WO2010041396A1 - Oxygen pump, method for manufacturing oxygen pump, and storing warehouse comprising oxygen pump - Google Patents

Oxygen pump, method for manufacturing oxygen pump, and storing warehouse comprising oxygen pump Download PDF

Info

Publication number
WO2010041396A1
WO2010041396A1 PCT/JP2009/005097 JP2009005097W WO2010041396A1 WO 2010041396 A1 WO2010041396 A1 WO 2010041396A1 JP 2009005097 W JP2009005097 W JP 2009005097W WO 2010041396 A1 WO2010041396 A1 WO 2010041396A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
electrode
negative electrode
positive electrode
oxygen concentration
Prior art date
Application number
PCT/JP2009/005097
Other languages
French (fr)
Japanese (ja)
Inventor
梅田章広
貫名康之
中川雅至
橋田卓
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008259254A external-priority patent/JP2010089975A/en
Priority claimed from JP2008266005A external-priority patent/JP2010095743A/en
Priority claimed from JP2008322160A external-priority patent/JP2010144994A/en
Priority claimed from JP2008322158A external-priority patent/JP2010144992A/en
Priority claimed from JP2009059123A external-priority patent/JP2010208916A/en
Priority claimed from JP2009059122A external-priority patent/JP2010209442A/en
Priority claimed from JP2009095842A external-priority patent/JP2010248534A/en
Priority claimed from JP2009095841A external-priority patent/JP2010248533A/en
Priority claimed from JP2009097855A external-priority patent/JP2010248555A/en
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2010041396A1 publication Critical patent/WO2010041396A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen

Definitions

  • the present invention relates to an oxygen pump using an electrochemical reaction.
  • the oxygen pump is one that takes in oxygen from one electrode and releases oxygen from the other electrode.
  • the oxygen pump is constituted by an electrochemical cell in which an electrolyte is sandwiched between a pair of electrodes. By direct current flowing between both electrodes, oxygen is electrochemically taken into the cell from the negative electrode, and oxygen is supplied to the positive electrode. It is an oxygen transfer means that releases oxygen.
  • Patent Document 1 discloses an oxygen pump using an aqueous electrolyte.
  • an oxygen pump using a water-based electrolyte is excellent in that it operates at room temperature and normal pressure.
  • a large amount of acidic solution or alkaline solution is held in an electrochemical cell, and a large capacity and structure for holding the oxygen pump are required.
  • Strength is required. Therefore, the degree of freedom as a structure of the oxygen pump and the degree of freedom of the space for incorporating the oxygen pump are remarkably deteriorated. Furthermore, there is a risk that these solutions will flow out upon breakage.
  • oxygen is a substance that is considerably inactive to the electrode, and the negative electrode reaction is slow, so that an electrode catalyst such as platinum is required.
  • Patent Document 2 is an example of using a ceramic-based solid electrolyte.
  • a solid electrolyte uses a high operating temperature of 700 to 1000 ° C. and consumes a large amount of power, although there is no deterioration in performance due to leakage of the electrolyte.
  • the solid electrolyte itself is thin, hard and brittle, it is not suitable for increasing the oxygen carrying capacity by increasing the area.
  • each oxygen pump has its merits and demerits, operates at room temperature and normal pressure, can easily provide a large oxygen carrying capacity, and has not been found an oxygen pump that has no fear of electrolyte leakage.
  • the present invention has been made in view of the above points, and provides an oxygen pump that operates at room temperature and normal pressure, can easily provide a large oxygen carrying capacity, and suppresses electrolyte leakage due to breakage or the like. It is.
  • the oxygen pump of the present invention includes an external DC power source for taking in an electric current from the outside, a negative electrode having a porous gas exchange property, a positive electrode having a porous gas exchange property, A porous separator sandwiched between a negative electrode and a positive electrode, impregnated with an electrolyte containing metal ions, and connected to an external current power source, and a negative collector electrode provided outside the negative electrode And a positive current collecting electrode connected to an external direct current power source and provided outside the positive electrode, and by supplying power to the negative current collecting electrode and the positive current collecting electrode by the external direct current power source, Oxygen is transferred from the gas phase to the positive electrode side gas phase.
  • the oxygen pump of the present invention uses an electrolytic solution, so operates at room temperature and normal pressure, does not require a large amount of electrolytic solution, and has a structure that is difficult to break, so it has a large area and a large oxygen carrying capacity. Can be put out easily. Furthermore, since a large amount of electrolyte is not required, leakage of the electrolyte due to breakage or the like can be suppressed.
  • FIG. 1 is a cross-sectional view illustrating a configuration example of the oxygen pump according to the first to seventh embodiments.
  • FIG. 2 is a cross-sectional view showing the configuration of the oxygen pump in the experimental examples of the first to seventh embodiments.
  • FIG. 3 is a cross-sectional view showing the storage of the eighth embodiment.
  • FIG. 4 is a diagram showing the procedure of adjusting the oxygen concentration in the eighth embodiment.
  • FIG. 5 is a cross-sectional view showing the oxygen concentration adjusting unit of the eighth embodiment.
  • FIG. 6 is a diagram showing the procedure of adjusting the oxygen concentration according to the ninth embodiment.
  • FIG. 7 is a diagram showing a change in oxygen concentration in the ninth embodiment.
  • FIG. 8 is a cross-sectional view showing the storage of the tenth embodiment.
  • FIG. 9A is a cross-sectional view showing the oxygen concentration adjustment tray of the tenth embodiment.
  • FIG. 9B is a cross-sectional view showing the oxygen concentration adjustment tray of the tenth embodiment.
  • FIG. 10 is a cross-sectional view showing the storage of the eleventh embodiment.
  • FIG. 11 is a cross-sectional view showing the oxygen concentration adjusting unit of the eleventh embodiment.
  • FIG. 12 is a cross-sectional view showing the relationship between the oxygen concentration adjusting unit and the oxygen concentration adjusting tray of the eleventh embodiment.
  • FIG. 13A is a cross-sectional view showing the oxygen concentration adjustment tray of the thirteenth embodiment.
  • FIG. 13B is a cross-sectional view showing the oxygen concentration adjustment tray of the thirteenth embodiment.
  • FIG. 14A is a cross-sectional view showing the oxygen concentration adjustment tray of the eleventh embodiment.
  • FIG. 14B is a cross-sectional view showing the oxygen concentration adjustment tray of the eleventh embodiment.
  • FIG. 15 is a cross-sectional view showing the oxygen concentration adjusting unit of the twelfth embodiment.
  • FIG. 16A is a cross-sectional view showing the oxygen concentration adjustment tray of the thirteenth embodiment.
  • FIG. 16B is a cross-sectional view showing the oxygen concentration adjustment tray of the thirteenth embodiment.
  • FIG. 17 is a cross-sectional view showing an oxygen concentration adjustment tray according to the fourteenth embodiment.
  • FIG. 18 is a cross-sectional view showing the storage of the fifteenth embodiment.
  • FIG. 1 shows a cross-sectional view of an oxygen pump.
  • a positive electrode 2 and a negative electrode 3 configured by applying fine carbon powder are disposed on both sides of a separator 1 impregnated with an electrolyte solution.
  • the positive electrode side collector electrode 4 and the negative electrode side collector electrode 5 are configured by closely attaching a carbon cloth to the outside.
  • the separator 1, the positive electrode 2, the negative electrode 3, the positive electrode side current collecting electrode 4 and the negative electrode side current collecting electrode 5 are laminated, and then the end portion in the surface direction of the laminated structure is impregnated with an adhesive.
  • each structure is connected and integrated as a mold part 8.
  • the positive electrode side electrode extraction part 6 and the negative electrode side electrode extraction part 7 with respect to the outside are configured by pulling out carbon fibers of the carbon cloth from the mold part 8, and are connected to an external DC power source (not shown).
  • the separator 1 may be made of a material having a porous membrane having a gap penetrating the front and back, and a battery separator, an electrolytic partition, an ultrafiltration membrane, a filter paper, a nonwoven fabric, and the like can be used.
  • the separator of the first embodiment has a function of performing gas separation in addition to insulation of electronic conduction between both the positive electrode 2 and the negative electrode 3 and blocking gas phase communication between the negative electrode 3 side and the positive electrode 2 side. Is responsible. Accordingly, the gap inside the separator 1 must be filled with the electrolyte solution and cannot pass through the gas. For this reason, materials that are water-repellent and repel the electrolyte cannot be used. Accordingly, water-repellent materials such as polyethylene and polytetrafluorocarbon can be used as long as they have been subjected to hydrophilic treatment.
  • a material with a large mesh opening is desirable because even if it is a hydrophilic material, the liquid phase runs out and the gas phase communicates.
  • Any film having an opening of about 3 micrometers or less can be used.
  • the carbon fine powder of the electrode material of the positive electrode 2 and the negative electrode 3 can be carbon black, graphite carbon powder, activated carbon powder, or the like.
  • a fine layer that does not peel off when applied to the separator 1 is preferable, and the particle size is preferably 10 micrometers or less.
  • Carbon black acetylene black is favorable because it is available in stable and fine particulate form.
  • the carbon fine particles have good conductivity, and an electrode in close contact with the separator can be easily formed.
  • Carbon cloth is a cloth made of plain carbon fiber bundles. Carbon fibers are classified into raw materials by PAN, pitch, rayon, etc., and there are various mechanical properties such as elastic modulus. It doesn't matter. Since the carbon cloth is soft and strong, an oxygen pump having a large area can be made and the oxygen carrying capacity can be increased. Furthermore, by pulling out the carbon fiber bundle of the carbon cloth, binding it with a crimp terminal, and taking out the terminal, the connection with the external power supply circuit can be facilitated.
  • the peripheral ends of the laminated film-like separator 1, the positive electrode 2, the negative electrode 3, the positive electrode side collector electrode 4 and the negative electrode side collector electrode 5 are molded with an adhesive, and the surface direction
  • the gas escape to the gas and the gas sneaking between the positive electrode and the negative electrode are regulated.
  • the adhesive that can be used as an adhesive, rubber paste in which rubber such as neoprene is dissolved in a solvent, silicon corn sealing agent, and the like can be used, and any adhesive that is resistant to the water of the electrolytic solution may be used.
  • the mold portion 8 regulates gas escape in the surface direction and gas wraparound between the positive electrode 2 and the negative electrode 2.
  • the solution to be impregnated in the separator 1 uses an aqueous solvent that operates at room temperature and normal pressure. Since an extremely small amount of electrolyte is impregnated and held, there is no fear of leakage of the electrolyte. Therefore, the oxygen pump of Embodiment 1 is structurally thin and soft, and can have a large area to increase the oxygen carrying capacity.
  • ferrous chloride and calcium chloride aqueous solutions are used as the electrolyte.
  • the blending ratio is 0.2 to 2 mol equivalent to anhydrous ferrous chloride and 4 to 15 mol of water per mol of calcium chloride anhydride.
  • the mixture of ferrous chloride and calcium chloride on the separator 1 has strong deliquescence, absorbs water vapor from the atmosphere, falls within 4 to 15 moles of water per mole of calcium chloride anhydride, and returns to its original wet state. Within this range, the electrolytic solution becomes a non-volatile solution and does not dry out. Further, not only the separator 1 but also surrounding carbon fine powder and carbon cloth hold the aqueous solution. Therefore, when the aqueous solution drips or leaks, the aqueous solution is not lost and the surroundings are not soiled.
  • the current is transmitted from the positive electrode extraction part 6 to the positive electrode 2 via the positive electrode collecting electrode 4.
  • the current is exchanged with the electrolyte solution on the surface of the fine carbon powder of the positive electrode 2 to generate oxygen, and then is transferred through the electrolyte impregnated in the separator by ionic conduction to the fine carbon powder surface of the negative electrode 3.
  • the current exchanges the charge again to take in oxygen into the electrolytic solution, and further returns to the external DC power source through the negative electrode side collecting electrode 5 and the negative electrode side electrode take-out unit 7 to constitute a closed circuit as a whole.
  • gaseous oxygen is taken into the electrolytic solution from the negative electrode-side gas phase 10 on the surface of the fine carbon powder of the negative electrode 3, is transmitted through the electrolytic solution in accordance with ionic conduction, and returns to oxygen on the surface of the fine carbon powder of the positive electrode 2. , And discharged to the positive electrode side gas phase 9. In this way, the function of oxygen transfer as an oxygen pump is exhibited.
  • the divalent iron of ferrous chloride is reduced on the surface of the negative electrode 3 to generate zero-valent iron and the divalent iron of ferrous chloride is oxidized on the surface of the positive electrode 2 in accordance with energization. Trivalent iron is produced. Therefore, the electric charge is consumed by the reaction inside the electrolyte, and no charge is received from or transferred to the external oxygen. Thereafter, when energization is continued, zero-valent iron receives oxygen in the gas phase and hydrogen ions in the electrolyte on the surface of the negative electrode 3 to become divalent iron hydroxide, and the hydroxyl group of the divalent iron hydroxide substitutes for chlorine ions. Thus, hydroxide ions are brought into the electrolyte.
  • the divalent iron is reduced again by charge exchange and returns to zero-valent iron. Therefore, iron works catalytically to take up oxygen.
  • the liberated hydroxide ions brought into the electrolyte move in the electrolyte solution in the separator 1 and collect charges on the surface of the positive electrode 2 to generate oxygen and hydrogen ions.
  • the transfer is complete.
  • ozone and hydrogen peroxide are not detected. Therefore, it is expected that iron works as a catalyst for decomposing ozone and hydrogen peroxide.
  • Hydrogen ions generated by the reaction in the positive electrode 2 move to the negative electrode 3 and participate in the next oxygen uptake reaction. As described above, the reaction is continuous.
  • a pre-operation is carried out in the forward direction, the iron on the surface of the negative electrode 3 is reduced to zero valence, and the iron on the surface of the positive electrode 2 is trivalent. It needs to be oxidized.
  • Calcium chloride that is not directly involved in oxygen transport also has several functions. First, the presence of a large amount of calcium ions suppresses the generation of hydrogen gas from the negative electrode 3. Calcium ions are electrically adsorbed on the surface of the negative electrode 3, and the surface of the electrode is maintained on the alkali side due to pH buffering of calcium ions, so that the equilibrium potential for hydrogen generation is lowered and hydrogen gas is hardly emitted. Second, the solubility of iron involved in the reaction can be increased. Since the separator 1 cannot be impregnated with an iron salt that does not dissolve, if the iron salt is charged at a high concentration, the solubility must be increased. Calcium chloride co-dissolves with ferrous chloride and helps dissolve ferrous chloride.
  • calcium chloride is a source of chloride ions.
  • Trivalent iron ions are liable to form insoluble hydroxides, and the hydroxides are irreversibly changed to iron oxide (iron trioxide).
  • iron oxide iron trioxide
  • the chlorine ions coordinate with the iron ions and compete with the hydroxide ions, so that irreversible iron oxide production can be prevented.
  • FIG. 2 shows the configuration of the oxygen pump used in the experiment.
  • the separator 1 a polyethylene hydrophilic separator having a thickness of 0.38 mm (manufactured by Nippon Sheet Glass Co., Ltd.) was used. Both electrodes of the positive electrode 2 and the negative electrode 3 were composed of acetylene black (manufactured by Wako Pure Chemical Industries, Ltd.) and carbon cloth (manufactured by Mitsubishi Rayon Co., Ltd.).
  • the mold part 8 was configured with a circular effective diameter of 30 millimeters (effective area of 7.0 square centimeters) using a silicone sealant (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • a positive electrode case 11 having a gas outlet 12 was attached, and a thin film micro flow meter was connected to the gas outlet 12 so that the flow rate could be observed.
  • the experiment was conducted at room temperature (about 25 ° C), 2.4 V was applied, 1.4 ampere of current flowed, 0.044 ml / s of gas flowed out of the positive electrode, and the stoichiometry of current and gas flow rate. Relationship was confirmed.
  • Electrolyte used is an aqueous solution of ferric chloride and calcium chloride.
  • the mixing ratio is 0.2 to 2 mol equivalent to anhydrous ferric chloride and 4 to 15 mol of water per mol of calcium chloride anhydride.
  • the separator 1 containing the electrolytic solution is dried.
  • the separator 1 impregnated with the electrolytic solution, the positive electrode 2, the negative electrode 3, the positive electrode side current collecting electrode 4 and the negative electrode side current collecting electrode 5 are laminated, and then an adhesive is applied to the end portion in the plane direction of the laminated structure. Impregnation is then performed, and the structure is connected and integrated as a mold portion 8. In addition, it is difficult to make a mold part with a wet separator that is not dried.
  • the mixture of ferric chloride and calcium chloride on the separator 1 has strong deliquescence, absorbs water vapor from the atmosphere, falls within 4 to 15 moles of water per mole of calcium chloride anhydride, and is originally wet. Return to state. Within this range, the electrolytic solution becomes a non-volatile solution and does not dry out. In addition to the separator 1, the surrounding carbon fine powder and carbon cloth hold the aqueous solution. Therefore, when the aqueous solution drips or leaks, the aqueous solution is not lost, and the surroundings are not soiled.
  • gaseous oxygen is taken into the electrolytic solution from the negative electrode-side gas phase 10 on the surface of the fine carbon powder of the negative electrode 3, is transmitted through the electrolytic solution in accordance with ionic conduction, and returns to oxygen on the surface of the fine carbon powder of the positive electrode 2. , And discharged to the positive electrode side gas phase 9. In this way, the function of oxygen transfer as an oxygen pump is exhibited.
  • trivalent iron ions of ferric chloride on the surface of the negative electrode 3 receive electrons from the negative electrode 3 and are reduced to divalent iron ions.
  • the divalent iron ions are auto-oxidized with oxygen to return to trivalent iron ions, and water is generated from the hydrogen ions in the solution, and oxygen is taken into the electrolyte.
  • Embodiment 2 oxygen can be efficiently taken in by introducing divalent iron ions to be auto-oxidized. Since iron ions are electrode active, it is easy to receive charges from the electrodes. Trivalent iron ions are an oxidized form of divalent iron ions that are auto-oxidized.
  • calcium chloride not directly involved in oxygen transport also has several functions.
  • chlorine ions act to promote oxygen auto-oxidation of divalent iron ions, and oxygen uptake at the negative electrode 3 is accelerated.
  • iron ions are also supplied in the form of chlorides.
  • by adding calcium chloride oxygen auto-oxidation of divalent iron ions is further accelerated.
  • Calcium ions are electrically adsorbed on the surface of the negative electrode 3, and the surface of the electrode is maintained on the alkali side due to pH buffering of calcium ions, so that the equilibrium potential for hydrogen generation is lowered and hydrogen gas is hardly emitted.
  • the solubility of iron involved in the reaction can be increased. Since it is impossible to impregnate the separator with an iron salt that does not dissolve, if the iron salt is charged at a high concentration, the solubility must be increased.
  • Calcium chloride co-dissolves with ferrous chloride and helps dissolve ferrous chloride.
  • calcium chloride is a source of chloride ions.
  • Trivalent iron ions are liable to form insoluble hydroxides, and the hydroxides are irreversibly changed to iron oxide (iron trioxide).
  • iron oxide iron trioxide
  • the chlorine ions coordinate with the iron ions and compete with the hydroxide ions, so that irreversible iron oxide production can be prevented.
  • FIG. 2 shows the configuration of the oxygen pump used in the experiment.
  • the separator 1 a polyethylene hydrophilic separator having a thickness of 0.38 mm (manufactured by Nippon Sheet Glass Co., Ltd.) was used.
  • the positive electrode 2 and the negative electrode 3 were composed of acetylene black (manufactured by Wako Pure Chemical Industries, Ltd.) and carbon cloth (manufactured by Mitsubishi Rayon Co., Ltd.).
  • the mold part 8 was configured with a circular effective diameter of 30 millimeters (effective area of 7.0 square centimeters) using a silicone sealant (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • a positive electrode case 11 having a gas outlet 12 was attached, and a thin film micro flow meter was connected to the gas outlet 12 so that the flow rate could be observed.
  • the experiment was conducted at room temperature (about 25 ° C), 2.1 V was applied, a current of 1.4 amperes flowed, 0.044 ml / sec of gas flowed out from the positive electrode 2, and the stoichiometry of current and gas flow rate. A logical relationship was confirmed.
  • Electrolyte solution is an aqueous solution of nickel chloride or calcium chloride.
  • the mixing ratio is 0.2 to 2 moles equivalent to anhydrous nickel chloride and 4 to 15 moles of water per mole of calcium chloride anhydride.
  • the separator 1 containing the electrolytic solution is dried.
  • the separator 1 impregnated with the electrolytic solution, the positive electrode 2, the negative electrode 3, the positive electrode side collector electrode 4 and the negative electrode side collector electrode 5 are laminated, and then the adhesive is applied to the end portion in the plane direction of the laminated structure.
  • the mold part 8 is piled up to make the mold part 8 and integrated.
  • the mixture of nickel chloride and calcium chloride on the separator 1 has strong deliquescence, absorbs water vapor from the atmosphere, falls within 4 to 15 moles of water per mole of calcium chloride anhydride, and returns to its original wet state. Return. Within this range, the electrolytic solution becomes a non-volatile solution and does not dry out. In addition to the separator 1, the surrounding carbon fine powder and carbon cloth hold the aqueous solution. Therefore, when the aqueous solution drips or leaks, the aqueous solution is not lost and the surroundings are not soiled.
  • the current is transmitted from the positive electrode extraction part 6 to the positive electrode 2 via the positive electrode collecting electrode 4.
  • the current is exchanged with the electrolyte solution on the surface of the fine carbon powder of the positive electrode 2 to generate oxygen, and then is transferred through the electrolyte impregnated in the separator by ionic conduction to the fine carbon powder surface of the negative electrode 3.
  • the current exchanges the charge again to take in oxygen into the electrolytic solution, and further returns to the external DC power source through the negative electrode side collecting electrode 5 and the negative electrode side electrode take-out unit 7 to constitute a closed circuit as a whole.
  • gaseous oxygen is taken into the electrolytic solution from the negative electrode-side gas phase 10 on the surface of the fine carbon powder of the negative electrode 3, is transmitted through the electrolytic solution in accordance with ionic conduction, and returns to oxygen on the surface of the fine carbon powder of the positive electrode 2. , And discharged to the positive electrode side gas phase 9. In this way, the function of oxygen transfer as an oxygen pump is exhibited.
  • the divalent nickel ion of nickel chloride on the surface of the negative electrode 3 receives electrons from the negative electrode and is reduced to become metallic nickel.
  • the metallic nickel is auto-oxidized with oxygen to return to divalent nickel ions, and water is generated from hydrogen ions in the solution, and oxygen is taken into the electrolytic solution.
  • oxygen can be efficiently taken in by introducing nickel that is auto-oxidized.
  • Nickel is electrode active and it is easy to accept charges from the electrode.
  • the divalent nickel ion is an oxidized form of metallic nickel that is auto-oxidized.
  • Calcium chloride which is not directly involved in oxygen transport, also has several functions.
  • calcium chloride has strong deliquescence, excellent water retention, and difficult to dry. Therefore, drying of the electrolytic solution is suppressed, and the electrolytic solution is not cut and ion conduction is not lost.
  • the chlorine ions promote the oxygen auto-oxidation of nickel metal, and the oxygen uptake at the anode 3 is accelerated.
  • nickel is also supplied in the form of chloride.
  • oxygen auto-oxidation of metallic nickel is further accelerated.
  • the presence of a large amount of calcium ions suppresses the generation of hydrogen gas from the negative electrode 3.
  • Calcium ions are electrically adsorbed on the surface of the negative electrode 3, and the surface of the electrode is maintained on the alkali side due to pH buffering of calcium ions, so that the equilibrium potential for hydrogen generation is lowered and hydrogen gas is hardly emitted.
  • the solubility of nickel involved in the reaction can be increased. Since the separator cannot be impregnated with a nickel salt that does not dissolve, if the nickel salt is charged at a high concentration, the solubility must be increased. Calcium chloride co-dissolves with nickel chloride to help dissolve the nickel chloride.
  • FIG. 2 shows the configuration of the oxygen pump used in the experiment.
  • the separator 1 a polyethylene hydrophilic separator having a thickness of 0.38 mm (manufactured by Nippon Sheet Glass Co., Ltd.) was used.
  • the positive electrode 2 and the negative electrode 3 were composed of acetylene black (manufactured by Wako Pure Chemical Industries) and carbon cloth (manufactured by Mitsubishi Rayon Co., Ltd.).
  • the mold part 8 was configured with a circular effective diameter of 30 millimeters (effective area of 7.0 square centimeters) using a silicone sealant (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • a positive electrode case 11 having a gas outlet 12 was attached, and a thin film micro flow meter was connected to the gas outlet 12 so that the flow rate could be observed.
  • the experiment was performed at room temperature (about 25 ° C), 1.5 V was applied, 1.5 ampere current flowed, 0.017 ml / s gas flowed out of the positive electrode, and the stoichiometry of current and gas flow rate. Relationship was confirmed.
  • Electrolytic solution is an aqueous solution of cobalt chloride and calcium chloride.
  • the mixing ratio is 0.2 to 2 mol equivalent to anhydrous cobalt chloride and 4 to 15 mol of water per mol of calcium chloride anhydride.
  • a positive electrode 2 and a negative electrode 2 configured by applying carbon fine powder are disposed on both surfaces of a separator 1 impregnated with an electrolyte solution. Furthermore, the positive electrode side collector electrode 4 and the negative electrode side collector electrode 5 are configured by closely attaching a carbon cloth to the outside.
  • the separator 1, the positive electrode 2, the negative electrode 3, the positive electrode side collector electrode 4, and the negative electrode side collector electrode 5 are laminated, and then the end portion in the plane direction of the laminated structure is impregnated with an adhesive, Then, each structure is connected and integrated as a mold part 8. It is difficult to make the mold part 8 with a wet separator that is not dry.
  • the mixture of cobalt chloride and calcium chloride on the separator has strong deliquescence, absorbs water vapor from the atmosphere, fits in 4 to 15 moles of water per mole of calcium chloride anhydride, and returns to the original wet state. .
  • the electrolytic solution becomes a non-volatile solution and does not dry out.
  • not only the separator 1 but also surrounding carbon fine powder and carbon cloth hold the aqueous solution. Therefore, when the aqueous solution drips or leaks, the aqueous solution is not lost and the surroundings are not soiled.
  • the current is transmitted from the positive electrode extraction part 6 to the positive electrode 2 via the positive electrode collecting electrode 4.
  • the current is exchanged with the electrolyte solution on the surface of the fine carbon powder of the positive electrode 2 to generate oxygen, and then is transferred through the electrolyte impregnated in the separator by ionic conduction to the fine carbon powder surface of the negative electrode 3.
  • the current exchanges the charge again to take in oxygen into the electrolytic solution, and further returns to the external DC power source through the negative electrode side collecting electrode 5 and the negative electrode side electrode take-out unit 7 to constitute a closed circuit as a whole.
  • gaseous oxygen is taken into the electrolytic solution from the negative electrode-side gas phase 10 on the surface of the fine carbon powder of the negative electrode 3, is transmitted through the electrolytic solution in accordance with ionic conduction, and returns to oxygen on the surface of the fine carbon powder of the positive electrode 2. , And discharged to the positive electrode side gas phase 9. In this way, the function of oxygen transfer as an oxygen pump is exhibited.
  • the divalent cobalt ions of cobalt chloride on the surface of the negative electrode 3 receive electrons from the negative electrode 3 and are reduced to become metallic cobalt.
  • Embodiment 4 oxygen can be efficiently taken in by bringing cobalt to be auto-oxidized.
  • Cobalt is electrode active and charge collection with the electrode is easy.
  • the divalent cobalt ion is an oxidized form of metallic cobalt that undergoes auto-oxidation.
  • Calcium chloride which is not directly involved in oxygen transport, also has several functions.
  • calcium chloride has strong deliquescence, excellent water retention, and difficult to dry. Therefore, drying of the electrolytic solution is suppressed, and the electrolytic solution is not cut and ion conduction is not lost.
  • the chlorine ions promote the oxygen auto-oxidation of metallic cobalt, and the oxygen uptake at the negative electrode 3 is accelerated.
  • cobalt is also supplied in the form of chloride.
  • oxygen autooxidation of metallic cobalt is further accelerated.
  • the presence of a large amount of calcium ions suppresses the generation of hydrogen gas from the negative electrode 3.
  • Calcium ions are electrically adsorbed on the surface of the negative electrode 3, and the surface of the electrode is maintained on the alkali side due to pH buffering of calcium ions, so that the equilibrium potential for hydrogen generation is lowered and hydrogen gas is hardly emitted.
  • the solubility of cobalt involved in the reaction can be increased. Since the separator cannot be impregnated with a cobalt salt that does not dissolve, the only way to increase the solubility of the cobalt salt is to increase the concentration of the cobalt salt. Calcium chloride co-dissolves with cobalt chloride to help dissolve cobalt chloride.
  • FIG. 2 shows the configuration of the oxygen pump used in the experiment.
  • the separator 1 a polyethylene hydrophilic separator having a thickness of 0.38 mm (manufactured by Nippon Sheet Glass Co., Ltd.) was used. Both electrodes of the positive electrode 2 and the negative electrode 3 were composed of acetylene black (manufactured by Wako Pure Chemical Industries, Ltd.) and carbon cloth (manufactured by Mitsubishi Rayon Co., Ltd.).
  • the mold part 8 was composed of a silicone sealant (manufactured by Shin-Etsu Chemical Co., Ltd.) and a circular effective diameter of 30 millimeters (effective area of 7.0 square centimeters).
  • a positive electrode case 11 having a gas outlet 12 was attached, and a thin film micro flow meter was connected to the gas outlet 12 so that the flow rate could be observed.
  • 2V is applied, 1.3 ampere current flows, 0.075 ml / sec gas flows out from the positive electrode, and stoichiometric relationship between current and gas flow rate was confirmed.
  • the negative electrode 3 was formed by applying fine carbon powder whose surface was iron-plated, and the positive electrode 2 was formed by applying fine carbon powder.
  • the electrolyte solution is a saturated aqueous solution of potassium fluoride.
  • the separator 1 containing the electrolytic solution is dried.
  • the positive electrode 2, the negative electrode 3, the positive electrode side collector electrode 4, and the negative electrode side collector electrode 5 are laminated, and then the end portion in the plane direction of the laminated structure is impregnated with an adhesive, and then is built up.
  • the mold part 8 is made to be integrated.
  • potassium fluoride on the separator 1 has strong deliquescence, absorbs water vapor from the atmosphere, and returns to its original wet state. Therefore, the electrolytic solution becomes a non-volatile solution and does not dry out.
  • the surrounding carbon fine powder and carbon cloth hold the aqueous solution. Therefore, when the aqueous solution drips or leaks, the aqueous solution is not lost, and the surroundings are not soiled.
  • gaseous oxygen is taken into the electrolytic solution from the negative electrode-side gas phase 10 on the surface of the fine carbon powder of the negative electrode 3, is transmitted through the electrolytic solution in accordance with ionic conduction, and returns to oxygen on the surface of the fine carbon powder of the positive electrode 2. , And discharged to the positive electrode side gas phase 9. In this way, the function of oxygen transfer as an oxygen pump is exhibited.
  • metallic iron is auto-oxidized with oxygen on the surface of the negative electrode 3 to form divalent iron ions, and water is generated from hydrogen ions in the solution, and oxygen is taken into the electrolytic solution.
  • the divalent iron ions on the surface of the negative electrode 3 receive electrons from the negative electrode 3 and are reduced to return to metallic iron.
  • oxygen can be efficiently taken in by introducing iron that is auto-oxidized. Iron is electrode active and it is easy to receive charges with the electrode. Further, divalent iron ions are an oxidized form of metallic iron that undergoes auto-oxidation.
  • potassium fluoride which is not directly involved in oxygen transport, also has several functions.
  • potassium fluoride has strong deliquescence, excellent water retention, and difficult to dry. Therefore, drying of the electrolytic solution is suppressed, and the electrolytic solution is not cut and ion conduction is not lost. This is a common effect for salts with high solubility and strong deliquescence.
  • alkali halides such as calcium chloride, lithium chloride, and lithium bromide.
  • bromide cannot be used because it reacts earlier to produce bromine at a lower potential than oxygen is produced from water at the positive electrode.
  • Chloride reacts at a higher potential than oxygen is produced from water, but the potential is close and there is a risk of producing chlorine at the same time. In this respect, the fluoride reacts at a much higher potential than oxygen is produced from water, and there is no danger of producing fluorine.
  • fluorine ions promote the oxygen auto-oxidation of metallic iron, and oxygen uptake at the negative electrode 3 is accelerated.
  • the electrode material of the negative electrode 3 is obtained by depositing and coating iron metal on a fine carbon powder by electroless plating, and an electrode in close contact with the separator 1 can be easily formed.
  • Electroless plating can be performed by using an iron salt such as iron sulfate or iron chloride as an iron raw material and allowing a reducing agent such as hypophosphite, borohydride, or hydrazine to act under alkaline conditions. At this time, if a small amount of a metal salt having a noble potential such as copper sulfate or nitrosoparadium is added, it is reduced prior to iron to form a reduced nucleus, which acts as a catalyst and iron plating proceeds. , Iron plating of carbon fine powder becomes easy.
  • carbonyl iron can be immersed and absorbed, and this can be thermally decomposed to deposit metallic iron.
  • Carbon black, graphite carbon powder, activated carbon powder, etc. can be used as the carbon fine powder.
  • a fine layer that does not peel off when applied to the separator 1 is preferable, and its particle size is 10 micrometers or less.
  • the carbon fine powder of the positive electrode 2 can be carbon black, graphite carbon powder, activated carbon powder or the like.
  • a fine layer that does not peel off when applied to the separator 1 is preferable, and its particle size is 10 micrometers or less.
  • Carbon black acetylene black is favorable because it is available in stable and fine particulate form.
  • the carbon fine particles have good conductivity, and an electrode in close contact with the separator 1 can be easily formed.
  • FIG. 2 shows the configuration of the oxygen pump used in the experiment.
  • the separator 1 a hydrophilized filter paper made of polytetrafluoroethylene having a thickness of 0.5 millimeters and a pore diameter of 0.1 micrometers (manufactured by Advantech Toyo Co., Ltd.) was used.
  • the positive electrode 2 was made of carbon graphite (manufactured by Wako Pure Chemical Industries, Ltd.), and the negative electrode 3 was made of carbon graphite (made by Wako Pure Chemical Industries, Ltd.) by iron plating.
  • the iron raw material was iron carbonyl, which was absorbed by carbon graphite and thermally decomposed.
  • the positive electrode side collecting electrode 4 and the negative electrode side collecting electrode 5 were made of carbon cloth (manufactured by Mitsubishi Rayon Co., Ltd.).
  • the mold part 8 is a silicone sealant (manufactured by Shin-Etsu Chemical Co., Ltd.), and has a circular effective diameter of 30 millimeters (effective area of 7.0 square centimeters). Furthermore, a positive electrode case having a gas outlet 12 was attached, and a thin film micro flow meter was connected to the gas outlet 12 so that the flow rate could be observed.
  • the negative electrode 3 was formed by applying a fine nickel-plated carbon powder, and the positive electrode 2 was formed by applying a fine carbon powder.
  • the electrolyte solution is a saturated aqueous solution of potassium fluoride.
  • the separator 1 containing the electrolytic solution is dried.
  • the separator 1 impregnated with the electrolytic solution, the positive electrode 2, the negative electrode 3, the positive electrode side collecting electrode 4 and the negative electrode side collecting electrode are laminated, and then an adhesive is applied to the end portion in the plane direction of the laminated structure. It is impregnated, and then integrated by forming the mold part 8 by overlaying.
  • potassium fluoride on the separator 1 has strong deliquescence, absorbs water vapor from the atmosphere, and returns to its original wet state. Therefore, the electrolytic solution becomes a non-volatile solution and does not dry out.
  • the surrounding carbon fine powder and carbon cloth hold the aqueous solution. Therefore, when the aqueous solution drips or leaks, the aqueous solution is not lost and the surroundings are not soiled.
  • the current is transmitted from the positive electrode extraction part 6 to the positive electrode 2 via the positive electrode collecting electrode 4.
  • the current is exchanged with the electrolyte solution on the surface of the fine carbon powder of the positive electrode 2 to generate oxygen, and then is transferred through the electrolyte impregnated in the separator by ionic conduction to the fine carbon powder surface of the negative electrode 3.
  • the current exchanges the charge again to take in oxygen into the electrolytic solution, and further returns to the external DC power source through the negative electrode side collecting electrode 5 and the negative electrode side electrode take-out unit 7 to constitute a closed circuit as a whole.
  • gaseous oxygen is taken into the electrolytic solution from the negative electrode-side gas phase 10 on the surface of the fine carbon powder of the negative electrode 3, is transmitted through the electrolytic solution in accordance with ionic conduction, and returns to oxygen on the surface of the fine carbon powder of the positive electrode 2. , And discharged to the positive electrode side gas phase 9. In this way, the function of oxygen transfer as an oxygen pump is exhibited.
  • the nickel metal is auto-oxidized with oxygen on the surface of the negative electrode 3 to form divalent nickel ions, and water is generated from hydrogen ions in the solution, and oxygen is taken into the electrolyte.
  • the divalent nickel ions on the surface of the negative electrode 3 receive electrons from the negative electrode 3 and are reduced to return to metallic nickel.
  • Ni 2+ + 2e ⁇ ⁇ Ni Therefore, in the entire reaction of the negative electrode 3, oxygen and hydrogen ions receive electrons from the negative electrode and water is generated.
  • oxygen can be efficiently taken in by bringing nickel to be auto-oxidized.
  • Nickel is electrode active and it is easy to accept charges from the electrode.
  • the divalent nickel ion is an oxidized form of metallic nickel that is auto-oxidized.
  • potassium fluoride which is not directly involved in oxygen transport, also has several functions.
  • potassium fluoride has strong deliquescence, excellent water retention, and difficult to dry. Therefore, drying of the electrolytic solution is suppressed, and the electrolytic solution is not cut and ion conduction is not lost. This is a common effect for salts with high solubility and strong deliquescence.
  • alkali halides such as calcium chloride, lithium chloride, and lithium bromide.
  • bromide cannot be used because it reacts first at a lower potential than oxygen is produced from water at the positive electrode 2 to produce bromine.
  • Chloride reacts at a higher potential than oxygen is produced from water, but the potential is close and there is a risk of producing chlorine at the same time. In this respect, the fluoride reacts at a much higher potential than oxygen is produced from water, and there is no danger of producing fluorine.
  • the fluorine ions promote the oxygen auto-oxidation of nickel metal, and the oxygen uptake at the anode 3 is accelerated.
  • the electrode material of the negative electrode 3 is obtained by depositing and coating nickel metal on a fine carbon powder by electroless plating, and an electrode in close contact with the separator can be easily formed.
  • Electroless plating can be performed by using a nickel salt such as nickel sulfate or nickel chloride as a nickel raw material and allowing a reducing agent such as hypophosphite, borohydride, or hydrazine to act under alkaline conditions.
  • a nickel salt having a noble potential such as copper sulfate or nitrosoparadium
  • the nickel plating of the carbon fine powder becomes easy. Carbon black, graphite carbon powder, activated carbon powder, etc. can be used as the carbon fine powder.
  • a fine layer that does not peel off when applied to the separator 1 is preferable, and its particle size is 10 micrometers or less.
  • the carbon fine powder of the positive electrode 2 can be carbon black, graphite carbon powder, activated carbon powder or the like.
  • a fine layer that does not peel off when applied to the separator 1 is preferable, and its particle size is 10 micrometers or less.
  • Carbon black acetylene black is favorable because it is available in stable and fine particulate form.
  • the carbon fine particles have good conductivity, and an electrode in close contact with the separator can be easily formed.
  • FIG. 2 shows the configuration of the oxygen pump used in the experiment.
  • the separator 1 was a polytetrafluoroethylene hydrophilized filter paper having a thickness of 0.5 mm and a pore diameter of 0.1 micrometers (manufactured by Advantech Toyo Co., Ltd.).
  • the positive electrode 2 was made of nickel-plated carbon graphite (manufactured by Wako Pure Chemical Industries) and the negative electrode 3 was made of nickel-plated carbon graphite (manufactured by Wako Pure Chemical Industries).
  • Nickel sulfate was used as the nickel raw material
  • hydrazine monohydrate was used as the reducing agent
  • potassium hydroxide was used as the alkali.
  • the positive electrode side collecting electrode 4 and the negative electrode side collecting electrode 5 carbon cloth (manufactured by Mitsubishi Rayon Co., Ltd.) was used.
  • the mold part 8 was made of a silicone sealant (manufactured by Shin-Etsu Chemical Co., Ltd.) and had a circular effective diameter of 30 millimeters (effective area of 7.0 square centimeters).
  • a positive electrode case 11 having a gas outlet 12 was attached, and a thin film micro flow meter was connected to the gas outlet 12 so that the flow rate could be observed.
  • the experiment was performed at room temperature (about 25 ° C.), 2.6 V was applied, 1.1 ampere current flowed, 0.064 ml / sec gas flowed out from the positive electrode, and the stoichiometry of current and gas flow rate. Relationship was confirmed.
  • the negative electrode 3 was constituted by applying a fine carbon powder having a cobalt plating surface, and the positive electrode 2 was constituted by applying a fine carbon powder.
  • the electrolyte solution is a saturated aqueous solution of potassium fluoride.
  • the separator 1 containing the electrolytic solution is dried.
  • the separator 1 impregnated with the electrolytic solution, the positive electrode 2, the negative electrode 3, the positive electrode side collector electrode 4 and the negative electrode side collector electrode 5 are laminated, and then the adhesive is applied to the end portion in the plane direction of the laminated structure.
  • the mold part 8 is piled up to make the mold part 8 and integrated.
  • potassium fluoride on the separator 1 has strong deliquescence, absorbs water vapor from the atmosphere, and returns to its original wet state. Therefore, the electrolytic solution becomes a non-volatile solution and does not dry out.
  • the surrounding carbon fine powder and carbon cloth hold the aqueous solution. Therefore, when the aqueous solution drips or leaks, the aqueous solution is not lost and the surroundings are not soiled.
  • the current is transmitted from the positive electrode extraction part 6 to the positive electrode 2 via the positive electrode collecting electrode 4.
  • the current exchanges electric charge with the electrolyte solution on the surface of the carbon fine powder of the positive electrode 2 to generate oxygen, and then is transmitted through the electrolytic solution impregnated in the separator by ionic conduction to reach the surface of the carbon fine powder of the negative electrode 3.
  • the current exchanges the charge again to take in oxygen into the electrolyte, and further returns to the external DC power source via the negative electrode side collecting electrode 5 and the negative electrode side electrode take-out part 7 to constitute a closed circuit as a whole. .
  • gaseous oxygen is taken into the electrolytic solution from the negative electrode-side gas phase 10 on the surface of the fine carbon powder of the negative electrode 3, is transmitted through the electrolytic solution in accordance with ionic conduction, and returns to oxygen on the surface of the fine carbon powder of the positive electrode 2. , And discharged to the positive electrode side gas phase 9. In this way, the function of oxygen transfer as an oxygen pump is exhibited.
  • metallic cobalt is auto-oxidized with oxygen on the surface of the negative electrode 3 to form divalent cobalt ions, and water is generated from hydrogen ions in the solution, and oxygen is taken into the electrolytic solution.
  • the divalent cobalt ions on the surface of the negative electrode 3 receive electrons from the negative electrode 3 and are reduced to return to metallic cobalt.
  • Embodiment 7 oxygen can be efficiently taken in by bringing cobalt to be auto-oxidized.
  • Cobalt is electrode active and charge collection with the electrode is easy.
  • the divalent cobalt ion is an oxidized form of metallic cobalt that undergoes auto-oxidation.
  • potassium fluoride which is not directly involved in oxygen transport, also has several functions.
  • potassium fluoride has strong deliquescence, excellent water retention, and difficult to dry. Therefore, drying of the electrolytic solution is suppressed, and the electrolytic solution is not cut and ion conduction is not lost. This is a common effect for salts with high solubility and strong deliquescence.
  • alkali halides such as calcium chloride, lithium chloride, and lithium bromide.
  • bromide cannot be used because it reacts first at a lower potential than oxygen is produced from water at the positive electrode 2 to produce bromine.
  • Chloride reacts at a higher potential than oxygen is produced from water, but the potential is close and there is a risk of producing chlorine at the same time. In this respect, the fluoride reacts at a much higher potential than oxygen is produced from water, and there is no danger of producing fluorine.
  • fluorine ions promote the oxygen auto-oxidation of metallic cobalt, and oxygen uptake at the negative electrode 3 is accelerated.
  • the electrode material of the negative electrode 3 is obtained by depositing and coating cobalt metal on a fine carbon powder by electroless plating, and an electrode in close contact with the separator can be easily formed.
  • Electroless plating can be performed by using a cobalt salt such as cobalt sulfate or cobalt chloride as a cobalt raw material, and allowing a reducing agent such as hydrazine to act under hypophosphite, borohydride, or alkali.
  • a metal salt having a noble potential such as copper sulfate or nitrosoparadium
  • Cobalt plating of carbon fine powder becomes easy.
  • Carbon black, graphite carbon powder, activated carbon powder, etc. can be used as the carbon fine powder.
  • a fine layer that does not peel off when applied to the separator 1 is preferable, and its particle size is 10 micrometers or less.
  • the carbon fine powder of the positive electrode 2 can be carbon black, graphite carbon powder, activated carbon powder or the like.
  • a fine layer that does not peel off when applied to the separator 1 is preferable, and its particle size is 10 micrometers or less.
  • Carbon black acetylene black is favorable because it is available in stable and fine particulate form.
  • the carbon fine particles have good conductivity, and an electrode in close contact with the separator can be easily formed.
  • FIG. 2 shows the configuration of the oxygen pump used in the experiment.
  • the separator 1 is a hydrophilized filter paper made of polytetrafluoroethylene, having a thickness of 0.5 millimeters and a pore diameter of 0.1 micrometers (manufactured by Advantech Toyo Co., Ltd.).
  • the positive electrode 2 was a carbon graphite (manufactured by Wako Pure Chemical Industries) and the negative electrode 3 was a carbon graphite (manufactured by Wako Pure Chemical Industries) plated with cobalt.
  • the cobalt raw material was cobalt sulfate, the reducing agent was hydrazine monohydrate, and the alkali was potassium hydroxide.
  • the mold part 8 is a silicone sealant (manufactured by Shin-Etsu Chemical Co., Ltd.), and has a circular effective diameter of 30 millimeters (effective area of 7.0 square centimeters). Furthermore, a positive electrode case 11 having a gas outlet 12 was attached, and a thin film micro flow meter was connected to the gas outlet 12 so that the flow rate could be observed.
  • FIG. 3 is a cross-sectional view showing a food storage space capable of adjusting the oxygen concentration in the refrigerator as a storage in the eighth embodiment.
  • FIG. 3 shows one of a plurality of storage rooms extracted from a refrigerator as a storage.
  • Deoxygenation assistance that forms a deoxygenation auxiliary space with a food storage container 39 whose interior is a food storage space 40 in a space formed by the front storage chamber door 31, the upper and lower heat insulating partition walls 32, and the partition plate 34
  • the container 38 is connected and arranged.
  • a deoxygenation gas introduction unit 36 is disposed at a connection portion between the food storage container 39 and the deoxygenation auxiliary container 38, and the deoxygenation auxiliary container 38 includes an external gas replacement unit 37 and an oxygen concentration adjustment unit (oxygen pump). 35.
  • a cooler, a fan, etc. are installed in the space between the partition plate 34 and the main body heat insulation wall 33 or the space connected thereto, and cool air is supplied to the storage room.
  • Equipment, fans, etc. are omitted.
  • FIG. 4 shows a procedure for deoxidizing the food storage space of the eighth embodiment.
  • an outline of a specific method of adjusting the oxygen concentration and the function of each unit will be described with reference to FIGS. 3 and 4.
  • Deoxidation of the food storage space 39 proceeds in three steps shown in FIG.
  • the first step is “substitution of the gas in the deoxygenation auxiliary container with an external gas”.
  • This step is performed by the external gas replacement unit 37 included in the deoxygenation auxiliary container 38.
  • the external gas replacement unit 37 is a kind of opening / closing device, and first performs an operation of opening the opening / closing device. As a result, the gas inside the deoxygenation auxiliary container 38 is released to the outside, and the external gas is introduced into the deoxygenation auxiliary container 38.
  • the purpose of this step is to maintain the oxygen concentration of the gas in the deoxygenation auxiliary container 38 at about 21%, which is the same as that in the atmosphere, prior to step 2 by the above replacement. If the oxygen concentration is kept at a constant value of 21%, the volume of the deoxygenation auxiliary container 38 is constant, so that the total oxygen amount in the deoxygenation auxiliary container 38 becomes constant. As a result, as will be described below, in step 2, hydrogen ions and oxygen react without excess and deficiency, and hydrogen generation does not proceed.
  • the second step is “deoxygenation in the deoxygenation auxiliary vessel”.
  • deoxidation in the deoxygenation auxiliary container 38 is performed by applying a voltage to the oxygen concentration adjusting unit (oxygen pump) 35 of the deoxygenation auxiliary container 38.
  • oxygen concentration adjusting unit (oxygen pump) 35 the electric charge that flows when voltage is applied to the oxygen concentration adjusting unit (oxygen pump) 35
  • the electric charge corresponding to the total amount of oxygen in the deoxygenation auxiliary vessel 38 (the electric charge that flows when voltage is applied to the oxygen concentration adjusting unit (oxygen pump) 35) is controlled to flow by voltage application. It is to be. This generates hydrogen ions equivalent to the charges, which react with oxygen and are removed.
  • both the external gas replacement part 37, which is a kind of opening / closing mechanism, and the deoxygenation gas introduction part 36, which is also a kind of opening / closing mechanism, are closed, and the deoxygenation auxiliary container is isolated. To do.
  • the operation of the deoxygenated gas introducing section 36 will be described in the third step.
  • the third step is “introduction of gas in the deoxygenation auxiliary container into the food storage space”.
  • the deoxygenated gas introduction part 36 which is a kind of opening / closing mechanism is opened.
  • the deoxygenated gas in the deoxygenation auxiliary container 38 is introduced into the food storage space 40 that has not been deoxygenated and becomes uniform. In this way, the oxygen concentration in the food storage space 40 is reduced by introducing the deoxygenated gas.
  • the amount of oxygen to be always removed is constant, and the charge corresponding to the amount of oxygen is expressed as oxygen.
  • Control is performed so as to flow when a voltage is applied to the concentration adjusting unit (oxygen pump) 35.
  • step 3 gas diffusion is promoted to replace the gas in the deoxygenation auxiliary container 38 with external gas (step 1), the introduction of the deoxygenated gas in the deoxygenation auxiliary container 38 into the food storage space 40, and uniform
  • a fan As a place to install, the inside of the deoxidation auxiliary container 38 is preferable.
  • step 2 since the inside of the deoxygenation auxiliary container 38 is depressurized by deoxygenation, the deoxygenation auxiliary container 38 needs to have a strength that can withstand the pressure difference, and is a thick resin container or metal container. Etc. are used.
  • the deoxygenation auxiliary container 38, the external gas replacement unit 37, and the deoxygenation gas introduction unit 36 have high hermeticity, a tighter synthetic container is required.
  • the deoxygenation auxiliary container 38, the external gas replacement unit 37, and the deoxygenation gas introduction unit 36 are reduced in the sealing property, or the deoxygenation auxiliary container 8 is provided with a pinhole, so that the deoxygenation auxiliary container The inside of 38 is not decompressed, and it is also possible to use a resin case having a normal strength with a small thickness.
  • FIG. 5 is a cross-sectional view of the oxygen concentration adjusting unit (oxygen pump) 35 in the eighth embodiment.
  • the oxygen concentration adjusting unit (oxygen pump) 35 has a polymer solid electrolyte membrane (separator) 42 at the center, a negative electrode 43 on the left side, and a positive electrode 44 on the right side.
  • a supply electrode (a negative electrode side collector electrode and a positive electrode side collector electrode) 45 is provided outside, and these are fixed by a frame 41.
  • the oxygen concentration adjusting unit (oxygen pump) 35 has a negative electrode 43 inside the deoxygenation auxiliary hand container 38 and a positive electrode 44 outside the deoxygenation auxiliary container 38 in order to deoxygenate the inside of the deoxygenation auxiliary container 38. It is arranged to become.
  • the voltage application to the oxygen concentration adjusting unit (oxygen pump) 35 is performed by voltage application to two supply electrodes (a negative electrode side collector electrode and a positive electrode side collector electrode) 45.
  • a negative electrode side collector electrode and a positive electrode side collector electrode By this voltage application, water vapor in the air is electrolyzed on the positive electrode 44 side to generate oxygen, and simultaneously generated hydrogen ions are passed through the polymer solid electrolyte membrane (separator) 42 by the applied voltage.
  • To the negative electrode 43 Since water is supplied as water vapor from the space on the positive electrode 44 side, the humidity in the space on the positive electrode 44 side decreases.
  • the oxygen concentration in the negative electrode 43 side space decreases and the oxygen concentration on the positive electrode 44 side increases, so that oxygen is pumped from the negative electrode 43 side to the positive electrode 44 side.
  • the water vapor is pumped from the positive electrode 44 side to the negative electrode 43 side.
  • the polymer solid electrolyte membrane (separator) 42 used in Embodiment 8 for example, a perfluorocarbon sulfonic acid membrane (film thickness: several tens of micrometers to several hundreds of micrometers) is used.
  • a porous electrode is used which has a suitable water repellency by pressure molding a mixture of carbon powder carrying a catalyst such as platinum and fluororesin powder.
  • a carbon cloth, carbon paper, or the like is used for the power feeding body (negative electrode side collecting electrode and positive electrode side collecting electrode) 45.
  • the positive electrode 44 be formed as a positive electrode 44 by directly forming a platinum layer on the polymer solid electrolysis (separator) 42 without using carbon powder that is easily oxidized by voltage application as a carrier such as platinum.
  • the positive electrode-side supply electrode (positive electrode-side collector electrode) 45 mesh-like titanium whose surface is platinum-plated is used instead of the carbon paper or carbon cloth.
  • the external gas replacement unit 37 and the deoxygenated gas introduction unit 36 used in the eighth embodiment are the open / close mechanisms already described, and an electromagnetic valve, a valve using air pressure, a switch or the like is used.
  • the oxygen concentration in the food storage space can be safely reduced without generating hydrogen, and the food can be safely stored for a long period of time with high quality. Become.
  • the polymer solid electrolyte membrane (separator) 42 of the oxygen concentration adjusting section (oxygen pump) 35 a perfluorocarbon sulfonic acid membrane having a thickness of about 200 microns was used.
  • the negative electrode 43 a porous electrode having a suitable water repellency by pressure-molding a mixture of a carbon powder carrying platinum on its surface and a fluororesin powder was used.
  • the positive electrode 44 used was a platinum black layer formed directly on the polymer solid electrolyte membrane (separator) 42.
  • the power supply body 45 a cloth made of carbon fiber was used for the negative electrode, and mesh-like titanium whose surface was plated with platinum was used for the positive electrode.
  • This oxygen concentration adjusting unit (oxygen pump) 35 is capable of removing about 170 ml of oxygen on the negative electrode 43 side per hour in an atmosphere of temperature 25 ° C. and humidity 60% and simultaneously generating the same amount of oxygen on the positive electrode 44 side. Had. This capability is achieved by connecting both sides of the oxygen concentration adjusting unit (oxygen pump) 35 to two bags having gas barrier properties, and applying a voltage of 2.8 V to the supply electrode (negative electrode side collector electrode and positive electrode side collector electrode) 45. It was confirmed by measuring the oxygen concentration in the two bags when applied. The oxygen concentration was determined by quantifying the amount of oxygen using a gas chromatogram.
  • the food storage container 39 shown in FIG. 3 has an internal volume of 1 L, and the deoxygenation auxiliary container 38 has an internal volume of 3 L.
  • the deoxygenation auxiliary container 38 has a structure having a thickness so that it can withstand the pressure load due to the reduced pressure during deoxygenation.
  • Step 1 With the above configuration, 200 ml of beef minced meat is put in the food storage space and stored in an atmosphere of 5 ° C., the external gas replacement unit 37 is opened, and the deoxygenation auxiliary container with external air 38 was replaced.
  • Step 2 the external gas replacement unit 37 was closed, and a voltage of 2.8 V was applied to the negative electrode 43 and the positive electrode 44 of the oxygen concentration adjusting unit (oxygen pump) 35.
  • This time was determined from the charge amount as follows.
  • the inside of the deoxygenation auxiliary container 38 is deoxygenated in advance under the above voltage condition, the sum of the current values (charge amount) at which the oxygen concentration becomes 2% is obtained, and the voltage application is stopped at the time when the charge amount is reached. .
  • the voltage application was canceled when the same amount of electric charge was reached even in the following changes in the amount of beef minced meat.
  • the deoxygenated gas introduction section 36 is opened, and the deoxygenated auxiliary oxygen container 38 is introduced into the food storage space 40 and homogenized, and then the oxygen concentration and hydrogen concentration are adjusted to the gas chromatograph. Measured by togram.
  • the oxygen concentration adjustment unit is directly placed on the food storage container of the same volume as the experimental example, and the deoxygenation of the food storage space in the food storage container is directly performed. Carried out.
  • the charge amount at the time of deoxygenation does not depend on the amount of beef minced meat.
  • the charge amount when the oxygen concentration reaches 2% is used as a standard.
  • the voltage application to the oxygen concentration adjusting unit was released.
  • a pinhole having a diameter of 1 mm was opened in the food storage container so that the inside was not depressurized, and sampling at the time of gas chromatogram measurement was also performed from this pinhole.
  • the structure has a thickness so as to withstand the pressure load caused by the reduced pressure during deoxygenation.
  • a structure having a pinhole with a diameter of 1 mm may be used so as not to reduce the pressure during deoxygenation.
  • the sealing property is lowered by such a pinhole or the like, it is difficult to control the degree of sealing property or a fine pinhole, and in many cases, intrusion of oxygen that cannot be permitted from the outside may occur.
  • periodic deoxygenation can compensate for the decrease in sealing, and by reducing the pressure applied to the container, destruction or the like does not occur. Deoxygenation can be performed with improved reliability.
  • the structural feature of the ninth embodiment is that when the oxygen concentration is adjusted, the number of introductions of the deoxygenated gas into the space for storing the food is made plural.
  • the oxygen concentration adjusting method according to the ninth embodiment will be described with reference to FIG. 3 and FIG.
  • the first to third steps are the same as those in FIG. 4, and the first to third steps are repeated a plurality of times as necessary.
  • FIG. 7 shows the number of step repetitions on the horizontal axis and the change in oxygen concentration at that time on the vertical axis. Specifically, when the volume of the deoxygenation auxiliary container 38 indicated by the solid line is equal to the volume of the food storage space 40, the volume of the deoxygenation auxiliary container 38 indicated by the broken line is three times the volume of the food storage space 40. It is related to some cases. In each case, the oxygen concentration change in the food storage space 40 is plotted against the number of repetitions of the first to third steps.
  • the adjusted oxygen concentration in the deoxygenation auxiliary container 38 in the second step was set to 4%.
  • the adjusted oxygen concentration is 4% here, but can be arbitrarily set between 0 and 21%.
  • the oxygen concentration in the oxygen auxiliary container 38 converges to 4%.
  • the volume of the deoxygenation auxiliary container 38 is three times the volume of the food storage space 40, the number of repetitions of the first to third steps is 0 to 2, and the inside of the deoxygenation auxiliary container 38 in the second step.
  • the adjusted oxygen concentration converges to around 4%.
  • the volume of the original deoxygenation auxiliary container 38 is three times the above (when the food storage space 40 and the deoxygenation auxiliary container 38 are equal in volume)
  • the number of repetitions of the first to third steps should be the same.
  • the amount of deoxygenation is three times the above (when the volume of the food storage space 40 and the deoxygenation auxiliary container 38 is equal), and deoxidation requires three times as much time.
  • the amount of deoxygenated is equal to the volume of the food storage space 40 and the volume of the deoxygenation auxiliary container 38, and the number of repetitions of the first to third steps is 3, and the volume of the deoxygenation auxiliary container 38 is equal to the volume of the food storage space 40.
  • the number of repetitions of the first to third steps is 1 at 3 times the volume, it is equal. Comparing the two cases in FIG. 7, the oxygen concentration is lower when the volume of the deoxygenation auxiliary container is smaller and the number of repetitions of the first to third steps is larger, and the food storage space is deoxygenated more efficiently. I understand that.
  • a low oxygen concentration can be realized more efficiently in a short time, and food can be stored more efficiently and for a long time with high quality. This is because the smaller the volume of the auxiliary oxygen storage container, the smaller the loss due to substitution with external gas (increase in oxygen concentration) in step 1.
  • Embodiment 10 Next, Embodiment 10 will be described.
  • the same configuration as in the eighth and ninth embodiments has the same effect, and the same reference numerals are given and the description is omitted. Therefore, only different parts will be described.
  • the structural feature of the tenth embodiment lies in how the food storage space 40 is formed, and the other configuration is the same as that of the eighth embodiment.
  • the same oxygen concentration adjusting unit (oxygen pump) as that used in the eighth embodiment is used.
  • the procedure similar to that described in the eighth and ninth embodiments is used for the procedure of the oxygen concentration adjustment method.
  • FIG. 8 shows a cross-sectional view of one of a plurality of storage rooms in a refrigerator that is a storage similar to FIG. 3 differs from FIG. 3 of the eighth embodiment in that the food storage space 40 is formed by the food storage container 39 in FIG. 3, whereas in the tenth embodiment, the food is placed on the oxygen concentration adjusting tray 46. The space formed by covering this with the gas barrier film 48 is the food storage space 40.
  • the oxygen concentration adjustment is performed by repeating the first to third steps once or a plurality of times as in the eighth or ninth embodiment.
  • the food storage space 40 is significantly reduced. This is because the space occupied by other than food is extremely reduced by covering the food with the gas barrier film 48 in contact with the food. As a result, the volume of the gas to be deoxygenated is reduced, the food storage space 40 can be efficiently deoxygenated in a short time, and many foods can be stored with high quality. In addition, since the volume of the gas to be deoxygenated is reduced, the size of the oxygen concentration adjusting unit (oxygen pump) 35 can be reduced. By doing so, it is possible to obtain an effect that enables food to be stored in high quality at low cost.
  • the gas barrier film used in the tenth embodiment is a transparent film having a low oxygen permeability and a flexibility, and the oxygen permeability needs to be about 20000 mL / m 2 ⁇ day ⁇ atm or less.
  • a film of a hydrocarbon-based organic polymer such as polyethylene or a film obtained by depositing an inorganic substance such as silica on the organic polymer film is used.
  • the oxygen permeability is preferably 1000 mL / m 2 ⁇ day ⁇ atm or less.
  • a polyvinylidene chloride film having an oxygen transmission rate as low as 55 mL / m 2 ⁇ day ⁇ atm is used.
  • the container when using food storage containers made of plastic or metal, the container is not sufficiently transparent, so it is necessary to open the container to check the contents of the stored food.
  • the problem was that the concentration would increase.
  • the gas barrier membrane is highly transparent, it is possible to check the contents from the outside without releasing the sealing of the food storage space except for the membrane, which has the effect of greatly improving usability. is there.
  • the oxygen concentration adjusting tray 46 is connected to the deoxygenation auxiliary container 38 by the deoxygenation auxiliary container connection part 47 so that there is no gas leakage.
  • auxiliary oxygen depletion container 38 and the oxygen concentration adjusting tray 46 are detachable and fitted, and if necessary, a sealing material, packing, or the like can be used to eliminate leakage at the connecting portion. .
  • the oxygen concentration adjusting tray 46 is removed from the deoxygenation auxiliary container 38 and taken out of the refrigerator, and then the food is placed on the oxygen concentration adjusting tray 46. Thereafter, after the food is covered with a gas barrier film, it can be connected to the deoxidation auxiliary container 38 and used. Thus, since food is put out and put on the outside, an effect of greatly improving usability can be obtained.
  • FIGS. 9A and 9B are cross-sectional views of the oxygen concentration adjusting tray in the tenth embodiment.
  • FIG. 9A is a cross-sectional view in the direction of connection with the deoxygenation auxiliary container 38.
  • the arrow in FIG. 9A represents the connection direction with a deoxidation auxiliary container.
  • 9B is a cross-sectional view taken along line 9B-9B in FIG. 9A.
  • the deoxygenation auxiliary container connecting portion 47 of the oxygen concentration adjusting tray 46 has a large opening on the side connected to the deoxygenation auxiliary container 38 as shown in FIG. 9B. Through the opening, the deoxygenated gas can be efficiently supplied to the food storage space 40 by passing the deoxygenated auxiliary container 38 through the deoxygenated gas introduction section 36.
  • the ventilation groove in the lower part or the side part of the oxygen concentration adjusting tray 46.
  • a uniform oxygen concentration can be achieved in a short time through the ventilation groove, and the food can be stored in a high quality state uniformly. The effect becomes.
  • the ventilation groove extends from the vicinity of the deoxygenation auxiliary container connecting portion 47 to the end opposite to the deoxygenation auxiliary container 38.
  • the oxygen concentration adjusting tray 46 which is the gas barrier film and the food holding unit. It is possible to use a holding member for pressing the gas barrier film against the food storage space in order to improve the airtightness of the food storage space and prevent the gas inside and outside the food storage space 40 from entering and exiting.
  • the holding member is preferably configured to hold the gas barrier film between the oxygen concentration adjusting tray and the holding material.For example, a frame that closes the gas barrier film from the outside or a fixing device on the belt is used. Can be used.
  • this invention is not limited by this experimental example.
  • the oxygen concentration in the food storage space in FIG. 8 was lowered using the oxygen concentration adjusting tray 46 and the gas barrier film 48 in FIG. 8 of the tenth embodiment.
  • the oxygen concentration adjusting tray 46 shown in FIG. 8 was taken out, beef minced meat was placed thereon, covered with a gas barrier film 48, and this was connected to the deoxygenation auxiliary container 38. Thereafter, as in the experimental example shown in the eighth embodiment, the oxygen concentration in the food storage space 40 was adjusted according to the operation, and the oxygen concentration and the hydrogen concentration were measured.
  • the oxygen concentration was lower than that in the experimental example shown in the eighth embodiment. Further, as in the experimental example shown in the eighth embodiment, generation of hydrogen was avoided.
  • the generation of hydrogen was avoided because, as in the experimental example shown in the eighth embodiment, deoxygenation is always a certain amount of oxygen in the deoxygenation auxiliary container. This is probably because the corresponding hydrogen ions were supplied and no excess hydrogen ions were generated.
  • the reason why the oxygen concentration is low is considered to be as follows. By covering the beef minced meat with a gas barrier membrane, the volume to be deoxygenated (the volume of the food storage space) is greatly reduced. For this reason, when the deoxygenated gas is introduced from the deoxygenation auxiliary container, the influence of the food storage space 40 is reduced, and becomes almost equal to the oxygen concentration in the deoxygenation auxiliary container.
  • FIG. 10 is a cross-sectional view showing a food storage space capable of adjusting the oxygen concentration in the refrigerator as a storage in the eleventh embodiment.
  • FIG. 10 shows one extracted from a plurality of storage rooms of a refrigerator as a storage.
  • An oxygen concentration adjusting tray 56 covered with a gas barrier film 57 in a space formed by the storage chamber door 51 on the entire surface, the heat insulating partition walls 52 on the upper and lower surfaces, and the partition plate 54 is an oxygen concentration adjusting unit (oxygen pump). 55 is connected and installed.
  • a sealed space formed by connecting the oxygen concentration adjusting tray 56 with a gas barrier film 57 to an oxygen concentration adjusting portion (oxygen pump) 55 is a food storage space 70.
  • the volume variable section is an oxygen concentration adjusting tray 56 that is a food holding section that forms at least the bottom surface of the food storage space 70, and the gas barrier property provided on the oxygen concentration adjusting tray 56.
  • the film 57 is formed.
  • a cooler, a fan, etc. are installed in the space between the partition plate 54 and the main body heat insulating wall 53 or the space connected thereto, and cool air is supplied to the storage room.
  • Equipment, fans, etc. are omitted.
  • a sealed food storage space 70 formed by an oxygen concentration adjusting tray 56, a gas barrier film 57 covering the oxygen concentration adjusting tray 56, and an oxygen concentration adjusting unit (oxygen pump) 55 connected thereto an oxygen concentration adjusting unit (oxidygen removal is performed by an oxygen pump 55. Thereby, the oxygen concentration in the food storage space 70 is adjusted to be reduced.
  • the oxygen concentration can be reduced to about 0% to 10%, and the amount of gas in the food storage space 70 decreases accordingly.
  • the gas barrier film 57 since the gas barrier film 57 has flexibility, the gas barrier film 57 is deformed so as to decrease in volume as the gas decreases. As a result, no pressure difference is generated inside and outside the food storage space 70, and the inside and outside of the food storage space 70 are in substantially the same pressure state.
  • the gas barrier film 57 is a transparent film having a low oxygen permeability and a flexibility, and requires an oxygen permeability of about 20000 mL / m 2 ⁇ day ⁇ atm or less, and is a hydrocarbon-based material such as polyethylene.
  • An organic polymer film or a film obtained by depositing an inorganic substance such as silica on the organic polymer film is used.
  • the oxygen permeability is preferably 1000 mL / m 2 ⁇ day ⁇ atm or less.
  • a polyvinylidene chloride film having an oxygen transmission rate as low as 55 mL / m 2 ⁇ day ⁇ atm is used.
  • the gas barrier film 57 is transparent, so that there is an effect that the contents can be confirmed from the outside without releasing the sealing, improving the user-friendliness and reducing the number of times the sealing is released, The freshness can be further improved.
  • FIG. 11 is a cross-sectional view of oxygen concentration adjusting unit (oxygen pump) 55 in the eleventh embodiment.
  • the oxygen concentration adjusting unit (oxygen pump) 55 has a polymer solid electrolyte membrane (separator) 59 at the center, a negative electrode 60 on the left side, and a positive electrode 61 on the right side.
  • a supply electrode (a negative electrode side collector electrode and a positive electrode side collector electrode) 62 is provided outside, and these are fixed by a frame 58.
  • a tray connecting portion 63 for connecting to the oxygen concentration adjusting tray 56 is provided at the right end.
  • oxygen concentration adjusting unit (oxygen pump) 55 is described with reference to FIG.
  • Oxygen is generated by electrolysis of water on the positive electrode 61 side by applying a voltage to the supply electrode (negative electrode side collecting electrode and positive electrode side collecting electrode) 62, and simultaneously generated hydrogen ions are polymerized by the applied voltage.
  • the solid electrolyte membrane (separator) 59 moves from the positive electrode 61 to the negative electrode 60. Since water is supplied as water vapor from the space on the positive electrode 61 side, the humidity in the space on the positive electrode 61 side decreases.
  • oxygen in the negative electrode 60 side space reacts with hydrogen ions moved to the negative electrode 60 side or hydrogen gas generated by reduction of hydrogen ions, and is taken into the electrolyte membrane as water. At this time, a part of the water is discharged to the negative electrode 60 side space and increases the humidity of the corresponding space. Some water moves to the positive electrode 61 side and is used for electrolysis.
  • oxygen in the negative electrode 60 side space is pumped to the positive electrode 61 side.
  • water vapor is pumped from the positive electrode 61 side to the negative electrode 60 side.
  • the polymer solid electrolyte membrane (separator) 59 for example, a perfluorocarbon sulfonic acid membrane (film thickness: several tens of microns to several hundreds of microns) is used.
  • a porous electrode having a suitable water repellency by pressure molding a mixture of carbon powder carrying platinum on the surface thereof and a fluororesin powder is used.
  • the power supply body 62 is preferably made of a metal that is not easily oxidized, and mesh-like titanium or the like whose surface is platinum plated is used.
  • FIG. 12 is a cross-sectional view showing the relationship between the oxygen concentration adjusting unit (oxygen pump) 55 and the oxygen concentration adjusting tray 56 in the eleventh embodiment.
  • the oxygen concentration adjusting tray 56 is connected to the tray connecting portion 63 of the oxygen concentration adjusting portion (oxygen pump) 55 by the oxygen concentration adjusting portion connecting portion 64 so as not to leak gas. Yes.
  • the oxygen concentration adjusting tray 56 is connected to the negative electrode 60 side of the oxygen concentration adjusting unit (oxygen pump) 55, and oxygen diffused from the food storage space 70 reacts with hydrogen ions or hydrogen gas at the negative electrode 60. Thus, the oxygen concentration in the food storage space 70 is reduced by generating water.
  • the oxygen concentration adjusting unit connecting part 64 and the tray connecting part 63 are, for example, a fitting type, and seal packing or the like can be used as necessary.
  • FIGS. 13A and 13B are cross-sectional views of oxygen concentration adjusting tray 56 in the eleventh embodiment.
  • FIG. 13A is a cross-sectional view in the direction of connection with the oxygen concentration adjusting unit (oxygen pump).
  • the arrow in FIG. 13A represents the connection direction with a deoxidation auxiliary container.
  • 13B is a cross-sectional view taken along line 13B-13B in FIG. 13A.
  • the oxygen concentration adjusting portion connecting portion 64 of the oxygen concentration adjusting tray 56 has a large opening on the side connected to the oxygen concentration adjusting portion (oxygen pump) 55 as shown in FIG.
  • oxygen can be efficiently supplied to the oxygen concentration adjusting unit (oxygen pump) 55.
  • oxygen that has reached the negative electrode 60 of the oxygen concentration adjusting unit (oxygen pump) 55 becomes water by reacting with hydrogen ions or hydrogen gas, and the oxygen concentration is reduced.
  • FIGS. 14A and 14B are cross-sectional views of oxygen concentration adjusting tray 56 used differently in the eleventh embodiment.
  • FIG. 14A is a cross-sectional view in the direction of connection with the oxygen concentration adjusting portion (oxygen pump) 55 of the oxygen concentration adjusting tray 56.
  • the arrow in FIG. 14B represents the connection direction with a deoxidation auxiliary container.
  • 14B is a cross-sectional view taken along the line 14-14 in FIG. 14A.
  • FIGS. 13A and 13B The difference between FIGS. 13A and 13B and FIGS. 14A and 14B is that a gas barrier film fixing frame 65 is used in FIGS. 14A and 14B5.
  • the gas barrier film fixing frame 65 is in close contact with the gas barrier film 57 covering the oxygen concentration adjusting tray 56.
  • the gas barrier film fixing frame 65 has a function of pressing the gas barrier film 57 against the oxygen concentration adjusting tray 56 from above to improve the adhesion and fix it. For this reason, the intrusion of air from the outside is further suppressed, the oxygen concentration in the food storage space 70 can be reduced more efficiently, and the oxygen concentration that reaches can be reduced. As a result, the effect that the food can be stored for a long period of time with high quality is obtained.
  • the gas barrier film fixing frame 65 only needs to be able to uniformly press the gas barrier film 57 against the oxygen concentration adjusting tray 56 from above, and can be pressed more strongly by using a function of contracting rubber or a spring. It can also be mechanically tightened after installation.
  • the configuration of the eleventh embodiment it is possible to efficiently reduce the oxygen concentration in the food storage space 70, and it is possible to store food in high quality for a long period of time.
  • the configurations and materials of the respective parts described in the eleventh embodiment can be applied to the following embodiments as long as the difference in configuration is not particularly described.
  • the food storage space 70 shown in FIG. 10 is used by using the oxygen concentration adjusting unit (oxygen pump) 55 of FIG. 11 of Embodiment 11 and the oxygen concentration adjusting tray 56 of FIGS. 14A and 14B.
  • the oxygen concentration was reduced.
  • the polymer solid electrolyte membrane (separator) 59 of the oxygen concentration adjusting unit (oxygen pump) 55 a perfluorocarbon sulfonic acid membrane having a thickness of about 100 microns is used, and the positive electrode 61 and the negative electrode 60 are carbons carrying platinum on their surfaces.
  • the power supply body 62 mesh-like titanium whose surface is platinum-plated is used.
  • This oxygen concentration adjusting unit (oxygen pump) 55 has the ability to remove about 200 ml of oxygen on the negative electrode 60 side per hour in an atmosphere of temperature 25 ° C. and humidity 60% and simultaneously generate the same amount of oxygen on the positive electrode side. Had. This capability is achieved by connecting both sides of the oxygen concentration adjusting unit (oxygen pump) 55 to two bags having gas barrier properties, and applying a voltage of 2.8 V to the supply electrode (negative electrode side collector electrode and positive electrode side collector electrode) 62. It was confirmed by measuring the oxygen concentration in the two bags when applied. The oxygen concentration was determined by quantifying the amount of oxygen using a gas chromatogram.
  • the oxygen concentration adjustment tray 56 shown in FIG. 14A and FIG. 14B has an internal volume of about 1 L, and the gas barrier film 57 is a polyvinylidene chloride film having a thickness of 11 ⁇ m. Further, in order to improve the adhesion between the gas barrier film 57 and the oxygen concentration adjusting portion (oxygen pump) 55, a gas barrier film fixing frame 65 made of a belt-like rubber was used.
  • a broccoli having a volume of 150 ml was placed in the food storage space 70 and stored at 5 ° C. by applying a voltage of 2.8 V to the negative electrode 60 and the positive electrode 61 of the oxygen concentration adjusting unit (oxygen pump) 55.
  • the humidity was 60-80%.
  • the gas barrier film 57 has flexibility, when it was put on the oxygen concentration adjusting tray 56, it could be put in accordance with the shape of broccoli as food. For this reason, the volume of the container is about 1 L, but the volume of the food storage space 70 is as small as about 500 ml.
  • the oxygen concentration in the food storage space 70 was measured over time, the oxygen concentration reached 2% after 30 minutes. At this time, the gas barrier film 57 was deformed so that the volume of the food storage space 70 decreased as the oxygen concentration decreased. Subsequently, storage was carried out for 7 days while operating the oxygen concentration adjusting unit (oxygen pump) 55 at a rate of 2 minutes every 4 hours.
  • the upper part of the oxygen concentration adjustment tray 56 was sealed with a polyethylene built-in lid used in Tappaware.
  • the oxygen concentration adjusting unit (oxygen pump) 55 was operated under the same configuration and conditions as in the experimental example. However, the operation conditions were continuous operation.
  • the rate at which the oxygen concentration is decreased is slow and the oxygen concentration to be reached is high, whereas in the experimental example, a low oxygen concentration was realized in a short time. This is considered to be due to the following two reasons.
  • the oxygen concentration adjusting tray 56 is covered with the flexible gas barrier film 57 in the experimental example, it can be covered in accordance with the shape of the food. The volume to be oxygen is reduced.
  • the second reason is as follows.
  • the polypropylene cover is deformed as the food storage space is depressurized, and the portion of the oxygen concentration adjustment tray 56 where the cover is fitted is distorted.
  • the intrusion of air from the outside proceeds from the portion where the distortion occurs, but at this time, the intrusion of air is accelerated because the decompression of the food storage space is not completely eliminated.
  • the oxygen concentration adjusting tray 56 is covered with the flexible gas barrier film 57, so that even if oxygen is removed from the food storage space, the gas barrier film 57 is deformed.
  • the internal pressure is maintained at 1 atm.
  • the adhesion between the gas barrier film 57 and the oxygen concentration adjusting tray 56 is not impaired, air does not enter from the outside.
  • the structural feature of the twelfth embodiment is that the positions of the negative electrode 60 and the positive electrode 61 of the oxygen concentration adjusting unit (oxygen pump) 55 are reversed. Regarding other configurations, the same configurations as those described with reference to FIGS. 10, 12, 13A, and 13B are used. A specific configuration will be described with reference to FIG. 15 showing a cross section of the oxygen concentration adjusting unit (oxygen pump) 55 in the twelfth embodiment.
  • variable volume portion is an oxygen concentration adjusting tray 56 that is a food holding portion that forms at least the bottom surface of the food storage space 70, and a gas barrier film 57 provided on the oxygen concentration adjusting tray 56. It is formed with.
  • the difference from FIG. 11 of the eleventh embodiment is that the positions of the negative electrode 60 and the positive electrode 61 are opposite to the polymer solid electrolyte membrane (separator) 59. .
  • the negative electrode 60 and the positive electrode 61 of the oxygen concentration adjusting unit (oxygen pump) 55 are reversed. Therefore, as shown in FIG. 10, the food storage space 70 formed by covering the oxygen concentration adjusting tray 56 connected to the oxygen concentration adjusting unit (oxygen pump) 55 with the gas barrier film 57 is the oxygen storage space 70 shown in FIG. This leads to the positive electrode 61 of the concentration adjusting unit (oxygen pump) 55. Thereby, as for the food storage space 70, oxygen concentration rises and humidity falls. However, when using it in the refrigerator as a storage, since the temperature is low, the water produced
  • oxymyoglobin which is a red pigment contained in meat and fish when stored in an atmosphere with a high oxygen concentration, can maintain a beautiful red color for a long period of time because the change to brown metmyoglobin is suppressed. .
  • an effect of suppressing the growth of viable bacteria can be obtained.
  • the food storage space 70 of FIG. 10 is used by using the oxygen concentration adjusting unit (oxygen pump) 55 of FIG. 15 of the twelfth embodiment and the oxygen concentration adjusting tray 56 of FIG. 14 of the eleventh embodiment.
  • the oxygen concentration was increased.
  • the oxygen concentration in the food storage space reached 30% 20 minutes later.
  • the gas barrier film 57 swelled from the initial stage. Thereafter, it was operated for 3 minutes every 4 hours and stored for 7 days.
  • the following is a comparative example.
  • the oxygen concentration adjustment tray 56 in place of the oxygen concentration adjustment tray 56, except that 150 ml of beef minced meat is placed on a normal plate and sealed with a gas barrier film 57 from above, and the oxygen concentration is not adjusted. Storage was performed under the same conditions.
  • the degree of color change was measured using a color difference meter (CR-2000, manufactured by Minolta) to measure the a * value indicating red in the color value.
  • a * value indicating red in the color value.
  • the initial a * value was 25.3.
  • the measurement results are 21.0 after 7 days for the example and 11.1 for the comparative example, and the experimental example maintains a red color, has a small degree of discoloration, and can be stored for a long time with high quality. all right.
  • the oxygen concentration in the food storage space can be increased efficiently, discoloration of meat is suppressed, and high-quality storage is possible.
  • Embodiment 13 Next, Embodiment 13 will be described.
  • the same components as those in the eleventh and twelfth embodiments are denoted by the same reference numerals and description thereof is omitted. Therefore, only different parts will be described.
  • the volume variable section is an oxygen concentration adjusting tray 56 that is a food holding section that forms at least the bottom surface of the food storage space 70, and a gas barrier film 57 provided on the oxygen concentration adjusting tray 56. It is formed with.
  • a structural feature of the thirteenth embodiment resides in a configuration of an oxygen concentration adjusting tray 56 that is a food holding unit. Regarding other configurations, the same configurations as those described with reference to FIGS. 10, 11, 12, 13A, 13B, 14A, 14B, and 15 are used.
  • FIGS. 16A and 16B showing a cross section of the oxygen concentration adjusting tray 56 in the thirteenth embodiment.
  • 16B is a cross-sectional view taken along the line 16B-16B in FIG. 16A.
  • a ventilation portion 66 is provided at the lower portion or the side portion of the oxygen concentration adjusting tray 56.
  • the ventilation portion 66 By providing the ventilation portion 66, even when many foods are placed on the oxygen concentration adjusting tray 56, a uniform oxygen concentration can be quickly realized through the ventilation portion 66, and the food can be stored uniformly in a high quality state. A possible effect is obtained.
  • the ventilation portion 66 preferably extends from the vicinity of the oxygen concentration adjusting portion connecting portion 64 to the opposite end of the oxygen concentration adjusting tray 56.
  • variable volume portion is an oxygen concentration adjusting tray 56 that is a food holding portion that forms at least the bottom surface of the food storage space 70, and a gas barrier film 57 provided on the oxygen concentration adjusting tray 56. It is formed with.
  • the structural feature of the fourteenth embodiment resides in the configuration of an oxygen concentration adjusting tray 56 that is a food holding unit. Regarding other configurations, the same configurations as those described with reference to FIGS. 10, 11, 12, 13A, 13B, 14A, 14B, 15, 16A, and 16B are used. A specific configuration will be described with reference to FIG. 17 showing a cross section of the oxygen concentration adjusting tray 56 according to the fourteenth embodiment.
  • a water reservoir 67 is provided below the oxygen concentration adjusting tray 56.
  • the humidity of the food storage space 70 increases, and the humidity near the oxygen concentration adjusting part (oxygen pump) 55 also increases.
  • the necessary oxygen concentration can be realized more quickly, the high humidity can be maintained and the food can be prevented from drying, and it can be stored for a long time in a high quality state. .
  • the water storage unit 67 is preferably provided near the oxygen concentration adjusting unit (oxygen pump) 55 that consumes water from the viewpoint of efficient supply of water vapor.
  • variable volume portion different from the variable volume portion described in the eleventh to fourteenth embodiments is used. Therefore, the description will be focused on that part.
  • FIG. 18 is a diagram in which the movable wall 71 is used as a volume variable portion that changes the volume of the food storage space.
  • a movable wall 71 is used as a volume variable portion that changes the volume of the food storage space 70, and the movable wall 71 is provided with an opening / closing portion 72 that can be opened and closed in part. Yes, the volume of the food storage space 70 is changed by opening / closing the opening / closing portion 72.
  • a first food storage space 74 and a second food storage space 75 are provided as the food storage space 70, and the first food storage space 74 and the second food storage space 75 are provided.
  • An opening / closing part 72 is provided between the two.
  • the opening / closing part 72 becomes an opening, and the first food storage space 74 and the second food storage space 75 communicate with each other to form a large-volume food storage space 70.
  • An oxygen concentration adjusting unit (oxygen pump) 55 that adjusts the amount of oxygen with respect to the food storage space 70 having a volume is operated.
  • the volume of the storage chamber capable of reducing the oxygen concentration is only the volume of the first food storage space 74, so the volume is reduced to adjust the oxygen amount.
  • the oxygen concentration adjusting unit (oxygen pump) 55 can be operated, and the food storage space for storing food can be used properly so as to be convenient.
  • variable volume lever (not shown) that allows the user to open and close the openable / closable portion 72 provided on the movable wall 71.
  • the volume of the food storage space changes according to the needs of the user. Therefore, since the usability can be further improved according to the needs of the user, the volume of the food storage space can be changed as necessary, and the food storage space can be efficiently deoxygenated. As a result, it is possible to obtain an effect that the food can be stored in a high quality state for a long period of time efficiently and at low cost.
  • the volume variable section is provided with the opening / closing section 72 in a part of the movable wall 71 in which at least a part of the food storage space is movable to change the volume of the food storage space.
  • a configuration in which the entire wall 71 is movable may be used. In that case, the size of the food storage space can be changed according to the needs of the user, and the food storage space can be set flexibly, so a storage room with improved user convenience can be provided. It becomes possible to provide.
  • the present invention provides an external DC power source for taking in an electric current from the outside, a negative electrode having a porous gas exchange property, a positive electrode having a porous gas exchange property, and a negative electrode and a positive electrode.
  • a porous separator impregnated with an electrolytic solution containing metal ions connected to an external current power source, connected to a negative current collecting electrode provided outside the negative electrode, and connected to an external DC power source
  • a positive current collecting electrode provided outside the positive electrode and by supplying power to the negative current collecting electrode and the positive current collecting electrode by an external DC power source, Perform oxygen transfer to Accordingly, since an extremely small amount of electrolyte is impregnated and retained using an aqueous solvent that operates at normal temperature and pressure, a large amount of electrolyte leakage can be suppressed.
  • the structure can be made thin and soft, the area can be easily increased, and the oxygen carrying capacity can be increased.
  • the metal ion is made of at least one of iron, cobalt, and nickel. Therefore, since these metals exert a large catalytic action on the absorption of oxygen, the oxygen carrying capacity can be increased.
  • the negative electrode has a metal surface. Accordingly, since an extremely small amount of electrolyte is impregnated and retained using an aqueous solvent that operates at normal temperature and pressure, a large amount of electrolyte leakage can be suppressed. Further, since it can be structurally thinned and softened, the area can be easily increased, and the oxygen carrying capacity can be further increased.
  • the metal surface is constituted by electroless plating. Therefore, since the metal can be formed only on the surface where the electrode reaction proceeds, the usage fee and the weight are reduced, and since the adhesion with the electrode is good, the oxygen carrying capacity can be increased. .
  • the metal on the metal surface is made of at least one of iron, cobalt, and nickel.
  • the inclusion of these metals on the metal surface has a large catalytic effect on oxygen absorption, so that the oxygen carrying capacity can be further increased.
  • the positive electrode and the negative electrode contain fine carbon powder. Therefore, it can apply
  • the electrolytic solution contains a deliquescent salt. This prevents the moisture in the electrolyte from decreasing due to drying.
  • the deliquescent salt is potassium fluoride. Therefore, generation
  • the negative electrode side collecting electrode and the positive electrode side collecting electrode are carbon cloth. As a result, it is possible to make an oxygen pump having a large area with flexibility, and the oxygen carrying capacity can be increased. Further, by pulling out the carbon fiber, connection with an external power supply circuit becomes easy.
  • a mold part is provided at the peripheral ends of the negative electrode, the positive electrode, the separator, the negative electrode side collecting electrode, and the positive electrode side collecting electrode.
  • a food storage space that is formed in a sealed space for storing food, and a deoxygenation auxiliary space that is continuous with the food storage space via the oxygen pump, by supplying power from an external DC power source It is a storage that adjusts the oxygen concentration in the food storage space. As a result, high-quality long-term storage of vegetables, meat and the like is possible in a safe state.
  • the food storage space is made of a food holding part and a gas barrier film so that the volume is variable. As a result, an extra space other than food is reduced, so that the food storage space can be efficiently deoxygenated.
  • the present invention also includes a step of impregnating an electrolytic solution to form a porous separator, a step of drying the separator, and laminating a negative electrode, a positive electrode, a negative electrode side collector electrode, and a positive electrode side collector electrode on the porous separator. And a step of adjusting the concentration of the electrolytic solution by applying water vapor to the laminate.
  • a step of impregnating an electrolytic solution to form a porous separator
  • a step of drying the separator and laminating a negative electrode, a positive electrode, a negative electrode side collector electrode, and a positive electrode side collector electrode on the porous separator.
  • a step of adjusting the concentration of the electrolytic solution by applying water vapor to the laminate.
  • the oxygen pump of the present invention operates at room temperature and normal pressure, can easily provide a large oxygen carrying capacity, and there is no problem of accidents such as electrolyte leakage. It can be applied to the fields of combustion, fish farming, medical treatment, etc., foods requiring low oxygen conditions, and food storage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Disclosed is an oxygen pump comprising an external direct current power supply that takes in current from outside, a porous negative electrode (3) having gas exchangeability, a porous positive electrode (2) having gas exchangeability, a porous separator (1) that is held between the negative electrode (3) and the positive electrode (2) and has been impregnated with a metal ion-containing electrolysis solution, a negative electrode-side current collecting electrode (5) that is connected to the external direct current power supply and is provided outside the negative electrode (3), and a positive electrode-side current collecting electrode (4) that is connected to the external direct current power supply and is provided outside the positive electrode (2).  An electric power is fed by the external direct current power supply to the negative electrode-side current collecting electrode (5) and the positive electrode-side current collecting electrode (4) to allow oxygen to migrate from a negative electrode-side gas phase (10) into a positive electrode-side gas phase (9).  An aqueous solvent which is actuated at ordinary temperatures and pressures is used, and a very small amount of an electrolyte is impregnated and held.  Accordingly, the oxygen pump is advantageously free from, for example, leakage of the electrolyte and can have a large area to increase an oxygen carrying capability.

