WO2010035633A1 - 光情報記録装置 - Google Patents

光情報記録装置 Download PDF

Info

Publication number
WO2010035633A1
WO2010035633A1 PCT/JP2009/065657 JP2009065657W WO2010035633A1 WO 2010035633 A1 WO2010035633 A1 WO 2010035633A1 JP 2009065657 W JP2009065657 W JP 2009065657W WO 2010035633 A1 WO2010035633 A1 WO 2010035633A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
light
information
recording
information recording
Prior art date
Application number
PCT/JP2009/065657
Other languages
English (en)
French (fr)
Inventor
真一 立田
昌孝 白土
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Publication of WO2010035633A1 publication Critical patent/WO2010035633A1/ja
Priority to US13/069,620 priority Critical patent/US8305863B2/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00772Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track on record carriers storing information in the form of optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/083Disposition or mounting of heads or light sources relatively to record carriers relative to record carriers storing information in the form of optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/128Modulators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/2645Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
    • G03H1/265Angle multiplexing; Multichannel holograms

Definitions

  • the present invention relates to optical information recording for recording and reproducing information as a hologram.
  • holographic memory recording media volume recording type high-density optical recording media using holography
  • recording / reproducing apparatuses for holographic memory recording media have been developed for practical use. .
  • Non-Patent Document 1 A general multiplexing method is disclosed in Non-Patent Document 1, for example.
  • angle multiplex recording is performed while the relative angle between the reference beam and the medium is changed by a certain angle step, and each recording angle has a certain size defined by the apparatus.
  • the page data of (the number of modulation pixels) is recorded.
  • Higher recording density may be achieved by changing the size and shape of the page data for each recording angle. When all the pixels in the page data are recorded at the same angle step as in the prior art, this leaves room for achieving a higher recording density.
  • the present invention has been made in view of the above, and an object thereof is to provide an optical information recording apparatus capable of realizing a higher recording density.
  • the optical information recording apparatus carries the irradiation light emitted from the light source through a plurality of modulation regions, thereby supporting the irradiation light with information.
  • the partial information light is focused on an optical information recording medium having an information recording layer and a spatial light modulator that converts the partial information light into a plurality of partial information lights, and the reference light intersects the partial information light and the information recording layer.
  • An optical mechanism for irradiating the optical information recording medium a drive unit for driving the optical information recording medium or the optical mechanism, and controlling the drive unit, and switching each modulation area of the plurality of modulation areas And a controller that emits the irradiation light from the light source and performs angle multiplex recording of the information on the information recording layer.
  • FIG. 1 is a diagram illustrating a main configuration of an optical system of a recording / reproducing apparatus.
  • FIG. 2 is a diagram illustrating an example of a square data pattern.
  • FIG. 3 is a schematic diagram for explaining the RS angle.
  • FIG. 4 is a diagram showing the relationship between angle selectivity and the intensity of diffracted light.
  • FIG. 5 is a schematic diagram illustrating a division state of the spatial light modulator 101.
  • FIG. 6 is a diagram illustrating a ⁇ y angle step with respect to region 1 and region 2.
  • FIG. 7 is a diagram illustrating the ⁇ y angle step for region 1 and region 2.
  • FIG. 8 is a flowchart showing a procedure of recording / reproducing processing.
  • FIG. 1 is a diagram illustrating a main configuration of an optical system of a recording / reproducing apparatus.
  • FIG. 2 is a diagram illustrating an example of a square data pattern.
  • FIG. 3 is a schematic diagram for explaining the RS angle.
  • FIG. 9 is a schematic diagram illustrating an example of division of the spatial light modulator 101.
  • FIG. 10 is a diagram illustrating an example of the ⁇ y angle step with respect to the region 1 and the region 2.
  • FIG. 11 is a schematic diagram illustrating an example in which the region 1 is divided into two regions in the vertical direction.
  • FIG. 12 is a flowchart illustrating a procedure of information recording processing.
  • FIG. 13 is a flowchart illustrating the procedure of a ⁇ y angle step calculation process.
  • FIG. 1 is a schematic diagram illustrating a main configuration of an optical system of a recording / reproducing apparatus for a holographic memory according to a first embodiment.
  • the information light 111 and the reference light 112 are incident on the recording medium 110 so as to overlap with each other in a hologram recording layer of the recording medium 110 as a holographic memory recording medium through separate objective lenses and the like.
  • a light beam type optical system optical mechanism
  • the optical system is not limited to the two-beam method, and is a coaxial method in which the information light and the reference light are incident on the recording medium 110 through the same objective lens and the like so as to share the same central axis from the same direction. (Collinear method) may be adopted as the optical system.
  • FIG. 1 in order to avoid complication, a light source of information light and reference light, an optical path from the light source (not shown) to the spatial light modulator 101, a shutter, a wavelength plate, a polarizing beam splitter, etc.
  • the optical system is omitted, and the information light 111 and the reference light 112 are incident on the recording medium 110 and the reproduction light transmitted through the recording medium 110 is detected by the imager 120. Only the necessary optical path is shown. Further, only the outline of the angle, positional relationship, size, etc. of each optical component is shown for convenience of explanation.
  • the recording / reproducing apparatus of the present embodiment is configured in the same manner as an apparatus that realizes a general two-beam angle multiplexing system.
  • the information beam 111 and the reference beam 112 are emitted from a single laser light source (not shown).
  • the light beam emitted from the laser light source is subjected to shaping, enlargement / reduction, branching by a polarization beam splitter (not shown), and the like, as necessary, with a collimator lens (not shown). It is desirable that the optical path length from the branching to the hologram recording layer of the medium is substantially equal for both the information light 111 and the reference light 112, and further, the difference in optical path length is smaller than the coherence length of the laser light source. desirable.
  • the reference light is irradiated onto the recording medium 110 as a parallel light flux.
  • recording optical systems of lenses 102, 103, and 104 are disposed between the spatial light modulator 101 and the recording medium 110.
  • the lens 104 is an objective lens.
  • the information light 111 is modulated by the page data by the spatial light modulator 101, passes through the lenses 102 and 103, and then collected by the lens 104 and recorded.
  • the medium 110 is irradiated.
  • the lens 101 and the lens 102 may be omitted, and any optical system may be used as long as the Fourier transform image of the spatial light modulator 101 is formed in the recording medium 110 or in the vicinity of the recording medium 110 during information recording.
  • the arrangement of the optical components of the recording optical system is not limited to the configuration shown in FIG. 1.
  • optical components such as lenses, mirrors, and shutters may be appropriately added and arranged.
  • the reference light 112 is a parallel light beam, but the present invention is not limited to this.
  • the laser light incident on the spatial light modulator 101 is two-dimensionally intensity-modulated by the spatial light modulator 101 and converted into information light 111.
  • the spatial light modulator 101 is composed of a large number of bright spots and dark spots, and has a data pattern which is a binary pattern (light / dark pattern for each pixel) obtained by digitally encoding information to be recorded and incorporating error correction.
  • the page data of this data pattern is formed by the system controller 130, and the information light 111 intensity-modulated by the page data is irradiated onto the hologram recording layer of the recording medium 110, whereby a Fourier transform image is formed on or near the hologram recording layer. Is formed.
  • the spatial light modulator 101 is generally an element such as a liquid crystal element or a so-called DMD (digital micromirror device) that can change the transmittance, phase, reflection angle, polarization direction, and the like for each pixel by an electrical signal. Can be used.
  • DMD digital micromirror device
  • the recording medium 110 is fixedly disposed on a stage (not shown) that is driven by an actuator 140 as a driving unit so that the hologram recording layer is positioned at the focal position of the objective lens 104.
  • the hologram recording layer is not necessarily located at the focal position of the objective lens 104, and the position of the hologram recording layer and the focal position may be shifted.
  • the recording medium 110 of the present embodiment is a transmissive recording medium, and includes two opposing substrates and a hologram recording layer sandwiched between two substrates and stacked on the substrate.
  • the recording medium 110 is not limited to this.
  • the recording medium 110 can be configured as a reflective medium, and can be configured as a medium structure different from the above-described structure as long as the hologram can be recorded and reproduced. May be.
  • the medium shape may be any disk shape, square card shape, cylindrical shape, spherical shape, etc., as long as the medium can record and reproduce the hologram in some form.
  • Each of the two substrates is formed of a light transmissive material such as glass, plastic, polycarbonate, acrylic resin or the like.
  • the material of the substrate is not limited to these.
  • the material of the substrate does not need to be transmissive to laser light of all wavelengths, and may be transmissive to the wavelength of the laser light to be used.
  • the hologram recording layer is formed from a hologram recording material.
  • the hologram recording material is a material in which a hologram is formed by causing the information beam 111 of the laser beam and the reference beam 112 to interfere with each other.
  • a photopolymer is generally used as a hologram recording material.
  • a photopolymer is a photosensitive material that utilizes photopolymerization of a polymerizable compound (monomer), and contains a monomer, a photopolymerization initiator, and a porous matrix that plays a role of maintaining volume before and after recording as main components. However, it is not limited to these.
  • the hologram recording material for example, a material capable of recording and reproducing a hologram, such as dichromated gelatin or a photorefractive crystal, can be used.
  • the thickness of the hologram recording layer is preferably about 100 ⁇ m or more in order to obtain a diffraction efficiency sufficient for signal reproduction and a sufficient angle resolution for angle multiplexing.
  • hologram recording on the hologram recording layer of the recording medium 110 is performed as follows. First, an interference fringe is formed by irradiating the medium with the information beam 111 and the reference beam 112 so as to overlap in the hologram recording layer. At this time, if the hologram recording material is a photopolymer, the photopolymerization initiator in the photopolymer absorbs and activates photons, and activates and accelerates the polymerization of the monomer in the bright interference fringes.
