JP2001176554A - Method of manufacturing electrochemical element - Google Patents

Method of manufacturing electrochemical element

Info

Publication number
JP2001176554A
JP2001176554A JP35820199A JP35820199A JP2001176554A JP 2001176554 A JP2001176554 A JP 2001176554A JP 35820199 A JP35820199 A JP 35820199A JP 35820199 A JP35820199 A JP 35820199A JP 2001176554 A JP2001176554 A JP 2001176554A
Authority
JP
Japan
Prior art keywords
electrolyte
sol
gel
reversible
gelling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35820199A
Other languages
Japanese (ja)
Inventor
Yoshihiro Uetani
慶裕 植谷
Takashi Yamamura
隆 山村
Keisuke Yoshii
敬介 喜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP35820199A priority Critical patent/JP2001176554A/en
Publication of JP2001176554A publication Critical patent/JP2001176554A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To manufacture an electrochemical element comprising a separator made of a porous film with a solid electrolyte filling in the pores and a pair of electrodes disposed by way of porous film productively and easily. SOLUTION: First, a porous film with pores for the separator for the electrochemical element is prepared. The porous film holds an electrolytic salt, a solvent for the electrolytic salt, and a reversible gelatinizer to form a reversal sol-gel electrolytic composition. Then, a device of the electrochemical element, which has a pair of electrodes disposed opposite to each other by way of the porous film, is formed and the device is soaked in an electrolyte made of the electrolytic salt and the solvent for the electrolytic salt. Then the reversible gelatinizer is dissolved in the electrolyte to be the sol of the reversible sol-gel electrolytic composition. After that, the sol is gelatinized and the pores of the porous film are filled with a solid electrolyte made of the gel of the reversible sol-gel electrolytic composition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気化学素子の製
造方法に関し、詳しくは、セパレータを介して一対の電
極を対向配設してなり、セパレータがその細孔中に固体
電解質が充填されてなるものである電気化学素子を生産
性よく、簡単に製造する方法に関する。このような電気
化学素子は、例えば、電池、コンデンサ又はキャパシタ
等の素子として好適に用いることができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrochemical device, and more particularly, to a method in which a pair of electrodes are opposed to each other with a separator interposed therebetween, and the separator is filled with a solid electrolyte in its pores. The present invention relates to a method for easily manufacturing an electrochemical device with high productivity. Such an electrochemical element can be suitably used as an element such as a battery, a capacitor, or a capacitor.

【0002】[0002]

【従来の技術】近年、電子機器の携帯化の流れが強まる
につれて、電源としての電池について、高容量化と軽量
化の要求が高まってきており、このような要求に応える
べく、ニッケル−水素電池やリチウムイオン電池のよう
な高容量二次電池が広く普及しつつある。しかし、これ
らの従来の電池は、電解質として液体を用いているの
で、電池容器に破損があった際には液漏れを起こすおそ
れがある。特に、リチウムイオン二次電池では、非水
(有機)溶媒を電解液に用いているので、液漏れが起こ
った際には、電池を用いる電子機器自体の破損等の事故
を招くおそれが強い。
2. Description of the Related Art In recent years, as electronic devices have become more portable, there has been an increasing demand for higher capacity and lighter weight batteries as power supplies. And high-capacity secondary batteries such as lithium-ion batteries are becoming widespread. However, since these conventional batteries use a liquid as an electrolyte, when the battery container is damaged, there is a possibility that the battery leaks. Particularly, in a lithium ion secondary battery, since a non-aqueous (organic) solvent is used for an electrolytic solution, an accident such as breakage of an electronic device using the battery itself is likely to occur when a liquid leak occurs.

【0003】また、近年、電池のエネルギー密度を向上
させるために、従来の金属製外装缶ではなく、ラミネー
トフィルムを外装袋として用いるリチウムイオン二次電
池が提案されている。このようなラミネートフィルム袋
型の電池においては、金属製外装缶を用いた電池と比べ
て、ラミネートフィルムが電池における他の部品と接触
して孔が空いたり、また、袋の開口部の不完全な封止等
から、袋内から電解液が漏れ出す可能性が高い。
In recent years, in order to improve the energy density of a battery, a lithium ion secondary battery using a laminated film as an outer bag instead of a conventional metal outer can has been proposed. In such a laminated film bag type battery, compared to a battery using a metal outer can, the laminated film comes into contact with other parts of the battery to form a hole, or the opening of the bag is incomplete. It is highly possible that the electrolyte solution leaks out of the bag due to a simple sealing or the like.

【0004】他方、最近の電子機器には、コンデンサや
キャパシタが多く用いられているが、これらにおいて
も、従来、非水(有機)溶媒を電解液に用いているの
で、同様に、外装体が衝撃や熱等によって破損したとき
には、電解液が外部漏れて、周辺の電子機器まで、損傷
するおそれがある。
On the other hand, capacitors and capacitors are often used in recent electronic devices. In these cases, since a non-aqueous (organic) solvent is conventionally used as an electrolytic solution, the outer package is similarly formed. When the battery is damaged by impact, heat, or the like, the electrolyte may leak to the outside, and even the surrounding electronic devices may be damaged.

【0005】そこで、このような問題を解決するため
に、既に、リチウム電池の分野においては、液体電解質
に代えて、固体電解質を用いることが古くから提案され
ている。そのような固体電解質としては、例えば、ポリ
エチレンオキシド、ポリプロピレンオキシド、ポリエチ
レングリコール等のポリアルキレンエーテル系ポリマー
成分や、ポリアクリロニトリル、ポリホスファゼン、ポ
リメタクリル酸メチル等のポリマー成分にリチウム塩を
含有させてなるものが知られている。
Therefore, in order to solve such a problem, it has long been proposed in the field of lithium batteries to use a solid electrolyte instead of a liquid electrolyte. As such a solid electrolyte, for example, a polyalkylene ether-based polymer component such as polyethylene oxide, polypropylene oxide, or polyethylene glycol, or a polymer component such as polyacrylonitrile, polyphosphazene, or polymethyl methacrylate containing a lithium salt. Things are known.

【0006】しかし、これらの従来の固体電解質を用い
た電池によれば、固体電解質が液体電解質に比べてイオ
ン伝導度が著しく低いので、電池が高い内部抵抗を有す
ることとなり、実用的な充放電を行なうことができな
い。また、電極の形状が充放電等によって変化するよう
な場合には、固体電解質がそのような電極の形状の変化
に追随できない結果、電極と電解質との間の接触が不十
分となって、充放電することができなくなる。
However, according to the batteries using these conventional solid electrolytes, the solid electrolyte has a significantly lower ionic conductivity than the liquid electrolyte, so that the battery has a high internal resistance, so that a practical charge / discharge operation is possible. Can not do. If the shape of the electrode changes due to charging and discharging, the solid electrolyte cannot follow such a change in the shape of the electrode. It cannot be discharged.

【0007】このような固体電解質の低いイオン伝導度
を改善するために、例えば、固体電解質に可塑剤として
プロピレンカーボネートやγ−ブチロラクトンのような
有機溶媒を配合することが提案されている。
In order to improve the low ionic conductivity of such a solid electrolyte, for example, it has been proposed to blend an organic solvent such as propylene carbonate or γ-butyrolactone as a plasticizer into the solid electrolyte.

【0008】例えば、J. Electrochem. Soc., Vol. 13
7, 1657-1658 (1990)には、過塩素酸リチウムを溶解さ
せたプロピレンカーボネートとエチレンカーボネートの
混合溶媒よりなる有機電解液をポリアクリロニトリルで
ゲル化し、シート状としたゲル電解質が提案されてい
る。特開平11−16579号公報には、ポリアクリロ
ニトリルと電解質塩と非水溶媒とからなるゲル電解質が
提案されている。また、特開平8−298126号公報
には、ポリエチレンオキシドやポリプロピレンオキシド
をポリマー成分とし、溶媒としてγ−ブチロラクトンを
用いてなるゲル電解質が提案されている。
For example, J. Electrochem. Soc., Vol.
7, 1657-1658 (1990) proposes a sheet-like gel electrolyte obtained by gelling an organic electrolytic solution comprising a mixed solvent of propylene carbonate and ethylene carbonate in which lithium perchlorate is dissolved with polyacrylonitrile. . JP-A-11-16579 proposes a gel electrolyte comprising polyacrylonitrile, an electrolyte salt and a non-aqueous solvent. JP-A-8-298126 proposes a gel electrolyte using polyethylene oxide or polypropylene oxide as a polymer component and using γ-butyrolactone as a solvent.

