WO2010035473A1 - バックライト装置および表示装置 - Google Patents

バックライト装置および表示装置 Download PDF

Info

Publication number
WO2010035473A1
WO2010035473A1 PCT/JP2009/004854 JP2009004854W WO2010035473A1 WO 2010035473 A1 WO2010035473 A1 WO 2010035473A1 JP 2009004854 W JP2009004854 W JP 2009004854W WO 2010035473 A1 WO2010035473 A1 WO 2010035473A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminance
light
weighting
value
light emitting
Prior art date
Application number
PCT/JP2009/004854
Other languages
English (en)
French (fr)
Inventor
暁宏 山村
隆宏 小林
英行 中西
敏輝 大西
清司 濱田
敦士 中西
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP09815895A priority Critical patent/EP2224422A4/en
Priority to CN2009801006163A priority patent/CN102057420B/zh
Priority to JP2010507556A priority patent/JP4527202B2/ja
Priority to US12/726,787 priority patent/US8207953B2/en
Publication of WO2010035473A1 publication Critical patent/WO2010035473A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133601Illuminating devices for spatial active dimming
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/0646Modulation of illumination source brightness and image signal correlated to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/144Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light being ambient light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix

Definitions

  • the present invention relates to a backlight device and a display device using the backlight device.
  • the present invention relates to a backlight device and a display device that control lighting of a plurality of divided regions.
  • a non-self-luminous display device typified by a liquid crystal display device includes a backlight device (also simply referred to as a backlight) on the back surface. These display devices display an image via a light modulation unit. The light modulation unit adjusts the amount of reflection and transmission of light emitted from the backlight according to the image signal.
  • a configuration in which the backlight illumination unit is divided into a plurality of divided regions and the luminance is controlled for each region is used.
  • black floating A phenomenon in which a portion to be displayed in black is bright and visible (hereinafter referred to as “black floating”) is one of the adverse effects.
  • FIG. 1 is an explanatory diagram for explaining the state of “black float” in a still image.
  • FIG. 1A shows an input image 900 (or may be considered as a modulation state of the light modulation unit).
  • a circle-shaped object having a high luminance peak exists on a black background.
  • the broken line on the input image 900 indicates the position of the divided region of the backlight for easy understanding, and is not included in the input image.
  • a light modulator such as a liquid crystal panel is controlled. Specifically, the aperture ratio of the liquid crystal panel is controlled so that light is further transmitted in a portion with high luminance.
  • FIG. 1B shows the light emission state of the backlight 910.
  • the backlight 910 has nine divided regions.
  • the above-described circle-shaped object is completely included in an area located at the center of the backlight 910 (hereinafter simply referred to as “center area”). Since the center region is a region including a circle-shaped object having a high luminance peak in the input image 900 as described above, light is emitted with luminance according to the image in the region.
  • the surrounding area is turned off because the entire image in the area is black.
  • FIG. 1C shows a display image 920 displayed on the display device.
  • a luminance difference occurs in the background black between the central region and the region adjacent to the region.
  • black floating occurs more strongly in the central region than in the adjacent region.
  • FIG. 2 is an explanatory diagram for explaining a state of “black floating” in a moving image.
  • FIG. 2A shows how a circle-shaped object moves from left to right in the same input image 900 as FIG. 1A.
  • FIG. 2B shows a state of transition of the light emission state of the backlight 910.
  • FIG. 2C shows the transition of the display image 920 displayed on the display device.
  • the area of the above-described “black floating” portion changes at the timing when the object crosses the light emitting region.
  • black floating is easily visually recognized.
  • An object of the present invention is to provide a backlight device and a display device capable of brightness control with little deterioration in image quality.
  • the backlight device of the present invention has a plurality of image display areas and displays an image by modulating illumination light emitted from the back surface for each of the screen display areas according to an image signal.
  • An illumination unit that emits illumination light for displaying an image to the light modulation unit, and a light emission luminance value of the illumination unit are determined, and a light emission state of the illumination unit is updated based on the determined light emission luminance value
  • a luminance determination unit, and the illumination unit includes a plurality of light emitting regions that irradiate each of the plurality of image display regions, and the luminance determination unit includes a first image display region based on an input image signal of the first image display region.
  • a configuration for determining a light emission luminance value of a light emitting area that irradiates the first image display area from a value obtained by weighting one information and second information based on an input image signal of the second image display area. take.
  • the display device of the present invention adopts a configuration including the backlight device and the light modulation unit.
  • the present invention it is possible to provide a backlight device and a display device capable of brightness control with little deterioration in image quality.
  • Explanatory drawing explaining the state of “black float” in still images is a configuration diagram showing an overall configuration of a liquid crystal display device according to Embodiment 1 of the present invention.
  • Configuration diagram showing configurations of a light-emitting portion and a liquid crystal panel in Embodiment 1 Configuration diagram showing a configuration of a luminance determination unit in the first embodiment
  • the block diagram which shows the structure of the weighting means in Embodiment 1.
  • Explanatory drawing for explaining the concept of weighting in the first embodiment FIG.
  • FIG. 6 is a diagram illustrating an example of an image input to the liquid crystal panel in Embodiment 1.
  • FIG. 6 shows an image actually displayed on the liquid crystal panel in the first embodiment.
  • Explanatory drawing for demonstrating calculation of the light-emitting luminance value in Embodiment 1 The figure which shows the light emission state when passing through the weighting means in Embodiment 1.
  • FIG. 6 shows an image actually displayed on the liquid crystal panel in the first embodiment.
  • Explanatory drawing which shows the weight in case of M: N 2: 1 in Embodiment 1.
  • Explanatory drawing which shows the weight in case M: N 1: 2 in Embodiment 1.
  • FIG. Explanatory drawing in the case where weighting of the reference luminance value is performed on the light emission area of 5 rows ⁇ 5 columns in the first embodiment.
  • Configuration diagram showing a configuration of a luminance determining unit in the second embodiment The block diagram which shows an example of a structure of the weighting means in Embodiment 2.
  • Embodiment 1 which is an example in which the present invention is applied to a liquid crystal display device (an embodiment in which weighting is applied to a reference luminance value) will be described with reference to the drawings.
  • FIG. 3 is a configuration diagram showing the overall configuration of the liquid crystal display device.
  • the liquid crystal display device 1 roughly includes a liquid crystal panel 10, an illumination unit 20, a luminance determination unit 30, and an image signal correction unit 40.
  • the illumination unit 20 and the luminance determination unit 30 are collectively referred to as a backlight device. The configuration of each part will be described in detail below.
  • the liquid crystal panel 10 displays an image by modulating illumination light irradiated from the back according to an image signal.
  • the liquid crystal panel 10 has a plurality of image display areas as indicated by broken lines in the figure. Each image display area has a plurality of pixels.
  • the liquid crystal panel 10 has a configuration in which a liquid crystal layer divided for each pixel is sandwiched between glass substrates.
  • a signal voltage is applied to a liquid crystal layer corresponding to each pixel by a gate driver (not shown), a source driver (not shown), and the like, and the aperture ratio is controlled for each pixel.
  • the liquid crystal panel 10 uses an IPS (In Plane Switching) method.
  • the IPS system is a system that performs a simple movement in which liquid crystal molecules rotate in parallel with a glass substrate. As a result, the liquid crystal panel adopting the IPS system has a wide viewing angle, and has a feature that there is little change in color tone depending on the viewing direction and color tone in all gradations.
  • the liquid crystal panel 10 is an example of a light modulation unit.
  • a method of the liquid crystal panel other methods such as a VA (Vertical Alignment) method may be used.
  • VA Vertical Alignment
  • the illumination unit 20 irradiates illumination light for displaying an image on the liquid crystal panel 10 from the back side.
  • the illumination unit 20 has a light emitting unit 21 composed of a plurality of light emitting regions. Each light emitting area is provided so as to face the image display area of the liquid crystal panel 10 and mainly irradiates the opposite image display area. Here, “mainly irradiate” is because the light emitting region may irradiate a part of the illumination light even to the image display region which is not opposed. Each light emitting area has four LEDs 210 as light sources.
  • the illumination unit 20 has an LED driver 22 for driving the LED 210 of the light emitting unit 21.
  • the LED driver 22 has 60 drive circuits (not shown) corresponding to the total number of light emitting areas so that it can be driven independently for each light emitting area.
  • the illumination unit 20 can control the brightness for each light emitting area.
  • FIG. 4 is a configuration diagram showing the configuration of the light emitting unit 21.
  • the light emitting unit 21 has a total of 60 light emitting regions composed of 6 rows and 10 columns.
  • each light emitting area is specified and represented by a combination of an Arabic numeral code corresponding to a row number and an alphabetic code corresponding to a column number.
  • the light emitting area corresponding to row number 3 and column number d is represented as light emitting area 3d.
  • LED 210 emits white light.
  • Four LEDs 210 belonging to one light emitting region are connected to one drive circuit of the LED driver 22. Then, the four LEDs 210 belonging to one light emitting region emit light with the same luminance in accordance with a signal from the LED driver 22.
  • LED210 is not restricted to what emits white light directly. For example, it is possible to emit white light by mixing three colors of RGB light. Further, the number of LEDs 210 belonging to one light emitting area is not limited to four. A larger number of LEDs may be used, or a smaller number of LEDs may be used.
  • the luminance determination unit 30 determines the light emission luminance value for each of the plurality of light emission regions of the illumination unit 20 based on the input image signal.
  • the input image signal is a signal in which image signals for each image display area are arranged in time series for a plurality of image display areas of the liquid crystal panel 10. That is, the luminance determination unit 30 inputs an input image signal for each image display region of the liquid crystal panel 10 and outputs a light emission luminance value for each light emission region to the LED driver 22 of the illumination unit 20. In addition, the luminance determination unit 30 also outputs a light emission luminance value for each light emitting region to the image signal correction unit 40.
  • the luminance determining unit 30 determines information (first information) based on the input image signal of the first image display region when determining the light emission luminance value of one light emitting region. Then, from the value obtained by weighting the information (second information) based on the input image signal of the second image display area, the light emission luminance value of the light emission area is determined.
  • the first image display area is an image display area that is mainly irradiated by the light emitting area that is the target of determining the light emission luminance value.
  • the second image display area is an image display area different from the image display area that is mainly irradiated by the light emitting area whose light emission luminance value is determined.
  • FIG. 5 is a configuration diagram showing a detailed configuration of the luminance determining unit 30.
  • the luminance determination unit 30 roughly includes a feature detection unit 31, a luminance calculation unit 32, a temporary memory 33, and a weighting unit 34.
  • the feature detection unit 31 detects the feature amount of the input image signal for each image display area.
  • the feature amount refers to a value that is directly used for calculation of a reference luminance value described later.
  • an average value of luminance signals of each pixel (hereinafter referred to as “luminance average value”) is used as the feature amount.
  • the luminance signal of each pixel is included in the input image signal. That is, the feature detection unit 31 receives an image signal and detects an average luminance value for each image display area. Then, the feature detection unit 31 sequentially outputs the detected feature amounts to the luminance calculation unit 32.
  • Luminance calculation means The luminance calculation unit 32 calculates a reference luminance value for each light emitting area based on the input feature amount. Specifically, the luminance calculation unit 32 converts the average luminance value into a reference luminance value for each image display area using the conversion table, and outputs the reference luminance value to the temporary memory 33.
  • the reference luminance value is a value used as a reference when calculating a luminance value to be applied to the light emitting region of interest (hereinafter referred to as “light emitting luminance value”).
  • FIG. 6 is a diagram showing an example of the characteristics of a conversion table for converting feature amounts into reference luminance values. 6A to 6C, the horizontal axis indicates the feature amount, and the vertical axis indicates the reference luminance value.
  • the feature amount is converted into a reference luminance value having the same value. For example, if the feature amount is 0, the reference luminance value is 0, and if the feature amount is 255, the reference luminance is 255.
  • a conversion table having the characteristics shown in FIG. 6B can be used.
  • a conversion table having the characteristics shown in FIG. 6C can be used.
  • the luminance calculation means 32 can adjust the light emission luminance of the light emitting unit 21 with respect to the input image signal by using these conversion tables.
  • the characteristic conversion table shown in FIG. 6C may look better than the characteristic conversion table shown in FIG. 6A. This is because the characteristic shown in FIG. 6C corresponds to a relatively large reference luminance value for a small feature amount.
  • the luminance calculation means 32 prepares a plurality of conversion tables having different characteristics in advance, and switches and uses conversion tables that can obtain better image quality according to the state of the image.
  • the luminance calculating unit 32 can adaptively change the conversion table used for calculating the reference luminance value corresponding to the image.
  • the luminance calculation unit 32 may perform conversion to a reference luminance value as needed using a conversion function having the conversion characteristics as described above. According to such a configuration, it is possible to reduce the amount of memory.
  • the temporary memory 33 stores the reference luminance value output from the luminance calculating unit 32. That is, the temporary memory 33 sequentially stores the reference luminance values for each light emitting area, and temporarily stores the reference luminance values of all the light emitting areas.
  • the weighting unit 34 calculates the first light emission from the value obtained by weighting the reference luminance value of the first light emitting area as the first information and the reference luminance value of the second light emitting area as the second information.
  • the emission luminance value of the area is determined. That is, the weighting unit 34 reads the reference luminance value (first information) for the light emitting area stored in the temporary memory 33 when determining the light emitting luminance value of one light emitting area (first light emitting area). Further, the reference luminance value (second information) of a predetermined light emitting area (second light emitting area) different from the light emitting area is also read from the temporary memory 33.
  • the weighting unit 34 weights the plurality of read reference luminance values, adds a plurality of values after the weighting (hereinafter referred to as “weighted luminance values”), and finally adds the light emitting region (the first light emitting region). 1) is determined.
  • the second light emitting areas are eight light emitting areas adjacent to the periphery of the first light emitting area.
  • the second light emitting regions are the light emitting regions 2c, 2d, 2e, 3c, 3e, 4c, 4d, and 4e.
  • FIG. 7 is a configuration diagram showing a more detailed configuration of the weighting means 34 in the present embodiment.
  • the weighting means 34 includes a first information reading block 340, eight second information reading blocks 341a, 341b, 341c, 341d, 341e, 341f, 341g, 341h, a first information weighting block 350, and eight second information weighting blocks 351a. , 351b, 351c, 351d, 351e, 351f, 351g, 351, and an addition block 360.
  • the first information reading block 340 reads the first information from the temporary memory 33.
  • the first information weighting block 350 performs weighting on the first information read by the first information reading block 340 and outputs a first weighted luminance value.
  • the second information reading blocks 341a to 341h read the second information corresponding to the second light emitting areas 2c to 4e from the temporary memory 33, respectively.
  • the second information weighting blocks 351a to 351h respectively weight the second information read by the second information reading blocks 341a to 341h and output second weighted luminance values.
  • the addition block 360 adds the first weighted luminance value output from the first information weighting block 350 and the eight second weighted luminance values output from the second information weighting blocks 351a to 351h.
  • the first information weighting block 350 performs 8/16 weighting on the first information.
  • the second information weighting blocks 351a to 351h all equally weight 1/16 of the second information.
  • the second information is a reference luminance value of each of the eight light emitting areas adjacent to the periphery of the first light emitting area.
  • first weight the weight for the first information (reference luminance value of the first light emitting area)
  • second weight the weight for the second information (reference luminance value of the second light emitting area) is referred to as “second weight”.
  • FIG. 8 is an explanatory diagram for explaining the concept of weighting.
  • FIG. 8 shows a part of the light emitting unit 21 and shows how the reference luminance of each light emitting area is weighted when the first light emitting area is the light emitting area 3e.
  • the light emitting area belonging to the area of 3 rows ⁇ 3 columns around the light emitting area 3e is the second light emitting area (area surrounded by a broken line).
  • the first weight is 8/16 and the second weight is 1/16 will be described.
  • the nine weighted luminance values obtained by these weights are added to calculate the final light emitting luminance value of the light emitting region 3e.
  • the ratio between the first weight and the total value of the second weight is set to M: N. Further, it is assumed that there are X second light emitting regions.
  • the first weight can be obtained by M ⁇ X / ⁇ (M + N) ⁇ X ⁇ .
  • the total value of the second weights can be obtained by N ⁇ X / ⁇ (M + N) ⁇ X ⁇ .
  • the second weight is N / ⁇ (M + N) ⁇ X ⁇ .
  • the weight setting method is not particularly limited to this, and other methods may be used.
  • the light emission luminance value reflecting the luminance signal corresponding to the light emitting region around the light emitting region can be calculated.
  • the determined light emission luminance value of the light emission area is output to the LED driver 22 of the illumination unit 20 and the image signal correction unit 40.
  • Image signal correction unit 40 corrects the image signal input to the liquid crystal panel 10 based on the light emission luminance value determined by the luminance determination unit 30.
  • the image signal correction unit 40 corrects the image signal of the displayed image in conjunction with the light emission luminance value for each light emitting region. Specifically, the image signal correction unit 40 changes the contrast gain of the image displayed on the liquid crystal panel 10 in accordance with how the light emission luminance value is changed. As a result, the image signal correction unit 40 corrects the adverse effects associated with the above-described luminance control for each light emitting area.
  • FIG. 9 shows an example of an image input to the liquid crystal panel 10, and two large and small white 100% rectangular objects are arranged on a black background.
  • white grid lines indicate the frame of the image display area of the liquid crystal panel 10 (or the corresponding light emission area of the light emitting unit 21), and are not included in the actual image.
  • the image signal of the image shown in FIG. 9 is input to the feature detection means 31 in the brightness determination unit 30, and the brightness average value, which is a feature amount, is detected for each image display area. Then, each detected feature amount is input to the luminance calculation means 32 and converted into a reference luminance value of each light emitting area.