  • the monomer When the polymerization of the monomer proceeds and the monomer present in the bright part of the interference fringe is consumed, the monomer is moved and supplied from the dark part of the interference fringe to the bright part, resulting in a density difference between the bright part and the dark part of the interference fringe pattern. Thereby, refractive index modulation corresponding to the intensity distribution of the interference fringe pattern is formed, and hologram recording is performed.
  • an xyz orthogonal coordinate system fixed to the hologram recording layer of the recording medium 110 is considered.
  • the z-axis is perpendicular to the thickness direction of the recording medium 110 (ie, the direction perpendicular to the medium surface), ie, the hologram
  • An x-axis and a y-axis are orthogonal to each other in the surface direction of the recording layer medium surface.
  • ⁇ y angle steps are a unit angle for rotating the recording medium 110 (or optical component) by ⁇ y during ⁇ y multiple recording.
  • ⁇ y multiplex recording is performed on the recording medium 110, but the present invention is not limited to this.
  • the recording medium 110 may be configured to perform ⁇ z multiplex recording in which information is recorded while rotating the recording medium 110 by ⁇ z angle steps around the z axis ( ⁇ z rotation), or ⁇ y multiplex recording and ⁇ z multiplex recording are used in combination.
  • a recording method can also be adopted.
  • a shutter (not shown) is closed by an instruction from the system controller 130 to shut off the information light 111 and allow only the reference light 112 to enter the recording medium 110.
  • the reproduction light 113 is emitted from the recording medium 110 and enters the image pickup device 120 after passing through the lenses 105, 106, and 107 as the reproduction optical system.
  • the imaging device 120 receives the reproduction light 113, acquires a reproduction image by the reproduction light, converts it into an electric signal, and sends it to the system controller 130.
  • the imager 120 can be a two-dimensional image sensor such as a CCD or CMOS.
  • the imaging device 120 is not limited to such a configuration.
  • the imaging device 120 can be configured to scan and use a one-dimensional linear image sensor or use an imaging tube.
  • the reproducing optical system when reproducing information, if a reproducing optical system is employed in which a real image reproduced from the recording medium 110 is projected onto the image pickup device 120, the reproducing optical system is configured by omitting the lens 106 and the lens 107. May be. Further, the arrangement of the optical components of the reproducing optical system is not limited to the above, and for example, optical components such as lenses and mirrors may be appropriately added and arranged.
  • the reference light 112 is arranged so as to be incident on the recording medium 110 from the direction opposite to the reference light 112 at the time of recording, even if the reference light 112 is arranged to be incident on the medium from the same direction as the reference light 112 at the time of recording. Also good. In particular, in the latter case, the lenses 105, 106, and 107 are not necessary. Instead, the reproduction light 113 reproduced from the recording medium 110 passes through at least the lens 104 in the direction opposite to the information light 111 to obtain a reproduction image. It is preferable to configure the optical system so that the This method is called “reproduction using phase conjugation”, and can relax the conditions necessary for the objective lens 104.
  • FIG. 2 is an explanatory diagram showing an example of a square data pattern (page data) displayed on the spatial light modulator 101 during information recording.
  • the spatial light modulator 101 spatially modulates the information light 111 with such a data pattern.
  • data is arranged at the center, and sync marks 201 used for alignment at the time of reproduction are arranged at the four corners.
  • the arrangement is not necessarily limited to this arrangement.
  • the sync marks 201 may be mixed in the data area, and the data area may have a shape other than a square. That is, the sync mark 201 and the data area may have any pattern and shape.
  • the information light 111 modulated by the spatial light modulator 101 is irradiated to the recording medium 110 as focused light by the objective lens 104 in FIG. 1, so that the angle with the reference light 112 is within the luminous flux of the information light 111. It is different. That is, the partial information light, which is the partial light constituting the information light 111 emitted from each pixel of the data pattern of the spatial light modulator 101, passes through different parts of the objective lens 104 and enters the recording medium 110 at each angle. Therefore, the angles of the partial information light and the reference light 112 are different. Hereinafter, this angle is referred to as an RS angle.
  • FIG. 3 is a schematic diagram for explaining the RS angle.
  • FIG. 3 shows the RS angles of the reference beam 112 and the information beam 111 (partial information beam) when the numerical aperture (NA) is 0.65.
  • NA numerical aperture
  • the difference between the maximum RS angle that is the maximum among the RS angles between the information beam 111 and the reference beam 112 and the minimum RS angle is about 81 degrees.
  • the RS angle is one of the factors that determine the angle selectivity. The smaller the RS angle, the worse (wider) the angle selectivity if other conditions are the same.
  • the angle selectivity is an index indicating the relationship between the diffracted light intensity and the incident angle of the reference light, and the relative angle between the reference light 111 and the recording medium 110 (incidence of the reference light 112).
  • FIG. 4 is a graph showing the relationship between angle selectivity and diffracted light intensity.
  • the angle selectivity is poor (wide) (graph 402)
  • the incident angle of the reference beam 112 is better than when the angle selectivity is good (narrow) (graph 401).
  • the decrease in the intensity of diffracted light is small.
  • the angle at which the diffracted light intensity is first minimized is referred to as a first null angle.
  • a decrease in diffracted light intensity means that the reproduced image becomes dark. That is, of the partial information light that has passed through the data pattern of the spatial light modulator 101, the reproduced image of the partial information light having a small RS angle is incident on the reference light 112 compared to the reproduced image of the partial information light having a large RS angle. Even if the angle is changed greatly, it is difficult to darken. In other words, a reproduced image of partial information light with a large RS angle becomes darker even with a small change in the incident angle of reference light than a reproduced image of partial information light with a small RS angle. If the reproduced image becomes sufficiently dark, crosstalk will not occur even if new data is recorded. Crosstalk means that data recorded at an adjacent angle leaks into a reproduced image at the time of reproduction.
  • a portion having a good angle selectivity ie, a partial information light having a large RS angle
  • a portion having a poor angle selectivity ie, a portion having a small RS angle.
  • Angle multiplex recording or reproduction can be performed with a smaller ⁇ y angle step with respect to (information light).
  • the spatial light modulator 101 is divided into a plurality of modulation areas containing a certain number of pixels according to the magnitude of the RS angle, that is, according to the angle selectivity, It is preferable to perform angle multiplex recording at different ⁇ y angle steps for each. That is, angle multiplex recording should be performed with different ⁇ y angle steps for partial information light passing through each modulation area.
  • the modulation area of the spatial light modulator 101 is divided into two will be described as an example.
  • a plurality of partial information lights having different angles with the reference light pass through the modulation area. It may be divided into three or more areas.
  • the recording density on the recording medium 110 can be improved. This is because each divided area can be recorded at an optimum angle step.
  • a recording density of twice or more can be obtained depending on conditions.
  • the number of divisions is increased, a burden is required for signal processing, image processing, and the like by the increased amount, and the recording material of the hologram recording layer is required to have a higher recording capacity by the increased number of divisions. For this reason, it is necessary to determine the optimum number of divisions of the modulation area in consideration of signal processing and image processing capabilities and recording material recording capabilities.
  • the spatial light modulator 101 is divided into a region 1 through which partial information light having the largest RS angle passes and a region 2 through which partial information light having the smallest RS angle passes.
  • FIG. 5 is a schematic diagram illustrating a division state of the spatial light modulator 101 according to the first embodiment. That is, the region 1 is a region with good angle selectivity, and the region 2 is a region with poor angle selectivity. The boundary line (partition line) between the region 1 and the region 2 has substantially the same angle selectivity.
  • FIG. 5 shows a state in which the spatial light modulator 101 is viewed from the upper right direction of FIG.
  • the line dividing the region is not limited to a straight line as shown in FIG. 5, but may be an arc or a free curve.
  • the partial information light that has passed through the region 1 is subjected to angle multiplex recording with a small ⁇ y angle step, and the partial information light that has passed through the region 2 is subjected to angle multiplex recording with a large ⁇ y angle step.
  • Data for each modulation area is formed by the system controller 130 each time the area is switched.
  • the maximum first null angle among the first null angles of the pixels of the spatial light modulator 101 included in the region 1 is F1
  • the maximum first null angle of the pixels of the spatial light modulator 101 included in the region 2 is the first one.
  • the 1 null angle is F2
  • the relationship is F1 ⁇ F2.
  • the ⁇ y angle step of angle recording / reproduction in region 1 is S1
  • the ⁇ y angle step of angle recording / reproduction in region 2 is S2
  • F1 ⁇ S1 and F2 ⁇ S2 in order to prevent crosstalk. Is preferred. This is not necessarily the case when crosstalk is allowed, but in any case, it is preferable from the viewpoint of angle-multiplexed recording density that S1 ⁇ S2 according to whether the angle selectivity is good or bad.
  • FIG. 6 is an explanatory diagram for illustrating the ⁇ y angle step for the region 1 and the ⁇ y angle step for the region 2.
  • N M is a natural number of 1 or more, N ⁇ M
  • the present invention is not limited to this.
  • S1 ⁇ N S2 ⁇ M (N, M is a natural number of 1 or more, N ⁇ M)
  • recording and reproduction are performed at the same angle. You may comprise so that it may not shift.
  • the system controller 130 may be configured to control recording and reproduction so that S1 ⁇ N ⁇ S2 ⁇ M.
  • the ⁇ y angle step of ⁇ y multiple recording needs to be larger than the angle that can be reproduced separately from adjacent pages.
  • the diffraction efficiency when shifted by a small angle ⁇ y from the position where the information is recorded is proportional to the square of the sinc function, and the angle at which the intensity of the reproduction light first becomes 0 (first null angle) is described in the technical literature (Bell Syst. (Tech. J. 48, 2909- (1969)), it is represented by the formula (1).
  • the first null angle is denoted by ⁇ y.
  • is the wavelength in vacuum
  • n is the refractive index of the medium
  • t is the thickness of the recording medium 110
  • ⁇ s is the projection angle (xz) in the recording medium 110 with respect to the xz plane of the incident angle of the information light 111. Azimuth from the z-axis in the plane)
  • ⁇ r is the projection angle in the recording medium 110 with respect to the xz plane of the incident angle of the reference beam 112 (azimuth from the z-axis in the xz plane).
