside to the outside of the multilayer structure acrylic granular composite.
  • the molecular weight formed at this time can also be examined by polymerizing a mixture of monomers used each time under the same conditions, and measuring the molecular weight of the resulting polymer.
  • the particle diameter of the acrylic particles (C) preferably used in the present invention is not particularly limited, but is preferably 10 nm or more and 1000 nm or less, and more preferably 20 nm or more and 500 nm or less. In particular, the thickness is most preferably from 50 nm to 400 nm.
  • the mass ratio of the core and the shell is not particularly limited, but when the entire multilayer structure polymer is 100 parts by mass,
  • the core layer is preferably 50 parts by mass or more and 90 parts by mass or less, and more preferably 60 parts by mass or more and 80 parts by mass or less.
  • the core layer here is an innermost hard layer.
  • Examples of such commercially available multilayered acrylic granular composites include, for example, “Metablene” manufactured by Mitsubishi Rayon Co., “Kane Ace” manufactured by Kaneka Chemical Co., Ltd., “Paraloid” manufactured by Kureha Chemical Co., Ltd., Rohm and Haas “Acryloid” manufactured by KK, “Staffyroid” manufactured by Ganz Kasei Kogyo Co., Ltd., “Parapet SA” manufactured by Kuraray Co., Ltd., and the like can be used alone or in combination of two or more.
  • acrylic particles (C1) which are graft copolymers preferably used as the acrylic particles (C) preferably used in the present invention include unsaturated carboxylic acid esters in the presence of a rubbery polymer. Copolymerization of a mixture of monomers, unsaturated carboxylic acid monomers, aromatic vinyl monomers, and other vinyl monomers copolymerizable with these if necessary Examples thereof include a graft copolymer.
  • the rubbery polymer used for the acrylic particles (C1) that are the graft copolymer is not particularly limited, but diene rubber, acrylic rubber, ethylene rubber, and the like can be used. Specific examples include polybutadiene, styrene-butadiene copolymer, block copolymer of styrene-butadiene, acrylonitrile-butadiene copolymer, butyl acrylate-butadiene copolymer, polyisoprene, butadiene-methyl methacrylate copolymer, Butyl acrylate-methyl methacrylate copolymer, butadiene-ethyl acrylate copolymer, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-isoprene copolymer, and ethylene-methyl acrylate copolymer A polymer etc. are mentioned. These rubbery polymers can be used alone or in a mixture of two or more
  • the refractive index of the mixture of an acrylic resin (A) and a cellulose-ester resin (B) and the refractive index of an acrylic particle (C) must be near. From the viewpoint of obtaining a film with high transparency.
  • the refractive index difference between the acrylic particles (C) and the acrylic resin (A) is preferably 0.05 or less, more preferably 0.02 or less, and particularly preferably 0.01 or less.
  • a method of adjusting the monomer unit composition ratio of the acrylic resin (A) and / or a rubbery polymer or monomer used for the acrylic particles (C) The refractive index difference can be reduced by a method of adjusting the composition ratio, and an optical film excellent in transparency can be obtained.
  • the refractive index difference referred to here is a solution in which the optical film of the present invention is sufficiently dissolved in a solvent in which the acrylic resin (A) is soluble to obtain a cloudy solution, which is subjected to an operation such as centrifugation. After separating the solvent-soluble part and the insoluble part and purifying the soluble part (acrylic resin (A)) and insoluble part (acrylic particles (C)), the measured refractive index (23 ° C., measuring wavelength: 550 nm). ) Difference.
  • the method of blending the acrylic particles (C) with the acrylic resin (A) is not particularly limited. After the acrylic resin (A) and other optional components are previously blended, usually at 200 to 350 ° C. A method of uniformly melt-kneading with a single-screw or twin-screw extruder while adding acrylic particles (C) is preferably used.
  • a method in which a solution in which acrylic particles (C) are dispersed in advance is added to and mixed with a solution (dope solution) in which acrylic resin (A) and cellulose ester resin (B) are dissolved, acrylic particles (C) and A method such as in-line addition of a solution obtained by dissolving or mixing other optional additives can be used.
  • acrylic particles can also be used as the acrylic particles according to the present invention.
  • Examples thereof include Metablen W-341 (C2) (manufactured by Mitsubishi Rayon Co., Ltd.), Chemisnow MR-2G (C3), MS-300X (C4) (manufactured by Soken Chemical Co., Ltd.), and the like.
  • the optical film of the present invention preferably contains 0.5 to 30% by mass of acrylic particles (C) with respect to the total mass of the resin constituting the film, and is in the range of 1.0 to 15% by mass. It is more preferable to contain.
  • the optical film of the present invention includes a plasticizer for imparting processability to the film, an antioxidant for preventing deterioration of the film, an ultraviolet absorber for imparting an ultraviolet absorbing function, and fine particles (matting agent) for imparting slipperiness to the film. It is preferable to contain additives such as ⁇ Plasticizer>
  • the plasticizer include phthalate ester, fatty acid ester, trimellitic ester, phosphate ester, polyester, and epoxy.
  • polyester-based and phthalate-based plasticizers are preferably used.
  • Polyester plasticizers are superior in non-migration and extraction resistance compared to phthalate ester plasticizers such as dioctyl phthalate, but are slightly inferior in plasticizing effect and compatibility.
  • the polyester plasticizer is a reaction product of a monovalent or tetravalent carboxylic acid and a monovalent or hexavalent alcohol, and is mainly obtained by reacting a divalent carboxylic acid with a glycol.
  • Representative divalent carboxylic acids include glutaric acid, itaconic acid, adipic acid, phthalic acid, azelaic acid, sebacic acid and the like.
  • glycol examples include glycols such as ethylene, propylene, 1,3-butylene, 1,4-butylene, 1,6-hexamethylene, neopentylene, diethylene, triethylene, and dipropylene. These divalent carboxylic acids and glycols may be used alone or in combination.
  • the ester plasticizer may be any of ester, oligoester, and polyester types, and the molecular weight is preferably in the range of 100 to 10,000, and preferably in the range of 600 to 3000, which has a large plasticizing effect.
  • the viscosity of the plasticizer has a correlation with the molecular structure and molecular weight, but in the case of an adipic acid plasticizer, the range of 200 to 5000 MPa ⁇ s (25 ° C.) is preferable because of compatibility and plasticization efficiency. Furthermore, some polyester plasticizers may be used in combination.
  • the plasticizer is preferably added in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the optical film of the present invention. If the added amount of the plasticizer exceeds 30 parts by mass, the surface becomes sticky, which is not preferable for practical use.
  • Antioxidant> In this invention, what is generally known can be used as an antioxidant.
  • lactone, sulfur, phenol, double bond, hindered amine and phosphorus compounds can be preferably used.
  • the phenolic compound preferably has a 2,6-dialkylphenol structure.
  • trade names of Ciba Japan Co., Ltd. “Irganox 1076”, “Irganox 1010”, and ADEKA “ADEKA STAB AO-50” And those commercially available.
  • the phosphorus compounds are, for example, from Sumitomo Chemical Co., Ltd., “Sumizer GP”, from ADEKA Co., Ltd., “ADK STAB PEP-24G”, “ADK STAB PEP-36” and “ADK STAB 3010”, from Ciba Japan Co., Ltd. “IRGAFOS P-EPQ”, commercially available from Sakai Chemical Industry Co., Ltd. under the trade name “GSY-P101” is preferable.
  • the above-mentioned hindered amine compounds are preferably those commercially available from Ciba Japan Co., Ltd. under the trade names of “Tinuvin 144” and “Tinvin 770” and from ADEKA Co., Ltd. “ADK STAB LA-52”.
  • the above sulfur compounds are preferably those commercially available from Sumitomo Chemical Co., Ltd. under the trade names “Sumilizer TPL-R” and “Sumilizer TP-D”.
  • the above-mentioned double bond compound is preferably commercially available from Sumitomo Chemical Co., Ltd. under the trade names of “Sumilizer GM” and “Sumilizer GS”.
  • the amount of these antioxidants and the like to be added is appropriately determined in accordance with the process for recycling and use, but generally 0.05 to 20% by mass, preferably with respect to the resin as the main raw material of the film Is added in the range of 0.1 to 1% by mass.
  • antioxidants can obtain a synergistic effect by using several different types of compounds in combination rather than using only one kind.
  • the combined use of lactone, phosphorus, phenol and double bond compounds is preferred.
  • a colorant means a dye or a pigment.
  • the colorant means an effect of making the color tone of a liquid crystal screen blue, adjusting the yellow index, and reducing haze.
  • Various dyes and pigments can be used as the colorant, but anthraquinone dyes, azo dyes, phthalocyanine pigments and the like are effective.
  • ⁇ Ultraviolet absorber> Although the ultraviolet absorber used in the present invention is not particularly limited, for example, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, inorganic powders Examples include the body. It is good also as a polymer type ultraviolet absorber.
  • ⁇ Matting agent> In the present invention, it is preferable to add a matting agent in order to impart film slipperiness.
  • any inorganic compound or organic compound may be used as long as it has heat resistance at the time of melting without impairing the transparency of the obtained film.
  • talc mica, zeolite, diatomaceous earth, Calcined siliceous clay, kaolin, sericite, bentonite, smectite, clay, silica, quartz powder, glass beads, glass powder, glass flakes, milled fiber, wollastonite, boron nitride, boron carbide, titanium boride, magnesium carbonate, Heavy calcium carbonate, light calcium carbonate, calcium silicate, aluminum silicate, magnesium silicate, magnesium aluminosilicate, alumina, silica, zinc oxide, titanium dioxide, iron oxide, magnesium oxide, zirconium oxide, aluminum hydroxide, calcium hydroxide, water Magne oxide Um, calcium sulfate, barium sulfate, silicon carbide, aluminum carbide, titanium carbide, aluminum nitride
  • High transparency and slipperiness can be achieved at the same time by using particles having different particle sizes and shapes (for example, needle shape and spherical shape).
  • silicon dioxide is particularly preferably used since it has a refractive index close to that of cellulose ester and is excellent in transparency (haze).
  • silicon dioxide examples include Aerosil 200V, Aerosil R972V, Aerosil R972, R974, R812, 200, 300, R202, OX50, TT600, NAX50 (manufactured by Nippon Aerosil Co., Ltd.), Sea Hoster KEP-10, Sea Hoster KEP- 30, Seahoster KEP-50 (above, manufactured by Nippon Shokubai Co., Ltd.), Silo Hovic 100 (manufactured by Fuji Silysia), Nip Seal E220A (manufactured by Nippon Silica Industry), Admafine SO (manufactured by Admatechs), etc. Goods etc. can be preferably used.
  • the shape of the particles can be used without particular limitation, such as indefinite shape, needle shape, flat shape, spherical shape, etc. However, the use of spherical particles is preferable because the transparency of the resulting film can be improved.
  • the particle size is preferably smaller than the wavelength of visible light, and more preferably 1 ⁇ 2 or less of the wavelength of visible light. . If the size of the particles is too small, the slipperiness may not be improved, so the range of 80 nm to 180 nm is particularly preferable.
  • the particle size means the size of the aggregate when the particle is an aggregate of primary particles. Moreover, when a particle is not spherical, it means the diameter of a circle corresponding to the projected area.
  • a hydrogen bonding solvent can be added for the purpose of reducing the melt viscosity.
  • the hydrogen bonding solvent is J.I. N.
  • the glass transition temperature of the cellulose resin used alone is higher than that.
  • the melting temperature of the cellulose resin composition can be lowered by the addition of a hydrogen bonding solvent, or the melt viscosity of the cellulose resin composition containing a hydrogen bonding solvent can be lowered at the same melting temperature as the cellulose resin. .
  • the brittleness index is determined based on the criterion of whether or not it is “an optical film that does not cause ductile fracture”.
  • the ductile fracture is a fracture that occurs due to a stress that is greater than the strength of a certain material, and is defined as a fracture that involves significant elongation or drawing of the material before the final fracture.
  • whether or not it is “an optical film that does not cause ductile fracture” is evaluated by the fact that no breakage such as breakage is observed even when a large stress is applied such that the film is folded in two. . (This evaluation is called folding resistance.) If it is an optical film that does not cause ductile fracture even when such a large stress is applied, it is used as a polarizing plate protective film for an enlarged liquid crystal display device. Even in such a case, it becomes possible to sufficiently reduce problems such as breakage at the time of manufacture. Further, even when the optical film is used after being peeled off once, the breakage does not occur. It can sufficiently cope with thinning.
  • the folding resistance is 50 to 100 times, even when used as a polarizing plate protective film for a large-sized liquid crystal display device, it is possible to sufficiently reduce problems such as breakage during manufacturing. Furthermore, even when the optical film is used after being pasted once and then peeled off again, no breakage occurs, and the optical film can be sufficiently reduced in thickness.
  • the folding resistance is less than 50 times, breakage is likely to occur during production and the reworkability is poor.
  • it in order to exceed 100 times, it can be achieved by increasing the film thickness, but it cannot cope with the thinning of the liquid crystal display device. Therefore, in the case of a thin film, 50 to 100 times is appropriate.
  • the tension softening point is used as an index of heat resistance.
  • the tension softening point is 105 ° C. to 145 ° C., it can be judged that sufficient heat resistance is exhibited. In particular, it is more preferable to control at 110 ° C. to 130 ° C.
  • the tension softening point is less than 105 ° C., the heat generated by the backlight light source cannot be withstood, and the film is likely to be deformed or light leakage is likely to occur.
  • the tension softening point is suitably from 105 ° C to 145 ° C.
  • the optical film is cut out at 120 mm (length) ⁇ 10 mm (width).
  • the temperature can be raised at a rate of 30 ° C./min while pulling with a tension of 10 N, and the temperature at the time when the pressure reaches 9 N is measured three times, and the average value can be obtained.
  • the optical film preferably has a glass transition temperature (Tg) of 110 ° C. or higher. More preferably, it is 120 ° C. or higher. Especially preferably, it is 150 degreeC or more.
  • Tg glass transition temperature
  • the glass transition temperature referred to here is an intermediate value determined according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) at a heating rate of 20 ° C./min. Point glass transition temperature (Tmg).
  • Haze value is used as an index for judging the transparency of the optical film in the present invention.
  • liquid crystal display devices used outdoors are required to have sufficient brightness and high contrast even in a bright place. Therefore, the haze value is required to be 1.0% or less, and 0.5% or less. More preferably.
  • the optical film of the present invention containing the acrylic resin (A) and the cellulose ester resin (B), high transparency can be obtained, but when using acrylic particles for the purpose of improving another physical property.
  • acrylic particles for the purpose of improving another physical property.
  • the particle diameter and addition amount of acrylic particles (C) should be kept within the above range, and the surface roughness of the film contact portion during film formation should be reduced. Is also effective.
  • the hygroscopicity of the optical film in the present invention is evaluated by dimensional change with respect to humidity change.
  • the following method is used as an evaluation method of dimensional change with respect to humidity change.
  • the dimensional change rate (%) is expressed by the following formula.
  • Dimensional change rate (%) [(a1-a2) / a1] ⁇ 100 a1: Distance before heat treatment a2: Distance after heat treatment
  • a1 Distance before heat treatment
  • a2 Distance after heat treatment
  • the optical film of the present invention preferably has a defect with a diameter of 5 ⁇ m or more in the film plane of 1 piece / 10 cm square or less. More preferably, it is 0.5 piece / 10 cm square or less, more preferably 0.1 piece / 10 cm square or less.
  • the diameter of the defect indicates the diameter when the defect is circular, and when it is not circular, the range of the defect is determined by observing with a microscope according to the following method, and the maximum diameter (diameter of circumscribed circle) is determined.
  • the range of the defect is the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope when the defect is a bubble or a foreign object.
  • the defect is a change in the surface shape, such as transfer of a roll flaw or an abrasion
  • the size is confirmed by observing the defect with the reflected light of a differential interference microscope.
  • the film When the number of defects is more than 1/10 cm square, for example, when a tension is applied to the film during processing in a later process, the film may be broken with the defect as a starting point and productivity may be reduced. Moreover, when the diameter of a defect becomes 5 micrometers or more, it can confirm visually by polarizing plate observation etc., and when used as an optical member, a bright spot may arise.
  • the coating agent may not be formed uniformly, resulting in defects (coating defects).
  • the defect is a void in the film (foaming defect) generated due to the rapid evaporation of the solvent in the drying process of the solution casting, a foreign matter in the film forming stock solution, or a foreign matter mixed in the film forming. This refers to the foreign matter (foreign matter defect) in the film.