  • FIG. 10 is a diagram showing the reference luminance value of each light emitting area of the light emitting unit 21 calculated by the luminance calculating means 32.
  • the luminance calculation means 32 used here has a characteristic conversion table as shown in FIG. 6A. Therefore, if the feature quantity is 0, the reference brightness value is 0, if the feature quantity is 128, the reference brightness value is 128, if the feature quantity is 255, the reference brightness value is 255, and so on. Converted to luminance value.
  • the smaller rectangular object in FIG. 9 is an image of white 100%. Therefore, the luminance signal of each pixel included in the image signal of the object part has a maximum value of 255.
  • the smaller rectangular object in FIG. 9 has a quarter of the image display area corresponding to the light emitting area 3c. That is, the luminance signal is 255 in the 1 ⁇ 4 pixel of the corresponding image display area. Therefore, the luminance average value 64 is detected as the feature amount for the light emitting region 3c, and the reference luminance value 64 is obtained.
  • the luminance signal is 255 in all the pixels of the corresponding image display area. Therefore, the feature amount 255 is detected for each of the light emitting regions 3g and 4g, and the reference luminance value 255 is obtained.
  • the luminance signal is 255 in half the pixels of the corresponding image display area. Therefore, a feature quantity 128 that is half the luminance signal is detected for these light emitting areas, and a reference luminance value 128 is obtained.
  • the luminance signal is 255 in the 1 ⁇ 4 pixel of the corresponding image display area. Therefore, a feature quantity 64 that is a quarter of the luminance signal is detected for these light emitting areas, and a reference luminance value 64 is obtained.
  • FIG. 11 is a diagram illustrating a light emission state of the light emitting unit 21 when the reference luminance value illustrated in FIG. 10 is input to the illumination unit 20 as it is without using the weighting unit 34.
  • FIG. 12 is a diagram showing an image actually displayed on the liquid crystal panel 10 when the light of FIG. 11 is irradiated from the back side.
  • the black portion of the light emitting region 2g floats brightly. . That is, an unfavorable display in which “black float” is visually recognized. This is due to a difference in light emission luminance value between a light emitting region that does not emit light and a light emitting region that emits light. Note that, unlike the black portion, the white portion has a uniform luminance because the luminance signal is corrected by the image signal correction unit 40.
  • FIG. 13 is a diagram showing the weighted luminance value output from the weighting means 34. The calculation of the numerical values in FIG. 13 will be specifically described with reference to FIG.
  • FIG. 14 is an explanatory diagram for explaining the calculation of numerical values, and shows a reference luminance value before being input to the weighting means 34.
  • the reference luminance value corresponding to the first information is 128 as shown in FIG.
  • the second information of the light emitting area 4h is a reference luminance value of each of the eight neighboring light emitting areas 3g, 3h, 3i, 4g, 4i, 5g, 5h, and 5i.
  • the first information is weighted by 8/16 by the first information weighting block 350 as described in the above configuration. That is, a value of 128 ⁇ (8/16) is derived from the light emitting region 4h as the first weighted luminance value.
  • the second information is weighted by 1/16 by the second information weighting blocks 351a to 351h. That is, a value of 255 ⁇ (1/16) is obtained from each of the light emitting regions 3g and 4g, a value of 128 ⁇ (1/16) is obtained from each of the light emitting regions 3h and 5g, and 64 ⁇ from the light emitting region 5h. A value of (1/16) is derived from the light emitting areas 3i, 4i, 5i as a second weighted luminance value of 0 ⁇ (1/16), respectively.
  • the weighting means 34 uses a virtual light emitting area expanded in the row direction and column direction, and emits light in eight directions in all the light emitting areas. Assuming that the region exists, the light emission luminance value is calculated.
  • the weighting unit 34 adds one row of a virtual light emitting area having the same reference luminance value as that of the row 1 above the row 1 and has the same reference luminance value as that of the row 6 below the row 6. Add one line of the virtual light emitting area. Then, the weighting unit 34 adds one column of a virtual light emitting area having the same reference luminance value as the column a to the left side of the column a, and a virtual unit having the same reference luminance value as the column j to the right side of the column j. Add one row of the light emitting area. In addition, the weighting unit 34 uses the light emitting areas at the four corners of the light emitting unit 21 as the light emitting areas corresponding to the four corners of the expanded virtual area.
  • FIG. 15 is a diagram illustrating a light emission state of the light emitting unit 21 when the light emission luminance value illustrated in FIG. 13 is input to the illumination unit 20.
  • FIG. 16 is a diagram showing an image actually displayed on the liquid crystal panel 10 when the light of FIG. 15 is irradiated from the back side.
  • the emission luminance value between the light emitting region that does not emit light and the light emitting region that emits light is larger than that in FIG. 12 when the weighting unit 34 is not used. The difference has eased. Thereby, “black float” is relieved.
  • a low luminance value is obtained when a light emitting region having a high luminance value and a light emitting region having a low luminance value (particularly, a light emitting region having a luminance value close to 0) are adjacent to each other in the input image signal Whether the light emission luminance value of the light emitting area is corrected or not is determined by comparing the luminance difference with a threshold value. Therefore, as described above, there is a possibility that a temporal discontinuity point in luminance occurs.
  • the liquid crystal display device according to the present invention does not use such a threshold value, no luminance discontinuity occurs.
  • the conventional liquid crystal display device emits light having a high luminance value.
  • the luminance value of the area is not corrected, and only the luminance value of the light emitting area having a low luminance value is corrected so as to increase.
  • the liquid crystal display device of the present invention acts to lower the light emission luminance value of the light emitting region having a high luminance average value and to increase the light emission luminance value of the light emitting region having a low luminance average value. By this action, an increase in power due to the correction of the luminance value can be reduced as compared with the conventional configuration.
  • the sum of the weights of the light emitting areas of the weighting means is 1. Therefore, weighting can be performed in a state where a change in the amount of light emitted from the illumination unit is suppressed, and consumption of excess power can be suppressed.
  • the average brightness value is used as the feature amount.
  • the average luminance value is used as a feature amount, as shown in FIG. 15, the luminance of the light emitting region for a white object with a small area is lower than the light emitting region corresponding to a white object with a large area. Therefore, when the image signal is not corrected by the image signal correction unit, the brightness of the image that is transmitted through the liquid crystal panel is lower for white having a smaller area than for white having a larger area.
  • the image signal correction unit can also correct the image signal so that the difference in luminance between white having a large area and white having a small area becomes small.
  • the peak value of the luminance signal of each pixel included in the input image signal for each image display area (hereinafter referred to as “luminance peak value”) is used as the feature amount. Similar effects can be obtained.
  • luminance peak value the peak value of the luminance signal of each pixel included in the input image signal for each image display area. Similar effects can be obtained.
  • the luminance peak value when only the luminance peak value is used, it is not possible to obtain a change in luminance value according to the area as described above.
  • the luminance value can be changed according to the area even if the luminance peak value is used as the feature amount. This will be described later.
  • a luminance average value and a luminance peak value may be used in combination. Furthermore, the weighting of the luminance average value and the luminance peak value when adding the luminance average value and the luminance peak value may be changed according to the input image signal for each image display area. The effect in these structures is demonstrated using FIG. 17, FIG.
  • FIG. 17 is an explanatory diagram for explaining the feature when the luminance average value is used as the feature amount.
  • FIG. 17A shows the input image 400.
  • a circular object having a high luminance peak exists on a black background.
  • broken lines on the input image 400 indicate the positions of the divided areas of the backlight for easy understanding, and are not included in the input image.
  • FIG. 17B shows a light emission state of the light emitting unit 21a which is a part of the light emitting unit 21 when the average luminance value is used as the feature amount.
  • the region located at the center of the light emitting unit 21a is a region including a circle-shaped object having a high luminance peak of the input image 400, and therefore emits light with luminance according to the image of the region.
  • the surrounding area is turned off because the entire image in the area is black.
  • FIG. 17C shows a display image 500a displayed on a part of the liquid crystal panel 10 when the luminance average value is used as the feature amount.
  • FIG. 18 is an explanatory diagram for explaining a feature when a luminance peak value is used as a feature amount.
  • FIG. 18A shows the same input image 400 as FIG. 17A.
  • FIG. 18B shows a light emission state of the light emitting unit 21b which is a part of the light emitting unit 21 when the luminance peak value is used as the feature amount.
  • the region located at the center of the light emitting unit 21b is a region including a circle-shaped object having a high luminance peak in the input image 400, and therefore emits light with luminance according to the image of the region.
  • the surrounding area is turned off because the entire image in the area is black.
  • FIG. 18C shows a display image 500b displayed on a part of the liquid crystal panel 10 when the luminance peak value is used as the feature amount.
  • the luminance peak value when used as the feature amount, the luminance peak can be maintained even in an object such as a star in the night sky.
  • the luminance of each light emitting region may change sharply, resulting in an uncomfortable display.
  • the luminance average value and the luminance peak value are combined as the feature amount, and the weighting of the luminance average value and the luminance peak value is changed according to the input image signal for each image display area.
  • the following effects are obtained. In other words, it is possible to reduce the local shortage of peak luminance values depending on the image to be displayed or unnatural light emission depending on the movement of the image, and light emission with an optimal feature amount as appropriate. The amount of light emitted from the region can be adjusted.
  • the LED is used as the light source, but the present invention is not limited to this.
  • a laser light source or a fluorescent tube may be used as the light source.
  • any light source can be used as long as it can divide the light emitting area and control the light emission luminance of each divided area.
  • the color reproduction area can be widened.
  • a fluorescent tube it can be made thinner than when LEDs are arranged.
  • the weighting means may be weighted as shown in FIG. 20, for example.
  • weights may be changed according to the input image signal for each image display area. Other specific values for the weights may be used. When it is desired to increase the brightness as a whole, the first weight and the second weight may be determined so that the sum of the weights is 1 or more. On the other hand, when it is desired to lower the brightness as a whole, the first weight and the second weight may be determined so that the sum of the weights is 1 or less.
  • the weighting means is such that the second weights are all the same, but the present invention is not limited to this.
  • the weighting means is a second light emitting region (light emitting region 2 d, 2 f, 4 d, 4 f) located obliquely with respect to the first light emitting region (light emitting region 3 e). May be made smaller than the second weights of the other second light emitting regions. That is, the weighting unit may change the weight for each second light emitting region.
  • the second light emitting area located obliquely has a substantial distance from the first light emitting area slightly longer than the other second light emitting areas. Therefore, by reducing the weight of the reference luminance value of the second light emitting area located obliquely, it is possible to display an image with less sense of incongruity.
  • the weighting means weights the reference luminance value to the light emission area of 3 rows ⁇ 3 columns with the eight light emitting areas as the second light emission area centering on the first light emission area.
  • the weighting means may change the number of light emitting areas to be weighted, such as 5 rows ⁇ 5 columns or 5 rows ⁇ 3 columns. In this case, it is possible to set a second light-emitting region that is symmetrical in the column direction with respect to the first light-emitting region by setting the odd-numbered row ⁇ the odd-numbered column.
  • FIG. 22 is an explanatory diagram in the case where the reference luminance value is weighted with respect to the light emission area of 5 rows ⁇ 5 columns. At this time, the weighting unit applies a smaller weight to the reference luminance value of the second light emitting area farther from the first light emitting area. In this way, it is possible to display an image with less sense of incongruity.
  • the second light-emitting area has eight areas around the first light-emitting area, but is not limited thereto.
  • all the light emitting areas including the first light emitting area may be used as the second light emitting area, and weighting may be performed using the average value of the luminance signal of the entire screen as the second information.
  • the luminance of each light emitting area can be changed according to the average value of the luminance signal of the entire screen. Therefore, for example, in an image close to all white display in which the power consumption of the backlight device is increased, it is possible to display with reduced power by reducing the light emission luminance. In addition, in an image where there are small white bright spots on a black background where the power consumption of the backlight device is small, the white portion can be displayed brightly by concentrating the power only in the area with the white bright spots. it can. In this way, the liquid crystal display device 1 can provide an image with expressiveness by setting all the light emitting regions as the second light emitting regions.
  • the liquid crystal display device 1 uses an expanded virtual light emitting region for the light emitting region at the end of the light emitting unit 21, and there are light emitting regions in eight directions around all the light emitting regions.
  • the emission luminance value is calculated as an example, another calculation method may be used.
  • the weighting unit may weight only the reference luminance value of the second light emitting area that actually exists without using all of the surrounding eight directions.
  • the liquid crystal display device 1 may not use weighting means for the light emitting area at the end.
  • the weighting means performs constant weighting, but the weighting may be changed depending on some factor.
  • the weighting unit may change the weighting based on the difference between the first information and the second information.
  • the “black float” is more easily recognized. Therefore, when the difference between the first information and the second information is large, the visual recognition of “black float” can be further reduced by changing the second weight to be large.
  • the liquid crystal display device 1 includes the image signal correction unit 40, but may be configured without the image signal correction unit 40. Even if the liquid crystal display device 1 is configured without the image signal correction unit 40, it is possible to perform luminance control with less degradation in image quality compared to a conventional liquid crystal display device. As a further effect of having the image signal correction unit 40, as described above, it is possible to correct the adverse effects associated with the luminance control for each light emitting area.
  • Embodiment 2 an embodiment in which weighting is applied to a reference feature amount
  • the second embodiment is different from the first embodiment in the configuration of the luminance determining unit 30 shown in FIG.
  • the configuration of other parts is the same as that of the first embodiment, and a part of the description is omitted.
  • the reference luminance value calculated by the luminance calculating unit is weighted.
  • the feature amount of the image signal before the luminance calculating unit is weighted. .
  • FIG. 23 is a configuration diagram showing a detailed configuration of the luminance determining unit 30a.
  • the luminance determining unit 30a is roughly divided into a feature detecting unit 31a, a temporary memory 33a, a weighting unit 34a, and a luminance calculating unit 32a.
  • the feature detection unit 31a has the same function as the feature detection unit 31 in the first embodiment. That is, the feature detection unit 31a detects the average brightness value for each image display area. The feature detection unit 31a sequentially outputs the detected luminance average value for each image display area to the temporary memory 33a as a reference feature amount.
  • the reference feature value is a value serving as a reference when calculating the feature value of the image signal in each image display area.
  • the temporary memory 33a stores the reference feature amount output from the feature detection unit 31a. That is, the temporary memory 33a sequentially stores the reference feature values for each image display area, and temporarily stores the reference feature values of all the image display areas.
  • the weighting unit 34a calculates the first image from the value obtained by weighting the first information (reference feature value of the first image display area) and the second information (reference feature value of the second image display area).
  • the feature amount of the display area is determined. That is, when determining the feature amount of one image display region (first image display region), the weighting unit 34a reads the reference feature amount (first information) for the image display region from the temporary memory 33a. The weighting unit 34a also reads out the reference feature amount (second information) of a predetermined image display area (second image display area) different from the image display area from the temporary memory 33a. Then, the weighting unit 34a weights and adds the plurality of read reference feature amounts (first information and second information) to determine the feature amount of the image display area (first image display area).
  • the second image display area is eight image display areas adjacent to the periphery of the first image display area.
  • the second image display area is the light emitting areas 2c, 2d, 2e, 3c, 3e, This is an image display area corresponding to 4c, 4d, and 4e.
  • FIG. 24 is a configuration diagram showing a more detailed configuration of the weighting means 34a in the present embodiment.
  • the weighting unit 34a includes a first information reading block 340a, eight second information reading blocks 342a, 342b, 342c, 342d, 342e, 342f, 342g, 342h, a first information weighting block 350a, and eight second information weighting blocks 352a. , 352b, 352c, 352d, 352e, 352f, 352g, 352h, and an addition block 360a.
  • the first information reading block 340a reads the first information from the temporary memory 33a.
  • the first information weighting block 350a weights the read first information and outputs a first reference feature amount.
  • the second information reading blocks 342a to 342h read the second information from the temporary memory 33a.
  • the second information weighting blocks 352a to 352h weight the read second information and output the second reference feature amount.
  • the addition block 360a adds the first reference feature amount output from the first information weighting block 350a and the second reference feature amount output from the second information weighting blocks 352a to 352h.
  • the first information weighting block 350a performs 8/16 weighting on the first information. Further, the second information weighting blocks 352a to 352h all perform equal weighting of 1/16 on the second information.
  • the second information is a reference feature amount of each of the eight image display areas adjacent to the periphery of the first image display area.
  • the weighting method is the same as the weighting method described in FIG. 8 of the first embodiment. That is, the weighting method in the present embodiment is a method in which the light emitting area is replaced with the image display area in the weighting technique in the description of FIG.
  • the weighting unit 34a weights the reference feature amount of each image display area, and outputs the weighted value (feature amount) to the luminance calculation unit 32a.
  • the luminance calculation means 32a calculates a light emission luminance value for each light emission region based on the input feature amount. That is, the luminance calculation unit 32a converts the feature amount into a light emission luminance value of a light emission region corresponding to the image display region for each image display region, and the LED driver 22 of the illumination unit 20 and the image signal correction unit. 40 is output. Since the conversion table possessed by the luminance calculation means is the same as that of the luminance calculation means 32 of the first embodiment, description thereof will be omitted.
  • luminance sum value the sum of the luminance signals of the respective pixels for each image display area
  • luminance sum value the sum of the luminance signals of the respective pixels for each image display area