  • the first reference beam has an azimuth angle ⁇ s and an elevation angle of ⁇ r
  • the reference beam 112 has an azimuth angle ⁇ s and an elevation angle of ⁇ r.
  • the first null angle ⁇ y is calculated in advance using equation (2), and the calculated first null angle ⁇ y is determined as the ⁇ y angle step of ⁇ y multiple recording and stored in the memory of the system controller 130 or the like.
  • the system controller 130 reads the ⁇ y angle step from the memory at the time of information recording, and sends a command to the actuator 140 to perform the ⁇ y rotation of the recording medium 110 by the ⁇ y angle step to perform ⁇ y multiple recording. .
  • the first null angle ⁇ y may be calculated by other methods besides the calculation method using the equation (2).
  • another calculation method should be applied.
  • first null angle ⁇ y differs depending on the pixels in the page or in the divided areas 1 and 2, a larger first null angle ⁇ y is used.
  • the ⁇ y angle step and the first null angle ⁇ y are set to the same angle.
  • the ⁇ y angle step may be determined based on the first null angle ⁇ y.
  • the present invention is not limited to this embodiment.
  • the ⁇ y angle step may be a constant multiple of the first null angle ⁇ y.
  • the ⁇ y angle step may be the sum of the first null angle ⁇ y and a constant angle.
  • the magnification and angle difference with respect to the first null angle ⁇ y are changed according to the incident angle of the reference beam 112, and the ⁇ y angle step You may comprise so that it may determine.
  • FIG. 8 is a flowchart showing a procedure of information recording / reproducing processing according to the first embodiment.
  • the system controller 130 places modulation data in both the area 1 and the area 2 of the spatial light modulator 101 (step S11). Then, the system controller 130 drives the actuator 140 so that the reference light 112 is incident on the recording medium 110 at an incident angle ⁇ , rotates the recording medium 110 by ⁇ y, emits laser light from the semiconductor laser device, and outputs the region 1. Recording or reproduction of area 2 is performed (step S12).
  • the system controller 130 places the modulation data only in the area 1 (step S13). Then, the recording medium 110 is rotated by ⁇ y so that the reference beam 112 is incident on the recording medium 110 at an incident angle ⁇ + S1, and recording or reproduction of the area 1 is performed (step S14).
  • the system controller 130 places modulation data only in the area 2 (step S15). Then, the recording medium 110 is rotated by ⁇ y so that the reference beam 112 is incident on the recording medium 110 at an incident angle ⁇ + S2, and recording or reproduction of the area 2 is performed (step S16).
  • the system controller 130 places the modulation data only in the area 1 (step S17). Then, the recording medium 110 is rotated by ⁇ y so that the reference beam 112 is incident on the recording medium 110 at an incident angle ⁇ + 2 ⁇ S1, and recording or reproduction of the area 1 is performed (step S18).
  • the system controller 130 places the modulation data in the areas 1 and 2 (step S19). Then, the recording medium 110 is rotated by ⁇ y so that the reference light 112 is incident on the recording medium 110 at an incident angle ⁇ + 3 ⁇ S1, and recording or reproduction of the area 1 and the area 2 is performed (step S20).
  • step S21 If recording / reproduction has not been completed for all data (step S21: No), the new incident angle of the reference beam 112 is set to ⁇ + 3 ⁇ S1 (step S22), and the processing from step S13 to S20 is repeatedly executed. . Then, when recording / reproduction of all data is completed, the processing is completed.
  • the modulation region of the spatial light modulator 101 is divided into the region 1 having good angle selectivity and the region 2 having poor angle selectivity, and the angle multiplexing is performed by changing the ⁇ y angle step for each region. Since recording or reproduction is performed, a higher recording density can be realized for the recording medium 110. Note that the number of pixels included in the divided areas may be different for each area.
  • the shape of the divided area is not limited to a square shape, and may be configured as a polygonal shape or a circular shape. Further, the number of regions and the shape of the regions may be changed according to the recording / reproducing angle.
  • the modulation region of the spatial light modulator 101 may be divided into a region 2 that is the entire modulation region and a region 1 that is a partial region thereof.
  • the region 2 is a region with poor angle selectivity as compared to the region 1.
  • FIG. 11 is a schematic diagram showing an example of the spatial light modulator 101 by further dividing the region 1 into two regions 1-1 and 1-2 in the vertical direction.
  • the system controller 130 reproduces the information recorded on the recording medium 110 by the information light that has passed through the area 1-1, and has recorded the information on the recording medium 110 by the information light that has passed through the area 1-2.
  • the information reproduction processing is configured to be performed separately and in parallel. Thereby, there is an advantage that the load for the reproduction process is averaged and the efficiency of the reproduction process can be improved.
  • the size, shape, and number of divisions of the divided areas at this time are preferably configured so that the processing amount of each area per unit angle is approximately equal.
  • the divided area includes the sync mark 201 in the area. Furthermore, it is preferable that each of the divided areas is processed independently for information reproduction when information is reproduced. With this configuration, it is possible to perform a simpler and more reliable reproduction process, and it is possible to easily cope with reproduction in an order different from that at the time of information recording.
  • the first null angles F1 and F2 are not necessarily constant, and may be different depending on the recording / reproducing angle.
  • the angle steps S1 and S2 may be made variable, and recording / reproduction may be performed at different angle steps depending on the recording / reproduction angle.
  • the area division itself is made variable, for example, at a recording / reproduction angle at which the angle selectivity is deteriorated as a whole, the area division is made fine at a recording / reproduction angle at which the angle selectivity is improved overall. If the area division is rough, any area is always recorded / reproduced at almost constant angle steps at any recording / reproduction angle, and a simple and high-speed recording / reproduction operation can be realized.
  • the value of the ⁇ y angle step at the time of the ⁇ y rotation is determined in advance.
  • the value of the ⁇ y angle step is dynamically determined to rotate the ⁇ y. Used for.
  • the optical configuration of the recording / reproducing apparatus of the second embodiment is the same as that of the first embodiment described with reference to FIG.
  • the division configuration of the modulation region of the spatial light modulator 101 is the same as that of the first embodiment.
  • the information recording process by the system controller 130 is different from the first embodiment.
  • FIG. 12 is a flowchart showing a procedure of information recording processing according to the second embodiment.
  • the system controller 130 places modulation data in both the area 1 and the area 2 of the spatial light modulator 101 (step S31). Then, the system controller 130 drives the actuator 140 so that the reference light 112 is incident on the recording medium 110 at an incident angle ⁇ , rotates the recording medium 110 by ⁇ y, emits laser light from the semiconductor laser device, and outputs the region 1. Recording or reproduction of the area 2 is performed (step S32).
  • the system controller 130 places the modulation data only in the area 1 (step S33). Then, the system controller 130 calculates the ⁇ y angle step S1a (step S34). Then, the recording medium 110 is rotated by ⁇ y so that the reference beam 112 is incident on the recording medium 110 at an incident angle ⁇ + S1a, and recording of the region 1 is performed (step S35).
  • the system controller 130 places the modulation data only in the area 2 (step S36). Then, the system controller 130 calculates the ⁇ y angle step S2 (step S37). Then, the recording medium 110 is rotated by ⁇ y so that the reference beam 112 is incident on the recording medium 110 at an incident angle ⁇ + S2, and recording of the region 2 is performed (step S38).
  • the system controller 130 places the modulation data only in the area 1 (step S39). Then, the system controller 130 calculates the ⁇ y angle step S1b (step S40). Then, the recording medium 110 is rotated by ⁇ y so that the reference beam 112 is incident on the recording medium 110 at an incident angle ⁇ + S1a + S1b, and recording of the region 1 is performed (step S41).
  • the system controller 130 places the modulation data in the area 1 and the area 2 (step S42). Then, the system controller 130 calculates the ⁇ y angle step S1c (step S43). Then, the recording medium 110 is rotated by ⁇ y so that the reference beam 112 is incident on the recording medium 110 at an incident angle ⁇ + S1a + S1b + S1c, and recording of the area 1 and the area 2 is performed (step S44).
  • step S45 If recording / reproduction has not been completed for all data (step S45: No), the new incident angle of the reference beam 112 is set to ⁇ + S1a + S1b + S1c (step S46), and the processing from step S33 to S44 is repeatedly executed. Then, when recording / reproduction of all data is completed, the processing is completed.
  • FIG. 13 is a flowchart showing the procedure of the ⁇ y angle step calculation process.
  • the system controller 130 performs a reproduction process while rotating the recording medium 110 by ⁇ y by a minute angle according to a command to the actuator 140 (step S51). Then, the first null angle of each pixel in region 1 or region 2 (region 1 in steps S34, S40, and S43, region 2 in steps S37 and S43) is obtained from the reproduction intensity of the reproduction light, and the first null angle of each pixel is obtained. Among these, the maximum first null angle is detected (step S52). Then, the system controller 130 calculates the ⁇ y angle step from the maximum first null angle using the equation (2) (step S53).
  • the first null angle is obtained from the reproduction light and the ⁇ y angle step is dynamically calculated from the first null angle in the information recording processing stage. For this reason, compared with the case where the ⁇ y angle step calculated in advance is used, even when the first null angle changes due to a temperature change, an error in the hologram recording layer thickness, or the like, the first null angle can be appropriately detected. As a result, the ⁇ y angle step can be calculated appropriately. As a result, according to the present embodiment, information can be recorded and reproduced with higher accuracy.
  • the ⁇ y angle step is calculated based on the first null angle, but the present invention is not limited to this.
  • the ⁇ y angle step may be calculated based on the second null angle, or the ⁇ y angle step may be calculated based on the angle at which the reproduction light intensity is half the peak.
  • an angle at which the reproduction light intensity is maximized may be obtained from a reproduced image obtained by changing the ⁇ y angle by a small amount, and this may be used as a ⁇ y angle step.
  • the angle multiplexing angle step around the axis other than the y axis and the shift step at the time of shift multiplexing can be obtained by the same method.
  • the shift step may be calculated based on the diameter of the information light 111 in the hologram recording layer, the diameter of the information light 111 at the focus position, and the like.
  • the shift step may be determined based on an angle at which the reproduction light intensity is minimized by changing the shift amount while reproducing the recorded data.
  • the recording medium 110 is rotated by ⁇ y and ⁇ y multiplex recording is performed.
  • ⁇ y multiplex recording may be performed by changing the irradiation angle of the reference beam 112.
  • the method for determining the ⁇ y angle step for each region is the same as in the first and second embodiments.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Holo Graphy (AREA)