Description

酸素ポンプおよびその製造方法、その酸素ポンプを有する保管庫Oxygen pump, method for manufacturing the same, and storage having the oxygen pump
 本発明は、電気化学的反応を利用した酸素ポンプに関するものである。ここで、酸素ポンプとは、一方の電極から酸素を取り込み、もう一方の電極から酸素を放出するものである。 The present invention relates to an oxygen pump using an electrochemical reaction. Here, the oxygen pump is one that takes in oxygen from one electrode and releases oxygen from the other electrode.
 酸素ポンプは、1対の電極の間に電解質を挟んだ電気化学的セルによって構成され、両極間に直流通電することにより、負極電極から酸素を電気化学的にセル内に取り込み、正極電極に酸素を放出する酸素移送手段である。 The oxygen pump is constituted by an electrochemical cell in which an electrolyte is sandwiched between a pair of electrodes. By direct current flowing between both electrodes, oxygen is electrochemically taken into the cell from the negative electrode, and oxygen is supplied to the positive electrode. It is an oxygen transfer means that releases oxygen.
 従来この分野には、水系電解質を用いるものと、セラミック系の固体電解質を用いるものが存在する。 Conventionally, in this field, there are those using an aqueous electrolyte and those using a ceramic solid electrolyte.
 例えば、特許文献1には、水系電解質を用いた酸素ポンプが開示されている。一般に、水系電解質を用いる酸素ポンプは、常温常圧で動作する点で優れるが、多量の酸性溶液またはアルカリ性溶液を電気化学的セル内に保持しており、保持するための大きな容量や構造上の強度が必要となる。それ故、酸素ポンプの構造体としての自由度、それを組み込む装置のスペースの自由度が著しく悪くなる。さらに、破損時にこれらの溶液が流出する危険性を有するものである。また、酸素はかなり電極不活性な物質であって負極反応が遅く、白金などの電極触媒が必要となる。この触媒反応は酸素の水素還元と呼ばれる酸素水素燃料電池などに使われる反応と同じものであるが、酸性条件下では酸素は水まで還元されずに過酸化水素を生成し効率が悪いのが実情である(例えば、非特許文献1参照)。 For example, Patent Document 1 discloses an oxygen pump using an aqueous electrolyte. In general, an oxygen pump using a water-based electrolyte is excellent in that it operates at room temperature and normal pressure. However, a large amount of acidic solution or alkaline solution is held in an electrochemical cell, and a large capacity and structure for holding the oxygen pump are required. Strength is required. Therefore, the degree of freedom as a structure of the oxygen pump and the degree of freedom of the space for incorporating the oxygen pump are remarkably deteriorated. Furthermore, there is a risk that these solutions will flow out upon breakage. In addition, oxygen is a substance that is considerably inactive to the electrode, and the negative electrode reaction is slow, so that an electrode catalyst such as platinum is required. This catalytic reaction is the same as the reaction used in oxyhydrogen fuel cells, which is called oxygen hydrogen reduction. However, under acidic conditions, oxygen is not reduced to water and produces hydrogen peroxide, which is inefficient. (For example, see Non-Patent Document 1).
 一方、セラミック系の固体電解質を用いる例として、特許文献2がある。一般に固体電解質を用いるものは、電解質の漏出による性能の低下は無いものの、動作温度が700~1000℃と高く、消費電力が大きい。また固体電解質自体が薄く硬く脆い為に、大面積にして酸素運搬能力を大きくすることに向いていない。 On the other hand, Patent Document 2 is an example of using a ceramic-based solid electrolyte. In general, a solid electrolyte uses a high operating temperature of 700 to 1000 ° C. and consumes a large amount of power, although there is no deterioration in performance due to leakage of the electrolyte. Moreover, since the solid electrolyte itself is thin, hard and brittle, it is not suitable for increasing the oxygen carrying capacity by increasing the area.
 以上のように、各酸素ポンプはそれぞれ一長一短があり、常温常圧で動作し、大きな酸素運搬能力を容易に出すことができ、電解質の漏出などの恐れがない酸素ポンプは見られなかった。 As described above, each oxygen pump has its merits and demerits, operates at room temperature and normal pressure, can easily provide a large oxygen carrying capacity, and has not been found an oxygen pump that has no fear of electrolyte leakage.
特公昭59-5673号公報Japanese Patent Publication No.59-5673 特開2003-107043号公報JP 2003-107043 A
 本発明はこのような点に鑑みてなされたもので、常温常圧で動作し、大きな酸素運搬能力を容易に出すことができ、破損等による電解質の漏出を抑えた、酸素ポンプを提供するものである。 The present invention has been made in view of the above points, and provides an oxygen pump that operates at room temperature and normal pressure, can easily provide a large oxygen carrying capacity, and suppresses electrolyte leakage due to breakage or the like. It is.
 従来の課題を解決するために、本発明の酸素ポンプは、外部から電流を取り込むための外部直流電源と、多孔質のガス交換性である負極と、多孔質のガス交換性である正極と、負極と正極との間に挟みこまれており、金属イオンを含有する電解液を含浸させた多孔質セパレータと、外部電流電源に接続されており、負極の外部に設けられた負極側集電電極と、外部直流電源に接続されており、正極の外部に設けられた正極側集電電極と、を備え、外部直流電源よって負極側集電電極および正極集電電極に給電することにより、負極側気相から正極側気相へ酸素の移動を行うものである。 In order to solve the conventional problems, the oxygen pump of the present invention includes an external DC power source for taking in an electric current from the outside, a negative electrode having a porous gas exchange property, a positive electrode having a porous gas exchange property, A porous separator sandwiched between a negative electrode and a positive electrode, impregnated with an electrolyte containing metal ions, and connected to an external current power source, and a negative collector electrode provided outside the negative electrode And a positive current collecting electrode connected to an external direct current power source and provided outside the positive electrode, and by supplying power to the negative current collecting electrode and the positive current collecting electrode by the external direct current power source, Oxygen is transferred from the gas phase to the positive electrode side gas phase.
 本発明の酸素ポンプは上記の手段によれば、電解液を使用するので常温常圧で動作し、多量の電解液を必要とせず、壊れにくい構造であるので面積を大きく取って大きな酸素運搬能力を容易に出すことができる。さらに、多量の電解液を必要としないので破損等による電解質の漏出を抑えることができる。 According to the above means, the oxygen pump of the present invention uses an electrolytic solution, so operates at room temperature and normal pressure, does not require a large amount of electrolytic solution, and has a structure that is difficult to break, so it has a large area and a large oxygen carrying capacity. Can be put out easily. Furthermore, since a large amount of electrolyte is not required, leakage of the electrolyte due to breakage or the like can be suppressed.
図1は、実施の形態1から7の酸素ポンプの構成例を示す断面図である。FIG. 1 is a cross-sectional view illustrating a configuration example of the oxygen pump according to the first to seventh embodiments. 図2は、実施の形態1から7の実験例における酸素ポンプの構成を示す断面図である。FIG. 2 is a cross-sectional view showing the configuration of the oxygen pump in the experimental examples of the first to seventh embodiments. 図3は、実施の形態8の保管庫を示す断面図である。FIG. 3 is a cross-sectional view showing the storage of the eighth embodiment. 図4は、実施の形態8の酸素濃度調整の手順を示す図である。FIG. 4 is a diagram showing the procedure of adjusting the oxygen concentration in the eighth embodiment. 図5は、実施の形態8の酸素濃度調整部を示す断面図である。FIG. 5 is a cross-sectional view showing the oxygen concentration adjusting unit of the eighth embodiment. 図6は、実施の形態9の酸素濃度調整の手順を示す図である。FIG. 6 is a diagram showing the procedure of adjusting the oxygen concentration according to the ninth embodiment. 図7は、実施の形態9の酸素濃度の変化を示す図である。FIG. 7 is a diagram showing a change in oxygen concentration in the ninth embodiment. 図8は、実施の形態10の保管庫を示す断面図である。FIG. 8 is a cross-sectional view showing the storage of the tenth embodiment. 図9Aは、実施の形態10の酸素濃度調整トレーを示す断面図である。FIG. 9A is a cross-sectional view showing the oxygen concentration adjustment tray of the tenth embodiment. 図9Bは、実施の形態10の酸素濃度調整トレーを示す断面図である。FIG. 9B is a cross-sectional view showing the oxygen concentration adjustment tray of the tenth embodiment. 図10は、実施の形態11の保管庫を示す断面図である。FIG. 10 is a cross-sectional view showing the storage of the eleventh embodiment. 図11は、実施の形態11の酸素濃度調整部を示す断面図である。FIG. 11 is a cross-sectional view showing the oxygen concentration adjusting unit of the eleventh embodiment. 図12は、実施の形態11の酸素濃度調整部と酸素濃度調整トレーとの関係を示す断面図である。FIG. 12 is a cross-sectional view showing the relationship between the oxygen concentration adjusting unit and the oxygen concentration adjusting tray of the eleventh embodiment. 図13Aは、実施の形態13の酸素濃度調整トレーを示す断面図である。FIG. 13A is a cross-sectional view showing the oxygen concentration adjustment tray of the thirteenth embodiment. 図13Bは、実施の形態13の酸素濃度調整トレーを示す断面図である。FIG. 13B is a cross-sectional view showing the oxygen concentration adjustment tray of the thirteenth embodiment. 図14Aは、実施の形態11の酸素濃度調整トレーを示す断面図である。FIG. 14A is a cross-sectional view showing the oxygen concentration adjustment tray of the eleventh embodiment. 図14Bは、実施の形態11の酸素濃度調整トレーを示す断面図である。FIG. 14B is a cross-sectional view showing the oxygen concentration adjustment tray of the eleventh embodiment. 図15は、実施の形態12の酸素濃度調整部を示す断面図である。FIG. 15 is a cross-sectional view showing the oxygen concentration adjusting unit of the twelfth embodiment. 図16Aは、実施の形態13の酸素濃度調整トレーを示す断面図である。FIG. 16A is a cross-sectional view showing the oxygen concentration adjustment tray of the thirteenth embodiment. 図16Bは、実施の形態13の酸素濃度調整トレーを示す断面図である。FIG. 16B is a cross-sectional view showing the oxygen concentration adjustment tray of the thirteenth embodiment. 図17は、実施の形態14の酸素濃度調整トレーを示す断面図である。FIG. 17 is a cross-sectional view showing an oxygen concentration adjustment tray according to the fourteenth embodiment. 図18は、実施の形態15の保管庫を示す断面図である。FIG. 18 is a cross-sectional view showing the storage of the fifteenth embodiment.
 以下、本発明の実施の形態を説明する。なお、この説明によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited by this description.
 (実施の形態1)
 図1は、酸素ポンプの断面図を示している。図1に示すように、電解質溶液を含浸したセパレータ1の両面に、炭素微粉末を塗布して構成した正極2と負極3を配置している。さらに、その外部にカーボンクロスを密着設置させることにより、正極側集電電極4と負極側集電電極5とを構成している。このように、セパレータ1、正極2、負極3、正極側集電電極4および負極側集電電極5を積層し、次にこの積層構造物の面方向の終端部に接着剤を含浸し、次に肉盛りしてモールド部8として各構造を接続一体化する。また、外部に対する正極側電極取り出し部6と負極側電極取り出し部7とは、そのカーボンクロスのカーボン繊維をモールド部8より引き出すことで構成し、外部直流電源(図示せず)に接続する。
(Embodiment 1)
FIG. 1 shows a cross-sectional view of an oxygen pump. As shown in FIG. 1, a positive electrode 2 and a negative electrode 3 configured by applying fine carbon powder are disposed on both sides of a separator 1 impregnated with an electrolyte solution. Furthermore, the positive electrode side collector electrode 4 and the negative electrode side collector electrode 5 are configured by closely attaching a carbon cloth to the outside. Thus, the separator 1, the positive electrode 2, the negative electrode 3, the positive electrode side current collecting electrode 4 and the negative electrode side current collecting electrode 5 are laminated, and then the end portion in the surface direction of the laminated structure is impregnated with an adhesive. Then, each structure is connected and integrated as a mold part 8. Moreover, the positive electrode side electrode extraction part 6 and the negative electrode side electrode extraction part 7 with respect to the outside are configured by pulling out carbon fibers of the carbon cloth from the mold part 8, and are connected to an external DC power source (not shown).
 セパレータ1は、表裏貫通した間隙を有する多孔質膜が存在した材質のものであればよく、電池セパレータ、電解隔壁、限外濾過膜、ろ紙、不織布などが利用可能である。ただし、実施の形態1のセパレータは、正極2と負極3との両電極間の電子伝導の絶縁のほか、負極3側および正極2側の気相の連通を遮断して、ガス分離を行う機能を担っている。従って、セパレータ1内部の間隙は電解質溶液で満たされつつ、さらに、ガスの通過ができないものでなければならない。このため、材質が撥水性で電解液をはじくものは使用をすることができない。よって、ポリエチレン製、ポリテトラフルオロカーボン製などの撥水性のものは、親水化処理がなされていれば使用することができる。 The separator 1 may be made of a material having a porous membrane having a gap penetrating the front and back, and a battery separator, an electrolytic partition, an ultrafiltration membrane, a filter paper, a nonwoven fabric, and the like can be used. However, the separator of the first embodiment has a function of performing gas separation in addition to insulation of electronic conduction between both the positive electrode 2 and the negative electrode 3 and blocking gas phase communication between the negative electrode 3 side and the positive electrode 2 side. Is responsible. Accordingly, the gap inside the separator 1 must be filled with the electrolyte solution and cannot pass through the gas. For this reason, materials that are water-repellent and repel the electrolyte cannot be used. Accordingly, water-repellent materials such as polyethylene and polytetrafluorocarbon can be used as long as they have been subjected to hydrophilic treatment.
 また、目開きが大きいものは、親水的材質であっても液切れして気相が連通するので、目開きの小さなものが望ましい。ほぼ目開き3マイクロメートル以下の膜であれば、使用をすることができる。 Also, a material with a large mesh opening is desirable because even if it is a hydrophilic material, the liquid phase runs out and the gas phase communicates. Any film having an opening of about 3 micrometers or less can be used.
 正極2、負極3の電極材料の炭素微粉末は、カーボンブラック、グラファイトカーボン粉末、活性炭粉末などが使える。セパレータ1に塗布したときに薄層になって剥離しない微細なものがよく、その粒径は10マイクロメートル以下であることが望ましい。カーボンブラックのアセチレンブラックは安価に安定した微粒子状のものが入手でき、良好である。炭素の微粒子間は導電性がよく、セパレータと密着した電極が容易に作成される。 The carbon fine powder of the electrode material of the positive electrode 2 and the negative electrode 3 can be carbon black, graphite carbon powder, activated carbon powder, or the like. A fine layer that does not peel off when applied to the separator 1 is preferable, and the particle size is preferably 10 micrometers or less. Carbon black acetylene black is favorable because it is available in stable and fine particulate form. The carbon fine particles have good conductivity, and an electrode in close contact with the separator can be easily formed.
 カーボンクロスは、通常カーボン繊維の束を平織りにした布である。カーボン繊維には原料別の分類としてPAN系、ピッチ系、レーヨン系などがあり、弾性率などの機械的特性も種種のものがあるが、集電電極のためには特に原料、機械的特性を問わない。カーボンクロスはやわらかく、かつ、強度があるので、大きな面積の酸素ポンプを作ることができ、酸素運搬能力を大きくできる。さらに、カーボンクロスのカーボン繊維束を引き出し、圧着端子などで結束して、端子取り出すことで、外部電源回路との接続を容易にすることができる。 Carbon cloth is a cloth made of plain carbon fiber bundles. Carbon fibers are classified into raw materials by PAN, pitch, rayon, etc., and there are various mechanical properties such as elastic modulus. It doesn't matter. Since the carbon cloth is soft and strong, an oxygen pump having a large area can be made and the oxygen carrying capacity can be increased. Furthermore, by pulling out the carbon fiber bundle of the carbon cloth, binding it with a crimp terminal, and taking out the terminal, the connection with the external power supply circuit can be facilitated.
 実施の形態1の酸素ポンプでは、積層した膜状のセパレータ1、正極2、負極3、正極側集電電極4および負極側集電電極5との周囲末端を接着剤でモールドして、面方向への気体の逃げと、正極負極間の気体の回りこみを規制する。接着剤として使える糊剤には、溶剤にネオプレンなどのゴムを溶解したゴム糊、シリコンコーンシーリング剤などを使用することができ、電解液の水に耐性のものであればよい。モールド部8は面方向への気体の逃げと、正極2と負極2との間において、気体の回りこみを規制する。 In the oxygen pump of the first embodiment, the peripheral ends of the laminated film-like separator 1, the positive electrode 2, the negative electrode 3, the positive electrode side collector electrode 4 and the negative electrode side collector electrode 5 are molded with an adhesive, and the surface direction The gas escape to the gas and the gas sneaking between the positive electrode and the negative electrode are regulated. As the adhesive that can be used as an adhesive, rubber paste in which rubber such as neoprene is dissolved in a solvent, silicon corn sealing agent, and the like can be used, and any adhesive that is resistant to the water of the electrolytic solution may be used. The mold portion 8 regulates gas escape in the surface direction and gas wraparound between the positive electrode 2 and the negative electrode 2.
 セパレータ1に含浸させる溶液は、常温常圧で動作する水系溶剤を用い、極めて少ない量の電解質が含浸保持されるので、電解質の漏出などの恐れが無い。従って、実施の形態1の酸素ポンプは、構造的に薄くやわらかく、大面積にして酸素運搬能力を大きくすることが可能である。 The solution to be impregnated in the separator 1 uses an aqueous solvent that operates at room temperature and normal pressure. Since an extremely small amount of electrolyte is impregnated and held, there is no fear of leakage of the electrolyte. Therefore, the oxygen pump of Embodiment 1 is structurally thin and soft, and can have a large area to increase the oxygen carrying capacity.
 また、電解液は塩化第一鉄、塩化カルシウムの水溶液を用いる。配合割合はモル比で塩化カルシウム無水物1モルあたり、塩化第一鉄無水相当0.2から2モル、水4から15モルである。セパレータ1に電解液を塗布後、電解液を含んだセパレータ1を乾燥させる。次に、電解液を含浸したセパレータ1、正極2、負極3、正極側集電電極4および負極側集電電極5を積層し、次にこの積層構造物の面方向の終端部に接着剤を含浸し、次に肉盛りしてモールド部8を作ることで一体化する。ここで、乾燥していない濡れたセパレータでは、モールド部8を作ることが困難である。 Also, ferrous chloride and calcium chloride aqueous solutions are used as the electrolyte. The blending ratio is 0.2 to 2 mol equivalent to anhydrous ferrous chloride and 4 to 15 mol of water per mol of calcium chloride anhydride. After applying the electrolytic solution to the separator 1, the separator 1 containing the electrolytic solution is dried. Next, the separator 1 impregnated with the electrolytic solution, the positive electrode 2, the negative electrode 3, the positive electrode side current collecting electrode 4 and the negative electrode side current collecting electrode 5 are laminated, and then an adhesive is applied to the end portion in the plane direction of the laminated structure. It is impregnated, and then integrated by forming the mold part 8 by overlaying. Here, it is difficult to make the mold part 8 with a wet separator that has not been dried.
 セパレータ1上の塩化第一鉄と塩化カルシウムの混合物は強い潮解性をもち、大気から水蒸気を吸収して、塩化カルシウム無水物1モルあたり水4から15モルに収まり、元の湿潤状態に戻る。この範囲で電解液は不揮発性溶液となり、乾固することが無い。また、セパレータ1だけでなく、周囲の炭素微粉末やカーボンクロスも水溶液を保持する。従って、水溶液が液垂れしたり、漏れ出すことによって、水溶液が逸失したりすることがなく、また、周囲を汚すこともない。 The mixture of ferrous chloride and calcium chloride on the separator 1 has strong deliquescence, absorbs water vapor from the atmosphere, falls within 4 to 15 moles of water per mole of calcium chloride anhydride, and returns to its original wet state. Within this range, the electrolytic solution becomes a non-volatile solution and does not dry out. Further, not only the separator 1 but also surrounding carbon fine powder and carbon cloth hold the aqueous solution. Therefore, when the aqueous solution drips or leaks, the aqueous solution is not lost and the surroundings are not soiled.
 酸素ポンプ運転の定常状態での動作では、外部直流電源より、直流電圧を印加すると、電流は正極側電極取り出し部6から正極側集電電極4を経て正極2に伝えられる。次に、電流は正極2の炭素微粉末表面で電解質溶液と電荷を交換して酸素を発生し、次にセパレータに含浸した電解液中をイオン伝導により伝えられて負極3の炭素微粉末表面に達する。そして、電流は再び電荷を交換して電解液中に酸素を取り込み、さらに、負極側集電電極5、負極側電極取り出し部7を介して外部直流電源に戻り、全体として閉回路を構成する。このとき、気体状の酸素は、負極側気相10から負極3の炭素微粉末表面で電解液に取り込まれ、電解液中をイオン伝導に従って伝えられ、正極2の炭素微粉末表面で酸素に戻り、正極側気相9に排出される。このようにして、酸素ポンプとしての酸素移動の機能が発揮される。 In the operation in the steady state of the oxygen pump operation, when a DC voltage is applied from an external DC power source, the current is transmitted from the positive electrode extraction part 6 to the positive electrode 2 via the positive electrode collecting electrode 4. Next, the current is exchanged with the electrolyte solution on the surface of the fine carbon powder of the positive electrode 2 to generate oxygen, and then is transferred through the electrolyte impregnated in the separator by ionic conduction to the fine carbon powder surface of the negative electrode 3. Reach. Then, the current exchanges the charge again to take in oxygen into the electrolytic solution, and further returns to the external DC power source through the negative electrode side collecting electrode 5 and the negative electrode side electrode take-out unit 7 to constitute a closed circuit as a whole. At this time, gaseous oxygen is taken into the electrolytic solution from the negative electrode-side gas phase 10 on the surface of the fine carbon powder of the negative electrode 3, is transmitted through the electrolytic solution in accordance with ionic conduction, and returns to oxygen on the surface of the fine carbon powder of the positive electrode 2. , And discharged to the positive electrode side gas phase 9. In this way, the function of oxygen transfer as an oxygen pump is exhibited.
 しかしながら、初期状態では、通電に従って、負極3表面で塩化第一鉄の二価の鉄は還元されてゼロ価鉄が生成し、正極2表面で塩化第一鉄の二価の鉄は酸化されて三価鉄が生成する。従って、電荷は電解質内部の反応で消費され、外部の酸素との間での電荷の収受や、酸素の移動は起こらない。その後、通電を続けると、負極3表面ではゼロ価鉄が気相中の酸素と電解質中の水素イオンを受け取って二価の水酸化鉄となり、二価の水酸化鉄の水酸基が塩素イオンと置換して水酸イオンが電解質中にもたらされる。そして、二価鉄は再び電荷交換して還元されてゼロ価鉄に戻る。従って、鉄が触媒的に働いて、酸素の取り込みを行う。電解質中にもたらされ遊離した水酸イオンは、セパレータ1内の電解質溶液中を移動して正極2表面で電荷の収受を行い、酸素と水素イオンを生成、酸素は気相に拡散して酸素移送が完成する。なお、正極2では、オゾン、過酸化水素は検出されていない。従って、ここでも鉄がオゾン、過酸化水素の分解触媒的に働いていることが予想される。正極2における反応で生成した水素イオンは負極3に移動し、次の酸素取り込み反応に関与する。以上のように、反応が連続するものであり、酸素ポンプの運転の前に順方向に通電する前操作を行い、負極3表面の鉄をゼロ価に還元し、正極2表面の鉄を三価に酸化する必要がある。 However, in the initial state, the divalent iron of ferrous chloride is reduced on the surface of the negative electrode 3 to generate zero-valent iron and the divalent iron of ferrous chloride is oxidized on the surface of the positive electrode 2 in accordance with energization. Trivalent iron is produced. Therefore, the electric charge is consumed by the reaction inside the electrolyte, and no charge is received from or transferred to the external oxygen. Thereafter, when energization is continued, zero-valent iron receives oxygen in the gas phase and hydrogen ions in the electrolyte on the surface of the negative electrode 3 to become divalent iron hydroxide, and the hydroxyl group of the divalent iron hydroxide substitutes for chlorine ions. Thus, hydroxide ions are brought into the electrolyte. The divalent iron is reduced again by charge exchange and returns to zero-valent iron. Therefore, iron works catalytically to take up oxygen. The liberated hydroxide ions brought into the electrolyte move in the electrolyte solution in the separator 1 and collect charges on the surface of the positive electrode 2 to generate oxygen and hydrogen ions. The transfer is complete. In the positive electrode 2, ozone and hydrogen peroxide are not detected. Therefore, it is expected that iron works as a catalyst for decomposing ozone and hydrogen peroxide. Hydrogen ions generated by the reaction in the positive electrode 2 move to the negative electrode 3 and participate in the next oxygen uptake reaction. As described above, the reaction is continuous. Before the oxygen pump is operated, a pre-operation is carried out in the forward direction, the iron on the surface of the negative electrode 3 is reduced to zero valence, and the iron on the surface of the positive electrode 2 is trivalent. It needs to be oxidized.
 直接酸素運搬に関与しない塩化カルシウムも幾つかの機能をもつ。第一に、大量のカルシウムイオンがあることで、負極3からの水素ガスの発生が抑えられる。カルシウムイオンが負極3表面に電気的吸着し、カルシウムイオンのpHバッファラクションのために電極表面がアルカリ側に維持され、水素発生の平衡電位が低下して水素ガスが出にくくなる。第二に、反応に関与する鉄の溶解度を高くとることができる。溶解しない鉄塩をセパレータ1に含浸することはできないので、鉄塩を高濃度に仕込もうとすると、溶解度を上げるしかない。塩化カルシウムは塩化第一鉄と共溶して、塩化第一鉄の溶解を助ける。第三に、塩化カルシウムは、塩素イオンの供給源である。三価の鉄イオンは不溶性の水酸化物を生じやすく、水酸化物は不可逆的に酸化鉄(二三酸化鉄)に変化していくことになる。しかしながら、高濃度の塩素イオンが存在すると、塩素イオンが鉄イオンに配位して水酸イオンに競合するので、不可逆的な酸化鉄生成を阻止することができる。 Calcium chloride that is not directly involved in oxygen transport also has several functions. First, the presence of a large amount of calcium ions suppresses the generation of hydrogen gas from the negative electrode 3. Calcium ions are electrically adsorbed on the surface of the negative electrode 3, and the surface of the electrode is maintained on the alkali side due to pH buffering of calcium ions, so that the equilibrium potential for hydrogen generation is lowered and hydrogen gas is hardly emitted. Second, the solubility of iron involved in the reaction can be increased. Since the separator 1 cannot be impregnated with an iron salt that does not dissolve, if the iron salt is charged at a high concentration, the solubility must be increased. Calcium chloride co-dissolves with ferrous chloride and helps dissolve ferrous chloride. Third, calcium chloride is a source of chloride ions. Trivalent iron ions are liable to form insoluble hydroxides, and the hydroxides are irreversibly changed to iron oxide (iron trioxide). However, when a high concentration of chlorine ions is present, the chlorine ions coordinate with the iron ions and compete with the hydroxide ions, so that irreversible iron oxide production can be prevented.
 以下、実験例を説明する。図2は、実験に用いた酸素ポンプの構成を示すものである。セパレータ1には、ポリエチレン製の親水化セパレータであって、厚み0.38ミリメートル(日本板硝子社製)のものを用いた。正極2と負極3との両電極はアセチレンブラック(和光純薬社製)、カーボンクロス(三菱レイヨン社製)で構成した。モールド部8はシリコーンシーラント(信越化学社製)を用いて、円形有効直径30ミリメートル(有効面積7.0平方センチメートル)で構成した。さらに、ガス出口12を有する正極側ケース11を取り付け、ガス出口12には、薄膜微小流量計を接続し、流量の観測ができるようにした。室温(約25℃)で実験を行い、2.4Vを印加して、1.4アンペアの電流が流れ、正極から0.044ミリリットル/秒のガスが流出し、電流とガス流量の化学量論的関係が確認された。 Hereinafter, experimental examples will be described. FIG. 2 shows the configuration of the oxygen pump used in the experiment. As the separator 1, a polyethylene hydrophilic separator having a thickness of 0.38 mm (manufactured by Nippon Sheet Glass Co., Ltd.) was used. Both electrodes of the positive electrode 2 and the negative electrode 3 were composed of acetylene black (manufactured by Wako Pure Chemical Industries, Ltd.) and carbon cloth (manufactured by Mitsubishi Rayon Co., Ltd.). The mold part 8 was configured with a circular effective diameter of 30 millimeters (effective area of 7.0 square centimeters) using a silicone sealant (manufactured by Shin-Etsu Chemical Co., Ltd.). Furthermore, a positive electrode case 11 having a gas outlet 12 was attached, and a thin film micro flow meter was connected to the gas outlet 12 so that the flow rate could be observed. The experiment was conducted at room temperature (about 25 ° C), 2.4 V was applied, 1.4 ampere of current flowed, 0.044 ml / s of gas flowed out of the positive electrode, and the stoichiometry of current and gas flow rate. Relationship was confirmed.
 (実施の形態2)
 酸素ポンプの構成、各構成部材、すなわち、セパレータ1、炭素微粉末、カーボンクロス及びモールド部8等は実施の形態1と同様である。以下、異なる部分のみ説明する。
(Embodiment 2)
The configuration of the oxygen pump and each component, that is, the separator 1, the carbon fine powder, the carbon cloth, the mold part 8, and the like are the same as those in the first embodiment. Only different parts will be described below.
 電解液は塩化第二鉄、塩化カルシウムの水溶液を用いる。配合割合はモル比で塩化カルシウム無水物1モルあたり、塩化第二鉄無水相当0.2から2モル、水4から15モルである。セパレータ1に電解液を塗布後、電解液を含んだセパレータ1を乾燥させる。次に、電解液を含浸したセパレータ1、正極2、負極3、正極側集電電極4および負極側集電電極5を積層し、次にこの積層構造物の面方向の終端部に接着剤を含浸し、次に肉盛りしてモールド部8として各構造を接続一体化する。なお、乾燥していない、濡れたセパレータでは、モールド部を作ることが困難である。 Electrolyte used is an aqueous solution of ferric chloride and calcium chloride. The mixing ratio is 0.2 to 2 mol equivalent to anhydrous ferric chloride and 4 to 15 mol of water per mol of calcium chloride anhydride. After applying the electrolytic solution to the separator 1, the separator 1 containing the electrolytic solution is dried. Next, the separator 1 impregnated with the electrolytic solution, the positive electrode 2, the negative electrode 3, the positive electrode side current collecting electrode 4 and the negative electrode side current collecting electrode 5 are laminated, and then an adhesive is applied to the end portion in the plane direction of the laminated structure. Impregnation is then performed, and the structure is connected and integrated as a mold portion 8. In addition, it is difficult to make a mold part with a wet separator that is not dried.
 上記構成において、セパレータ1上の塩化第二鉄と塩化カルシウムの混合物は強い潮解性をもち、大気から水蒸気を吸収して、塩化カルシウム無水物1モルあたり水4から15モルに収まり、元の湿潤状態に戻る。この範囲で電解液は不揮発性溶液となり、乾固することが無い。また、セパレータ1のほかに周囲の炭素微粉末やカーボンクロスが水溶液を保持する。従って、水溶液が液垂れしたり、漏れ出すことによって、水溶液が逸失したりすることがなく、また、周囲を汚すことが無い。 In the above structure, the mixture of ferric chloride and calcium chloride on the separator 1 has strong deliquescence, absorbs water vapor from the atmosphere, falls within 4 to 15 moles of water per mole of calcium chloride anhydride, and is originally wet. Return to state. Within this range, the electrolytic solution becomes a non-volatile solution and does not dry out. In addition to the separator 1, the surrounding carbon fine powder and carbon cloth hold the aqueous solution. Therefore, when the aqueous solution drips or leaks, the aqueous solution is not lost, and the surroundings are not soiled.
 酸素ポンプ運転の定常状態での動作では、外部直流電源より、直流電圧を印加すると、電流は正極側電極取り出し部6から正極側集電電極4を経て正極2に伝えられる。次に、電流は正極2の炭素微粉末表面で電解質溶液と電荷を交換して酸素を発生し、次にセパレータ1に含浸した電解液中をイオン伝導により伝えられて負極3の炭素微粉末表面に達する。そして、電流は再び電荷を交換して電解液中に酸素を取り込み、さらに、負極側集電電極5、負極側電極取り出し部7を介して外部直流電源に戻り、全体として閉回路を構成する。このとき、気体状の酸素は、負極側気相10から負極3の炭素微粉末表面で電解液に取り込まれ、電解液中をイオン伝導に従って伝えられ、正極2の炭素微粉末表面で酸素に戻り、正極側気相9に排出される。このようにして、酸素ポンプとしての酸素移動の機能が発揮される。 In the operation in the steady state of the oxygen pump operation, when a DC voltage is applied from an external DC power source, the current is transmitted from the positive electrode extraction part 6 to the positive electrode 2 via the positive electrode collecting electrode 4. Next, an electric current exchanges an electric charge with the electrolyte solution on the surface of the fine carbon powder of the positive electrode 2 to generate oxygen, and then is transmitted through the electrolytic solution impregnated in the separator 1 by ionic conduction, so that the surface of the fine carbon powder of the negative electrode 3 To reach. Then, the current exchanges the charge again to take in oxygen into the electrolytic solution, and further returns to the external DC power source through the negative electrode side collecting electrode 5 and the negative electrode side electrode take-out unit 7 to constitute a closed circuit as a whole. At this time, gaseous oxygen is taken into the electrolytic solution from the negative electrode-side gas phase 10 on the surface of the fine carbon powder of the negative electrode 3, is transmitted through the electrolytic solution in accordance with ionic conduction, and returns to oxygen on the surface of the fine carbon powder of the positive electrode 2. , And discharged to the positive electrode side gas phase 9. In this way, the function of oxygen transfer as an oxygen pump is exhibited.
 さらに詳述すると、通電に従って、負極3表面で塩化第二鉄の三価の鉄イオンは、負極3から電子を受け取って還元され、二価鉄イオンとなる。 More specifically, according to energization, trivalent iron ions of ferric chloride on the surface of the negative electrode 3 receive electrons from the negative electrode 3 and are reduced to divalent iron ions.
  Fe3+ + e → Fe2+
 続いて、二価鉄イオンは酸素で自動酸化されて三価鉄イオンに戻ると共に溶液中の水素イオンから水を生成し、酸素が電解液中に取り込まれる。
Fe 3+ + e → Fe 2+
Subsequently, the divalent iron ions are auto-oxidized with oxygen to return to trivalent iron ions, and water is generated from the hydrogen ions in the solution, and oxygen is taken into the electrolyte.
  4Fe2+ + O + 4H → 4Fe3+ + 2H
 従って、負極3の全反応では酸素と水素イオンが負極から電子を受け取って、水が生成したことになる。
4Fe 2+ + O 2 + 4H + → 4Fe 3+ + 2H 2 O
Therefore, in the entire reaction of the negative electrode 3, oxygen and hydrogen ions receive electrons from the negative electrode and water is generated.
  O + 4H + 4e → 2H
 この負極3の全反応を、自動酸化される二価鉄イオンなしで行おうとしても酸素はかなり電極不活性であって、殆ど負極と反応しない。白金などの触媒を負極に担持すると反応するが、その場合は、まず過酸化水素が生成する。
O 2 + 4H + + 4e → 2H 2 O
Even if the entire reaction of the negative electrode 3 is performed without the auto-oxidized divalent iron ions, oxygen is quite inactive and hardly reacts with the negative electrode. When a catalyst such as platinum is supported on the negative electrode, it reacts. In this case, hydrogen peroxide is first generated.
  O + 2H + 2e → H
 次に、過酸化水素と水素イオンが負極から電子を受け取り水が生成する。
O 2 + 2H + 2e → H 2 O 2
Next, hydrogen peroxide and hydrogen ions receive electrons from the negative electrode to produce water.
  H + 2H + 2e → 2H
 しかしながら、この後段の反応は容易に進まず、通常は過酸化水素が蓄積して反応の効率が悪い。実施の形態2では、自動酸化する二価鉄イオンを持ち込むことにより効率的な酸素の取り込みが出来る。鉄イオンは電極活性であり、電極との電荷の収受は容易である。また三価鉄イオンは、自動酸化する二価鉄イオンの酸化型である。
H 2 O 2 + 2H + + 2e → 2H 2 O
However, this latter reaction does not proceed easily, and usually hydrogen peroxide accumulates, resulting in poor reaction efficiency. In Embodiment 2, oxygen can be efficiently taken in by introducing divalent iron ions to be auto-oxidized. Since iron ions are electrode active, it is easy to receive charges from the electrodes. Trivalent iron ions are an oxidized form of divalent iron ions that are auto-oxidized.
 もう一方の正極2表面では、水が電子を正極に与えて、酸素と水素イオンを生成する。 On the surface of the other positive electrode 2, water gives electrons to the positive electrode to generate oxygen and hydrogen ions.
  2HO → O + 4H + 4e
 ここで、直接酸素運搬に関与しない塩化カルシウムも幾つかの機能をもつ。第一に塩素イオンは二価鉄イオンの酸素自動酸化に促進的に働き、負極3での酸素の取り込みが速くなる。実施の形態2では、鉄イオンも塩化物の形態で供給されているが、塩化カルシウムを追加することでさらに二価鉄イオンの酸素自動酸化が速くなる。第二に大量のカルシウムイオンがあることで、負極3からの水素ガスの発生が抑えられる。カルシウムイオンが負極3表面に電気的吸着し、カルシウムイオンのpHバッファラクションのために電極表面がアルカリ側に維持され、水素発生の平衡電位が低下して水素ガスが出にくくなる。第三に反応に関与する鉄の溶解度を高くとることができる。溶解しない鉄塩をセパレータに含浸することはできないので、鉄塩を高濃度に仕込もうとすると、溶解度を上げるしかない。塩化カルシウムは塩化第一鉄と共溶して、塩化第一鉄の溶解を助ける。第四に塩化カルシウムは、塩素イオンの供給源である。三価の鉄イオンは不溶性の水酸化物を生じやすく、水酸化物は不可逆的に酸化鉄(二三酸化鉄)に変化していくことになる。しかしながら、高濃度の塩素イオンが存在すると、塩素イオンが鉄イオンに配位して水酸イオンに競合するので、不可逆的な酸化鉄生成を阻止することができる。
2H 2 O → O 2 + 4H + + 4e
Here, calcium chloride not directly involved in oxygen transport also has several functions. First, chlorine ions act to promote oxygen auto-oxidation of divalent iron ions, and oxygen uptake at the negative electrode 3 is accelerated. In the second embodiment, iron ions are also supplied in the form of chlorides. However, by adding calcium chloride, oxygen auto-oxidation of divalent iron ions is further accelerated. Second, the presence of a large amount of calcium ions suppresses the generation of hydrogen gas from the negative electrode 3. Calcium ions are electrically adsorbed on the surface of the negative electrode 3, and the surface of the electrode is maintained on the alkali side due to pH buffering of calcium ions, so that the equilibrium potential for hydrogen generation is lowered and hydrogen gas is hardly emitted. Third, the solubility of iron involved in the reaction can be increased. Since it is impossible to impregnate the separator with an iron salt that does not dissolve, if the iron salt is charged at a high concentration, the solubility must be increased. Calcium chloride co-dissolves with ferrous chloride and helps dissolve ferrous chloride. Fourth, calcium chloride is a source of chloride ions. Trivalent iron ions are liable to form insoluble hydroxides, and the hydroxides are irreversibly changed to iron oxide (iron trioxide). However, when a high concentration of chlorine ions is present, the chlorine ions coordinate with the iron ions and compete with the hydroxide ions, so that irreversible iron oxide production can be prevented.
 以下、実験例を説明する。図2は、実験に用いた酸素ポンプの構成を示すものである。セパレータ1には、ポリエチレン製親水化セパレータであって、厚み0.38ミリメートル(日本板硝子社製)のものを用いた。正極2および負極3は、アセチレンブラック(和光純薬社製)、カーボンクロス(三菱レイヨン社製)で構成した。モールド部8は、シリコーンシーラント(信越化学社製)を用いて、円形有効直径30ミリメートル(有効面積7.0平方センチメートル)で構成した。さらに、ガス出口12を有する正極側ケース11を取り付け、ガス出口12には、薄膜微小流量計を接続し、流量の観測ができるようにした。室温(約25℃)で実験を行い、2.1Vを印加して、1.4アンペアの電流が流れ、正極2から0.044ミリリットル/秒のガスが流出し、電流とガス流量の化学量論的関係が確認された。 Hereinafter, experimental examples will be described. FIG. 2 shows the configuration of the oxygen pump used in the experiment. As the separator 1, a polyethylene hydrophilic separator having a thickness of 0.38 mm (manufactured by Nippon Sheet Glass Co., Ltd.) was used. The positive electrode 2 and the negative electrode 3 were composed of acetylene black (manufactured by Wako Pure Chemical Industries, Ltd.) and carbon cloth (manufactured by Mitsubishi Rayon Co., Ltd.). The mold part 8 was configured with a circular effective diameter of 30 millimeters (effective area of 7.0 square centimeters) using a silicone sealant (manufactured by Shin-Etsu Chemical Co., Ltd.). Furthermore, a positive electrode case 11 having a gas outlet 12 was attached, and a thin film micro flow meter was connected to the gas outlet 12 so that the flow rate could be observed. The experiment was conducted at room temperature (about 25 ° C), 2.1 V was applied, a current of 1.4 amperes flowed, 0.044 ml / sec of gas flowed out from the positive electrode 2, and the stoichiometry of current and gas flow rate. A logical relationship was confirmed.
 (実施の形態3)
 酸素ポンプの構成、各構成部材、すなわち、セパレータ、炭素微粉末、カーボンクロス及びモールド等は実施の形態1と同様である。以下、異なる部分のみ説明する。
(Embodiment 3)
The configuration of the oxygen pump and each component, that is, the separator, the fine carbon powder, the carbon cloth, the mold and the like are the same as those in the first embodiment. Only different parts will be described below.
 電解液は塩化ニッケル、塩化カルシウムの水溶液を用いる。配合割合はモル比で塩化カルシウム無水物1モルあたり、塩化ニッケル無水相当0.2から2モル、水4から15モルである。セパレータ1に電解液を塗布後、電解液を含んだセパレータ1を乾燥させる。次に、電解液を含浸させたセパレータ1、正極2、負極3、正極側集電電極4および負極側集電電極5を積層し、次にこの積層構造物の面方向の終端部に接着剤を含浸し、次に肉盛りしてモールド部8を作ることで一体化する。ここで、乾燥していない、濡れたセパレータでは、モールドを作ることが困難である。 Electrolyte solution is an aqueous solution of nickel chloride or calcium chloride. The mixing ratio is 0.2 to 2 moles equivalent to anhydrous nickel chloride and 4 to 15 moles of water per mole of calcium chloride anhydride. After applying the electrolytic solution to the separator 1, the separator 1 containing the electrolytic solution is dried. Next, the separator 1 impregnated with the electrolytic solution, the positive electrode 2, the negative electrode 3, the positive electrode side collector electrode 4 and the negative electrode side collector electrode 5 are laminated, and then the adhesive is applied to the end portion in the plane direction of the laminated structure. Then, the mold part 8 is piled up to make the mold part 8 and integrated. Here, it is difficult to make a mold with a wet and non-dry separator.
 上記構成において、セパレータ1上の塩化ニッケルと塩化カルシウムの混合物は強い潮解性をもち、大気から水蒸気を吸収して、塩化カルシウム無水物1モルあたり水4から15モルに収まり、元の湿潤状態に戻る。この範囲で電解液は不揮発性溶液となり、乾固することが無い。また、セパレータ1のほかに周囲の炭素微粉末やカーボンクロスが水溶液を保持する。従って、水溶液が液垂れしたり、漏れ出すことによって、水溶液が逸失したりすることがなく、また、周囲を汚すこともない。 In the above configuration, the mixture of nickel chloride and calcium chloride on the separator 1 has strong deliquescence, absorbs water vapor from the atmosphere, falls within 4 to 15 moles of water per mole of calcium chloride anhydride, and returns to its original wet state. Return. Within this range, the electrolytic solution becomes a non-volatile solution and does not dry out. In addition to the separator 1, the surrounding carbon fine powder and carbon cloth hold the aqueous solution. Therefore, when the aqueous solution drips or leaks, the aqueous solution is not lost and the surroundings are not soiled.