【0009】このように、従来の固体電解質に有機溶媒
を配合した電解質は、一般に、ゲル電解質と呼ばれてい
る。このようなゲル電解質は、上述したような従来の固
体電解質に比べれば、幾分、イオン伝導度の向上がみら
れるが、それでも、液体電解質に比べれば、尚、低い。
従って、このようなゲル電解質を電池に用いた場合、内
部抵抗は、十分には低減されておらず、また、電極の形
状が変化したような場合には、依然として、そのような
電極の形状の変化に追随できない。
As described above, an electrolyte obtained by mixing an organic solvent with a conventional solid electrolyte is generally called a gel electrolyte. Such gel electrolytes have somewhat improved ionic conductivity as compared to the conventional solid electrolytes as described above, but are still lower than liquid electrolytes.
Therefore, when such a gel electrolyte is used in a battery, the internal resistance is not sufficiently reduced, and when the shape of the electrode changes, the internal resistance is still low. Can't keep up with change.

【0010】更に、一般に、ゲル電解質において、十分
なゲル状態を得るには、上記ポリマー成分の配合割合を
20重量%程度以上とする必要があるが、このようにポ
リマー成分の配合割合を高くすれば、液体電解質に比べ
て、電導度が低くなるので、電池の内部抵抗が高くな
り、充放電特性が悪くなる。特に、0℃以下の低温にお
いて、この傾向が著しい。
Further, in general, in order to obtain a sufficient gel state in the gel electrolyte, it is necessary to set the compounding ratio of the polymer component to about 20% by weight or more. For example, since the conductivity is lower than that of the liquid electrolyte, the internal resistance of the battery increases, and the charge / discharge characteristics deteriorate. This tendency is particularly remarkable at a low temperature of 0 ° C. or lower.

【0011】また、例えば、電池における電極が粒状や
鱗片状の活物質の集合体からなり、その間に空隙を有す
るときや、また、空隙を有する多孔質材料からなるとき
は、そのような空隙に電解質が存在することによって、
はじめて、電極−電解質界面での反応物質の授受が円滑
に行なわれて、十分な充放電を行なうことができる。従
って、一般に、電極と共に固体電解質やゲル電解質を含
む電気化学素子を製造するときは、それらの電解質を予
め電極の有する空隙中に充填しておくことが必要であ
る。かくして、従来、電極と共に固体電解質を含む電気
化学素子の製造には多くの工程を必要とし、生産性に劣
るほか、製造費用も嵩むこととなる。
For example, when an electrode in a battery is made of an aggregate of granular or flaky active materials and has a gap between them, or when it is made of a porous material having a gap, the electrode is formed in such a gap. Due to the presence of the electrolyte,
For the first time, the transfer of reactants at the electrode-electrolyte interface is performed smoothly, and sufficient charge and discharge can be performed. Therefore, in general, when manufacturing an electrochemical element containing a solid electrolyte or a gel electrolyte together with an electrode, it is necessary to previously fill the electrolyte with a void in the electrode. Thus, conventionally, the production of an electrochemical device containing a solid electrolyte together with an electrode requires many steps, resulting in poor productivity and increased production cost.

【0012】[0012]

【発明が解決しようとする課題】本発明は、固体電解質
を含む電気化学素子における上述した問題を解決するた
めになされたものであって、その細孔に固体電解質が充
填された多孔質膜からなるセパレータとこれを介して一
対の電極が配設されてなる電気化学素子を生産性よく簡
単に得ることができる方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems in an electrochemical device containing a solid electrolyte, and is directed to a porous membrane having pores filled with a solid electrolyte. It is an object of the present invention to provide a method capable of easily obtaining, with good productivity, an electrochemical device having a separator and a pair of electrodes disposed via the separator.

【0013】[0013]

【課題を解決するための手段】本発明によれば、電解質
塩とこの電解質塩のための溶媒と共に可逆的ゾル−ゲル
状電解質組成物を形成し得る可逆的ゲル化剤を担持させ
てなる電気化学素子用セパレータのための細孔を有する
多孔質膜を用意し、これを介して一対の電極を対向配設
して電気化学素子の仕掛品を形成し、上記電解質塩とこ
の電解質塩のための溶媒とからなる電解液を上記仕掛品
に含浸し、上記可逆的ゲル化剤を電解液中に溶解させ
て、上記可逆的ゾル−ゲル状電解質組成物のゾルとなし
た後、このゾルをゲル化させ、かくして、上記多孔質膜
の細孔中に上記可逆的ゾル−ゲル状電解質組成物のゲル
からなる固体電解質を充填することを特徴とする電気化
学素子の製造方法が提供される。
According to the present invention, there is provided an electrolyte comprising a reversible gelling agent capable of forming a reversible sol-gel electrolyte composition together with an electrolyte salt and a solvent for the electrolyte salt. A porous membrane having pores for a chemical element separator is prepared, and a pair of electrodes are disposed to face each other to form a work in process of the electrochemical element. After impregnating the in-process product with the solvent comprising the solvent of the above, and dissolving the reversible gelling agent in the electrolyte to form a sol of the reversible sol-gel electrolyte composition, A method for producing an electrochemical device is provided, which comprises gelling, and thus, filling the pores of the porous membrane with a solid electrolyte comprising a gel of the reversible sol-gel electrolyte composition.

【0014】[0014]

【発明の実施の形態】本発明において、可逆的ゾル−ゲ
ル状電解質組成物は、可逆的ゲル化剤、電解質塩及びこ
の電解質塩のための溶媒、即ち、電解質塩を溶解する溶
媒、好ましくは、非水(有機)溶媒からなる。このよう
に、可逆的ゲル化剤は、電解質を溶媒に溶解した電解液
に配合するとき、得られる組成物に可逆的なゾル−ゲル
性を付与する物質である。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, a reversible sol-gel electrolyte composition comprises a reversible gelling agent, an electrolyte salt and a solvent for the electrolyte salt, that is, a solvent that dissolves the electrolyte salt, preferably , A non-aqueous (organic) solvent. As described above, the reversible gelling agent is a substance that imparts reversible sol-gel properties to the obtained composition when the electrolyte is mixed with an electrolytic solution dissolved in a solvent.

【0015】即ち、本発明において、可逆的ゲル化剤と
は、電解質塩を溶解させた溶媒、好ましくは、非水溶媒
の溶液(即ち、非水電解液)に配合するとき、得られる
組成物が、これを室温(25℃)よりも高い温度、例え
ば、限定されるものではないが、40〜100℃に加熱
するとき、均一な溶液を形成し、この溶液を室温(25
℃)に冷却するとき、可逆的にゲル状組成物を形成する
物質をいい、原理的には、温度や圧力等の変動に応じて
結合と解離、又は可動性と不動化を可逆的に行なうこと
のできる物質であり、例えば、水素結合、配位結合、フ
ァンデルワールス力等のような分子間又は分子内の相互
作用によって、上記結合と解離、又は可動性と不動化を
可逆的に行なうことができる物質が有用である。
That is, in the present invention, the term “reversible gelling agent” refers to a composition obtained by mixing a solvent in which an electrolyte salt is dissolved, preferably a non-aqueous solvent solution (ie, a non-aqueous electrolyte). However, when heated to a temperature above room temperature (25 ° C.), for example, but not limited to, 40-100 ° C., a uniform solution is formed and the solution is allowed to cool to room temperature (25 ° C.).
° C) means a substance that forms a gel composition reversibly when cooled to, in principle, reversibly binds and dissociates or reversibly mobilizes and immobilizes according to changes in temperature, pressure, etc. A substance capable of reversibly performing the above-mentioned bond and dissociation or mobility and immobilization by intermolecular or intramolecular interactions such as hydrogen bond, coordinate bond, van der Waals force, etc. Materials that can be useful.

【0016】特に、本発明によれば、室温(25℃)よ
りも高い温度域では溶媒に溶解するが、室温では固化し
て、可逆的にゲルを形成することのできるポリマーやオ
リゴマー、特に、分子中にエーテル基や水酸基のような
極性基を有するポリマーやオリゴマーのほか、非水電解
液系では、オイルゲル化剤として知られている一群の物
質が可逆的ゲル化剤として好ましく用いられる。
In particular, according to the present invention, a polymer or oligomer which can be dissolved in a solvent in a temperature range higher than room temperature (25 ° C.) but solidifies at room temperature to form a gel reversibly, In addition to polymers and oligomers having a polar group such as an ether group or a hydroxyl group in the molecule, a group of substances known as oil gelling agents are preferably used as reversible gelling agents in non-aqueous electrolyte systems.