Abstract

 光源から出射された照射光を複数の変調領域を通過させることにより、照射光を複数の部分情報光に変換する空間光変調器101と、ホログラフィックメモリ記録媒体110に部分情報光を集光させるとともに、参照光を部分情報光と情報記録層で交差するようにホログラフィックメモリ記録媒体110に照射させる光学機構102,103,104と、ホログラフィックメモリ記録媒体110を駆動するアクチュエータ140と、ホログラフィックメモリ記録媒体110を駆動させるとともに、複数の変調領域の各変調領域を切り換えて情報を載せながら、光源から照射光を出射させ情報の角度多重記録を行う制御部130とを備えた。

Description

光情報記録装置
 本発明は、情報をホログラムとして記録再生する光情報記録に関する。
 近年、ホログラフィを用いた体積記録型の高密度光記録媒体(以下、「ホログラフィックメモリ記録媒体」という。)およびホログラフィックメモリ記録媒体の記録再生装置の開発が実用化に向けて行われている。
 ホログラフィックメモリ記録媒体の記録密度を増大させる多重記録方式としては、角度多重記録方式や、シフト多重記録など種々の方式が考案されている。一般的な多重方式は例えば非特許文献1に開示されている。
 いずれにしても角度多重記録は、参照光と媒体との間の相対的な角度を、ある角度ステップで変化させながら行うものであり、それぞれの記録角度においてその装置で規定された一定の大きさ(変調ピクセル数)のページデータを記録するものである。特許文献1に示されるように記録角度に応じて角度ステップを変化させることは検討されてきたが、高密度化のために記録角度に応じてページデータの大きさや形状を変化させることは考慮されてこなかった。
特開2006-154163号公報
H.J.Coufal,D.Psaltis,G.T.Sincerbox,"Holographic Data Storage",Springer,2000.
 記録角度ごとにページデータの大きさや形状を変化させると、より高い記録密度を達成できる場合がある。従来のようにページデータ内のすべての画素を同一の角度ステップで記録した場合には、さらに高い記録密度の達成できる余地を残してしまっているということになる。
 本発明は、上記に鑑みてなされたものであって、より高い記録密度を実現することができる光情報記録装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる光情報記録装置は、光源から出射された照射光を複数の変調領域を通過させることにより、前記照射光を、情報を担持する複数の部分情報光に変換する空間光変調器と、情報記録層を有する光情報記録媒体に前記部分情報光を集光させるとともに、前記参照光を前記部分情報光と前記情報記録層で交差するように前記光情報記録媒体に照射させる光学機構と、前記光情報記録媒体または前記光学機構を駆動する駆動部と、前記駆動部を制御するとともに、前記複数の変調領域の各変調領域を切り換えて情報を載せながら、前記光源から前記照射光を出射させ、前記情報記録層に前記情報の角度多重記録を行う制御部と、を備えたことを特徴とする。
 本発明によれば、光情報記録媒体に対して、より高い記録密度を実現することができるという効果を奏する。
図1は、記録再生装置の光学系の主要構成を示す図。 図2は、正方形のデータパターンの一例を示す図。 図3は、RS角を説明するための模式図。 図4は、角度選択性と回折光の強度の関係を示す図。 図5は、空間光変調器101の分割の状態を示す模式図。 図6は、領域1および領域2に対するθy角度ステップを示す図。 図7は、領域1および領域2に対するθy角度ステップを示す図。 図8は、記録再生処理の手順を示すフローチャート。 図9は、空間光変調器101の分割の例を示す模式図。 図10は、領域1および領域2に対するθy角度ステップの例を示す図。 図11は、領域1を縦方向の2つの領域分割した例を示す模式図。 図12は、情報の記録処理の手順を示すフローチャート。 図13は、θy角度ステップの算出処理の手順を示すフローチャート。
 以下に添付図面を参照して、この発明にかかる光情報記録装置の最良な実施の形態を詳細に説明する。
(実施の形態1)
 図1は、実施の形態1にかかるホログラフィックメモリの記録再生装置の光学系の主要構成を示す模式図である。本実施の形態では、情報光111と参照光112は、別々の対物レンズ等を経てホログラフックメモリ記録媒体としての記録媒体110のホログラム記録層において重なるように記録媒体110に入射させる方式である二光束方式の光学系(光学機構)を採用している。ただし、光学系は、二光束方式に限定されるものではなく、情報光と参照光を同一の対物レンズ等を経て同一方向から同一の中心軸を共有するように記録媒体110に入射させる同軸方式(コリニア方式)を光学系として採用してもよい。
 また、図1では、煩雑さを避けるために、情報光および参照光の光源や、光源(不図示)から空間光変調器101に至るまでの光路や、シャッター、波長板、偏光ビームスプリッタ等の光学系の図示を省略し、情報光111と参照光112が記録媒体110に入射して、記録媒体110を透過した再生光が撮像器120で検出されるまでの、本実施の形態の説明に必要な光路のみを示している。また、各光学部品それぞれの角度や位置関係、大きさなども説明の都合上、概略のみを示している。
 本実施の形態の記録再生装置は一般的な二光束角度多重方式を実現する装置と同様に構成される。情報光111および参照光112は、単一のレーザ光源(不図示)から出射される。レーザ光源から出射された光束は、必要に応じてコリメータレンズ(不図示)による整形、拡大・縮小、偏光ビームスプリッタ(不図示)による分岐などが施される。分岐されてから媒体のホログラム記録層にいたるまでの光路長はいずれの情報光111も参照光112も概略等しいことが望ましく、さらには、レーザ光源の持つコヒーレンス長よりも光路長の差が小さいほうが望ましい。
 本実施の形態にかかる記録再生装置では、図1に示すように、参照光は平行光束として記録媒体110に照射される。空間光変調器101と記録媒体110との間に、レンズ102、103、104の記録光学系が配置されている。レンズ104は対物レンズであり、記録媒体110への情報の記録時には、情報光111は空間光変調器101でページデータにより変調され、レンズ102、103を透過した後にレンズ104によって集光されて記録媒体110に照射される。なお、レンズ101、レンズ102を省略した構成としてもよく、情報記録時に空間光変調器101のフーリエ変換像が記録媒体110あるいは記録媒体110近傍に形成されるような光学系であればよい。かかる範囲であれば、記録光学系の各光学部品の配置は、図1に示した構成に限定されるものではなく、例えば、レンズやミラー、シャッターといった光学部品などを適宜追加して配置してもよい。また、本実施の形態では、参照光112を平行光束としているが、これに限定されるものではない。
 空間光変調器101に入射したレーザ光は、空間光変調器101により、2次元的に強度変調されて情報光111に変換される。空間光変調器101は、多数の明点と暗点から構成され、記録すべき情報をデジタル符号化し、エラー訂正を織り込んだ2値化パターン(画素ごとの明暗パターン)であるデータパターンを有する。このデータパターンのページデータはシステムコントローラ130により形成され、ページデータにより強度変調された情報光111は、記録媒体110のホログラム記録層に照射されることにより、ホログラム記録層またはその近傍にフーリエ変換像が形成される。
 空間光変調器101は、一般的に、液晶素子やいわゆるDMD(デジタル・マイクロミラー・デバイス)など、電気信号により画素ごとの透過率、位相、反射角度、偏光方向などを変化させることができる素子を利用することができる。
 記録媒体110は、対物レンズ104の焦点位置にホログラム記録層が位置するように、駆動部としてのアクチュエータ140で駆動するステージ(不図示)に固定配置されている。
 但し、必ずしも対物レンズ104の焦点位置にホログラム記録層が位置することに限定されるものではなく、ホログラム記録層の位置と焦点位置がずれて配置されていてもよい。
 本実施の形態の記録媒体110は、透過型の記録媒体であり、対向する2つの基板、2つの基板との間に挟持されて基板上に積層されたホログラム記録層とを含んでいる。ただし、記録媒体110は、これに限定されるものではなく、例えば、反射型の媒体として構成することができ、またホログラムが記録再生できる構造であれば、上述の構造と異なる媒体構造として構成してもよい。例えば、媒体形状も円板型、四角いカード型、円柱型、球形などいかなるものであっても、何らかの形でホログラムが記録再生できる媒体であればよい。