 酸素ポンプ運転の定常状態での動作では、外部直流電源より、直流電圧を印加すると、電流は正極側電極取り出し部6から正極側集電電極4を経て正極2に伝えられる。次に、電流は正極2の炭素微粉末表面で電解質溶液と電荷を交換して酸素を発生し、次にセパレータに含浸した電解液中をイオン伝導により伝えられて負極3の炭素微粉末表面に達する。そして、電流は再び電荷を交換して電解液中に酸素を取り込み、さらに、負極側集電電極5、負極側電極取り出し部7を介して外部直流電源に戻り、全体として閉回路を構成する。このとき、気体状の酸素は、負極側気相10から負極3の炭素微粉末表面で電解液に取り込まれ、電解液中をイオン伝導に従って伝えられ、正極2の炭素微粉末表面で酸素に戻り、正極側気相9に排出される。このようにして、酸素ポンプとしての酸素移動の機能が発揮される。 In the operation in the steady state of the oxygen pump operation, when a DC voltage is applied from an external DC power source, the current is transmitted from the positive electrode extraction part 6 to the positive electrode 2 via the positive electrode collecting electrode 4. Next, the current is exchanged with the electrolyte solution on the surface of the fine carbon powder of the positive electrode 2 to generate oxygen, and then is transferred through the electrolyte impregnated in the separator by ionic conduction to the fine carbon powder surface of the negative electrode 3. Reach. Then, the current exchanges the charge again to take in oxygen into the electrolytic solution, and further returns to the external DC power source through the negative electrode side collecting electrode 5 and the negative electrode side electrode take-out unit 7 to constitute a closed circuit as a whole. At this time, gaseous oxygen is taken into the electrolytic solution from the negative electrode-side gas phase 10 on the surface of the fine carbon powder of the negative electrode 3, is transmitted through the electrolytic solution in accordance with ionic conduction, and returns to oxygen on the surface of the fine carbon powder of the positive electrode 2. , And discharged to the positive electrode side gas phase 9. In this way, the function of oxygen transfer as an oxygen pump is exhibited.
 さらに詳述すると、通電に従って、負極3表面で塩化ニッケルの二価のニッケルイオンは、負極から電子を受け取って還元され、金属ニッケルとなる。 More specifically, in accordance with energization, the divalent nickel ion of nickel chloride on the surface of the negative electrode 3 receives electrons from the negative electrode and is reduced to become metallic nickel.
  Ni2+ + 2e → Ni
 続いて、金属ニッケルは酸素で自動酸化されて二価ニッケルイオンに戻ると共に溶液中の水素イオンから水を生成し、酸素が電解液中に取り込まれる。
Ni 2+ + 2e → Ni
Subsequently, the metallic nickel is auto-oxidized with oxygen to return to divalent nickel ions, and water is generated from hydrogen ions in the solution, and oxygen is taken into the electrolytic solution.
  2Ni + O +4H → 2Ni2+ + 2H
 従って、負極3の全反応では酸素と水素イオンが負極3から電子を受け取って、水が生成したことになる。
2Ni + O 2 + 4H + → 2Ni 2+ + 2H 2 O
Therefore, in the entire reaction of the negative electrode 3, oxygen and hydrogen ions receive electrons from the negative electrode 3, and water is generated.
  O + 4H + 4e → 2H
 この負極3の全反応を、自動酸化されるニッケルなしで行おうとしても酸素はかなり電極不活性であって、殆ど負極3と反応しない。白金などの触媒を負極3に担持すると反応するが、その場合は、まず過酸化水素が生成する。
O 2 + 4H + + 4e → 2H 2 O
Even if the whole reaction of the negative electrode 3 is performed without nickel that is auto-oxidized, oxygen is quite inactive and hardly reacts with the negative electrode 3. When a catalyst such as platinum is supported on the negative electrode 3, it reacts. In this case, hydrogen peroxide is first generated.
  O + 2H + 2e → H
 次に過酸化水素と水素イオンが負極から電子を受け取り水が生成する。
O 2 + 2H + 2e → H 2 O 2
Next, hydrogen peroxide and hydrogen ions receive electrons from the negative electrode to produce water.
  H + 2H + 2e → 2H
 しかしながら、この後段の反応は容易に進まず、通常は過酸化水素が蓄積して反応の効率が悪い。実施の形態3では、自動酸化するニッケルを持ち込むことにより効率的な酸素の取り込みが出来る。ニッケルは電極活性であり、電極との電荷の収受は容易である。また二価ニッケルイオンは、自動酸化する金属ニッケルの酸化型である。
H 2 O 2 + 2H + + 2e → 2H 2 O
However, this latter reaction does not proceed easily, and usually hydrogen peroxide accumulates, resulting in poor reaction efficiency. In the third embodiment, oxygen can be efficiently taken in by introducing nickel that is auto-oxidized. Nickel is electrode active and it is easy to accept charges from the electrode. The divalent nickel ion is an oxidized form of metallic nickel that is auto-oxidized.
 もう一方の正極2表面では、水が電子を正極2に与えて、酸素と水素イオンを生成する。 On the surface of the other positive electrode 2, water gives electrons to the positive electrode 2 to generate oxygen and hydrogen ions.
  2HO → O + 4H + 4e
 直接酸素運搬に関与しない塩化カルシウムも幾つかの機能をもつ。第一に塩化カルシウムは強い潮解性を持っており、水の保持性にすぐれ、乾燥しにくい。従って、電解液の乾燥を抑えて、電解液が切れてイオン伝導がなくなることがない。第二に塩素イオンは金属ニッケルの酸素自動酸化に促進的に働き、負極3での酸素の取り込みが速くなる。実施の形態3では、ニッケルも塩化物の形態で供給されているが、塩化カルシウムを追加することでさらに金属ニッケルの酸素自動酸化が速くなる。第三に大量のカルシウムイオンがあることで、負極3からの水素ガスの発生が抑えられる。カルシウムイオンが負極3表面に電気的吸着し、カルシウムイオンのpHバッファラクションのために電極表面がアルカリ側に維持され、水素発生の平衡電位が低下して水素ガスが出にくくなる。第三に反応に関与するニッケルの溶解度を高くとることができる。溶解しないニッケル塩をセパレータに含浸することはできないので、ニッケル塩を高濃度に仕込もうとすると、溶解度を上げるしかない。塩化カルシウムは塩化ニッケルと共溶して、塩化ニッケルの溶解を助ける。
2H 2 O → O 2 + 4H + + 4e
Calcium chloride, which is not directly involved in oxygen transport, also has several functions. First, calcium chloride has strong deliquescence, excellent water retention, and difficult to dry. Therefore, drying of the electrolytic solution is suppressed, and the electrolytic solution is not cut and ion conduction is not lost. Secondly, the chlorine ions promote the oxygen auto-oxidation of nickel metal, and the oxygen uptake at the anode 3 is accelerated. In the third embodiment, nickel is also supplied in the form of chloride. However, by adding calcium chloride, oxygen auto-oxidation of metallic nickel is further accelerated. Thirdly, the presence of a large amount of calcium ions suppresses the generation of hydrogen gas from the negative electrode 3. Calcium ions are electrically adsorbed on the surface of the negative electrode 3, and the surface of the electrode is maintained on the alkali side due to pH buffering of calcium ions, so that the equilibrium potential for hydrogen generation is lowered and hydrogen gas is hardly emitted. Thirdly, the solubility of nickel involved in the reaction can be increased. Since the separator cannot be impregnated with a nickel salt that does not dissolve, if the nickel salt is charged at a high concentration, the solubility must be increased. Calcium chloride co-dissolves with nickel chloride to help dissolve the nickel chloride.
 以下、実験例を説明する。図2は、実験に用いた酸素ポンプの構成を示すものである。セパレータ1には、ポリエチレン製親水化セパレータであって、厚み0.38ミリメートル(日本板硝子社製)のものを用いた。正極2、負極3はアセチレンブラック(和光純薬社製)、カーボンクロス(三菱レイヨン社製)で構成した。モールド部8はシリコーンシーラント(信越化学社製)を用いて、円形有効直径30ミリメートル(有効面積7.0平方センチメートル)で構成した。さらに、ガス出口12を有する正極側ケース11を取り付け、ガス出口12には、薄膜微小流量計を接続し、流量の観測ができるようにした。室温(約25℃)で実験を行い、1.5Vを印加して、1.5アンペアの電流が流れ、正極から0.017ミリリットル/秒のガスが流出し、電流とガス流量の化学量論的関係が確認された。 Hereinafter, experimental examples will be described. FIG. 2 shows the configuration of the oxygen pump used in the experiment. As the separator 1, a polyethylene hydrophilic separator having a thickness of 0.38 mm (manufactured by Nippon Sheet Glass Co., Ltd.) was used. The positive electrode 2 and the negative electrode 3 were composed of acetylene black (manufactured by Wako Pure Chemical Industries) and carbon cloth (manufactured by Mitsubishi Rayon Co., Ltd.). The mold part 8 was configured with a circular effective diameter of 30 millimeters (effective area of 7.0 square centimeters) using a silicone sealant (manufactured by Shin-Etsu Chemical Co., Ltd.). Furthermore, a positive electrode case 11 having a gas outlet 12 was attached, and a thin film micro flow meter was connected to the gas outlet 12 so that the flow rate could be observed. The experiment was performed at room temperature (about 25 ° C), 1.5 V was applied, 1.5 ampere current flowed, 0.017 ml / s gas flowed out of the positive electrode, and the stoichiometry of current and gas flow rate. Relationship was confirmed.
 (実施の形態4)
 酸素ポンプの構成、各構成部材、すなわち、セパレータ、炭素微粉末、カーボンクロス及びモールド等は実施の形態1と同様である。以下、異なる部分のみ説明する。
(Embodiment 4)
The configuration of the oxygen pump and each component, that is, the separator, the fine carbon powder, the carbon cloth, the mold and the like are the same as those in the first embodiment. Only different parts will be described below.
 電解液は塩化コバルト、塩化カルシウムの水溶液を用いる。配合割合はモル比で塩化カルシウム無水物1モルあたり、塩化コバルト無水相当0.2から2モル、水4から15モルである。電解質溶液を含浸したセパレータ1の両面に、炭素微粉末を塗布して構成した正極2と負極2とを配置している。さらに、その外部にカーボンクロスを密着設置させることにより、正極側集電電極4と負極側集電電極5とを構成している。このように、セパレータ1、正極2、負極3、正極側集電電極4および負極側集電電極5を積層し、次にこの積層構造物の面方向の終端部に接着剤を含浸し、次に肉盛りしてモールド部8として各構造を接続一体化する。乾燥していない、濡れたセパレータでは、モールド部8を作ることが困難である。 Electrolytic solution is an aqueous solution of cobalt chloride and calcium chloride. The mixing ratio is 0.2 to 2 mol equivalent to anhydrous cobalt chloride and 4 to 15 mol of water per mol of calcium chloride anhydride. A positive electrode 2 and a negative electrode 2 configured by applying carbon fine powder are disposed on both surfaces of a separator 1 impregnated with an electrolyte solution. Furthermore, the positive electrode side collector electrode 4 and the negative electrode side collector electrode 5 are configured by closely attaching a carbon cloth to the outside. Thus, the separator 1, the positive electrode 2, the negative electrode 3, the positive electrode side collector electrode 4, and the negative electrode side collector electrode 5 are laminated, and then the end portion in the plane direction of the laminated structure is impregnated with an adhesive, Then, each structure is connected and integrated as a mold part 8. It is difficult to make the mold part 8 with a wet separator that is not dry.
 上記構成において、セパレータ上の塩化コバルトと塩化カルシウムの混合物は強い潮解性をもち、大気から水蒸気を吸収して、塩化カルシウム無水物1モルあたり水4から15モルに収まり、元の湿潤状態に戻る。この範囲で電解液は不揮発性溶液となり、乾固することが無い。また、セパレータ1だけでなく、周囲の炭素微粉末やカーボンクロスも水溶液を保持する。従って、水溶液が液垂れしたり、漏れ出すことによって、水溶液が逸失したりすることがなく、また、周囲を汚すことがない。 In the above configuration, the mixture of cobalt chloride and calcium chloride on the separator has strong deliquescence, absorbs water vapor from the atmosphere, fits in 4 to 15 moles of water per mole of calcium chloride anhydride, and returns to the original wet state. . Within this range, the electrolytic solution becomes a non-volatile solution and does not dry out. Further, not only the separator 1 but also surrounding carbon fine powder and carbon cloth hold the aqueous solution. Therefore, when the aqueous solution drips or leaks, the aqueous solution is not lost and the surroundings are not soiled.
 酸素ポンプ運転の定常状態での動作では、外部直流電源より、直流電圧を印加すると、電流は正極側電極取り出し部6から正極側集電電極4を経て正極2に伝えられる。次に、電流は正極2の炭素微粉末表面で電解質溶液と電荷を交換して酸素を発生し、次にセパレータに含浸した電解液中をイオン伝導により伝えられて負極3の炭素微粉末表面に達する。そして、電流は再び電荷を交換して電解液中に酸素を取り込み、さらに、負極側集電電極5、負極側電極取り出し部7を介して外部直流電源に戻り、全体として閉回路を構成する。このとき、気体状の酸素は、負極側気相10から負極3の炭素微粉末表面で電解液に取り込まれ、電解液中をイオン伝導に従って伝えられ、正極2の炭素微粉末表面で酸素に戻り、正極側気相9に排出される。このようにして、酸素ポンプとしての酸素移動の機能が発揮される。 In the operation in the steady state of the oxygen pump operation, when a DC voltage is applied from an external DC power source, the current is transmitted from the positive electrode extraction part 6 to the positive electrode 2 via the positive electrode collecting electrode 4. Next, the current is exchanged with the electrolyte solution on the surface of the fine carbon powder of the positive electrode 2 to generate oxygen, and then is transferred through the electrolyte impregnated in the separator by ionic conduction to the fine carbon powder surface of the negative electrode 3. Reach. Then, the current exchanges the charge again to take in oxygen into the electrolytic solution, and further returns to the external DC power source through the negative electrode side collecting electrode 5 and the negative electrode side electrode take-out unit 7 to constitute a closed circuit as a whole. At this time, gaseous oxygen is taken into the electrolytic solution from the negative electrode-side gas phase 10 on the surface of the fine carbon powder of the negative electrode 3, is transmitted through the electrolytic solution in accordance with ionic conduction, and returns to oxygen on the surface of the fine carbon powder of the positive electrode 2. , And discharged to the positive electrode side gas phase 9. In this way, the function of oxygen transfer as an oxygen pump is exhibited.
 さらに詳述すると、通電に従って、負極3表面で塩化コバルトの二価のコバルトイオンは、負極3から電子を受け取って還元され、金属コバルトとなる。 More specifically, according to energization, the divalent cobalt ions of cobalt chloride on the surface of the negative electrode 3 receive electrons from the negative electrode 3 and are reduced to become metallic cobalt.
  Co2+ + 2e → Co
 続いて、金属コバルトは酸素で自動酸化されて二価コバルトイオンに戻ると共に溶液中の水素イオンから水を生成し、酸素が電解液中に取り込まれる。
Co 2+ + 2e → Co
Subsequently, metallic cobalt is auto-oxidized with oxygen to return to divalent cobalt ions, and water is generated from hydrogen ions in the solution, and oxygen is taken into the electrolytic solution.
  2Co + O + 4H → 2Co2+ + 2H
 従って、負極3の全反応では酸素と水素イオンが負極3から電子を受け取って、水が生成したことになる。
2Co + O 2 + 4H + → 2Co 2+ + 2H 2 O
Therefore, in the entire reaction of the negative electrode 3, oxygen and hydrogen ions receive electrons from the negative electrode 3, and water is generated.
  O + 4H + 4e → 2H
 この負極3の全反応を、自動酸化されるコバルトなしで行おうとしても酸素はかなり電極不活性であって、殆ど負極3と反応しない。白金などの触媒を負極3に担持すると反応するが、その場合は、まず過酸化水素が生成する。
O 2 + 4H + + 4e → 2H 2 O
Even if the entire reaction of the negative electrode 3 is performed without cobalt that is auto-oxidized, oxygen is quite inactive and hardly reacts with the negative electrode 3. When a catalyst such as platinum is supported on the negative electrode 3, it reacts. In this case, hydrogen peroxide is first generated.
  O + 2H + 2e → H
 次に過酸化水素と水素イオンが負極3から電子を受け取り水が生成する。
O 2 + 2H + 2e → H 2 O 2
Next, hydrogen peroxide and hydrogen ions receive electrons from the negative electrode 3 to generate water.
  H + 2H + 2e → 2H
 しかしながら、この後段の反応は容易に進まず、通常は過酸化水素が蓄積して反応の効率が悪い。実施の形態4では、自動酸化するコバルトを持ち込むことにより効率的な酸素の取り込みが出来る。コバルトは電極活性であり、電極との電荷の収受は容易である。また二価コバルトイオンは、自動酸化する金属コバルトの酸化型である。
H 2 O 2 + 2H + + 2e → 2H 2 O
However, this latter reaction does not proceed easily, and usually hydrogen peroxide accumulates, resulting in poor reaction efficiency. In Embodiment 4, oxygen can be efficiently taken in by bringing cobalt to be auto-oxidized. Cobalt is electrode active and charge collection with the electrode is easy. The divalent cobalt ion is an oxidized form of metallic cobalt that undergoes auto-oxidation.
 もう一方の正極2表面では、水が電子を正極2に与えて、酸素と水素イオンを生成する。 On the surface of the other positive electrode 2, water gives electrons to the positive electrode 2 to generate oxygen and hydrogen ions.
  2HO → O + 4H + 4e
 直接酸素運搬に関与しない塩化カルシウムも幾つかの機能をもつ。第一に塩化カルシウムは強い潮解性を持っており、水の保持性にすぐれ、乾燥しにくい。従って、電解液の乾燥を抑えて、電解液が切れてイオン伝導がなくなることがない。第二に塩素イオンは金属コバルトの酸素自動酸化に促進的に働き、負極3での酸素の取り込みが速くなる。実施の形態4では、コバルトも塩化物の形態で供給されているが、塩化カルシウムを追加することでさらに金属コバルトの酸素自動酸化が速くなる。第三に大量のカルシウムイオンがあることで、負極3からの水素ガスの発生が抑えられる。カルシウムイオンが負極3表面に電気的吸着し、カルシウムイオンのpHバッファラクションのために電極表面がアルカリ側に維持され、水素発生の平衡電位が低下して水素ガスが出にくくなる。第三に反応に関与するコバルトの溶解度を高くとることができる。溶解しないコバルト塩をセパレータに含浸することはできないので、コバルト塩を高濃度に仕込もうとすると、溶解度を上げるしかない。塩化カルシウムは塩化コバルトと共溶して、塩化コバルトの溶解を助ける。
2H 2 O → O 2 + 4H + + 4e
Calcium chloride, which is not directly involved in oxygen transport, also has several functions. First, calcium chloride has strong deliquescence, excellent water retention, and difficult to dry. Therefore, drying of the electrolytic solution is suppressed, and the electrolytic solution is not cut and ion conduction is not lost. Secondly, the chlorine ions promote the oxygen auto-oxidation of metallic cobalt, and the oxygen uptake at the negative electrode 3 is accelerated. In Embodiment 4, cobalt is also supplied in the form of chloride. However, by adding calcium chloride, oxygen autooxidation of metallic cobalt is further accelerated. Thirdly, the presence of a large amount of calcium ions suppresses the generation of hydrogen gas from the negative electrode 3. Calcium ions are electrically adsorbed on the surface of the negative electrode 3, and the surface of the electrode is maintained on the alkali side due to pH buffering of calcium ions, so that the equilibrium potential for hydrogen generation is lowered and hydrogen gas is hardly emitted. Third, the solubility of cobalt involved in the reaction can be increased. Since the separator cannot be impregnated with a cobalt salt that does not dissolve, the only way to increase the solubility of the cobalt salt is to increase the concentration of the cobalt salt. Calcium chloride co-dissolves with cobalt chloride to help dissolve cobalt chloride.
 以下、実験例を説明する。図2は、実験に用いた酸素ポンプの構成を示すものである。セパレータ1には、ポリエチレン製親水化セパレータであって、厚み0.38ミリメートル(日本板硝子社製)のものを用いた。正極2と負極3との両電極はアセチレンブラック(和光純薬社製)、カーボンクロス(三菱レイヨン社製)で構成した。モールド部8は、シリコーンシーラント(信越化学社製)、円形有効直径30ミリメートル(有効面積7.0平方センチメートル)で構成した。さらに、ガス出口12を有する正極側ケース11を取り付け、ガス出口12には、薄膜微小流量計を接続し、流量の観測ができるようにした。室温(約25℃)で実験を行い、2Vを印加して、1.3アンペアの電流が流れ、正極から0.075ミリリットル/秒のガスが流出し、電流とガス流量の化学量論的関係が確認された。 Hereinafter, experimental examples will be described. FIG. 2 shows the configuration of the oxygen pump used in the experiment. As the separator 1, a polyethylene hydrophilic separator having a thickness of 0.38 mm (manufactured by Nippon Sheet Glass Co., Ltd.) was used. Both electrodes of the positive electrode 2 and the negative electrode 3 were composed of acetylene black (manufactured by Wako Pure Chemical Industries, Ltd.) and carbon cloth (manufactured by Mitsubishi Rayon Co., Ltd.). The mold part 8 was composed of a silicone sealant (manufactured by Shin-Etsu Chemical Co., Ltd.) and a circular effective diameter of 30 millimeters (effective area of 7.0 square centimeters). Furthermore, a positive electrode case 11 having a gas outlet 12 was attached, and a thin film micro flow meter was connected to the gas outlet 12 so that the flow rate could be observed. Experiment at room temperature (approx. 25 ° C), 2V is applied, 1.3 ampere current flows, 0.075 ml / sec gas flows out from the positive electrode, and stoichiometric relationship between current and gas flow rate Was confirmed.
 (実施の形態5)
 酸素ポンプの構成、各構成部材、すなわち、セパレータ、カーボンクロス及びモールド等は実施の形態1と同様である。以下、異なる部分のみ説明する。
(Embodiment 5)
The configuration of the oxygen pump and each component, that is, the separator, the carbon cloth, the mold, and the like are the same as those in the first embodiment. Only different parts will be described below.
 負極3は表面を鉄メッキした炭素微粉末を塗布し、また、正極2は炭素微粉末を塗布して構成した。 The negative electrode 3 was formed by applying fine carbon powder whose surface was iron-plated, and the positive electrode 2 was formed by applying fine carbon powder.
 電解液はフッ化カリウムの飽和水溶液を用いる。セパレータ1に電解液を塗布後、電解液を含んだセパレータ1を乾燥させる。次に、正極2、負極3、正極側集電電極4および負極側集電電極5を積層し、次にこの積層構造物の面方向の終端部に接着剤を含浸し、次に肉盛りしてモールド部8を作ることで一体化する。ここで、乾燥していない、濡れたセパレータでは、モールドを作ることが困難である。 The electrolyte solution is a saturated aqueous solution of potassium fluoride. After applying the electrolytic solution to the separator 1, the separator 1 containing the electrolytic solution is dried. Next, the positive electrode 2, the negative electrode 3, the positive electrode side collector electrode 4, and the negative electrode side collector electrode 5 are laminated, and then the end portion in the plane direction of the laminated structure is impregnated with an adhesive, and then is built up. Then, the mold part 8 is made to be integrated. Here, it is difficult to make a mold with a wet and non-dry separator.
 上記構成において、セパレータ1上のフッ化カリウムは強い潮解性をもち、大気から水蒸気を吸収して、元の湿潤状態に戻る。よって、電解液は不揮発性溶液となり、乾固することが無い。また、セパレータ1のほかに周囲の炭素微粉末やカーボンクロスが水溶液を保持する。従って、水溶液が液垂れしたり、漏れ出すことによって、水溶液が逸失したりすることがなく、また、周囲を汚すことが無い。 In the above configuration, potassium fluoride on the separator 1 has strong deliquescence, absorbs water vapor from the atmosphere, and returns to its original wet state. Therefore, the electrolytic solution becomes a non-volatile solution and does not dry out. In addition to the separator 1, the surrounding carbon fine powder and carbon cloth hold the aqueous solution. Therefore, when the aqueous solution drips or leaks, the aqueous solution is not lost, and the surroundings are not soiled.
 酸素ポンプ運転の定常状態での動作では、外部直流電源より、直流電圧を印加すると、電流は正極側電極取り出し部6から正極側集電電極4を経て正極2に伝えられる。次に、電流は正極2の炭素微粉末表面で電解質溶液と電荷を交換して酸素を発生し、次にセパレータ1に含浸した電解液中をイオン伝導により伝えられて負極3の炭素微粉末表面に達する。そして、電流は再び電荷を交換して電解液中に酸素を取り込み、さらに、負極側集電電極5、負極側電極取り出し部7を介して外部直流電源に戻り、全体として閉回路を構成する。このとき、気体状の酸素は、負極側気相10から負極3の炭素微粉末表面で電解液に取り込まれ、電解液中をイオン伝導に従って伝えられ、正極2の炭素微粉末表面で酸素に戻り、正極側気相9に排出される。このようにして、酸素ポンプとしての酸素移動の機能が発揮される。 In the operation in the steady state of the oxygen pump operation, when a DC voltage is applied from an external DC power source, the current is transmitted from the positive electrode extraction part 6 to the positive electrode 2 via the positive electrode collecting electrode 4. Next, an electric current exchanges an electric charge with the electrolyte solution on the surface of the fine carbon powder of the positive electrode 2 to generate oxygen, and then is transmitted through the electrolytic solution impregnated in the separator 1 by ionic conduction, so that the surface of the fine carbon powder of the negative electrode 3 To reach. Then, the current exchanges the charge again to take in oxygen into the electrolytic solution, and further returns to the external DC power source through the negative electrode side collecting electrode 5 and the negative electrode side electrode take-out unit 7 to constitute a closed circuit as a whole. At this time, gaseous oxygen is taken into the electrolytic solution from the negative electrode-side gas phase 10 on the surface of the fine carbon powder of the negative electrode 3, is transmitted through the electrolytic solution in accordance with ionic conduction, and returns to oxygen on the surface of the fine carbon powder of the positive electrode 2. , And discharged to the positive electrode side gas phase 9. In this way, the function of oxygen transfer as an oxygen pump is exhibited.
 さらに詳述すると、負極3表面で金属鉄は酸素で自動酸化されて二価鉄イオンになると共に溶液中の水素イオンから水を生成し、酸素が電解液中に取り込まれる。 More specifically, metallic iron is auto-oxidized with oxygen on the surface of the negative electrode 3 to form divalent iron ions, and water is generated from hydrogen ions in the solution, and oxygen is taken into the electrolytic solution.
  2Fe + O + 4H → 2Fe2+ + 2H
 引き続き、通電に従って、負極3表面で二価の鉄イオンは、負極3から電子を受け取って還元され、金属鉄に戻る。
2Fe + O 2 + 4H + → 2Fe 2+ + 2H 2 O
Subsequently, according to energization, the divalent iron ions on the surface of the negative electrode 3 receive electrons from the negative electrode 3 and are reduced to return to metallic iron.
  Fe2+ + 2e → Co
 従って、負極3の全反応では酸素と水素イオンが負極3から電子を受け取って、水が生成したことになる。
Fe 2+ + 2e → Co
Therefore, in the entire reaction of the negative electrode 3, oxygen and hydrogen ions receive electrons from the negative electrode 3, and water is generated.
  O + 4H + 4e → 2H
 この負極3の全反応を、自動酸化される鉄なしで行おうとしても酸素はかなり電極不活性であって、殆ど負極3と反応しない。白金などの触媒を負極3に担持すると反応するが、その場合は、まず過酸化水素が生成する。
O 2 + 4H + + 4e → 2H 2 O
Even if the whole reaction of the negative electrode 3 is performed without iron that is auto-oxidized, oxygen is considerably inactive and hardly reacts with the negative electrode 3. When a catalyst such as platinum is supported on the negative electrode 3, it reacts. In this case, hydrogen peroxide is first generated.
  O + 2H + 2e → H
 次に過酸化水素と水素イオンが負極3から電子を受け取り水が生成する。
O 2 + 2H + 2e → H 2 O 2
Next, hydrogen peroxide and hydrogen ions receive electrons from the negative electrode 3 to generate water.
  H + 2H + 2e → 2H
 しかしながら、この後段の反応は容易に進まず、通常は過酸化水素が蓄積して反応の効率が悪い。実施の形態5では、自動酸化する鉄を持ち込むことにより効率的な酸素の取り込みが出来る。鉄は電極活性であり、電極との電荷の収受は容易である。また二価鉄イオンは、自動酸化する金属鉄の酸化型である。
H 2 O 2 + 2H + + 2e → 2H 2 O
However, this latter reaction does not proceed easily, and usually hydrogen peroxide accumulates, resulting in poor reaction efficiency. In the fifth embodiment, oxygen can be efficiently taken in by introducing iron that is auto-oxidized. Iron is electrode active and it is easy to receive charges with the electrode. Further, divalent iron ions are an oxidized form of metallic iron that undergoes auto-oxidation.
 もう一方の正極2表面では、水が電子を正極2に与えて、酸素と水素イオンを生成する。 On the surface of the other positive electrode 2, water gives electrons to the positive electrode 2 to generate oxygen and hydrogen ions.
  2HO → O + 4H + 4e
 直接酸素運搬に関与しないフッ化カリウムも幾つかの機能をもつ。第一にフッ化カリウムは強い潮解性を持っており、水の保持性にすぐれ、乾燥しにくい。従って、電解液の乾燥を抑えて、電解液が切れてイオン伝導がなくなることがない。これは高い溶解度と強い潮解性を持つ塩に共通した効果である。このような塩は、塩化カルシウム、塩化リチウム、臭化リチウムなどのハロゲン化アルカリに多く見られる。しかしながら、臭化物は、正極で水から酸素が生成するよりも低い電位で先に反応して臭素を生成するので使用できない。塩化物は、水から酸素が生成するよりも高い電位で反応するが、電位が近接しており、同時に塩素を生成する危険性がある。この点で、フッ化物が反応するのは、水から酸素が生成するよりも遥かに高い電位であって、フッ素が生成する危険性がない。
2H 2 O → O 2 + 4H + + 4e
Potassium fluoride, which is not directly involved in oxygen transport, also has several functions. First, potassium fluoride has strong deliquescence, excellent water retention, and difficult to dry. Therefore, drying of the electrolytic solution is suppressed, and the electrolytic solution is not cut and ion conduction is not lost. This is a common effect for salts with high solubility and strong deliquescence. Such salts are often found in alkali halides such as calcium chloride, lithium chloride, and lithium bromide. However, bromide cannot be used because it reacts earlier to produce bromine at a lower potential than oxygen is produced from water at the positive electrode. Chloride reacts at a higher potential than oxygen is produced from water, but the potential is close and there is a risk of producing chlorine at the same time. In this respect, the fluoride reacts at a much higher potential than oxygen is produced from water, and there is no danger of producing fluorine.
 第二にフッ素イオンは金属鉄の酸素自動酸化に促進的に働き、負極3での酸素の取り込みが速くなる。 Second, fluorine ions promote the oxygen auto-oxidation of metallic iron, and oxygen uptake at the negative electrode 3 is accelerated.
 負極3の電極材料は炭素微粉末に無電解メッキにより鉄金属を析出、被覆したものであり、セパレータ1と密着した電極が容易に作成される。無電界メッキをするには、鉄原料に硫酸鉄や塩化鉄などの鉄塩を用い、次亜リン酸塩、水素化ホウ素や、アルカリ性下でヒドラジンなどの還元剤を作用させることにより作成できる。このとき、硫酸銅やニトロソパラディウムなどの貴な電位をもつ金属の塩を微量添加しておくと、鉄に先立って還元されて還元核ができ、これが触媒的に働いて鉄メッキが進行するので、炭素微粉末の鉄メッキが容易となる。またカルボニル鉄を浸漬、吸収させ、これを熱分解させて金属鉄を析出させることが出来る。炭素微粉末は、カーボンブラック、グラファイトカーボン粉末、活性炭粉末などが使える。セパレータ1に塗布したときに薄層になって剥離しない微細なものがよく、その粒径は10マイクロメートル以下である。 The electrode material of the negative electrode 3 is obtained by depositing and coating iron metal on a fine carbon powder by electroless plating, and an electrode in close contact with the separator 1 can be easily formed. Electroless plating can be performed by using an iron salt such as iron sulfate or iron chloride as an iron raw material and allowing a reducing agent such as hypophosphite, borohydride, or hydrazine to act under alkaline conditions. At this time, if a small amount of a metal salt having a noble potential such as copper sulfate or nitrosoparadium is added, it is reduced prior to iron to form a reduced nucleus, which acts as a catalyst and iron plating proceeds. , Iron plating of carbon fine powder becomes easy. Moreover, carbonyl iron can be immersed and absorbed, and this can be thermally decomposed to deposit metallic iron. Carbon black, graphite carbon powder, activated carbon powder, etc. can be used as the carbon fine powder. A fine layer that does not peel off when applied to the separator 1 is preferable, and its particle size is 10 micrometers or less.
 正極2の電極材料の炭素微粉末は、カーボンブラック、グラファイトカーボン粉末、活性炭粉末などが使える。セパレータ1に塗布したときに薄層になって剥離しない微細なものがよく、その粒径は10マイクロメートル以下である。カーボンブラックのアセチレンブラックは安価に安定した微粒子状のものが入手でき、良好である。炭素の微粒子間は導電性がよく、セパレータ1と密着した電極が容易に作成される。 The carbon fine powder of the positive electrode 2 can be carbon black, graphite carbon powder, activated carbon powder or the like. A fine layer that does not peel off when applied to the separator 1 is preferable, and its particle size is 10 micrometers or less. Carbon black acetylene black is favorable because it is available in stable and fine particulate form. The carbon fine particles have good conductivity, and an electrode in close contact with the separator 1 can be easily formed.
 以下、実験例を説明する。図2は、実験に用いた酸素ポンプの構成を示すものである。セパレータ1には、ポリテトラフルオロエチレン製親水化ろ紙であって、厚みが0.5ミリメートルであり、ポア径が0.1マイクロメートル(アドバンテック東洋社製)のものを用いた。正極2はカーボングラファイト(和光純薬社製)、負極3はカーボングラファイト(和光純薬社製)を鉄メッキして用いた。鉄原料は鉄カルボニルで、カーボングラファイトに吸収させて、熱分解した。正極側集電電極4および負極側集電電極5はカーボンクロス(三菱レイヨン社製)で構成した。モールド部8はシリコーンシーラント(信越化学社製)で、円形有効直径30ミリメートル(有効面積7.0平方センチメートル)で構成した。さらに、ガス出口12を有する正極側ケースを取り付け、ガス出口12には、薄膜微小流量計を接続し、流量の観測ができるようにした。室温(約25℃)で実験を行い、2.6Vを印加して、1.2アンペアの電流が流れ、正極から0.07ミリリットル/秒のガスが流出し、電流とガス流量の化学量論的関係が確認された。 Hereinafter, experimental examples will be described. FIG. 2 shows the configuration of the oxygen pump used in the experiment. As the separator 1, a hydrophilized filter paper made of polytetrafluoroethylene having a thickness of 0.5 millimeters and a pore diameter of 0.1 micrometers (manufactured by Advantech Toyo Co., Ltd.) was used. The positive electrode 2 was made of carbon graphite (manufactured by Wako Pure Chemical Industries, Ltd.), and the negative electrode 3 was made of carbon graphite (made by Wako Pure Chemical Industries, Ltd.) by iron plating. The iron raw material was iron carbonyl, which was absorbed by carbon graphite and thermally decomposed. The positive electrode side collecting electrode 4 and the negative electrode side collecting electrode 5 were made of carbon cloth (manufactured by Mitsubishi Rayon Co., Ltd.). The mold part 8 is a silicone sealant (manufactured by Shin-Etsu Chemical Co., Ltd.), and has a circular effective diameter of 30 millimeters (effective area of 7.0 square centimeters). Furthermore, a positive electrode case having a gas outlet 12 was attached, and a thin film micro flow meter was connected to the gas outlet 12 so that the flow rate could be observed. The experiment was conducted at room temperature (about 25 ° C), 2.6 V was applied, 1.2 amperes of current flowed, 0.07 ml / s of gas flowed out of the positive electrode, and the stoichiometry of current and gas flow rate. Relationship was confirmed.
 (実施の形態6)
 酸素ポンプの構成、各構成部材、すなわち、セパレータ、カーボンクロス及びモールド等は実施の形態1と同様である。以下、異なる部分のみ説明する。
(Embodiment 6)
The configuration of the oxygen pump and each component, that is, the separator, the carbon cloth, the mold, and the like are the same as those in the first embodiment. Only different parts will be described below.
 負極3は表面をニッケルメッキした炭素微粉末を塗布し、また正極2は炭素微粉末を塗布して構成した。 The negative electrode 3 was formed by applying a fine nickel-plated carbon powder, and the positive electrode 2 was formed by applying a fine carbon powder.
 電解液はフッ化カリウムの飽和水溶液を用いる。セパレータ1に電解液を塗布後、電解液を含んだセパレータ1を乾燥させる。次に、電解液を含浸させたセパレータ1、正極2、負極3、正極側集電電極4および負極側集電電極を積層し、次にこの積層構造物の面方向の終端部に接着剤を含浸し、次に肉盛りしてモールド部8を作ることで一体化する。ここで、乾燥していない、濡れたセパレータでは、モールドを作ることが困難である。 The electrolyte solution is a saturated aqueous solution of potassium fluoride. After applying the electrolytic solution to the separator 1, the separator 1 containing the electrolytic solution is dried. Next, the separator 1 impregnated with the electrolytic solution, the positive electrode 2, the negative electrode 3, the positive electrode side collecting electrode 4 and the negative electrode side collecting electrode are laminated, and then an adhesive is applied to the end portion in the plane direction of the laminated structure. It is impregnated, and then integrated by forming the mold part 8 by overlaying. Here, it is difficult to make a mold with a wet and non-dry separator.
 上記構成において、セパレータ1上のフッ化カリウムは強い潮解性をもち、大気から水蒸気を吸収して、元の湿潤状態に戻る。よって、電解液は不揮発性溶液となり、乾固することが無い。また、セパレータ1のほかに周囲の炭素微粉末やカーボンクロスが水溶液を保持する。従って、水溶液が液垂れしたり、漏れ出すことによって、水溶液が逸失したりすることがなく、また、周囲を汚すこともない。 In the above configuration, potassium fluoride on the separator 1 has strong deliquescence, absorbs water vapor from the atmosphere, and returns to its original wet state. Therefore, the electrolytic solution becomes a non-volatile solution and does not dry out. In addition to the separator 1, the surrounding carbon fine powder and carbon cloth hold the aqueous solution. Therefore, when the aqueous solution drips or leaks, the aqueous solution is not lost and the surroundings are not soiled.
 酸素ポンプ運転の定常状態での動作では、外部直流電源より、直流電圧を印加すると、電流は正極側電極取り出し部6から正極側集電電極4を経て正極2に伝えられる。次に、電流は正極2の炭素微粉末表面で電解質溶液と電荷を交換して酸素を発生し、次にセパレータに含浸した電解液中をイオン伝導により伝えられて負極3の炭素微粉末表面に達する。そして、電流は再び電荷を交換して電解液中に酸素を取り込み、さらに、負極側集電電極5、負極側電極取り出し部7を介して外部直流電源に戻り、全体として閉回路を構成する。このとき、気体状の酸素は、負極側気相10から負極3の炭素微粉末表面で電解液に取り込まれ、電解液中をイオン伝導に従って伝えられ、正極2の炭素微粉末表面で酸素に戻り、正極側気相9に排出される。このようにして、酸素ポンプとしての酸素移動の機能が発揮される。 In the operation in the steady state of the oxygen pump operation, when a DC voltage is applied from an external DC power source, the current is transmitted from the positive electrode extraction part 6 to the positive electrode 2 via the positive electrode collecting electrode 4. Next, the current is exchanged with the electrolyte solution on the surface of the fine carbon powder of the positive electrode 2 to generate oxygen, and then is transferred through the electrolyte impregnated in the separator by ionic conduction to the fine carbon powder surface of the negative electrode 3. Reach. Then, the current exchanges the charge again to take in oxygen into the electrolytic solution, and further returns to the external DC power source through the negative electrode side collecting electrode 5 and the negative electrode side electrode take-out unit 7 to constitute a closed circuit as a whole. At this time, gaseous oxygen is taken into the electrolytic solution from the negative electrode-side gas phase 10 on the surface of the fine carbon powder of the negative electrode 3, is transmitted through the electrolytic solution in accordance with ionic conduction, and returns to oxygen on the surface of the fine carbon powder of the positive electrode 2. , And discharged to the positive electrode side gas phase 9. In this way, the function of oxygen transfer as an oxygen pump is exhibited.
 さらに詳述すると、負極3表面で金属ニッケルは酸素で自動酸化されて二価ニッケルイオンになると共に溶液中の水素イオンから水を生成し、酸素が電解液中に取り込まれる。 More specifically, the nickel metal is auto-oxidized with oxygen on the surface of the negative electrode 3 to form divalent nickel ions, and water is generated from hydrogen ions in the solution, and oxygen is taken into the electrolyte.
  2Ni + O + 4H → 2Ni2+ + 2H
 引き続き、通電に従って、負極3表面で二価のニッケルイオンは、負極3から電子を受け取って還元され、金属ニッケルに戻る。
2Ni + O 2 + 4H + → 2Ni 2+ + 2H 2 O
Subsequently, according to energization, the divalent nickel ions on the surface of the negative electrode 3 receive electrons from the negative electrode 3 and are reduced to return to metallic nickel.
  Ni2+ + 2e → Ni
 従って、負極3の全反応では酸素と水素イオンが負極から電子を受け取って、水が生成したことになる。
Ni 2+ + 2e → Ni
Therefore, in the entire reaction of the negative electrode 3, oxygen and hydrogen ions receive electrons from the negative electrode and water is generated.
  O + 4H + 4e → 2H
 この負極3の全反応を、自動酸化されるニッケルなしで行おうとしても酸素はかなり電極不活性であって、殆ど負極3と反応しない。白金などの触媒を負極3に担持すると反応するが、その場合は、まず過酸化水素が生成する。
O 2 + 4H + + 4e → 2H 2 O
Even if the whole reaction of the negative electrode 3 is performed without nickel that is auto-oxidized, oxygen is quite inactive and hardly reacts with the negative electrode 3. When a catalyst such as platinum is supported on the negative electrode 3, it reacts. In this case, hydrogen peroxide is first generated.
  O + 2H + 2e → H
 次に過酸化水素と水素イオンが負極から電子を受け取り水が生成する。
O 2 + 2H + 2e → H 2 O 2
Next, hydrogen peroxide and hydrogen ions receive electrons from the negative electrode to produce water.
  H + 2H + 2e → 2H
 しかしながら、この後段の反応は容易に進まず、通常は過酸化水素が蓄積して反応の効率が悪い。実施の形態6では、自動酸化するニッケルを持ち込むことにより効率的な酸素の取り込みが出来る。ニッケルは電極活性であり、電極との電荷の収受は容易である。また二価ニッケルイオンは、自動酸化する金属ニッケルの酸化型である。
H 2 O 2 + 2H + + 2e → 2H 2 O
However, this latter reaction does not proceed easily, and usually hydrogen peroxide accumulates, resulting in poor reaction efficiency. In the sixth embodiment, oxygen can be efficiently taken in by bringing nickel to be auto-oxidized. Nickel is electrode active and it is easy to accept charges from the electrode. The divalent nickel ion is an oxidized form of metallic nickel that is auto-oxidized.
 もう一方の正極2表面では、水が電子を正極2に与えて、酸素と水素イオンを生成する。 On the surface of the other positive electrode 2, water gives electrons to the positive electrode 2 to generate oxygen and hydrogen ions.
  2HO → O + 4H + 4e
 直接酸素運搬に関与しないフッ化カリウムも幾つかの機能をもつ。第一にフッ化カリウムは強い潮解性を持っており、水の保持性にすぐれ、乾燥しにくい。従って、電解液の乾燥を抑えて、電解液が切れてイオン伝導がなくなることがない。これは高い溶解度と強い潮解性を持つ塩に共通した効果である。このような塩は、塩化カルシウム、塩化リチウム、臭化リチウムなどのハロゲン化アルカリに多く見られる。しかしながら、臭化物は、正極2で水から酸素が生成するよりも低い電位で先に反応して臭素を生成するので使用できない。塩化物は、水から酸素が生成するよりも高い電位で反応するが、電位が近接しており、同時に塩素を生成する危険性がある。この点で、フッ化物が反応するのは、水から酸素が生成するよりも遥かに高い電位であって、フッ素が生成する危険性がない。
2H 2 O → O 2 + 4H + + 4e
Potassium fluoride, which is not directly involved in oxygen transport, also has several functions. First, potassium fluoride has strong deliquescence, excellent water retention, and difficult to dry. Therefore, drying of the electrolytic solution is suppressed, and the electrolytic solution is not cut and ion conduction is not lost. This is a common effect for salts with high solubility and strong deliquescence. Such salts are often found in alkali halides such as calcium chloride, lithium chloride, and lithium bromide. However, bromide cannot be used because it reacts first at a lower potential than oxygen is produced from water at the positive electrode 2 to produce bromine. Chloride reacts at a higher potential than oxygen is produced from water, but the potential is close and there is a risk of producing chlorine at the same time. In this respect, the fluoride reacts at a much higher potential than oxygen is produced from water, and there is no danger of producing fluorine.
 第二にフッ素イオンは金属ニッケルの酸素自動酸化に促進的に働き、負極3での酸素の取り込みが速くなる。 Second, the fluorine ions promote the oxygen auto-oxidation of nickel metal, and the oxygen uptake at the anode 3 is accelerated.