【0017】上記分子中にエーテル基や水酸基のような
極性基を有するポリマーとしては、例えば、ポリエチレ
ングリコール、ポリプロピレングリコール、ポリエチレ
ンプロピレングリコール、ポリビニルアルコール等を挙
げることができる。
Examples of the polymer having a polar group such as an ether group or a hydroxyl group in the molecule include polyethylene glycol, polypropylene glycol, polyethylene propylene glycol, and polyvinyl alcohol.

【0018】オイルゲル化剤は、例えば、「高分子加
工」第45巻第1号第21〜26頁(1996年)に記
載されているように、油類に少量添加することによっ
て、油全体をゼリー状に固めることができる薬剤であっ
て、既に種々のものが知られている。
As described in "Polymer Processing", Vol. 45, No. 1, pp. 21-26 (1996), an oil gelling agent can be used to add a small amount of oil to oils so that the entire oil is added. Various drugs that can be set in a jelly form are already known.

【0019】本発明においては、このように、オイルゲ
ル化剤として知られているものであれば、特に限定され
ることなく、いずれでも、可逆的ゲル化剤として用いる
ことができるが、好ましい具体例として、例えば、12
−ヒドロキシステアリン酸、N−ラウロイル−L−グル
タミン酸−α,γ−ビス−n−ブチルアミド、1,2,3,4
−ジベンジリデン−D−ソルビト−ル、トリベンジリデ
ンソルビトール、ビス(p−メチルベンジリデン)ソル
ビトール、ジアルキルリン酸アルミニウム、2,3 −ビス
−n−ヘキサデシロキシアントラセン、トリアルキル−
シス−1,3,5−シクロヘキサントリカルボキシアミド、
In the present invention, any known oil gelling agent can be used as the reversible gelling agent without any particular limitation. Preferred specific examples For example, 12
-Hydroxystearic acid, N-lauroyl-L-glutamic acid-α, γ-bis-n-butylamide, 1,2,3,4
-Dibenzylidene-D-sorbitol, tribenzylidene sorbitol, bis (p-methylbenzylidene) sorbitol, aluminum dialkylphosphate, 2,3-bis-n-hexadecyloxyanthracene, trialkyl-
Cis-1,3,5-cyclohexanetricarboxamide,

【0020】[0020]

【化1】 Embedded image

【0021】のようなコレステロール誘導体、Cholesterol derivatives such as

【0022】[0022]

【化2】 Embedded image

【0023】のようなシクロヘキサンジアミノ誘導体、A cyclohexanediamino derivative such as

【0024】[0024]

【化3】 Embedded image

【0025】のようなアロファン酸エステル誘導体等を
挙げることができる。
Allophanoic acid ester derivatives and the like can be mentioned.

【0026】本発明において、電解質塩としては、水素
イオン、リチウム、ナトリウム、カリウム等のアルカリ
金属のイオン、カルシウム、ストロンチウム等のアルカ
リ土類金属のイオン、第3級又は第4級アンモニウムイ
オンをカチオン成分とし、塩酸、硝酸、リン酸、硫酸、
テトラフルオロホウ酸、フッ化水素酸、ヘキサフルオロ
リン酸、過塩素酸等の無機酸や、有機カルボン酸、フッ
素置換有機カルボン酸、有機スルホン酸、フッ素置換有
機スルホン酸等の有機酸をアニオン成分とする塩を用い
ることができる。これらのなかでは、特に、アルカリ金
属イオンをカチオン成分とする電解質塩が好ましく用い
られる。
In the present invention, the electrolyte salt may be a hydrogen ion, an ion of an alkali metal such as lithium, sodium or potassium, an ion of an alkaline earth metal such as calcium or strontium, or a tertiary or quaternary ammonium ion. As ingredients, hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid,
Anionic components include inorganic acids such as tetrafluoroboric acid, hydrofluoric acid, hexafluorophosphoric acid, and perchloric acid; and organic acids such as organic carboxylic acids, fluorine-substituted organic carboxylic acids, organic sulfonic acids, and fluorine-substituted organic sulfonic acids. Can be used. Among these, an electrolyte salt containing an alkali metal ion as a cation component is particularly preferably used.

【0027】このようなアルカリ金属イオンをカチオン
成分とする電解質塩の具体例としては、例えば、過塩素
酸リチウム、過塩素酸ナトリウム、過塩素酸カリウム等
の過塩素酸アルカリ金属、テトラフルオロホウ酸リチウ
ム、テトラフルオロホウ酸ナトリウム、テトラフルオロ
ホウ酸カリウム等のテトラフルオロホウ酸アルカリ金
属、ヘキサフルオロリン酸リチウム、ヘキサフルオロリ
ン酸カリウム等のヘキサフルオロリン酸アルカリ金属、
トリフルオロ酢酸リチウム等のトリフルオロ酢酸アルカ
リ金属、トリフルオロメタンスルホン酸リチウム等のト
リフルオロメタンスルホン酸アルカリ金属を挙げること
ができる。
Specific examples of such an electrolyte salt having an alkali metal ion as a cation component include, for example, alkali metal perchlorates such as lithium perchlorate, sodium perchlorate and potassium perchlorate, and tetrafluoroboric acid. Lithium, sodium tetrafluoroborate, alkali metal tetrafluoroborate such as potassium tetrafluoroborate, lithium hexafluorophosphate, alkali metal hexafluorophosphate such as potassium hexafluorophosphate,
Examples thereof include alkali metal trifluoroacetates such as lithium trifluoroacetate and alkali metal trifluoromethanesulfonates such as lithium trifluoromethanesulfonate.

【0028】本発明において、上記電解質塩のための非
水(有機)溶媒としては、用いる電解質塩を溶解するも
のであれば、特に、制約を受けることなく、適宜に選ば
れるが、例えば、エチレンカーボネート、プロピレンカ
ーボネート、ブチレンカーボネート、γ−ブチロラクト
ン等の環状エステル類、テトラヒドロフラン、ジメトキ
シエタン等のエーテル類、ジメチルカーボネート、ジエ
チルカーボネート、エチルメチルカーボネート等の鎖状
エステル類等を挙げることができる。これらは、単独
で、又は2種以上の混合物として用いることができる。
In the present invention, the non-aqueous (organic) solvent for the electrolyte salt is appropriately selected without particular limitation as long as it dissolves the electrolyte salt to be used. Examples include cyclic esters such as carbonate, propylene carbonate, butylene carbonate and γ-butyrolactone, ethers such as tetrahydrofuran and dimethoxyethane, and chain esters such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate. These can be used alone or as a mixture of two or more.

【0029】非水電解液に溶解して有効な可逆的ゾル−
ゲル状電解質組成物を形成するために、可逆的ゲル化剤
の配合量は、それ自体のみならず、用いる電解質塩や溶
媒に応じて、適宜に決定されるが、通常、得られる可逆
的ゾルーゲル状電解質組成物の0.1〜20重量%の範囲
であり、好ましくは、1〜10重量%である。用いるゲ
ル化剤によっては、1〜5重量%の範囲の配合量でも、
十分に有効な可逆的ゾル−ゲル状電解質組成物を形成す
る。
Effective reversible sol dissolved in non-aqueous electrolyte
In order to form a gel electrolyte composition, the amount of the reversible gelling agent is determined not only by itself, but also depending on the electrolyte salt and solvent used, but usually the obtained reversible sol-gel It is in the range of 0.1 to 20% by weight of the solid electrolyte composition, preferably 1 to 10% by weight. Depending on the gelling agent used, even at a blending amount in the range of 1 to 5% by weight,
Form a fully effective reversible sol-gel electrolyte composition.

【0030】非水電解液における電解質塩の配合量も、
それ自体のみならず、用いる可逆的ゲル化剤や溶媒に応
じて適宜に決定されるが、通常、得られる可逆的ゾルー
ゲル状電解質組成物の1〜20重量%の範囲である。
The amount of the electrolyte salt in the non-aqueous electrolyte is also
It is appropriately determined according to the reversible gelling agent and the solvent to be used as well as the solvent itself, but is usually in the range of 1 to 20% by weight of the obtained reversible sol-gel electrolyte composition.