 2つの基板のそれぞれは、ガラス、プラスチック、ポリカーボネート、アクリル樹脂等の光透過性を有する材質で形成される。ただし、基板の材質は、これらに限定されるものではない。例えば、基板の材質は、全波長のレーザ光に対して透過性を有する必要はなく、使用するレーザ光の波長に対する透過性を有すればよい。
 ホログラム記録層は、ホログラム記録材料から形成されている。ホログラム記録材料は、レーザ光の情報光111と参照光112とを干渉させてホログラムが形成される材料である。ホログラム記録材料としては、一般にはフォトポリマーを用いる。フォトポリマーは、重合性化合物(モノマー)の光重合を利用した感光材料であり、主成分としてモノマー、光重合開始剤、及び記録前後での体積保持の役割を担う多孔質状のマトリクスを含有するのが一般的であるが、これらに限定されるものではない。ホログラム記録材料として、例えば、重クロム酸ゼラチンやフォトリフラクティブ結晶など、ホログラムの記録再生が可能な材料を用いることができる。また、ホログラム記録層の厚さは、信号再生に十分な回折効率と、角度多重の際に十分な角度分解能を得るために100μm程度以上とすることが好ましい。
 このような光学機構により、記録媒体110のホログラム記録層へのホログラム記録は、次のように行われる。まず、情報光111と参照光112をホログラム記録層中で重なるように媒体に照射して干渉縞を形成する。この時、ホログラム記録材料がフォトポリマーであれば、フォトポリマー中の光重合開始剤がフォトンを吸収して活性化し、干渉縞明部のモノマーの重合を発動・促進させる。モノマーの重合が進行して干渉縞明部に存在するモノマーが消費されると、干渉縞暗部から明部にモノマーが移動供給され、結果、干渉縞パターンの明部と暗部に密度差が生じる。これにより、干渉縞パターンの強度分布に応じた屈折率変調が形成されホログラム記録が行われる。
 ここで、本実施の形態では、記録媒体110のホログラム記録層に固定したxyz直交座標系を考える。情報光111および参照光112によるホログラム記録層の媒体面における記録スポットを原点として、記録媒体110の厚み方向(すなわち、媒体面に垂直な方向)にz軸を、それに直交する方向、すなわち、ホログラム記録層の媒体面の面方向に互いに直交するx軸とy軸をとる。
 そして、本実施の形態では、システムコントローラ130からの指令により、アクチュエータ140で記録媒体110を、上記y軸周り(面内軸周り)にθy角度ステップずつ回転(θy回転)させながら情報を記録するθy多重記録を行っている。ここで、θy角度ステップは、θy多重記録の際に、記録媒体110(あるいは光学部品)をθy回転させる単位角度である。なお、本実施の形態では、記録媒体110に対してθy多重記録を行っているが、これに限定されるものではない。例えば、記録媒体110を、z軸周りにθz角度ステップずつ回転(θz回転)させながら情報を記録するθz多重記録を行うように構成したり、あるいは、θy多重記録とθz多重記録とを併用した記録方式を採用することもできる。
 記録媒体110の再生時は、システムコントローラ130からの指令等によりシャッター(不図示)を閉状態にして情報光111を遮断し、参照光112のみを記録媒体110に入射させる。このとき、記録媒体110から再生光113が出射し、再生光学系としてのレンズ105、106、107を通過した後に撮像器120に入射する。撮像器120では、かかる再生光113を受光して再生光による再生像を取得して電気信号に変換し、システムコントローラ130に送出する。
 撮像器120には、CCDやCMOSなどの2次元イメージセンサを用いることができる。ただし、撮像器120としては、かかる構成に限定されるものではない。例えば、撮像器120として、1次元のリニアイメージセンサを走査して用いたり、撮像管を用いるように構成することもできる。
 また、情報の再生時には、記録媒体110から再生される像の実像が撮像器120に投影されるような再生光学系を採用すれば、レンズ106、レンズ107を省略して再生光学系を構成してもよい。また、再生光学系の各光学部品の配置は上記に限定されるものではなく、例えば、レンズやミラー等の光学部品などを適宜追加して配置してもよい。
 また、参照光112は、記録時の参照光112と同じ向きから媒体に入射するように配置されても、記録時の参照光112と反対の向きから記録媒体110に入射するように配置してもよい。特に後者の場合には、レンズ105,106,107が不要となり、その代わりに、記録媒体110から再生される再生光113が少なくともレンズ104を情報光111と逆向きに通過して再生像が得られるように光学系を構成することが好ましい。この方法は、位相共役を利用した再生といい、対物レンズ104に必要な条件を緩和することができる。
 次に、本実施の形態の空間光変調器101と角度多重記録について詳述する。図2は、情報記録時に空間光変調器101に表示される正方形のデータパターン(ページデータ)の一例を示す説明図である。空間光変調器101は、このようなデータパターンにより、情報光111を空間的に変調する。図2において、中央部にはデータが、四隅には再生時の位置合わせ等に使用されるシンクマーク201が配置されているが、必ずしもこの配置に限られるものではない。例えば、シンクマーク201がデータ領域中に混在していてよく、また、データ領域が正方形以外の形状であってもよい。すなわち、シンクマーク201やデータ領域は、いずれのパターン、形状であってもよい。
 空間光変調器101によって変調された情報光111は、図1における対物レンズ104で集束光となって記録媒体110に照射されるため、参照光112との間の角度が情報光111の光束内で異なる。すなわち、空間光変調器101のデータパターンの各画素から出射した情報光111を構成する部分光である部分情報光はそれぞれ対物レンズ104の異なる部位を通過し、それぞれの角度で記録媒体110に入射することになり、各部分情報光と参照光112との角度がそれぞれ異なる。これ以降、この角度をRS角と呼ぶ。
 図3は、RS角を説明するための模式図である。図3では、開口数(NA)が0.65の場合の参照光112と情報光111(内の部分情報光)のRS角の状態を示している。図3の例に示すように、情報光111と参照光112との間のRS角のうち最大となる最大RS角と、最小となると最小RS角との差は約81度となる。
 RS角は、角度選択性を決める要素の一つであり、RS角が小さければ小さいほど、他の条件が同じであれば、角度選択性は悪く(広く)なる。ここで、角度選択性とは、回折光強度と参照光の入射角との間の関係を示す指標であり、参照光111と記録媒体110との間の相対的な角度(参照光112の入射角)を、情報記録時の角度から変化させると、その変化した角度に応じて再生光(参照光の回折光)の強度が変化する性質をいう。
 図4は、角度選択性と回折光の強度の関係を示すグラフである。図4に示すように、角度選択性が悪い(広い)場合(符号402のグラフ)は、角度選択性が良好な(狭い)場合(符号401のグラフ)に比べて、参照光112の入射角が同じでも回折光強度の低下が小さい。ここで、図4に示すように、回折光強度が最初に極小となる角度を第一ヌル角度という。
 回折光強度の低下は再生像が暗くなることを意味する。つまり、空間光変調器101のデータパターンを通過した部分情報光のうち、RS角の小さい部分情報光の再生像は、RS角の大きい部分情報光の再生像に比べて、参照光112の入射角を大きく変化させても暗くなりにくい。言い換えると、RS角の大きい部分情報光の再生像は、RS角の小さい部分情報光の再生像に比べて、参照光の入射角の小さな変化でも暗くなる。再生像が充分に暗くなれば、新たなデータを記録してもクロストークが発生しない。クロストークとは隣接角度で記録したデータが再生時の再生像に漏れ込むことをいう。
 従って、空間光変調器101のデータパターンのうち、角度選択性の良好な部分(すなわち、RS角の大きい部分情報光)に対しては、角度選択性の悪い部分(すなわち、RS角の小さい部分情報光)に対してより小さなθy角度ステップで角度多重記録または再生を行うことができる。
 このため、本実施の形態では、空間光変調器101を、RS角の大きさに応じて、すなわち角度選択性に応じて、ある程度の画素数を内包する複数の変調領域に分割し、変調領域ごとに異なるθy角度ステップで、角度多重記録を行うことが好ましい。すなわち、各変調領域を通過する部分情報光に対して異なるθy角度ステップで角度多重記録を行うべきである。