 負極3の電極材料は炭素微粉末に無電解メッキによりニッケル金属を析出、被覆したものであり、セパレータと密着した電極が容易に作成される。無電界メッキをするには、ニッケル原料に硫酸ニッケルや塩化ニッケルなどのニッケル塩を用い、次亜リン酸塩、水素化ホウ素や、アルカリ性下でヒドラジンなどの還元剤を作用させることにより作成できる。このとき、硫酸銅やニトロソパラディウムなどの貴な電位をもつ金属の塩を微量添加しておくと、ニッケルに先立って還元されて還元核ができ、これが触媒的に働いてニッケルメッキが進行するので、炭素微粉末のニッケルメッキが容易となる。炭素微粉末は、カーボンブラック、グラファイトカーボン粉末、活性炭粉末などが使える。セパレータ1に塗布したときに薄層になって剥離しない微細なものがよく、その粒径は10マイクロメートル以下である。 The electrode material of the negative electrode 3 is obtained by depositing and coating nickel metal on a fine carbon powder by electroless plating, and an electrode in close contact with the separator can be easily formed. Electroless plating can be performed by using a nickel salt such as nickel sulfate or nickel chloride as a nickel raw material and allowing a reducing agent such as hypophosphite, borohydride, or hydrazine to act under alkaline conditions. At this time, if a small amount of a metal salt having a noble potential, such as copper sulfate or nitrosoparadium, is added prior to nickel, a reduced nucleus is formed, which acts catalytically and nickel plating proceeds. The nickel plating of the carbon fine powder becomes easy. Carbon black, graphite carbon powder, activated carbon powder, etc. can be used as the carbon fine powder. A fine layer that does not peel off when applied to the separator 1 is preferable, and its particle size is 10 micrometers or less.
 正極2の電極材料の炭素微粉末は、カーボンブラック、グラファイトカーボン粉末、活性炭粉末などが使える。セパレータ1に塗布したときに薄層になって剥離しない微細なものがよく、その粒径は10マイクロメートル以下である。カーボンブラックのアセチレンブラックは安価に安定した微粒子状のものが入手でき、良好である。炭素の微粒子間は導電性がよく、セパレータと密着した電極が容易に作成される。 The carbon fine powder of the positive electrode 2 can be carbon black, graphite carbon powder, activated carbon powder or the like. A fine layer that does not peel off when applied to the separator 1 is preferable, and its particle size is 10 micrometers or less. Carbon black acetylene black is favorable because it is available in stable and fine particulate form. The carbon fine particles have good conductivity, and an electrode in close contact with the separator can be easily formed.
 以下、実験例を説明する。図2は、実験に用いた酸素ポンプの構成を示すものである。セパレータ1には、ポリテトラフルオロエチレン製親水化ろ紙であって、厚みが0.5ミリメートル、ポア径が0.1マイクロメートル(アドバンテック東洋社製)のものを用いた。正極2は、カーボングラファイト(和光純薬社製)、負極3はカーボングラファイト(和光純薬社製)をニッケルメッキして用いた。ニッケル原料は硫酸ニッケル、還元剤はヒドラジン一水和物、アルカリには水酸化カリウムを用いた。正極側集電電極4、負極側集電電極5はカーボンクロス(三菱レイヨン社製)を用いた。モールド部8は、シリコーンシーラント(信越化学社製)で、円形有効直径30ミリメートル(有効面積7.0平方センチメートル)で構成した。さらに、ガス出口12を有する正極側ケース11を取り付け、ガス出口12には、薄膜微小流量計を接続し、流量の観測ができるようにした。室温(約25℃)で実験を行い、2.6Vを印加して、1.1アンペアの電流が流れ、正極から0.064ミリリットル/秒のガスが流出し、電流とガス流量の化学量論的関係が確認された。 Hereinafter, experimental examples will be described. FIG. 2 shows the configuration of the oxygen pump used in the experiment. The separator 1 was a polytetrafluoroethylene hydrophilized filter paper having a thickness of 0.5 mm and a pore diameter of 0.1 micrometers (manufactured by Advantech Toyo Co., Ltd.). The positive electrode 2 was made of nickel-plated carbon graphite (manufactured by Wako Pure Chemical Industries) and the negative electrode 3 was made of nickel-plated carbon graphite (manufactured by Wako Pure Chemical Industries). Nickel sulfate was used as the nickel raw material, hydrazine monohydrate was used as the reducing agent, and potassium hydroxide was used as the alkali. As the positive electrode side collecting electrode 4 and the negative electrode side collecting electrode 5, carbon cloth (manufactured by Mitsubishi Rayon Co., Ltd.) was used. The mold part 8 was made of a silicone sealant (manufactured by Shin-Etsu Chemical Co., Ltd.) and had a circular effective diameter of 30 millimeters (effective area of 7.0 square centimeters). Furthermore, a positive electrode case 11 having a gas outlet 12 was attached, and a thin film micro flow meter was connected to the gas outlet 12 so that the flow rate could be observed. The experiment was performed at room temperature (about 25 ° C.), 2.6 V was applied, 1.1 ampere current flowed, 0.064 ml / sec gas flowed out from the positive electrode, and the stoichiometry of current and gas flow rate. Relationship was confirmed.
 (実施の形態7)
 酸素ポンプの構成、各構成部材、すなわち、セパレータ、カーボンクロス及びモールド等は実施の形態1と同様である。以下、異なる部分のみ説明する。
(Embodiment 7)
The configuration of the oxygen pump and each component, that is, the separator, the carbon cloth, the mold, and the like are the same as those in the first embodiment. Only different parts will be described below.
 負極3は表面をコバルトメッキした炭素微粉末を塗布し、また正極2は炭素微粉末を塗布して構成した。 The negative electrode 3 was constituted by applying a fine carbon powder having a cobalt plating surface, and the positive electrode 2 was constituted by applying a fine carbon powder.
 電解液はフッ化カリウムの飽和水溶液を用いる。セパレータ1に電解液を塗布後、電解液を含んだセパレータ1を乾燥させる。次に、電解液を含浸させたセパレータ1、正極2、負極3、正極側集電電極4および負極側集電電極5を積層し、次にこの積層構造物の面方向の終端部に接着剤を含浸し、次に肉盛りしてモールド部8を作ることで一体化する。ここで、乾燥していない、濡れたセパレータでは、モールドを作ることが困難である。 The electrolyte solution is a saturated aqueous solution of potassium fluoride. After applying the electrolytic solution to the separator 1, the separator 1 containing the electrolytic solution is dried. Next, the separator 1 impregnated with the electrolytic solution, the positive electrode 2, the negative electrode 3, the positive electrode side collector electrode 4 and the negative electrode side collector electrode 5 are laminated, and then the adhesive is applied to the end portion in the plane direction of the laminated structure. Then, the mold part 8 is piled up to make the mold part 8 and integrated. Here, it is difficult to make a mold with a wet and non-dry separator.
 上記構成において、セパレータ1上のフッ化カリウムは強い潮解性をもち、大気から水蒸気を吸収して、元の湿潤状態に戻る。よって、電解液は不揮発性溶液となり、乾固することが無い。また、セパレータ1のほかに周囲の炭素微粉末やカーボンクロスが水溶液を保持する。従って、水溶液が液垂れしたり、漏れ出すことによって、水溶液が逸失したりすることがなく、また、周囲を汚すこともない。 In the above configuration, potassium fluoride on the separator 1 has strong deliquescence, absorbs water vapor from the atmosphere, and returns to its original wet state. Therefore, the electrolytic solution becomes a non-volatile solution and does not dry out. In addition to the separator 1, the surrounding carbon fine powder and carbon cloth hold the aqueous solution. Therefore, when the aqueous solution drips or leaks, the aqueous solution is not lost and the surroundings are not soiled.
 酸素ポンプ運転の定常状態での動作では、外部直流電源より、直流電圧を印加すると、電流は正極側電極取り出し部6から正極側集電電極4を経て正極2に伝えられる。電流は正極2の炭素微粉末表面で電解質溶液と電荷を交換して酸素を発生させ、次にセパレータに含浸した電解液中をイオン伝導により伝えられて負極3の炭素微粉末表面に達する。次に、電流は再び電荷を交換して電解液中に酸素を取り込み、さらに、負極側集電電極5、負極側電極取り出し部7を介して外部直流電源に戻り、全体として閉回路を構成する。このとき、気体状の酸素は、負極側気相10から負極3の炭素微粉末表面で電解液に取り込まれ、電解液中をイオン伝導に従って伝えられ、正極2の炭素微粉末表面で酸素に戻り、正極側気相9に排出される。このようにして、酸素ポンプとしての酸素移動の機能が発揮される。 In the operation in the steady state of the oxygen pump operation, when a DC voltage is applied from an external DC power source, the current is transmitted from the positive electrode extraction part 6 to the positive electrode 2 via the positive electrode collecting electrode 4. The current exchanges electric charge with the electrolyte solution on the surface of the carbon fine powder of the positive electrode 2 to generate oxygen, and then is transmitted through the electrolytic solution impregnated in the separator by ionic conduction to reach the surface of the carbon fine powder of the negative electrode 3. Next, the current exchanges the charge again to take in oxygen into the electrolyte, and further returns to the external DC power source via the negative electrode side collecting electrode 5 and the negative electrode side electrode take-out part 7 to constitute a closed circuit as a whole. . At this time, gaseous oxygen is taken into the electrolytic solution from the negative electrode-side gas phase 10 on the surface of the fine carbon powder of the negative electrode 3, is transmitted through the electrolytic solution in accordance with ionic conduction, and returns to oxygen on the surface of the fine carbon powder of the positive electrode 2. , And discharged to the positive electrode side gas phase 9. In this way, the function of oxygen transfer as an oxygen pump is exhibited.
 さらに詳述すると、負極3表面で金属コバルトは酸素で自動酸化されて二価コバルトイオンになると共に溶液中の水素イオンから水を生成し、酸素が電解液中に取り込まれる。 More specifically, metallic cobalt is auto-oxidized with oxygen on the surface of the negative electrode 3 to form divalent cobalt ions, and water is generated from hydrogen ions in the solution, and oxygen is taken into the electrolytic solution.
  2Co + O + 4H → 2Co2+ + 2H
 引き続き、通電に従って、負極3表面で二価のコバルトイオンは、負極3から電子を受け取って還元され、金属コバルトに戻る。
2Co + O 2 + 4H + → 2Co 2+ + 2H 2 O
Subsequently, according to energization, the divalent cobalt ions on the surface of the negative electrode 3 receive electrons from the negative electrode 3 and are reduced to return to metallic cobalt.
  Co2+ + 2e → Co
 従って、負極3の全反応では酸素と水素イオンが負極3から電子を受け取って、水が生成したことになる。
Co 2+ + 2e → Co
Therefore, in the entire reaction of the negative electrode 3, oxygen and hydrogen ions receive electrons from the negative electrode 3, and water is generated.
  O + 4H + 4e → 2H
 この負極3の全反応を、自動酸化されるコバルトなしで行おうとしても酸素はかなり電極不活性であって、殆ど負極3と反応しない。白金などの触媒を負極3に担持すると反応するが、その場合は、まず過酸化水素が生成する。
O 2 + 4H + + 4e → 2H 2 O
Even if the entire reaction of the negative electrode 3 is performed without cobalt that is auto-oxidized, oxygen is quite inactive and hardly reacts with the negative electrode 3. When a catalyst such as platinum is supported on the negative electrode 3, it reacts. In this case, hydrogen peroxide is first generated.
  O + 2H + 2e → H
 次に過酸化水素と水素イオンが負極3から電子を受け取り水が生成する。
O 2 + 2H + 2e → H 2 O 2
Next, hydrogen peroxide and hydrogen ions receive electrons from the negative electrode 3 to generate water.
  H + 2H + 2e → 2H
 しかしながら、この後段の反応は容易に進まず、通常は過酸化水素が蓄積して反応の効率が悪い。実施の形態7では、自動酸化するコバルトを持ち込むことにより効率的な酸素の取り込みが出来る。コバルトは電極活性であり、電極との電荷の収受は容易である。また二価コバルトイオンは、自動酸化する金属コバルトの酸化型である。
H 2 O 2 + 2H + + 2e → 2H 2 O
However, this latter reaction does not proceed easily, and usually hydrogen peroxide accumulates, resulting in poor reaction efficiency. In Embodiment 7, oxygen can be efficiently taken in by bringing cobalt to be auto-oxidized. Cobalt is electrode active and charge collection with the electrode is easy. The divalent cobalt ion is an oxidized form of metallic cobalt that undergoes auto-oxidation.
 もう一方の正極2表面では、水が電子を正極2に与えて、酸素と水素イオンを生成する。 On the surface of the other positive electrode 2, water gives electrons to the positive electrode 2 to generate oxygen and hydrogen ions.
  2HO → O + 4H + 4e
 直接酸素運搬に関与しないフッ化カリウムも幾つかの機能をもつ。第一にフッ化カリウムは強い潮解性を持っており、水の保持性にすぐれ、乾燥しにくい。従って、電解液の乾燥を抑えて、電解液が切れてイオン伝導がなくなることがない。これは高い溶解度と強い潮解性を持つ塩に共通した効果である。このような塩は、塩化カルシウム、塩化リチウム、臭化リチウムなどのハロゲン化アルカリに多く見られる。しかしながら、臭化物は、正極2で水から酸素が生成するよりも低い電位で先に反応して臭素を生成するので使用できない。塩化物は、水から酸素が生成するよりも高い電位で反応するが、電位が近接しており、同時に塩素を生成する危険性がある。この点で、フッ化物が反応するのは、水から酸素が生成するよりも遥かに高い電位であって、フッ素が生成する危険性がない。
2H 2 O → O 2 + 4H + + 4e
Potassium fluoride, which is not directly involved in oxygen transport, also has several functions. First, potassium fluoride has strong deliquescence, excellent water retention, and difficult to dry. Therefore, drying of the electrolytic solution is suppressed, and the electrolytic solution is not cut and ion conduction is not lost. This is a common effect for salts with high solubility and strong deliquescence. Such salts are often found in alkali halides such as calcium chloride, lithium chloride, and lithium bromide. However, bromide cannot be used because it reacts first at a lower potential than oxygen is produced from water at the positive electrode 2 to produce bromine. Chloride reacts at a higher potential than oxygen is produced from water, but the potential is close and there is a risk of producing chlorine at the same time. In this respect, the fluoride reacts at a much higher potential than oxygen is produced from water, and there is no danger of producing fluorine.
 第二にフッ素イオンは金属コバルトの酸素自動酸化に促進的に働き、負極3での酸素の取り込みが速くなる。 Second, fluorine ions promote the oxygen auto-oxidation of metallic cobalt, and oxygen uptake at the negative electrode 3 is accelerated.
 負極3の電極材料は炭素微粉末に無電解メッキによりコバルト金属を析出、被覆したものであり、セパレータと密着した電極が容易に作成される。無電界メッキをするには、コバルト原料に硫酸コバルトや塩化コバルトなどのコバルト塩を用い、次亜リン酸塩、水素化ホウ素や、アルカリ性下でヒドラジンなどの還元剤を作用させることにより作成できる。このとき、硫酸銅やニトロソパラディウムなどの貴な電位をもつ金属の塩を微量添加しておくと、コバルトに先立って還元されて還元核ができ、これが触媒的に働いてコバルトメッキが進行するので、炭素微粉末のコバルトメッキが容易となる。炭素微粉末は、カーボンブラック、グラファイトカーボン粉末、活性炭粉末などが使える。セパレータ1に塗布したときに薄層になって剥離しない微細なものがよく、その粒径は10マイクロメートル以下である。 The electrode material of the negative electrode 3 is obtained by depositing and coating cobalt metal on a fine carbon powder by electroless plating, and an electrode in close contact with the separator can be easily formed. Electroless plating can be performed by using a cobalt salt such as cobalt sulfate or cobalt chloride as a cobalt raw material, and allowing a reducing agent such as hydrazine to act under hypophosphite, borohydride, or alkali. At this time, if a small amount of a metal salt having a noble potential such as copper sulfate or nitrosoparadium is added, it is reduced prior to cobalt to form a reduced nucleus, which acts as a catalyst and promotes cobalt plating. Cobalt plating of carbon fine powder becomes easy. Carbon black, graphite carbon powder, activated carbon powder, etc. can be used as the carbon fine powder. A fine layer that does not peel off when applied to the separator 1 is preferable, and its particle size is 10 micrometers or less.
 正極2の電極材料の炭素微粉末は、カーボンブラック、グラファイトカーボン粉末、活性炭粉末などが使える。セパレータ1に塗布したときに薄層になって剥離しない微細なものがよく、その粒径は10マイクロメートル以下である。カーボンブラックのアセチレンブラックは安価に安定した微粒子状のものが入手でき、良好である。炭素の微粒子間は導電性がよく、セパレータと密着した電極が容易に作成される。 The carbon fine powder of the positive electrode 2 can be carbon black, graphite carbon powder, activated carbon powder or the like. A fine layer that does not peel off when applied to the separator 1 is preferable, and its particle size is 10 micrometers or less. Carbon black acetylene black is favorable because it is available in stable and fine particulate form. The carbon fine particles have good conductivity, and an electrode in close contact with the separator can be easily formed.
 以下、実験例を説明する。図2は、実験に用いた酸素ポンプの構成を示すものである。セパレータ1は、ポリテトラフルオロエチレン製の親水化ろ紙であって、厚みが0.5ミリメートルであって、ポア径が0.1マイクロメートル(アドバンテック東洋社製)のものを用いた。正極2は、カーボングラファイト(和光純薬社製)、負極3はカーボングラファイト(和光純薬社製)をコバルトメッキして用いた。コバルト原料は硫酸コバルト、還元剤はヒドラジン一水和物、アルカリには水酸化カリウムを用いた。正極側集電電極4および負極側集電電極5はカーボンクロス(三菱レイヨン社製)を用いた。モールド部8はシリコーンシーラント(信越化学社製)で、円形有効直径30ミリメートル(有効面積7.0平方センチメートル)で構成した。さらに、ガス出口12を有する正極側ケース11を取り付け、ガス出口12には、薄膜微小流量計を接続し、流量の観測ができるようにした。室温(約25℃)で実験を行い、2.5Vを印加して、1.2アンペアの電流が流れ、正極から0.07ミリリットル/秒のガスが流出し、電流とガス流量の化学量論的関係が確認された。 Hereinafter, experimental examples will be described. FIG. 2 shows the configuration of the oxygen pump used in the experiment. The separator 1 is a hydrophilized filter paper made of polytetrafluoroethylene, having a thickness of 0.5 millimeters and a pore diameter of 0.1 micrometers (manufactured by Advantech Toyo Co., Ltd.). The positive electrode 2 was a carbon graphite (manufactured by Wako Pure Chemical Industries) and the negative electrode 3 was a carbon graphite (manufactured by Wako Pure Chemical Industries) plated with cobalt. The cobalt raw material was cobalt sulfate, the reducing agent was hydrazine monohydrate, and the alkali was potassium hydroxide. As the positive electrode side collecting electrode 4 and the negative electrode side collecting electrode 5, carbon cloth (manufactured by Mitsubishi Rayon Co., Ltd.) was used. The mold part 8 is a silicone sealant (manufactured by Shin-Etsu Chemical Co., Ltd.), and has a circular effective diameter of 30 millimeters (effective area of 7.0 square centimeters). Furthermore, a positive electrode case 11 having a gas outlet 12 was attached, and a thin film micro flow meter was connected to the gas outlet 12 so that the flow rate could be observed. The experiment was conducted at room temperature (about 25 ° C), 2.5 V was applied, 1.2 ampere current flowed, 0.07 ml / s gas flowed out of the positive electrode, and the stoichiometry of current and gas flow rate. Relationship was confirmed.
 (実施の形態8)
 図3は、実施の形態8における保管庫として、冷蔵庫内の酸素濃度調整可能な食品保存空間を示した断面図である。
(Embodiment 8)
FIG. 3 is a cross-sectional view showing a food storage space capable of adjusting the oxygen concentration in the refrigerator as a storage in the eighth embodiment.
 図3は、保管庫である冷蔵庫が有する複数の保存室の一つを抽出して示したものである。前面の保存室扉31と、上下面の断熱仕切壁32、仕切板34で形成される空間に、内部が食品保存空間40となった食品保存容器39と脱酸素補助空間を形成する脱酸素補助容器38とが接続されて配置されている。また、食品保存容器39と脱酸素補助容器38との接続部には、脱酸素気体導入部36が配置され、脱酸素補助容器38は、外部気体置換部37と酸素濃度調整部(酸素ポンプ)35とを有している。 FIG. 3 shows one of a plurality of storage rooms extracted from a refrigerator as a storage. Deoxygenation assistance that forms a deoxygenation auxiliary space with a food storage container 39 whose interior is a food storage space 40 in a space formed by the front storage chamber door 31, the upper and lower heat insulating partition walls 32, and the partition plate 34 The container 38 is connected and arranged. In addition, a deoxygenation gas introduction unit 36 is disposed at a connection portion between the food storage container 39 and the deoxygenation auxiliary container 38, and the deoxygenation auxiliary container 38 includes an external gas replacement unit 37 and an oxygen concentration adjustment unit (oxygen pump). 35.
 尚、仕切板34と本体断熱壁33の間の空間あるいはこれに繋がった空間には、冷却器、ファン等が設置され、保存室に冷気を供給しているが、ここでは簡単のために冷却器、ファン等は省略して記載している。 In addition, a cooler, a fan, etc. are installed in the space between the partition plate 34 and the main body heat insulation wall 33 or the space connected thereto, and cool air is supplied to the storage room. Equipment, fans, etc. are omitted.
 また図4は、実施の形態8の食品保存空間の脱酸素の手順を示したものである。以下では、図3、図4を用いて、酸素濃度調整の具体的な方法と各部の機能に関して概要を説明する。食品保存空間39の脱酸素は図4の3つのステップで進められる。 FIG. 4 shows a procedure for deoxidizing the food storage space of the eighth embodiment. Hereinafter, an outline of a specific method of adjusting the oxygen concentration and the function of each unit will be described with reference to FIGS. 3 and 4. Deoxidation of the food storage space 39 proceeds in three steps shown in FIG.
 第1のステップは、「脱酸素補助容器内の気体の外部気体による置換」である。このステップは、脱酸素補助容器38が有する外部気体置換部37によって行われる。具体的には、この外部気体置換部37は、一種の開閉装置であり、まずこれを開く操作を行う。このことにより、脱酸素補助容器38内部の気体が外部へ放出され、外部の気体が脱酸素補助容器38内部に導入される。 The first step is “substitution of the gas in the deoxygenation auxiliary container with an external gas”. This step is performed by the external gas replacement unit 37 included in the deoxygenation auxiliary container 38. Specifically, the external gas replacement unit 37 is a kind of opening / closing device, and first performs an operation of opening the opening / closing device. As a result, the gas inside the deoxygenation auxiliary container 38 is released to the outside, and the external gas is introduced into the deoxygenation auxiliary container 38.
 このステップの目的は、ステップ2に先立って、上記置換により脱酸素補助容器38内の気体の酸素濃度を大気中と同じ約21%に保つことである。酸素濃度が21%の一定値に保たれれば、脱酸素補助容器38の体積は一定であるために、脱酸素補助容器38内の全酸素量が一定となる。この結果、以下で説明するように、ステップ2で、水素イオンと酸素とが過不足なく反応し、水素の生成は進行しなくなる。 The purpose of this step is to maintain the oxygen concentration of the gas in the deoxygenation auxiliary container 38 at about 21%, which is the same as that in the atmosphere, prior to step 2 by the above replacement. If the oxygen concentration is kept at a constant value of 21%, the volume of the deoxygenation auxiliary container 38 is constant, so that the total oxygen amount in the deoxygenation auxiliary container 38 becomes constant. As a result, as will be described below, in step 2, hydrogen ions and oxygen react without excess and deficiency, and hydrogen generation does not proceed.
 第2ステップは、「脱酸素補助容器内の脱酸素」である。このステップでは、脱酸素補助容器38が有する酸素濃度調整部(酸素ポンプ)35に電圧を引加することによって、脱酸素補助容器38内の脱酸素を実施する。ここで重要であるのは、脱酸素補助容器38内の全酸素量に相当する電荷(酸素濃度調整部(酸素ポンプ)35に電圧引加した際に流れる電荷)を、電圧印加により流すよう制御することである。このことにより、上記電荷と当量の水素イオンが発生し、これが酸素と反応し除かれる。つまり、脱酸素補助容器38内の酸素量に相当する水素イオンを発生させ、これを酸素と反応させるために、これらが過不足なく反応して水を生成する。このため、余剰の水素イオンは発生せず、水素生成は進行しない。 The second step is “deoxygenation in the deoxygenation auxiliary vessel”. In this step, deoxidation in the deoxygenation auxiliary container 38 is performed by applying a voltage to the oxygen concentration adjusting unit (oxygen pump) 35 of the deoxygenation auxiliary container 38. What is important here is that the electric charge corresponding to the total amount of oxygen in the deoxygenation auxiliary vessel 38 (the electric charge that flows when voltage is applied to the oxygen concentration adjusting unit (oxygen pump) 35) is controlled to flow by voltage application. It is to be. This generates hydrogen ions equivalent to the charges, which react with oxygen and are removed. That is, hydrogen ions corresponding to the amount of oxygen in the deoxygenation auxiliary container 38 are generated and reacted with oxygen, so that they react to generate water without excess or deficiency. For this reason, surplus hydrogen ions are not generated and hydrogen generation does not proceed.
 尚、この操作は、開閉機構の一種である外部気体置換部37と、同じく開閉機構の一種である脱酸素気体導入部36の両方を閉じた状態にして、脱酸素補助容器を孤立させた状態で行う。また、脱酸素気体導入部36に関しては、第3ステップで作用を述べる。 In this operation, both the external gas replacement part 37, which is a kind of opening / closing mechanism, and the deoxygenation gas introduction part 36, which is also a kind of opening / closing mechanism, are closed, and the deoxygenation auxiliary container is isolated. To do. The operation of the deoxygenated gas introducing section 36 will be described in the third step.
 第3ステップは、「脱酸素補助容器内の気体の食品保存空間への導入」である。このステップでは、開閉機構の一種である脱酸素気体導入部36を開ける。このことにより、脱酸素補助容器38内の脱酸素された気体が、脱酸素されていない食品保存空間40に導入され均一となる。このように、脱酸素された気体が導入されることにより、食品保存空間40の酸素濃度が低下する。 The third step is “introduction of gas in the deoxygenation auxiliary container into the food storage space”. In this step, the deoxygenated gas introduction part 36 which is a kind of opening / closing mechanism is opened. Thus, the deoxygenated gas in the deoxygenation auxiliary container 38 is introduced into the food storage space 40 that has not been deoxygenated and becomes uniform. In this way, the oxygen concentration in the food storage space 40 is reduced by introducing the deoxygenated gas.
 以上のように、実施の形態8では、体積と酸素濃度の決まった脱酸素補助容器38内を脱酸素するために、常に除くべき酸素量は一定となり、その酸素量に相当する電荷を、酸素濃度調整部(酸素ポンプ)35への電圧印加時に流すよう制御する。これにより、過不足なく酸素と水素イオンが反応し、水素の放出を回避することが可能となる。この結果、安全な酸素濃度調整と食品の高品位な状態での保管が可能となる効果が得られる。 As described above, in the eighth embodiment, in order to deoxygenate the inside of the deoxygenation auxiliary container 38 whose volume and oxygen concentration are determined, the amount of oxygen to be always removed is constant, and the charge corresponding to the amount of oxygen is expressed as oxygen. Control is performed so as to flow when a voltage is applied to the concentration adjusting unit (oxygen pump) 35. Thereby, oxygen and hydrogen ions can react without excess and deficiency, and release of hydrogen can be avoided. As a result, it is possible to obtain an effect of enabling safe oxygen concentration adjustment and storage of food in a high quality state.
 尚、気体の拡散を促進して、外部気体による脱酸素補助容器38内の気体の置換(ステップ1)、食品保存空間40への脱酸素補助容器38内の脱酸素された気体の導入、均一化(ステップ3)を加速するために、ファンを設置することが好ましい。設置する場所としては、脱酸素補助容器38内が好ましい。 It should be noted that gas diffusion is promoted to replace the gas in the deoxygenation auxiliary container 38 with external gas (step 1), the introduction of the deoxygenated gas in the deoxygenation auxiliary container 38 into the food storage space 40, and uniform In order to accelerate the conversion (step 3), it is preferable to install a fan. As a place to install, the inside of the deoxidation auxiliary container 38 is preferable.
 尚、ステップ2では、脱酸素補助容器38内が、脱酸素により減圧になるため、脱酸素補助容器38は、その圧力差に耐える強度を有している必要があり、分厚い樹脂容器あるいは金属容器等が用いられる。 In step 2, since the inside of the deoxygenation auxiliary container 38 is depressurized by deoxygenation, the deoxygenation auxiliary container 38 needs to have a strength that can withstand the pressure difference, and is a thick resin container or metal container. Etc. are used.
 すなわち、脱酸素補助容器38、外部気体置換部37、脱酸素気体導入部36が高い密閉性を有していることで、より合成の強い密閉容器が必要である。これに対し、脱酸素補助容器38、外部気体置換部37、脱酸素気体導入部36の密閉性を落としたり、もしくは、脱酸素補助容器8にピンホールを設けたりすることで、脱酸素補助容器38内は減圧にならず、厚みの薄い通常の強度の樹脂ケースを用いることも可能となる。 That is, since the deoxygenation auxiliary container 38, the external gas replacement unit 37, and the deoxygenation gas introduction unit 36 have high hermeticity, a tighter synthetic container is required. On the other hand, the deoxygenation auxiliary container 38, the external gas replacement unit 37, and the deoxygenation gas introduction unit 36 are reduced in the sealing property, or the deoxygenation auxiliary container 8 is provided with a pinhole, so that the deoxygenation auxiliary container The inside of 38 is not decompressed, and it is also possible to use a resin case having a normal strength with a small thickness.
 ただし、こういったピンホール等によって密閉性を落とす場合には、密閉性の程度や微細なピンホールを制御することは難しく、多くの場合、外部から許容できない酸素の侵入が起こる場合がある。従って、より密閉性を確保するために、例えば定期的に脱酸素を行うことで密閉性の低下を補完することができ、容器にかかる圧力を低下させることで破壊等が生じず信頼性を向上させた上で脱酸素を行うことができる。 However, when the sealing property is lowered by such a pinhole or the like, it is difficult to control the degree of sealing property or the fine pinhole, and in many cases, oxygen may not be allowed to enter from the outside. Therefore, in order to ensure more tightness, for example, periodic deoxygenation can complement the decline in hermeticity, and lowering the pressure on the container improves reliability without causing breakage etc. Then, deoxygenation can be performed.
 次に、図5を用いて、酸素濃度調整部(酸素ポンプ)35に関して詳細を説明する。図5は、実施の形態8における酸素濃度調整部(酸素ポンプ)35の断面図である。図5に示したように、酸素濃度調整部(酸素ポンプ)35は、中央部に高分子固体電解質膜(セパレータ)42があり、その左側に負極43、右側に正極44があり、各極の外側に給電極(負極側集電電極および正極側集電電極)45が設けられ、さらに、これらが枠41で固定されている。また、この酸素濃度調整部(酸素ポンプ)35は、脱酸素補助容器38内を脱酸素するために、負極43が脱酸素補助手容器38の内側に、正極44が脱酸素補助容器38の外側になるように配置される。 Next, details of the oxygen concentration adjusting unit (oxygen pump) 35 will be described with reference to FIG. FIG. 5 is a cross-sectional view of the oxygen concentration adjusting unit (oxygen pump) 35 in the eighth embodiment. As shown in FIG. 5, the oxygen concentration adjusting unit (oxygen pump) 35 has a polymer solid electrolyte membrane (separator) 42 at the center, a negative electrode 43 on the left side, and a positive electrode 44 on the right side. A supply electrode (a negative electrode side collector electrode and a positive electrode side collector electrode) 45 is provided outside, and these are fixed by a frame 41. The oxygen concentration adjusting unit (oxygen pump) 35 has a negative electrode 43 inside the deoxygenation auxiliary hand container 38 and a positive electrode 44 outside the deoxygenation auxiliary container 38 in order to deoxygenate the inside of the deoxygenation auxiliary container 38. It is arranged to become.
 引き続き、図5を用いて酸素濃度調整部(酸素ポンプ)35の作用を説明する。酸素濃度調整部(酸素ポンプ)35への電圧印加は、二つの給電極(負極側集電電極および正極側集電電極)45への電圧印加によって行われる。この電圧印加により、正極44側では、空気中の水蒸気が電気分解されて酸素が発生し、同時に発生する水素イオンが、印加された電圧により、高分子固体電解質膜(セパレータ)42中を正極44から負極43へ移動する。水は、正極44側の空間から水蒸気として供給されるため、正極44側空間の湿度は低下する。 Subsequently, the operation of the oxygen concentration adjusting unit (oxygen pump) 35 will be described with reference to FIG. The voltage application to the oxygen concentration adjusting unit (oxygen pump) 35 is performed by voltage application to two supply electrodes (a negative electrode side collector electrode and a positive electrode side collector electrode) 45. By this voltage application, water vapor in the air is electrolyzed on the positive electrode 44 side to generate oxygen, and simultaneously generated hydrogen ions are passed through the polymer solid electrolyte membrane (separator) 42 by the applied voltage. To the negative electrode 43. Since water is supplied as water vapor from the space on the positive electrode 44 side, the humidity in the space on the positive electrode 44 side decreases.
 一方、負極43側空間にある酸素は、負極43側に移動した水素イオンと反応して水となる。こうして、負極43側の脱酸素が進行する。このとき、生成した水の多くは電解質膜中に取り込まれるが、一部の水は、負極43側空間へ放出され、対応する空間の湿度を上昇させる。また、電解質中に取り込まれた水は、正極44側に移動して酸素と水素イオンとに分解される。 On the other hand, oxygen in the space on the negative electrode 43 side reacts with hydrogen ions moved to the negative electrode 43 side to become water. Thus, deoxidation on the negative electrode 43 side proceeds. At this time, much of the generated water is taken into the electrolyte membrane, but a part of the water is released to the negative electrode 43 side space and raises the humidity of the corresponding space. Further, water taken into the electrolyte moves to the positive electrode 44 side and is decomposed into oxygen and hydrogen ions.
 従って、全体としては、負極43側空間の酸素濃度が低下し、正極44側の酸素濃度が上昇するため、酸素が負極43側から正極44側へポンピングされたこととなる。同時に、水蒸気は、正極44側から、負極43側へポンピングされることになる。 Therefore, as a whole, the oxygen concentration in the negative electrode 43 side space decreases and the oxygen concentration on the positive electrode 44 side increases, so that oxygen is pumped from the negative electrode 43 side to the positive electrode 44 side. At the same time, the water vapor is pumped from the positive electrode 44 side to the negative electrode 43 side.
 実施の形態8で用いられる高分子固体電解質膜(セパレータ)42としては、例えばパーフルオロカーボンスルフォン酸膜(膜厚:数十ミクロンメートル~数百ミクロンメートル)が用いられる。また、正極44及び負極43には、白金等の触媒を担持したカーボン粉末とフッ素樹脂粉末の混合物を加圧成形して適度な撥水性を持たせた多孔質電極が用いられる。また、給電体(負極側集電電極および正極側集電電極)45には、カーボンクロスやカーボンペーパー等が用いられる。但し、正極44は、電圧印加により酸化されやすいカーボン粉末を白金等の担持体として用いず、直接高分子固体電解(セパレータ)42上に白金層を形成して正極44とすることが好ましい。また、正極側の給電極(正極側集電電極)45として、上記カーボンペーパーやカーボンクロスの代わりに、表面に白金メッキしたメッシュ状のチタン等が用いられる。 As the polymer solid electrolyte membrane (separator) 42 used in Embodiment 8, for example, a perfluorocarbon sulfonic acid membrane (film thickness: several tens of micrometers to several hundreds of micrometers) is used. For the positive electrode 44 and the negative electrode 43, a porous electrode is used which has a suitable water repellency by pressure molding a mixture of carbon powder carrying a catalyst such as platinum and fluororesin powder. In addition, a carbon cloth, carbon paper, or the like is used for the power feeding body (negative electrode side collecting electrode and positive electrode side collecting electrode) 45. However, it is preferable that the positive electrode 44 be formed as a positive electrode 44 by directly forming a platinum layer on the polymer solid electrolysis (separator) 42 without using carbon powder that is easily oxidized by voltage application as a carrier such as platinum. Further, as the positive electrode-side supply electrode (positive electrode-side collector electrode) 45, mesh-like titanium whose surface is platinum-plated is used instead of the carbon paper or carbon cloth.
 実施の形態8で用いられる外部気体置換部37、脱酸素気体導入部36は、既に述べた開閉機構であり、電磁弁、空気圧を利用した弁、開閉器等が用いられる。 The external gas replacement unit 37 and the deoxygenated gas introduction unit 36 used in the eighth embodiment are the open / close mechanisms already described, and an electromagnetic valve, a valve using air pressure, a switch or the like is used.
 以上のように、実施の形態8の構成により、食品保存空間の酸素濃度低減が、水素発生を伴わず安全に行うことが可能となり、安全に食品を高品位に長期間保存することが可能となる。 As described above, according to the configuration of the eighth embodiment, the oxygen concentration in the food storage space can be safely reduced without generating hydrogen, and the food can be safely stored for a long period of time with high quality. Become.
 尚、実施の形態8で記載した各部の構成、材料は、以下の実施の形態でも、特に構成の違いについて述べない場合には、適用できる。 It should be noted that the configurations and materials of the respective parts described in the eighth embodiment can be applied to the following embodiments as long as the difference in configuration is not particularly described.
 以下、実験例を示す。本実験例では、実施の形態8の図3の食品保存容器39を用いて食品保存空間40の酸素濃度低減を行った。 Hereafter, experimental examples are shown. In the present experimental example, the oxygen concentration in the food storage space 40 was reduced using the food storage container 39 of FIG.
 酸素濃度調整部(酸素ポンプ)35の高分子固体電解質膜(セパレータ)42としては厚み約200ミクロンメートルのパーフルオロカーボンスルフォン酸膜を用いた。負極43には、表面に白金を担持したカーボン粉末とフッ素樹脂粉末の混合物を加圧成形して適度な撥水性を持たせた多孔質電極を用いた。また、正極44には、白金黒層を高分子固体電解質膜(セパレータ)42上に直接形成したものを用いた。給電体45としては負極用には、カーボン繊維でできたクロスを、正極用には、表面に白金メッキしたメッシュ状のチタンを用いた。 As the polymer solid electrolyte membrane (separator) 42 of the oxygen concentration adjusting section (oxygen pump) 35, a perfluorocarbon sulfonic acid membrane having a thickness of about 200 microns was used. As the negative electrode 43, a porous electrode having a suitable water repellency by pressure-molding a mixture of a carbon powder carrying platinum on its surface and a fluororesin powder was used. The positive electrode 44 used was a platinum black layer formed directly on the polymer solid electrolyte membrane (separator) 42. As the power supply body 45, a cloth made of carbon fiber was used for the negative electrode, and mesh-like titanium whose surface was plated with platinum was used for the positive electrode.
 この酸素濃度調整部(酸素ポンプ)35は、温度25℃、湿度60%の雰囲気で、1時間に約170mlの酸素を負極43側で除き、同時に正極44側で同量の酸素を発生させる能力を有していた。この能力は、酸素濃度調整部(酸素ポンプ)35の両側を二つのガスバリヤ性を有する袋に接続し、給電極(負極側集電電極および正極側集電電極)45に2.8Vの電圧を印加した際に、二つの袋中の酸素濃度を測定することにより確認した。なお、酸素濃度は、ガスクロマトグラムにより酸素量を定量することにより行った。 This oxygen concentration adjusting unit (oxygen pump) 35 is capable of removing about 170 ml of oxygen on the negative electrode 43 side per hour in an atmosphere of temperature 25 ° C. and humidity 60% and simultaneously generating the same amount of oxygen on the positive electrode 44 side. Had. This capability is achieved by connecting both sides of the oxygen concentration adjusting unit (oxygen pump) 35 to two bags having gas barrier properties, and applying a voltage of 2.8 V to the supply electrode (negative electrode side collector electrode and positive electrode side collector electrode) 45. It was confirmed by measuring the oxygen concentration in the two bags when applied. The oxygen concentration was determined by quantifying the amount of oxygen using a gas chromatogram.
 図3に示した食品保存容器39は、内容積が1Lのものを用い、脱酸素補助容器38としては、内容積が3Lのものを用いた。脱酸素補助容器38は、脱酸素時の減圧による圧力負荷に耐えられるように厚みを持った構造とした。 The food storage container 39 shown in FIG. 3 has an internal volume of 1 L, and the deoxygenation auxiliary container 38 has an internal volume of 3 L. The deoxygenation auxiliary container 38 has a structure having a thickness so that it can withstand the pressure load due to the reduced pressure during deoxygenation.
 また、脱酸素気体導入部36、外部気体置換部37としては、ともに電磁弁を用いた。初期状態では、両方を閉じた状態とした。 Further, as the deoxygenated gas introduction part 36 and the external gas replacement part 37, electromagnetic valves were both used. In the initial state, both were closed.
 まず、ステップ1として上記の構成にて、食品保存空間に体積200mlの牛ミンチ肉を入れ、5℃の雰囲気に保管した状態で、外部気体置換部37を開け、外部の空気で脱酸素補助容器38内を置換した。次にステップ2として、外部気体置換部37を閉じ、酸素濃度調整部(酸素ポンプ)35の負極43と正極44に2.8Vの電圧を印加した。この時間は、以下のように電荷量より決定した。つまり、予め脱酸素補助容器38内を上記の電圧条件で脱酸素し、酸素濃度が2%となる電流値の総和(電荷量)を求め、その電荷量に達する時間で、電圧印加を停止した。以下の牛ミンチ肉量を変えた検討でも同じ電荷量に達した時点で、電圧印加を解除した。 First, in Step 1, with the above configuration, 200 ml of beef minced meat is put in the food storage space and stored in an atmosphere of 5 ° C., the external gas replacement unit 37 is opened, and the deoxygenation auxiliary container with external air 38 was replaced. Next, as Step 2, the external gas replacement unit 37 was closed, and a voltage of 2.8 V was applied to the negative electrode 43 and the positive electrode 44 of the oxygen concentration adjusting unit (oxygen pump) 35. This time was determined from the charge amount as follows. In other words, the inside of the deoxygenation auxiliary container 38 is deoxygenated in advance under the above voltage condition, the sum of the current values (charge amount) at which the oxygen concentration becomes 2% is obtained, and the voltage application is stopped at the time when the charge amount is reached. . The voltage application was canceled when the same amount of electric charge was reached even in the following changes in the amount of beef minced meat.
 次に、第3ステップとして、脱酸素気体導入部36を開け、脱酸素された脱酸素補助容器38内の気体を、食品保存空間40に導入、均一化した後に、酸素濃度、水素濃度をガスクロマトグラムにより測定した。 Next, as a third step, the deoxygenated gas introduction section 36 is opened, and the deoxygenated auxiliary oxygen container 38 is introduced into the food storage space 40 and homogenized, and then the oxygen concentration and hydrogen concentration are adjusted to the gas chromatograph. Measured by togram.
 また、上記と同様にして、牛ミンチ肉100ml、300mlを保存した場合に関しても同様の操作を実施した。 Further, in the same manner as described above, the same operation was performed when 100 ml and 300 ml of beef minced meat were stored.
 以下、比較例を示す。比較のために、脱酸素補助容器を有さない場合に関して、実験例と同じ体積の食品保存容器に直接、酸素濃度調整部を配置して、直接食品保存容器内の食品保存空間の脱酸素を実施した。脱酸素時の電荷量は、牛ミンチ肉量に依らず、200mlの牛ミンチ肉を食品保存容器内に保存した際に、酸素濃度が2%に達した際の電荷量を標準として、その標準電荷量に達した時点で、酸素濃度調整部への電圧印加を解除した。また、食品保存容器には、直径1mmのピンホールを開け、内部が減圧にならないようにした、またガスクロマトグラム測定時のサンプリングもこのピンホールより行った。 The following is a comparative example. For comparison, in the case where there is no deoxygenation auxiliary container, the oxygen concentration adjustment unit is directly placed on the food storage container of the same volume as the experimental example, and the deoxygenation of the food storage space in the food storage container is directly performed. Carried out. The charge amount at the time of deoxygenation does not depend on the amount of beef minced meat. When 200 ml of beef minced meat is stored in a food storage container, the charge amount when the oxygen concentration reaches 2% is used as a standard. When the charge amount was reached, the voltage application to the oxygen concentration adjusting unit was released. In addition, a pinhole having a diameter of 1 mm was opened in the food storage container so that the inside was not depressurized, and sampling at the time of gas chromatogram measurement was also performed from this pinhole.