【0031】本発明によれば、このように、非水電解液
に対して少量の可逆的ゲル化剤の配合によって、有効な
可逆的ゾルーゲル状電解質組成物を形成することがで
き、このような可逆的ゾルーゲル状電解質組成物をゲル
化して得られる固体電解質は、可逆的ゲル化剤の配合量
が少ないことから、元の非水電解液と比較して、電導度
の低下が少なく、また、低温での電導度の低下も少ない
ので、電池の充放電特性もすぐれている。
According to the present invention, an effective reversible sol-gel electrolyte composition can be formed by adding a small amount of a reversible gelling agent to a non-aqueous electrolyte as described above. Since the solid electrolyte obtained by gelling the reversible sol-gel electrolyte composition has a small amount of the reversible gelling agent, the decrease in conductivity is less than that of the original non-aqueous electrolyte, and Since the decrease in conductivity at low temperatures is small, the charge and discharge characteristics of the battery are also excellent.

【0032】従って、本発明において、可逆的ゾル−ゲ
ル状電解質組成物は、非水溶媒とこれに溶解させた電解
質塩からなる非水電解液に上記可逆的ゲル化剤を加えて
なり、好ましくは、例えば、40℃以上の温度に加熱、
攪拌することによって、可逆的にゾルを形成し、これを
室温(25℃)に冷却すれば、可逆的にゲルを形成する
ことができる特性を有するものである。
Accordingly, in the present invention, the reversible sol-gel electrolyte composition is preferably obtained by adding the above-mentioned reversible gelling agent to a non-aqueous electrolyte comprising a non-aqueous solvent and an electrolyte salt dissolved therein. Is heated, for example, to a temperature of 40 ° C. or higher,
By stirring, a sol is formed reversibly, and when the sol is cooled to room temperature (25 ° C.), it has a characteristic that a gel can be formed reversibly.

【0033】本発明において、電気化学素子用セパレー
タのための細孔を有する多孔質膜は、このように、電解
質塩を溶解した電解液に溶解させることによって、可逆
的ゾル−ゲル状電解質組成物を形成し得る可逆的ゲル化
剤を細孔を有する多孔質膜に担持させてなるものであ
る。
In the present invention, the porous membrane having pores for a separator for an electrochemical element is formed by dissolving the electrolyte salt in an electrolytic solution to form a reversible sol-gel electrolyte composition. Is carried on a porous membrane having pores.

【0034】本発明において用いる多孔質膜は、前記電
解質塩を溶解するための非水溶媒に溶解せず、電子伝導
性をもたず、電気化学的に安定であれば、特に、限定さ
れることなく、種々のものが用いられるが、なかでも、
ポリエチレン、ポリプロピレン等のポリオレフィン樹脂
や、ポリテトラフルオロエチレン樹脂等のようなフッ素
樹脂からなる多孔質膜が好ましく用いられる。また、ポ
リイミド樹脂やガラス繊維からなる多孔質膜も用いられ
る。
The porous membrane used in the present invention is particularly limited as long as it does not dissolve in a non-aqueous solvent for dissolving the electrolyte salt, does not have electron conductivity, and is electrochemically stable. Without being used, various things are used,
A porous film made of a polyolefin resin such as polyethylene or polypropylene, or a fluororesin such as polytetrafluoroethylene resin is preferably used. Further, a porous film made of polyimide resin or glass fiber is also used.

【0035】このような多孔質膜は、膜厚が10〜20
0μmの範囲にあることが好ましい。膜厚が10μmよ
りも小さいときは、膜強度が不十分であって、セパレー
タとして電気化学素子に組み込んだとき、内部短絡等を
起こすおそれがあり、他方、膜厚が200μmを越える
ときは、電極間距離が大きすぎで、電気化学素子の内部
抵抗を不必要に大きくする。また、多孔質膜は、100
gf以上の突き刺し強度を有することが望ましい。突き
刺し強度が小さすぎるときは、電気化学素子に組み込ん
だとき、電極の面圧に耐えることができず、内部短絡を
起こすおそれがある。
The porous film has a thickness of 10 to 20.
It is preferably in the range of 0 μm. When the film thickness is smaller than 10 μm, the film strength is insufficient, and when incorporated in an electrochemical element as a separator, an internal short circuit may occur. On the other hand, when the film thickness exceeds 200 μm, the electrode The distance is too large, which unnecessarily increases the internal resistance of the electrochemical device. In addition, the porous membrane has a thickness of 100
It is desirable to have a piercing strength of gf or more. If the piercing strength is too low, when incorporated into an electrochemical element, it cannot withstand the surface pressure of the electrode and may cause an internal short circuit.

【0036】多孔質膜の有する細孔の平均孔径は、0.0
1〜10μmの範囲が好ましい。細孔の平均孔径が大き
すぎるときは、電極材料がゲル電解質部分を破壊して内
部短絡を起こすおそれがある。他方、細孔の平均孔径が
小さすぎるときは、このような多孔質膜に電解質を充填
してなるセパレータが十分なイオン伝導性をもたないの
で、得られる電気化学素子が十分な特性をもたない。
The average pore diameter of the pores of the porous membrane is 0.0
A range of 1 to 10 μm is preferred. If the average pore size of the pores is too large, the electrode material may destroy the gel electrolyte portion and cause an internal short circuit. On the other hand, when the average pore diameter of the pores is too small, the separator obtained by filling such a porous membrane with the electrolyte does not have sufficient ionic conductivity, so that the obtained electrochemical element has sufficient characteristics. Not.

【0037】更に、多孔質膜は、高い空孔率を有するこ
とが望ましいが、上述した条件を満たすためには、通
常、25〜90%の範囲であればよい。空孔率が高すぎ
るときは、イオン伝導性の点では支障はないが、膜強度
が低くなり、また、細孔の孔径が大きくなって、上述し
た不具合が生じる。他方、空孔率が低すぎるときは、細
孔の平均孔径が小さすぎるときと同様に、得られるセパ
レータが十分なイオン伝導性をもたないので、得られる
電気化学素子が十分な特性をもたない。
Further, it is desirable that the porous film has a high porosity. However, in order to satisfy the above-mentioned conditions, the range is usually in the range of 25 to 90%. If the porosity is too high, there is no problem in terms of ionic conductivity, but the membrane strength is reduced and the pore diameter is increased, resulting in the above-described problem. On the other hand, when the porosity is too low, as in the case where the average pore diameter of the pores is too small, the obtained separator does not have sufficient ionic conductivity, so that the obtained electrochemical element has sufficient characteristics. Not.

【0038】上記ゲル化剤を多孔質膜に担持させるに
は、特に制限されるものではないが、例えば、ゲル化剤
を適宜の溶媒に溶解させた溶液を調製し、このゲル化剤
溶液を多孔質膜に含浸させた後、その溶媒を多孔質膜か
ら除去すればよい。上記ゲル化剤溶液は、その溶媒、ゲ
ル化剤、温度等によって、ゾルやゲルを形成するので、
ゾルであれば、そのまま多孔質膜に含浸すればよく、ゲ
ルであれば、ゾル化した後、多孔質膜に含浸すればよ
い。また、ゲル化剤溶液を多孔質膜の表面にコーティン
グやスプレー等の手段にて塗布してもよい。このよう
に、ゲル化剤溶液を多孔質膜に担持させた後、溶媒を除
去すれば、ゲル化剤を多孔質膜に担持させることができ
る。
The gelling agent is supported on the porous membrane without any particular limitation. For example, a solution in which the gelling agent is dissolved in an appropriate solvent is prepared, and this gelling agent solution is prepared. After impregnating the porous membrane, the solvent may be removed from the porous membrane. Since the gelling agent solution forms a sol or gel depending on the solvent, the gelling agent, the temperature, etc.,
In the case of a sol, the porous membrane may be impregnated as it is, and in the case of a gel, it may be formed into a sol and then impregnated in the porous membrane. Further, the gelling agent solution may be applied to the surface of the porous membrane by means such as coating or spraying. As described above, if the solvent is removed after the gelling agent solution is supported on the porous membrane, the gelling agent can be supported on the porous membrane.

【0039】ゲル化剤溶液を多孔質膜に含浸した後、多
孔質膜から溶媒を除去するには、通常、多孔質膜を加
熱、乾燥すればよいが、場合によっては、溶媒置換等の
手法を用いてもよい。
After the porous membrane is impregnated with the gelling agent solution, the solvent may be removed from the porous membrane by generally heating and drying the porous membrane. May be used.