 なお、以下の説明では空間光変調器101の変調領域を2つに分割する場合を例にあげて説明するが、変調領域を、参照光となす角度が異なる複数の部分情報光がそれぞれ通過する3つ以上の領域に分割してもよい。分割する領域の数は、多ければ多いほど、記録媒体110への記録密度を向上させることが可能となる。これは、それぞれの分割領域をそれぞれにより最適な角度ステップで記録できるようになるためである。仮に変調領域を無限に分割することが可能であれば、条件によっては2倍以上の記録密度を得ることができる。ただし、分割数を増加させると、増加した分だけ信号処理や画像処理などに負担を要し、ホログラム記録層の記録材料にも分割数の増加分だけ多くの記録能力が要求される。このため、変調領域の最適な分割数は、信号処理および画像処理の能力や記録材料の記録能力を鑑みた上で決定する必要がある。
 本実施の形態では、空間光変調器101を、RS角の最大の部分情報光が通過する領域1と、RS角が最小となる部分情報光が通過する領域2とに分割している。図5は、実施の形態1の空間光変調器101の分割の状態を示す模式図である。すなわち、領域1は、角度選択性が良好な領域であり、領域2は角度選択性が悪い領域である。領域1と領域2の境界線(分割線)は、角度選択性が概略等しいものとなっている。ここで、図5は、空間光変調器101を図3の右上方向から見た状態を示している。
 ここで、領域を分割する線は、図5に示すような直線に限定されるものではなく、円弧状、自由曲線としてもよい。ただし、角度選択性が概略等しくなる画素の連なる線とすることが好ましい。これは、領域内の一部少数の画素の角度選択性が悪いために生じる非効率性がなくなり、また、温度変化に伴って生じる再生画像内の輝度ムラの増加にも対応しやすくなるためである。いずれにしても、記録密度の増加をしつつ、転送レート・再生画像の信号処理、煩雑さなどにも配慮して、装置としてのバランスがとれるように分割することが好ましい。
 そして、領域1を通過した部分情報光に対しては、小さなθy角度ステップで角度多重記録を行い、領域2を通過した部分情報光に対しては、大きなθy角度ステップで角度多重記録を行う。各変調領域へのデータは、領域を切り換えるごとにシステムコントローラ130により形成される。
 領域1に含まれる空間光変調器101の画素の第一ヌル角度のうち最大の第1ヌル角度をF1、領域2に含まれる空間光変調器101の画素の第一ヌル角度のうち最大の第1ヌル角度をF2とすると、F1<F2の関係となる。
 また、領域1の角度記録再生のθy角度ステップをS1、領域2の角度記録再生のθy角度ステップをS2とすると、クロストークを防止するためにはF1≦S1、かつ、F2≦S2であることが好ましい。クロストークを許容する場合には必ずしもこの限りではないが、いずれの場合でも、角度選択性の良し悪しにしたがってS1<S2とすることが角度多重の記録密度の点で好ましい。
 図6は、領域1に対するθy角度ステップと領域2に対するθy角度ステップを示すための説明図である。図6に示すように、S1×N=S2×M(N、Mは1以上の自然数、N≧M)として、S1×N(=S2×M)おきに同じ角度で記録再生を行うようにシステムコントローラ130で制御することにより、記録動作の回数を減少させることができる。
 ただし、これに限定されるものではなく、例えば、図7に示すように、S1×N=S2×M(N、Mは1以上の自然数、N≧M)ではあるが同じ角度で記録再生を行うことがないようにずらすように構成してもよい。あるいは、S1×N≠S2×Mとなるように記録再生を制御するようにシステムコントローラ130を構成してもよい。
 θy多重記録のθy角度ステップは、隣接ページと分離して再生できる角度以上にする必要がある。情報を記録した位置から微小角度Δθyだけずれたときの回折効率はsinc関数の二乗に比例し、再生光の強度が最初に0になる角度(第一ヌル角度)は、技術文献(Bell Syst.Tech.J.48,2909-(1969))に開示されているように、(1)式で表わされる。これ以降、第一ヌル角度をΔθyで示す。
Figure JPOXMLDOC01-appb-M000001
 ここで、λは真空中の波長、nは媒体屈折率、tは記録媒体110の厚さ、θsは情報光111の入射角のx-z平面に対する記録媒体110内の射影角(x-z平面におけるz軸からの方位角)、θrは参照光112の入射角のx-z平面に対する記録媒体110内の射影角(x-z平面におけるz軸からの方位角)である。
 なお、以降、参照光が何系統であっても特に断らない限り同様である。参照光112がx-y平面において方位角を有する場合、その方位角の角度をx-z平面に対する記録媒体110内における仰角ζrとして表すと、(1)式で示す第一ヌル角度Δθyは、(2)式のように表わせることが解析的に求められる。
Figure JPOXMLDOC01-appb-M000002
 例えば、2つの参照光を用いる場合、第1の参照光の方位角はθs、仰角はζrの角度となり、参照光112の方位角はθs、仰角は-ζrの角度となる。
 本実施の形態では、予め(2)式により第一ヌル角度Δθy算出し、算出した第一ヌル角度Δθyをθy多重記録のθy角度ステップとして定めて、システムコントローラ130のメモリ等に格納しておく。そして、システムコントローラ130は、情報記録の際にメモリからθy角度ステップを読み出して、このθy角度ステップずつ記録媒体110のθy回転を行うようアクチュエータ140に指令を送出してθy多重記録を行っている。
 なお、第一ヌル角度Δθyは(2)式を用いた算出方法の他、他の方法によって算出してもよい。温度や情報光111と参照光112と記録媒体110との間の角度関係などを考慮した算出を行う場合には、他の算出方法を適用すべきである。
 なお、ページ内、あるいは分割された領域1,2内の画素によって第1ヌル角度Δθyが異なる場合には、より大きな第1ヌル角度Δθyを用いる。
 また、本実施の形態では、記録密度を向上させるために、θy角度ステップと第一ヌル角度Δθyを同一角度としているが、θy角度ステップは、第一ヌル角度Δθyを基準にして決定すればよく、本実施の形態に限定されるものではない。例えば、一定のマージンを確保するために、θy角度ステップを第一ヌル角度θyの一定倍としてもよい。また、θy角度ステップを第一ヌル角Δθyと一定角度の和としても良い。θy角度ステップを、第一ヌル角度Δθyに対して一定倍、一定角度差とする他、参照光112の入射角度に応じて第一ヌル角度Δθyに対する倍率や角度差を変化させて、θy角度ステップを定めるように構成してもよい。
 次に、以上のように構成された本実施の形態におけるシステムコントローラ130およびアクチュエータ140による記録再生処理について説明する。図8は、実施の形態1の情報の記録再生処理の手順を示すフローチャートである。
 まず、システムコントローラ130は、空間光変調器101の領域1および領域2の双方に変調データを載せる(ステップS11)。そして、システムコントローラ130は、参照光112が入射角αで記録媒体110に入射するようにアクチュエータ140を駆動して記録媒体110をθy回転させ、半導体レーザ装置からレーザ光を出射させて、領域1および領域2の記録または再生を行う(ステップS12)。
 次に、システムコントローラ130は、領域1のみに変調データを載せる(ステップS13)。そして、参照光112が入射角α+S1で記録媒体110に入射するように記録媒体110をθy回転させて、領域1の記録または再生を行う(ステップS14)。
 次に、システムコントローラ130は、領域2のみに変調データを載せる(ステップS15)。そして、参照光112が入射角α+S2で記録媒体110に入射するように記録媒体110をθy回転させて、領域2の記録または再生を行う(ステップS16)。
 次に、システムコントローラ130は、領域1のみに変調データを載せる(ステップS17)。そして、参照光112が入射角α+2×S1で記録媒体110に入射するように記録媒体110をθy回転させて、領域1の記録または再生を行う(ステップS18)。
 次に、システムコントローラ130は、領域1と領域2に変調データを載せる(ステップS19)。そして、参照光112が入射角α+3×S1で記録媒体110に入射するように記録媒体110をθy回転させて、領域1と領域2の記録または再生を行う(ステップS20)。
 全てのデータについて記録再生が終了していない場合には(ステップS21:No)、参照光112の新たな入射角をα+3×S1として(ステップS22)、ステップS13からS20までの処理を繰り返し実行する。そして、全てのデータについて記録再生が終了した場合には処理を完了する。
 このように本実施の形態では、空間光変調器101の変調領域を、角度選択性の良好な領域1と角度選択性の悪い領域2に分割し、領域ごとにθy角度ステップを変えて角度多重記録または再生を行っているので、記録媒体110に対して、より高い記録密度を実現することができる。なお、分割された領域に含まれる画素数を領域ごとに異なる数として構成してもよい。