  • FIG. 25 is a configuration diagram showing the configuration of the weighting means 34b used when the luminance total value is used as the reference feature amount.
  • the weighting unit 34b is different from the weighting unit 34a in that it includes a division block 370.
  • the weighting unit 34b averages the value output from the addition block 360a in the division block 370 in order to obtain a feature amount corresponding to one image display area. That is, the division block 370 divides the addition result of the addition block 360a by the number of pixels of the liquid crystal panel 10 included in all of the first image display area and the eight second image display areas. Similar results can be obtained with such a configuration.
  • Embodiment 3 As an example in which the present invention is applied to a liquid crystal display device (Embodiment 1 in which weighting for a reference luminance value is changed based on external light) will be described with reference to the drawings.
  • the third embodiment is different from the first embodiment in that the luminance determining unit includes an external light detection unit.
  • the configuration of other parts is the same as that of the first embodiment, and a part of the description is omitted.
  • the visibility of the “black floating” portion described above varies greatly depending on the ambient light condition of the liquid crystal display device. That is, in an environment where the illuminance of ambient light is small, such as when an image is viewed in a very dark room, “black float” is likely to be visually recognized. Conversely, in an environment where the illuminance of ambient ambient light is large, such as when viewing an image in a bright room, “black float” is less likely to be visually recognized.
  • the contrast is weakly recognized if the luminance peak is low.
  • the contrast is strongly recognized even if the luminance peak is low.
  • the sum of weights is set to a predetermined value (for example, 1)
  • a predetermined value for example, 1
  • the second weight weight applied to the second information
  • the first weight is decreased and the luminance peak is decreased.
  • the weight of 2 is decreased, the first weight is increased and the luminance peak is increased.
  • the liquid crystal display device changes the first weight and the second weight according to the external light illuminance, thereby reducing the visibility of “black float” and improving the visibility of contrast.
  • the liquid crystal display device according to the present embodiment aims to reduce “black float” by increasing the second weight in an environment where the ambient illuminance is small.
  • the liquid crystal display device according to the present embodiment reduces the second weight so that light is concentrated in an area where luminance is required and peak luminance is increased. The image display with higher contrast is recognized.
  • FIG. 26 is a configuration diagram showing a detailed configuration of the luminance determining unit 30c.
  • the luminance determination unit 30c includes the same feature detection unit 31, luminance calculation unit 32, and temporary memory 33 as in the first embodiment.
  • the luminance determining unit 30c includes an external light detection unit 35 and a weighting unit 34c that changes the weighting according to the detection result of the external light detection unit 35 as a characteristic configuration.
  • the external light detection means 35 detects the illuminance around the liquid crystal display device, and outputs an external light illuminance value indicating the detection result to the weighting means 34c.
  • the external light detection means 35 is, for example, an illuminance sensor using a photodiode disposed on the display surface side of the liquid crystal panel 10. Then, the external light detection unit 35 detects the illuminance of external light irradiated on the display surface side of the liquid crystal panel 10. There may be one external light detection unit 35 or a plurality of external light detection units 35 may be installed. When detecting the illuminance at a plurality of positions, the liquid crystal display device outputs, for example, an average value of the detection results to the weighting unit 34c as an external light illuminance value.
  • the weight of each weighting block of the weighting means 34c is variable.
  • the weighting means 34c includes at least the weighting shown in FIG. 8 (hereinafter referred to as “basic weighting”), the weighting shown in FIG. 19 (hereinafter referred to as “weighting during high illumination”), and the weighting shown in FIG. It is assumed that the weighting can be switched between “weighting during illumination”).
  • the weighting can be switched between “weighting during illumination”.
  • the weighting during illumination In the high illuminance weighting, the first weight is larger and the second weight is smaller than the basic weighting. In the low-illuminance weighting, the first weight is smaller and the second weight is larger than the basic weighting.
  • the weighting unit 34c inputs an external light illuminance value from the external light detection unit 35. And the weighting means 34c determines the weight of each weighting block based on the input external light illuminance value. That is, the weighting unit 34c performs weighting according to the input external light illuminance value so that the second weight is large when the external light illuminance value is small and the second weight is small when the external light illuminance value is large. change.
  • FIG. 27 is a configuration diagram showing a more detailed configuration of the weighting means 34c in the present embodiment, and corresponds to FIG. 7 of the first embodiment.
  • each of the first information weighting block 350 and the second information weighting blocks 351a to 351h of the weighting means 34c has a configuration in which the weight is changed according to the control signal.
  • the weighting unit 34c has a weight control unit 380 that inputs an external light illuminance value and outputs a control signal corresponding to the input external light illuminance value to each of the weighting blocks 350 and 351a to 351h.
  • the weight control unit 380 presets, for example, a range of external light illuminance values to which basic weighting (FIG. 8) is applied as basic illuminance values.
  • the basic illuminance value and each weight can be determined based on empirical measurements and experimental results. Then, when the external light illuminance increases and the external light illuminance value exceeds the basic illuminance value, the weight control unit 380 changes the weight applied from the basic weight (FIG. 8) to the high illuminance weight (FIG. 19).
  • a control signal is output so as to switch. That is, the weight control unit 380 changes the weighting so that the second weight becomes smaller. This is because, as described above, in an environment where the illuminance of outside ambient light is large, “black float” is difficult to visually recognize, but contrast is also difficult to recognize.
  • the weight control unit 380 changes the weight applied from the basic weight (FIG. 8) to the low illuminance weight (FIG. 8).
  • the control signal is output so as to switch to 20). That is, the weight control unit 380 changes the weighting so that the second weight is increased.
  • the weight control unit 380 uses an external light illuminance value (first threshold value P 1 ) higher than the basic illuminance value P 0 when the external light illuminance value increases. , Switch weighting. Then, as shown in FIG. 28B, the weight control unit 380 switches the weighting with an external light illuminance value (second threshold value P 2 ) lower than the basic illuminance value when the external light illuminance value decreases. By doing so, it is possible to suppress chattering of switching around the basic illuminance value.
  • the weight control unit 380 uses, for example, a conversion table in which the external light illuminance value is associated with the first weight and the second weight.
  • a conversion table in which the external light illuminance value is associated with the first weight and the second weight.
  • the weight control unit 380 includes only the first weight or only the second weight as the external light illuminance value. Can be used.
  • FIG. 29 is a diagram illustrating an example of characteristics of a conversion table for converting the external light illuminance value to the second weight. 29A to 29D, the horizontal axis indicates the ambient light illuminance value, and the vertical axis indicates the second weight.
  • FIG. 29A shows the characteristics of the conversion table when the second weight is linearly decreased with respect to the increase in the ambient light illuminance value. When this conversion table is used, weighting control is easy.
  • FIG. 29B shows the characteristics of the conversion table when the second weight is nonlinearly decreased with respect to the increase in the ambient light illuminance value.
  • FIG. 29C shows the characteristics of the conversion table in which the second weight is set to 0 when the ambient light illuminance value is equal to or greater than a predetermined threshold in the characteristics shown in FIG. 29A.
  • this conversion table the influence of the second information is not reflected on the light emission luminance under a condition where the illuminance value of outside light is large. That is, when the external light illuminance value is equal to or greater than a predetermined threshold, the visibility of contrast can be given the highest priority. In other words, in an environment where the black float is not noticeable, it should be displayed as bright as possible where it should be bright (where the reference luminance value is high) and as dark as possible where it should be dark (where the reference luminance value is low). Can do.
  • FIG. 29D shows the characteristics of the conversion table when the second weight is not changed up to a predetermined value and is changed from a predetermined value or more with respect to an increase in the ambient light illuminance value.
  • the weight control unit 380 prepares a plurality of conversion tables having different characteristics as shown in FIG. 29 in advance, and better image quality is obtained according to the state of the image, the type and state of the display device, user settings, and the like. Such a conversion table may be used by switching.
  • the liquid crystal display device changes the degree of influence of the surrounding light emitting region according to the illuminance of outside light, and reduces the visibility of “black floating” and improves the visibility of contrast. Can be made compatible.
  • the weighting unit 34c may perform conversion to the first weight and the second weight at any time using the conversion function having the conversion characteristics as described above. According to such a configuration, it is possible to reduce the amount of memory.
  • the configuration in which the weight control unit 380 individually outputs control signals to the second information weighting blocks 351a to 351h is illustrated.
  • the second weight is always set to the same value.
  • a common control signal may be output to the second information weighting blocks 351a to 351h.
  • each weighting block 350, 351a to 351h is configured to change the weight according to the control signal.
  • the weighting blocks 350, 351a to 351h have different sets of weighting and are used. It is good also as a structure which switches.
  • the installation position of the external light detection means is the display surface side of the liquid crystal panel 10, but is not limited thereto.
  • the outside light detecting means may be installed on a frame (not shown) provided outside the display surface of the liquid crystal panel 10 or on a back cover (not shown) of the liquid crystal panel 10.
  • the external light detection means is an illuminance sensor using a photodiode, but is not limited thereto.
  • the ambient light detection means may be an illuminance sensor using a phototransistor.
  • the sum of the weights is a constant value, but the present invention is not limited to this.
  • the external light illuminance is high, only the second weight may be increased, and weighting may be performed so that the sum of the weights is 1 or more.
  • the external light illuminance is low, only the second weight may be reduced, and weighting may be performed so that the sum of the weights is 1 or less.
  • a fourth embodiment (second embodiment in which the weighting for the reference luminance value is changed based on external light), which is an example in which the present invention is applied to a liquid crystal display device, will be described with reference to the drawings.
  • the fourth embodiment has external light detection means as in the third embodiment, but the weighting changing method according to the external light illuminance value is different.
  • the liquid crystal display device changes only the second weight according to the ambient light illuminance value, and does not change the first weight.
  • Other configurations are the same as those of the third embodiment, and the description thereof is omitted.
  • the liquid crystal display device changes the distribution of the light emission luminance difference between the light emitting regions in accordance with the external light illuminance while keeping the luminance peak as constant as possible. More specifically, the liquid crystal display device according to the present embodiment distributes the luminance over a wider range in an environment where the illuminance of outside ambient light is small while keeping the luminance peak as constant as possible. In an environment where the illuminance of light is large, the luminance is concentrated in a narrower range. As a result, the liquid crystal display device according to the present embodiment achieves both relaxation of the change in luminance peak, reduction in the visibility of “black float”, and improvement in the visibility of contrast.
  • the weighting unit 34c weights the reference luminance value for the light emission area of 5 rows ⁇ 5 columns. Further, here, the weighting means 34c includes at least the weighting shown in FIG. 22 (hereinafter referred to as “basic weighting”), the weighting shown in FIG. 30 (hereinafter referred to as low-illuminance weighting), and the weighting shown in FIG. It is assumed that weighting can be switched between “weighting at high illumination”).
  • the second weight of the light-emitting area adjacent to the first light-emitting area (hereinafter referred to as “inner second weight”) is larger than the basic weighting, and the light-emitting area located outside the second weight.
  • the second weight (hereinafter referred to as “outside second weight”) is small.
  • the inner second weight is smaller than the basic weighting, and the outer second weight is larger than the inner second weight.
  • the first weight is the same for all of the basic weighting, the high illuminance weighting, and the low illuminance weighting.
  • the weighting unit 34c switches the weighting to be applied from the basic weighting (FIG. 22) to the low illuminance weighting (FIG. 30). . That is, the weighting unit 34c increases the inner second weight and decreases the outer second weight. At this time, the weighting unit 34c does not change the first weight.
  • the weighting unit 34c changes the weight applied from the basic weight (FIG. 22) to the high illuminance weight (FIG. 31). Switch. That is, the weighting unit 34c decreases the inner second weight and increases the outer second weight. At this time, the weighting unit 34c does not change the first weight.
  • the weighting unit 34c applies these weightings in accordance with the external light illuminance value, so that the luminance peak does not change so much, and the luminance is dispersed in an environment where the illuminance of ambient light is small. It is possible to output a light emission luminance value such that the luminance is concentrated in an environment where the brightness is large.
  • the liquid crystal display device changes the degree of influence of the peripheral light emitting region in accordance with the illuminance of outside light, reduces the change in luminance peak, and improves the visibility of “black float”. It is possible to achieve both reduction and improvement in contrast visibility.
  • the first weight may be changed according to the illuminance of external light as in the third embodiment.
  • the liquid crystal display device according to the present embodiment can apply the same weighting to a plurality of light emitting regions other than 5 rows ⁇ 5 columns. In any case, it is desirable that the liquid crystal display device apply weighting so that the total value of the first weight and all the second weights is 1.
  • Embodiment 5 an embodiment in which the number of second information is changed based on external light
  • Embodiment 5 an embodiment in which the number of second information is changed based on external light
  • the liquid crystal display device has external light detection means as in the third embodiment, but the number of second information (in this embodiment, according to the detection result of the external light detection means).
  • the number of second light emitting regions) is different from that of the third embodiment.
  • Other configurations are the same as those of the third embodiment, and the description thereof is omitted.
  • the distribution of the weights is the weight distribution of 3 rows ⁇ 3 columns shown in FIG. Close to the distribution of weights.
  • the liquid crystal display device is used to determine the number of second light emitting regions, that is, the light emission luminance value of the light emitting region that irradiates the first image display region, according to the external light illuminance value. Change the number of information of 2. More specifically, in the liquid crystal display device according to the present embodiment, in an environment where the illuminance of ambient light is small, the luminance is dispersed by increasing the number of second light emitting regions, and the illuminance of ambient light is large. In the environment, the luminance is concentrated by reducing the number of second light emitting regions. Even in such a form, it is possible to achieve both a reduction in the visibility of “black float” and an improvement in the visibility of contrast. In addition, since the liquid crystal display device according to the present embodiment changes the number of the second light emitting regions, the “black float” visibility is smoother than when the weighting is changed within a predetermined range. Reduction and improvement in contrast visibility can be achieved.
  • the weighting means 34c includes at least a weight of 3 rows ⁇ 3 columns (hereinafter referred to as “basic weight”) shown in FIG. 8 and a weight of 5 rows ⁇ 5 columns (hereinafter referred to as “enlargement”) shown in FIG. It is assumed that the weighting can be switched between "weighting”).
  • the weighting unit 34c switches the applied weighting from the basic weight (FIG. 8) to the enlarged weight (FIG. 22). That is, the weighting unit 34c increases the number of light emitting regions (second light emitting regions) around the first light emitting region and changes the second weight.
  • the liquid crystal display device changes the degree of influence of the surrounding light emitting region in accordance with the illuminance of outside light, and more smoothly reduces the visibility of “black float” and the visibility of contrast. Can be improved.
  • the weighting means may change the weighting so that the second weight becomes zero when the ambient ambient light is very bright and the ambient light illuminance value is greater than or equal to a predetermined threshold value. In such a case, the “black float” is very difficult to visually recognize. In this way, when the second weight is set to 0, the number of luminance values added with the addition block weight can be reduced, and the processing load can be reduced.
  • liquid crystal display device may switch between three or more types of weights having different sizes of the second region.
  • the configuration of the fifth embodiment and the configuration of the third or fourth embodiment may be combined. That is, the number of second light emitting regions may be changed while changing the weight.
  • the liquid crystal display device may be configured so that the sum of weights does not become a constant value. For example, when the external light illuminance is high and the number of second light emitting areas is increased, the liquid crystal display device sets a second weight to the enlarged second light emitting areas, and the other second light emitting areas The second weight is not changed. According to such a configuration, the processing load for changing the weighting can be reduced.
  • Embodiments 1 to 5 As embodiments of the present invention, Embodiments 1 to 5 have been exemplified as described above. However, the present invention is not limited to these embodiments. Therefore, an example of another embodiment will be described below.
  • the liquid crystal display device has the same configuration as that of the first embodiment, and the feature detection unit weights the luminance average value and the luminance peak value for each image display region, thereby providing a feature amount. Is determined.
  • the liquid crystal display device further includes external light detection means, and has a configuration for changing the weight applied to the average luminance value and the luminance peak value in accordance with the detected external light illuminance.
  • the liquid crystal display device has the same configuration as that of the first embodiment, and the feature detection unit weights the luminance average value and the luminance peak value for each image display region. It is the structure which determines a feature-value by. And this liquid crystal display device has the structure which changes the 1st weight in a weighting means, and a 2nd weight according to the weight applied to this brightness
  • the liquid crystal display device captures the feature amount of each image display area as image data, and uses the band limiting filter to display the surrounding image in the light emission luminance of the image display area of interest (first image display area).
  • the luminance signal of the area (second image display area) may be reflected.
  • the filter coefficient of the band limiting filter corresponds to the weight in the above-described embodiment. Specifically, for example, if the band limiting filter has three horizontal taps (three regions in the row direction) and three vertical taps (three regions in the column direction), the diagram shown in FIG. 8 corresponds to the filter coefficient.
  • the backlight device and display device of the present invention can be used as a display device such as a liquid crystal television and a liquid crystal monitor, or a backlight device thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