  • the optical film of the present invention preferably has a breaking elongation in at least one direction of 10% or more, more preferably 20% or more in the measurement based on JIS-K7127-1999.
  • the upper limit of the elongation at break is not particularly limited, but is practically about 250%. In order to increase the elongation at break, it is effective to suppress defects in the film caused by foreign matter and foaming.
  • the thickness of the optical film of the present invention is preferably 20 ⁇ m or more. More preferably, it is 30 ⁇ m or more.
  • the optical film of the present invention preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film.
  • the optical film of the present invention can be particularly preferably used as a polarizing plate protective film for a large-sized liquid crystal display device or a liquid crystal display device for outdoor use as long as the above physical properties are satisfied.
  • Method for producing optical film by melt casting method comprises melting an acrylic resin (A) and a cellulose ester resin (B) in a mass ratio of 95: 5 to 30:70, extruding them from a die, and placing them on a cooling roll. It is the manufacturing method of the optical film to cast.
  • composition constituting the optical film comprising the acrylic resin (A), cellulose ester resin (B), and other additives used for melt extrusion is usually preferably kneaded in advance and pelletized.
  • Pelletization may be performed by a known method. For example, dry acrylic resin (A), dry cellulose ester resin (B) and other additives are fed to an extruder with a feeder and mixed using a single-screw or twin-screw extruder. It can be smelted, extruded from a die into a strand, cooled with water or air, and cut.
  • dry acrylic resin (A) dry cellulose ester resin (B) and other additives are fed to an extruder with a feeder and mixed using a single-screw or twin-screw extruder. It can be smelted, extruded from a die into a strand, cooled with water or air, and cut.
  • cellulose ester easily absorbs moisture, it is preferable to dry it at 70 to 140 ° C. for 3 hours or more with a dehumidifying hot air dryer or a vacuum dryer so that the moisture content is 200 ppm or less, and further 100 ppm or less.
  • Additives may be fed into the extruder and fed into the extruder, or may be fed through individual feeders.
  • a small amount of an additive such as an antioxidant is preferably mixed in advance in order to mix uniformly.
  • Mixing of the antioxidants may be performed by mixing solids, or if necessary, the antioxidant is dissolved in a solvent, and the acrylic resin (A) and cellulose ester resin (B) are impregnated and mixed. Or may be mixed by spraying.
  • a vacuum nauter mixer is preferable because it can dry and mix simultaneously. Moreover, when touching with air, such as an exit from a feeder part or die
  • the extruder is preferably processed at as low a temperature as possible so as to be able to be pelletized so that the shear force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above. It is also possible to feed the raw material powder directly to the extruder with a feeder and form a film as it is without pelletization.
  • the pellets produced are extruded using a single-screw or twin-screw extruder, the melting temperature Tm during extrusion is set to about 200 to 300 ° C., filtered through a leaf disk type filter or the like to remove foreign matter, and then the T-die The film is coextruded into a film, solidified on a cooling roll, and cast while pressing with an elastic touch roll.
  • Tm is the temperature of the die exit portion of the extruder.
  • defects are also referred to as die lines, but in order to reduce surface defects such as die lines, it is preferable to have a structure in which the resin retention portion is minimized in the piping from the extruder to the die. . It is preferable to use a die that has as few scratches as possible inside the lip.
  • the inner surface that comes into contact with the molten resin is preferably subjected to surface treatment that makes it difficult for the molten resin to adhere to the surface by reducing the surface roughness or using a material with low surface energy.
  • a hard chrome plated or ceramic sprayed material is polished so that the surface roughness is 0.2 S or less.
  • the cooling roll of the present invention is not particularly limited, but is a roll having a structure in which a heat medium or a coolant that can be controlled in temperature flows through a highly rigid metal roll, and the size is not limited. It is sufficient that the film is large enough to cool the film, and the diameter of the cooling roll is usually about 100 mm to 1 m.
  • the surface material of the cooling roll includes carbon steel, stainless steel, aluminum, titanium and the like. Further, in order to increase the surface hardness or improve the releasability from the resin, it is preferable to perform a surface treatment such as hard chrome plating, nickel plating, amorphous chrome plating, ceramic spraying, or the like.
  • the surface roughness of the cooling roll surface is preferably 0.1 ⁇ m or less in terms of Ra, and more preferably 0.05 ⁇ m or less.
  • the smoother the roll surface the smoother the surface of the resulting film.
  • the surface processed is further polished to have the above-described surface roughness.
  • Examples of the elastic touch roll of the present invention include JP-A-03-124425, JP-A-08-224772, JP-A-07-1000096, JP-A-10-272676, WO97-028950, JP-A-11-235747, JP-A-11-235747.
  • a thin-film metal sleeve-covered silicon rubber roll can be used.
  • the film obtained as described above is further stretched 1.01 to 3.0 times in at least one direction after passing through the step of contacting the cooling roll.
  • the brittleness of the present invention can be realized by stretching.
  • the film is stretched 1.1 to 2.0 times in both the longitudinal (film transport direction) and lateral (width direction) directions.
  • the stretching method a known roll stretching machine or tenter can be preferably used.
  • the optical film also serves as a polarizing plate protective film, it is preferable to stack the polarizing film in a roll form by setting the stretching direction to the width direction.
  • the slow axis of the optical film becomes the width direction by stretching in the width direction.
  • the draw ratio is 1.1 to 3.0 times, preferably 1.2 to 1.5 times
  • the drawing temperature is usually Tg to Tg + 50 ° C. of the resin constituting the film, preferably Tg to Tg + 50 ° C. In the temperature range.
  • the stretching is preferably performed under a uniform temperature distribution controlled in the longitudinal direction or the width direction.
  • the temperature is preferably within ⁇ 2 ° C, more preferably within ⁇ 1 ° C, and particularly preferably within ⁇ 0.5 ° C.
  • the film may be contracted in the longitudinal direction or the lateral direction for the purpose of adjusting the retardation of the optical film produced by the above method and reducing the dimensional change rate.
  • Uniformity in the slow axis direction is also important, and the angle is preferably ⁇ 5 to + 5 ° with respect to the film width direction, more preferably in the range of ⁇ 1 to + 1 °, particularly ⁇ 0.
  • a range of 5 to + 0.5 ° is preferable, and a range of ⁇ 0.1 to + 0.1 ° is particularly preferable.
  • the height from the top of the adjacent mountain to the bottom of the valley is 300 nm or more, and there is no streak continuous in the longitudinal direction with an inclination of 300 nm / mm or more.
  • the shape of the streak was measured using a surface roughness meter. Specifically, using a Mitutoyo SV-3100S4, a stylus (diamond needle) having a tip shape of a cone of 60 ° and a tip curvature radius of 2 ⁇ m was used. The film is scanned in the width direction of the film at a measurement speed of 1.0 mm / sec while applying a load of 0.75 mN, and a cross-sectional curve is measured with a Z-axis (thickness direction) resolution of 0.001 ⁇ m.
  • the streak height reads the vertical distance (H) from the top of the mountain to the bottom of the valley.
  • the slope of the streak is obtained by reading the horizontal distance (L) from the top of the mountain to the bottom of the valley and dividing the vertical distance (H) by the horizontal distance (L).
  • the cleaning device there are no particular restrictions on the cleaning device. For example, there are a method of niping a brush roll, a water absorbing roll, an adhesive roll, a wiping roll, an air blow method of blowing clean air, a laser incinerator, or a combination thereof. is there.
  • the optical film of the present invention is preferably a long film.
  • the optical film has a thickness of about 100 m to 5000 m, and is usually in the form of a roll.
  • the film width is preferably 1.3 to 4 m, more preferably 1.4 to 2 m.
  • the film thickness of the optical film of the present invention is not particularly limited, but when used for a polarizing plate protective film described later, it is preferably 20 to 200 ⁇ m, more preferably 25 to 100 ⁇ m, and 30 to 80 ⁇ m. It is particularly preferred.
  • a polarizing plate When using the optical film of this invention as a protective film for polarizing plates, a polarizing plate can be produced by a general method. It is preferable that an adhesive layer is provided on the back side of the optical film of the present invention, and is bonded to at least one surface of a polarizer produced by immersion and stretching in an iodine solution.
  • the optical film of the present invention may be used, or another polarizing plate protective film may be used.
  • a commercially available cellulose ester film for example, Konica Minoltack KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC8UE, KC4FR-4, KC4FR-3, KC4FR-3, KC4FR-4 -1, KC8UY-HA, KC8UX-RHA, manufactured by Konica Minolta Opto Co., Ltd.) and the like are preferably used.
  • a polarizer which is a main component of a polarizing plate, is an element that allows only light of a plane of polarization in a certain direction to pass.
  • a typical polarizer currently known is a polyvinyl alcohol-based polarizing film, which is polyvinyl alcohol.
  • iodine is dyed on a system film and one in which dichroic dye is dyed.
  • the polarizer is formed by forming a polyvinyl alcohol aqueous solution into a film and dyeing the film by uniaxial stretching or dyeing or uniaxially stretching, and then performing a durability treatment with a boron compound.
  • a pressure-sensitive adhesive having a storage elastic modulus at 25 ° C. in the range of 1.0 ⁇ 10 4 Pa to 1.0 ⁇ 10 9 Pa in at least a part of the pressure-sensitive adhesive layer is used. It is preferable to use a curable pressure-sensitive adhesive that forms a high molecular weight body or a crosslinked structure by various chemical reactions after the pressure-sensitive adhesive is applied and bonded.
  • urethane adhesives examples include, for example, urethane adhesives, epoxy adhesives, aqueous polymer-isocyanate adhesives, curable adhesives such as thermosetting acrylic adhesives, moisture-curing urethane adhesives, polyether methacrylate types
  • curable adhesives such as thermosetting acrylic adhesives, moisture-curing urethane adhesives, polyether methacrylate types
  • anaerobic pressure-sensitive adhesives such as ester-based methacrylate type and oxidized polyether methacrylate, cyanoacrylate-based instantaneous pressure-sensitive adhesives, and acrylate-peroxide-based two-component instantaneous pressure-sensitive adhesives.
  • the above-mentioned pressure-sensitive adhesive may be a one-component type or a type in which two or more components are mixed before use.
  • the above-mentioned pressure-sensitive adhesive may be a solvent system using an organic solvent as a medium, or an aqueous system such as an emulsion type, a colloidal dispersion type, or an aqueous solution type that is a medium containing water as a main component. It may be a solvent type.
  • concentration of the pressure-sensitive adhesive liquid may be appropriately determined depending on the film thickness after adhesion, the coating method, the coating conditions, and the like, and is usually 0.1 to 50% by mass.
  • polarizing plate By incorporating the polarizing plate bonded with the optical film of the present invention into a liquid crystal display device, it is possible to produce various liquid crystal display devices with excellent visibility, but particularly outdoors such as large liquid crystal display devices and digital signage. It is preferably used for a liquid crystal display device for use.
  • the polarizing plate according to the present invention is bonded to a liquid crystal cell via the adhesive layer or the like.
  • the polarizing plate according to the present invention includes a reflective type, a transmissive type, a transflective type LCD or a TN type, an STN type, an OCB type, a HAN type, a VA type (PVA type, MVA type), an IPS type (including an FFS type), and the like. It is preferably used in various drive LCDs. In particular, in a large-screen display device having a screen of 30 or more, especially 30 to 54, there is no white spot at the periphery of the screen and the effect is maintained for a long time.
  • Example 1 [Preparation of acrylic resin] The following acrylic resins A2-A7 and MS1,2 were prepared by known methods.
  • the following commercially available acrylic resins were used.
  • compositions were further dried while being mixed in a vacuum nauter mixer at 80 ° C. and 1 Torr for 3 hours.
  • the dried composition was melt-mixed at 235 ° C. using a twin-screw extruder and pelletized.
  • the above pellets are laminated with a T-die using each single-screw extruder, melted and extruded into a film at a melting temperature of 240 ° C. on a first cooling roll having a surface temperature of 90 ° C., and a total film thickness of 150 ⁇ m.
  • a cast film of was obtained by extrusion.
  • the film was pressed on the first cooling roll with an elastic touch roll having a 2 mm thick metal surface.
  • this film was stretched 1.3 times in the conveying direction at 155 ° C. (Tg 125 ° C. of the composition) by a stretching machine using a difference in roll peripheral speed, and further, a preheating zone, a stretching zone, a holding zone, a cooling zone (each zone). Introduced in a tenter which is a stretching machine in the width direction having a neutral zone for ensuring heat insulation between the zones in between, after stretching 1.3 times at 155 ° C. in the width direction, 30 The film was cooled to 0 ° C., then released from the clip, and the clip holding part was cut off to obtain an optical film 1 having a width of 2500 mm and a film thickness of 80 ⁇ m.
  • optical film 1 The production of the optical film 1 was the same except that the types of acrylic resin (A) and cellulose ester resin (B), molecular weight, composition ratio, presence / absence of plasticizer, stretching conditions, and film thickness were changed as shown in Table 1. Thus, optical films 2 to 30 of the present invention and comparative examples were obtained.
  • Plasticizer 1 DOA (dioctyl adipate)
  • the glass transition temperature was measured at a rate of temperature increase of 20 ° C./min using a differential scanning calorimeter (DSC-7 manufactured by Perkin Elmer). JIS K7121 (1987) The intermediate-point glass transition temperature (Tmg) (° C.) determined according to (Tension softening point) The following evaluation was performed using a Tensilon tester (ORIENTEC, RTC-1225A) in an atmosphere of 23 ° C. and 55% RH.
  • DSC-7 differential scanning calorimeter
  • the optical film was cut out at 120 mm (length) x 10 mm (width) and continuously heated at a heating rate of 30 ° C./min while pulling with a tension of 10 N, and the temperature (° C.) at the time when it reached 9 N was measured three times. And put out the average. (Folding resistance)
  • the optical film is cut out at 120 mm (length) ⁇ 10 mm (width), conditioned for 4 hours in a room conditioned at a temperature of 23 ° C. and a relative humidity of 55% RH, and then cut by bending according to ISO877 6 / 2-1988. The number of round-trips was determined.
  • a 120- ⁇ m-thick long roll polyvinyl alcohol film was immersed in 100 parts by mass of an aqueous solution containing 1 part by mass of iodine and 4 parts by mass of boric acid, and stretched in the transport direction 5 times at 50 ° C. to produce a polarizer.
  • the optical film 1 produced in Example 1 was subjected to a corona treatment using an acrylic adhesive on one side of the polarizer, and then bonded.
  • Konica Minolta Tack KC8UCR-5 manufactured by Konica Minolta Opto Co., Ltd.
  • Konica Minolta Opto Co., Ltd. which is an alkali saponified retardation film
  • polarizing plates P2 to P30 were produced using the optical films 2 to 30.
  • Reworkability In an atmosphere of 23 ° C. and 55% RH, the produced polarizing plate is cut into a square with a size of 20 cm ⁇ 20 cm and bonded to a glass substrate using an acrylic adhesive. Next, the bonded polarizing plate is peeled off from the glass with a strength of 5N from the corner. This operation is performed with 100 polarizing plates for one type of sample, and the number of polarizing plates that are not peeled off completely is counted. Reworkability is ranked according to the following criteria.
  • the rework property is ⁇ level or more, but it is preferably ⁇ level or more, ⁇ A level is particularly preferred.
  • the optical film of the present invention is preferable in terms of reworkability, hardly leaks light, and is clearly improved over the comparison.
  • Example 2 Preparation of acrylic particles (C1)> A reactor with a reflux condenser with an internal volume of 60 liters was charged with 38.2 liters of ion-exchanged water and 111.6 g of sodium dioctylsulfosuccinate, and the temperature was raised to 75 ° C. in a nitrogen atmosphere while stirring at 250 rpm. The effect of oxygen was virtually eliminated. 0.36 g of APS was added, and after stirring for 5 minutes, a monomer mixture consisting of 1657 g of MMA, 21.6 g of BA, and 1.68 g of ALMA was added all at once, and after the exothermic peak was detected, the mixture was held for another 20 minutes to polymerize the innermost hard layer. Completed.
  • a small amount of the polymer latex thus obtained was collected, and the flat particle size was determined by the absorbance method, which was 0.10 ⁇ m.
  • the remaining latex was put into a 3% by mass sodium sulfate warm aqueous solution, salted out and coagulated, and then dried after repeated dehydration and washing to obtain acrylic particles (C1) having a three-layer structure.
  • the acrylic resin-containing film 2-3 was prepared in the same manner as 2-2 by adding the following ultraviolet absorber simultaneously with other resins.
  • Tinuvin 109 (manufactured by Ciba Japan Co., Ltd.) 1.5 parts by mass Tinuvin 171 (manufactured by Ciba Japan Co., Ltd.) 0.7 parts by mass
  • the solvent content of these optical films is 0.01% by mass. % Or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