 また、分割した領域の形状は四角形状に限定されるものでなく、多角形状や円形状として構成してもよい。さらに、記録再生角度に応じて領域の分割数や形状を変化させてもよい。
 また、図9に示すように、空間光変調器101の変調領域を、変調領域全体である領域2とその一部の領域である領域1のように分割してもよい。この場合、領域2は、領域1に比べて角度選択性の悪い領域となる。このように変調領域を分割した場合、領域1に対するθy角度ステップS1と領域2に対するθy角度ステップS2は図10に示すようになる。
 また、図5や図9のように変調領域を分割した場合、角度選択性の良好な領域である領域1をさらに、縦方向の2つの領域1-1、領域1-2に分割して空間光変調器101を構成してもよい。図11は、領域1をさらに、縦方向の2つの領域1-1、領域1-2に分割して空間光変調器101の例を示す模式図である。
 この場合には、システムコントローラ130によって、領域1-1を通過した情報光によって記録媒体110に記録された情報の再生処理と、領域1-2を通過した情報光によって記録媒体110に記録された情報の再生処理とを別個かつ並列に行うように構成する。これにより、再生処理のための負荷が平均化されて再生処理の効率化を図ることができるという利点がある。この際の分割された領域の大きさや形状や分割数は、単位角度あたりのそれぞれの領域の処理量が概略等しくなるように構成することが好ましい。
 また、分割された領域にはその領域内にシンクマーク201を含むことが好ましい。さらに、情報再生時には分割された領域それぞれが単独で処理されてデータの再生に供されることが好ましい。このように構成することにより、より簡潔で信頼性の高い再生処理を行うことが可能となり、情報記録時と異なる順番で再生する場合にも容易に対応することができる。
 また、第1ヌル角度F1、F2は一定とは限らず、記録再生の角度によって異なる角度となる場合がある。その様な場合には角度ステップS1、S2を可変として、記録再生の角度によって異なる角度ステップで記録再生を行うようにしても良い。さらに、領域の分割自体を可変にして、例えば、角度選択性が全体的に悪くなるような記録再生角度においては領域分割を細かくし、角度選択性が全体的に良くなるような記録再生角度においては領域分割を荒くすると、いかなる記録再生角度においてもほぼ一定の角度ステップで常にいずれかの領域が記録再生されるようになり、簡潔で高速な記録再生動作を実現することができる。
(実施の形態2)
 実施の形態1では、θy回転の際のθy角度ステップの値を予め決定しておいたが、この実施の形態2の記録再生装置では、θy角度ステップの値を動的に決定してθy回転に用いている。
 実施の形態2の記録再生装置の光学的構成は、図1を用いて説明した実施の形態1と同様である。また、空間光変調器101の変調領域の分割構成も実施の形態1と同様とする。本実施の形態では、システムコントローラ130による情報の記録処理が実施の形態1と異なっている。
 図12は、実施の形態2の情報の記録処理の手順を示すフローチャートである。まず、システムコントローラ130は、空間光変調器101の領域1および領域2の双方に変調データを載せる(ステップS31)。そして、システムコントローラ130は、参照光112が入射角αで記録媒体110に入射するようにアクチュエータ140を駆動して記録媒体110をθy回転させ、半導体レーザ装置からレーザ光を出射させて、領域1および領域2の記録または再生を行う(ステップS32)。
 次に、システムコントローラ130は、領域1のみに変調データを載せる(ステップS33)。そして、システムコントローラ130は、θy角度ステップS1aを算出する(ステップS34)。そして、参照光112が入射角α+S1aで記録媒体110に入射するように記録媒体110をθy回転させて、領域1の記録を行う(ステップS35)。
 次に、システムコントローラ130は、領域2のみに変調データを載せる(ステップS36)。そして、システムコントローラ130は、θy角度ステップS2を算出する(ステップS37)。そして、参照光112が入射角α+S2で記録媒体110に入射するように記録媒体110をθy回転させて、領域2の記録を行う(ステップS38)。
 次に、システムコントローラ130は、領域1のみに変調データを載せる(ステップS39)。そして、システムコントローラ130は、θy角度ステップS1bを算出する(ステップS40)。そして、参照光112が入射角α+S1a+S1bで記録媒体110に入射するように記録媒体110をθy回転させて、領域1の記録を行う(ステップS41)。
 次に、システムコントローラ130は、領域1と領域2に変調データを載せる(ステップS42)。そして、システムコントローラ130は、θy角度ステップS1cを算出する(ステップS43)。そして、参照光112が入射角α+S1a+S1b+S1cで記録媒体110に入射するように記録媒体110をθy回転させて、領域1および領域2の記録を行う(ステップS44)。
 全てのデータについて記録再生が終了していない場合には(ステップS45:No)、参照光112の新たな入射角をα+S1a+S1b+S1cとして(ステップS46)、ステップS33からS44までの処理を繰り返し実行する。そして、全てのデータについて記録再生が終了した場合には処理を完了する。
 ここで、ステップS34,S37、S40、S43におけるθy角度ステップの算出処理について説明する。図13は、θy角度ステップの算出処理の手順を示すフローチャートである。
 システムコントローラ130は、アクチュエータ140への指令により記録媒体110を微小角度だけθy回転させながら再生処理を行う(ステップS51)。そして、再生光の再生強度から領域1または領域2(ステップS34,S40,S43では領域1、ステップS37,S43では領域2)の各画素の第1ヌル角度を求め、各画素の第1ヌル角度のうち、最大の第1ヌル角度を検出する(ステップS52)。そして、システムコントローラ130は、最大第1ヌル角度から(2)式を用いてθy角度ステップを算出する(ステップS53)。
 このように本実施の形態の記録再生装置では、情報の記録の処理段階で、再生光から第一ヌル角度を求めてこの第一ヌル角度から動的にθy角度ステップを算出している。このため、予め算出されたθy角度ステップを用いる場合と比較して、温度変化やホログラム記録層厚さの誤差等により第一ヌル角度が変化した場合でも、適切に第一ヌル角を検出でき、この結果、θy角度ステップを適切に算出することができる。この結果、本実施の形態によれば、情報の記録再生をより高精度に行うことができる。
 なお、本実施の形態では、第一ヌル角度を基準にθy角度ステップを算出しているが、これに限定されるものではない。例えば、第二ヌル角度を基準にθy角度ステップを算出したり、再生光強度がピークの半分となる角度を基準にθy角度ステップを算出するように構成してもよい。また再生の際には、θy角度を微少量変化させながら取得した再生像から再生光強度が極大となる角度を求め、これをθy角度ステップとしてもよい。
 さらには、y軸以外の軸周りの角度多重の角度ステップやシフト多重の際のシフトステップについても同様の方法により求めることができる。例えば、シフト多重の場合には、情報光111のホログラム記録層における直径や情報光111のフォーカス位置での直径などを基準にシフトステップを算出してもよい。あるいは、記録データを再生しつつシフト量を変化させて再生光強度が極小となる角度を基準にシフトステップを決めても良い。
 以上の実施の形態および変形例では、記録媒体110をθy回転させてθy多重記録を行っていたが、参照光112の照射角度を変化させることにより、θy多重記録を行ってもよい。この場合における領域ごとのθy角度ステップの定め方は、実施の形態1、2と同様である。
 なお、本発明は、上記実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化することができる。また、上記実施の形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成することができる。例えば、実施の形態に示される全構成要素からいくつかの構成要素を削除してもよい。さらに、異なる実施の形態にわたる構成要素を適宜組み合わせても良い。
 101 空間光変調器
 102、103、104 レンズ
 105、106、107 レンズ
 110 ホログラフィックメモリ記録媒体
 111 情報光
 112 参照光
 120 撮像器
 130 システムコントローラ
 140 アクチュエータ
 201 シンクマーク