 画像品位の低下の少ない輝度制御が可能なバックライト装置。この装置は、複数の画像表示領域を有し背面から照射される照明光を画像信号に応じて画面表示領域毎に変調することにより画像を表示する液晶パネル(10)に対して、画像を表示させるための照明光を照射する照明部(20)と、照明部(20)の発光輝度値を決定し、決定した発光輝度値に基づいて照明部(20)の発光状態を更新する輝度決定部(30)とを備え、照明部(20)は複数の画像表示領域のそれぞれを照射する複数の発光領域を有し、輝度決定部(30)は、第1の画像表示領域の入力画像信号に基づく第1情報と、第2の画像表示領域の入力画像信号に基づく第2情報と、に重み付けして得られる値から、第1の画像表示領域を照射する発光領域の発光輝度値を決定する。

Description

バックライト装置および表示装置
 本発明は、バックライト装置および当該バックライト装置を用いた表示装置に関する。特に、複数の分割領域の点灯を制御するバックライト装置および表示装置に関する。
 液晶表示装置に代表される非自発光型の表示装置は、背面にバックライト装置(単に、バックライトとも言う)を備えている。これらの表示装置は、光変調部を介して画像を表示する。光変調部は、画像信号に応じて、バックライトから照射される光の反射量や透過量を調整する。これらの表示装置においては、表示輝度のダイナミックレンジの拡大などを目的に、バックライトの照明部を複数の分割領域に分け、領域毎に輝度を制御する構成が用いられている。
 上述したような構成においては、コストの観点などから、バックライトの分割数(バックライトの解像度)を光変調部の解像度と同じにすることは困難である。したがって、通常、バックライトの解像度は、光変調部の解像度に比べて低い。このため、両者の解像度の違いによる弊害が発生する。黒で表示されるべき部分が明るくなり目立って見える現象(以下、「黒浮き」という)は、その弊害の1つである。以下、これについて図1、図2を用いて説明する。
 図1は、静止画における「黒浮き」の様子を説明する説明図である。図1Aは、入力画像900(または光変調部の変調状態と考えても良い)を示している。入力画像900において、黒背景の上に、輝度のピークが高いサークル状の物体が存在している。なお、入力画像900上の破線は、理解を容易にするために、バックライトの分割領域の位置を示すものであり、入力画像には含まれない。この入力画像に応じて、例えば液晶パネルなどの光変調部が制御される。具体的には、輝度の高い部分では光をより透過するように、液晶パネルの開口率が制御される。
 図1Bは、バックライト910の発光状態を示している。ここで、バックライト910は、9つの分割領域を有している。上述のサークル状の物体は、ここでは、バックライト910の中心に位置する領域(以下単に「中心の領域」という)に完全に含まれているものとする。中心の領域は、このように入力画像900の輝度のピークが高いサークル状の物体を含む領域なので、領域の画像に応じた輝度で発光する。そして、周辺の領域は、領域の画像全体が黒なので、消灯する。
 図1Cは、表示装置に表示される表示画像920を示している。このように、中心の領域では、黒の部分であっても実際には光が僅かに透過する。そのため、中心の領域と、その領域に隣接する領域とでは、背景の黒色に輝度差が生じる。結果として、隣接する領域に比べて中心の領域において、「黒浮き」が強く発生する。
 図1では、静止画の場合について説明したが、動画の場合について図2を用いて説明する。
 図2は、動画における「黒浮き」の様子を説明する説明図である。図2Aは、図1Aと同じ入力画像900において、サークル状の物体が左から右へ移動する様子を示している。
 図2Bは、バックライト910の発光状態の遷移の様子を示している。サークル状の物体が右へ移動して行き、2つの発光領域をまたがったとき、両方の発光領域が発光する。そのため、サークル状の物体が1つの発光領域のみに含まれているときに比べて、発光領域の面積が大きくなる。そして、サークル状の物体が更に右へ移動していくと、再び1つの領域にサークルが含まれるようになり、発光する発光領域は1つとなる。
 図2Cは、表示装置に表示される表示画像920の遷移の様子を示している。このように、周囲との輝度差のある物体が移動するとき、物体が発光領域をまたぐタイミングで、前述した「黒浮き」の部分の面積が変化する。このような面積変化があると、「黒浮き」が視認されやすくなる。
 このような「黒浮き」を低減する方法として、バックライトの輝度制御において、「画像信号に基づいて点灯された分割領域に隣接する非点灯領域の一定幅の隣接領域に対して該点灯された分割領域の輝度よりも小さい輝度にてバックライトを点灯させる隣接領域点灯手段を有している」構成が開示されている(例えば特許文献1参照)。
特開2008-51905号公報
 しかしながら、特許文献1に開示されている液晶表示装置においては、例えば図1Bの周辺領域(中心の領域以外の領域)の輝度を補正するか補正しないかは、中心の領域との輝度差の閾値でもって判別する。そのため、中心の領域と周辺領域との輝度差が閾値をまたぐときに、周辺領域において輝度の時間的な不連続点が発生する可能性がある。輝度の不連続は、観察者に認識される場合がある。
 本発明の目的は、画像品位の低下の少ない輝度制御が可能なバックライト装置及び表示装置を提供することである。
 上記課題を解決するため、本発明のバックライト装置は、複数の画像表示領域を有し背面から照射される照明光を画像信号に応じて前記画面表示領域毎に変調することにより画像を表示する光変調部に対して、画像を表示させるための照明光を照射する照明部と、前記照明部の発光輝度値を決定し、決定した発光輝度値に基づいて前記照明部の発光状態を更新する輝度決定部とを備え、前記照明部は、前記複数の画像表示領域のそれぞれを照射する複数の発光領域を有し、前記輝度決定部は、第1の画像表示領域の入力画像信号に基づく第1情報と、第2の画像表示領域の入力画像信号に基づく第2情報とに重み付けして得られる値から、前記第1の画像表示領域を照射する発光領域の発光輝度値を決定する構成を採る。
 また、本発明の表示装置は、上記のバックライト装置と、上記の光変調部とを備えた構成を採る。
 本発明によれば、画像品位の低下の少ない輝度制御が可能なバックライト装置及び表示装置を提供することできる。
静止画における「黒浮き」の様子を説明する説明図 動画における「黒浮き」の様子を説明する説明図 本発明の実施の形態1に係る液晶表示装置の全体構成を示す構成図 実施の形態1における発光部および液晶パネルの構成を示す構成図 実施の形態1における輝度決定部の構成を示す構成図 実施の形態1における特徴量を基準輝度値へ変換する変換テーブルの特性の例を示す図 実施の形態1における重み付け手段の構成を示す構成図 実施の形態1における重み付けの考え方を説明するための説明図 実施の形態1における液晶パネルへ入力する画像の一例を示す図 実施の形態1における輝度算出手段で算出された発光部の各発光領域の基準輝度値を示す図 実施の形態1における重み付け手段を介さないときの発光状態を示す図 実施の形態1における液晶パネルに実際に表示される画像を示す図 実施の形態1における重み付け手段から出力される重み付き輝度値を示す図 実施の形態1における発光輝度値の算出を説明するための説明図 実施の形態1における重み付け手段を介したときの発光状態を示す図 実施の形態1における液晶パネルに実際に表示される画像を示す図 実施の形態1における特徴量として輝度平均値を用いた場合の特徴を説明する説明図 実施の形態1における特徴量として輝度ピーク値を用いた場合の特徴を説明する説明図 実施の形態1においてM:N=2:1とした場合の重みを示す説明図 実施の形態1においてM:N=1:2とした場合の重みを示す説明図 実施の形態1において斜めに位置する発光領域の基準輝度値に掛ける重みを小さくする場合の説明図 実施の形態1において5行×5列の発光領域に対して基準輝度値の重み付けを行う場合の説明図 実施の形態2における輝度決定部の構成を示す構成図 実施の形態2における重み付け手段の構成の一例を示す構成図 実施の形態2における重み付け手段の構成の他の例を示す構成図 実施の形態3における輝度決定部の構成を示す構成図 実施の形態3における重み付け手段の構成を示す構成図 実施の形態3における重み付けの切り替えの様子の一例を示す図 実施の形態3における外光照度値を第2の重みに変換する変換テーブルの特性の例を示す図 実施の形態4において外光照度に応じて第2の重みのみを変更する第1の場合の説明図 実施の形態4において外光照度に応じて第2の重みのみを変更する第2の場合の説明図
 (実施の形態1)
 以下、本発明を液晶表示装置に適用した例である実施の形態1(基準輝度値への重み付けを行う形態)について、図面を参照して説明する。
 <1-1.液晶表示装置の構成>
 まずは、液晶表示装置の構成について説明する。
 図3は、液晶表示装置の全体構成を示す構成図である。液晶表示装置1は、大別して、液晶パネル10と、照明部20と、輝度決定部30と、画像信号補正部40と、を備えている。以下、照明部20と輝度決定部30とを合わせてバックライト装置と呼ぶ。各部の構成について、以下に詳細に説明する。
 <1-1-1.液晶パネル>
 液晶パネル10は、背面から照射される照明光を画像信号に応じて変調して画像を表示する。
 液晶パネル10は、図中に破線で示すように、複数の画像表示領域を有している。それぞれの画像表示領域は、複数の画素を有している。
 液晶パネル10は、ガラス基板に画素ごとに分割された液晶層を挟み込んだ構成をしている。液晶パネル10は、ゲートドライバ(図示せず)やソースドライバ(図示せず)などによって、各画素に対応する液晶層に信号電圧が与えられて、画素ごとに開口率が制御される。液晶パネル10は、IPS(In Plane Switching)方式を用いている。IPS方式は、液晶分子がガラス基板と平行に回転するというシンプルな動きをする方式である。これにより、IPS方式を採用した液晶パネルは、広視野角で、見る方向による色調変化や全階調での色調変化が少ないといった特徴を有する。
 なお、液晶パネル10は、光変調部の一例である。液晶パネルの方式として、VA(Vertical Alignment)方式などの他の方式を用いても良い。
 <1-1-2.照明部>
 照明部20は、液晶パネル10に対して画像を表示させるための照明光を背面から照射する。
 照明部20は、複数の発光領域からなる発光部21を有している。それぞれの発光領域は、液晶パネル10の画像表示領域と対向して設けられており、対向する画像表示領域をそれぞれ主として照射する。ここで、「主として照射する」としたのは、発光領域は、対向していない画像表示領域にも一部の照明光を照射することがあるためである。それぞれの発光領域は、光源として4つのLED210を有している。また、照明部20は、発光部21のLED210を駆動するためのLEDドライバ22を有している。
 LEDドライバ22は、発光領域毎に独立して駆動することができるように、全発光領域数に相当する60個の駆動回路(図示せず)を有している。
 上記構成により、照明部20は、発光領域毎に輝度制御が可能である。
 図4は、発光部21の構成を示す構成図である。発光部21は、6行10列からなる合計60の発光領域を有している。ここで、各々の発光領域を、行番号に対応するアラビア数字の符号と、列番号に対応するアルファベットの符号の組合せにより、特定して表すものとする。例えば、図4において、行番号3、列番号dに相当する発光領域は、発光領域3dと表す。
 LED210は、白色光を発する。一つの発光領域に属する4つのLED210は、LEDドライバ22の一つの駆動回路に接続されている。そして、一つの発光領域に属する4つのLED210は、LEDドライバ22からの信号に従って、同じ輝度で発光する。
 なお、LED210は、直接白色光を発するものに限られない。例えばRGBの3色の光を混色して白色を発するものであっても良い。また、一つの発光領域に属するLED210の個数は、4個に限られない。より多い個数のLEDを用いても良いし、より少ない個数のLEDを用いても良い。
 <1-1-3.輝度決定部>
 輝度決定部30は、入力画像信号に基づいて、照明部20が有する複数の発光領域毎の発光輝度値を決定する。入力画像信号は、液晶パネル10が有する複数の画像表示領域について、画像表示領域毎の画像信号を時系列で並べた信号である。すなわち、輝度決定部30は、液晶パネル10の画像表示領域毎の入力画像信号を入力し、照明部20のLEDドライバ22に対して、発光領域毎の発光輝度値を出力する。また、輝度決定部30は、画像信号補正部40に対しても、発光領域毎の発光輝度値を出力する。
 特に、本発明の液晶表示装置1の特徴として、輝度決定部30は、一つの発光領域の発光輝度値を決定するにあたり、第1の画像表示領域の入力画像信号に基づく情報(第1情報)と、第2の画像表示領域の入力画像信号に基づく情報(第2情報)と、に重み付けして得られる値から、その発光領域の発光輝度値を決定する。第1の画像表示領域とは、発光輝度値の決定の対象となっている発光領域が主として照射する画像表示領域である。第2の画像表示領域とは、その発光輝度値の決定の対象となっている発光領域が主として照射する画像表示領域とは別の画像表示領域である。
 図5は、輝度決定部30の詳細な構成を示す構成図である。輝度決定部30は、大別して、特徴検出手段31と、輝度算出手段32と、一時メモリ33と、重み付け手段34と、を有する。
 <1-1-3-1.特徴検出手段>
 特徴検出手段31は、画像表示領域毎に、入力画像信号の特徴量を検出する。以下、特徴量とは、後述の基準輝度値の算出に直接に用いられる値をいう。ここでは、特徴量として、各画素の輝度信号の平均値(以下「輝度平均値」という)を用いる。各画素の輝度信号は、入力画像信号に含まれている。すなわち、特徴検出手段31は、画像信号を入力し、画像表示領域毎に輝度平均値を検出する。そして、特徴検出手段31は、順次、検出した特徴量を輝度算出手段32へ出力する。
 <1-1-3-2.輝度算出手段>
 輝度算出手段32は、入力した特徴量に基づいて、発光領域毎の基準輝度値を算出する。具体的には、輝度算出手段32は、変換テーブルを用いて、画像表示領域毎に、輝度平均値を基準輝度値に変換して、一時メモリ33へ出力する。基準輝度値とは、注目している発光領域に適用すべき輝度値(以下「発光輝度値」という)を算出する際の、基準となる値である。
 図6は、特徴量を基準輝度値へ変換する変換テーブルの特性の例を示す図である。図6A~図6Cにおいて、横軸は特徴量を示し、縦軸は基準輝度値を示している。
 例えば、図6Aに示す特性を有する変換テーブルを用いた場合には、特徴量は、同一の値の基準輝度値に変換される。例えば、特徴量が0なら基準輝度値は0、特徴量が255なら基準輝度は255、というような具合である。また、例えば特徴量のγカーブを補正するような場合には、図6Bに示す特性を有する変換テーブルを用いることも可能である。また、所定の特徴量以上で基準輝度値を飽和させるような場合には、図6Cに示す特性を有する変換テーブルを用いることも可能である。輝度算出手段32は、これらの変換テーブルを用いることにより、入力画像信号に対する発光部21の発光輝度を調整することができる。
 例えば、特徴量を輝度平均値とした場合、黒背景に微小の白輝点があるような画像では、特徴量は小さくなる。よって、白輝点部分の輝度が低くなりすぎる場合がある。このような場合は、図6Aに示す特性の変換テーブルよりも、図6Cに示す特性の変換テーブルの方が、見栄えが良くなる場合がある。図6Cに示す特性のほうが、小さい特徴量に対して比較的大きい基準輝度値が対応しているからである。
 したがって、輝度算出手段32は、特性の異なる複数の変換テーブルを予め用意し、画像の状態に応じて、より良い画質が得られるような変換テーブルを切り替えて使用することが望ましい。このように、輝度算出手段32は、画像に対応して、基準輝度値の算出に用いる変換テーブルを、適応的に変えることもできる。
 なお、本実施の形態においては変換テーブルを用いる場合について説明したが、これに限られない。例えば、輝度算出手段32は、上述したような変換特性を有する変換関数を用いて、随時、基準輝度値への変換を行っても良い。このような構成によれば、メモリ量を小さくすることが可能である。
 <1-1-3-3.一時メモリ>
 一時メモリ33は、輝度算出手段32から出力された基準輝度値を記憶する。すなわち、一時メモリ33は、発光領域毎に基準輝度値を順次記憶していき、全ての発光領域の基準輝度値を一旦記憶する。
 <1-1-3-4.重み付け手段>
 重み付け手段34は、第1情報である第1の発光領域の基準輝度値と、第2情報である第2の発光領域の基準輝度値と、に重み付けして得られる値から、第1の発光領域の発光輝度値を決定する。すなわち、重み付け手段34は、一つの発光領域(第1の発光領域)の発光輝度値を決定するにあたり、一時メモリ33に記憶されているその発光領域に対する基準輝度値(第1情報)を読み出す。また、その発光領域とは別の所定の発光領域(第2の発光領域)の基準輝度値(第2情報)も一時メモリ33から読み出す。そして、重み付け手段34は、読み出した複数の基準輝度値に重み付けを行い、重み付けを行った後の複数の値(以下「重み付き輝度値」という)を加算し、最終的なその発光領域(第1の発光領域)の発光輝度値を決定する。