 本発明は、吸湿性、耐熱性さらには脆性を同時に改善した光学フィルムを提供することを目的とし、もって、光漏れが発生しにくく、リワーク性の良い光学フィルム、その製造方法、偏光板および液晶表示装置を提供することを目的とする。  本発明の目的は、アクリル樹脂(A)とセルロースエステル樹脂(B)を95:5から30:70の質量比で、前記アクリル樹脂(A)の重量平均分子量Mwが110000以上1000000以下であり、該セルロースエステル樹脂(B)のアシル基総置換度(T)が2.0以上3.0以下、炭素数が3以上、7以下のアシル基の置換度が1.2以上3.0以下であり、該セルロースエステル樹脂(B)の重量平均分子量Mwが75000以上300000以下であり、張力軟化点が105~145℃、耐折度が50~100回で、溶融流延製膜方法によって製造されたことを特徴とする光学フィルムによって達成された。

Description

光学フィルム、光学フィルムの製造方法、偏光板および液晶表示装置
 本発明は、光学フィルム、光学フィルムの製造方法、偏光板および液晶表示装置に関し、より詳しくは、光漏れが発生しにくく、リワーク性の良い光学フィルム、偏光板および液晶表示装置に関する。
 液晶表示装置は、液晶テレビやパソコンの液晶ディスプレイ等の用途で、需要が拡大している。
 通常、液晶表示装置は、透明電極、液晶層、カラーフィルター等をガラス板で挟み込んだ液晶セルと、その両側に設けられた2枚の偏光板で構成されており、それぞれの偏光板は、偏光子(偏光子、偏光フィルムともいう)を2枚の光学フィルム(偏光板保護フィルム)で挟んだ構成となっている。この偏光板保護フィルムとしては、通常、セルローストリアセテートフィルムが用いられている。
 一方、近年の技術の進歩により、液晶表示装置の大型化が加速するとともに、液晶表示装置の用途が多様化している。例えば、街頭や店頭に設置される大型ディスプレイとしての利用や、デジタルサイネージと呼ばれる表示機器を用いた公共の場における広告用ディスプレイへの利用等が挙げられる。
 このような用途においては、屋外での利用が想定されるため、偏光フィルムの吸湿による劣化が問題になり、偏光板保護フィルムにはより高い耐湿性が求められている。しかしながら、従来用いられているセルローストリアセテートフィルム等のセルロースエステルフィルムでは十分な耐湿性を得ることは困難であった。
 耐湿性を改善するための技術として、アクリル樹脂に耐衝撃性アクリルゴム-メチルメタクリレート共重合体やブチル変性アセチルセルロースを60~90/40~10の量比で組み合わせる方法が提案されたが(特許文献1)、この方法では、アクリル樹脂フィルムのもつ、割れやすく脆い性質(脆性)が顕著であり、フィルム製造時やリワーク工程での破断など、特に大型の液晶表示装置用の光学フィルムを安定して製造することが困難であった。
 また、ポリメチルメタクリレート(以下、PMMAと略す)に代表されるアクリル樹脂フィルムは、一般に耐熱性に乏しく高温下での使用、長期的な使用などにおいて、形状が変わるという問題もあった。
 この問題は、フィルム単体での物性としてだけではなく、このようなフィルムを用いた偏光板、表示装置においても重要な課題であった。すなわち、液晶表示装置において、フィルムの変形に伴い偏光板がカールするため、パネル全体が反ってしまうという問題が発生した。
 フィルム変形による問題はバックライト側だけでなく、視認側表面の位置で使用した際にも発生した。
 セルロースエステルフィルムに対して、可塑剤や光学特性の制御のためにアクリル樹脂を混合する技術も提案されている(特許文献2)。しかしながら、ここで開示されているアクリル樹脂の分子量は小さいため、十分な耐湿性は得られず、高湿環境下においては偏光板の劣化や光学フィルムの光学値の変化等の問題による光漏れの改善はできなかった。
 特許文献3では、アクリル樹脂とセルロースエステル樹脂を混合して、溶融流延法で製造したフィルムが提案されている。この方法でも、脆性を十分には改善することができなかった。
 特許文献3には、可塑剤を添加した例も記載されているが、本来必要な耐熱性が悪くなってしまい、脆性と耐熱性を両立することはできていなかった。
特開平5-119217号公報 特開2003-12859号公報 特開2008-88417号公報
 本発明は、上記の課題に鑑み、吸湿性、耐熱性さらには脆性を同時に改善した光学フィルムを提供することを目的とし、もって、光漏れが発生しにくく、リワーク性の良い光学フィルム、その製造方法、偏光板および液晶表示装置を提供することを目的とする。
 本発明の上記目的は、以下の構成により達成することができる。
 1.アクリル樹脂(A)とセルロースエステル樹脂(B)を95:5から30:70の質量比で、前記アクリル樹脂(A)の重量平均分子量Mwが110000以上1000000以下であり、該セルロースエステル樹脂(B)のアシル基総置換度(T)が2.0以上3.0以下、炭素数が3以上、7以下のアシル基の置換度が1.2以上3.0以下であり、該セルロースエステル樹脂(B)の重量平均分子量Mwが75000以上300000以下であり、張力軟化点が105~145℃、耐折度が50~100回で、溶融流延製膜方法によって製造されたことを特徴とする光学フィルム。
 2.前記1に記載の光学フィルムが、搬送方向または幅手方向の少なくともいずれかの方向に延伸して製造されるものであり、その延伸温度が延伸前の光学フィルムのTg~Tg+50℃であることを特徴とする光学フィルムの製造方法。
 3.前記1に記載の光学フィルムを有することを特徴とする偏光板。
 4.前記3に記載の偏光板を有することを特徴とする液晶表示装置。
 本発明により、吸湿性、耐熱性さらには脆性を同時に改善した光学フィルムを提供でき、もって、光漏れが発生しにくく、リワーク性の良い光学フィルム、その製造方法、偏光板および液晶表示装置を提供することができる。
本発明に係る光学フィルムの製造方法を実施する装置の1つの実施形態を示す概略フローシートである。
 以下、本発明を実施するための最良の形態について詳細に説明する。
 本発明の光学フィルムは、アクリル樹脂(A)とセルロースエステル樹脂(B)を95:5から30:70の質量比で、前記アクリル樹脂(A)の重量平均分子量Mwが110000以上1000000以下であり、該セルロースエステル樹脂(B)のアシル基総置換度(T)が2.0以上3.0以下、炭素数が3以上、7以下のアシル基の置換度が1.2以上3.0以下であり、該セルロースエステル樹脂(B)の重量平均分子量Mwが75000以上300000以下を構成要件とし、その性質として、張力軟化点が105~145℃、耐折度が50~100回であり、その製造方法は溶融流延製膜方法であることを特徴とする。
 <アクリル樹脂(A)>
 本発明に用いられるアクリル樹脂には、メタクリル樹脂も含まれる。樹脂としては特に制限されるものではないが、メチルメタクリレート単位50~99質量%、およびこれと共重合可能な他の単量体単位1~50質量%からなるものが好ましい。
 共重合可能な他の単量体としては、アルキル数の炭素数が2~18のアルキルメタクリレート、アルキル数の炭素数が1~18のアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α-メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、グルタル酸無水物等が挙げられ、これらは単独で、あるいは2種以上の単量体を併用して用いることができる。
 これらの中でも、共重合体の耐熱分解性や流動性の観点から、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、s-ブチルアクリレート、2-エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn-ブチルアクリレートが特に好ましく用いられる。
 本発明の光学フィルムに用いられるアクリル樹脂(A)は、特に光学フィルムとしての脆性の改善およびセルロースエステル樹脂(B)と相溶した際の透明性の改善の観点で、重量平均分子量(Mw)が120000以上1000000以下である。
 アクリル樹脂(A)の重量平均分子量(Mw)は、130000~300000の範囲内であることが最も好ましい。
 本発明のアクリル樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下GPCと略す)により測定することができる。測定条件は以下の通りである。
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=2,800,000~500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
 本発明におけるアクリル樹脂(A)の製造方法としては、特に制限は無く、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いても良い。ここで、重合開始剤としては、通常のパーオキサイド系およびアゾ系のものを用いることができ、また、レドックス系とすることもできる。重合温度については、懸濁または乳化重合では30~100℃、塊状または溶液重合では80~160℃で実施しうる。得られた共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。
 本発明に係るアクリル樹脂としては、市販のものも使用することができる。例えば、デルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80,BR83,BR85,BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等が挙げられる。アクリル樹脂は2種以上を併用することもできる。
 <セルロースエステル樹脂(B)>
 本発明のセルロースエステル樹脂(B)は、特に脆性の改善やアクリル樹脂(A)と相溶させたときに透明性の観点から、アシル基の総置換度(T)が2.0~3.0、炭素数が3~7のアシル基の置換度が1.2~3.0であり、炭素数3~7のアシル基の置換度は、2.0~3.0であることが好ましい。即ち、本発明のセルロースエステル樹脂は炭素数が3~7のアシル基により置換されたセルロースエステル樹脂であり、具体的には、プロピオニル、ブチリル等が好ましく用いられるが、特にプロピオニル基が好ましく用いられる。
 セルロースエステル樹脂(B)の、アシル基の総置換度が2.0を下回る場合、即ち、セルロースエステル分子の2,3,6位の水酸基の残度が1.0を上回る場合には、アクリル樹脂(A)とアクリル樹脂(B)が十分に相溶せず光学フィルムとして用いる場合にヘーズが問題となる。
 また、アシル基の総置換度が2.0以上であっても、炭素数が3~7のアシル基の置換度が1.2を下回る場合は、やはり十分な相溶性が得られないか、脆性が低下することとなる。例えば、アシル基の総置換度が2.0以上の場合であっても、炭素数2のアシル基、即ちアセチル基の置換度が高く、炭素数3~7のアシル基の置換度が1.2を下回る場合は、相溶性が低下しヘーズが上昇する。
 また、アシル基の総置換度が2.0以上の場合であっても、炭素数8以上のアシル基の置換度が高く、炭素数3~7のアシル基の置換度が1.2を下回る場合は、脆性が劣化し、所望の特性が得られない。
 本発明のセルロースエステル樹脂(B)のアシル置換度は、総置換度(T)が2.0~3.0であり、炭素数が3~7のアシル基の置換度が1.2~3.0であれば問題ないが、炭素数が3~7以外のアシル基、即ち、アセチル基や炭素数が8以上のアシル基の置換度の総計が1.3以下とされることが好ましい。
 また、セルロースエステル樹脂(B)のアシル基の総置換度(T)は、2.5~3.0の範囲であることがさらに好ましい。
 本発明において前記アシル基は、脂肪族アシル基であっても、芳香族アシル基であってもよい。脂肪族アシル基の場合は、直鎖であっても分岐していても良く、さらに置換基を有してもよい。本発明におけるアシル基の炭素数は、アシル基の置換基を包含するものである。
 上記セルロースエステル樹脂(B)が、芳香族アシル基を置換基として有する場合、芳香族環に置換する置換基Xの数は0~5個であることが好ましい。この場合も、置換基を含めた炭素数が3~7であるアシル基の置換度が1.2~3.0となるように留意が必要である。例えば、ベンゾイル基は炭素数が7になる為、炭素を含む置換基を有する場合は、ベンゾイル基としての炭素数は8以上となり、炭素数が3~7のアシル基には含まれないこととなる。
 さらに、芳香族環に置換する置換基の数が2個以上の時、互いに同じでも異なっていてもよいが、また、互いに連結して縮合多環化合物(例えばナフタレン、インデン、インダン、フェナントレン、キノリン、イソキノリン、クロメン、クロマン、フタラジン、アクリジン、インドール、インドリンなど)を形成してもよい。
 上記のようなセルロースエステル樹脂(B)においては、炭素数3~7の脂肪族アシル基の少なくとも1種を有する構造を有することが、本発明のセルロース樹脂に用いる構造として用いられる。
 本発明に係るセルロースエステル樹脂(B)の置換度は、アシル基の総置換度(T)が2.0~3.0、炭素数が3~7のアシル基の置換度が1.2~3.0である。
 また、炭素数が3~7のアシル基以外、即ちアセチル基と炭素数が8以上のアシル基の置換度の総和が1.3以下であることが好ましい構造である。
 本発明に係るセルロースエステル樹脂(B)としては、特にセルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートベンゾエート、セルロースプロピオネート、セルロースブチレートから選ばれる少なくとも一種であることが好ましく、即ち、炭素原子数3または4のアシル基を置換基として有するものが好ましい。
 これらの中で特に好ましいセルロースエステル樹脂は、セルロースアセテートプロピオネートやセルロースプロピオネートである。
 アシル基で置換されていない部分は通常水酸基として存在しているものである。これらは公知の方法で合成することが出来る。
 なお、アセチル基の置換度や他のアシル基の置換度は、ASTM-D817-96に規定の方法により求めたものである。
 本発明に係るセルロースエステル樹脂の重量平均分子量(Mw)は、特にアクリル樹脂(A)との相溶性、脆性の改善の観点から75000以上であり、75000~300000の範囲であることが好ましく、100000~240000の範囲内であることがさらに好ましく、160000~240000のものが特に好ましい。セルロースエステル樹脂の重要平均分子量(Mw)が75000を下回る場合は、耐熱性や脆性の改善効果が十分ではなく、本発明の効果が得られない。本発明では2種以上のセルロース樹脂を混合して用いることもできる。
 本発明の光学フィルムにおいて、アクリル樹脂(A)とセルロースエステル樹脂(B)は、95:5~30:70の質量比で、かつ相溶状態で含有されるが、好ましくは95:5~50:50であり、さらに好ましくは90:10~60:40である。
 アクリル樹脂(A)とセルロースエステル樹脂(B)の質量比が、95:5よりもアクリル樹脂(A)が多くなると、セルロースエステル樹脂(B)による効果が十分に得られず、同質量比が30:70よりもアクリル樹脂が少なくなると、耐湿性が不十分となる。
 本発明の光学フィルムにおいては、アクリル樹脂(A)とセルロースエステル樹脂(B)が相溶状態で含有されることが好ましい。
 アクリル樹脂(A)とセルロースエステル樹脂(B)が相溶状態となっているかどうかは、例えばガラス転移温度Tgにより判断することが可能である。
 例えば、両者の樹脂のガラス転移温度が異なる場合、両者の樹脂を混合したときは、各々の樹脂のガラス転移温度が存在するため混合物のガラス転移温度は2つ以上存在するが、両者の樹脂が相溶したときは、各々の樹脂固有のガラス転移温度が消失し、1つのガラス転移温度となって相溶した樹脂のガラス転移温度となる。
 尚、ここでいうガラス転移温度とは、示差走査熱量測定器(Perkin Elmer社製DSC-7型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)とする。
 アクリル樹脂(A)とセルロースエステル樹脂(B)は、それぞれ非結晶性樹脂であることが好ましく、いずれか一方が結晶性高分子、あるいは部分的に結晶性を有する高分子であってもよいが、本発明においてアクリル樹脂(A)とセルロースエステル樹脂(B)が相溶することで、非結晶性樹脂となることが好ましい。
 本発明の光学フィルムにおけるアクリル樹脂(A)の重量平均分子量(Mw)やセルロースエステル樹脂(B)の重量平均分子量(Mw)や置換度は、両者の樹脂の溶媒に対して溶解性の差を用いて、分別した後に、それぞれ測定することにより得られる。
 樹脂を分別する際には、いずれか一方にのみ溶解する溶媒中に相溶された樹脂を添加することで、溶解する樹脂を抽出して分別することができ、このとき加熱操作や環流を行ってもよい。これらの溶媒の組み合わせを2工程以上組み合わせて、樹脂を分別してもよい。溶解した樹脂と、不溶物として残った樹脂を濾別し、抽出物を含む溶液については、溶媒を蒸発させて乾燥させる操作によって樹脂を分別することができる。
 これらの分別した樹脂は、高分子の一般の構造解析によって特定することができる。本発明の光学フィルムが、アクリル樹脂(A)やセルロースエステル樹脂(B)以外の樹脂を含有する場合も同様の方法で分別することができる。
 また、相溶された樹脂の重量平均分子量(Mw)がそれぞれ異なる場合は、ゲルパーミエーションクロマトグラフィー(GPC)によって、高分子量物は早期に溶離され、低分子量物であるほど長い時間を経て溶離されるために、容易に分別可能であるとともに分子量を測定することも可能である。
 また、相溶した樹脂をGPCによって分子量測定を行うと同時に、時間毎に溶離された樹脂溶液を分取して溶媒を留去し乾燥した樹脂を、構造解析を定量的に行うことで、異なる分子量の分画毎の樹脂組成を検出することで、相溶されている樹脂をそれぞれ特定することができる。事前に溶媒への溶解性の差で分取した樹脂を、各々GPCによって分子量分布を測定することで、相溶されていた樹脂をそれぞれ検出することもできる。
 なお、本発明において、「アクリル樹脂(A)やセルロースエステル樹脂(B)を相溶状態で含有する」とは、各々の樹脂(ポリマー)を混合することで、結果として相溶された状態となることを意味しており、モノマー、ダイマー、あるいはオリゴマー等のアクリル樹脂の前駆体をセルロースエステル樹脂(B)に混合させた後に重合させることにより混合樹脂とされた状態は含まれないものとする。
 例えば、モノマー、ダイマー、あるいはオリゴマー等のアクリル樹脂の前駆体をセルロースエステル樹脂(B)に混合させた後に重合されることにより混合樹脂を得る工程は、重合反応が複雑であり、この方法で作成した樹脂は、反応の制御が困難であり、分子量の調整も困難となる。また、このような方法で樹脂を合成した場合は、グラフト重合、架橋反応や環化反応が生じることが多く、溶媒に溶解しいケースや、加熱により溶融できなくなることが多く、混合樹脂中におけるアクリル樹脂を溶離して重量平均分子量(Mw)を測定することも困難である為、物性をコントロールすることが難しく光学フィルムを安定に製造する樹脂として用いることはできない。
 本発明の光学フィルムは、光学フィルムとしての機能を損なわない限りは、アクリル樹脂(A)、セルロースエステル樹脂(B)以外の樹脂や添加剤を含有して構成されていても良い。
 アクリル樹脂(A)、セルロースエステル樹脂(B)以外の樹脂を含有する場合、添加される樹脂が相溶状態であっても、相溶せずに混合されていてもよい。
 本発明の光学フィルムにおけるアクリル樹脂(A)とセルロースエステル樹脂(B)の総質量は、光学フィルムの55質量%以上であることが好ましく、さらに好ましくは60質量%以上であり、特に好ましくは、70質量%以上である。
 アクリル樹脂(A)とセルロースエステル樹脂(B)以外の樹脂や添加剤を用いる際には、本発明の光学フィルムの機能を損なわない範囲で添加量を調整することが好ましい。
 <アクリル粒子(C)>
 本発明の光学フィルムは、アクリル粒子を含有してもよい。
 本発明に係るアクリル粒子(C)とは、前記アクリル樹脂(A)およびセルロースエステル樹脂(B)を相溶状態で含有する光学フィルム中に粒子の状態(非相溶状態ともいう)で存在するアクリル成分を表す。
 上記アクリル粒子(C)は、例えば、作製した光学フィルムを所定量採取し、溶媒に溶解させて攪拌し、充分に溶解・分散させたところで、アクリル粒子(C)の平均粒子径未満の孔径を有するPTFE製のメンブレンフィルターを用いて濾過し、濾過捕集された不溶物の重さが、光学フィルムに添加したアクリル粒子(C)の90質量%以上あることが好ましい。
 本発明に用いられるアクリル粒子(C)は特に限定されるものではないが、2層以上の層構造を有するアクリル粒子(C)であることが好ましく、特に下記多層構造アクリル系粒状複合体であることが好ましい。
 多層構造アクリル系粒状複合体とは、中心部から外周部に向かって最内硬質層重合体、ゴム弾性を示す架橋軟質層重合体、および最外硬質層重合体が、層状に重ね合わされてなる構造を有する粒子状のアクリル系重合体を言う。
 すなわち、多層構造アクリル系粒状複合体とは、中心部から外周部に向かって最内硬質層、架橋軟質層、および最外硬質層からなる多層構造アクリル系粒状複合体である。この3層コアシェル構造の多層構造アクリル系粒状複合体が好ましく用いられる。
 本発明に係るアクリル系樹脂組成物に用いられる多層構造アクリル系粒状複合体の好ましい態様としては、以下の様なものが挙げられる。(a)メチルメタクリレート80~98.9質量%、アルキル基の炭素数が1~8のアルキルアクリレート1~20質量%、および多官能性グラフト剤0.01~0.3質量%からなる単量体の混合物を重合して得られる最内硬質層重合体、(b)上記最内硬質層重合体の存在下に、アルキル基の炭素数が4~8のアルキルアクリレート75~98.5質量%、多官能性架橋剤0.01~5質量%および多官能性グラフト剤0.5~5質量%からなる単量体の混合物を重合して得られる架橋軟質層重合体、(c)上記最内硬質層および架橋軟質層からなる重合体の存在下に、メチルメタクリレート80~99質量%とアルキル基の炭素数が1~8であるアルキルアクリレート1~20質量%とからなる単量体の混合物を重合して得られる最外硬層重合体、よりなる3層構造を有し、かつ得られた3層構造重合体が最内硬質層重合体(a)5~40質量%、軟質層重合体(b)30~60質量%、および最外硬質層重合体(c)20~50質量%からなり、アセトンで分別したときに不溶部があり、その不溶部のメチルエチルケトン膨潤度が1.5~4.0であるアクリル系粒状複合体、が挙げられる。
 なお、特公昭60-17406号あるいは特公平3-39095号において開示されている様に、多層構造アクリル系粒状複合体の各層の組成や粒子径を規定しただけでなく、多層構造アクリル系粒状複合体の引張り弾性率やアセトン不溶部のメチルエチルケトン膨潤度を特定範囲内に設定することにより、さらに充分な耐衝撃性と耐応力白化性のバランスを実現することが可能となる。
 ここで、多層構造アクリル系粒状複合体を構成する最内硬質層重合体(a)は、メチルメタクリレート80~98.9質量%、アルキル基の炭素数が1~8のアルキルアクリレート1~20質量%および多官能性グラフト剤0.01~0.3質量%からなる単量体の混合物を重合して得られるものが好ましい。
 ここで、アルキル基の炭素数が1~8のアルキルアクリレートとしては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、s-ブチルアクリレート、2-エチルヘキシルアクリレート等が挙げられ、メチルアクリレートやn-ブチルアクリレートが好ましく用いられる。
 最内硬質層重合体(a)におけるアルキルアクリレート単位の割合は1~20質量%であり、該単位が1質量%未満では、重合体の熱分解性が大きくなり、一方、該単位が20質量%を越えると、最内硬質層重合体(c)のガラス転移温度が低くなり、3層構造アクリル系粒状複合体の耐衝撃性付与効果が低下するので、いずれも好ましくない。
 多官能性グラフト剤としては、異なる重合可能な官能基を有する多官能性単量体、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸のアリルエステル等が挙げられ、アリルメタクリレートが好ましく用いられる。多官能性グラフト剤は、最内硬質層重合体と軟質層重合体を化学的に結合するために用いられ、その最内硬質層重合時に用いる割合は0.01~0.3質量%である。
 アクリル系粒状複合体を構成する架橋軟質層重合体(b)は、上記最内硬質層重合体(a)の存在下に、アルキル基の炭素数が1~8のアルキルアクリレート75~98.5質量%、多官能性架橋剤0.01~5質量%および多官能性グラフト剤0.5~5質量%からなる単量体の混合物を重合して得られるものが好ましい。
 ここで、アルキル基の炭素数が4~8のアルキルアクリレートとしては、n-ブチルアクリレートや2-エチルヘキシルアクリレートが好ましく用いられる。
 また、これらの重合性単量体と共に、25質量%以下の共重合可能な他の単官能性単量体を共重合させることも可能である。
 共重合可能な他の単官能性単量体としては、スチレンおよび置換スチレン誘導体が挙げられる。アルキル基の炭素数が4~8のアルキルアクリレートとスチレンとの比率は、前者が多いほど重合体(b)のガラス転移温度が低下し、即ち軟質化できるのである。
 一方、樹脂組生物の透明性の観点からは、軟質層重合体(b)の常温での屈折率を最内硬質層重合体(a)、最外硬質層重合体(c)、および硬質熱可塑性アクリル樹脂に近づけるほうが有利であり、これらを勘案して両者の比率を選定する。
 多官能性グラフト剤としては、前記の最内層硬質重合体(a)の項で挙げたものを用いることができる。ここで用いる多官能性グラフト剤は、軟質層重合体(b)と最外硬質層重合体(c)を化学的に結合するために用いられ、その最内硬質層重合時に用いる割合は耐衝撃性付与効果の観点から0.5~5質量%が好ましい。
 多官能性架橋剤としては、ジビニル化合物、ジアリル化合物、ジアクリル化合物、ジメタクリル化合物などの一般に知られている架橋剤が使用できるが、ポリエチレングリコールジアクリレート(分子量200~600)が好ましく用いられる。
 ここで用いる多官能性架橋剤は、軟質層(b)の重合時に架橋構造を生成し、耐衝撃性付与の効果を発現させるために用いられる。ただし、先の多官能性グラフト剤を軟質層の重合時に用いれば、ある程度は軟質層(b)の架橋構造を生成するので、多官能性架橋剤は必須成分ではないが、多官能性架橋剤を軟質層重合時に用いる割合は耐衝撃性付与効果の観点から0.01~5質量%が好ましい。
 多層構造アクリル系粒状複合体を構成する最外硬質層重合体(c)は、上記最内硬質層重合体(a)および軟質層重合体(b)の存在下に、メチルメタクリレート80~99質量%およびアルキル基の炭素数が1~8であるアルキルアクリレート1~20質量%からなる単量体の混合物を重合して得られるものが好ましい。
 ここで、アクリルアルキレートとしては、前述したものが用いられるが、メチルアクリレートやエチルアクリレートが好ましく用いられる。最外硬質層(c)におけるアルキルアクリレート単位の割合は、1~20質量%が好ましい。
 また、最外硬質層(c)の重合時に、アクリル樹脂(A)との相溶性向上を目的として、分子量を調節するためアルキルメルカプタン等を連鎖移動剤として用い、実施することも可能である。
 とりわけ、最外硬質層に、分子量が内側から外側へ向かって次第に小さくなるような勾配を設けることは、伸びと耐衝撃性のバランスを改良するうえで好ましい。具体的な方法としては、最外硬質層を形成するための単量体の混合物を2つ以上に分割し、各回ごとに添加する連鎖移動剤量を順次増加するような手法によって、最外硬質層を形成する重合体の分子量を多層構造アクリル系粒状複合体の内側から外側へ向かって小さくすることが可能である。
 この際に形成される分子量は、各回に用いられる単量体の混合物をそれ単独で同条件にて重合し、得られた重合体の分子量を測定することによって調べることもできる。
 本発明に好ましく用いられるアクリル粒子(C)の粒子径については、特に限定されるものではないが、10nm以上、1000nm以下であることが好ましく、さらに、20nm以上、500nm以下であることがより好ましく、特に50nm以上、400nm以下であることが最も好ましい。
 本発明に好ましく用いられる多層構造重合体であるアクリル系粒状複合体において、コアとシェルの質量比は、特に限定されるものではないが、多層構造重合体全体を100質量部としたときに、コア層が50質量部以上、90質量部以下であることが好ましく、さらに、60質量部以上、80質量部以下であることがより好ましい。なお、ここでいうコア層とは、最内硬質層のことである。
 このような多層構造アクリル系粒状複合体の市販品の例としては、例えば、三菱レイヨン社製“メタブレン”、鐘淵化学工業社製“カネエース”、呉羽化学工業社製“パラロイド”、ロームアンドハース社製“アクリロイド”、ガンツ化成工業社製“スタフィロイド”およびクラレ社製“パラペットSA”などが挙げられ、これらは、単独ないし2種以上を用いることができる。
 また、本発明に好ましく用いられるアクリル粒子(C)として好適に使用されるグラフト共重合体であるアクリル粒子(C1)の具体例としては、ゴム質重合体の存在下に、不飽和カルボン酸エステル系単量体、不飽和カルボン酸系単量体、芳香族ビニル系単量体、および必要に応じてこれらと共重合可能な他のビニル系単量体からなる単量体の混合物を共重合せしめたグラフト共重合体が挙げられる。
 グラフト共重合体であるアクリル粒子(C1)に用いられるゴム質重合体には特に制限はないが、ジエン系ゴム、アクリル系ゴムおよびエチレン系ゴムなどが使用できる。具体例としては、ポリブタジエン、スチレン-ブタジエン共重合体、スチレン-ブタジエンのブロック共重合体、アクリロニトリル-ブタジエン共重合体、アクリル酸ブチル-ブタジエン共重合体、ポリイソプレン、ブタジエン-メチルメタクリレート共重合体、アクリル酸ブチル-メチルメタクリレート共重合体、ブタジエン-アクリル酸エチル共重合体、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン系共重合体、エチレン-イソプレン共重合体、およびエチレン-アクリル酸メチル共重合体などが挙げられる。これらのゴム質重合体は、1種または2種以上の混合物で使用することが可能である。
 また、本発明の光学フィルムにアクリル粒子(C)を添加する場合は、アクリル樹脂(A)とセルロースエステル樹脂(B)との混合物の屈折率とアクリル粒子(C)の屈折率が近いことが、透明性が高いフィルムを得る点では好ましい。具体的には、アクリル粒子(C)とアクリル樹脂(A)の屈折率差が0.05以下であることが好ましく、より好ましくは0.02以下、とりわけ0.01以下であることが好ましい。
 このような屈折率条件を満たすためには、アクリル樹脂(A)の各単量体単位組成比を調整する方法、および/またはアクリル粒子(C)に使用されるゴム質重合体あるいは単量体の組成比を調製する方法などにより、屈折率差を小さくすることができ、透明性に優れた光学フィルムを得ることができる。
 尚、ここで言う屈折率差とは、アクリル樹脂(A)が可溶な溶媒に、本発明の光学フィルムを適当な条件で十分に溶解させ白濁溶液とし、これを遠心分離等の操作により、溶媒可溶部分と不溶部分に分離し、この可溶部分(アクリル樹脂(A))と不溶部分(アクリル粒子(C))をそれぞれ精製した後、測定した屈折率(23℃、測定波長:550nm)の差を示す。
 本発明においてアクリル樹脂(A)に、アクリル粒子(C)を配合する方法には、特に制限はなく、アクリル樹脂(A)とその他の任意成分を予めブレンドした後、通常200~350℃において、アクリル粒子(C)を添加しながら一軸または二軸押出機により均一に溶融混練する方法が好ましく用いられる。
 また、アクリル粒子(C)を予め分散した溶液を、アクリル樹脂(A)、およびセルロースエステル樹脂(B)を溶解した溶液(ドープ液)に添加して混合する方法や、アクリル粒子(C)およびその他の任意の添加剤を溶解、混合した溶液をインライン添加する等の方法を用いることができる。
 本発明に係るアクリル粒子としては、市販のものも使用することができる。
 例えば、メタブレンW-341(C2)(三菱レイヨン(株)製)を、ケミスノーMR-2G(C3)、MS-300X(C4)(綜研化学(株)製)等を挙げることができる。
 本発明の光学フィルムにおいて、該フィルムを構成する樹脂の総質量に対して、0.5~30質量%のアクリル粒子(C)を含有することが好ましく、1.0~15質量%の範囲で含有することがさらに好ましい。
<その他の添加剤>
 本発明の光学フィルムには、フィルムに加工性を付与する可塑剤、フィルムの劣化を防止する酸化防止剤、紫外線吸収機能を付与する紫外線吸収剤、フィルムに滑り性を付与する微粒子(マット剤)等の添加剤を含有させることが好ましい。
〈可塑剤〉
 可塑剤としては、フタル酸エステル系、脂肪酸エステル系、トリメリット酸エステル系、リン酸エステル系、ポリエステル系、あるいはエポキシ系等が挙げられる。
 この中で、ポリエステル系とフタル酸エステル系の可塑剤が好ましく用いられる。ポリエステル系可塑剤は、フタル酸ジオクチルなどのフタル酸エステル系の可塑剤に比べて非移行性や耐抽出性に優れるが、可塑化効果や相溶性にはやや劣る。
 従って、用途に応じてこれらの可塑剤を選択、あるいは併用することによって、広範囲の用途に適用できる。
 ポリエステル系可塑剤は、一価ないし四価のカルボン酸と一価ないし六価のアルコールとの反応物であるが、主に二価カルボン酸とグリコールとを反応させて得られたものが用いられる。代表的な二価カルボン酸としては、グルタル酸、イタコン酸、アジピン酸、フタル酸、アゼライン酸、セバシン酸などが挙げられる。
 特に、アジピン酸、フタル酸などを用いると可塑化特性に優れたものが得られる。グリコールとしてはエチレン、プロピレン、1,3-ブチレン、1,4-ブチレン、1,6-ヘキサメチレン、ネオペンチレン、ジエチレン、トリエチレン、ジプロピレンなどのグリコールが挙げられる。これらの二価カルボン酸およびグリコールはそれぞれ単独で、あるいは混合して使用してもよい。
 このエステル系の可塑剤はエステル、オリゴエステル、ポリエステルの型のいずれでもよく、分子量は100~10000の範囲が良いが、好ましくは600~3000の範囲が、可塑化効果が大きい。
 また、可塑剤の粘度は分子構造や分子量と相関があるが、アジピン酸系可塑剤の場合相溶性、可塑化効率の関係から200~5000MPa・s(25℃)の範囲が良い。さらに、いくつかのポリエステル系可塑剤を併用してもかまわない。
 可塑剤は本発明の光学フィルム100質量部に対して、0.5~30質量部を添加するのが好ましい。可塑剤の添加量が30質量部を越えると、表面がべとつくので、実用上好ましくない。
〈酸化防止剤〉
 本発明では、酸化防止剤としては、通常知られているものを使用することができる。
 特に、ラクトン系、イオウ系、フェノール系、二重結合系、ヒンダードアミン系、リン系化合物のものを好ましく用いることができる。
 例えば、チバ・ジャパン株式会社から、“IrgafosXP40”、“IrgafosXP60”という商品名で市販されているものを含むものが好ましい。
 上記フェノール系化合物としては、2,6-ジアルキルフェノールの構造を有するものが好ましく、例えば、チバ・ジャパン株式会社、“Irganox1076”、“Irganox1010”、(株)ADEKA“アデカスタブAO-50”という商品名で市販されているものが好ましい。
 上記リン系化合物は、例えば、住友化学株式会社から、“SumilizerGP”、株式会社ADEKAから“ADK STAB PEP-24G”、“ADK STAB PEP-36”および“ADK STAB 3010”、チバ・ジャパン株式会社から”IRGAFOS P-EPQ”、堺化学工業株式会社から“GSY-P101”という商品名で市販されているものが好ましい。
 上記ヒンダードアミン系化合物は、例えば、チバ・ジャパン株式会社から、“Tinuvin144”および“Tinuvin770”、株式会社ADEKAから“ADK STAB LA-52”という商品名で市販されているものが好ましい。
 上記イオウ系化合物は、例えば、住友化学株式会社から、“Sumilizer TPL-R”および“Sumilizer TP-D”という商品名で市販されているものが好ましい。
 上記二重結合系化合物は、住友化学株式会社から、“Sumilizer GM”および“Sumilizer GS”という商品名で市販されているものが好ましい。
 さらに、酸捕捉剤として米国特許第4,137,201号明細書に記載されているような、エポキシ基を有する化合物を含有させることも可能である。
 これらの酸化防止剤等は、再生使用される際の工程に合わせて適宜添加する量が決められるが、一般には、フィルムの主原料である樹脂に対して、0.05~20質量%、好ましくは0.1~1質量%の範囲で添加される。
 これらの酸化防止剤は、一種のみを用いるよりも数種の異なった系の化合物を併用することで相乗効果を得ることができる。例えば、ラクトン系、リン系、フェノール系および二重結合系化合物の併用は好ましい。
〈着色剤〉
 本発明においては、着色剤を使用することが好ましい。着色剤と言うのは染料や顔料を意味するが、本発明では、液晶画面の色調を青色調にする効果またはイエローインデックスの調整、ヘイズの低減を有するものを指す。
 着色剤としては各種の染料、顔料が使用可能だが、アントラキノン染料、アゾ染料、フタロシアニン顔料などが有効である。
〈紫外線吸収剤〉
 本発明に用いられる紫外線吸収剤は特に限定されないが、例えばオキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。高分子型の紫外線吸収剤としてもよい。
〈マット剤〉
 本発明では、フィルムの滑り性を付与するためにマット剤を添加することが好ましい。
 本発明で用いられるマット剤としては、得られるフィルムの透明性を損なうことがなく、溶融時の耐熱性があれば無機化合物または有機化合物どちらでもよく、例えば、タルク、マイカ、ゼオライト、ケイソウ土、焼成珪成土、カオリン、セリサイト、ベントナイト、スメクタイト、クレー、シリカ、石英粉末、ガラスビーズ、ガラス粉、ガラスフレーク、ミルドファイバー、ワラストナイト、窒化ホウ素、炭化ホウ素、ホウ化チタン、炭酸マグネシウム、重質炭酸カルシウム、軽質炭酸カルシウム、珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム、アルミノ珪酸マグネシウム、アルミナ、シリカ、酸化亜鉛、二酸化チタン、酸化鉄、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、硫酸カルシウム、硫酸バリウム、炭化ケイ素、炭化アルミニウム、炭化チタン、窒化アルミニウム、窒化ケイ素、窒化チタン、ホワイトカーボンなどが挙げられる。これらのマット剤は、単独でも二種以上併用しても使用できる。
 粒径や形状(例えば針状と球状など)の異なる粒子を併用することで高度に透明性と滑り性を両立させることもできる。
 これらの中でも、セルロースエステルと屈折率が近いので透明性(ヘイズ)に優れる二酸化珪素が特に好ましく用いられる。
 二酸化珪素の具体例としては、アエロジル200V、アエロジルR972V、アエロジルR972、R974、R812、200、300、R202、OX50、TT600、NAX50(以上日本アエロジル(株)製)、シーホスターKEP-10、シーホスターKEP-30、シーホスターKEP-50(以上、株式会社日本触媒製)、サイロホービック100(富士シリシア製)、ニップシールE220A(日本シリカ工業製)、アドマファインSO(アドマテックス製)等の商品名を有する市販品などが好ましく使用できる。
 粒子の形状としては、不定形、針状、扁平、球状等特に制限なく使用できるが、特に球状の粒子を用いると得られるフィルムの透明性が良好にできるので好ましい。
 粒子の大きさは、可視光の波長に近いと光が散乱し、透明性が悪くなるので、可視光の波長より小さいことが好ましく、さらに可視光の波長の1/2以下であることが好ましい。粒子の大きさが小さすぎると滑り性が改善されない場合があるので、80nmから180nmの範囲であることが特に好ましい。
 なお、粒子の大きさとは、粒子が1次粒子の凝集体の場合は凝集体の大きさを意味する。また、粒子が球状でない場合は、その投影面積に相当する円の直径を意味する。
〈粘度低下剤〉
 本発明において、溶融粘度を低減する目的として、水素結合性溶媒を添加することができる。水素結合性溶媒とは、J.N.イスラエルアチビリ著、「分子間力と表面力」(近藤保、大島広行訳、マグロウヒル出版、1991年)に記載されるように、電気的に陰性な原子(酸素、窒素、フッ素、塩素)と電気的に陰性な原子と共有結合した水素原子間に生ずる、水素原子媒介「結合」を生ずることができるような有機溶媒、すなわち、結合モーメントが大きく、かつ水素を含む結合、例えば、O-H(酸素水素結合)、N-H(窒素水素結合)、F-H(フッ素水素結合)を含むことで近接した分子同士が配列できるような有機溶媒をいう。
 これらは、セルロース樹脂の分子間水素結合よりもセルロースとの間で強い水素結合を形成する能力を有するもので、本発明で行う溶融流延法においては、用いるセルロース樹脂単独のガラス転移温度よりも、水素結合性溶媒の添加によりセルロース樹脂組成物の溶融温度を低下することができる、または同じ溶融温度においてセルロース樹脂よりも水素結合性溶媒を含むセルロース樹脂組成物の溶融粘度を低下することができる。
 本発明においては、脆性の指標としては、「延性破壊が起こらない光学フィルム」であるかどうかという基準により判断する。延性破壊が起こらない、脆性が改善された光学フィルムを得ることで、大型の液晶表示装置用の偏光板を作成する際にも、製造時の破断や割れが発生せず、取り扱い性に優れた光学フィルムとすることができる。
 ここで、延性破壊とは、ある材料が有する強度よりも、大きな応力が作用することで生じる破断のことであり、最終破断までに材料の著しい伸びや絞りを伴う破壊と定義される。本発明では、「延性破壊が起こらない光学フィルム」であるか否かは、フィルムを2つに折り曲げるような大きな応力を作用させても破断等の破壊がみられないことにより評価するものとする。(この評価は耐折度と呼ばれる。)このような大きな応力が加えられても延性破壊が起こらない光学フィルムであれば、大型化された液晶表示装置用の偏光板保護フィルムとして用いられた場合であっても製造時の破断等の問題を十分に低減することが可能となり、さらに、一度貼り合わされた後に再度引き剥がして光学フィルムを使用する場合においても、破断が発生せず、光学フィルムの薄型化へも十分に対応可能である。
 耐折度は50~100回であれば、大型化された液晶表示装置用の偏光板保護フィルムとして用いられた場合であっても製造時の破断等の問題を十分に低減することが可能となり、さらに、一度貼り合わされた後に再度引き剥がして光学フィルムを使用する場合においても、破断が発生せず、光学フィルムの薄型化へも十分に対応可能である。耐折度が50回未満では、製造時に破断が起こりやすく、またリワーク性に劣る。また100回を超えるためには、膜厚を厚くすることで達成可能だが、液晶表示装置の薄型化に対応できない。そのため、薄膜フィルムの場合は、50~100回が適当である。
 本発明においては、耐熱性の指標として、張力軟化点を用いる。液晶表示装置が大型化され、バックライト光源の輝度が益々高くなっていることに加え、デジタルサイネージ等の屋外用途への利用により、より高い輝度が求められていることから、光学フィルムはより高温の環境下での使用に耐えられることが求められているが、張力軟化点が、105℃~145℃であれば、十分な耐熱性を示すものと判断できる。特に110℃~130℃に制御することがより好ましい。張力軟化点が105℃未満だと、バックライト光源が発する熱量に耐え切れず、フィルムが変形したり、光漏れが生じやすくなる。またアクリル樹脂(A)とセルロースエステル樹脂(B)を相溶状態で含有したような構成では145℃までしか確認できていない。そのため、張力軟化点は105℃~145℃が適当である。
 光学フィルムの張力軟化点を示す温度の具体的な測定方法としては、例えば、テンシロン試験機(ORIENTEC社製、RTC-1225A)を用いて、光学フィルムを120mm(縦)×10mm(幅)で切り出し、10Nの張力で引っ張りながら30℃/minの昇温速度で昇温を続け、9Nになった時点での温度を3回測定し、その平均値により求めることができる。
 また、耐熱性の観点では、光学フィルムは、ガラス転移温度(Tg)が110℃以上であることが好ましい。より好ましくは120℃以上である。特に好ましくは150℃以上である。
 尚、ここでいうガラス転移温度とは、示差走査熱量測定器(Perkin Elmer社製DSC-7型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)である。
 本発明における光学フィルムの透明性を判断する指標としては、ヘーズ値(濁度)を用いる。特に屋外で用いられる液晶表示装置においては、明るい場所でも十分な輝度や高いコントラストが得られることが求められる為、ヘーズ値は1.0%以下であることが必要とされ、0.5%以下であることがさらに好ましい。
 アクリル系樹脂(A)とセルロースエステル樹脂(B)を含有する本発明の光学フィルムによれば、高い透明性を得ることができるが、別の物性を改善する目的でアクリル粒子を使用する場合は、樹脂(アクリル系樹脂(A)とセルロースエステル樹脂(B))とアクリル粒子(C)との屈折率差を小さくすることで、ヘーズ値の上昇を防ぐことができる。
 また、表面の粗さも表面ヘーズとしてヘーズ値に影響するため、アクリル粒子(C)の粒子径や添加量を前記範囲内に抑えること、製膜時のフィルム接触部の表面粗さを小さくすることも、有効である。
 また、本発明における光学フィルムの吸湿性については、湿度変化に対する寸法変化により評価するものとする。
 湿度変化に対する寸法変化の評価方法としては、以下の方法が用いられる。
 作製した光学フィルムの流延方向に、目印(十字)を2箇所つけて60℃、90%RHで1000時間処理し、処理前と処理後の目印(十字)の距離を光学顕微鏡で測定し、寸法変化率(%)を求める。寸法変化率(%)は下記式で表される。
 寸法変化率(%)=〔(a1-a2)/a1〕×100
 a1:熱処理前の距離
 a2:熱処理後の距離
 液晶表示装置の偏光板用保護フィルムとして光学フィルムが用いられる場合は、吸湿による寸法変化により光学フィルムにムラや位相差値の変化が発生してしまい、コントラストの低下や色むらといった問題を発生させる。特に屋外で使用される液晶表示装置に用いられる偏光板保護フィルムであれば、上記の問題は顕著となる。しかし、上記の条件における寸法変化率(%)が0.5%未満であれば、十分な低吸湿性を示す光学フィルムであると評価できる。さらに、0.3%未満であることが好ましい。
 また、本発明の光学フィルムは、フィルム面内の直径5μm以上の欠点が1個/10cm四方以下であることが好ましい。さらに好ましくは0.5個/10cm四方以下、一層好ましくは0.1個/10cm四方以下である。
 ここで欠点の直径とは、欠点が円形の場合はその直径を示し、円形でない場合は欠点の範囲を下記方法により顕微鏡で観察して決定し、その最大径(外接円の直径)とする。
 欠点の範囲は、欠点が気泡や異物の場合は、欠点を微分干渉顕微鏡の透過光で観察したときの影の大きさである。欠点が、ロール傷の転写や擦り傷など、表面形状の変化の場合は、欠点を微分干渉顕微鏡の反射光で観察して大きさを確認する。
 なお、反射光で観察する場合に、欠点の大きさが不明瞭であれば、表面にアルミや白金を蒸着して観察する。
 かかる欠点頻度にて表される品位に優れたフィルムを生産性よく得るには、ポリマー溶液を流延直前に高精度濾過することや、流延機周辺のクリーン度を高くすること、また、流延後の乾燥条件を段階的に設定し、効率よくかつ発泡を抑えて乾燥させることが有効である。
 欠点の個数が1個/10cm四方より多いと、例えば後工程での加工時などでフィルムに張力がかかると、欠点を基点としてフィルムが破断して生産性が低下する場合がある。また、欠点の直径が5μm以上になると、偏光板観察などにより目視で確認でき、光学部材として用いたとき輝点が生じる場合がある。
 また、目視で確認できない場合でも、該フィルム上にハードコート層などを形成したときに、塗剤が均一に形成できず欠点(塗布抜け)となる場合がある。ここで、欠点とは、溶液製膜の乾燥工程において溶媒の急激な蒸発に起因して発生するフィルム中の空洞(発泡欠点)や、製膜原液中の異物や製膜中に混入する異物に起因するフィルム中の異物(異物欠点)を言う。
 また、本発明の光学フィルムは、JIS-K7127-1999に準拠した測定において、少なくとも一方向の破断伸度が、10%以上であることが好ましく、より好ましくは20%以上である。
 破断伸度の上限は特に限定されるものではないが、現実的には250%程度である。破断伸度を大きくするには異物や発泡に起因するフィルム中の欠点を抑制することが有効である。
 本発明の光学フィルムの厚みは、20μm以上であることが好ましい。より好ましくは30μm以上である。
 本発明の光学フィルムは、その全光線透過率が90%以上であることが好ましく、より好ましくは93%以上である。また、現実的な上限としては、99%程度である。かかる全光線透過率にて表される優れた透明性を達成するには、可視光を吸収する添加剤や共重合成分を導入しないようにすることや、ポリマー中の異物を高精度濾過により除去し、フィルム内部の光の拡散や吸収を低減させることが有効である。
 本発明の光学フィルムは、上記のような物性を満たしていれば、大型の液晶表示装置や屋外用途の液晶表示装置用の偏光板保護フィルムとして特に好ましく用いることができる。
<溶融流延製膜方法による光学フィルムの製造方法>
 本発明の光学フィルムの製造方法は、アクリル樹脂(A)とセルロースエステル樹脂(B)を95:5から30:70の質量比で含有したものを溶融してダイから押出して、冷却ロール上に流延する光学フィルムの製造方法である。
 以下、製造方法の全体について述べる。
 〈溶融ペレット製造工程〉
 溶融押出に用いるアクリル樹脂(A)、セルロースエステル樹脂(B)、その他の添加剤からなる光学フィルムを構成する組成物は、通常あらかじめ混錬してペレット化しておくことが好ましい。
 ペレット化は、公知の方法でよく、例えば、乾燥アクリル樹脂(A)、乾燥セルロースエステル樹脂(B)やその他添加剤をフィーダーで押出機に供給し1軸や2軸の押出機を用いて混錬し、ダイからストランド状に押出し、水冷または空冷し、カッティングすることでできる。
 原材料は、押出する前に乾燥しておくことが原材料の分解を防止する上で重要である。特にセルロースエステルは吸湿しやすいので、除湿熱風乾燥機や真空乾燥機で70~140℃で3時間以上乾燥し、水分率を200ppm以下、さらに100ppm以下にしておくことが好ましい。
 添加剤は、押出機に供給押出機合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。酸化防止剤等少量の添加剤は、均一に混合するため、事前に混合しておくことが好ましい。
 酸化防止剤の混合は、固体同士で混合してもよいし、必要により、酸化防止剤を溶剤に溶解しておき、アクリル樹脂(A)、セルロースエステル樹脂(B)に含浸させて混合してもよく、あるいは噴霧して混合してもよい。
 真空ナウターミキサーなどが乾燥と混合を同時にできるので好ましい。また、フィーダー部やダイからの出口など空気と触れる場合は、除湿空気や除湿したN2ガスなどの雰囲気下にすることが好ましい。
 押出機は、せん断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能でなるべく低温で加工することが好ましい。例えば、2軸押出機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。
 以上のようにして得られたペレットを用いてフィルム製膜を行う。ペレット化せず、原材料の粉末をそのままフィーダーで押出機に供給し、そのままフィルム製膜することも可能である。
 〈溶融混合物をダイから冷却ロールへ押し出す工程〉
 まず、作製したペレットを1軸や2軸タイプの押出機を用いて、押し出す際の溶融温度Tmを200~300℃程度とし、リーフディスクタイプのフィルターなどでろ過し異物を除去した後、Tダイからフィルム状に共押出し、冷却ロール上で固化し、弾性タッチロールと押圧しながら流延する。
 供給ホッパーから押出機へ導入する際は真空下または減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。なお、Tmは、押出機のダイ出口部分の温度である。
 ダイに傷や可塑剤の凝結物等の異物が付着するとスジ状の欠陥が発生する場合がある。このような欠陥のことをダイラインとも呼ぶが、ダイライン等の表面の欠陥を小さくするためには、押出機からダイまでの配管には樹脂の滞留部が極力少なくなるような構造にすることが好ましい。ダイの内部やリップにキズ等が極力無いものを用いることが好ましい。
 押出機やダイなどの溶融樹脂と接触する内面は、表面粗さを小さくしたり、表面エネルギーの低い材質を用いるなどして、溶融樹脂が付着し難い表面加工が施されていることが好ましい。具体的には、ハードクロムメッキやセラミック溶射したものを表面粗さ0.2S以下となるように研磨したものが挙げられる。
 本発明の冷却ロールには特に制限はないが、高剛性の金属ロールで内部に温度制御可能な熱媒体または冷媒体が流れるような構造を備えるロールであり、大きさは限定されないが、溶融押し出されたフィルムを冷却するのに十分な大きさであればよく、通常冷却ロールの直径は100mmから1m程度である。
 冷却ロールの表面材質は、炭素鋼、ステンレス、アルミニウム、チタンなどが挙げられる。さらに表面の硬度をあげたり、樹脂との剥離性を改良するため、ハードクロムメッキや、ニッケルメッキ、非晶質クロムメッキなどや、セラミック溶射等の表面処理を施すことが好ましい。
 冷却ロール表面の表面粗さは、Raで0.1μm以下とすることが好ましく、さらに0.05μm以下とすることが好ましい。ロール表面が平滑であるほど、得られるフィルムの表面も平滑にできるのである。もちろん表面加工した表面はさらに研磨し上述した表面粗さとすることが好ましい。
 本発明の弾性タッチロールとしては、特開平03-124425号、特開平08-224772号、特開平07-100960号、特開平10-272676号、WO97-028950、特開平11-235747号、特開2002-36332号、特開2005-172940号や特開2005-280217号に記載されているような表面が薄膜金属スリーブ被覆シリコンゴムロールを使用することができる。
 冷却ロールからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。
 〈延伸工程〉
 本発明では、上記のようにして得られたフィルムは冷却ロールに接する工程を通過後、さらに少なくとも1方向に1.01~3.0倍延伸することが好ましい。延伸により本発明の脆性を実現することができる。
 好ましくは縦(フィルム搬送方向)、横(巾方向)両方向にそれぞれ1.1~2.0倍延伸することが好ましい。
 延伸する方法は、公知のロール延伸機やテンターなどを好ましく用いることができる。特に光学フィルムが、偏光板保護フィルムを兼ねる場合は、延伸方向を巾方向とすることで偏光フィルムとの積層がロール形態でできるので好ましい。
 巾方向に延伸することで光学フィルムの遅相軸は巾方向になる。
 通常、延伸倍率は1.1~3.0倍、好ましくは1.2~1.5倍であり、延伸温度は、通常、フィルムを構成する樹脂のTg~Tg+50℃、好ましくはTg~Tg+50℃の温度範囲で行われる。
 延伸は、長手方向もしくは幅手方向で制御された均一な温度分布下で行うことが好ましい。好ましくは±2℃以内、さらに好ましくは±1℃以内、特に好ましくは±0.5℃以内である。
 上記の方法で作製した光学フィルムのレターデーション調整や寸法変化率を小さくする目的で、フィルムを長手方向や幅手方向に収縮させてもよい。
 長手方向に収縮するには、例えば、巾延伸を一時クリップアウトさせて長手方向に弛緩させる、または横延伸機の隣り合うクリップの間隔を徐々に狭くすることによりフィルムを収縮させるという方法がある。
 遅相軸方向の均一性も重要であり、フィルム巾方向に対して、角度が-5~+5°であることが好ましく、さらに-1~+1°の範囲にあることが好ましく、特に-0.5~+0.5°の範囲にあることが好ましく、特に-0.1~+0.1°の範囲にあることが好ましい。これらのばらつきは延伸条件を最適化することで達成できる。
 本発明の光学フィルムは、隣接する山の頂点から谷の底点までの高さが300nm以上であり、傾きが300nm/mm以上の長手方向に連続するスジがないことが好ましい。
 スジの形状は、表面粗さ計を用いて測定したもので、具体的には、ミツトヨ製SV-3100S4を使用して、先端形状が円錐60°、先端曲率半径2μmの触針(ダイヤモンド針)に測定力0.75mNの加重をかけながら、測定速度1.0mm/secでフィルムの巾方向に走査し、Z軸(厚み方向)分解能0.001μmとして断面曲線を測定する。
 この曲線から、スジの高さは、山の頂点から谷の底点までの垂直距離(H)を読み取る。スジの傾きは、山の頂点から谷の底点までの水平距離(L)を読み取り、垂直距離(H)を水平距離(L)で除して求める。
<含有溶媒量>
 本発明の光学フィルムは、溶融流延製膜方法によって作製することから、ロール状フィルムとして巻き取った時点で、含有している溶媒量が0.01質量%以下である。含有溶媒量は、下記の方法によって測定することができる。
 各試料を20mlの密閉ガラス容器に入れ、下記ヘッドスペース加熱条件にて処理したあと、下記ガスクロマトグラフィーにて予め使用した溶媒について検量線を作成し測定を行った。含有溶媒量は、光学フィルムの全体の質量に対する質量部で表した。
機器:HP社 5890SERIES II
カラム:J&W社 DB-WAX(内径0.32mm、長さ30m)
検出:FID
GC昇温条件:40℃で5分間保持したあと、80℃/分で100℃まで昇温
ヘッドスペース加熱条件:120℃で20min
<清掃設備>
 本発明の製造装置には、ベルトおよびロールを自動的に清掃する装置を付加させることが好ましい。清掃装置については特に限定はないが、例えば、ブラシ・ロール、吸水ロール、粘着ロール、ふき取りロール等をニップする方式、清浄エアーを吹き掛けるエアーブロー方式、レーザーによる焼却装置、あるいはこれらの組み合わせなどがある。
 清掃用ロールをニップする方式の場合、ベルト線速度とローラ線速度を変えると清掃効果が大きい。
 本発明の光学フィルムは、長尺フィルムであることが好ましく、具体的には、100m~5000m程度のものを示し、通常、ロール状で提供される形態のものである。また、フィルムの幅は1.3~4mであることが好ましく、1.4~2mであることがより好ましい。
 本発明の光学フィルムの膜厚に特に制限はないが、後述する偏光板保護フィルムに使用する場合は20~200μmであることが好ましく、25~100μmであることがより好ましく、30~80μmであることが特に好ましい。
 〔偏光板〕
 本発明の光学フィルムを偏光板用保護フィルムとして用いる場合、偏光板は一般的な方法で作製することが出来る。本発明の光学フィルムの裏面側に粘着層を設け、沃素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に、貼り合わせることが好ましい。
 もう一方の面には本発明の光学フィルムを用いても、別の偏光板保護フィルムを用いてもよい。例えば、市販のセルロースエステルフィルム(例えば、コニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UY、KC4UY、KC12UR、KC8UCR-3、KC8UCR-4、KC8UCR-5、KC8UE、KC4UE、KC4FR-3、KC4FR-4、KC4HR-1、KC8UY-HA、KC8UX-RHA、以上コニカミノルタオプト(株)製)等が好ましく用いられる。
 偏光板の主たる構成要素である偏光子とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光子は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。
 偏光子は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。
 上記粘着層に用いられる粘着剤としては、粘着層の少なくとも一部分において25℃での貯蔵弾性率が1.0×10Pa~1.0×10Paの範囲である粘着剤が用いられていることが好ましく、粘着剤を塗布し、貼り合わせた後に種々の化学反応により高分子量体または架橋構造を形成する硬化型粘着剤が好適に用いられる。
 具体例としては、例えば、ウレタン系粘着剤、エポキシ系粘着剤、水性高分子-イソシアネート系粘着剤、熱硬化型アクリル粘着剤等の硬化型粘着剤、湿気硬化ウレタン粘着剤、ポリエーテルメタクリレート型、エステル系メタクリレート型、酸化型ポリエーテルメタクリレート等の嫌気性粘着剤、シアノアクリレート系の瞬間粘着剤、アクリレートとペルオキシド系の2液型瞬間粘着剤等が挙げられる。
 上記粘着剤としては1液型であっても良いし、使用前に2液以上を混合して使用する型であっても良い。
 また上記粘着剤は有機溶剤を媒体とする溶剤系であってもよいし、水を主成分とする媒体であるエマルジョン型、コロイド分散液型、水溶液型などの水系であってもよいし、無溶剤型であってもよい。上記粘着剤液の濃度は、粘着後の膜厚、塗布方法、塗布条件等により適宜決定されれば良く、通常は0.1~50質量%である。
 〔液晶表示装置〕
 本発明の光学フィルムを貼合した偏光板を液晶表示装置に組み込むことによって、種々の視認性に優れた液晶表示装置を作製することが出来るが、特に大型の液晶表示装置やデジタルサイネージ等の屋外用途の液晶表示装置に好ましく用いられる。本発明に係る偏光板は、前記粘着層等を介して液晶セルに貼合する。
 本発明に係る偏光板は反射型、透過型、半透過型LCDまたはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型(FFS方式も含む)等の各種駆動方式のLCDで好ましく用いられる。特に画面が30型以上、特に30型~54型の大画面の表示装置では、画面周辺部での白抜け等もなく、その効果が長期間維持される。
 また、色ムラ、ギラツキや波打ちムラが少なく、長時間の鑑賞でも目が疲れないという効果があった。
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 実施例1
 〔アクリル樹脂の調製〕
 以下のアクリル樹脂A2-A7、およびMS1、2を公知の方法によって調製した。
 A2:モノマー質量比(MMA:MA=97:3)、Mw120000
 A3:モノマー質量比(MMA:MA=97:3)、Mw140000
 A4:モノマー質量比(MMA:MA=97:3)、Mw200000
 A5:モノマー質量比(MMA:MA=97:3)、Mw500000
 A6:モノマー質量比(MMA:MA=97:3)、Mw550000
 A7:モノマー質量比(MMA:MA=94:6)、Mw1000000
 MMA:メチルメタクリレート
 MA:メチルアクリレート
 その他、以下の市販のアクリル樹脂を用いた。
 A1 アクリペットV(三菱レイヨン(株)製) Mw100000
 A2を70質量部、セルロースエステルとしてセルロースアセテートプロピオネート(アセチル基の置換度0.19、プロピオニル基の置換度2.56、総アシル基置換度2.75、Mw=200000)30質量部、Tinuvin928(チバ・ジャパン(株)製)1.5質量部、ADK STAB PEP-36(旭電化工業(株)製)0.01質量部、Irganox1010(チバ・ジャパン(株)製)0.5質量部、SumilizerGS(住友化学(株)製)0.2質量部の割合で配合して、光学フィルム1を構成する組成物1を形成した。
 上記の組成物をそれぞれ、真空ナウターミキサーで80℃、1Torrで3時間混合しながらさらに乾燥した。乾燥した組成物を、2軸式押出機を用いて235℃で溶融混合し、ペレット化した。
 上記ペレットを、それぞれの1軸押出機を用いてTダイにて積層し、表面温度が90℃の第1冷却ロール上に、溶融温度240℃でフィルム状に溶融して押し出し、総膜厚150μmのキャストフィルムを押出成形によって得た。この際第1冷却ロール上でフィルムを2mm厚の金属表面を有する弾性タッチロールで押圧した。
 次いでこのフィルムを、ロール周速差を利用した延伸機によって155℃(組成物のTg125℃)で搬送方向に1.3倍延伸し、さらに予熱ゾーン、延伸ゾーン、保持ゾーン、冷却ゾーン(各ゾーン間には各ゾーン間の断熱を確実にするためのニュートラルゾーンも有する)を有する幅手方向の延伸機であるテンターに導入し、幅手方向に155℃で1.3倍延伸した後、30℃まで冷却し、その後クリップから開放し、クリップ把持部を裁ち落として、幅2500mm、膜厚80μmの光学フィルム1を得た。
 上記光学フィルム1の作製において、アクリル樹脂(A)、セルロースエステル樹脂(B)の種類、分子量、組成比、可塑剤の有無、延伸条件、膜厚を表1のように変更した以外は同様にして、本発明および比較の光学フィルム2~30を得た。
 なお、これらの含有溶媒量は、いずれも0.01質量%以下であった。
 可塑剤1:DOA(ジオクチルアジペート)
Figure JPOXMLDOC01-appb-T000001
 得られた光学フィルムについて、下記の評価を行った。
《評価方法》
(ガラス転移温度)
 延伸前の光学フィルムのTgは、作製した光学フィルムとほぼ同じなので、光学フィルムのTgを測定することにより、延伸前の光学フィルムのTgに代替した。
 23℃、55%RHの雰囲気下、ガラス転移温度は、示差走査熱量測定器(Perkin Elmer社製DSC-7型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い、求めた中間点ガラス転移温度(Tmg)(℃)をいう。
(張力軟化点)
 23℃、55%RHの雰囲気下、テンシロン試験機(ORIENTEC社製、RTC-1225A)を用いて、以下のような評価を行った。
 光学フィルムを120mm(縦)×10mm(幅)で切り出し、10Nの張力で引っ張りながら30℃/minの昇温速度で昇温を続け、9Nになった時点での温度(℃)を3回測定し、その平均を出した。
(耐折度)
 光学フィルムを120mm(縦)×10mm(幅)で切り出し、温度23℃、相対湿度55%RHに調湿された部屋で4時間調湿した後、ISO877 6/2-1988に従い、折り曲げによって切断するまでの往復回数を求めた。
Figure JPOXMLDOC01-appb-T000002
<偏光板および液晶表示装置の作製>
 〈偏光板の作製〉
 各光学フィルムを偏光板保護フィルムとした偏光板を、以下のようにして作製した。
 厚さ120μmの長尺ロールポリビニルアルコールフィルムを、沃素1質量部、ホウ酸4質量部を含む水溶液100質量部に浸漬し、50℃で5倍に搬送方向に延伸して偏光子を作製した。
 次に、この偏光子の片面にアクリル接着剤を用いて、実施例1で作製した光学フィルム1にコロナ処理を施したのち、貼合した。
 さらに偏光子のもう一方の面にアルカリケン化処理した位相差フィルムであるコニカミノルタタックKC8UCR-5(コニカミノルタオプト(株)製)を貼り合わせ、乾燥して偏光板P1を作製した。同様にして光学フィルム2~30を用いて偏光板P2~P30を作製した。
(リワーク性)
 23℃、55%RHの雰囲気下、作製した偏光板を20cm×20cmの大きさの正方形に断裁し、アクリル系接着剤を用いてガラス基板と貼り合わせる。次いで、貼り合わせた偏光板を角の部分から5Nの強さでガラスから剥がす。この作業を1種類のサンプルについて100枚の偏光板で行い、偏光板に裂け目が入って、完全に剥離されなかった偏光板の枚数を数える。リワーク性は以下の基準でランク付けする。
 ○ :0~5枚
 ○△:6~10枚
 △ :11~15枚
 × :16枚以上
 リワーク性は△レベル以上であれば実用上問題ないが、○△レベル以上であることが好ましく、○レベルであることが特に好ましい。
 〈液晶表示装置の作製〉
 上記作製した各偏光板を使用して、光学フィルムの表示特性評価を行った。
 シャープ(株)製32型テレビAQ-32AD5の予め貼合されていた両面の偏光板を剥がして、上記作製した偏光板をそれぞれコニカミノルタタックKC8UCR-5が液晶セルのガラス面側になるように、かつ、予め貼合されていた偏光板と同一の方向に吸収軸が向くように貼合し、液晶表示装置を各々作製した。
 その後、23℃、55%RHの環境下において、バックライトを12時間連続点灯し、全面黒表示状態を暗室にて目視で観察して、光漏れを評価した。結果を表3に示す。
 〔光漏れ〕
 黒表示時の光漏れを目視で下記基準により評価した。
 ○:光漏れがまったくない
 ×:強い光漏れが1~2箇所ある
Figure JPOXMLDOC01-appb-T000003
 本発明の光学フィルムは、リワーク性において好ましく、光漏れが発生しにくく、比較に対し改善されていることが明らかである。
 実施例2
〈アクリル粒子(C1)の調製〉
 内容積60リットルの還流冷却器付反応器に、イオン交換水38.2リットル、ジオクチルスルホコハク酸ナトリウム111.6gを投入し、250rpmの回転数で攪拌しながら、窒素雰囲気下75℃に昇温し、酸素の影響が事実上無い状態にした。APS0.36gを投入し、5分間攪拌後にMMA1657g、BA21.6g、およびALMA1.68gからなる単量体混合物を一括添加し、発熱ピークの検出後さらに20分間保持して最内硬質層の重合を完結させた。
 次に、APS3.48gを投入し、5分間攪拌後にBA8105g、PEGDA(200)31.9g、およびALMA264.0gからなる単量体混合物を120分間かけて連続的に添加し、添加終了後さらに120分間保持して,軟質層の重合を完結させた。
 次に、APS1.32gを投入し、5分間攪拌後にMMA2106g、BA201.6gからなる単量体混合物を20分間かけて連続的に添加し、添加終了後さらに20分間保持して最外硬質層1の重合を完結した。
 次いで、APS1.32gを投入し、5分後にMMA3148g、BA201.6g、およびn-OM10.1gからなる単量体混合物を20分間かけて連続的に添加し、添加終了後にさらに20分間保持した。ついで95℃に昇温し60分間保持して、最外硬質層2の重合を完結させた。
 このようにして得られた重合体ラテックスを少量採取し、吸光度法により平粒子径を求めたところ0.10μmであった。残りのラテックスを3質量%硫酸ナトリウム温水溶液中へ投入して、塩析・凝固させ、次いで、脱水・洗浄を繰り返したのち乾燥し、3層構造のアクリル粒子(C1)を得た。
 上記の略号は各々下記材料である。
 MMA;メチルメタクリレート
 MA;メチルアクリレート
 BA;n-ブチルアクリレート
 ALMA;アリルメタクリレート
 PEGDA;ポリエチレングリコールジアクリレート(分子量200)
 n-OM;n-オクチルメルカプタン
 APS;過硫酸アンモニウム
 以下、アクリル樹脂(A)、セルロースエステル樹脂(B)、アクリル粒子(C)、組成比を表4の記載のように変えた以外は、実施例1に記載の光学フィルム2の製造方法と同様にして、光学フィルム2-1と2-2を、光学フィルム1の製造方法と同様にして、光学フィルム1-1~1-6を作製した。
 尚、アクリル樹脂含有フィルム2-3は、下記紫外線吸収剤を他の樹脂と同時に添加して2-2と同様に作製した。
  チヌビン109(チバ・ジャパン(株)製)      1.5質量部
  チヌビン171(チバ・ジャパン(株)製)      0.7質量部
 なお、これらの光学フィルムの含有溶媒量は、いずれも0.01質量%以下であった。
Figure JPOXMLDOC01-appb-T000004
 これらの試料について、実施例1と同様の評価を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 上述のように、本発明の光学フィルムにアクリル微粒子をさらに添加した場合、耐折度やリワーク性をさらに改善することができた。
 1 押出し機
 2 フィルター
 3 スタチックミキサー
 4 流延ダイ
 5 回転支持体(第1冷却ロール)
 6 挟圧回転体(タッチロール)
 7 回転支持体(第2冷却ロール)
 8 回転支持体(第3冷却ロール)
 9、10、11、13、14 搬送ロール
 12 延伸機
 15 スリッター
 16 巻き取り機
 F 本発明の光学フィルム

Claims (4)

  1.  アクリル樹脂(A)とセルロースエステル樹脂(B)を95:5から30:70の質量比で、前記アクリル樹脂(A)の重量平均分子量Mwが110000以上1000000以下であり、該セルロースエステル樹脂(B)のアシル基総置換度(T)が2.0以上3.0以下、炭素数が3以上、7以下のアシル基の置換度が1.2以上3.0以下であり、該セルロースエステル樹脂(B)の重量平均分子量Mwが75000以上300000以下であり、張力軟化点が105~145℃、耐折度が50~100回で、溶融流延製膜方法によって製造されたことを特徴とする光学フィルム。
  2.  請求項1に記載の光学フィルムが、搬送方向または幅手方向の少なくともいずれかの方向に延伸して製造されるものであり、その延伸温度が延伸前の光学フィルムのTg~Tg+50℃であることを特徴とする光学フィルムの製造方法。
  3.  請求項1に記載の光学フィルムを有することを特徴とする偏光板。
  4.  請求項3に記載の偏光板を有することを特徴とする液晶表示装置。
PCT/JP2009/064122 2008-10-06 2009-08-10 光学フィルム、光学フィルムの製造方法、偏光板および液晶表示装置 WO2010041513A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010532853A JP5397382B2 (ja) 2008-10-06 2009-08-10 光学フィルム、光学フィルムの製造方法、偏光板および液晶表示装置
CN2009801388295A CN102171020B (zh) 2008-10-06 2009-08-10 光学膜、光学膜的制造方法、偏振片以及液晶显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-259448 2008-10-06
JP2008259448 2008-10-06