Claims (9)

  1.  光源から出射された照射光を複数の変調領域を通過させることにより、前記照射光を、情報を担持する複数の部分情報光に変換する空間光変調器と、
     情報記録層を有する光情報記録媒体に前記部分情報光を集光させるとともに、前記参照光を前記部分情報光と前記情報記録層で交差するように前記光情報記録媒体に照射させる光学機構と、
     前記光情報記録媒体または前記光学機構を駆動する駆動部と、
     前記駆動部を制御するとともに、前記複数の変調領域の各変調領域を切り換えて情報を載せながら、前記光源から前記照射光を出射させ、前記情報記録層に前記情報の角度多重記録を行う制御部と、
    を備えたことを特徴とする光情報記録装置。
  2.  前記複数の変調領域は、第1領域と、前記参照光となす角度が最小となる領域であって、前記部分情報光が通過した領域を含む第2領域とを含むことを特徴とする請求項1に記載の光情報記録装置。
  3.  前記第1領域は、前記参照光となす角度が最大となる前記部分情報光が通過した領域を含むことを特徴とする請求項2に記載の光情報記録装置。
  4.  前記第2領域は、前記第1領域と前記参照光となす角度が最小となる前記部分情報光が通過した領域とを含むことを特徴とする請求項3に記載の光情報記録装置。
  5.  前記第1領域は、更に複数の小領域に分割され、
     前記制御部は、前記複数の小領域のそれぞれにより変調された前記部分情報光により記録された情報の再生を、前記小領域ごとに別個に行うことを特徴とする請求項2に記載の光情報記録装置。
  6.  前記複数の変調領域は、前記参照光となす角度が異なる複数の部分情報光がそれぞれ通過する3個以上の領域を含むことを特徴とする請求項2に記載の光情報記録装置。
  7.  前記情報記録層から出射される前記情報の再生光を受光し、受光した再生光に基づく再生信号を出力する受光部と、
     前記再生信号に基づいて、前記光情報記録媒体を回転駆動させる際の所定の回転角度である角度ステップを決定する決定部と、を更に備え、
     前記駆動部は、前記光情報記録媒体を回転駆動し、
     前記制御部は、前記変調領域を切り換えながら、決定された角度ステップずつ前記光情報記録媒体を回転駆動させ、前記角度ステップずつ回転駆動させるタイミングで、前記光源から前記照射光を出射させ、前記情報記録層に前記情報の角度多重記録を行うことを特徴とする請求項2に記載の光情報記録装置。
  8.  前記制御部は、前記第1領域を通過する前記部分情報光に対する前記角度ステップを、前記第2領域を通過する前記部分情報光に対する前記角度ステップより小さい角度で前記角度多重記録を行うことを特徴とする請求項2に記載の光情報記録装置。
  9.  前記角度ステップは、再生光の光強度が極小となる角度を示すヌル角度以上の角度であることを特徴とする請求項8に記載の光情報記録装置。
PCT/JP2009/065657 2008-09-25 2009-09-08 光情報記録装置 WO2010035633A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/069,620 US8305863B2 (en) 2008-09-25 2011-03-23 Optical information recording apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-246441 2008-09-25
JP2008246441A JP5274959B2 (ja) 2008-09-25 2008-09-25 光情報記録装置および方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/069,620 Continuation US8305863B2 (en) 2008-09-25 2011-03-23 Optical information recording apparatus

Publications (1)

Publication Number Publication Date
WO2010035633A1 true WO2010035633A1 (ja) 2010-04-01

Family

ID=42059635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065657 WO2010035633A1 (ja) 2008-09-25 2009-09-08 光情報記録装置

Country Status (3)

Country Link
US (1) US8305863B2 (ja)
JP (1) JP5274959B2 (ja)
WO (1) WO2010035633A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164493A (ja) * 2010-02-12 2011-08-25 Nippon Hoso Kyokai <Nhk> 角度多重ホログラム記録方法および装置
CN105074583B (zh) * 2013-04-05 2018-02-16 日立民用电子株式会社 全息记录再现装置和角度复用记录再现方式
JP6921851B2 (ja) 2016-03-22 2021-08-18 ライトループ・テクノロジーズ・エルエルシーLyteloop Technologies, Llc 移動中のデータを格納するシステム及び方法
EP3834019A4 (en) 2018-08-02 2022-05-18 Lyteloop Technologies, Llc METHOD AND APPARATUS FOR STORAGE OF WAVE SIGNALS IN A CAVITY
RU2754829C1 (ru) 2018-08-10 2021-09-07 ЛАЙТЛУП ТЕКНОЛОДЖИЗ, ЭлЭлСи Система и способ для увеличения длины пути волнового сигнала с использованием углового мультиплексирования
KR102001019B1 (ko) * 2018-10-12 2019-07-17 (주)한교홀로그램 홀로그램 전사 장치
BR112021004133A8 (pt) 2018-11-05 2023-05-09 Lyteloop Tech Llc Sistemas e métodos para construir, operar e controlar múltiplos amplificadores, regeneradores e transceptores usando os componentes comuns compartilhados
CN111063374A (zh) * 2019-12-31 2020-04-24 广东紫晶信息存储技术股份有限公司 一种增加存储容量的全息复用记录方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006154163A (ja) * 2004-11-29 2006-06-15 Sony Corp ホログラム記録装置、ホログラム再生装置、ホログラム記録方法及びホログラム再生方法
JP2006155831A (ja) * 2004-11-30 2006-06-15 Fujitsu Ltd ホログラム記録媒体及びホログラム記録再生装置
WO2007043451A1 (ja) * 2005-10-05 2007-04-19 Pioneer Corporation ホログラム記録再生システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070015220A (ko) * 2004-05-12 2007-02-01 코닌클리케 필립스 일렉트로닉스 엔.브이. 홀로그래픽 데이터를 기록 및 재생하는 광학장치
JP2006215066A (ja) 2005-02-01 2006-08-17 Alps Electric Co Ltd ホログラフィー記録装置,再生装置及びその方法並びにホログラフィー媒体
CN101405664A (zh) * 2006-03-20 2009-04-08 松下电器产业株式会社 信息记录再生装置及全息的记录再生方法
US8004950B2 (en) * 2007-03-09 2011-08-23 Hitachi, Ltd. Optical pickup, optical information recording and reproducing apparatus and method for optically recording and reproducing information
JP5178411B2 (ja) * 2008-09-04 2013-04-10 株式会社東芝 光情報記録再生装置
JP4969558B2 (ja) * 2008-11-26 2012-07-04 株式会社日立製作所 光情報再生装置、光情報記録再生装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006154163A (ja) * 2004-11-29 2006-06-15 Sony Corp ホログラム記録装置、ホログラム再生装置、ホログラム記録方法及びホログラム再生方法
JP2006155831A (ja) * 2004-11-30 2006-06-15 Fujitsu Ltd ホログラム記録媒体及びホログラム記録再生装置
WO2007043451A1 (ja) * 2005-10-05 2007-04-19 Pioneer Corporation ホログラム記録再生システム

Also Published As

Publication number Publication date
US8305863B2 (en) 2012-11-06
JP5274959B2 (ja) 2013-08-28
US20110170395A1 (en) 2011-07-14
JP2010079982A (ja) 2010-04-08

Similar Documents

Publication Publication Date Title
JP4790701B2 (ja) ホログラフィック光情報記録再生装置およびホログラフィック光情報記録再生方法
WO2010035633A1 (ja) 光情報記録装置
US7394581B2 (en) Hologram recording apparatus and method
JP5178411B2 (ja) 光情報記録再生装置
JP2009146542A (ja) 光情報記録装置および方法
JP2005293630A (ja) ホログラム記録装置、ホログラム再生装置、ホログラム記録方法、ホログラム再生方法、およびホログラム記録媒体
US7952975B2 (en) Optical reproduction device, optical recording/reproduction device, and optical reproduction method
JP2007149253A (ja) ホログラフィ用光ピックアップ装置
JP5084397B2 (ja) ホログラム再生装置およびホログラム記録再生装置
WO2011013172A1 (ja) 角度制御方法
JP2007537478A (ja) ホログラフィックデータの光記録再生装置
US20080123506A1 (en) Optical information recording/reproducing apparatus
JP2008027490A (ja) 情報記録再生装置及び情報再生方法
JP2004171611A (ja) 光情報記録装置および光情報再生装置
JP4669927B2 (ja) 光情報記録方法および光情報再生方法
TWI337742B (en) Optical information reproducing apparatus and optical information recording apparatus using holography
JP5693383B2 (ja) 多重ホログラム記録/再生装置およびその方法
US8000207B2 (en) Method for reproducing hologram
JP2009163861A (ja) 光情報記録再生装置、光情報再生装置および光情報記録媒体
WO2011108105A1 (ja) ホログラム再生方法
JP3828518B2 (ja) 記録再生装置及び記録再生方法
US20090268582A1 (en) Optical information reproducing apparatus and method thereof
JP4883210B2 (ja) 光情報記録媒体
WO2011016085A1 (ja) ホログラム再生方法
JP5298267B2 (ja) 光情報再生装置及び再生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09816049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09816049

Country of ref document: EP

Kind code of ref document: A1