 本実施の形態において、第2の発光領域は、第1の発光領域を中心にその周辺に隣接する8つの発光領域である。例えば図4を用いて例示すると、第1の発光領域が発光領域3dである場合、第2の発光領域は、発光領域2c、2d、2e、3c、3e、4c、4d、4eである。
 図7は、本実施の形態における重み付け手段34のより詳細な構成を示す構成図である。重み付け手段34は、第1情報読み出しブロック340、8つの第2情報読出しブロック341a、341b、341c、341d、341e、341f、341g、341h、第1情報重み付けブロック350、8つの第2情報重み付けブロック351a、351b、351c、351d、351e、351f、351g、351、および加算ブロック360を有している。
 第1情報読み出しブロック340は、一時メモリ33より第1情報を読み出す。第1情報重み付けブロック350は、第1情報読み出しブロック340が読み出した第1情報に対して重み付けを行い、第1の重み付き輝度値を出力する。
 第2情報読出しブロック341a~341hは、一時メモリ33より、第2の発光領域2c~4eに対応する第2情報を、それぞれ読み出す。第2情報重み付けブロック351a~351hは、第2情報読出しブロック341a~341hが読み出した第2情報に対してそれぞれ重み付けを行い、第2の重み付き輝度値をそれぞれ出力する。
 加算ブロック360は、第1情報重み付けブロック350が出力する第1の重み付き輝度値と、第2情報重み付けブロック351a~351hが出力する8つの第2の重み付き輝度値とを加算する。
 本実施の形態においては、第1情報重み付けブロック350は、第1情報に対して8/16の重み付けを行う。また、第2情報重み付けブロック351a~351hは、第2情報に対して、全て等しく1/16の重み付けを行う。第2情報は、第1の発光領域の周辺に隣接する8つの発光領域のそれぞれの基準輝度値である。以下、第1情報(第1の発光領域の基準輝度値)に対する重みを「第1の重み」といい、第2情報(第2の発光領域の基準輝度値)に対する重みを「第2の重み」という。
 図8は、重み付けの考え方を説明するための説明図である。図8は、発光部21の一部を示しており、第1の発光領域を発光領域3eとした場合の、各発光領域の基準輝度に対する重み付けの様子を示している。この場合、発光領域3eを中心に、その周辺の3行×3列の領域に属する発光領域が、第2の発光領域となる(破線で囲まれた領域)。また、ここでは、第1の重みが8/16、第2の重みが1/16である場合について説明する。
 図8に示すように、発光領域3eにおいては、その基準輝度値に対して8/16の重み付けがなされる。また、その周辺の第2の発光領域においては、それぞれの基準輝度値に対して1/16の重み付けがなされる。このような重み付けによれば、重みの和は1となり、かつ、第1の発光領域の基準輝度値に対する重み(第1の重み)と、全ての第2の発光領域の基準輝度値に対する重みの合計値(第2の重みの合計値)との比が、1:1となる。すなわち、第1の重みが50%、第2の重みの合計値が50%(各々の第2の重みは50/8=6.25%)で、合計の重みは100%となる。
 これらの重み付けにより得られた9つの重み付き輝度値を加算して、最終的な発光領域3eの発光輝度値が算出される。
 ここで、重みの和を変えずに、各発光領域の重みの数値を所定の比率に決定する方法について、一例を説明する。
 まず、第1の重みと第2の重みの合計値との比を、M:Nに設定するものとする。また、第2の発光領域はX個存在するものとする。
 このような条件においては、第1の重みは、M×X/{(M+N)×X}によって求めることができる。
 また、第2の重みの合計値は、N×X/{(M+N)×X}で求めることができる。ここで、全ての第2の重みを同じ値にする場合には、第2の重みは、N/{(M+N)×X}となる。
 本実施の形態においては、M:N=1:1、X=8である。したがって、第1の重みは8/16、第2の重みは1/16、とそれぞれ求めることができる。
 なお、重みの設定方法は、特にこれに限られるものではなく、他の方法であっても良い。
 このような構成により、発光領域の発光輝度値の算出において、その発光領域の周辺の発光領域に対応する輝度信号を反映した発光輝度値の算出を可能としている。
 決定された発光領域の発光輝度値は、照明部20のLEDドライバ22、および、画像信号補正部40に対して出力される。
 <1-1-4.画像信号補正部>
 画像信号補正部40は、輝度決定部30が決定した発光輝度値に基づいて、液晶パネル10へ入力する画像信号を補正する。
 発光領域毎の輝度制御を行った場合、元々の画像信号が同じ画像表示領域であっても、対応する発光領域の発光輝度値が低く決定された場合と高く決定された場合とで、表示される画像の輝度が異なることになる。よって、表示される画像が不自然な見え方をする場合がある。これを低減するため、画像信号補正部40は、発光領域毎の発光輝度値に連動して、表示される画像の画像信号を補正するものである。具体的には、画像信号補正部40は、発光輝度値の変更具合に応じて、液晶パネル10に表示する画像のコントラストゲインを変更する。これにより、画像信号補正部40は、上述の発光領域毎の輝度制御に伴う弊害を是正する。
 以上、液晶表示装置の構成について説明した。
 <1-2.液晶表示装置の動作>
 次に、上記構成に基づいた液晶表示装置の表示動作の具体的な一例について、本発明の特徴的な動作を中心に説明する。
 <1-2-1.基準輝度値の算出>
 図9は、液晶パネル10へ入力する画像の一例を示しており、黒背景上に大小2つの白100%の矩形形状の物体が配置されている。なお、図9において白の格子線は、液晶パネル10の画像表示領域(または、対応する発光部21の発光領域)の枠を示すものであり、実際の画像には含まれない。
 図9に示す画像の画像信号は、輝度決定部30における特徴検出手段31に入力されて、特徴量である輝度平均値が画像表示領域毎に検出される。そして、検出された各特徴量は、輝度算出手段32に入力されて、各発光領域の基準輝度値に変換される。
 図10は、輝度算出手段32で算出された発光部21の各発光領域の基準輝度値を示す図である。なお、ここで用いられる輝度算出手段32は、図6Aに示すような特性の変換テーブルを有している。よって、特徴量が0なら基準輝度値は0に、特徴量が128なら基準輝度値は128に、特徴量が255なら基準輝度値は255に、というように、特徴量は同一の値の基準輝度値に変換される。
 図10の数値について、発光領域3cを例にとって具体的に説明する。発光領域3cの場合、図9における小さい方の矩形形状の物体は白100%の画像である。したがって、物体部分の画像信号に含まれる各画素の輝度信号は、最大値の255である。図9における小さい方の矩形形状の物体は、発光領域3cに対応する画像表示領域の1/4の面積を有している。つまり、対応する画像表示領域の1/4の画素において、輝度信号が255になる。よって、発光領域3cに対し、特徴量として輝度平均値64が検出され、基準輝度値64が求められる。
 同様にして、図9における大きい方の矩形パターンについて説明する。発光領域3gと発光領域4gでは、対応する画像表示領域の画素の全てにおいて、輝度信号が255となっている。よって、発光領域3g、4gに対し、それぞれ、特徴量255が検出され、の基準輝度値255が求められる。
 発光領域2g、3f、3h、4f、4h、5gでは、対応する画像表示領域の半分の画素において、輝度信号が255となっている。よって、これらの発光領域に対し、輝度信号の半分の特徴量128が検出され、基準輝度値128が求められる。
 矩形パターンの4隅にあたる、発光領域2f、2h、5f、5hでは、対応する画像表示領域の1/4の画素において、輝度信号が255となっている。よって、これらの発光領域に対し、輝度信号の1/4の特徴量64が検出され、基準輝度値64が求められる。
 <1-2-2.重み付けによる発光輝度値の算出>
 次に、算出された基準輝度値に対する重み付け手段34の動作について説明する。
 ここで、本発明の作用をより明確にするため、比較として、まず、重み付け手段34を用いない場合について説明する。
 図11は、図10に示す基準輝度値を、重み付け手段34を介さずにそのまま照明部20に入力した場合の発光部21の発光状態を示す図である。また、図12は、図11の光を背面から照射したときに、液晶パネル10に実際に表示される画像を示す図である。
 図12に示すように、発光していない発光領域(例えば、発光領域1g)と発光している発光領域である発光領域2gとの間で比較すると、発光領域2gの黒色部分は明るく浮いてしまう。すなわち、「黒浮き」が視認される好ましくない表示となる。これは、発光していない発光領域と発光している発光領域との間の、発光輝度値の差に起因している。なお、黒色部分と違い、白色部分が一様の輝度となっているのは、画像信号補正部40により輝度信号の補正が行われているためである。
 次に、重み付け手段34を用いた場合について説明する。
 図13は、重み付け手段34から出力される重み付き輝度値を示す図である。図13の数値の算出について、図14を用いて具体的に説明する。
 図14は、数値の算出を説明するための説明図であり、重み付け手段34に入力される前の基準輝度値を示している。例えば、発光領域4hの場合、図14に示すように、第1情報にあたる基準輝度値は128である。発光領域4hの第2情報は、周辺の8つの発光領域3g、3h、3i、4g、4i、5g、5h、5iのそれぞれの基準輝度値である。
 ここで、第1情報に対しては、上述した構成で説明したように、第1情報重み付けブロック350によって、8/16の重み付けがなされる。すなわち、発光領域4hから、128×(8/16)の値が、第1の重み付き輝度値として導かれる。
 第2情報に対しては、第2情報重み付けブロック351a~351hによって、それぞれに1/16の重み付けがなされる。すなわち、発光領域3g、4gからは、それぞれ255×(1/16)の値が、発光領域3h、5gからは、それぞれ128×(1/16)の値が、発光領域5hからは、64×(1/16)の値が、発光領域3i、4i、5iからは、それぞれ0×(1/16)の値が、第2の重み付き輝度値として導かれる。
 そして、これら9つの重み付き輝度値の加算値である115.9が、発光領域4hの発光輝度値として算出される。
 同様の方法で、全ての発光領域に対して発光輝度値を算出すれば、図13に示す発光輝度値が得られる。
 なお、発光部21における端部の発光領域(行1と行6、および列aと列jに属する発光領域)については、周囲8方向のいずれかにおいて、発光領域が存在しない。そこで、重み付け手段34は、これらの端部の発光領域に対しては、図14に示すように、行方向列方向に拡張した仮想の発光領域を用い、全ての発光領域で周囲8方向の発光領域が存在するものとして、発光輝度値の算出を行う。
 すなわち、重み付け手段34は、行1の上側には、行1と同じ基準輝度値を持つ仮想の発光領域を1行追加し、行6の下側には、行6と同じ基準輝度値を持つ仮想の発光領域を1行追加する。そして、重み付け手段34は、列aの左側には、列aと同じ基準輝度値を持つ仮想の発光領域を1列追加し、列jの右側には、列jと同じ基準輝度値を持つ仮想の発光領域を1列追加する。また、重み付け手段34は、拡張された仮想領域の4隅にあたる発光領域には、発光部21の4隅の発光領域を拡張して用いる。
 図15は、図13に示す発光輝度値を照明部20に入力した場合の発光部21の発光状態を示す図である。また、図16は、図15の光を背面から照射したときに、液晶パネル10に実際に表示される画像を示す図である。
 図16に示すように、重み付け手段34を用いた場合、重み付け手段34を用いない場合の図12に比べ、発光していない発光領域と発光している発光領域との間で、発光輝度値の差が緩和している。これにより、「黒浮き」が緩和される。
 以上、液晶表示装置の動作について説明した。
 <1-3.特徴のまとめ>
 次に、本発明に係る液晶表示装置の特徴的な効果について例示する。
 例えば、従来の液晶表示装置においては、入力画像信号において輝度値の高い発光領域と輝度値の低い発光領域(特に、輝度値が0に近い発光領域)とが隣接した場合に、輝度値の低い発光領域の発光輝度値を補正するか補正しないかを、輝度差を閾値と比較することによって判別する。そのため、上述の通り、輝度の時間的な不連続点が発生する可能性がある。
 本発明に係る液晶表示装置は、このような閾値を用いないため、輝度の不連続は発生しない。
 また、入力画像信号において輝度値の高い発光領域と輝度値の低い発光領域(特に、輝度値が0に近い発光領域)とが隣接した場合、従来の液晶表示装置においては、輝度値の高い発光領域の輝度値は補正せず、輝度値の低い発光領域の輝度値のみを上げる方向に補正する。
 これに対し、本発明の液晶表示装置では、輝度平均値の高い発光領域の発光輝度値を下げ、輝度平均値の低い発光領域の発光輝度値を上げるように作用する。この作用により、従来の構成に比べて、輝度値の補正による電力の増加を低減することができる。
 特に、本実施の形態においては、重み付け手段の各発光領域の重みの和が1となる。よって、照明部から照射する発光量の変化を抑えた状態で重み付けを行うことができ、余分な電力の消費を抑えることができる。
 本実施の形態においては、特徴量として輝度平均値を用いている。輝度平均値を特徴量として用いると、図15に示すように、面積の大きい白色の物体に対応する発光領域に対して、面積の小さい白色の物体に対する発光領域の輝度が低くなる。したがって、画像信号補正部による画像信号の補正を行わない場合、面積が大きい白よりも面積が小さい白の方が、液晶パネルを透過して表示される画像の輝度が低くなる。
 しかし、一般的に人間の目の特性には、輝度が同じであった場合に、面積の大きい白よりも面積が小さい白の方が明るく感じられる傾向がある。そのため、特徴量として輝度平均値を用いた場合でも、結果として違和感の少ない表示となる。もちろん、画像信号補正部によって、面積が大きい白と面積が小さい白との輝度の差が小さくなるように、画像信号を補正することもできる。
 なお、本実施の形態の液晶表示装置においては、特徴量として、画像表示領域毎の入力画像信号に含まれる各画素の輝度信号のピーク値(以下「輝度ピーク値」という)を用いても、同様の効果を得ることができる。従来の構成においては、輝度ピーク値のみを用いた場合には、上述したように面積に応じた輝度値の変化を得ることはできない。本実施の形態においては、周辺の発光領域に対応する輝度信号が反映されるので、特徴量として輝度ピーク値を用いたとしても、面積に応じた輝度値の変更が可能となる。これについては後述する。
 また、特徴量として、輝度平均値と輝度ピーク値とを組み合わせて用いても良い。さらには、これら輝度平均値と輝度ピーク値とを加算する際の輝度平均値および輝度ピーク値に対する重み付けを、画像表示領域毎の入力画像信号に応じて変更するようにしても良い。これらの構成における効果について、図17、図18を用いて説明する。
 図17は、特徴量として輝度平均値を用いた場合の特徴を説明する説明図である。図17Aは、入力画像400を示している。入力画像400は、黒背景の上に輝度のピークが高いサークル状の物体が存在している。なお、入力画像400上に示す破線は、理解を容易にするために、バックライトの分割領域の位置を示すものであり、入力画像には含まれない。図17Bは、特徴量として輝度平均値を用いた場合における、発光部21の一部である発光部21aの発光状態を示している。ここで、発光部21aの中心に位置する領域は、入力画像400の輝度のピークが高いサークル状の物体を含む領域なので、領域の画像に応じた輝度で発光する。そして、周辺の領域は、領域の画像全体が黒なので、消灯する。図17Cは、特徴量として輝度平均値を用いた場合における、液晶パネル10の一部に表示される表示画像500aを示している。
 図18は、特徴量として輝度ピーク値を用いた場合の特徴を説明する説明図である。図18Aは、図17Aと同じ入力画像400を示している。図18Bは、特徴量として輝度ピーク値を用いた場合における、発光部21の一部である発光部21bの発光状態を示している。ここで、発光部21bの中心に位置する領域は、入力画像400の輝度のピークが高いサークル状の物体を含む領域なので、領域の画像に応じた輝度で発光する。そして、周辺の領域は、領域の画像全体が黒なので、消灯する。図18Cは、特徴量として輝度ピーク値を用いた場合における、液晶パネル10の一部に表示される表示画像500bを示している。