Publications (1)

Publication Number Publication Date
WO2010041513A1 true WO2010041513A1 (ja) 2010-04-15

Family

ID=42100469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064122 WO2010041513A1 (ja) 2008-10-06 2009-08-10 光学フィルム、光学フィルムの製造方法、偏光板および液晶表示装置

Country Status (5)

Country Link
JP (1) JP5397382B2 (ja)
KR (1) KR20110086797A (ja)
CN (1) CN102171020B (ja)
TW (1) TW201030080A (ja)
WO (1) WO2010041513A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275434A (ja) * 2009-05-29 2010-12-09 Nippon Shokubai Co Ltd 光学フィルムの製造方法
JP2013029553A (ja) * 2011-07-26 2013-02-07 Fujifilm Corp 光学フィルム及びその製造方法、積層光学フィルム、偏光板、並びに液晶表示装置
EP3923044A4 (en) * 2019-02-28 2022-11-09 Nitto Denko Corporation OPTICAL LAYERED BODY

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6075424B2 (ja) * 2014-09-30 2017-02-08 住友化学株式会社 偏光板、液晶表示装置及び有機エレクトロルミネッセンス表示装置
KR102502463B1 (ko) * 2015-06-19 2023-02-21 스미또모 가가꾸 가부시키가이샤 프로텍트 필름을 갖는 편광판의 제조 방법
CN109540895B (zh) * 2018-12-27 2021-03-23 朱锦铃 一种燃气表膜质量检测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316767A (ja) * 1997-05-15 1998-12-02 Asahi Chem Ind Co Ltd セルロースとアクリル系重合体とのブレンド成形体及びその製造方法
JP2002356658A (ja) * 2001-05-31 2002-12-13 Nippon Carbide Ind Co Inc アクリル系オーバーレイフィルム
JP2007231157A (ja) * 2005-03-10 2007-09-13 Konica Minolta Opto Inc 光学フィルム、光学フィルムの製造方法、光学補償フィルム、光学補償フィルムの製造方法、偏光板及び液晶表示装置
WO2008062610A1 (fr) * 2006-11-25 2008-05-29 Konica Minolta Opto, Inc. Procédé de fabrication de film optique, film d'ester de cellulose, polariseur et dispositif d'affichage à cristaux liquides
WO2009047924A1 (ja) * 2007-10-13 2009-04-16 Konica Minolta Opto, Inc. 光学フィルム
WO2009096070A1 (ja) * 2008-01-30 2009-08-06 Konica Minolta Opto, Inc. アクリル樹脂含有フィルム、それを用いた偏光板及び液晶表示装置
JP2009179731A (ja) * 2008-01-31 2009-08-13 Konica Minolta Opto Inc アクリル樹脂含有フィルム、それを用いた偏光板及び表示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3272267B2 (ja) * 1997-05-30 2002-04-08 三洋電機株式会社 制御システム及び電子装置
US20030232030A1 (en) * 2002-06-12 2003-12-18 L'oreal Compositions containing at least one oil structured with at least one silicone-polyamide polymer, and at least one gelling agent and methods of using the same
CN1834705A (zh) * 2005-03-10 2006-09-20 柯尼卡美能达精密光学株式会社 光学薄膜和光学补偿薄膜及制法、偏光板和液晶显示装置
CN101171291A (zh) * 2005-05-10 2008-04-30 柯尼卡美能达精密光学株式会社 纤维素酯薄膜、偏振片及液晶显示装置
US20090128747A1 (en) * 2005-09-12 2009-05-21 Fujifilm Corporation Method for Producing Cellulose Acylate Film, Polarizing Plate and Liquid Crystal Display
JP2007126603A (ja) * 2005-11-07 2007-05-24 Fujifilm Corp ポリマーフィルム、ポリマーフィルムの製造方法、び偏光板及び液晶表示装置
US8139181B2 (en) * 2006-03-31 2012-03-20 Zeon Corporation Polarization plate, liquid crystal display device and protective film
TWI387526B (zh) * 2006-06-06 2013-03-01 Fujifilm Corp 熱可塑性樹脂薄膜及其製法、以及偏光板、光學補償薄膜、抗反射薄膜與液晶顯示裝置
US20080049323A1 (en) * 2006-07-27 2008-02-28 Fujifilm Corporation Optical film, production method of optical film, polarizing plate and liquid crystal display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316767A (ja) * 1997-05-15 1998-12-02 Asahi Chem Ind Co Ltd セルロースとアクリル系重合体とのブレンド成形体及びその製造方法
JP2002356658A (ja) * 2001-05-31 2002-12-13 Nippon Carbide Ind Co Inc アクリル系オーバーレイフィルム
JP2007231157A (ja) * 2005-03-10 2007-09-13 Konica Minolta Opto Inc 光学フィルム、光学フィルムの製造方法、光学補償フィルム、光学補償フィルムの製造方法、偏光板及び液晶表示装置
WO2008062610A1 (fr) * 2006-11-25 2008-05-29 Konica Minolta Opto, Inc. Procédé de fabrication de film optique, film d'ester de cellulose, polariseur et dispositif d'affichage à cristaux liquides
WO2009047924A1 (ja) * 2007-10-13 2009-04-16 Konica Minolta Opto, Inc. 光学フィルム
WO2009096070A1 (ja) * 2008-01-30 2009-08-06 Konica Minolta Opto, Inc. アクリル樹脂含有フィルム、それを用いた偏光板及び液晶表示装置
JP2009179731A (ja) * 2008-01-31 2009-08-13 Konica Minolta Opto Inc アクリル樹脂含有フィルム、それを用いた偏光板及び表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275434A (ja) * 2009-05-29 2010-12-09 Nippon Shokubai Co Ltd 光学フィルムの製造方法
JP2013029553A (ja) * 2011-07-26 2013-02-07 Fujifilm Corp 光学フィルム及びその製造方法、積層光学フィルム、偏光板、並びに液晶表示装置
EP3923044A4 (en) * 2019-02-28 2022-11-09 Nitto Denko Corporation OPTICAL LAYERED BODY

Also Published As

Publication number Publication date
KR20110086797A (ko) 2011-08-01
TW201030080A (en) 2010-08-16
CN102171020B (zh) 2013-09-11
CN102171020A (zh) 2011-08-31
JPWO2010041513A1 (ja) 2012-03-08
JP5397382B2 (ja) 2014-01-22

Similar Documents

Publication Publication Date Title
WO2009150926A1 (ja) アクリルフィルムの製造方法およびその製造方法で作製したアクリルフィルム
WO2010119730A1 (ja) 光学素子
JP5402925B2 (ja) 偏光板及び液晶表示装置
JP5333447B2 (ja) アクリルフィルムの製造方法およびその製造方法によって製造したアクリルフィルム
JP5397382B2 (ja) 光学フィルム、光学フィルムの製造方法、偏光板および液晶表示装置
JP5533858B2 (ja) 光学フィルム、それを用いた偏光板及び液晶表示装置
JP5200876B2 (ja) 光学フィルム、それを用いた偏光板及び液晶表示装置
JP5533857B2 (ja) 光学フィルム、それを用いた偏光板及び液晶表示装置
WO2011055590A1 (ja) 液晶偏光板用保護フィルムロール及びその製造方法
WO2009090900A1 (ja) アクリル樹脂含有フィルム及びその製造方法
WO2011138887A1 (ja) 光学フィルム、光学フィルムの製造方法、偏光板、及び液晶表示装置
JP5640743B2 (ja) 偏光板用光学フィルム、その製造方法、それを用いた偏光板及び液晶表示装置
WO2011055603A1 (ja) 光学フィルム、偏光板および液晶表示装置
WO2012140901A1 (ja) 樹脂組成物の製造方法、光学フィルム、偏光板、及び液晶表示装置
JP2011248094A (ja) 光学フィルム
WO2012023331A1 (ja) 光学フィルム、偏光板および液晶表示装置
WO2011138913A1 (ja) 偏光板、その製造方法、及び液晶表示装置
JP5590116B2 (ja) 光学フィルム、偏光板および液晶表示装置
JP2011241264A (ja) 光学フィルム、光学フィルムの製造方法
WO2010050287A1 (ja) 光学フィルム、その製造方法、それを用いた偏光板及び液晶表示装置
JP5263299B2 (ja) 光学フィルム、偏光板、液晶表示装置、および光学フィルムの製造方法
JP2013024963A (ja) 光学フィルムとその製造方法、及び偏光板
JP5691865B2 (ja) 光学フィルム、及び光学フィルムの製造方法
WO2012144016A1 (ja) 光学フィルム、偏光板および液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980138829.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09819049

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010532853

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117007550

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09819049

Country of ref document: EP

Kind code of ref document: A1