 実験例では、牛ミンチ肉100ml、200ml、300mlに対応する(酸素濃度、水素濃度)は順番に、(6.4%、0%)、(6%、0%)、(5.6%、0%)であった。これに対し、比較例では、(4.5%、0%)、(2.1%、0%)、(0.2%、4.1%)であった。 In the experimental example, (oxygen concentration, hydrogen concentration) corresponding to beef minced meat 100 ml, 200 ml, and 300 ml are (6.4%, 0%), (6%, 0%), (5.6%, 0%). On the other hand, in the comparative example, they were (4.5%, 0%), (2.1%, 0%), (0.2%, 4.1%).
 このように、実験例では、牛ミンチ肉の量に依らず、酸素濃度は一定であり、水素の発生はなかった。これに対し、比較例では、酸素濃度はやや低いものの、牛ミンチ肉の量による酸素濃度の変動が大きく、牛ミンチ肉量が増えると、水素の発生が観測された。 Thus, in the experimental example, regardless of the amount of beef minced meat, the oxygen concentration was constant and no hydrogen was generated. On the other hand, in the comparative example, although the oxygen concentration was somewhat low, the fluctuation of the oxygen concentration depending on the amount of beef minced meat was large, and generation of hydrogen was observed when the amount of beef minced meat increased.
 これは、以下の理由によると考えられる。実験例では、牛ミンチ肉量が変化して、食品保存空間の体積が変わっても、脱酸素するのは、常に脱酸素補助空間の一定量の酸素となるため、酸素濃度調整部に電圧印加した際に、水素イオンが過剰とならず、結果として水素が発生しない。これに対し、比較例では、食品保存空間を直接脱酸素するため、牛ミンチ肉量が変化すると、脱酸素すべき量が変わり、水素イオン量が過剰となる場合が生じ、その場合には水素が発生する。 This is considered due to the following reasons. In the experimental example, even if the amount of beef minced meat changes and the volume of the food storage space changes, deoxygenation always results in a certain amount of oxygen, so voltage is applied to the oxygen concentration adjustment unit In this case, hydrogen ions do not become excessive and hydrogen is not generated as a result. On the other hand, in the comparative example, since the food storage space is directly deoxygenated, if the amount of beef minced meat changes, the amount to be deoxygenated may change, resulting in an excessive amount of hydrogen ions. Will occur.
 このように、実施の形態8の構成を用いることにより、水素の発生を回避し、安全に食品保存空間の酸素濃度を上昇させることができることがわかった。 Thus, it has been found that by using the configuration of the eighth embodiment, generation of hydrogen can be avoided and the oxygen concentration in the food storage space can be safely increased.
 なお、実験例では脱酸素時の減圧による圧力負荷に耐えられるように厚みを持った構造としたが、脱酸素時に減圧にならないように直径1mmのピンホールを有する構造としてもよい。ただし、こういったピンホール等によって密閉性を落とす場合には、密閉性の程度や微細なピンホールを制御することは難しく、多くの場合、外部から許容できない酸素の侵入が起こる場合がある。このような場合は、より密閉性を確保するために、例えば定期的に脱酸素を行うことで密閉性の低下を補完することができ、容器にかかる圧力を低下させることで破壊等が生じず信頼性を向上させた上で脱酸素を行うことができる。 In the experimental example, the structure has a thickness so as to withstand the pressure load caused by the reduced pressure during deoxygenation. However, a structure having a pinhole with a diameter of 1 mm may be used so as not to reduce the pressure during deoxygenation. However, when the sealing property is lowered by such a pinhole or the like, it is difficult to control the degree of sealing property or a fine pinhole, and in many cases, intrusion of oxygen that cannot be permitted from the outside may occur. In such a case, in order to ensure more sealing, for example, periodic deoxygenation can compensate for the decrease in sealing, and by reducing the pressure applied to the container, destruction or the like does not occur. Deoxygenation can be performed with improved reliability.
 (実施の形態9)
 次に実施の形態9について説明する。実施の形態9では、実施の形態8と同じ構成については同じ作用効果を奏するものであり同じ符号を付して説明を省略した。従って、異なる部分についてのみ説明する。
(Embodiment 9)
Next, a ninth embodiment will be described. In the ninth embodiment, the same configuration as that of the eighth embodiment has the same operational effects, and the same reference numerals are given and the description thereof is omitted. Therefore, only different parts will be described.
 実施の形態9の構成上の特徴は、酸素濃度調整を行う場合に、食品を保存する空間への脱酸素された気体の導入回数を複数回とすることである。 The structural feature of the ninth embodiment is that when the oxygen concentration is adjusted, the number of introductions of the deoxygenated gas into the space for storing the food is made plural.
 以下、図3を参照しながら、図6を用いて、実施の形態9の酸素濃度調整法を説明する。実施の形態9の酸素濃度調整法では、第1~第3のステップは図4と同じであり、さらに第1~第3ステップを必要に応じて複数回繰返し実施する。 Hereinafter, the oxygen concentration adjusting method according to the ninth embodiment will be described with reference to FIG. 3 and FIG. In the oxygen concentration adjustment method according to the ninth embodiment, the first to third steps are the same as those in FIG. 4, and the first to third steps are repeated a plurality of times as necessary.
 図7は、横軸にステップの繰り返し回数と、縦軸にその際の酸素濃度の変化を示したものである。具体的には、実線で示した脱酸素補助容器38の体積が食品保存空間40の体積と等しい場合と、破線で示した脱酸素補助容器38の体積が食品保存空間40の体積の3倍である場合と、に関するものである。それぞれの場合において、第1~3ステップの繰り返し回数に対して、食品保存空間40の酸素濃度の変化をプロットしている。 FIG. 7 shows the number of step repetitions on the horizontal axis and the change in oxygen concentration at that time on the vertical axis. Specifically, when the volume of the deoxygenation auxiliary container 38 indicated by the solid line is equal to the volume of the food storage space 40, the volume of the deoxygenation auxiliary container 38 indicated by the broken line is three times the volume of the food storage space 40. It is related to some cases. In each case, the oxygen concentration change in the food storage space 40 is plotted against the number of repetitions of the first to third steps.
 また、第2ステップでの脱酸素補助容器38内の調整酸素濃度を4%とした。この調整酸素濃度は、ここでは4%としたが、0~21%の間で任意に設定することが可能である。 Further, the adjusted oxygen concentration in the deoxygenation auxiliary container 38 in the second step was set to 4%. The adjusted oxygen concentration is 4% here, but can be arbitrarily set between 0 and 21%.
 食品保存空間40の体積と脱酸素補助容器38の体積とが等しい場合には、ステップの繰返し回数に従い、0~3回で急激に酸素濃度が減少し、3回以降酸素濃度が飽和し、脱酸素補助容器38の調整酸素濃度4%に収束してくることがわかる。 When the volume of the food storage space 40 is equal to the volume of the deoxygenation auxiliary container 38, the oxygen concentration decreases abruptly from 0 to 3 times and the oxygen concentration is saturated after 3 times according to the number of steps repeated. It can be seen that the oxygen concentration in the oxygen auxiliary container 38 converges to 4%.
 一方、脱酸素補助容器38の体積が食品保存空間40の体積の3倍である場合は、第1~3ステップの繰り返し回数が0~2回で、第2ステップでの脱酸素補助容器38内の調整酸素濃度4%付近に収束してくる。しかし、もともとの脱酸素補助容器38の体積が上記(食品保存空間40と脱酸素補助容器38の体積とが等しい場合)の3倍であるため、第1~3ステップの繰り返し回数が同じであれば、脱酸素する量は上記(食品保存空間40と脱酸素補助容器38の体積とが等しい場合)の3倍になり、脱酸素にも3倍の時間が必要である。 On the other hand, when the volume of the deoxygenation auxiliary container 38 is three times the volume of the food storage space 40, the number of repetitions of the first to third steps is 0 to 2, and the inside of the deoxygenation auxiliary container 38 in the second step. The adjusted oxygen concentration converges to around 4%. However, since the volume of the original deoxygenation auxiliary container 38 is three times the above (when the food storage space 40 and the deoxygenation auxiliary container 38 are equal in volume), the number of repetitions of the first to third steps should be the same. For example, the amount of deoxygenation is three times the above (when the volume of the food storage space 40 and the deoxygenation auxiliary container 38 is equal), and deoxidation requires three times as much time.
 例えば、脱酸素量は、食品保存空間40と脱酸素補助容器38の体積とが等しく、第1~3ステップの繰り返し回数が3の場合と、脱酸素補助容器38の体積が食品保存空間40の体積の3倍で、第1~3ステップの繰り返し回数が1の場合で等しくなる。図7でこの二つの場合を比較すると、酸素濃度は、脱酸素補助容器の体積が小さく、第1~3ステップの繰返しの回数が多いほうが低く、食品保存空間をより効率的に脱酸素していることがわかる。 For example, the amount of deoxygenated is equal to the volume of the food storage space 40 and the volume of the deoxygenation auxiliary container 38, and the number of repetitions of the first to third steps is 3, and the volume of the deoxygenation auxiliary container 38 is equal to the volume of the food storage space 40. When the number of repetitions of the first to third steps is 1 at 3 times the volume, it is equal. Comparing the two cases in FIG. 7, the oxygen concentration is lower when the volume of the deoxygenation auxiliary container is smaller and the number of repetitions of the first to third steps is larger, and the food storage space is deoxygenated more efficiently. I understand that.
 以上のように、実施の形態9の構成により、より効率的に、短時間で低い酸素濃度を実現でき、より効率的に、食品を高品位に長期間保存することが可能となる。これは、脱酸素補助容器の体積が小さい方が、ステップ1での外部気体との置換(酸素濃度上昇)によるロスが小さいためである。 As described above, according to the configuration of the ninth embodiment, a low oxygen concentration can be realized more efficiently in a short time, and food can be stored more efficiently and for a long time with high quality. This is because the smaller the volume of the auxiliary oxygen storage container, the smaller the loss due to substitution with external gas (increase in oxygen concentration) in step 1.
 また、脱酸素補助容器が小さくなるために、冷蔵庫等の保管庫内の空間を無駄なく利用できる効果も得られる。尚、実施の形態9で記載した構成は、以下の実施の形態でも、特に構成の違いについて述べない場合には、適用できる。 In addition, since the deoxygenation auxiliary container is small, an effect that the space in the storage such as a refrigerator can be used without waste is also obtained. Note that the configuration described in the ninth embodiment can be applied to the following embodiments, unless a difference in configuration is particularly described.
 (実施の形態10)
 次に実施の形態10について説明する。実施の形態10では、実施の形態8および9と同じ構成については同じ作用効果を奏するものであり同じ符号を付して説明を省略した。従って、異なる部分についてのみ説明する。
(Embodiment 10)
Next, Embodiment 10 will be described. In the tenth embodiment, the same configuration as in the eighth and ninth embodiments has the same effect, and the same reference numerals are given and the description is omitted. Therefore, only different parts will be described.
 実施の形態10の構成上の特徴は、食品保存空間40の形成のされ方にあり、その他の構成は実施の形態8と同じである。用いられる酸素濃度調整部(酸素ポンプ)も実施の形態8と同じものが用いられる。また、酸素濃度調整方法の手順に関しても、実施の形態8、9で説明したものと同様の方法が用いられる。 The structural feature of the tenth embodiment lies in how the food storage space 40 is formed, and the other configuration is the same as that of the eighth embodiment. The same oxygen concentration adjusting unit (oxygen pump) as that used in the eighth embodiment is used. Also, the procedure similar to that described in the eighth and ninth embodiments is used for the procedure of the oxygen concentration adjustment method.
 以下では、実施の形態10における食品保存空間40の具体的な構成を図8、図9Aおよび図9Bを用いて説明する。 Hereinafter, a specific configuration of the food storage space 40 according to Embodiment 10 will be described with reference to FIGS. 8, 9A, and 9B.
 図8は、図3と同様保管庫である冷蔵庫が有する複数の保存室の一つを抽出して、その断面図を示したものである。実施の形態8の図3と異なる点は、図3では食品保存空間40が食品保存容器39により形成されていたのに対し、実施の形態10では、酸素濃度調整用トレー46上に食品を配置し、これをガスバリヤ性膜48で覆って形成される空間が食品保存空間40となる点である。 FIG. 8 shows a cross-sectional view of one of a plurality of storage rooms in a refrigerator that is a storage similar to FIG. 3 differs from FIG. 3 of the eighth embodiment in that the food storage space 40 is formed by the food storage container 39 in FIG. 3, whereas in the tenth embodiment, the food is placed on the oxygen concentration adjusting tray 46. The space formed by covering this with the gas barrier film 48 is the food storage space 40.
 また、酸素濃度調整は、実施の形態8あるいは9と同じように、第1~3ステップを1回あるいは複数回繰り返し行うことにより実施される。 Further, the oxygen concentration adjustment is performed by repeating the first to third steps once or a plurality of times as in the eighth or ninth embodiment.
 このように、酸素濃度調整用トレー46とガスバリヤ性膜48とから食品保存空間40を形成することにより、食品保存空間40が大幅に小さくなる。これは、食品にガスバリヤ性膜48を接触させて覆うことにより、食品以外で占められている空間が極端に減少するためである。この結果、脱酸素すべき気体の体積が減少し、短時間で効率良く食品保存空間40の脱酸素が可能となり、多くの食品を高品位に保存することが可能となる。また、脱酸素すべき気体の体積が減少するために、酸素濃度調整部(酸素ポンプ)35のサイズを小さくすることも可能となる。こうすることで、低コストで食品を高品位に保存することが可能となる効果が得られる。 As described above, by forming the food storage space 40 from the oxygen concentration adjusting tray 46 and the gas barrier film 48, the food storage space 40 is significantly reduced. This is because the space occupied by other than food is extremely reduced by covering the food with the gas barrier film 48 in contact with the food. As a result, the volume of the gas to be deoxygenated is reduced, the food storage space 40 can be efficiently deoxygenated in a short time, and many foods can be stored with high quality. In addition, since the volume of the gas to be deoxygenated is reduced, the size of the oxygen concentration adjusting unit (oxygen pump) 35 can be reduced. By doing so, it is possible to obtain an effect that enables food to be stored in high quality at low cost.
 ここで、実施の形態10で用いられるガスバリヤ性膜は、酸素透過性の低い柔軟性を有する透明な膜であり、酸素の透過率として、20000mL/m2・day・atm程度以下が必要である。例えば、ポリエチレン等の炭化水素系の有機高分子の膜や、有機高分子の膜にシリカ等の無機物を蒸着した膜が用いられる。また、さらに酸素透過率は、1000mL/m2・day・atm以下であることが好ましい。このような条件を満たすものとして、特に酸素透過率が55mL/m2・day・atmと低いポリ塩化ビニリデンの膜が用いられる。 Here, the gas barrier film used in the tenth embodiment is a transparent film having a low oxygen permeability and a flexibility, and the oxygen permeability needs to be about 20000 mL / m 2 · day · atm or less. For example, a film of a hydrocarbon-based organic polymer such as polyethylene or a film obtained by depositing an inorganic substance such as silica on the organic polymer film is used. Further, the oxygen permeability is preferably 1000 mL / m 2 · day · atm or less. As a film satisfying such conditions, a polyvinylidene chloride film having an oxygen transmission rate as low as 55 mL / m 2 · day · atm is used.
 また、プラスチックや金属製の食品保存容器を用いる場合、容器の透明性が十分でないために、保存されている食品の内容を確認するためには容器を開ける必要があり、開けると同時に内部の酸素濃度が上昇してしまうことが課題であった。ところが、ガスバリヤ性膜は、透明性が高いために、膜を除いて食品保存空間の密閉を解除することなく、外部から中身を確認することが可能であり、使い勝手が大幅に改善される効果がある。 In addition, when using food storage containers made of plastic or metal, the container is not sufficiently transparent, so it is necessary to open the container to check the contents of the stored food. The problem was that the concentration would increase. However, because the gas barrier membrane is highly transparent, it is possible to check the contents from the outside without releasing the sealing of the food storage space except for the membrane, which has the effect of greatly improving usability. is there.
 さらに、図8を用いて、脱酸素補助容器38と酸素濃度調整用トレー46との関係を説明する。図8に示したように、酸素濃度調整用トレー46は、脱酸素補助容器接続部47により、脱酸素補助容器38に気体の漏れがないよう接続されている。 Further, the relationship between the deoxygenation auxiliary container 38 and the oxygen concentration adjusting tray 46 will be described with reference to FIG. As shown in FIG. 8, the oxygen concentration adjusting tray 46 is connected to the deoxygenation auxiliary container 38 by the deoxygenation auxiliary container connection part 47 so that there is no gas leakage.
 また、脱酸素補助容器38と酸素濃度調整用トレー46は、着脱可能で、はめ込み式になっており、必要に応じて、接続部の漏れをなくすためにシール材、パッキン等を用いることができる。 Further, the auxiliary oxygen depletion container 38 and the oxygen concentration adjusting tray 46 are detachable and fitted, and if necessary, a sealing material, packing, or the like can be used to eliminate leakage at the connecting portion. .
 また、着脱可能であるため、酸素濃度調整用トレー46を脱酸素補助容器38から外して、冷蔵庫の外部に出した後に、酸素濃度調整用トレー46上に食品を乗せる。その後に、ガスバリヤ性膜で食品上を覆った後に、脱酸素補助容器38に接続して、使用することができる。このように、外部に出して食品が乗せられるために、使い勝手が格段に向上する効果が得られる。 Also, since it is detachable, the oxygen concentration adjusting tray 46 is removed from the deoxygenation auxiliary container 38 and taken out of the refrigerator, and then the food is placed on the oxygen concentration adjusting tray 46. Thereafter, after the food is covered with a gas barrier film, it can be connected to the deoxidation auxiliary container 38 and used. Thus, since food is put out and put on the outside, an effect of greatly improving usability can be obtained.
 次に、図9Aおよび図9Bを用いて、酸素濃度調整用トレーに関してさらに詳しく説明する。図9Aおよび図9Bは、実施の形態10における酸素濃度調整用トレー断面図である。具体的には、図9Aは、脱酸素補助容器38との接続方向の断面図である。なお、図9A中の矢印は脱酸素補助容器との接続方向を表すものである。図9Bは、図9Aの9B-9B線位置の断面図である。 Next, the oxygen concentration adjustment tray will be described in more detail with reference to FIGS. 9A and 9B. 9A and 9B are cross-sectional views of the oxygen concentration adjusting tray in the tenth embodiment. Specifically, FIG. 9A is a cross-sectional view in the direction of connection with the deoxygenation auxiliary container 38. In addition, the arrow in FIG. 9A represents the connection direction with a deoxidation auxiliary container. 9B is a cross-sectional view taken along line 9B-9B in FIG. 9A.
 酸素濃度調整用トレー46の脱酸素補助容器接続部47は、脱酸素補助容器38との接続側に、図9Bに示したように、大きな開口を有している。その開口を通じて、脱酸素補助容器38から脱酸素気体導入部36を介することにより、脱酸素した気体を食品保存空間40に効率良く供給することが可能となる。 The deoxygenation auxiliary container connecting portion 47 of the oxygen concentration adjusting tray 46 has a large opening on the side connected to the deoxygenation auxiliary container 38 as shown in FIG. 9B. Through the opening, the deoxygenated gas can be efficiently supplied to the food storage space 40 by passing the deoxygenated auxiliary container 38 through the deoxygenated gas introduction section 36.
 また、実施の形態10では、酸素濃度調整用トレー46の下部あるいは側部に、通気溝を設けることが好ましい。このことにより、多くの食品が酸素濃度調整用トレー46に載せられた場合でも、通気溝を通して均一な酸素濃度を短時間で実現でき、食品を均一に高品位な状態で保存することが可能となる効果が得られる。また、広い範囲での気体拡散を促進するために、通気溝は脱酸素補助容器接続部47近傍から脱酸素補助容器38とは反対側の端まで伸びていることが好ましい。 In the tenth embodiment, it is preferable to provide a ventilation groove in the lower part or the side part of the oxygen concentration adjusting tray 46. As a result, even when a large amount of food is placed on the oxygen concentration adjustment tray 46, a uniform oxygen concentration can be achieved in a short time through the ventilation groove, and the food can be stored in a high quality state uniformly. The effect becomes. Further, in order to promote gas diffusion in a wide range, it is preferable that the ventilation groove extends from the vicinity of the deoxygenation auxiliary container connecting portion 47 to the end opposite to the deoxygenation auxiliary container 38.
 また、実施の形態10のように、酸素濃度調整用トレー46の上部をガスバリヤ性膜で覆って、食品保存空間40を形成する場合、ガスバリヤ性膜と食品保持部である酸素濃度調整用トレー46との密閉性を上げ、食品保存空間40の内外の気体の出入りを抑制するために、ガスバリヤ性膜を食品保存空間に押し付けるための保持部材を用いることが可能である。この保持部材は酸素濃度調整用トレーと保持材との間でガスバリヤ膜を保持するような構成が望ましく、例えば、ガスバリヤ性膜を外側から閉めつける枠体を用いることや、ベルト上の固定器具を用いることができる。 Further, when the food storage space 40 is formed by covering the upper portion of the oxygen concentration adjusting tray 46 with a gas barrier film as in the tenth embodiment, the oxygen concentration adjusting tray 46 which is the gas barrier film and the food holding unit. It is possible to use a holding member for pressing the gas barrier film against the food storage space in order to improve the airtightness of the food storage space and prevent the gas inside and outside the food storage space 40 from entering and exiting. The holding member is preferably configured to hold the gas barrier film between the oxygen concentration adjusting tray and the holding material.For example, a frame that closes the gas barrier film from the outside or a fixing device on the belt is used. Can be used.
 以下、具体的な実験例を示す。なお、この実験例により本発明が限定されるものではない。本実験例では、実施の形態10の図8の酸素濃度調整用トレー46とガスバリヤ性膜48を用いて、図8の食品保存空間の酸素濃度を低下させた。 The following are specific experimental examples. In addition, this invention is not limited by this experimental example. In this experimental example, the oxygen concentration in the food storage space in FIG. 8 was lowered using the oxygen concentration adjusting tray 46 and the gas barrier film 48 in FIG. 8 of the tenth embodiment.
 まず、図8に示した酸素濃度調整用トレー46を取り出し、その上に牛ミンチ肉を置き、さらにガスバリヤ性膜48でこれを覆い、これを脱酸素補助容器38に接続した。これ以降は、実施の形態8に示した実験例と同様に、操作に従い食品保存空間40の酸素濃度調整を行い、酸素濃度と水素濃度の測定を行なった。 First, the oxygen concentration adjusting tray 46 shown in FIG. 8 was taken out, beef minced meat was placed thereon, covered with a gas barrier film 48, and this was connected to the deoxygenation auxiliary container 38. Thereafter, as in the experimental example shown in the eighth embodiment, the oxygen concentration in the food storage space 40 was adjusted according to the operation, and the oxygen concentration and the hydrogen concentration were measured.
 牛ミンチ肉100ml、200ml、300mlに対応する(酸素濃度、水素濃度)は順番に、(2.3%、0%)、(2.6%、0%)、(3.0%、0%)であった。 Corresponding to beef minced meat 100ml, 200ml, 300ml (oxygen concentration, hydrogen concentration) in order (2.3%, 0%), (2.6%, 0%), (3.0%, 0%) )Met.
 このように、実験例では、実施の形態8に示した実験例に比較して、酸素濃度が低下した。また、実施の形態8に示した実験例と同様に、水素の発生は回避された。 Thus, in the experimental example, the oxygen concentration was lower than that in the experimental example shown in the eighth embodiment. Further, as in the experimental example shown in the eighth embodiment, generation of hydrogen was avoided.
 このように、水素の発生が回避されたのは、実施の形態8に示した実験例と同様に、脱酸素するのが常に脱酸素補助容器の一定量の酸素であるため、予め酸素量に相当する水素イオンが供給され、過剰の水素イオンが生じなかったためと考えられる。また、酸素濃度が低い値となるのは、以下の理由によると考えられる。ガスバリヤ性膜で牛ミンチ肉を接触させて覆うことにより、脱酸素するべき体積(食品保存空間の体積)が大幅に減少する。このため、脱酸素した気体を脱酸素補助容器内から導入した際に、食品保存空間40の影響が小さくなり、ほぼ脱酸素補助容器内の酸素濃度と等しくなる。 As described above, the generation of hydrogen was avoided because, as in the experimental example shown in the eighth embodiment, deoxygenation is always a certain amount of oxygen in the deoxygenation auxiliary container. This is probably because the corresponding hydrogen ions were supplied and no excess hydrogen ions were generated. The reason why the oxygen concentration is low is considered to be as follows. By covering the beef minced meat with a gas barrier membrane, the volume to be deoxygenated (the volume of the food storage space) is greatly reduced. For this reason, when the deoxygenated gas is introduced from the deoxygenation auxiliary container, the influence of the food storage space 40 is reduced, and becomes almost equal to the oxygen concentration in the deoxygenation auxiliary container.
 このように実施の形態10の構成を用いることにより、水素の発生を回避し、より効率よく食品保存空間の酸素濃度を低減できる。 Thus, by using the configuration of the tenth embodiment, generation of hydrogen can be avoided and the oxygen concentration in the food storage space can be reduced more efficiently.
 (実施の形態11)
 図10は、実施の形態11における保管庫として冷蔵庫内の酸素濃度調整可能な食品保存空間を示した断面図である。
(Embodiment 11)
FIG. 10 is a cross-sectional view showing a food storage space capable of adjusting the oxygen concentration in the refrigerator as a storage in the eleventh embodiment.
 図10は、保管庫である冷蔵庫が有する複数の保存室の一つを抽出して示したものである。全面の保存室扉51と、上下面の断熱仕切壁52、仕切板54で形成される空間に、ガスバリヤ性膜57で覆われた酸素濃度調整用トレー56が、酸素濃度調整部(酸素ポンプ)55に接続されて設置されている。酸素濃度調整用トレー56をガスバリヤ性膜57で覆ったものを、酸素濃度調整部(酸素ポンプ)55に接続して形成される密閉空間が食品保存空間70となる。 FIG. 10 shows one extracted from a plurality of storage rooms of a refrigerator as a storage. An oxygen concentration adjusting tray 56 covered with a gas barrier film 57 in a space formed by the storage chamber door 51 on the entire surface, the heat insulating partition walls 52 on the upper and lower surfaces, and the partition plate 54 is an oxygen concentration adjusting unit (oxygen pump). 55 is connected and installed. A sealed space formed by connecting the oxygen concentration adjusting tray 56 with a gas barrier film 57 to an oxygen concentration adjusting portion (oxygen pump) 55 is a food storage space 70.
 よって、実施の形態11では、容積可変部は食品保存空間70の少なくとも底面を形成する食品保持部である酸素濃度調整用トレー56と、この酸素濃度調整用トレー56の上部に備えられたガスバリヤ性膜57で形成されている。 Therefore, in the eleventh embodiment, the volume variable section is an oxygen concentration adjusting tray 56 that is a food holding section that forms at least the bottom surface of the food storage space 70, and the gas barrier property provided on the oxygen concentration adjusting tray 56. The film 57 is formed.
 尚、仕切板54と本体断熱壁53の間の空間あるいはこれに繋がった空間には、冷却器、ファン等が設置され、保存室に冷気を供給しているが、ここでは簡単のために冷却器、ファン等は省略して記載している。 In addition, a cooler, a fan, etc. are installed in the space between the partition plate 54 and the main body heat insulating wall 53 or the space connected thereto, and cool air is supplied to the storage room. Equipment, fans, etc. are omitted.
 次に、引き続き図10を用いて、上記を用いた酸素濃度調整機能に関して概要を説明する。 Next, the outline of the oxygen concentration adjusting function using the above will be described with reference to FIG.
 酸素濃度調整用トレー56と、これを覆うガスバリヤ性膜57と、これらに接続される酸素濃度調整部(酸素ポンプ)55とから形成される密閉された食品保存空間70において、酸素濃度調整部(酸素ポンプ)55により酸素除去行われる。これにより、食品保存空間70の酸素濃度が低減調整される。 In a sealed food storage space 70 formed by an oxygen concentration adjusting tray 56, a gas barrier film 57 covering the oxygen concentration adjusting tray 56, and an oxygen concentration adjusting unit (oxygen pump) 55 connected thereto, an oxygen concentration adjusting unit ( Oxygen removal is performed by an oxygen pump 55. Thereby, the oxygen concentration in the food storage space 70 is adjusted to be reduced.
 この際、酸素濃度は0%~10%程度に低減することが可能であり、それに応じて食品保存空間70の気体量が減少する。ここで、ガスバリヤ性膜57は柔軟性を有していることから、気体の減少に応じて体積が減少するように変形する。これによって、食品保存空間70の内部、外部で圧力差が生じることはなく、食品保存空間70の内部と外部がほぼ同じ圧力状態となる。 At this time, the oxygen concentration can be reduced to about 0% to 10%, and the amount of gas in the food storage space 70 decreases accordingly. Here, since the gas barrier film 57 has flexibility, the gas barrier film 57 is deformed so as to decrease in volume as the gas decreases. As a result, no pressure difference is generated inside and outside the food storage space 70, and the inside and outside of the food storage space 70 are in substantially the same pressure state.
 このため外部からの空気侵入が抑制され、効率的な酸素濃度低減が可能となる。また、外部からの空気の侵入が抑制されるために、ある程度時間が経過した場合でも到達する酸素濃度も0~2%という低いレベルとすることが可能となる。 For this reason, air entry from the outside is suppressed, and oxygen concentration can be reduced efficiently. In addition, since the intrusion of air from the outside is suppressed, it is possible to reduce the oxygen concentration to reach a low level of 0 to 2% even when a certain amount of time has passed.
 これに対し、従来のように形の決まった密閉容器の中の酸素を除去する場合には、内部が減圧になり、密閉性の不完全な容器であれば外部から空気が侵入し酸素濃度調整の効率が低下する。また、このような外部からの空気の侵入のために、到達する酸素濃度は低くならない。また、上記の課題は、減圧により変形せず、完全な密閉性を保つ容器を作製することで解決可能であるが、これには高いコストが必要であった。 On the other hand, when removing oxygen in a sealed container with a fixed shape as in the past, the inside is depressurized, and if the container is incompletely sealed, air enters from the outside and the oxygen concentration is adjusted. Decreases the efficiency. Moreover, the oxygen concentration which reaches | attains does not become low because of the penetration | invasion of the air from the outside like this. Further, the above problem can be solved by producing a container that is not deformed by reduced pressure and maintains a perfect hermeticity, but this requires high cost.
 ここでガスバリヤ性膜57は、酸素透過性の低い柔軟性を有する透明な膜であり、酸素の透過率として、20000mL/m2・day・atm程度以下が必要であり、ポリエチレン等の炭化水素系の有機高分子の膜や、有機高分子の膜にシリカ等の無機物を蒸着した膜が用いられる。また、さらに酸素透過率は、1000mL/m2・day・atm以下であることが好ましい。このような条件を満たすものとして、特に酸素透過率が55mL/m2・day・atmと低いポリ塩化ビニリデンの膜が用いられる。 Here, the gas barrier film 57 is a transparent film having a low oxygen permeability and a flexibility, and requires an oxygen permeability of about 20000 mL / m 2 · day · atm or less, and is a hydrocarbon-based material such as polyethylene. An organic polymer film or a film obtained by depositing an inorganic substance such as silica on the organic polymer film is used. Further, the oxygen permeability is preferably 1000 mL / m 2 · day · atm or less. As a film satisfying such conditions, a polyvinylidene chloride film having an oxygen transmission rate as low as 55 mL / m 2 · day · atm is used.
 また、ガスバリヤ性膜57は、透明であることにより、密閉を解除することなく外部から中身が確認できる効果があり、使用者の使い勝手を向上させるとともに、密閉の解除の回数を低減することで、より保鮮性を向上させることができる。 In addition, the gas barrier film 57 is transparent, so that there is an effect that the contents can be confirmed from the outside without releasing the sealing, improving the user-friendliness and reducing the number of times the sealing is released, The freshness can be further improved.
 これに対し、従来は、厚いプラスチック製容器等が用いられていたため、容器の透明性が十分でなく、中身を確認するには容器を開ける必要があった。ところが、一度容器を開けると、酸素濃度が大気レベルに戻るため、再び酸素濃度を調整しなければならないという課題があった。 In contrast, conventionally, since a thick plastic container or the like has been used, the container is not sufficiently transparent, and it has been necessary to open the container to check the contents. However, once the container is opened, the oxygen concentration returns to the atmospheric level, so there is a problem that the oxygen concentration must be adjusted again.
 次に、図11を用いて、酸素濃度調整部(酸素ポンプ)に関して詳細を説明する。図11は、実施の形態11における酸素濃度調整部(酸素ポンプ)55の断面図である。図11に示したように、酸素濃度調整部(酸素ポンプ)55は、中央部に高分子固体電解質膜(セパレータ)59があり、その左側に負極60、右側に正極61があり、各極の外側に給電極(負極側集電電極および正極側集電電極)62が設けられ、これらが枠58で固定されている。また、右端には、酸素濃度調整用トレー56と接続するためのトレー接続部63を有している。 Next, details of the oxygen concentration adjusting unit (oxygen pump) will be described with reference to FIG. FIG. 11 is a cross-sectional view of oxygen concentration adjusting unit (oxygen pump) 55 in the eleventh embodiment. As shown in FIG. 11, the oxygen concentration adjusting unit (oxygen pump) 55 has a polymer solid electrolyte membrane (separator) 59 at the center, a negative electrode 60 on the left side, and a positive electrode 61 on the right side. A supply electrode (a negative electrode side collector electrode and a positive electrode side collector electrode) 62 is provided outside, and these are fixed by a frame 58. Further, at the right end, a tray connecting portion 63 for connecting to the oxygen concentration adjusting tray 56 is provided.
 引き続き、図11を用いて酸素濃度調整部(酸素ポンプ)55の作用を説明する。給電極(負極側集電電極および正極側集電電極)62への電圧印加によって正極61側では水の電気分解による酸素が発生し、同時に発生する水素イオンが、印加された電圧により、高分子固体電解質膜(セパレータ)59中を正極61から負極60へ移動する。水は、正極61側の空間から水蒸気として供給されるため、正極61側空間の湿度は低下する。 Subsequently, the operation of the oxygen concentration adjusting unit (oxygen pump) 55 will be described with reference to FIG. Oxygen is generated by electrolysis of water on the positive electrode 61 side by applying a voltage to the supply electrode (negative electrode side collecting electrode and positive electrode side collecting electrode) 62, and simultaneously generated hydrogen ions are polymerized by the applied voltage. The solid electrolyte membrane (separator) 59 moves from the positive electrode 61 to the negative electrode 60. Since water is supplied as water vapor from the space on the positive electrode 61 side, the humidity in the space on the positive electrode 61 side decreases.
 一方、負極60側空間にある酸素は、負極60側に移動した水素イオンもしくは水素イオンが還元されて生成した水素ガスと反応し、水となって電解質膜中に取り込まれる。このとき一部の水は、負極60側空間へ放出され、対応する空間の湿度を上昇させる。また、一部の水は、正極61側に移動して電気分解に用いられる。 On the other hand, oxygen in the negative electrode 60 side space reacts with hydrogen ions moved to the negative electrode 60 side or hydrogen gas generated by reduction of hydrogen ions, and is taken into the electrolyte membrane as water. At this time, a part of the water is discharged to the negative electrode 60 side space and increases the humidity of the corresponding space. Some water moves to the positive electrode 61 side and is used for electrolysis.
 従って、全体としては負極60側空間の酸素が正極61側へポンピングされることとなる。同時に、水蒸気は、正極61側から、負極60側へポンピングされることになる。 Therefore, as a whole, oxygen in the negative electrode 60 side space is pumped to the positive electrode 61 side. At the same time, the water vapor is pumped from the positive electrode 61 side to the negative electrode 60 side.
 高分子固体電解質膜(セパレータ)59としては、例えばパーフルオロカーボンスルフォン酸膜(膜厚:数十ミクロンメートル~数百ミクロンメートル)が用いられる。また、正極61及び負極60には、表面に白金を担持したカーボン粉末とフッ素樹脂粉末の混合物を加圧成形して適度な撥水性を持たせた多孔質電極が用いられる。給電体62には、酸化されにくい金属を用いることが好ましく、表面に白金メッキしたメッシュ状のチタン等が用いられる。 As the polymer solid electrolyte membrane (separator) 59, for example, a perfluorocarbon sulfonic acid membrane (film thickness: several tens of microns to several hundreds of microns) is used. For the positive electrode 61 and the negative electrode 60, a porous electrode having a suitable water repellency by pressure molding a mixture of carbon powder carrying platinum on the surface thereof and a fluororesin powder is used. The power supply body 62 is preferably made of a metal that is not easily oxidized, and mesh-like titanium or the like whose surface is platinum plated is used.
 次に、図12を用いて、酸素濃度調整部(酸素ポンプ)55と酸素濃度調整用トレー56との関係を説明する。図12は、実施の形態11における酸素濃度調整部(酸素ポンプ)55と酸素濃度調整用トレー56との関係を示した断面図である。 Next, the relationship between the oxygen concentration adjusting unit (oxygen pump) 55 and the oxygen concentration adjusting tray 56 will be described with reference to FIG. FIG. 12 is a cross-sectional view showing the relationship between the oxygen concentration adjusting unit (oxygen pump) 55 and the oxygen concentration adjusting tray 56 in the eleventh embodiment.
 図12に示したように、酸素濃度調整用トレー56は、酸素濃度調整部接続部64により、酸素濃度調整部(酸素ポンプ)55のトレー接続部63と、気体の漏れがないよう接続されている。また、酸素濃度調整用トレー56は、酸素濃度調整部(酸素ポンプ)55の負極60側に接続されており、食品保存空間70から拡散した酸素が、負極60で水素イオンあるいは水素ガスと反応して水を生成することで、食品保存空間70の酸素濃度が低減される。 As shown in FIG. 12, the oxygen concentration adjusting tray 56 is connected to the tray connecting portion 63 of the oxygen concentration adjusting portion (oxygen pump) 55 by the oxygen concentration adjusting portion connecting portion 64 so as not to leak gas. Yes. The oxygen concentration adjusting tray 56 is connected to the negative electrode 60 side of the oxygen concentration adjusting unit (oxygen pump) 55, and oxygen diffused from the food storage space 70 reacts with hydrogen ions or hydrogen gas at the negative electrode 60. Thus, the oxygen concentration in the food storage space 70 is reduced by generating water.
 酸素濃度調整部接続部64とトレー接続部63は、例えば、はめ込み式になっており必要に応じて、シールパッキン等を用いることができる。 The oxygen concentration adjusting unit connecting part 64 and the tray connecting part 63 are, for example, a fitting type, and seal packing or the like can be used as necessary.
 次に、図13Aおよび図13Bを用いて、酸素濃度調整用トレー56に関してさらに詳しく説明する。図13Aおよび図13Bは、実施の形態11における酸素濃度調整用トレー56の断面図である。具体的には、図13Aは、酸素濃度調整部(酸素ポンプ)との接続方向の断面図である。なお、図13A中の矢印は脱酸素補助容器との接続方向を表すものである。図13Bは、図13Aの13B-13B線位置の断面図である。 Next, the oxygen concentration adjusting tray 56 will be described in more detail with reference to FIGS. 13A and 13B. 13A and 13B are cross-sectional views of oxygen concentration adjusting tray 56 in the eleventh embodiment. Specifically, FIG. 13A is a cross-sectional view in the direction of connection with the oxygen concentration adjusting unit (oxygen pump). In addition, the arrow in FIG. 13A represents the connection direction with a deoxidation auxiliary container. 13B is a cross-sectional view taken along line 13B-13B in FIG. 13A.
 酸素濃度調整用トレー56の酸素濃度調整部接続部64は、酸素濃度調整部(酸素ポンプ)55との接続側に、図13Bに示したように、大きな開口を有しており、その開口を通じて、酸素濃度調整部(酸素ポンプ)55へ酸素を効率良く供給することが可能となる。既に説明したように酸素濃度調整部(酸素ポンプ)55の負極60に達した酸素は、水素イオンあるいは水素ガスと反応することにより水となり、酸素濃度が低減される。 The oxygen concentration adjusting portion connecting portion 64 of the oxygen concentration adjusting tray 56 has a large opening on the side connected to the oxygen concentration adjusting portion (oxygen pump) 55 as shown in FIG. In addition, oxygen can be efficiently supplied to the oxygen concentration adjusting unit (oxygen pump) 55. As already described, oxygen that has reached the negative electrode 60 of the oxygen concentration adjusting unit (oxygen pump) 55 becomes water by reacting with hydrogen ions or hydrogen gas, and the oxygen concentration is reduced.
 さらに、図14Aおよび図14Bを用いて、より好ましい酸素濃度調整用トレー56の使用方法に関して説明する。図14Aおよび図14Bは、実施の形態11における異なる用い方をされる酸素濃度調整用トレー56の断面図である。具体的には、図14Aは、酸素濃度調整用トレー56の酸素濃度調整部(酸素ポンプ)55との接続方向の断面図である。なお、図14B中の矢印は脱酸素補助容器との接続方向を表すものである。図14Bは図14Aの14-14線位置の断面図である。 Furthermore, a more preferable method of using the oxygen concentration adjusting tray 56 will be described with reference to FIGS. 14A and 14B. 14A and 14B are cross-sectional views of oxygen concentration adjusting tray 56 used differently in the eleventh embodiment. Specifically, FIG. 14A is a cross-sectional view in the direction of connection with the oxygen concentration adjusting portion (oxygen pump) 55 of the oxygen concentration adjusting tray 56. In addition, the arrow in FIG. 14B represents the connection direction with a deoxidation auxiliary container. 14B is a cross-sectional view taken along the line 14-14 in FIG. 14A.
 図13Aおよび図13Bと、図14Aおよび図14Bとの違いは、図14Aおよび図14B5ではガスバリヤ性膜固定枠65が用いられている点である。 The difference between FIGS. 13A and 13B and FIGS. 14A and 14B is that a gas barrier film fixing frame 65 is used in FIGS. 14A and 14B5.
 図14Aおよび図14Bに示したように、ガスバリヤ性膜固定枠65は、酸素濃度調整用トレー56を覆ったガスバリヤ性膜57の上から密着して被せられている。ガスバリヤ性膜固定枠65は、上からガスバリヤ性膜57を酸素濃度調整用トレー56に押しつけて、密着性を高めて固定する作用を有するものである。このため、外部からの空気の侵入がさらに抑制され、より効率良く食品保存空間70の酸素濃度低減が可能となり、到達する酸素濃度も低くなる。結果として、食品を高品位に長期間保存することが可能となる効果が得られる。 As shown in FIGS. 14A and 14B, the gas barrier film fixing frame 65 is in close contact with the gas barrier film 57 covering the oxygen concentration adjusting tray 56. The gas barrier film fixing frame 65 has a function of pressing the gas barrier film 57 against the oxygen concentration adjusting tray 56 from above to improve the adhesion and fix it. For this reason, the intrusion of air from the outside is further suppressed, the oxygen concentration in the food storage space 70 can be reduced more efficiently, and the oxygen concentration that reaches can be reduced. As a result, the effect that the food can be stored for a long period of time with high quality is obtained.
 ガスバリヤ性膜固定枠65としては、上からガスバリヤ性膜57を酸素濃度調整用トレー56に均一に押しつけることができれば良く、ゴムやバネの収縮する機能を利用してより強く押しつけることも可能であり、また、装着した後、機械的に締め上げることもできる。 The gas barrier film fixing frame 65 only needs to be able to uniformly press the gas barrier film 57 against the oxygen concentration adjusting tray 56 from above, and can be pressed more strongly by using a function of contracting rubber or a spring. It can also be mechanically tightened after installation.
 以上のように、実施の形態11の構成により、食品保存空間70の効率的な酸素濃度低減が可能となり、食品を高品位に長期間保存することが可能となる。尚、実施の形態11で記載した各部の構成、材料は、以下の実施の形態でも、特に構成の違いについて述べない場合には、適用できる。 As described above, according to the configuration of the eleventh embodiment, it is possible to efficiently reduce the oxygen concentration in the food storage space 70, and it is possible to store food in high quality for a long period of time. Note that the configurations and materials of the respective parts described in the eleventh embodiment can be applied to the following embodiments as long as the difference in configuration is not particularly described.
 以下、実験例を示す。本実験例では、実施の形態11の図11の酸素濃度調整部(酸素ポンプ)55と、図14Aおよび図14Bの酸素濃度調整用トレー56とを用いて、図10に示した食品保存空間70の酸素濃度低減を行った。 Hereafter, experimental examples are shown. In this experimental example, the food storage space 70 shown in FIG. 10 is used by using the oxygen concentration adjusting unit (oxygen pump) 55 of FIG. 11 of Embodiment 11 and the oxygen concentration adjusting tray 56 of FIGS. 14A and 14B. The oxygen concentration was reduced.
 酸素濃度調整部(酸素ポンプ)55の高分子固体電解質膜(セパレータ)59としては厚み約100ミクロンメートルのパーフルオロカーボンスルフォン酸膜を用い、正極61及び負極60には、表面に白金を担持したカーボン粉末とフッ素樹脂粉末の混合物を加圧成形して適度な撥水性を持たせた多孔質電極を用いた。また、給電体62としては表面に白金メッキしたメッシュ状のチタンを用いた。 As the polymer solid electrolyte membrane (separator) 59 of the oxygen concentration adjusting unit (oxygen pump) 55, a perfluorocarbon sulfonic acid membrane having a thickness of about 100 microns is used, and the positive electrode 61 and the negative electrode 60 are carbons carrying platinum on their surfaces. A porous electrode in which a mixture of powder and fluororesin powder was pressure-molded to give appropriate water repellency was used. Further, as the power supply body 62, mesh-like titanium whose surface is platinum-plated is used.
 この酸素濃度調整部(酸素ポンプ)55は、温度25℃、湿度60%の雰囲気で、1時間に約200mlの酸素を負極60側で除き、同時に正極側で同量の酸素を発生させる能力を有していた。この能力は、酸素濃度調整部(酸素ポンプ)55の両側を二つのガスバリヤ性を有する袋に接続し、給電極(負極側集電電極および正極側集電電極)62に2.8Vの電圧を印加した際に、二つの袋中の酸素濃度を測定することにより確認した。なお、酸素濃度は、ガスクロマトグラムにより酸素量を定量することにより行った。 This oxygen concentration adjusting unit (oxygen pump) 55 has the ability to remove about 200 ml of oxygen on the negative electrode 60 side per hour in an atmosphere of temperature 25 ° C. and humidity 60% and simultaneously generate the same amount of oxygen on the positive electrode side. Had. This capability is achieved by connecting both sides of the oxygen concentration adjusting unit (oxygen pump) 55 to two bags having gas barrier properties, and applying a voltage of 2.8 V to the supply electrode (negative electrode side collector electrode and positive electrode side collector electrode) 62. It was confirmed by measuring the oxygen concentration in the two bags when applied. The oxygen concentration was determined by quantifying the amount of oxygen using a gas chromatogram.
 図14Aおよび図14Bに示した酸素濃度調整トレー56は、内容積が約1Lのものを用い、ガスバリヤ性膜57としては、厚さ11ミクロンメートルのポリ塩化ビニリデン膜を用いた。また、ガスバリヤ性膜57と酸素濃度調整部(酸素ポンプ)55との密着性を上げるために、帯状のゴムからなるガスバリヤ性膜固定枠65を用いた。 The oxygen concentration adjustment tray 56 shown in FIG. 14A and FIG. 14B has an internal volume of about 1 L, and the gas barrier film 57 is a polyvinylidene chloride film having a thickness of 11 μm. Further, in order to improve the adhesion between the gas barrier film 57 and the oxygen concentration adjusting portion (oxygen pump) 55, a gas barrier film fixing frame 65 made of a belt-like rubber was used.
 上記の構成にて、食品保存空間70に体積150mlのブロッコリーを入れ、5℃で酸素濃度調整部(酸素ポンプ)55の負極60と正極61に2.8Vの電圧を印加して保存した。湿度は、60~80%であった。 With the above configuration, a broccoli having a volume of 150 ml was placed in the food storage space 70 and stored at 5 ° C. by applying a voltage of 2.8 V to the negative electrode 60 and the positive electrode 61 of the oxygen concentration adjusting unit (oxygen pump) 55. The humidity was 60-80%.
 この時、ガスバリヤ性膜57は柔軟性を有するため、酸素濃度調整用トレー56に被せる場合に、食品であるブロッコリーの形状にあわせて被せることができた。このため、容器の体積は約1Lであるが、食品保存空間70の体積は約500mlと小さくなった。 At this time, since the gas barrier film 57 has flexibility, when it was put on the oxygen concentration adjusting tray 56, it could be put in accordance with the shape of broccoli as food. For this reason, the volume of the container is about 1 L, but the volume of the food storage space 70 is as small as about 500 ml.
 食品保存空間70の酸素濃度を時間経過に従って測定したところ、30分後には酸素濃度が2%に達した。この際、酸素濃度が低下するに従い、食品保存空間70の体積が減少するようにガスバリヤ性膜57が変形した。引き続き、4時間に2分の割合で酸素濃度調整部(酸素ポンプ)55を運転しながら7日間保存を実施した。 When the oxygen concentration in the food storage space 70 was measured over time, the oxygen concentration reached 2% after 30 minutes. At this time, the gas barrier film 57 was deformed so that the volume of the food storage space 70 decreased as the oxygen concentration decreased. Subsequently, storage was carried out for 7 days while operating the oxygen concentration adjusting unit (oxygen pump) 55 at a rate of 2 minutes every 4 hours.
 以下、比較例を示す。比較のために、酸素濃度調整トレー56の上部を、タッパウェアで用いられるポリエチレン製のはめ込み式蓋で密閉した。他は実験例と同様の構成と条件で、酸素濃度調整部(酸素ポンプ)55を運転した。ただし、運転条件は、連続運転とした。 The following is a comparative example. For comparison, the upper part of the oxygen concentration adjustment tray 56 was sealed with a polyethylene built-in lid used in Tappaware. Other than that, the oxygen concentration adjusting unit (oxygen pump) 55 was operated under the same configuration and conditions as in the experimental example. However, the operation conditions were continuous operation.
 酸素濃度は、30分後には13%に減少したが、運転を継続しても8%以下には低下しなかった。この際、酸素濃度が低下するに従い、ポリプロピレン製のはめ込み式蓋が下方へへこんだ。引き続き、7日間、酸素濃度調整部(酸素ポンプ)55を運転して保存した。 The oxygen concentration decreased to 13% after 30 minutes, but did not decrease to 8% or less even when the operation was continued. At this time, as the oxygen concentration decreased, the polypropylene built-in lid was recessed downward. Subsequently, the oxygen concentration adjusting unit (oxygen pump) 55 was operated and stored for 7 days.
 このように、比較例では酸素濃度が低下する速度が遅く、到達する酸素濃度も高くなるのに対し、実験例で低い酸素濃度が短時間で実現された。これは、以下の二つの理由によると考えられる。 As described above, in the comparative example, the rate at which the oxygen concentration is decreased is slow and the oxygen concentration to be reached is high, whereas in the experimental example, a low oxygen concentration was realized in a short time. This is considered to be due to the following two reasons.
 一つ目は、実験例では、柔軟性のあるガスバリヤ性膜57で酸素濃度調整用トレー56を覆っているために、食品の形状にあった覆い方が可能であり、比較例に対して脱酸素すべき体積が小さくなることである。 First, since the oxygen concentration adjusting tray 56 is covered with the flexible gas barrier film 57 in the experimental example, it can be covered in accordance with the shape of the food. The volume to be oxygen is reduced.
 二つ目の理由は以下の通りである。比較例では、食品保存空間から酸素が除かれると、食品保存空間が減圧になるに従いポリプロピレン製のはめ込み式蓋が変形し、酸素濃度調整用トレー56に蓋がはめ込まれる部分が歪む。この歪みが生じた部分から、外部からの空気の侵入が進行するが、この時、食品保存空間の減圧が完全に解消されていないために、空気の侵入が加速される。 The second reason is as follows. In the comparative example, when oxygen is removed from the food storage space, the polypropylene cover is deformed as the food storage space is depressurized, and the portion of the oxygen concentration adjustment tray 56 where the cover is fitted is distorted. The intrusion of air from the outside proceeds from the portion where the distortion occurs, but at this time, the intrusion of air is accelerated because the decompression of the food storage space is not completely eliminated.
 これに対し、実験例では、酸素濃度調整用トレー56は、柔軟性のあるガスバリヤ性膜57で覆われているため、食品保存空間から酸素が除かれても、ガスバリヤ性膜57が変形することで内部の圧力が1気圧に保たれる。しかも、ガスバリヤ性膜57と酸素濃度調整用トレー56との密着性も損なわれることがないため、外部から空気が侵入することはない。 On the other hand, in the experimental example, the oxygen concentration adjusting tray 56 is covered with the flexible gas barrier film 57, so that even if oxygen is removed from the food storage space, the gas barrier film 57 is deformed. The internal pressure is maintained at 1 atm. In addition, since the adhesion between the gas barrier film 57 and the oxygen concentration adjusting tray 56 is not impaired, air does not enter from the outside.
 また、上記の保管を7日間行った後、試食による官能検査を行ったところ、8割の人が実験例のブロッコリーがおいしいと答え、保存状態の品位に関しても差が確認された。 In addition, after performing the above storage for 7 days and performing a sensory test by tasting, 80% of the respondents answered that the broccoli in the experimental example was delicious, and a difference in the quality of the preserved state was also confirmed.
 (実施の形態12)
 次に実施の形態12について説明する。実施の形態12では実施の形態11と同じ構成については同じ符号を付して説明を省略する。従って、異なる部分についてのみ説明する。また実施の形態11と同一の技術思想が適用できる構成については、実施の形態12と組み合わせた構成として適用することが可能である。
(Embodiment 12)
Next, an embodiment 12 will be described. In the twelfth embodiment, the same components as those in the eleventh embodiment are denoted by the same reference numerals and description thereof is omitted. Therefore, only different parts will be described. In addition, a configuration to which the same technical idea as that of the eleventh embodiment can be applied can be applied as a configuration combined with the twelfth embodiment.
 実施の形態12の構成上の特徴は、酸素濃度調整部(酸素ポンプ)55の負極60と正極61との位置が逆になっている点である。その他の構成に関しては、図10、図12、図13Aおよび図13Bで説明したものと同様の構成が用いられる。具体的な構成を実施の形態12における酸素濃度調整部(酸素ポンプ)55の断面を示した図15により説明する。 The structural feature of the twelfth embodiment is that the positions of the negative electrode 60 and the positive electrode 61 of the oxygen concentration adjusting unit (oxygen pump) 55 are reversed. Regarding other configurations, the same configurations as those described with reference to FIGS. 10, 12, 13A, and 13B are used. A specific configuration will be described with reference to FIG. 15 showing a cross section of the oxygen concentration adjusting unit (oxygen pump) 55 in the twelfth embodiment.
 実施の形態12では、容積可変部は食品保存空間70の少なくとも底面を形成する食品保持部である酸素濃度調整用トレー56と、この酸素濃度調整用トレー56の上部に備えられたガスバリヤ性膜57で形成されている。 In the twelfth embodiment, the variable volume portion is an oxygen concentration adjusting tray 56 that is a food holding portion that forms at least the bottom surface of the food storage space 70, and a gas barrier film 57 provided on the oxygen concentration adjusting tray 56. It is formed with.
 図15に示すように、実施の形態11の図11と異なるのは、高分子固体電解質膜(セパレータ)59に対して、負極60と正極61との位置が左右逆になっている点である。 As shown in FIG. 15, the difference from FIG. 11 of the eleventh embodiment is that the positions of the negative electrode 60 and the positive electrode 61 are opposite to the polymer solid electrolyte membrane (separator) 59. .
 このため、トレー接続部63の側(正極61側)で水が分解されることで、酸素濃度が上昇し湿度が低下する。同時に、トレー接続部63とは反対側(負極60側)では、酸素が水素イオンもしくは水素イオンが還元されて生成した水素ガスと反応して水となるため、酸素濃度は低下し、湿度は上昇する。 Therefore, when water is decomposed on the tray connection part 63 side (positive electrode 61 side), the oxygen concentration increases and the humidity decreases. At the same time, on the side opposite to the tray connecting portion 63 (on the negative electrode 60 side), oxygen reacts with hydrogen ions or hydrogen gas generated by reduction of hydrogen ions to become water, so that the oxygen concentration decreases and the humidity increases. To do.
 このように、酸素濃度調整部(酸素ポンプ)55の負極60と正極61とが逆になっている。従って、図10のように、酸素濃度調整部(酸素ポンプ)55に接続された酸素濃度調整用トレー56上にガスバリヤ性膜57で覆われて形成された食品保存空間70は、図15の酸素濃度調整部(酸素ポンプ)55の正極61に通じることになる。これにより、食品保存空間70は、酸素濃度が上昇し湿度が低下する。ただし、保管庫としての冷蔵庫の中で使用する場合、温度が低いため、負極60で生成した水が殆ど放出されない。従って、これが正極61に戻り酸素発生に用いられ、湿度の低下は大きなものとはならない。 Thus, the negative electrode 60 and the positive electrode 61 of the oxygen concentration adjusting unit (oxygen pump) 55 are reversed. Therefore, as shown in FIG. 10, the food storage space 70 formed by covering the oxygen concentration adjusting tray 56 connected to the oxygen concentration adjusting unit (oxygen pump) 55 with the gas barrier film 57 is the oxygen storage space 70 shown in FIG. This leads to the positive electrode 61 of the concentration adjusting unit (oxygen pump) 55. Thereby, as for the food storage space 70, oxygen concentration rises and humidity falls. However, when using it in the refrigerator as a storage, since the temperature is low, the water produced | generated by the negative electrode 60 is hardly discharge | released. Therefore, this is returned to the positive electrode 61 and used for oxygen generation, and the decrease in humidity is not significant.
 このような酸素濃度が高い雰囲気での保存に向いているのは、牛肉やマグロ等の肉や魚類である。これらに関しては、酸素濃度が高い雰囲気で保存すると肉や魚に含まれる赤色を示す色素であるオキシミオグロビンが、褐色のメトミオグロビンとなる変化が抑制されるため長期間美しい赤色を保持することができる。また、生菌の繁殖も抑制される効果が得られる。 It is meat and fish such as beef and tuna that are suitable for preservation in such an atmosphere with a high oxygen concentration. With regard to these, oxymyoglobin, which is a red pigment contained in meat and fish when stored in an atmosphere with a high oxygen concentration, can maintain a beautiful red color for a long period of time because the change to brown metmyoglobin is suppressed. . In addition, an effect of suppressing the growth of viable bacteria can be obtained.
 以下、実験例を示す。本実験例では、実施の形態12の図15の酸素濃度調整部(酸素ポンプ)55と、実施の形態11の図14の酸素濃度調整用トレー56とを用いて、図10の食品保存空間70の酸素濃度を上昇させた。 Hereafter, experimental examples are shown. In this experimental example, the food storage space 70 of FIG. 10 is used by using the oxygen concentration adjusting unit (oxygen pump) 55 of FIG. 15 of the twelfth embodiment and the oxygen concentration adjusting tray 56 of FIG. 14 of the eleventh embodiment. The oxygen concentration was increased.
 図15に示したように酸素濃度調整部(酸素ポンプ)55の負極60と正極61とが、図11と反対になっている他は、実施の形態11で示す実験例と同じ構成、条件を用いた。但し、食品保存空間には、牛ミンチ肉150mlを保存した。 15 except that the negative electrode 60 and the positive electrode 61 of the oxygen concentration adjusting unit (oxygen pump) 55 are opposite to those shown in FIG. Using. However, 150 ml of beef minced meat was stored in the food storage space.
 運転を開始し、20分後には、食品保存空間の酸素濃度は30%に達した。このとき、酸素発生に伴い、ガスバリヤ性膜57は、初期よりも膨らみを生じた。以降、4時間に3分ずつ運転し7日間保存した。 After starting operation, the oxygen concentration in the food storage space reached 30% 20 minutes later. At this time, with the generation of oxygen, the gas barrier film 57 swelled from the initial stage. Thereafter, it was operated for 3 minutes every 4 hours and stored for 7 days.
 以下、比較例を示す。比較のために、酸素濃度調整用トレー56の代わりに、通常の皿の上に牛ミンチ肉150mlを置き上からガスバリヤ性膜57で密閉し、酸素濃度の調整を行わない他は、実験例と同じ条件で保存を行った。 The following is a comparative example. For comparison, in place of the oxygen concentration adjustment tray 56, except that 150 ml of beef minced meat is placed on a normal plate and sealed with a gas barrier film 57 from above, and the oxygen concentration is not adjusted. Storage was performed under the same conditions.
 上記の牛ミンチ肉について、変色の度合いを色差計(CR-2000 ミノルタ製)を用いて、色彩値の中の赤色を示すa*値を測定した。a*値が大きいほど、赤いことを示す。尚、初期のa*値は、25.3であった。 For the above-mentioned beef minced meat, the degree of color change was measured using a color difference meter (CR-2000, manufactured by Minolta) to measure the a * value indicating red in the color value. The higher the a * value, the more red it is. The initial a * value was 25.3.
 測定結果は、実施例が7日後に、21.0、比較例が11.1であり、実験例の方が、赤色を保ち、変色の度合いが小さく高品位に長期間保存できていることがわかった。 The measurement results are 21.0 after 7 days for the example and 11.1 for the comparative example, and the experimental example maintains a red color, has a small degree of discoloration, and can be stored for a long time with high quality. all right.
 このように本発明の構成を用いることにより効率良く食品保存空間の酸素濃度を上昇させることができ、食肉の変色を抑制し、高品位に保存が可能であることがわかった。 Thus, it was found that by using the configuration of the present invention, the oxygen concentration in the food storage space can be increased efficiently, discoloration of meat is suppressed, and high-quality storage is possible.
 (実施の形態13)
 次に実施の形態13について説明する。実施の形態13では実施の形態11および12と同じ構成については同じ符号を付して説明を省略した。従って、異なる部分についてのみ説明する。
(Embodiment 13)
Next, Embodiment 13 will be described. In the thirteenth embodiment, the same components as those in the eleventh and twelfth embodiments are denoted by the same reference numerals and description thereof is omitted. Therefore, only different parts will be described.
 また、実施の形態11または12と同一の技術思想が適用できる構成については、実施の形態13と組み合わせた構成として適用することが可能である。 Further, a configuration to which the same technical idea as in the eleventh embodiment or the twelfth embodiment can be applied can be applied as a configuration combined with the thirteenth embodiment.
 実施の形態13では、容積可変部は食品保存空間70の少なくとも底面を形成する食品保持部である酸素濃度調整用トレー56と、この酸素濃度調整用トレー56の上部に備えられたガスバリヤ性膜57で形成されている。 In the thirteenth embodiment, the volume variable section is an oxygen concentration adjusting tray 56 that is a food holding section that forms at least the bottom surface of the food storage space 70, and a gas barrier film 57 provided on the oxygen concentration adjusting tray 56. It is formed with.
 実施の形態13の構成上の特徴は、食品保持部である酸素濃度調整用トレー56の構成にある。その他の構成に関しては、図10、図11、図12、図13A、図13B、図14A、図14B、図15で説明したものと同様の構成が用いられる。 A structural feature of the thirteenth embodiment resides in a configuration of an oxygen concentration adjusting tray 56 that is a food holding unit. Regarding other configurations, the same configurations as those described with reference to FIGS. 10, 11, 12, 13A, 13B, 14A, 14B, and 15 are used.
 具体的な構成を実施の形態13における酸素濃度調整用トレー56の断面を示した図16Aおよび図16Bにより説明する。図16Bは、図16Aの16B-16B線位置の断面図である。 A specific configuration will be described with reference to FIGS. 16A and 16B showing a cross section of the oxygen concentration adjusting tray 56 in the thirteenth embodiment. 16B is a cross-sectional view taken along the line 16B-16B in FIG. 16A.
 図16Aおよび図16Bに示すように、実施の形態13では、酸素濃度調整用トレー56の下部あるいは側部に、通気部66が設けられている。通気部66を設けることにより、多くの食品が酸素濃度調整用トレー56に載せられた場合でも、通気部66を通して均一な酸素濃度を速く実現でき、食品を均一に高品位状態で保存することが可能となる効果が得られる。また、酸素の拡散を促進するために、通気部66は酸素濃度調整部接続部64近傍から酸素濃度調整トレー56の反対側の端まで伸びていることが好ましい。 As shown in FIGS. 16A and 16B, in the thirteenth embodiment, a ventilation portion 66 is provided at the lower portion or the side portion of the oxygen concentration adjusting tray 56. By providing the ventilation portion 66, even when many foods are placed on the oxygen concentration adjusting tray 56, a uniform oxygen concentration can be quickly realized through the ventilation portion 66, and the food can be stored uniformly in a high quality state. A possible effect is obtained. Further, in order to promote the diffusion of oxygen, the ventilation portion 66 preferably extends from the vicinity of the oxygen concentration adjusting portion connecting portion 64 to the opposite end of the oxygen concentration adjusting tray 56.
 (実施の形態14)
 次に実施の形態14について説明する。実施の形態14では実施の形態11から13と同じ構成については同じ符号を付して説明を省略した。従って、異なる部分についてのみ説明する。
(Embodiment 14)
Next, an embodiment 14 will be described. In the fourteenth embodiment, the same components as those in the eleventh to thirteenth embodiments are denoted by the same reference numerals and the description thereof is omitted. Therefore, only different parts will be described.
 また、実施の形態11から13と同一の技術思想が適用できる構成については、実施の形態14と組み合わせた構成として適用することが可能である。 Further, a configuration to which the same technical idea as in the eleventh to thirteenth embodiments can be applied can be applied as a configuration combined with the fourteenth embodiment.
 実施の形態14では、容積可変部は食品保存空間70の少なくとも底面を形成する食品保持部である酸素濃度調整用トレー56と、この酸素濃度調整用トレー56の上部に備えられたガスバリヤ性膜57で形成されている。 In the fourteenth embodiment, the variable volume portion is an oxygen concentration adjusting tray 56 that is a food holding portion that forms at least the bottom surface of the food storage space 70, and a gas barrier film 57 provided on the oxygen concentration adjusting tray 56. It is formed with.
 実施の形態14の構成上の特徴は、食品保持部である酸素濃度調整トレー56の構成にある。その他の構成に関しては、図10、図11、図12、図13A、図13B、図14A、図14B、図15、図16A、図16Bで説明したものと同様の構成が用いられる。具体的な構成を実施の形態14における酸素濃度調整用トレー56の断面を示した図17により説明する。 The structural feature of the fourteenth embodiment resides in the configuration of an oxygen concentration adjusting tray 56 that is a food holding unit. Regarding other configurations, the same configurations as those described with reference to FIGS. 10, 11, 12, 13A, 13B, 14A, 14B, 15, 16A, and 16B are used. A specific configuration will be described with reference to FIG. 17 showing a cross section of the oxygen concentration adjusting tray 56 according to the fourteenth embodiment.
 図17に示すように、実施の形態14では、酸素濃度調整用トレー56の下部に、貯水部67が設けられている。貯水部67を設けることにより、食品保存空間70の湿度が上昇し、酸素濃度調整部(酸素ポンプ)55近傍の湿度も高くなる。 As shown in FIG. 17, in the fourteenth embodiment, a water reservoir 67 is provided below the oxygen concentration adjusting tray 56. By providing the water storage part 67, the humidity of the food storage space 70 increases, and the humidity near the oxygen concentration adjusting part (oxygen pump) 55 also increases.
 図12のように、トレー接続部63側に負極60があり、図10の食品保存空間70の酸素濃度を低下させる場合には、貯水部67から酸素濃度調整部(酸素ポンプ)55に水蒸気が供給され、正極61で分解される。これにより、負極60に多くの水素イオンを供給することにより、負極60での水生成による脱酸素反応が促進される効果が得られる。 As shown in FIG. 12, when the negative electrode 60 is on the tray connection part 63 side and the oxygen concentration in the food storage space 70 in FIG. 10 is reduced, water vapor is supplied from the water storage part 67 to the oxygen concentration adjustment part (oxygen pump) 55. It is supplied and decomposed at the positive electrode 61. Thus, by supplying a large amount of hydrogen ions to the negative electrode 60, an effect of promoting the deoxygenation reaction due to water generation at the negative electrode 60 is obtained.
 一方、図15のように、トレー接続部63側に正極61があり、図10の食品保存空間70の酸素濃度を上昇させる場合には、貯水部67から酸素濃度調整部(酸素ポンプ)55の正極61に直接水蒸気が供給され、分解されることにより、酸素発生を促進する効果が得られる。また、上述した水分解反応により、僅かに湿度が低下する場合でも、貯水部67からの水蒸気の供給により高湿度が保持される効果が得られる。 On the other hand, as shown in FIG. 15, when the positive electrode 61 is on the tray connecting part 63 side and the oxygen concentration in the food storage space 70 of FIG. 10 is increased, the water storage part 67 to the oxygen concentration adjusting part (oxygen pump) 55 When steam is directly supplied to the positive electrode 61 and decomposed, an effect of promoting oxygen generation is obtained. Further, even when the humidity slightly decreases due to the water splitting reaction described above, the effect of maintaining high humidity by supplying water vapor from the water storage section 67 is obtained.
 このようにして、貯水部67を設けることにより、必要な酸素濃度をより速く実現し、高湿度を維持して食品の乾燥を防いで、高品位な状態で長期間保存することが可能となる。 In this way, by providing the water storage section 67, the necessary oxygen concentration can be realized more quickly, the high humidity can be maintained and the food can be prevented from drying, and it can be stored for a long time in a high quality state. .
 尚、貯水部67は、水を消費する酸素濃度調整部(酸素ポンプ)55の近くに設けることが、水蒸気の効率的な供給の観点から好ましい。 The water storage unit 67 is preferably provided near the oxygen concentration adjusting unit (oxygen pump) 55 that consumes water from the viewpoint of efficient supply of water vapor.
 尚、実施の形態13の通気部66に、通気を妨げない程度に水を貯めて、貯水部として作用させることも可能である。 In addition, it is also possible to store water in the ventilation portion 66 of the thirteenth embodiment to the extent that the ventilation is not hindered and to act as a water storage portion.
 (実施の形態15)
 次に実施の形態15について説明する。実施の形態15では実施の形態11から14と同じ構成については同じ符号を付して説明を省略した。
(Embodiment 15)
Next, an embodiment 15 will be described. In the fifteenth embodiment, the same components as those in the eleventh to fourteenth embodiments are denoted by the same reference numerals and description thereof is omitted.
 また、実施の形態11から14と同一の技術思想が適用できる構成については、実施の形態15と組み合わせた構成として適用することが可能である。 Further, a configuration to which the same technical idea as in the eleventh to fourteenth embodiments can be applied can be applied as a configuration combined with the fifteenth embodiment.
 実施の形態15では、実施の形態11から14に記載された容積可変部とは異なる容積可変部を用いた。従って、その部分を中心に説明を行う。 In the fifteenth embodiment, a variable volume portion different from the variable volume portion described in the eleventh to fourteenth embodiments is used. Therefore, the description will be focused on that part.
 図18は食品保存空間の容積を変化させる容積可変部として可動壁71を用いた図である。図18に示すように、食品保存空間70の容積を変化させる容積可変部として可動壁71を用いたものであり、この可動壁71は一部に開閉可能となる開閉部72を備えたものであり、この開閉部72の開閉によって食品保存空間70の容積が変化する。 FIG. 18 is a diagram in which the movable wall 71 is used as a volume variable portion that changes the volume of the food storage space. As shown in FIG. 18, a movable wall 71 is used as a volume variable portion that changes the volume of the food storage space 70, and the movable wall 71 is provided with an opening / closing portion 72 that can be opened and closed in part. Yes, the volume of the food storage space 70 is changed by opening / closing the opening / closing portion 72.
 具体的に実施の形態15では、食品保存空間70として第一の食品保存空間74と第二の食品保存空間75とを備えており、第一の食品保存空間74と第二の食品保存空間75との間に開閉部72を備えている。 Specifically, in the fifteenth embodiment, a first food storage space 74 and a second food storage space 75 are provided as the food storage space 70, and the first food storage space 74 and the second food storage space 75 are provided. An opening / closing part 72 is provided between the two.
 これによって、開閉部72を開けた場合には開閉部72が開口部となり第一の食品保存空間74と第二の食品保存空間75とが連通し、大きな容積の食品保存空間70となり、この大きな容積の食品保存空間70に対して酸素量を調整する酸素濃度調整部(酸素ポンプ)55を動作させるものである。 Thus, when the opening / closing part 72 is opened, the opening / closing part 72 becomes an opening, and the first food storage space 74 and the second food storage space 75 communicate with each other to form a large-volume food storage space 70. An oxygen concentration adjusting unit (oxygen pump) 55 that adjusts the amount of oxygen with respect to the food storage space 70 having a volume is operated.
 また、開閉部72を閉めた場合には酸素濃度の低減を行うことが可能な貯蔵室の容積は第一の食品保存空間74の容積のみとなるため、容積を低減して酸素量を調整する酸素濃度調整部(酸素ポンプ)55を動作させることができ、食品を保存する食品保存空間を使い勝手の良いように使い分けることが可能となる。 Further, when the opening / closing part 72 is closed, the volume of the storage chamber capable of reducing the oxygen concentration is only the volume of the first food storage space 74, so the volume is reduced to adjust the oxygen amount. The oxygen concentration adjusting unit (oxygen pump) 55 can be operated, and the food storage space for storing food can be used properly so as to be convenient.
 さらに、この可動壁71に備えられた開閉可能となる開閉部72の開閉を使用者が行うことができる容積可変レバー(図示せず)を備えることもできる。この場合には、使用者のニーズに応じて食品保存空間の容積が変化する保管庫を実現することができる。従って、使用者のニーズに従って、より使い勝手を向上させることができるため、食品保存空間の容積を必要に応じて変化させることができ、食品保存空間を効率よく脱酸素することが可能になる。結果として、効率良く低コストで、食品を長期間に渡り高品位な状態で保存することが可能となる効果が得られる。 Furthermore, it is possible to provide a variable volume lever (not shown) that allows the user to open and close the openable / closable portion 72 provided on the movable wall 71. In this case, it is possible to realize a storage in which the volume of the food storage space changes according to the needs of the user. Therefore, since the usability can be further improved according to the needs of the user, the volume of the food storage space can be changed as necessary, and the food storage space can be efficiently deoxygenated. As a result, it is possible to obtain an effect that the food can be stored in a high quality state for a long period of time efficiently and at low cost.
 なお、実施の形態15においては、容積可変部は食品保存空間の少なくとも一部が可動する可動壁71の一部に開閉部72を備えて食品保存空間の容積を変化させるものとしたが、可動壁71全体を可動させる構成でもよい。その場合には、使用者のニーズに従って、食品保存空間の大きさを変化させることが可能となり、フレキシブルに食品貯蔵空間を設定することができるので、より使用者の使い勝手を向上させた保管庫を提供することが可能となる。 In the fifteenth embodiment, the volume variable section is provided with the opening / closing section 72 in a part of the movable wall 71 in which at least a part of the food storage space is movable to change the volume of the food storage space. A configuration in which the entire wall 71 is movable may be used. In that case, the size of the food storage space can be changed according to the needs of the user, and the food storage space can be set flexibly, so a storage room with improved user convenience can be provided. It becomes possible to provide.
 以上のように、本発明は、外部から電流を取り込むための外部直流電源と、多孔質のガス交換性である負極と、多孔質のガス交換性である正極と、負極と正極との間に挟みこまれており、金属イオンを含有する電解液を含浸させた多孔質セパレータと、外部電流電源に接続されており、負極の外部に設けられた負極側集電電極と、外部直流電源に接続されており、正極の外部に設けられた正極側集電電極と、を備え、外部直流電源よって負極側集電電極および正極集電電極に給電することにより、負極側気相から正極側気相へ酸素の移動を行う。これにより、常温常圧で動作する水系溶剤を用い、極めて少ない量の電解質が含浸保持されるので、電解質の多量の漏出を抑えることができる。また、構造的に薄く柔らかくすることが可能であるため、大面積化が容易となり酸素運搬能力を大きくすることができる。 As described above, the present invention provides an external DC power source for taking in an electric current from the outside, a negative electrode having a porous gas exchange property, a positive electrode having a porous gas exchange property, and a negative electrode and a positive electrode. A porous separator impregnated with an electrolytic solution containing metal ions, connected to an external current power source, connected to a negative current collecting electrode provided outside the negative electrode, and connected to an external DC power source A positive current collecting electrode provided outside the positive electrode, and by supplying power to the negative current collecting electrode and the positive current collecting electrode by an external DC power source, Perform oxygen transfer to Accordingly, since an extremely small amount of electrolyte is impregnated and retained using an aqueous solvent that operates at normal temperature and pressure, a large amount of electrolyte leakage can be suppressed. In addition, since the structure can be made thin and soft, the area can be easily increased, and the oxygen carrying capacity can be increased.
 さらに、金属イオンは鉄、コバルト、ニッケルの少なくとも一つからなるものである。これにより、これらの金属は、酸素の吸収に大きな触媒作用を及ぼすため、酸素運搬能力を大きくすることができる。 Furthermore, the metal ion is made of at least one of iron, cobalt, and nickel. Thereby, since these metals exert a large catalytic action on the absorption of oxygen, the oxygen carrying capacity can be increased.
 さらに、負極は金属表面を有するものである。これにより、常温常圧で動作する水系溶剤を用い、極めて少ない量の電解質が含浸保持されるので、電解質の多量の漏出を抑えることができる。また、構造的に薄く柔らかくすることが可能であるため、大面積化が容易となり酸素運搬能力をより大きくすることができる。 Furthermore, the negative electrode has a metal surface. Accordingly, since an extremely small amount of electrolyte is impregnated and retained using an aqueous solvent that operates at normal temperature and pressure, a large amount of electrolyte leakage can be suppressed. Further, since it can be structurally thinned and softened, the area can be easily increased, and the oxygen carrying capacity can be further increased.
 さらに、金属表面が無電解メッキにより構成されているものである。これにより、これにより、電極反応が進行する表面のみ金属を形成させることができるので、使用料及び重量の減少になり、また電極との密着性が良いため、酸素運搬能力を大きくすることができる。 Furthermore, the metal surface is constituted by electroless plating. Thereby, since the metal can be formed only on the surface where the electrode reaction proceeds, the usage fee and the weight are reduced, and since the adhesion with the electrode is good, the oxygen carrying capacity can be increased. .
 さらに、金属表面における金属は、鉄、コバルト、ニッケルの少なくとも一つからなるものである。これらの金属を金属表面に含むことにより、酸素の吸収に大きな触媒作用を及ぼすため、酸素運搬能力をさらに大きくすることができる。 Furthermore, the metal on the metal surface is made of at least one of iron, cobalt, and nickel. The inclusion of these metals on the metal surface has a large catalytic effect on oxygen absorption, so that the oxygen carrying capacity can be further increased.
 さらに、正極および負極は炭素微粉末を含むものである。これにより、セパレータに薄く塗布でき、セパレータとの密着性が良くなり、酸素運搬能力を大きくすることができる。 Furthermore, the positive electrode and the negative electrode contain fine carbon powder. Thereby, it can apply | coat thinly to a separator, adhesiveness with a separator becomes good, and oxygen carrying capacity can be enlarged.
 さらに、電解液が潮解性塩を含むものである。乾燥による電解質中の水分の低下を防止するものである。 Furthermore, the electrolytic solution contains a deliquescent salt. This prevents the moisture in the electrolyte from decreasing due to drying.
 さらに、潮解性塩はフッ化カリウムである。これにより、副生成物として塩素の発生を防止することができる。 Furthermore, the deliquescent salt is potassium fluoride. Thereby, generation | occurrence | production of chlorine as a by-product can be prevented.
 さらに、負極側集電電極および正極側集電電極はカーボンクロスである。これにより、柔軟性があって大きな面積の酸素ポンプを作ることが可能で、酸素運搬能力を大きくすることができる。さらに炭素繊維を引き出すことにより、外部電源回路との接続が容易になる。 Furthermore, the negative electrode side collecting electrode and the positive electrode side collecting electrode are carbon cloth. As a result, it is possible to make an oxygen pump having a large area with flexibility, and the oxygen carrying capacity can be increased. Further, by pulling out the carbon fiber, connection with an external power supply circuit becomes easy.
 さらに、負極と、正極と、セパレータと、負極側集電電極と、正極側集電電極との周囲末端にモールド部を有するものである。これにより、面方向への気体の逃げと、正極負極間の気体の回りこみを規制することができる。 Furthermore, a mold part is provided at the peripheral ends of the negative electrode, the positive electrode, the separator, the negative electrode side collecting electrode, and the positive electrode side collecting electrode. Thereby, the escape of the gas to a surface direction and the sneak in of the gas between positive electrodes and negative electrodes can be controlled.
 さらに、上述した酸素ポンプと、密閉空間で形成され食品を保管する食品保存空間と、酸素ポンプを介して食品保存空間と連続した脱酸素補助空間とを有し、外部直流電源から給電することにより食品保存空間の酸素濃度を調整する保管庫である。これにより、野菜、食肉等の高品位な長期保存が安全な状態で可能となる。 Furthermore, by having the above-described oxygen pump, a food storage space that is formed in a sealed space for storing food, and a deoxygenation auxiliary space that is continuous with the food storage space via the oxygen pump, by supplying power from an external DC power source It is a storage that adjusts the oxygen concentration in the food storage space. As a result, high-quality long-term storage of vegetables, meat and the like is possible in a safe state.
 さらに、食品保存空間は、食品保持部とガスバリヤ性膜とから構成されることで、容積可変としたものである。これにより、食品以外の余分な空間が少なくなるため、食品保存空間を効率よく脱酸素することが可能となる。 Furthermore, the food storage space is made of a food holding part and a gas barrier film so that the volume is variable. As a result, an extra space other than food is reduced, so that the food storage space can be efficiently deoxygenated.
 また、本発明は、電解液を含浸させて多孔質セパレータを形成するステップと、セパレータを乾燥するステップと、多孔質セパレータに負極、正極、負極側集電電極および正極側集電電極を積層して積層物を構成するステップと、積層物に水蒸気をあてることで電解液の濃度を調整するステップと、を含む製造方法である。これにより、乾燥状態で酸素ポンプ構造を組み立てることができ、製法が容易となる。 The present invention also includes a step of impregnating an electrolytic solution to form a porous separator, a step of drying the separator, and laminating a negative electrode, a positive electrode, a negative electrode side collector electrode, and a positive electrode side collector electrode on the porous separator. And a step of adjusting the concentration of the electrolytic solution by applying water vapor to the laminate. Thereby, an oxygen pump structure can be assembled in a dry state, and a manufacturing method becomes easy.
 以上のように、本発明の酸素ポンプは、常温常圧で動作し、大きな酸素運搬能力を容易に出しえ、電解質の漏出など事故の問題が無いので、空気よりの酸素製造分野、富酸素条件を必要とする燃焼、養魚、医療などの分野、低酸素条件を必要とする食料、食品保存の分野に応用できる。 As described above, the oxygen pump of the present invention operates at room temperature and normal pressure, can easily provide a large oxygen carrying capacity, and there is no problem of accidents such as electrolyte leakage. It can be applied to the fields of combustion, fish farming, medical treatment, etc., foods requiring low oxygen conditions, and food storage.
1  セパレータ
2  正極
3  負極
4  正極側集電電極
5  負極側集電電極
6  正極側電極取り出し部
7  負極側電極取り出し部
8  モールド部
9  正極側気相
10  負極側気相
11  正極側ケース
12  ガス出口
31  保存室扉
32  断熱仕切壁
33  本体断熱壁
34  仕切板
35  酸素濃度調整部(酸素ポンプ)
36  脱酸素気体導入部
37  外部気体置換部
38  脱酸素補助容器
39  食品保存容器
40  食品保存空間
41  枠
42  高分子固体電解質膜(セパレータ)
43  負極
44  正極
45  給電極(負極側集電電極および正極側集電電極)
46  酸素濃度調整用トレー
47  脱酸素補助容器接続部
48  ガスバリヤ性膜
51  保存室扉
52  断熱仕切壁
53  本体断熱壁
54  仕切板
55  酸素濃度調整部(酸素ポンプ)
56  酸素濃度調整用トレー(食品保持部)
57  ガスバリヤ性膜
58  枠
59  高分子固体電解質膜(セパレータ)
60  負極
61  正極
62  給電極(負極側集電電極および正極側集電電極)
63  トレー接続部
64  酸素濃度調整部接続部
65  ガスバリヤ性膜固定枠
66  通気部
67  貯水部
70  食品保存空間
71  可動壁
72  開閉部
73  食品保持部
74  第一の食品保存空間
75  第二の食品保存空間
DESCRIPTION OF SYMBOLS 1 Separator 2 Positive electrode 3 Negative electrode 4 Positive electrode side current collection electrode 5 Negative electrode side current collection electrode 6 Positive electrode side electrode extraction part 7 Negative electrode side electrode extraction part 8 Mold part 9 Positive electrode side gas phase 10 Negative electrode side gas phase 11 Positive electrode side case 12 Gas outlet 31 Storage room door 32 Heat insulation partition wall 33 Main body heat insulation wall 34 Partition plate 35 Oxygen concentration adjusting part (oxygen pump)
36 Deoxygenated gas introduction part 37 External gas replacement part 38 Deoxygenation auxiliary container 39 Food storage container 40 Food storage space 41 Frame 42 Polymer solid electrolyte membrane (separator)
43 Negative electrode 44 Positive electrode 45 Supply electrode (negative electrode side collector electrode and positive electrode side collector electrode)
46 Oxygen concentration adjustment tray 47 Deoxygenation auxiliary container connection part 48 Gas barrier film 51 Storage chamber door 52 Thermal insulation partition wall 53 Main body thermal insulation wall 54 Partition plate 55 Oxygen concentration adjustment part (oxygen pump)
56 Oxygen concentration adjustment tray (food holder)
57 Gas barrier membrane 58 Frame 59 Polymer solid electrolyte membrane (separator)
60 Negative electrode 61 Positive electrode 62 Supply electrode (negative electrode side collector electrode and positive electrode side collector electrode)
63 Tray connection part 64 Oxygen concentration adjustment part connection part 65 Gas barrier film fixed frame 66 Ventilation part 67 Water storage part 70 Food storage space 71 Movable wall 72 Opening and closing part 73 Food holding part 74 First food storage space 75 Second food storage space

Claims (13)

  1. 外部から電流を取り込むための外部直流電源と、多孔質のガス交換性である負極と、多孔質のガス交換性である正極と、前記負極と前記正極との間に挟みこまれており、金属イオンを含有する電解液を含浸させた多孔質なセパレータと、前記外部電流電源に接続されており、前記負極の外部に設けられた負極側集電電極と、前記外部直流電源に接続されており、前記正極の外部に設けられた正極側集電電極と、を備え、前記外部直流電源によって前記負極側集電電極および前記正極集電電極に給電することにより、負極側気相から正極側気相へ酸素の移動を行うことを特徴とする酸素ポンプ。 An external direct current power source for taking in an electric current from the outside, a negative electrode having a porous gas exchange property, a positive electrode having a porous gas exchange property, and sandwiched between the negative electrode and the positive electrode. A porous separator impregnated with an electrolyte containing ions, and connected to the external current power source, connected to the negative current collecting electrode provided outside the negative electrode, and connected to the external DC power source A positive-side collector electrode provided outside the positive electrode, and supplying power to the negative-side collector electrode and the positive-electrode collector electrode by the external DC power source, so that the negative-side gas phase to the positive-side gas An oxygen pump characterized by oxygen transfer to the phase.
  2. 前記金属イオンは鉄、コバルト、ニッケルの少なくとも一つからなる請求項1に記載の酸素ポンプ。 The oxygen pump according to claim 1, wherein the metal ion is made of at least one of iron, cobalt, and nickel.
  3. 前記負極は金属表面を有することを特徴とする請求項1に記載の酸素ポンプ。 The oxygen pump according to claim 1, wherein the negative electrode has a metal surface.
  4. 前記金属表面が無電解メッキにより構成されていることを特徴とする請求項3に記載の酸素ポンプ。 The oxygen pump according to claim 3, wherein the metal surface is formed by electroless plating.
  5. 前記金属表面における金属は、鉄、コバルト、ニッケルの少なくとも一つからなる請求項3に記載の酸素ポンプ。 The oxygen pump according to claim 3, wherein the metal on the metal surface is made of at least one of iron, cobalt, and nickel.
  6. 前記正極および前記負極は炭素微粉末を含むことを特徴とする請求項1に記載の酸素ポンプ。 The oxygen pump according to claim 1, wherein the positive electrode and the negative electrode contain carbon fine powder.
  7. 前記電解液が潮解性塩を含むことを特徴とする請求項1に記載の酸素ポンプ。 The oxygen pump according to claim 1, wherein the electrolytic solution contains a deliquescent salt.
  8. 前記潮解性塩はフッ化カリウムであることを特徴とする請求項7に記載の酸素ポンプ。 The oxygen pump according to claim 7, wherein the deliquescent salt is potassium fluoride.
  9. 前記負極側集電電極および前記正極側集電電極はカーボンクロスであることを特徴とする請求項1項に記載の酸素ポンプ。 The oxygen pump according to claim 1, wherein the negative electrode side collector electrode and the positive electrode side collector electrode are carbon cloth.
  10. 前記負極と、前記正極と、前記セパレータと、前記負極側集電電極と、前記正極側集電電極との周囲末端にモールド部を有することを特徴とする請求項1に記載の酸素ポンプ。 2. The oxygen pump according to claim 1, further comprising a mold part at a peripheral end of the negative electrode, the positive electrode, the separator, the negative electrode side collector electrode, and the positive electrode side collector electrode.
  11. 請求項1から10のいずれか一項に記載の酸素ポンプと、密閉空間で形成され食品を保管する食品保存空間と、前記酸素ポンプを介して前記食品保存空間と連続した脱酸素補助空間とを有し、前記外部直流電源から給電することにより前記食品保存空間の酸素濃度を調整することを特徴とする保管庫。 The oxygen pump according to any one of claims 1 to 10, a food storage space that is formed in a sealed space and stores food, and a deoxygenation auxiliary space that is continuous with the food storage space via the oxygen pump. And a storage for adjusting the oxygen concentration of the food storage space by supplying power from the external DC power source.
  12. 前記食品保存空間は、食品保持部とガスバリヤ性膜とから構成されることで、容積可変としたことを特徴とする請求項11に記載の保管庫。 The storage room according to claim 11, wherein the food storage space includes a food holding unit and a gas barrier film so that the volume is variable.
  13. 電解液を含浸させて多孔質セパレータを形成するステップと、前記セパレータを乾燥するステップと、前記多孔質セパレータに負極、正極、負極側集電電極および正極側集電電極を積層して積層物を構成するステップと、前記積層物に水蒸気をあてることで電解液の濃度を調整するステップと、を含むことを特徴とする酸素ポンプの製造方法。 A step of forming a porous separator by impregnating an electrolytic solution, a step of drying the separator, and laminating a negative electrode, a positive electrode, a negative electrode side collector electrode and a positive electrode side collector electrode on the porous separator to form a laminate And a step of adjusting the concentration of the electrolytic solution by applying water vapor to the laminate.
PCT/JP2009/005097 2008-10-06 2009-10-02 Oxygen pump, method for manufacturing oxygen pump, and storing warehouse comprising oxygen pump WO2010041396A1 (en)

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
JP2008259254A JP2010089975A (en) 2008-10-06 2008-10-06 Oxygen pump and method for manufacturing the same
JP2008-259254 2008-10-06
JP2008266005A JP2010095743A (en) 2008-10-15 2008-10-15 Oxygen pump and method for manufacturing the same
JP2008-266005 2008-10-15
JP2008322160A JP2010144994A (en) 2008-12-18 2008-12-18 Storage and method of adjusting oxygen concentration in food preservation space
JP2008322158A JP2010144992A (en) 2008-12-18 2008-12-18 Storage
JP2008-322160 2008-12-18
JP2008-322158 2008-12-18
JP2009059123A JP2010208916A (en) 2009-03-12 2009-03-12 Oxygen pump and method for manufacturing the same
JP2009059122A JP2010209442A (en) 2009-03-12 2009-03-12 Oxygen pump and method for manufacturing the same
JP2009-059123 2009-03-12
JP2009-059122 2009-03-12
JP2009095842A JP2010248534A (en) 2009-04-10 2009-04-10 Oxygen pump and method for producing the same
JP2009-095841 2009-04-10
JP2009095841A JP2010248533A (en) 2009-04-10 2009-04-10 Oxygen pump and method for producing the same
JP2009-095842 2009-04-10
JP2009-097855 2009-04-14
JP2009097855A JP2010248555A (en) 2009-04-14 2009-04-14 Oxygen pump and method for producing the same

Publications (1)

Publication Number Publication Date
WO2010041396A1 true WO2010041396A1 (en) 2010-04-15

Family

ID=42100357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005097 WO2010041396A1 (en) 2008-10-06 2009-10-02 Oxygen pump, method for manufacturing oxygen pump, and storing warehouse comprising oxygen pump

Country Status (1)

Country Link
WO (1) WO2010041396A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202575A (en) * 2011-03-24 2012-10-22 Toshiba Corp Refrigerator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152978A (en) * 1980-04-25 1981-11-26 Matsushita Electric Ind Co Ltd Electrochemical oxygen pump device
JPS62153568U (en) * 1986-03-20 1987-09-29
JPH0919621A (en) * 1995-07-06 1997-01-21 Matsushita Electric Ind Co Ltd Deoxidizing device
JP2001176554A (en) * 1999-12-16 2001-06-29 Nitto Denko Corp Method of manufacturing electrochemical element
JP2003289839A (en) * 2002-04-08 2003-10-14 Asahi Kasei Corp Food product-packaged body
JP2005207690A (en) * 2004-01-23 2005-08-04 Toshiba Corp Refrigerator
JP2007163169A (en) * 2005-12-09 2007-06-28 Tokyo Metropolitan Univ Composition and method for detecting ethanol gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152978A (en) * 1980-04-25 1981-11-26 Matsushita Electric Ind Co Ltd Electrochemical oxygen pump device
JPS62153568U (en) * 1986-03-20 1987-09-29
JPH0919621A (en) * 1995-07-06 1997-01-21 Matsushita Electric Ind Co Ltd Deoxidizing device
JP2001176554A (en) * 1999-12-16 2001-06-29 Nitto Denko Corp Method of manufacturing electrochemical element
JP2003289839A (en) * 2002-04-08 2003-10-14 Asahi Kasei Corp Food product-packaged body
JP2005207690A (en) * 2004-01-23 2005-08-04 Toshiba Corp Refrigerator
JP2007163169A (en) * 2005-12-09 2007-06-28 Tokyo Metropolitan Univ Composition and method for detecting ethanol gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202575A (en) * 2011-03-24 2012-10-22 Toshiba Corp Refrigerator

Similar Documents

Publication Publication Date Title
TW503598B (en) Catalytic air cathode for air-metal batteries
JP5207407B2 (en) Air electrode
US20120241315A1 (en) Electrolysis device and refrigerator
US20110003213A1 (en) Metal-air battery with siloxane material
WO2013185169A1 (en) Gas permeable electrode and method of manufacture
TW201214845A (en) Bifunctional (rechargeable) air electrodes
CN104137325A (en) Metal-oxygen cell
WO2019069760A1 (en) Negative electrode structure for zinc secondary battery
JP5452913B2 (en) Fuel cell system with electrochemical hydrogen generation cell
US8993180B2 (en) Metal oxygen battery
US6787008B2 (en) Hydrogen generating cell with cathode
CN101325266B (en) Power supply system for minisize composite regenerative fuel battery
WO2010041396A1 (en) Oxygen pump, method for manufacturing oxygen pump, and storing warehouse comprising oxygen pump
CN102625957A (en) Metal-air battery with siloxane material
WO2012141195A1 (en) Air battery
US20170222242A1 (en) Anion Conductor and Layered Metal Hydroxide
JP6532706B2 (en) Oxygen reducing cell, storage and refrigerator
CN215418236U (en) Air battery anode
US20240093387A1 (en) Pump free alkaline electrolyte membrane water electrolytic device
GB1156945A (en) Improvements in and relating to Rechargeable Cells
CN113270590A (en) Air battery anode
JP2010144994A (en) Storage and method of adjusting oxygen concentration in food preservation space
WO2009113524A1 (en) Alkaline fuel cell
CN116815208A (en) Electrolysis device and method for driving same
JP2010255072A (en) Oxygen pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09818936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09818936

Country of ref document: EP

Kind code of ref document: A1