 図17Cに示すように、特徴量として輝度平均値を用いた場合には、画像の中の物体が動いても、各発光領域の輝度が急峻に変化することなく違和感の少ない表示が得られる。しかし、輝度平均値が低い画像表示領域において、輝度値の高い微小な白輝点(例えば、夜空の星のような物体)の輝度のピークが不足する場合がある。
 一方、図18Cに示すように、特徴量として輝度ピーク値を用いた場合には、夜空の星のような物体においても輝度のピークを維持することができる。しかし、画像の中の物体が動いたときに各発光領域の輝度が急峻に変わり違和感のある表示となる場合がある。
 このような特性を利用し、特徴量として輝度平均値と輝度ピーク値とを組み合わせたり、さらには、これら輝度平均値と輝度ピーク値の重み付けを画像表示領域毎の入力画像信号に応じて変更したりすることによって、以下のような効果を有する。すなわち、表示する画像に応じて局所的にピークの輝度値が不足したり、画像の動きに応じても不自然な発光をしたりすることを低減することができ、適宜最適な特徴量によって発光領域の発光量を調整することができる。
 なお、本実施の形態においては、光源としてLEDを用いたが、これに限られない。例えば、光源として、レーザー光源や蛍光管を用いても良い。要するに、発光領域を分割して各々の分割領域の発光輝度を制御することができるものであれば良い。レーザー光源を用いた場合には、色再現領域の広域化を図ることができる。蛍光管を用いた場合には、LEDを並べる場合よりも更なる薄型化を図ることができる。
 また、本実施の形態において、重み付け手段は、第1の発光領域の基準輝度値に対して8/16の重み付けを行い、第2の発光領域の基準輝度値に対して1/16の重み付けを行ったが、これに限られない。第1の重みを増やして、第2の重みを減らしたい場合には、例えば、図19のように重みを設定すれば良い。図19は、M:N=2:1の場合の重みを示す説明図である。
 逆に、第1の重みを減らして、第2の重みを増やしたい場合には、重み付け手段は、例えば、図20のように重み付けすれば良い。図20は、M:N=1:2の場合の、第1の重みおよび第2の重みを示す説明図である。
 これらの重みは、画像表示領域毎の入力画像信号に応じて変更するようにしても良い。重みの具体的な数値については、これら以外のものであっても良い。また、輝度を全体的に上げたい場合には、重みの和が1以上になるように、第1の重みおよび第2の重みを決定しても良い。逆に、輝度を全体的に下げたい場合には、重みの和が1以下になるように、第1の重みおよび第2の重みを決定しても良い。
 また、本実施の形態において、重み付け手段は、第2の重みを全て同じになるようにしたが、これに限られない。例えば、重み付け手段は、図21に示すように、第1の発光領域(発光領域3e)に対して、斜めに位置する第2の発光領域(発光領域2d、2f、4d、4f)の第2の重みを、他の第2の発光領域の第2の重みよりも小さくしても良い。すなわち、重み付け手段は、第2の発光領域ごとに重みを変えても良い。
 斜めに位置する第2の発光領域は、第1の発光領域からの実質的な距離が少しだけ他の第2の発光領域よりも長い。よって、斜めに位置する第2の発光領域の基準輝度値の重みを小さくすることで、より違和感のない画像表示が可能となる。
 また、本実施の形態において、重み付け手段は、第1の発光領域を中心に周辺8つの領域を第2の発光領域として、3行×3列の発光領域に対して基準輝度値の重み付けを行ったが、これに限られない。重み付け手段は、5行×5列や5行×3列など、重み付けを行う発光領域の数を変えても良い。この場合、奇数行×奇数列とすることで、第1の発光領域に対して行方向列方向に対称な第2の発光領域を設定することができる。
 図22は、5行×5列の発光領域に対して基準輝度値の重み付けを行う場合の説明図である。このとき、重み付け手段は、第1の発光領域からより遠い第2の発光領域の基準輝度値ほど、より小さい重みを掛ける。このようにすれば、より違和感のない画像表示が可能になる。
 また、本実施の形態において、第2の発光領域は、第1の発光領域を中心とする周辺8つの領域をとしたが、これに限られない。例えば、第1の発光領域を含む全ての発光領域を第2の発光領域として、画面全体の輝度信号の平均値を第2情報として用いて重み付けを行っても良い。
 このようにすれば、画面全体の輝度信号の平均値に応じて各発光領域の輝度を変えることができる。よって、例えば、バックライト装置の電力消費が大きくなる全白表示に近いような画像においては、発光輝度を下げて省電力で表示することができる。また、バックライト装置の電力消費が小さくなる黒背景に微小な白輝点が所々にあるような画像においては、白輝点があるエリアのみに電力を集中させて白部分を明るく表示することができる。このように、液晶表示装置1は、全ての発光領域を第2の発光領域とすることにより、表現力のある画像を提供することができる。
 また、本実施の形態においては、液晶表示装置1は、発光部21における端部の発光領域については、拡張した仮想の発光領域を用い、全ての発光領域で周囲8方向の発光領域が存在するものとして発光輝度値を算出したが、別の算出方法を用いても良い。例えば、重み付け手段は、周囲8方向の全てを用いずに、実際に存在する第2発光領域の基準輝度値だけを重み付けするようにしても良い。または、液晶表示装置1は、端部の発光領域については重み付け手段を用いないようにしても良い。
 また、本実施の形態において、重み付け手段は、一定の重み付けを行うとしたが、何らかの要因によってその重み付けが変更されるものであっても良い。例えば、重み付け手段は、第1情報と第2情報との差に基づいて、重み付けを変更しても良い。第1情報と第2情報との差が大きいときには、より「黒浮き」が視認されやすくなる。よって、第1情報と第2情報の差が大きいときには、第2の重みを大きくするように変更すると、「黒浮き」の視認をより低減することができる。
 なお、本実施の形態において、液晶表示装置1は、画像信号補正部40を有しているが、画像信号補正部40が無い構成であっても良い。液晶表示装置1は、画像信号補正部40が無い構成であっても、従来の液晶表示装置に比べて画像品位の低下の少ない輝度制御が可能である。画像信号補正部40を有することによる更なる効果として、上述した通り、発光領域毎の輝度制御に伴う弊害を是正することができる。
 (実施の形態2)
 次に、本発明を液晶表示装置に適用した例である実施の形態2(基準特徴量への重み付けを行う形態)について、図面を参照して説明する。実施の形態2は、実施の形態1と比較して、図3に示す輝度決定部30の構成が異なる。他の部分の構成は実施の形態1と同じであり、説明を一部省略する。
 なお、実施の形態1においては、輝度算出手段で算出した基準輝度値に対して重み付けを行ったが、実施の形態2では、輝度算出手段の前の画像信号の特徴量に対して重み付けを行う。
 図23は、輝度決定部30aの詳細な構成を示す構成図である。輝度決定部30aは、大別して、特徴検出手段31aと、一時メモリ33aと、重み付け手段34aと、輝度算出手段32aと、を有する。
 特徴検出手段31aは、実施の形態1における特徴検出手段31と同じ機能を有する。すなわち、特徴検出手段31aは、画像表示領域毎に輝度平均値を検出する。特徴検出手段31aは、検出した画像表示領域毎の輝度平均値を、基準特徴量として、順次、一時メモリ33aへ出力する。基準特徴量とは、各画像表示領域における画像信号の特徴量を算出する際の基準となる値である。
 一時メモリ33aは、特徴検出手段31aから出力された基準特徴量を記憶する。すなわち、一時メモリ33aは、画像表示領域毎に基準特徴量を順次記憶していき、全ての画像表示領域の基準特徴量を一旦記憶する。
 重み付け手段34aは、第1情報(第1の画像表示領域の基準特徴量)と第2情報(第2の画像表示領域の基準特徴量)とに重み付けして得られる値から、第1の画像表示領域の特徴量を決定する。すなわち、重み付け手段34aは、一つの画像表示領域(第1の画像表示領域)の特徴量を決定するにあたり、その画像表示領域に対する基準特徴量(第1情報)を、一時メモリ33aから読み出す。また、重み付け手段34aは、その画像表示領域とは別の所定の画像表示領域(第2の画像表示領域)の基準特徴量(第2情報)も、一時メモリ33aから読み出す。そして、重み付け手段34aは、読み出した複数の基準特徴量(第1情報および第2情報)に重み付けを行って加算し、その画像表示領域(第1の画像表示領域)の特徴量を決定する。
 本実施の形態において、第2の画像表示領域は、第1の画像表示領域を中心にその周辺に隣接する8つの画像表示領域である。例えば、図4を用いて例示すると、発光領域3dに対応する画像表示領域が第1の画像表示領域である場合、第2の画像表示領域は、発光領域2c、2d、2e、3c、3e、4c、4d、4eに対応する画像表示領域である。
 図24は、本実施の形態における重み付け手段34aのより詳細な構成を示す構成図である。重み付け手段34aは、第1情報読み出しブロック340a、8つの第2情報読出しブロック342a、342b、342c、342d、342e、342f、342g、342h、第1情報重み付けブロック350a、8つの第2情報重み付けブロック352a、352b、352c、352d、352e、352f、352g、352h、および加算ブロック360aを有している。
 第1情報読み出しブロック340aは、一時メモリ33aより第1情報を読み出す。第1情報重み付けブロック350aは、読み出した第1情報に対して重み付けを行い、第1の基準特徴量を出力する。
 第2情報読出しブロック342a~342hは、一時メモリ33aより第2情報を読み出す。第2情報重み付けブロック352a~352hは、読み出した第2情報に対して重み付けを行い、第2の基準特徴量をそれぞれ出力する。
 加算ブロック360aは、第1情報重み付けブロック350aが出力する第1の基準特徴量と、第2情報重み付けブロック352a~352hが出力する第2の基準特徴量とを加算する。
 本実施の形態においては、第1情報重み付けブロック350aは、第1情報に対して8/16の重み付けを行う。また、第2情報重み付けブロック352a~352hは、第2情報に対して、全て等しく1/16の重み付けを行う。第2情報は、第1の画像表示領域の周辺に隣接する8つの画像表示領域のそれぞれの基準特徴量である。
 重み付けの手法は、実施の形態1の図8において説明した重み付けの手法と同様である。すなわち、本実施の形態における重み付けの手法は、図8の説明における重み付けの手法において、発光領域を画像表示領域に置き換えた手法である。
 重み付け手段34aは、各画像表示領域の基準特徴量に対して重み付けを行い、重み付けを行った後の値(特徴量)を、輝度算出手段32aに出力する。
 輝度算出手段32aは、入力した特徴量に基づいて、発光領域毎に発光輝度値を算出する。すなわち、輝度算出手段32aは、画像表示領域毎に、特徴量を、その画像表示領域に対応する発光領域の発光輝度値に変換して、照明部20のLEDドライバ22、および、画像信号補正部40に対して出力する。輝度算出手段の持つ変換テーブルは、実施の形態1の輝度算出手段32と同様であるので、これについての説明を省略する。
 このような構成によれば、画像表示領域毎の画像信号の特徴量に対して重み付けを行うか、画像表示領域に対応する発光領域毎の発光輝度値に対して重み付けを行うかの違いはあるものの、結果として実施の形態1と同様の効果を得ることが可能となる。すなわち、図9に示すような画像の画像信号が入力された場合には、図13に示すような発光領域の発光輝度値が求まることになる。
 なお、本実施の形態において、基準特徴量として、輝度平均値の代わりに、画像表示領域毎の各画素の輝度信号の総和(以下「輝度総和値」という)を用いても良い。この場合、基準特徴量として輝度総和値を用いて、重み付け手段で平均値に変換する。具体的な構成を図25に示す。
 図25は、基準特徴量として輝度総和値を用いた場合に用いる重み付け手段34bの構成を示す構成図である。重み付け手段34bは、重み付け手段34aと比較して、除算ブロック370を有している点で異なる。
 基準特徴量として輝度総和値を用いた場合、第1情報および各第2情報は、それぞれ輝度総和値となる。よって、重み付け手段34bは、一つの画像表示領域に対応する特徴量とするため、加算ブロック360aが出力する値を、除算ブロック370にて平均化する。すなわち、除算ブロック370は、第1の画像表示領域および8つの第2の画像表示領域の全てに含まれる液晶パネル10の画素数で、加算ブロック360aの加算結果を除算する。このような構成でも同様の結果を得ることが可能である。
 (実施の形態3)
 次に、本発明を液晶表示装置に適用した例である実施の形態3(外光に基づいて基準輝度値に対する重み付けを変更する形態その1)について、図面を参照して説明する。実施の形態3は、実施の形態1と比較して、輝度決定部に外光検出手段を有している点で異なる。他の部分の構成は実施の形態1と同じであり、説明を一部省略する。
 上述した「黒浮き」の部分の視認性は、液晶表示装置の周辺外光の状況により大きく異なる。すなわち、非常に暗い部屋で画像を見るような、周辺外光の照度が小さい環境の場合、「黒浮き」は視認されやすくなる。逆に、明るい部屋で画像を見るような、周辺外光の照度が大きい環境の場合、「黒浮き」は視認されにくくなる。
 さらに、周辺外光の照度が大きい環境では、輝度のピークが低いとコントラストが弱く認識されるが、周辺外光の照度が小さい環境では、輝度のピークが低くてもコントラストが強く認識される。
 また、重みの和を所定値(例えば1)とする場合、第2の重み(第2情報に掛ける重み)を大きくすると、第1の重みが小さくなって輝度のピークが低くなり、逆に第2の重みを小さくすると、第1の重みが大きくなって輝度のピークが高くなる。
 そこで、本実施の形態に係る液晶表示装置は、外光照度に応じて第1の重みおよび第2の重みを変えてやることにより、「黒浮き」の視認性の低減とコントラストの視認性の向上とを両立させる。より具体的には、本実施の形態に係る液晶表示装置は、周辺外光の照度が小さい環境では、第2の重みを大きくすることにより、「黒浮き」の低減を図る。そして、逆に、周辺外光の照度が大きい環境では、本実施の形態に係る液晶表示装置は、第2の重みを小さくすることにより、輝度が必要なエリアに集中的に発光させてピーク輝度を高くし、コントラストがより強く認識される画像表示を可能にする。
 図26は、輝度決定部30cの詳細な構成を示す構成図である。輝度決定部30cは、実施の形態1の同様の特徴検出手段31、輝度算出手段32、一時メモリ33を有している。そして、輝度決定部30cは、特徴的な構成として、外光検出手段35と、外光検出部35の検出結果に応じて重み付けを変更する重み付け手段34cとを有している。
 外光検出手段35は、液晶表示装置の周囲の照度を検出し、検出結果を示す外光照度値を、重み付け手段34cへ出力する。外光検出手段35は、例えば、液晶パネル10の表示面側に配置された、フォトダイオードを用いた照度センサーである。そして、外光検出手段35は、液晶パネル10の表示面側に照射される外光の照度を検出する。外光検出手段35は、一つであっても良いし、複数個設置されていても良い。液晶表示装置は、複数位置で照度を検出する場合には、例えば、検出結果の平均値を、外光照度値として重み付け手段34cへ出力する。
 重み付け手段34cの各重み付けブロックの重みは、可変となっている。ここでは、重み付け手段34cは、少なくとも、図8に示す重み付け(以下「基本重み付け」という)、図19に示す重み付け(以下「高照度時重み付け」という)、および図20に示す重み付け(以下「低照度時重み付け」)の間で、重み付けを切り替え可能となっているものとする。高照度時重み付けにおいては、基本重み付けに比べて、第1の重みは大きく、第2の重みは小さい。また、低照度時重み付けにおいては、基本重み付けに比べて、第1の重みは小さく、第2の重みは大きい。
 重み付け手段34cは、外光検出手段35から外光照度値を入力する。そして、重み付け手段34cは、入力した外光照度値に基づいて、各重み付けブロックの重みを決定する。すなわち、重み付け手段34cは、外光照度値が小さい場合には第2の重みが大きく、外光照度値が大きい場合には第2の重みが小さくなるように、入力した外光照度値に応じて重み付けを変更する。
 図27は、本実施の形態における重み付け手段34cのより詳細な構成を示す構成図であり、実施の形態1の図7に対応するものである。本実施の形態においては、重み付け手段34cの第1情報重み付けブロック350および第2情報重み付けブロック351a~351hは、それぞれ、制御信号に従って重みを変更する構成を有している。また、重み付け手段34cは、外光照度値を入力し、入力した外光照度値に応じた制御信号を各重み付けブロック350、351a~351hへ出力する、重み制御部380を有している。
 重み制御部380は、例えば、基本重み付け(図8)を適用する外光照度値の範囲を、基本照度値として予め設定している。基本照度値および各重み付けは、経験測や実験結果に基づいて決定することができる。そして、重み制御部380は、外光照度が大きくなり、外光照度値が基本照度値を超えている場合には、適用する重み付けを、基本重み付け(図8)から高照度時重み付け(図19)へ切り替えるように、制御信号を出力する。つまり、重み制御部380は、第2の重みが小さくなるように重み付けを変更する。これは、上述の通り、周辺外光の照度が大きい環境では、「黒浮き」は視認されにくい一方で、コントラストも認識されにくいからである。