【0040】このように、本発明において用いる電気化
学素子用セパレータのための細孔を有する多孔質膜は、
可逆的ゲル化剤を担持しており、従って、このような多
孔質膜を介して一対の電極を対向配設して電気化学素子
の仕掛品を形成し、前記電解質塩とこの電解質塩のため
の溶媒とからなる電解液を上記仕掛品に含浸し、上記可
逆的ゲル化剤を電解液中に溶解させて、上記可逆的ゾル
−ゲル状電解質組成物のゾルとなした後、このゾルをゲ
ル化させることによって、上記多孔質膜の細孔中に上記
可逆的ゾル−ゲル状電解質組成物のゲルからなる固体電
解質を充填し、かくして、セパレータを介して一対の電
極を対向配設してなり、セパレータがその細孔中に固体
電解質が充填されてなる電気化学素子を得ることができ
る。
As described above, the porous membrane having pores for the separator for an electrochemical element used in the present invention is:
It carries a reversible gelling agent, thus forming a work-in-progress of an electrochemical element by arranging a pair of electrodes facing each other via such a porous membrane, and forming the electrolyte salt and the electrolyte salt. After impregnating the in-process product with the solvent comprising the solvent of the above, and dissolving the reversible gelling agent in the electrolyte to form a sol of the reversible sol-gel electrolyte composition, By gelling, the pores of the porous membrane are filled with the solid electrolyte composed of the gel of the reversible sol-gel electrolyte composition, and thus a pair of electrodes are disposed opposite each other via a separator. Thus, an electrochemical element in which the separator is filled with the solid electrolyte in the pores can be obtained.

【0041】より具体的には、例えば、上記セパレータ
のための多孔質膜を電極と積層し、又は共に捲回する等
して組合わせて、多孔質膜を介して一対の電極を対向し
て配設し、これを、例えば、電池外装体内に配置して、
いわば仕掛品を組み立てた後、この外装体内に電解液を
注入し、加熱等の適宜の手段によって、多孔質膜に担持
させた可逆的ゲル化剤を電解液中に溶解させ、かくし
て、外装体中に可逆的ゾル−ゲル電解質組成物を調製
し、その後に冷却して、この可逆的ゾル−ゲル電解質組
成物をゲル化させれば、その細孔中に固体電解質が充填
された多孔質膜からなるセパレータを介して電極が配設
されてなる電気化学素子を生産性よく簡単に得ることが
できる。
More specifically, for example, a porous membrane for the separator is laminated with an electrode or combined by winding together, and a pair of electrodes are opposed to each other via the porous membrane. Arrange, this, for example, placed in the battery outer body,
In other words, after assembling the work-in-progress, an electrolytic solution is injected into the outer package, and the reversible gelling agent supported on the porous membrane is dissolved in the electrolytic solution by appropriate means such as heating, and thus, the outer package is formed. A reversible sol-gel electrolyte composition is prepared therein, and then cooled to gel the reversible sol-gel electrolyte composition, whereby a porous membrane having pores filled with a solid electrolyte is provided. Thus, an electrochemical device having an electrode disposed via a separator made of is easily obtained with good productivity.

【0042】しかも、このようにして得られる電気化学
素子によれば、これに含まれる電解質が固体であるの
で、液漏れを起こすおそれがなく、また、電極が多孔質
材料からなるとき、ゾル状態の電解液は電極の有する空
隙中にも含浸され、ゲル化の後、固体電解質を形成する
ので、電解質と電極との間に十分な接触を確保すること
ができ、その結果、内部抵抗の小さい電気化学素子を与
える。
In addition, according to the electrochemical device obtained in this manner, since the electrolyte contained therein is solid, there is no danger of liquid leakage. Electrolyte is also impregnated into the voids of the electrodes and forms a solid electrolyte after gelation, so that sufficient contact between the electrolyte and the electrodes can be ensured, and as a result, the internal resistance is small. Give an electrochemical device.

【0043】[0043]

【実施例】以下に実施例を挙げて本発明を説明するが、
本発明はこれら実施例により何ら限定されるものではな
い。
EXAMPLES The present invention will be described below with reference to examples.
The present invention is not limited by these examples.

【0044】実施例1 (正極シートの作製)コバルト酸リチウム(LiCoO
2 、平均粒径15μm)、黒鉛粉末及びポリフッ化ビニ
リデン樹脂を重量比85:10:5にて混合し、これを
N−メチル−2−ピロリドンに投入し、攪拌して、固形
分濃度15重量%のスラリーを調製した。塗工機を用い
て、このスラリーを厚さ20μmのアルミニウム箔(集
電体)の表面に厚み200μmに塗布し、80℃で1時
間乾燥し、更に、このアルミニウム箔の裏面にも、上記
スラリーを厚さ20μmに塗布し、乾燥した。次いで、
このように処理したアルミニウム箔を120℃2時間加
熱し、乾燥した後、ロールプレスに通して、厚さ200
μmの正極シートを製作した。
Example 1 (Preparation of positive electrode sheet) Lithium cobaltate (LiCoO
2 , average particle size 15 μm), graphite powder and polyvinylidene fluoride resin were mixed at a weight ratio of 85: 10: 5, and the mixture was added to N-methyl-2-pyrrolidone, and stirred to obtain a solid content concentration of 15 wt. % Slurry was prepared. Using a coating machine, apply this slurry to the surface of a 20 μm-thick aluminum foil (current collector) to a thickness of 200 μm, dry at 80 ° C. for 1 hour, and further apply the slurry to the back of the aluminum foil. Was applied to a thickness of 20 μm and dried. Then
The thus treated aluminum foil was heated at 120 ° C. for 2 hours, dried and passed through a roll press to a thickness of 200 mm.
A μm positive electrode sheet was produced.

【0045】(負極シートの作製)黒鉛粉末とポリフッ
化ビニリデン樹脂とを重量比95:5にて混合し、これ
をN−メチル−2−ピロリドンに投入し、攪拌して、固
形分濃度15重量%のスラリーを調製した。塗工機を用
いて、このスラリーを厚さ20μmの銅箔(集電体)の
表面に厚み200μmに塗布し、80℃で1時間加熱
し、乾燥し、更に、この銅箔の裏面にも、上記スラリー
を厚み200μmに塗布し、80℃で1時間加熱し、乾
燥した。この後、このように処理した銅箔を120℃で
2時間加熱し、乾燥した後、ロールプレスに通して、厚
さ200μmの負極シートを製作した。
(Preparation of Negative Electrode Sheet) Graphite powder and polyvinylidene fluoride resin were mixed at a weight ratio of 95: 5, and this was charged into N-methyl-2-pyrrolidone, and stirred to obtain a solid content of 15% by weight. % Slurry was prepared. Using a coating machine, apply this slurry to a surface of a 20 μm thick copper foil (current collector) to a thickness of 200 μm, heat at 80 ° C. for 1 hour, dry, and further apply The slurry was applied to a thickness of 200 μm, heated at 80 ° C. for 1 hour, and dried. Thereafter, the thus treated copper foil was heated at 120 ° C. for 2 hours, dried, and then passed through a roll press to produce a 200 μm-thick negative electrode sheet.

【0046】(ゲル化剤を担持させた多孔質膜の調製)
70℃のエタノール中に前記式(5)で表わされるゲル
化剤5重量%を溶解させて溶液とし、この溶液中に70
℃で超高分子量ポリエチレン樹脂多孔質膜(膜厚40μ
m、空孔率81%、平均孔径1.5μm)を浸漬した後、
60℃で10分間乾燥して、ゲル化剤を0.7mg/cm
2 の割合で担持させてなる多孔質膜を得た。
(Preparation of porous membrane supporting gelling agent)
5% by weight of the gelling agent represented by the formula (5) is dissolved in ethanol at 70 ° C. to form a solution.
At ultra-high molecular weight polyethylene resin porous film (film thickness 40μ)
m, porosity 81%, average pore size 1.5 μm)
After drying at 60 ° C. for 10 minutes, the gelling agent was added at 0.7 mg / cm.
A porous membrane supported at a ratio of 2 was obtained.

【0047】(電解液の調製)エチレンカーボネートと
プロピレンカーボネートの重量比1:1の混合物からな
る溶媒に、電解質としてヘキサフルオロリン酸リチウム
(LiPF6 )を1mol/L濃度となるように溶解さ
せて、非水電解液とした。
(Preparation of Electrolyte Solution) Lithium hexafluorophosphate (LiPF 6 ) as an electrolyte was dissolved in a solvent composed of a mixture of ethylene carbonate and propylene carbonate at a weight ratio of 1: 1 so as to have a concentration of 1 mol / L. And a non-aqueous electrolyte.

【0048】(電池の製作)上記正極シートを幅58m
m、長さ550mmの寸法に裁断し、負極を幅59m
m、長さ600mmの寸法に裁断し、それぞれの集電体
にリードを取り付けた。これら電極シートと幅60mm
に裁断した上記ゲル化剤を担持させた多孔質膜とを交互
に積層し、これを最も外側に上記多孔質膜が位置するよ
うにコイル状に捲回して円筒とし、最も外側の多孔質膜
を粘着テープにてその内側の多孔質膜上に固定して、電
気化学素子の仕掛品を作製した。この仕掛品をアルミニ
ウム製の電池缶内に挿入し、また、別に、上記仕掛品を
アルミニウム蒸着したポリエチレンテレフタレート樹脂
フィルム製の電池袋内に挿入した。
(Production of Battery) The above positive electrode sheet was 58 m wide.
m, cut into dimensions of 550 mm long, and the negative electrode is 59 m wide
m, and cut to a length of 600 mm, and a lead was attached to each current collector. These electrode sheets and width 60mm
The porous membrane supporting the gelling agent cut into a layer is alternately laminated, and this is wound into a coil shape so that the porous membrane is positioned on the outermost side to form a cylinder, and the outermost porous membrane is formed. Was fixed on the inner porous film with an adhesive tape to prepare a work-in-progress of an electrochemical element. The work-in-progress was inserted into an aluminum battery can, and the work-in-progress was separately inserted into a battery bag made of a polyethylene terephthalate resin film on which aluminum was deposited.

【0049】次いで、前記非水電解液を上記電池缶と電
池袋内にそれぞれ注入し、電池缶の口部に蓋をし、ま
た、電池袋の開口部をヒートシールして封じ、2時間に
わたって85℃に加熱処理した後、室温まで冷却して、
それぞれリチウムイオン二次電池を缶電池及び袋電池と
して得た。
Next, the non-aqueous electrolyte was poured into the battery can and the battery bag, respectively, the mouth of the battery can was covered, and the opening of the battery bag was heat-sealed and sealed for 2 hours. After heating to 85 ° C, cool to room temperature,
Lithium ion secondary batteries were obtained as can batteries and bag batteries, respectively.

【0050】実施例2 80℃のγ−ブチロラクトン中に前記式(5)で表わさ
れるゲル化剤10重量%を溶解させて溶液とし、この溶
液中に80℃で超高分子量ポリエチレン樹脂多孔質膜
(膜厚40μm、空孔率81%、平均孔径1.5μm)を
浸漬した後、室温まで冷却して、γ−ブチロラクトンゲ
ルを担持させた多孔質膜を得た。次いで、この多孔質膜
を室温でエタノール中に2分間浸漬し、γ−ブチロラク
トンをエタノールで置換して、上記ゲル化剤を析出さ
せ、多孔質膜中に担持させた。次いで、このように処理
した多孔質膜を10分間、60℃で加熱処理し、エタノ
ールを蒸発揮散させて、ゲル化剤を1.0mg/cm2
割合で担持させてなる多孔質膜を得た。
Example 2 10% by weight of the gelling agent represented by the above formula (5) was dissolved in γ-butyrolactone at 80 ° C. to form a solution, and the ultra-high molecular weight polyethylene resin porous membrane was formed at 80 ° C. (Film thickness: 40 μm, porosity: 81%, average pore size: 1.5 μm), and then cooled to room temperature to obtain a porous membrane supporting γ-butyrolactone gel. Next, this porous membrane was immersed in ethanol at room temperature for 2 minutes, and the gelling agent was precipitated by replacing γ-butyrolactone with ethanol, and was carried on the porous membrane. Next, the porous membrane thus treated is heated at 60 ° C. for 10 minutes to evaporate ethanol to obtain a porous membrane having a gelling agent loaded thereon at a rate of 1.0 mg / cm 2. Was.

【0051】このようにして、ゲル化剤を担持させた多
孔質膜を調製した以外は、実施例1と同様にして、リチ
ウムイオン二次電池をそれぞれ缶電池及び袋電池として
得た。
A lithium ion secondary battery was obtained as a can battery and a bag battery, respectively, in the same manner as in Example 1 except that a porous film carrying a gelling agent was prepared in this manner.

【0052】実施例3 80℃のγ−ブチロラクトン中にゲル化剤として12−
ヒドロキシステアリン酸10重量%を溶解させて溶液と
し、この溶液中に80℃で超高分子量ポリエチレン樹脂
多孔質膜(膜厚40μm、空孔率81%、平均孔径1.5
μm)を浸漬した後、室温まで冷却して、γ−ブチロラ
クトンゲルを担持させた多孔質膜を得た。次いで、この
多孔質膜を室温でエタノール中に2分間浸漬し、γ−ブ
チロラクトンをエタノールで置換して、上記ゲル化剤を
析出させ、多孔質膜中に担持させた。次いで、このよう
に処理した多孔質膜を10分間、60℃で加熱処理し、
エタノールを蒸発揮散させて、ゲル化剤を1.2mg/c
2 の割合で担持させてなる多孔質膜を得た。
Example 3 12- as a gelling agent in γ-butyrolactone at 80 ° C.
Hydroxystearic acid (10% by weight) is dissolved to form a solution. In this solution, an ultra-high molecular weight polyethylene resin porous membrane (film thickness: 40 μm, porosity: 81%, average pore diameter: 1.5)
μm), and cooled to room temperature to obtain a porous membrane supporting γ-butyrolactone gel. Next, this porous membrane was immersed in ethanol at room temperature for 2 minutes, and the gelling agent was precipitated by replacing γ-butyrolactone with ethanol, and was carried on the porous membrane. Next, the porous membrane thus treated is heated at 60 ° C. for 10 minutes,
Ethanol is evaporated and the gelling agent is 1.2mg / c
A porous membrane supported at a rate of m 2 was obtained.

【0053】このようにして、ゲル化剤を担持させた多
孔質膜を調製した以外は、実施例1と同様にして、リチ
ウムイオン二次電池をそれぞれ缶電池及び袋電池として
得た。
A lithium ion secondary battery was obtained as a can battery and a bag battery, respectively, in the same manner as in Example 1 except that the porous membrane supporting the gelling agent was prepared in this manner.

【0054】実施例4 ポリエチレン樹脂製多孔質膜(膜厚27μm、空孔率4
5%)にゲル化剤を0.4mg/cm2 の割合で担持させ
た多孔質膜を調製した以外は、実施例1と同様にして、
リチウムイオン二次電池をそれぞれ缶電池及び袋電池と
して得た。
Example 4 A polyethylene resin porous membrane (film thickness 27 μm, porosity 4
5%) and a porous membrane having a gelling agent supported at a rate of 0.4 mg / cm 2 was prepared in the same manner as in Example 1.
Lithium ion secondary batteries were obtained as can batteries and bag batteries, respectively.

【0055】実施例5 ポリプロピレン樹脂製不織布(膜厚150μm、空孔率
50%)にゲル化剤を0.9mg/cm2 の割合で担持さ
せた多孔質膜を調製した以外は、実施例1と同様にし
て、リチウムイオン二次電池をそれぞれ缶電池及び袋電
池として得た。
Example 5 Example 1 was repeated except that a porous film was prepared by supporting a gelling agent at a rate of 0.9 mg / cm 2 on a polypropylene resin nonwoven fabric (film thickness 150 μm, porosity 50%). In the same manner as in the above, lithium ion secondary batteries were obtained as can batteries and bag batteries, respectively.

【0056】比較例1 実施例1において、ゲル化剤を担持させた多孔質膜に代
えて、超高分子量ポリエチレン樹脂多孔質膜(膜厚40
μm、空孔率81%、平均孔径1.5μm)を用いた以外
は、実施例1と同様にして、リチウムイオン二次電池を
それぞれ缶電池及び袋電池として得た。
COMPARATIVE EXAMPLE 1 In Example 1, a porous film of ultra-high molecular weight polyethylene resin (film thickness of 40) was used in place of the porous film supporting the gelling agent.
μm, porosity 81%, average pore diameter 1.5 μm) in the same manner as in Example 1, except that lithium ion secondary batteries were obtained as can batteries and bag batteries, respectively.

【0057】比較例2 実施例1において、ゲル化剤を担持させた多孔質膜に代
えて、ポリエチレン樹脂多孔質膜(膜厚27μm、空孔
率45%)を用いた以外は、実施例1と同様にして、リ
チウムイオン二次電池をそれぞれ缶電池及び袋電池とし
て得た。
Comparative Example 2 Example 1 was repeated except that a porous polyethylene resin membrane (thickness: 27 μm, porosity: 45%) was used in place of the porous membrane supporting the gelling agent. In the same manner as in the above, lithium ion secondary batteries were obtained as can batteries and bag batteries, respectively.

【0058】比較例3 実施例1において、ゲル化剤を担持させた多孔質膜に代
えて、ポリプロピレン樹脂製不織布(膜厚150μm、
空孔率45%)を用いた以外は、実施例1と同様にし
て、リチウムイオン二次電池をそれぞれ缶電池及び袋電
池として得た。
Comparative Example 3 In Example 1, a nonwoven fabric made of a polypropylene resin (150 μm in film thickness) was used instead of the porous film carrying the gelling agent.
A lithium ion secondary battery was obtained as a can battery and a bag battery, respectively, in the same manner as in Example 1 except that porosity was 45%.

【0059】比較例4 過塩素酸リチウム(LiClO4 )をプロピレンカーボ
ネートに1mol/L濃度に溶解して非水電解液とし、
これにポリエチレンオキシド(Aldrich製、平均
分子量900000)を30重量%加え、加熱し、溶解
した後、ステンレス鋼板上にキャスト、冷却して、シー
トとし、これを真空中、60℃で2時間加熱、乾燥し
て、シート状ゲル電解質を得た。
Comparative Example 4 Lithium perchlorate (LiClO 4 ) was dissolved in propylene carbonate at a concentration of 1 mol / L to obtain a non-aqueous electrolyte.
To this was added 30% by weight of polyethylene oxide (manufactured by Aldrich, average molecular weight 900000), heated and melted, then cast and cooled on a stainless steel plate to form a sheet, which was heated at 60 ° C. in vacuum for 2 hours. After drying, a sheet-like gel electrolyte was obtained.

【0060】このようにして得たゲル電解質のシートを
ゲル化剤を担持させた多孔質膜に代えて、実施例1と同
様にして、電極シートと交互に積層し、これを最も外側
にセパレータが位置するように捲回して円筒とした。最
も外側のシート状電解質を粘着テープにてその内側のシ
ート状電解質上に固定して、電気化学素子を作製した。
この電気化学素子をアルミニウム製の電池缶内に挿入
し、また、別に、上記仕掛品をアルミニウム蒸着したポ
リエチレンテレフタレート樹脂製フィルムの電池袋内に
挿入して、それぞれリチウムイオン二次電池を得た。
The gel electrolyte sheet obtained in this manner was replaced with a porous membrane supporting a gelling agent, and alternately laminated with an electrode sheet in the same manner as in Example 1. And wound into a cylinder. The outermost sheet electrolyte was fixed on the inner sheet electrolyte with an adhesive tape to produce an electrochemical element.
This electrochemical element was inserted into a battery can made of aluminum, and the above-mentioned in-process product was separately inserted into a battery bag of a film made of polyethylene terephthalate resin on which aluminum was vapor-deposited, thereby obtaining lithium ion secondary batteries.

【0061】このようにして得たそれぞれの電池の内部
抵抗を測定すると共に、外装体に直径1mmの孔を空
け、その孔を下向きにし、30分間放置して、放置の前
後の重量を測定して、電解質(液)の漏れの有無を調べ
た。結果を表1に示す。電池の内部抵抗は、LCRメー
ター(国洋電機(株)製KC−546)を用いて、周波
数10kHzにて測定した。
The internal resistance of each of the batteries thus obtained was measured, and a hole having a diameter of 1 mm was made in the outer package, and the hole was turned downward, left for 30 minutes, and the weight before and after the storage was measured. Then, the presence or absence of leakage of the electrolyte (liquid) was examined. Table 1 shows the results. The internal resistance of the battery was measured at a frequency of 10 kHz using an LCR meter (KC-546 manufactured by Kokuyo Electric Co., Ltd.).

【0062】表1の結果から、本発明の方法による電池
においては、電池の内部抵抗が小さく、また、液漏れが
ない。
From the results shown in Table 1, in the battery according to the method of the present invention, the internal resistance of the battery is small and there is no liquid leakage.

【0063】[0063]

【表1】 [Table 1]

【0064】[0064]

【発明の効果】本発明の方法によれば、以上のように、
可逆的ゲル化剤を担持させてなる電気化学素子用セパレ
ータのための多孔質膜を用意し、これを介して一対の電
極を対向配設して電気化学素子の仕掛品を形成し、電解
質塩とこの電解質塩のための溶媒とからなる電解液を上
記仕掛品に含浸し、上記可逆的ゲル化剤を電解液中に溶
解させて、可逆的ゾル−ゲル状電解質組成物のゾルとな
した後、このゾルをゲル化させて、上記多孔質膜の細孔
中に上記可逆的ゾル−ゲル状電解質組成物のゲルからな
る固体電解質を充填し、かくして、電気化学素子を得る
ので、多孔質膜の有する細孔に固体電解質が充填されて
なる電気化学素子を生産性よく、簡単に製造することが
できる。このような電気化学素子は、例えば、電池、コ
ンデンサ、キャパシタ等の製造に好適に用いることがで
きる。
According to the method of the present invention, as described above,
A porous membrane for an electrochemical element separator supporting a reversible gelling agent is prepared, and a pair of electrodes are disposed opposite to each other to form a work-in-progress of the electrochemical element. And the electrolyte comprising a solvent for the electrolyte salt was impregnated into the work-in-process, and the reversible gelling agent was dissolved in the electrolyte to form a sol of a reversible sol-gel electrolyte composition. Thereafter, the sol is gelled, and the pores of the porous membrane are filled with a solid electrolyte composed of a gel of the reversible sol-gel electrolyte composition, thus obtaining an electrochemical element. An electrochemical device in which the solid electrolyte is filled in the pores of the membrane can be easily manufactured with high productivity. Such an electrochemical device can be suitably used, for example, for manufacturing batteries, capacitors, capacitors, and the like.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 10/04 H01G 9/02 311 (72)発明者 喜井 敬介 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 Fターム(参考) 5H028 AA06 BB03 BB15 CC08 EE06 5H029 AJ14 AK03 AL06 AM16 CJ02 CJ23 CJ28 DJ13 EJ12 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 10/04 H01G 9/02 311 (72) Inventor Keisuke Kii 1-1-1 Shimohozumi, Ibaraki-shi, Osaka No. 2 Nitto Denko Corporation F term (reference) 5H028 AA06 BB03 BB15 CC08 EE06 5H029 AJ14 AK03 AL06 AM16 CJ02 CJ23 CJ28 DJ13 EJ12

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】電解質塩とこの電解質塩のための溶媒と共
に可逆的ゾル−ゲル状電解質組成物を形成し得る可逆的
ゲル化剤を担持させてなる電気化学素子用セパレータの
ための細孔を有する多孔質膜を用意し、これを介して一
対の電極を対向配設して電気化学素子の仕掛品を形成
し、上記電解質塩とこの電解質塩のための溶媒とからな
る電解液を上記仕掛品に含浸し、上記可逆的ゲル化剤を
電解液中に溶解させて、上記可逆的ゾル−ゲル状電解質
組成物のゾルとなした後、このゾルをゲル化させ、かく
して、上記多孔質膜の細孔中に上記可逆的ゾル−ゲル状
電解質組成物のゲルからなる固体電解質を充填すること
を特徴とする電気化学素子の製造方法。
1. A pore for a separator for an electrochemical device, comprising a reversible gelling agent capable of forming a reversible sol-gel electrolyte composition together with an electrolyte salt and a solvent for the electrolyte salt. Prepare a porous membrane having a pair of electrodes facing each other to form a work-in-progress of an electrochemical element, and deposit an electrolytic solution comprising the electrolyte salt and a solvent for the electrolyte salt on the work-in-process. After the product is impregnated, the reversible gelling agent is dissolved in an electrolytic solution to form a sol of the reversible sol-gel electrolyte composition, the sol is gelled, and thus the porous membrane A method for producing an electrochemical device, characterized by filling a pore of the above with a solid electrolyte comprising a gel of the reversible sol-gel electrolyte composition.
【請求項2】可逆的ゾル−ゲル状電解質組成物が加熱す
ることによってゲルからゾルに変化し、冷却することに
よってゾルからゲルに変化するものである請求項1に記
載の電気化学素子の製造方法。
2. The production of an electrochemical device according to claim 1, wherein the reversible sol-gel electrolyte composition changes from a gel to a sol by heating, and changes from a sol to a gel by cooling. Method.
【請求項3】可逆的ゲル化剤がオイルゲル化剤である請
求項1に記載の電気化学素子の製造方法。
3. The method for producing an electrochemical device according to claim 1, wherein the reversible gelling agent is an oil gelling agent.
【請求項4】電気化学素子が電池素子である請求項1か
ら3のいずれかに記載の方法。
4. The method according to claim 1, wherein the electrochemical device is a battery device.
【請求項5】電気化学素子がコンデンサ素子又はキャパ
シタ素子である請求項1から3のいずれかに記載の方
法。
5. The method according to claim 1, wherein the electrochemical device is a capacitor device or a capacitor device.
JP35820199A 1999-12-16 1999-12-16 Method of manufacturing electrochemical element Pending JP2001176554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35820199A JP2001176554A (en) 1999-12-16 1999-12-16 Method of manufacturing electrochemical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35820199A JP2001176554A (en) 1999-12-16 1999-12-16 Method of manufacturing electrochemical element

Publications (1)

Publication Number Publication Date
JP2001176554A true JP2001176554A (en) 2001-06-29

Family

ID=18458058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35820199A Pending JP2001176554A (en) 1999-12-16 1999-12-16 Method of manufacturing electrochemical element

Country Status (1)

Country Link
JP (1) JP2001176554A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100440930B1 (en) * 2001-11-24 2004-07-21 삼성에스디아이 주식회사 Method for preparing a separator and lithium secondary battery using the same
US7189478B2 (en) 2002-09-27 2007-03-13 Tdk Corporation Lithium secondary battery
WO2010041396A1 (en) * 2008-10-06 2010-04-15 パナソニック株式会社 Oxygen pump, method for manufacturing oxygen pump, and storing warehouse comprising oxygen pump
JP2012064569A (en) * 2010-08-18 2012-03-29 Asahi Kasei E-Materials Corp Lithium ion secondary battery
JP2013254634A (en) * 2012-06-06 2013-12-19 Asahi Kasei Corp Lithium ion secondary battery manufacturing method, and component for lithium ion secondary battery
WO2014059127A1 (en) * 2012-10-10 2014-04-17 Nthdegree Technologies Worldwide Inc. Printed energy storage device
US9397341B2 (en) 2012-10-10 2016-07-19 Nthdegree Technologies Worldwide Inc. Printed energy storage device
US9786926B2 (en) 2013-07-17 2017-10-10 Printed Energy Pty Ltd Printed silver oxide batteries
US9825305B2 (en) 2012-07-18 2017-11-21 Printed Energy Pty Ltd Diatomaceous energy storage devices
US10221071B2 (en) 2012-07-18 2019-03-05 Printed Energy Pty Ltd Diatomaceous energy storage devices
US10396365B2 (en) 2012-07-18 2019-08-27 Printed Energy Pty Ltd Diatomaceous energy storage devices
CN110283465A (en) * 2018-03-19 2019-09-27 Abb瑞士股份有限公司 The capacitor of insulation composition with display thermal reversibility oil to gel conversion

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100440930B1 (en) * 2001-11-24 2004-07-21 삼성에스디아이 주식회사 Method for preparing a separator and lithium secondary battery using the same
US7381500B2 (en) 2001-11-24 2008-06-03 Samsung Sdi Co., Ltd. Method for preparing a lithium secondary battery comprising a multi-phase separator and lithium secondary battery made using the same
US7189478B2 (en) 2002-09-27 2007-03-13 Tdk Corporation Lithium secondary battery
WO2010041396A1 (en) * 2008-10-06 2010-04-15 パナソニック株式会社 Oxygen pump, method for manufacturing oxygen pump, and storing warehouse comprising oxygen pump
JP2012064569A (en) * 2010-08-18 2012-03-29 Asahi Kasei E-Materials Corp Lithium ion secondary battery
JP2013254634A (en) * 2012-06-06 2013-12-19 Asahi Kasei Corp Lithium ion secondary battery manufacturing method, and component for lithium ion secondary battery
US11063265B2 (en) 2012-07-18 2021-07-13 Printed Energy Pty Ltd Diatomaceous energy storage devices
US10770733B2 (en) 2012-07-18 2020-09-08 Printed Energy Pty Ltd Diatomaceous energy storage devices
US11962017B2 (en) 2012-07-18 2024-04-16 Printed Energy Pty Ltd Diatomaceous energy storage devices
US11673811B2 (en) 2012-07-18 2023-06-13 Printed Energy Pty Ltd Diatomaceous energy storage devices
US9825305B2 (en) 2012-07-18 2017-11-21 Printed Energy Pty Ltd Diatomaceous energy storage devices
US11637292B2 (en) 2012-07-18 2023-04-25 Printed Energy Pty Ltd Diatomaceous energy storage devices
US11066306B2 (en) 2012-07-18 2021-07-20 Printed Energy Pty Ltd Diatomaceous energy storage devices
US10109864B2 (en) 2012-07-18 2018-10-23 Printed Energy Pty Ltd Diatomaceous energy storage devices
US10221071B2 (en) 2012-07-18 2019-03-05 Printed Energy Pty Ltd Diatomaceous energy storage devices
US10396365B2 (en) 2012-07-18 2019-08-27 Printed Energy Pty Ltd Diatomaceous energy storage devices
US10020516B2 (en) 2012-10-10 2018-07-10 Printed Energy Pty Ltd Printed energy storage device
US10658679B2 (en) 2012-10-10 2020-05-19 Printed Energy Pty Ltd Printed energy storage device
US10686197B2 (en) 2012-10-10 2020-06-16 Printed Energy Pty Ltd Printed energy storage device
WO2014059127A1 (en) * 2012-10-10 2014-04-17 Nthdegree Technologies Worldwide Inc. Printed energy storage device
US9397341B2 (en) 2012-10-10 2016-07-19 Nthdegree Technologies Worldwide Inc. Printed energy storage device
US11502311B2 (en) 2012-10-10 2022-11-15 Printed Energy Pty Ltd Printed energy storage device
US9917309B2 (en) 2012-10-10 2018-03-13 Printed Energy Pty Ltd Printed energy storage device
US9520598B2 (en) 2012-10-10 2016-12-13 Nthdegree Technologies Worldwide Inc. Printed energy storage device
US10673077B2 (en) 2013-07-17 2020-06-02 Printed Energy Pty Ltd Printed silver oxide batteries
US9786926B2 (en) 2013-07-17 2017-10-10 Printed Energy Pty Ltd Printed silver oxide batteries
CN110283465A (en) * 2018-03-19 2019-09-27 Abb瑞士股份有限公司 The capacitor of insulation composition with display thermal reversibility oil to gel conversion
US11657973B2 (en) 2018-03-19 2023-05-23 Hitachi Energy Switzerland Ag Capacitor with insulation composition showing thermo-reversible oil-to-gel-transition

Similar Documents

Publication Publication Date Title
US7311994B2 (en) Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith
CA2545174C (en) Functional polymer film-coated electrode and electrochemical device using the same
JP4108981B2 (en) Hybrid polymer electrolyte, lithium secondary battery including the same, and method for producing the same
CN105470564A (en) Solid electrolyte membrane, preparation method of solid electrolyte membrane and lithium ion battery
KR20100133390A (en) Cathode materials for lithium batteries
CN106328992A (en) Lithium ion battery and preparation method thereof
JP6153124B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2014035836A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
CN105190810A (en) Lithium ion capacitor and method for charging and discharging same
JP2001176554A (en) Method of manufacturing electrochemical element
JP2014010977A (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same
CN112615111A (en) High-liquid-retention self-repairing diaphragm, preparation method thereof and lithium ion battery
JP3724960B2 (en) Solid electrolyte and electrochemical device using the same
CN110034301B (en) Rechargeable battery and method of manufacturing the same
JP3587982B2 (en) Polymer solid electrolyte and lithium secondary battery and electric double layer capacitor using the same
JP2001176553A (en) Method of manufacturing electrochemical element
JP4601114B2 (en) Thin film electrolyte
JP2001176479A (en) Porous film for electrochemical element separator
JP6068819B2 (en) Method for producing positive electrode for non-aqueous electrolyte secondary battery
WO2014006973A1 (en) Electrode for electricity storage devices, electricity storage device using same, and method for producing same
JP2001110405A (en) Gel high-molecular solid electrolyte battery and method for manufacturing the same
JP4161437B2 (en) Lithium battery
JP2002203602A (en) Electrolyte component holding separator, its way of use and its manufacturing
JP2001297626A (en) Reversible sol-gel electrolyte and electrochemical device using the same
JP2002203533A (en) Gelatinizer carrying separator and its utilization and its manufacture