 逆に、例えば、重み制御部380は、外光照度が小さくなり、外光照度値が基本照度値を下回っている場合には、適用する重み付けを、基本重み付け(図8)から低照度時重み付け(図20)に切り替えるように、制御信号を出力する。つまり、重み制御部380は、第2の重みが大きくなるように重み付けを変更する。これは、上述の通り、周辺外光の照度が小さい環境では、コントラストは認識され易い一方で、「黒浮き」も視認され易いからである。
 また、重み付けの切り替えは、例えば図28に示すようにすることが好ましい。すなわち、外光照度値が高くなっていく際に重み付けを切り替える第1の閾値と、外光照度値が低くなっていく際に重み付けを切り替える第2の閾値とを異ならせることが望ましい。具体的には、重み制御部380は、図28Aに示すように、外光照度値が高くなっていく際には、基本照度値Pよりも高い外光照度値(第1の閾値P)で、重み付けを切り替える。そして、重み制御部380は、図28Bに示すように、外光照度値が低くなっていく際には、基本照度値よりも低い外光照度値(第2の閾値P)で、重み付けを切り替える。このようにすることで、基本照度値付近での切り替えのチャタリングなどを抑えることが可能となる。
 重み付けの変更にあたって、重み制御部380は、例えば、外光照度値と第1の重みおよび第2の重みとを対応付けた変換テーブルを用いる。ところが、重み付けのパターンが少ない場合には、外光照度が変化した際に、発光輝度が大きく変化することになり、観察者に違和感を与えるおそれがある。したがって、重み制御部380は、外光照度値に対してより細かく第1の重みおよび第2の重みを対応付けた変換テーブルを用いることが望ましい。
 また、重み制御部380は、例えば、第1の重みおよび第2の重みの合計値を所定値(例えば1)とする場合には、外光照度値に第1の重みのみまたは第2の重みのみを対応付けた変換テーブルを用いることができる。
 図29は、外光照度値を第2の重みに変換する変換テーブルの特性の例を示す図である。図29A~図29Dにおいて、横軸は外光照度値を示し、縦軸は第2の重みを示している。
 図29Aは、外光照度値の増加に対して第2の重みを線形に減少させる場合の変換テーブルの特性を示す。この変換テーブルを用いた場合には、重み付けの制御が容易である。
 図29Bは、外光照度値の増加に対して第2の重みを非線形に減少させる場合の変換テーブルの特性を示す。この変換テーブルを用いた場合には、外光照度値が大きいほど、第2の重みの変化率が小さくなる。すなわち、外光照度値が大きいほど、より細かい重み付けの制御が可能になる。
 図29Cは、図29Aに示す特性において、外光照度値が所定の閾値以上のとき第2の重みが0になるようにした変換テーブルの特性である。この変換テーブルを用いた場合には、外光照度値が大きい条件下では、発光輝度に第2情報の影響が反映されない。すなわち、外光照度値が所定の閾値以上ではコントラストの視認性を最大に優先させることができる。すなわち、黒浮きが目立たない環境では、本来明るくすべきところ(基準輝度値が高いところ)はできるだけ明るく、本来暗くすべきところは(基準輝度値が低いところ)はできるだけ暗くなるように表示させることができる。
 図29Dは、外光照度値の増加に対して、所定の値までは第2の重みを変更せず、所定の値以上から変更するようにする場合の変換テーブルの特性である。この変換テーブルを用いた場合には、外光照度の特に大きい環境でのみコントラストの視認性が優先され、通常の使用環境においては、常に一定の重みが掛けられる。すなわち、明所に適した制御と暗所に適した制御とを、簡単に両立させることができる。
 なお、重み制御部380は、図29に示すような特性の異なる複数の変換テーブルを予め用意し、画像の状態、表示装置の種類や状態、ユーザ設定等に応じて、より良い画質が得られるような変換テーブルを切り替えて使用しても良い。
 このような構成により、実施の形態に係る液晶表示装置は、外光の照度に応じて周辺の発光領域の影響度合いを変更し、「黒浮き」の視認性の低減とコントラストの視認性の向上とを両立させることができる。
 なお、本実施の形態においては変換テーブルを用いる場合について説明したが、これに限られない。例えば、重み付け手段34cは、上述したような変換特性を有する変換関数を用いて、随時、第1の重みおよび第2の重みへの変換を行っても良い。このような構成によれば、メモリ量を小さくすることが可能である。
 また、本実施の形態においては、重み制御部380が第2情報重み付けブロック351a~351hに個別に制御信号を出力する構成を図示したが、第2の重みを常に同一の値とする場合には、第2情報重み付けブロック351a~351hに対して共通の制御信号を出力しても良い。
 また、本実施の形態においては、各重み付けブロック350、351a~351hが制御信号に従って重みを変更する構成としたが、重み付けが異なる複数セットの重み付けブロック350、351a~351hを有し、使用するセットを切り替える構成としても良い。
 また、本実施の形態において、外光検出手段の設置位置を液晶パネル10の表示面側としたが、これに限られない。例えば、外光検出手段は、液晶パネル10の表示面外に設けられるフレーム枠(図示せず)上や、液晶パネル10の背面カバー(図示せず)上などに設置しても良い。
 また、本実施の形態において、外光検出手段をフォトダイオードを用いた照度センサーとしたが、これに限られない。例えば、外光検出手段は、フォトトランジスタを用いた照度センサーであっても良い。
 また、本実施の形態において、重み付けの和が一定値となる様にしたが、これに限られない。外光照度が高い場合に第2の重みのみを大きくし、重みの和が1以上になるように重み付けを行っても良い。逆に、外光照度が低い場合に第2の重みのみを小さくし、重みの和が1以下になるように重み付けを行っても良い。
 (実施の形態4)
 次に、本発明を液晶表示装置に適用した例である実施の形態4(外光に基づいて基準輝度値に対する重み付けを変更する形態その2)について、図面を参照して説明する。実施の形態4は、実施の形態3と同じく外光検出手段を有しているが、外光照度値に応じた重み付けの変更方法が異なる。
 実施の形態4に係る液晶表示装置は、外光照度値に応じて第2の重みのみを変更し、第1の重みは変更しない。他の構成は実施の形態3と同様であり、説明を省略する。
 輝度のピークが大きく変化すると、観察者に違和感を与えるおそれがある。一方で、輝度のピークが同じでも、外光照度値によって、黒浮きの目立ち方が異なる。
 そこで、本実施の形態に係る液晶表示装置は、輝度のピークをできるだけ一定にしつつ、外光照度に応じて発光領域間の発光輝度差の分布を変える。より具体的には、本実施の形態に係る液晶表示装置は、輝度のピークをできるだけ一定にしつつ、周辺外光の照度が小さい環境では、より広い範囲に輝度を分散させ、逆に、周辺外光の照度が大きい環境では、より狭い範囲に輝度を集中させる。これにより、本実施の形態に係る液晶表示装置は、輝度のピークの変化の緩和と、「黒浮き」の視認性の低減およびコントラストの視認性の向上とを両立させる。
 本実施の形態においては、重み付け手段34cは、5行×5列の発光領域に対して基準輝度値の重み付けを行うものとする。また、ここでは、重み付け手段34cは、少なくとも、図22に示す重み付け(以下「基本重み付け」という)、図30に示す重み付け(以下低照度時重み付け」という)、および図31に示す重み付け(以下「高照度時重み付け」)の間で、重み付けを切り替え可能となっているものとする。
 低照度時重み付けにおいては、基本重み付けに比べて、第1の発光領域に隣接する発光領域の第2の重み(以下「内側の第2の重み」という)は大きく、さらにその外側にある発光領域の第2の重み(以下「外側の第2の重み」という)は小さい。また、高照度時重み付けにおいては、基本重み付けに比べて、内側の第2の重みは小さく、外側の第2の重みは内側の第2の重みより大きい。しかし、第1の重みは、基本重み付け、高照度時重み付け、低照度時重み付けのいずれも同じとなっている。
 例えば、重み付け手段34cは、外光照度が小さくなり、外光照度値が基本照度値を下回っている場合には、適用する重み付けを、基本重み付け(図22)から低照度時重み付け(図30)へ切り替える。つまり、重み付け手段34cは、内側の第2の重みを大きくし、外側の第2の重みを小さくする。このとき、重み付け手段34cは、第1の重みを変えない。
 逆に、重み付け手段34cは、外光照度が大きくなり、外光照度値が基本照度値を超えている場合には、適用する重み付けを、基本重み付け(図22)から高照度時重み付け(図31)へ切り替える。つまり、重み付け手段34cは、内側の第2の重みを小さくし、外側の第2の重みを大きくする。このとき、重み付け手段34cは、第1の重みを変えない。
 したがって、重み付け手段34cは、これらの重み付けを外光照度値に応じて適用することにより、輝度のピークがあまり変化せず、周辺外光の照度が小さい環境では輝度が分散し、周辺外光の照度が大きい環境では輝度が集中するような、発光輝度値を出力することができる。
 このように、本実施の形態に係る液晶表示装置は、外光の照度に応じて周辺の発光領域の影響度合いを変更し、輝度のピークの変化の緩和と、「黒浮き」の視認性の低減およびコントラストの視認性の向上とを両立させることができる。
 なお、本実施の形態に係る液晶表示装置は、第1の重みについても、実施の形態3と同様に、外光の照度に応じて変更しても良い。また、本実施の形態に係る液晶表示装置は、5行×5列以外の複数の発光領域に対して、同様の重み付けを適用することができる。いずれの場合も、液晶表示装置は、第1の重みと全ての第2の重みとの合計値が1となるような重み付けを適用することが望ましい。
 (実施の形態5)
 次に、本発明を液晶表示装置に適用した例である実施の形態5(外光に基づいて第2情報の数を変更する形態)について、図面を参照して説明する。
 実施の形態5に係る液晶表示装置は、実施の形態3と同じく外光検出手段を有しているが、外光検出手段の検出結果に応じて第2情報の数(本実施の形態においては、第2の発光領域の数)を変更する点で、実施の形態3とは異なる。他の構成は実施の形態3と同様であり、説明を省略する。
 図22に示す5行×5列の重み付けから図30に示す5行×5列の重み付けのように輝度を集中させる場合、その重みの分布は、図8に示す3行×3列の重み付けにおける重みの分布に近くなる。
 そこで、本実施の形態に係る液晶表示装置は、外光照度値に応じて、第2の発光領域の数、つまり、第1の画像表示領域を照射する発光領域の発光輝度値の決定に用いる第2の情報の数を変更する。より具体的には、本実施の形態に係る液晶表示装置は、周辺外光の照度が小さい環境では、第2の発光領域の数を多くして輝度を分散させ、周辺外光の照度が大きい環境では、第2の発光領域の数を少なくして輝度を集中させる。このような形態であっても、「黒浮き」の視認性の低減およびコントラストの視認性の向上を両立させることができる。また、本実施の形態に係る液晶表示装置は、第2の発光領域の数を変えるので、決められた範囲での重み付けの変更を行なう場合よりも、より滑らかに「黒浮き」の視認性の低減およびコントラストの視認性の向上を図ることができる。
 本実施の形態においては、重み付け手段34cは、少なくとも、図8に示す3行×3列の重み付け(以下「基本重み付け」という)と、図22に示す5行×5列の重み付け(以下「拡大重み付け」という)との間で、重み付けを切り替え可能となっているものとする。
 例えば、重み付け手段34cは、外光照度が小さくなり、外光照度値が基本照度値を超えている場合には、適用する重み付けを、基本重み付け(図8)から拡大重み付け(図22)へ切り替える。つまり、重み付け手段34cは、第1の発光領域の周辺の発光領域(第2の発光領域)の数を拡大するとともに、第2の重みを変更する。
 このように、本実施の形態に係る液晶表示装置は、外光の照度に応じて周辺の発光領域の影響度合いを変更し、より滑らかに「黒浮き」の視認性の低減およびコントラストの視認性の向上を図ることができる。
 なお、重み付け手段は、周辺の外光が非常に明るく、外光照度値が所定の閾値以上のときには、第2の重みが0になるように、重み付けを変更しても良い。このような場合には、「黒浮き」が非常に視認されにくいためである。このように第2の重みを0にする場合、加算ブロック重み付きにおいて加算される輝度値の数を減らすことができ、処理負荷を軽減することができる。
 また、本実施の形態に係る液晶表示装置は、第2の領域の大きさが異なる3種類以上の重み付けを切り替えても良い。また、実施の形態5の構成と実施の形態3又は4の構成とを組合せても良い。すなわち、重み付けを変化させつつ、第2の発光領域の数を変更しても良い。
 また、液晶表示装置は、重み付けの和を一定値としない様にしても良い。例えば、液晶表示装置は、外光照度が高く、第2の発光領域の数を拡大した場合に、拡大した分の第2の発光領域に第2の重みを設定し、その他の第2の発光領域の第2の重みは変更しないようにする。このような構成によれば、重み付けを変更する処理負荷を低減することができる。
 (その他の実施の形態)
 本発明の実施の形態として、上述の通り、実施の形態1乃至5を例示した。しかし本発明はこれらの実施の形態に限定されない。そこで、他の実施の形態について、その一例を以下にまとめて説明する。
 別の実施の形態に係る液晶表示装置は、実施の形態1と同様の構成であって、特徴検出手段が、画像表示領域毎に、輝度平均値および輝度ピーク値に重み付けを行うことによって特徴量を決定する構成を有する。そして、この液晶表示装置は、外光検出手段を更に有し、検出した外光照度に応じて、この輝度平均値および輝度ピーク値に掛ける重みを変更する構成を有する。
 このような構成によれば、「黒浮き」が気にならない程度に外光照度が高い場合に、輝度ピーク値の重み付けを大きくすることによって、微小な白輝点でも、特徴量を大きくして明るく光らせることができる。よって、外光照度に応じた最適な画像を提供することができる。
 また、更に別の実施の形態に係る液晶表示装置は、実施の形態1と同様の構成であって、特徴検出手段が、画像表示領域毎に、輝度平均値および輝度ピーク値に重み付けを行うことによって特徴量を決定する構成である。そして、この液晶表示装置は、この輝度平均値および輝度ピーク値に掛ける重みに応じて、重み付け手段における第1の重みと第2の重みとを変更する構成を有する。
 この構成によれば、例えば、輝度ピーク値に掛ける重みが大きいときに第2の重みを大きくすることで、輝度ピーク値に掛ける重みを大きくしたときに発生する、物体が動いたときの急峻な発光領域の輝度変化を改善する効果を得ることができる。よって、輝度のピークの維持と、画像の動きに応じた発光領域の滑らかな動きとを両立させることができる。
 また、上述した実施の形態1乃至実施の形態5において、第1の発光領域と第2の発光領域に対して、例えば、図8、図19、図20、図21、図30に示すような重み付けを行う場合について説明したが、これに限定されない。例えば、液晶表示装置は、各画像表示領域の特徴量を画像データとしてとらえ、帯域制限フィルタを用いて、注目する画像表示領域(第1の画像表示領域)の発光輝度に、その周辺の画像表示領域(第2の画像表示領域)の輝度信号が反映されるようにしても良い。この場合、帯域制限フィルタのフィルタ係数が、上述した実施の形態における重みに相当する。具体的には、例えば、水平3タップ(行方向3領域)、垂直3タップ(列方向3領域)の帯域制限フィルタとすれば、図8に示す図がフィルタ係数に相当する。
 2008年9月29日出願の特願2008-250117の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明のバックライト装置及び表示装置は、例えば、液晶テレビ及び液晶モニタ等の表示装置やそれらのバックライト装置として利用することができる。
 1 液晶表示装置
 10 液晶パネル
 20 照明部
 21 発光部
 22 LEDドライバ
 30、30a、30c 輝度決定部
 31、31a 特徴検出手段
 32、32a 輝度算出手段
 33、33a 一時メモリ
 34、34a、34b、34c 重み付け手段
 35 外光検出手段
 40 画像信号補正部
 210 LED
 340、340a 第1情報読み出しブロック
 341a~341h、342a~342h 第2情報読出しブロック
 350、350a 第1情報重み付けブロック
 351a~351h、352a~352h 第2情報重み付けブロック
 360、360a 加算ブロック
 370 除算ブロック
 380 重み制御部
 400 入力画像
 500a、500b 表示画像
 900 入力画像
 910 バックライト
 920 表示画像

Claims (16)

  1.  複数の画像表示領域を有し背面から照射される照明光を画像信号に応じて前記画面表示領域毎に変調することにより画像を表示する光変調部に対して、画像を表示させるための照明光を照射する照明部と、
     前記照明部の発光輝度値を決定し、決定した発光輝度値に基づいて前記照明部の発光状態を更新する輝度決定部と、を備え、
     前記照明部は、
     前記複数の画像表示領域のそれぞれを照射する複数の発光領域を有し、
     前記輝度決定部は、
     第1の画像表示領域の入力画像信号に基づく第1情報と、第2の画像表示領域の入力画像信号に基づく第2情報と、に重み付けして得られる値から、前記第1の画像表示領域を照射する発光領域の発光輝度値を決定する、
     バックライト装置。
  2.  前記輝度決定部は、
     前記画像表示領域毎の入力画像信号の特徴量を検出する特徴検出手段と、
     前記特徴量に基づいて前記発光領域毎の基準輝度値を算出する輝度算出手段と、
     前記第1情報である第1の発光領域の基準輝度値と、前記第2情報である第2の発光領域の基準輝度値と、に重み付けして得られる値から、前記第1の発光領域の発光輝度値を決定する重み付け手段と、を有する、
     請求項1記載のバックライト装置。
  3.  前記輝度決定部は、
     前記画像表示領域毎の入力画像信号の基準特徴量を検出する特徴検出手段と、
     第1情報である第1の画像表示領域の基準特徴量と、第2情報である第2の画像表示領域の基準特徴量と、に重み付けして得られる値から、前記第1の画像表示領域の特徴量を決定する重み付け手段と、
     前記特徴量に基づいて前記発光領域毎の発光輝度値を算出する輝度算出手段と、を有する、
     請求項1記載のバックライト装置。
  4.  前記第2の画像表示領域は、
     前記第1の画像表示領域と隣接する画像表示領域を含む、
     請求項1記載のバックライト装置。
  5.  前記輝度決定部において、
     前記第1情報よりも、前記第2情報を小さく重み付けする、
     請求項1記載のバックライト装置。
  6.  前記輝度決定部は、
     前記第1の画像表示領域からより遠い前記第2の画像表示領域の第2情報ほど、より小さい重みを掛ける、
     請求項1記載のバックライト装置。
  7.  前記輝度決定部は、
     前記第1情報と前記第2情報とに基づいて、前記第1情報および前記第2情報に対する重み付けを変更する、
     請求項1記載のバックライト装置。
  8.  前記特徴検出手段は、
     前記入力画像信号の輝度ピーク値を検出する、
     請求項2又は3記載のバックライト装置。
  9.  前記特徴検出手段は、
     前記入力画像信号の輝度平均値を検出する、
     請求項2又は3記載のバックライト装置。
  10.  前記特徴検出手段は、
     前記入力画像信号の輝度ピーク値と輝度平均値との組合せ情報を検出する、
     請求項2又は3記載のバックライト装置。
  11.  前記輝度決定部は、
     自装置の周辺外光の照度を検出する外光検出手段を備え、
     前記外光検出手段の検出結果に基づいて、前記第1情報および前記第2情報に対する重み付けを変更する、
     請求項1記載のバックライト装置。
  12.  前記輝度決定部は、
     自装置の周辺外光の照度を検出する外光検出手段を備え、
     前記外光検出手段の検出結果に基づいて、前記第1の画像表示領域を照射する発光領域の発光輝度値の決定に用いる第2情報の数を変更する、
     請求項1記載のバックライト装置。
  13.  前記輝度決定部は、
     前記周辺外光の照度がより小さいほど、前記第2情報に掛ける重みが大きくなるように、前記第1情報および前記第2情報に対する重み付けを変更する、
     請求項11記載のバックライト装置。
  14.  前記輝度決定部において、
     前記周辺外光の照度が所定の閾値以上のとき、前記第2情報に掛ける重みが0になるように、前記第1情報および前記第2情報に対する重み付けを変更する、
     請求項11記載のバックライト装置。
  15.  請求項1記載のバックライト装置と、
     前記光変調部と、を備えた、
     表示装置。
  16.  前記輝度決定部が決定した発光輝度値に基づいて、前記光変調部へ入力する画像信号を補正する画像信号補正部を更に備えた、
     請求項15記載の表示装置。
PCT/JP2009/004854 2008-09-29 2009-09-25 バックライト装置および表示装置 WO2010035473A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09815895A EP2224422A4 (en) 2008-09-29 2009-09-25 BACKLIGHT DEVICE AND DISPLAY DEVICE
CN2009801006163A CN102057420B (zh) 2008-09-29 2009-09-25 背光装置和显示装置
JP2010507556A JP4527202B2 (ja) 2008-09-29 2009-09-25 バックライト装置および表示装置
US12/726,787 US8207953B2 (en) 2008-09-29 2010-03-18 Backlight apparatus and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008250117 2008-09-29
JP2008-250117 2008-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/726,787 Continuation US8207953B2 (en) 2008-09-29 2010-03-18 Backlight apparatus and display apparatus

Publications (1)

Publication Number Publication Date
WO2010035473A1 true WO2010035473A1 (ja) 2010-04-01

Family

ID=42059486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004854 WO2010035473A1 (ja) 2008-09-29 2009-09-25 バックライト装置および表示装置

Country Status (5)

Country Link
US (1) US8207953B2 (ja)
EP (1) EP2224422A4 (ja)
JP (1) JP4527202B2 (ja)
CN (1) CN102057420B (ja)
WO (1) WO2010035473A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030587A1 (ja) * 2009-09-09 2011-03-17 シャープ株式会社 表示装置
JP5033930B2 (ja) * 2009-09-30 2012-09-26 パナソニック株式会社 バックライト装置および表示装置
JP2012527652A (ja) * 2009-05-20 2012-11-08 マーベル ワールド トレード リミテッド 液晶ディスプレイのバックライト制御
CN117524094A (zh) * 2024-01-05 2024-02-06 深圳市伽彩光电有限公司 一种led屏显示校正方法及***

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110298839A1 (en) * 2009-01-20 2011-12-08 Atsushi Nakanishi Display apparatus and display control method
JP5556089B2 (ja) * 2009-09-01 2014-07-23 セイコーエプソン株式会社 画像表示装置および画像調整方法
KR101623592B1 (ko) * 2009-11-25 2016-05-24 엘지디스플레이 주식회사 액정표시장치
KR101761815B1 (ko) * 2010-02-11 2017-07-27 삼성전자주식회사 3차원 디스플레이 장치의 백라이트 유닛 제어 방법 및 백라이트 유닛의 분할 제어가 가능한 3차원 디스플레이 장치
US9129565B2 (en) * 2010-03-26 2015-09-08 Hong Kong Applied Science and Technology Research Institute, Co. Ltd. Adjusting a brightness level of a side emitting backlight display device using light spreading profiles
JP5661336B2 (ja) * 2010-05-28 2015-01-28 日立マクセル株式会社 液晶表示装置
KR101695290B1 (ko) * 2010-07-01 2017-01-16 엘지디스플레이 주식회사 액정 표시장치의 구동장치와 그 구동방법
JP5773636B2 (ja) * 2010-12-17 2015-09-02 キヤノン株式会社 表示制御装置及びその制御方法
JP5335851B2 (ja) * 2011-04-20 2013-11-06 シャープ株式会社 液晶表示装置、マルチディスプレイ装置、発光量決定方法、プログラム、及び記録媒体
JP2013148870A (ja) * 2011-12-19 2013-08-01 Canon Inc 表示装置及びその制御方法
JP6071469B2 (ja) * 2011-12-19 2017-02-01 キヤノン株式会社 画像表示装置及びその制御方法
CN102543123B (zh) * 2011-12-26 2014-12-10 上海聚力传媒技术有限公司 对媒体文件的场景光相关信息进行调节的方法与装置
JP5085793B1 (ja) * 2012-02-08 2012-11-28 シャープ株式会社 映像表示装置およびテレビ受信装置
KR101354333B1 (ko) * 2012-02-24 2014-01-27 엘지디스플레이 주식회사 백라이트 디밍 방법과 이를 이용한 액정표시장치
AU2013274573B2 (en) 2012-06-15 2015-06-04 Dolby Laboratories Licensing Corporation Systems and methods for controlling dual modulation displays
DE112013003565B4 (de) * 2012-07-19 2021-04-01 Fujifilm Corporation Bildanzeigevorrichtung und -verfahren
JP2014053286A (ja) * 2012-08-09 2014-03-20 Canon Inc 輝度算出装置、輝度算出装置の制御方法、及び、表示装置
CN103778887B (zh) * 2013-03-21 2016-05-18 西安电子科技大学 Led显示装置的亮度校正方法及装置
JP2015018219A (ja) * 2013-06-14 2015-01-29 キヤノン株式会社 画像表示装置及びその制御方法
JP2015082022A (ja) * 2013-10-22 2015-04-27 株式会社ジャパンディスプレイ 表示装置、表示装置の駆動方法及び電子機器
US9799305B2 (en) 2014-09-19 2017-10-24 Barco N.V. Perceptually optimised color calibration method and system
US10019970B2 (en) * 2015-02-24 2018-07-10 Barco N.V. Steady color presentation manager
CN105513546B (zh) 2016-03-02 2018-09-11 京东方科技集团股份有限公司 背光调节方法及装置、显示装置
CN105741817A (zh) * 2016-03-30 2016-07-06 苏州合欣美电子科技有限公司 一种播放器播放亮度自适应调整的方法
CN106324878B (zh) * 2016-10-31 2017-11-21 京东方科技集团股份有限公司 显示装置和控制显示装置的方法
JP6770420B2 (ja) * 2016-12-14 2020-10-14 株式会社ジャパンディスプレイ 表示装置及び表示装置の駆動方法
CN110036436A (zh) * 2016-12-14 2019-07-19 夏普株式会社 光源控制装置、显示装置、图像处理装置、光源控制装置的控制方法以及控制程序
US10321534B1 (en) 2017-11-21 2019-06-11 Lumileds Llc Color error corrected segmented LED array
JP7105884B2 (ja) * 2017-11-21 2022-07-25 ルミレッズ リミテッド ライアビリティ カンパニー 色誤差補正されたセグメント化されたledアレイ
JP2019144311A (ja) * 2018-02-16 2019-08-29 キヤノン株式会社 表示装置およびその制御方法
CN108510947B (zh) * 2018-04-16 2020-04-21 京东方科技集团股份有限公司 双屏调光方法及显示装置
CN108922478B (zh) * 2018-07-02 2020-09-29 Oppo(重庆)智能科技有限公司 一种背光亮度调节方法、***及显示设备
CN109116626B (zh) 2018-09-04 2021-08-10 京东方科技集团股份有限公司 一种背光源及其制作方法、显示装置
CN112201211B (zh) * 2019-07-08 2022-04-29 北京小米移动软件有限公司 环境光采集方法、装置、终端及存储介质
CN111258523A (zh) * 2020-01-16 2020-06-09 深圳市奥拓电子股份有限公司 一种融于场馆的巨幅图像显示***及控制方法
US11393390B2 (en) 2020-04-29 2022-07-19 Asustek Computer Inc. Electronic device and brightness adjustment method thereof
TWI757078B (zh) * 2020-04-29 2022-03-01 華碩電腦股份有限公司 電子裝置及其亮度調整方法
CN116072079A (zh) 2021-11-04 2023-05-05 上海天马微电子有限公司 显示装置和控制显示装置的背光源的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007334313A (ja) * 2006-05-15 2007-12-27 Sony Corp 表示装置および電子機器
JP2008051905A (ja) 2006-08-22 2008-03-06 Sharp Corp 液晶表示装置、及びそのバックライト駆動方法
JP2008203292A (ja) * 2007-02-16 2008-09-04 Seiko Epson Corp 画像表示装置、及び画像表示方法
JP2009139910A (ja) * 2007-12-04 2009-06-25 Samsung Electronics Co Ltd 光源モジュール及びこの駆動方法、並びにこれを備える表示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100810514B1 (ko) * 2003-10-28 2008-03-07 삼성전자주식회사 디스플레이장치 및 그 제어방법
JP4628770B2 (ja) * 2004-02-09 2011-02-09 株式会社日立製作所 照明装置を備えた画像表示装置及び画像表示方法
US7755595B2 (en) * 2004-06-07 2010-07-13 Microsemi Corporation Dual-slope brightness control for transflective displays
KR101169051B1 (ko) * 2005-06-30 2012-07-26 엘지디스플레이 주식회사 액정 표시 장치 및 그의 구동 방법
US20080042927A1 (en) * 2006-08-16 2008-02-21 Samsung Electronics Co., Ltd. Display apparatus and method of adjusting brightness thereof
JP2008176211A (ja) 2007-01-22 2008-07-31 Hitachi Ltd 液晶表示装置及びその輝度制御方法
JP4720757B2 (ja) * 2007-02-23 2011-07-13 ソニー株式会社 光源装置および液晶表示装置
JP5089427B2 (ja) * 2008-02-18 2012-12-05 シャープ株式会社 画像表示装置および画像表示方法
JP2009267475A (ja) * 2008-04-22 2009-11-12 Sony Corp 表示制御装置および方法、並びにプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007334313A (ja) * 2006-05-15 2007-12-27 Sony Corp 表示装置および電子機器
JP2008051905A (ja) 2006-08-22 2008-03-06 Sharp Corp 液晶表示装置、及びそのバックライト駆動方法
JP2008203292A (ja) * 2007-02-16 2008-09-04 Seiko Epson Corp 画像表示装置、及び画像表示方法
JP2009139910A (ja) * 2007-12-04 2009-06-25 Samsung Electronics Co Ltd 光源モジュール及びこの駆動方法、並びにこれを備える表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2224422A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012527652A (ja) * 2009-05-20 2012-11-08 マーベル ワールド トレード リミテッド 液晶ディスプレイのバックライト制御
WO2011030587A1 (ja) * 2009-09-09 2011-03-17 シャープ株式会社 表示装置
JP5033930B2 (ja) * 2009-09-30 2012-09-26 パナソニック株式会社 バックライト装置および表示装置
CN117524094A (zh) * 2024-01-05 2024-02-06 深圳市伽彩光电有限公司 一种led屏显示校正方法及***
CN117524094B (zh) * 2024-01-05 2024-03-29 深圳市伽彩光电有限公司 一种led屏显示校正方法及***

Also Published As

Publication number Publication date
CN102057420A (zh) 2011-05-11
EP2224422A4 (en) 2012-04-18
JPWO2010035473A1 (ja) 2012-02-16
US8207953B2 (en) 2012-06-26
JP4527202B2 (ja) 2010-08-18
CN102057420B (zh) 2013-11-27
US20100220048A1 (en) 2010-09-02
EP2224422A1 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP4527202B2 (ja) バックライト装置および表示装置
JP5122927B2 (ja) 画像表示装置および画像表示方法
JP5332155B2 (ja) 画像表示装置及び画像表示方法
JP2010134435A (ja) バックライト装置および表示装置
JP4612406B2 (ja) 液晶表示装置
JP5491702B2 (ja) 画像表示装置および画像表示方法
JP2008139871A (ja) 領域適応型バックライトを有する液晶ディスプレイ
JP2010049125A (ja) 画像表示装置
JPWO2009054223A1 (ja) 画像表示装置
US20110115829A1 (en) Image display apparatus and control apparatus thereof
JP2007241250A (ja) 液晶表示装置
JP2013037015A (ja) 映像表示装置
WO2011039996A1 (ja) バックライト装置および表示装置
EP2175312B1 (en) Liquid crystal display device, television receiver, and illumination device
US20110285611A1 (en) Liquid crystal display
JP2012058416A (ja) 映像表示装置および情報処理装置
CN110570824B (zh) 液晶显示器及其图像显示方法、背光控制装置
JP4894149B2 (ja) 液晶表示装置
JP2011227200A (ja) 液晶表示装置
JP5273355B2 (ja) 液晶表示装置
JP2007249236A (ja) 液晶表示装置の駆動方法
JP4865005B2 (ja) 画像表示装置及び画像表示方法
JP2009288793A (ja) 液晶表示装置
JP2013019922A (ja) 表示装置及び表示方法
JP5171746B2 (ja) 液晶表示装置の駆動方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100616.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010507556

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09815895

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009815895

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE