WO2010034137A1 - 一种抗腐蚀奈米复合涂料及其制备方法 - Google Patents

一种抗腐蚀奈米复合涂料及其制备方法 Download PDF

Info

Publication number
WO2010034137A1
WO2010034137A1 PCT/CN2008/001664 CN2008001664W WO2010034137A1 WO 2010034137 A1 WO2010034137 A1 WO 2010034137A1 CN 2008001664 W CN2008001664 W CN 2008001664W WO 2010034137 A1 WO2010034137 A1 WO 2010034137A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano composite
composite coating
corrosion
layered clay
modified
Prior art date
Application number
PCT/CN2008/001664
Other languages
English (en)
French (fr)
Inventor
林英民
霍达伦
刘时州
Original Assignee
沛芃工程股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沛芃工程股份有限公司 filed Critical 沛芃工程股份有限公司
Priority to PCT/CN2008/001664 priority Critical patent/WO2010034137A1/zh
Publication of WO2010034137A1 publication Critical patent/WO2010034137A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • C08G18/5024Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2150/00Compositions for coatings
    • C08G2150/90Compositions for anticorrosive coatings

Definitions

  • the invention relates to a nano composite coating and a preparation method thereof, in particular to a corrosion resistant nano composite coating and a preparation method thereof.
  • the paint also known as paint or lacquer
  • the existing traditional coatings generally include general-purpose cement paints, latex paints, etc., which are mainly composed of organic chemical compounds. Therefore, they contain many volatile organic substances and heavy metals. In addition to irritating odors, organic solvents It is also corrosive or toxic, has a great impact on the respiratory system, and is more harmful to human health, and is even more carcinogenic.
  • Conventional coatings have limitations in their application. For example, traditional coatings do not completely cover the surface of all organic or inorganic materials, and traditional coatings are prone to oxidation, corrosion or spalling due to their less tight structure when exposed to air or sun and rain. Both will deplete the service life of the substrate, causing the substrate to be exposed, causing severe corrosion, deterioration or deformation, causing serious public safety accidents, so the conventional coating obviously does not meet the current needs.
  • polyurea (PUA) waterproof coatings have been developed, and anti-corrosion effects are better than traditional polyurethanes, and polyurea has strong adaptability and adhesion in various construction environments and objects, especially in humid environments. Construction convenience is far superior to traditional polyurethane. Therefore, the high-purity polyurea is coated on the substrate to have a better anti-corrosion effect.
  • high-purity polyurea is expensive, and the cost for anti-corrosion treatment is too large for the cost of conventional polyurethane, and it is difficult to popularize. Therefore, folk engineering still uses cheaper traditional polyurethane or mixed polyurea/polyurethane coatings, but its durability is 5-10 times worse than pure polyurea.
  • Polyurea mainly contains two components: isocyanate compounds and terminal amino compounds
  • the isocyanate compound can be further classified into two types, a compound of an aromatic isocyanate (Aromatic Isocyanates) and a compound of an aliphatic isocyanate (Al iphatic isocyanates), which can be a monomer or a poly It exists in the form of a polymer, a derivative, a prepolymer, and a semi-prepolymer, and is used for different applications.
  • Aromaatic Isocyanates Aromatic isocyanates
  • Al iphatic isocyanates a compound of an aliphatic isocyanate
  • a terminal amino group compound (a compound whose terminal functional group is an amine (-NH2)) mainly consists of an amino terminated polyether (Amine terminated polyether or Polyetheramine, a terminal functional group is an amine (-NH2) polyether) and a terminal amino group.
  • Amine terminated chain extender (Amine terminated chain extender), a terminal extender is an amine (-NH2) chain extender). This chain extender often adds different proportions due to construction requirements, including aliphatic systems.
  • Aliphatic amine terminated chain extenders There are two types of Aliphatic amine terminated chain extenders and Aromatic amine terminated chain extenders.
  • the polyurea is formed by a conventional polymerization reaction (as shown in FIG. 5) of a compound having a terminal functional group of isocyanate (-NC0) and a compound having a terminal functional group of (-NH 2 ) to form a urea bond (- NH-CO-NH-) is a polymer material characterized by repeating units, so that the polymer material having a characteristic repeating unit of a urea bond (-NH-CO-NH-) is a polyurea; the polymerization does not require a catalyst. It can be quickly reacted to form a film without heating.
  • the existing polyurea polymerization reaction is shown in Fig.
  • n is the number of molecules, and when n is 1, the isocyanate (-NC0) compound and the terminal functional group are an amine group (-NH 2 ) compound of 1:1.
  • Molecular ratio a molecular material which undergoes a polymerization reaction to form a characteristic unit having one urea bond (-NH-C0-NH-); wherein R1 and R2 are conventionally known to be different kinds of molecules such as aliphatic or aromatic.
  • Clay is a layered material. Due to its layered structure, it has airtight and impervious properties. Through the obstacles provided by this characteristic, it can effectively increase the path of water and oxygen permeation in clay. And time, reduce water absorption and gas permeability. Today, it is widely used in various fields, such as composite materials, biochemical fields, electronic assembly and environmental protection. Clay is mainly composed of silicate layered structure composed of alumina (A1 2 0 3 ) and silica (S i0 2 ). Its particle size is about ⁇ ⁇ ⁇ , and each particle layer The stack is stacked from hundreds to thousands of layers, with an average of 850 layers of Silicate sheets, and the inter-layer distance (d- spacing) between each layer and the other.
  • silicate layered structure composed of alumina (A1 2 0 3 ) and silica (S i0 2 ). Its particle size is about ⁇ ⁇ ⁇ , and each particle layer
  • the stack is stacked from hundreds to thousands of layers, with an average of 850
  • the main group is mostly distributed in the interval of 11 A - 13 A.
  • the ions sandwiched between the layers can be divided into three types: cation exchange type clay, anion exchange type clay and neutral ion exchange type clay.
  • the cation exchange type clay mainly accounts for the majority, and the cations are mostly Li + , Na + , K + , C a + , Mg 2 + , B a 2 + , La 3 + , C e 2 + , etc., contain a part of crystal water. These cations provide an excellent path for the organicisation of clay, ie ion exchange reactions.
  • the superior properties of layered clay come from its special layered structure. When the layered clay is blended with the polymer material, an interaction between the interlayer cation exchange and the ionic bond occurs. Especially at the nanometer scale, many properties that are difficult to obtain in the micron-scale structure are manifested one by one. These properties include gas barrier, UV resistance, water resistance, heat resistance, toughness, abrasion resistance, scratch resistance, corrosion resistance, and resistance. Chemicals, etc. For coating materials, layered clay is an excellent thickener that makes construction or coating operations even more The ease of application, the flattening of the coating, and the significant reduction in man-hours and material usage are significant.
  • the application of layered clay has its limitations.
  • the layered clay is an inorganic material and hydrophilic. It lacks affinity with the lipophilic polymer. If it is to be mixed with organic materials, it should be evenly compatible. It is quite difficult. Therefore, in order to obtain a uniformly dispersed material, it is necessary to modify the layered clay.
  • Nanocomposites mean that the degree of mixing of two different materials has reached a fairly uniform level. The size of 1 0 _ 9 m (referred to as the dispersed phase) is much higher than that of the conventional composite material by 10 6 m.
  • the basic definition of nanocomposites is as follows: 1.
  • the material dispersion size is in the range of nanometer size (Nanometer, lnti! ⁇ lOOnm). 2.
  • the Gibbsian solid phase is greater than one, at least one phase in any one of the Dimension is in the range of nanometer size, especially between 1 and 20 nm, which is called a nanocomposite.
  • nanocomposite coatings vary with particle size, physical properties, and chemical properties, while nanocomposite coatings are composed of nanoscale materials. Therefore, different nanoscale materials are blended and have different Application direction, including decontamination, self-cleaning, antibacterial, wear-resistant, scratch-resistant, waterproof, anti-ultraviolet light and other novel applications.
  • the nano-grade materials are commonly: nano-clay, which is a layered structure, which can be applied to the surface of the object to form a scratch-resistant and wear-resistant coating. It can also be used on food packaging to enhance its water resistance and Gas barrier.
  • the distribution of nano-particles is a decisive factor for the properties of the coating. Therefore, the technology of maintaining nano-particle dispersion in the coating is the key technology of nano-composite coating, and it is also the production and application of nano-composite coatings. The threshold.
  • the layered clay is a hydrophilic substance, and the polymer coating is lipophilic, the compatibility between the two is not good, even if the layered clay is ground to increase the mixed contact area between the two, but The dispersed phase is still uneven, so it often leads to the phase separation of the two phases, and the bond between the two phases is almost non-existent.
  • the added layered clay cannot be uniformly hooked and effectively dispersed in the polymerization. Therefore, the modification method that increases the compatibility between the two is a key step. Among them, it is easier to chemically treat the layered clay as a modified one. As mentioned above, since the silicate layer of the layered clay has a cation in it, it is the best use for the modification work, so it is cation.
  • the modifier for such modification may also be referred to as a surfactant such as an intercalant or a swelling agent. Since the modifier has both lipophilic and hydrophilic properties, the hydrophilic layered clay can be linked to the lipophilic polymer.
  • a secondary object of the present invention is to provide a method for preparing a corrosion-resistant nano composite coating by first mixing an amino group-containing compound with a modified layered clay and then mixing it with an isocyanate compound in an appropriate ratio. The anti-corrosion nano composite coating is obtained.
  • a corrosion-resistant nano composite coating comprising a polyurea, an organically modified layered clay and a suitable additive, wherein the nano composite coating is coated On the substrate, the substrate can be greatly slowed down by the corrosion rate; wherein the polyurea is synthesized by polymerization of a terminal amino group compound and an isocyanate compound.
  • a method for preparing an anti-corrosion nano composite coating comprising the following steps:
  • Step 1 Take an appropriate amount of the terminal amino group compound and an appropriate amount of the organic modified layered clay, and then uniformly stir with a mechanical mixer to obtain a mixture;
  • Step 2 Take the mixture of the first step, and then mix three times with three sets of rollers to obtain a homogeneous material
  • Step 3 Take the homogeneous material of step 2, mix with an appropriate ratio of isocyanate compound and appropriate additive by reaction injection molding (Reaction Injection Molding, abbreviated RIM), after the polymerization reaction is completed, Corrosion resistant nano composite coating.
  • RIM reaction injection Molding
  • different materials are first placed in different storage tanks, and different materials are quickly injected into the mixing device by rolling, and the hooks are quickly mixed, and then sprayed onto the substrate by high pressure, in the process.
  • the different materials are mixed and immediately chemically reacted, so it is necessary to quickly mix and spray the materials on the surface of the substrate.
  • the terminal amino group compound and the isocyanate compound are rapidly combined to form a polyurea containing a urea bond (-NHC0NH-).
  • the anti-corrosion nano composite coating provided by the invention, the preparation method and the application thereof have the following advantages when compared with the prior art described above:
  • the invention provides a corrosion-resistant nano composite coating which has better corrosion resistance than pure polyurea and prolongs the service life of the substrate.
  • the invention provides a corrosion-resistant nano composite coating which is used in a smaller amount than pure polyurea, so that the coating of the invention is less expensive.
  • Figure 1 is an XRD analysis of modified montmorillonite and unmodified montmorillonite
  • Figure 2 is an XRD analysis of the nano composite coating
  • Figure 3 is a TEM pattern of the nano composite coating (1)
  • Figure 4 is a TEM pattern of the nano composite coating (2)
  • Fig. 5 is a conventional polyurea polymerization reaction formula, wherein n is the number of molecules; wherein R1 and R2 may be different kinds of molecules such as aliphatic or aromatic. detailed description
  • the invention provides a preparation method of a corrosion-resistant nano composite coating, comprising the following steps:
  • the amino-based compound and the modified layered clay are firstly stirred in a mechanical mixer to obtain a mixed material.
  • the terminal amino group compound is a compound having a terminal functional group of an amine group (-NH 2 ), and a preferred main component is a mixture of a polyether amine (Polyetheramine) and a chain extender (Chain extender), wherein the chain extension
  • the agent has a terminal functional group which is an amine group.
  • the terminal amino group compound can be obtained by chemical synthesis or commercially available, such as Huntsman Company of the United States, U0P Company of the United States, BASF Company of the United States, and Albemarle Corporate on Company of the United States;
  • the weight percentage of the organically modified layered clay is 2 to 14% by weight based on the total weight of the mixture;
  • the organically modified layered clay can be modified by a modifier to obtain a commercially available layered clay, which is commercially available to obtain a modified layered clay, such as Nanocor, Baccarat, USA. Technology Corporation;
  • the layered clay may comprise smectite clay, vermiculite, tubular kaolin, sericite or mica; wherein the silicon-bearing scorpion occupies soil ( Smectite clay) may include montmorillon (lonite), saponite, beidelite, and siliconite
  • nontronite or hectorite, preferably montmorillonite
  • the modifier may include an ammonium salt modifier, a phosphorus salt modifier, which may make the inorganic layered clay oleophilic and easily dispersed in the composition of the nano composite coating of the present invention; wherein the ammonium salt Tetramercaptoammonium bromide
  • the phosphorus salt modifier is preferably dodecyltriphenylphosphonium bromide (CH 3 (CH 2 ) 1 1 N(CH 3 ) 2 (CH 2 CH 2 OC 6 H 5 )Br, CAS. No. 15510-55-1);
  • the above modifiers are available from Youhe Trading Co., Ltd.;
  • the terminal amino group compound is uniformly mixed with the organically modified layered clay, and the terminal amino group compound is further extruded into the layer of the organic modified layered clay.
  • the homogenized material of the second step is mixed with an appropriate ratio of the isocyanate compound and an appropriate additive by a reaction injection molding method, and after the polymerization reaction is completed, the corrosion resistant naphthalene can be obtained.
  • Rice composite coating is obtained.
  • the prior art first places different materials in different storage tanks, and quickly injects different materials into the mixing device by high pressure, rapidly mixes, and then rapidly sprays the high pressure onto the substrate. During the process, different materials are mixed and immediately chemically reacted, so it is necessary to rapidly mix and spray the materials on the surface of the substrate.
  • the isocyanate compound and the terminal amino group compound uniformly distributed between the modified layered clay layers produce a rapid and intense polymerization reaction (as shown in FIG. 5) to form a polyurea. Due to the rapid increase of the molecular chain, the molecular chain formed by the polyurea further expands the silicate layer of the modified clay, so that the interlayer distance of the modified layered clay is expanded. , and finally become a uniform mixture of nano-grade polyurea / modified clay.
  • the isocyanate compound is a compound whose terminal functional group is isocyanate (-NC0), and the preferred component is diphenylmethane 4, 4'-diisocyanate (4, 4 ' - Methyl eneb is (phenyl isocyanate) a mixture with MDI-Based Prepolymer (this mixture is available from the Huntinate® series of isocyanate compounds from Huntsman);
  • the isocyanate compound can be synthesized by a chemical reaction or commercially available, such as Dow Chemical Company of the United States, Du Pont Company of the United States, Cytec Company of the United States, Bayer Company of Germany, and the like;
  • the compound of the terminal amino group and the compound of the isocyanate are polymerized in an appropriate weight ratio to form a polyurea having a urea bond, wherein a suitable weight ratio of 1:1 is a preferred example; wherein the modified layered layer Clay weight percentage 1-7 wt% of the total weight of the corrosion nano composite coating ;
  • Suitable additives may include, but are not limited to, thickeners, diluents, dispersants, flame retardants, antistatic agents, dyes, mold release agents, mold inhibitors, light stabilizers, antioxidants, anti-precipitants, streams Varnish, filler, coupling agent, catalyst, leveling agent, defoamer, etc.; the additive added may be appropriately added depending on the properties required by different construction environments or client requirements.
  • the present invention further provides a corrosion-resistant nanocomposite coating obtained by the above preparation method, which comprises a polyurea, an organically modified layered clay and a suitable additive.
  • a compound of a terminal amino group and a compound of an isocyanate are synthesized by a polymerization reaction.
  • weight ratio of the compound of the terminal amino group to the compound of the isophthalic acid ester is 1:1; wherein the weight percentage of the modified layered clay accounts for 1-7 wt% of the total weight of the corrosion resistant nano composite coating;
  • Example 1 Preparation of modified montmorillonite
  • the modified montmorillonite can be modified by the modified agent to obtain the modified montmorillonite, and the modified montmorillonite can also be obtained commercially, such as Nanocor Company of the United States and Baikang Nano Technology Co., Ltd.
  • the modified montmorillonite is modified by a modifier.
  • the above four modifiers can achieve similar modification effects, which can increase the interlayer distance of the organically modified layered clay.
  • the montmorillonite was modified by the modifier Methyltr ialkyl(C 8 - C 1 0 ) ammonium chloride, CAS. No. 72749- 59_8. Quality is a demonstration. Further, a modifier solution (methyltridecyl (heptane-decane) ammonium bromide) was added to the swollen montmorillonite aqueous solution, and stirred at room temperature for 24 hours.
  • the amino group-containing compound and the organic modified montmorillonite obtained in Example 1 were first stirred in a mechanical mixer to obtain a mixed material.
  • the terminal amino group compound is a compound having a terminal functional group of an amine group (-N), and a preferred main component is a mixture of a polyether amine (Polyetheramine) and a chain extender (Chain extender), wherein the chain extender Also having a terminal functional group is an amine group.
  • a preferred main component is a mixture of a polyether amine (Polyetheramine) and a chain extender (Chain extender), wherein the chain extender Also having a terminal functional group is an amine group.
  • This mixture is available from Huntsman's Jaf famine® D-2000, Jaf famine® T-5000, Uuilink® 4200 and Ethacure® 100, etc.
  • the weight percentage of the organically modified layered clay is 2 to 14% by weight based on the total weight of the mixture ;
  • the nano composite can be obtained. coating.
  • the isocyanate compound is a compound whose terminal functional group is isocyanate (-NC0), and the preferred component is diphenylmethane 4,4'-Methylenebis (phenyl isocyanate) and a mixture of MDI-Based Prepolymer (this mixture is available from the Huntinate® series of isocyanate compounds from Huntsman);
  • the isocyanate compound and the terminal amino group compound uniformly distributed between the modified montmorillonite layers undergo rapid and vigorous polymerization between the layers, as shown in FIG. 5, to form a polyurea having a urea bond, and thus, The polymer chain of polyurea grows between the layers of the modified montmorillonite, and the distance between the layers of the montmorillonite layer can be greatly enhanced.
  • the compound of the isocyanate in an appropriate ratio is a weight ratio of 1:1 to the terminal amino group compound used in the first step.
  • Suitable additives may include, but are not limited to, thickeners, diluents, dispersants, flame retardants, antistatic agents, colorants, mold release agents, mold inhibitors, light stabilizers, antioxidants, anti-precipitants, streams Varnishes, fillers, coupling agents, catalysts, leveling agents, defoamers, etc.; the additives added may be appropriately added depending on the properties required for different construction environments or client requirements.
  • the nano composite coating obtained by the above steps comprises a polyurea, a modified montmorillonite and a suitable additive.
  • the weight percentage of the modified montmorillonite is 1-7 vrt D / of the total weight of the nano composite coating.
  • a nanocomposite coating comprising 3 wt% of modified montmorillonite is exemplified.
  • the nano composite coating obtained in the above second embodiment firstly, in this embodiment, an X-ray diffractometer (X-ray)
  • XRD X-ray Diffraction instrument
  • TEM Transmission Electron Microscopy
  • the modified montmorillonite contained is uniformly dispersed in the polyurea.
  • XRD and TEM identification methods please refer to Liu Shizhou et al. (Liu Shizhou, Ye Ruiming, Research on Synthesis and Properties of Polyaniline/Clay Nanocomposites, 1991 Master's Thesis), briefly described below: 1. Modified montmorillonite and Identification and Analysis of X-ray Diffraction (XRD) of Nano Composite Coatings
  • the powdered sample is sufficiently ground to a finer fine powder in an agate mortar. This step makes the powdery sample easier to attach to the carrier and is flat. Place the carrier with the sample into the X-ray diffractometer (XRD, Rigaku)
  • XRD X-ray diffraction
  • modified montmorillonite see Figure 1, the sample to be tested is modified montmorillonite and unmodified montmorillonite, of which 2 ⁇ of unmodified montmorillonite is 7, the layer
  • the distance (d) is 12.6 A, that is, about 1.26 nm; wherein the modified montmorillonite 2 ⁇ is 3.8, and the interlayer distance (d) is 23. 2 A, that is, about 2. 32 nm.
  • the modified montmorillonite was modified by Methyltrialkyl (C 8 - C! 0 ) ammonium chloride, CAS. No. 72749- 59-8.
  • the interlayer distance is indeed increased by the modifier, and the increased interlayer distance allows the isocyanate compound added in step 3 to more easily enter the modified montmorillonite layer.
  • the sample to be tested is the polyurea/modified montmorillonite composite coating obtained in the second embodiment, and the pure polyurea. According to XRD analysis, the two samples to be tested have no signal at 1 to 10 degrees at 2 corners.
  • the terracotta composite coating produced no signal at 1 to 10 degrees at 2 turns, indicating that the 2 ⁇ angle between the clay layers is less than or equal to 1, and when n is 1, the interlayer distance (d) is about 88 A, that is, about 8.8 nm; therefore, when the 2 ⁇ is less than or equal to 1, the minimum interlayer distance of the two groups is greater than or equal to 8.8 nm, and it is confirmed that the two sets of coatings are all in the nanometer level.
  • the sample to be tested Before the TEM identification, the sample to be tested must be firstly marketed as a special embedding agent or Epoxy resin or
  • the PMMA is embedded to obtain a slice to be sliced to facilitate microtome sectioning.
  • the thickness of the slice is controlled by the thickness controller in the range of 60 to 90 nm, and after repeated cutting, a sheet of white gold or gold color reflection can be obtained, and then it can be picked up by a copper mesh, and then it can be carried out.
  • TEM test TEM (TEM, JEOL JEM1200EX II) operating conditions are: 120 KV penetrating electron beam, magnification 50000 times, obtain the appropriate image and then adjust the focal length, you can take the image.
  • FIG. 3 Please refer to FIG. 3 for a TEM pattern of 50,000 times magnification.
  • the sample to be tested is the polyurea/modified montmorillonite composite coating obtained in the second embodiment, wherein FIG. 3 and FIG. 4 are nano composites at different positions.
  • the TEM type of the coating (including the modified modified montmorillonite 3 wt ° /.), in which the black line part is the modified montmorillonite, the other light black areas of the non-black strip are polyurea, therefore, As shown in Fig. 3 and Fig.
  • the modified montmorillonite has been uniformly dispersed in the polyurea, and the modified montmorillonite is simultaneously in the form of delamination type dispersion (Exfoliation) and intercalation type dispersion (Intercalation).
  • the degree of dispersion is dispersed in the polyurea; wherein the crystalline layer structure of the silicate layer of the clay still exists, which is called the intercalated dispersion form; and the silicate layer of the clay has no crystal-shaped structure, which is a disorder Disperse the existence, called the delamination type.
  • the polyurea Since the polyurea has excellent corrosion resistance, in this embodiment, it is a cyclic voltammeter (Cyclic). 64
  • the control group is a bare cold-rolled steel sheet with no coating
  • the sample group to be tested is a polyurea coated cold-rolled steel sheet
  • the nano composite coating obtained in the second embodiment is coated with cold.
  • the rolled steel sheet was subjected to corrosion test.
  • the coating rate of the cold-rolled steel sheet coated with pure polyurea of 12 Mm is 0. 1226 MPY, coated nano composite coating.
  • the corrosion rate of the control group (exposed cold-rolled steel sheet without coating) is 0. 056 ⁇
  • Composite coatings are not only superior in corrosion resistance to pure polyurea, but also require less coating thickness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)

Description

一种抗腐蚀奈米复合涂料及其制备方法 技术领域
本发明涉及到一种奈米复合涂料及其制备方法,特别是指一种抗腐蚀的奈米复合涂料及 其制备方法。 背景技术
涂料又称油漆或漆, 经涂覆于基材上形成薄膜, 主要作为基材表面装饰或保护之用。 现 有的传统涂料, 大抵包含一般市售的水泥漆、 乳胶漆等, 主要都是由有机化学合成物构成, 故,含有不少挥发性有机物质和重金属,有机溶剂除具刺激性的气味外亦具有腐蚀性或毒性, 对于呼吸***影响甚剧, 更对人体健康危害甚大, 甚者更具致癌的风险。 传统涂料有其应用 的限制, 如传统涂料不能完全覆盖所有有机或无机素材的表面, 且传统涂料与空气接触或日 晒雨淋后, 由于其构造较不紧密, 使其易于氧化、 腐蚀或剥落, 皆会损耗基材的使用寿命, 甚者致使基材裸露, 导致严重锈蚀、 变质或变形, 引起严重的公共安全意外, 故该传统涂料 显然并不能符合目前所需。
于许多防腐蚀的应用技术中, 有使用钝性金属电镀与涂覆隔绝用涂料等二种主要方法, 前者利用钝性金属不易氧化的特性,将其电镀在金属物表面上,而此金属物在钝性层保护下, 其氧化行为将大幅降低; 后者以涂料涂布于金属物表面上, 用以隔绝此金属物与氧气的直接 接触, 而进一步达到防腐蚀的效果。 常用以聚合物 (polymer) , 聚氨酯 (polyurethane)作为 涂料, 其用途广且价格便宜, 如粘合剂、 密封胶、 保温材料、 工程塑料、 橡胶制品等, 建筑 防水业常以聚氨酯作为防水涂料。 近年发展出聚脲 (polyurea, 简称 PUA) 防水涂料, 而防腐 蚀等功效较传统聚氨酯更佳, 且聚脲于各种施工环境和对象的适应性较强、 附着力佳, 尤其 于潮湿环境下施工方便性远胜于传统的聚氨酯。 故, 以高纯度的聚脲于基材上披覆, 具较佳 的防腐蚀效果。 然而, 高纯度聚脲价格昂贵, 用于防腐蚀处理的成本与传统聚氨酯的*** 格落差太大, 难以普及。 故, 民间工程仍多采用较便宜的传统聚氨酯, 或混合型聚脲 /聚氨酯 涂料, 但其耐用期限与纯聚脲相差 5~10倍。
聚脲主要包含二种成份: 异氰酸酯类化合物(Isocyanate compounds)及端氨基类化合物
(Amine terminated compounds)。
其中异氰酸酯类化合物又可分为芳香族异氰酸酯类 (Aromatic Isocyanates)的化合物与 脂肪族异氰酸酯类 (Al iphatic isocyanates)的化合物等二大类, 其可以单体 (Monomer)、 聚 合体 (Polymer)、 衍生物、 预聚物(Prepolymer)和半预聚物(Quasi- prepolymer)等形式存在, 以供施作上不同需要使用。
其中端氨基类的化合物(末端官能基为胺类 (-NH2)的化合物)主要由端氨基聚醚 (Amine terminated polyether或 Polyetheramine, 末端官能基为胺类 (-NH2)之聚醚)与端氨基类链 延长剂 (Amine terminated chain extender), 末端官能基为胺类 (- NH2)的链延长剂)所组成, 此链延长剂常会因为施工上的需求而添加不同比例, 其包括了脂肪族系端氨基链延长剂 (Aliphatic amine terminated chain extender)及芳香族系端氨基链延长齐 }J (Aromatic amine terminated chain extender)等二大类。
聚脲系由末端官能基为异氰酸酯 (- NC0) 的化合物及末端官能基为胺基(- NH2) 的化合 物经现有的聚合反应 (如图 5所示)即可形成具有脲键(- NH- CO- NH-)之特征重复单元的高分子 材料, 故, 凡具有脲键(- NH- CO- NH- ) 的特征重复单元的高分子材料皆属聚脲; 该聚合反应 无需催化剂, 也不须加热即可迅速反应以固化成膜。 现有的聚脲聚合反应如图 5所示, 其中 n 为分子数, 如 n为 1时表示, 异氰酸酯 (-NC0)化合物及末端官能基为胺基(- NH2) 化合物以 1 : 1的分子比, 进行聚合反应以形成具有一个脲键(-NH-C0- NH-)的特征单元的分子材料; 其 中 Rl、 R2习知可为脂肪族或芳香族等不同种类的分子。
黏土 (Clay)为一层状结构的材料, 由于其层状结构的特性, 故具备不透气、 不透水的物 性, 通过此特性所提供的阻碍, 可有效增长水分、 氧气于黏土中渗透的路径及时间, 降低吸 水性及气体穿透性。 今更被广为研究应用于各个方面, 如复合材料、 生化领域、 电子组装以 及环保方面。黏土 (Clay)主要由三氧化二铝 (A1203 ) 与二氧化硅 (S i02) 所组成的硅酸盐 层状结构, 它的粒径大小约为 Ι μ ΐϋ, 每一个颗粒层堆由数百至上千层片所堆栈, 平均一颗粒 层堆约有 850 片硅酸盐层(Silicate sheets) , 而每一层片与另一层片之间的层间距离 (d- spacing) 大约有 6A 〜 17 A之间, 主要群则以分布在 11 A - 13 A之层间距者居多。 再 者其层与层间所夹的离子又可分为阳离子交换型黏土、 阴离子交换型黏土与中性离子交换型 黏土三大类, 而主要以阳离子交换型黏土占大多数, 其阳离子多为 Li+、 Na+、 K+、 C a+ 、 Mg2 + 、 B a2 + 、 La3 + 、 C e2 +等, 含有部分的结晶水。 这些阳离子提供了将黏土有机化的 绝佳路径, 即为离子交换反应。
层状黏土所具有的优异特性来自其特殊的层状结构。 当层状黏土与高分子材料掺混后, 产生层间阳离子交换与离子键的交互作用。 特别在奈米尺度下, 许多于微米级结构不易获得 的特性逐一显现, 该些特性包含阻气性、抗紫外线、 阻水性、 耐热性、 强韧性、 耐磨、 耐刮、 防蚀、 耐化学品等。 对于涂料类的材料, 层状黏土为绝佳的增稠剂, 使得施工或涂覆作业更 加容易, 涂层平坦化, 大幅缩短工时与材料用量的优势十分显着。
层状黏土应用上有其限制, 以层状黏土为一种无机材料且具亲水性, 与亲油性的高分子 之间缺乏亲和性, 若欲与有机材料进行混合时, 要达到均匀兼容是相当困难的。 因此欲得到 均匀分散的材料, 就须对层状黏土进行改质。
在传统涂料已被广泛应用的今天, 其所展现的物性已不敷达到预期的目的, 故将已知的 材料来予以改良是一个较便捷的途径; 当两种不同的材料各自都有其优点, 如将二者混合在 一起, 以取得一种两项优点皆具备的新材料, 这即是复合材料的基本观念。 一个好的复合材 料其二者的混成程度必须相当地均匀, 此复合材料所要的增益性质才能够提升, 而奈米复合 材料 (Nanocomposites)特别是指两种不同材料的混成程度已达到相当均匀的 1 0 _ 9 m的大小 (指分散相), 远比传统复合材料的混成程度 1 0 · 6 m, 高出许多。 奈米复合材料的基本定义如 下所示: 1. 当材料分散粒径大小在奈米尺寸 (Nanometer , lnti! 〜 lOOnm)的范围。 2. 当 Gibbsian 固态相大于一时, 其任何一维 (Dimension)中至少有一个相态是在奈米尺寸的范围 内, 特别是介于 l〜20nm之间, 即可称为奈米复合材料。
奈米复合涂料其性质随着粒径大小、 物理性质、 化学性质不同而异, 而奈米复合涂料是 由奈米级材料复合而成, 故, 不同的奈米级材料的掺混, 具有不同的应用方向, 包含除污、 自洁、 抗菌、 耐磨、 防刮, 防水、 抗紫外光等新颖应用。 其中该奈米级材料常见为: 奈米黏 土, 是为一层状结构, 涂覆于对象表面可形成防刮、耐磨的涂层, 也可使用于食品的包装上, 提升其阻水性与阻气性。 然而, 奈米级粒子分布状态对于涂层的特性有决定性的因素, 因此 奈米级粒子在涂料中维持均勾分散的技术即为奈米复合涂料的关键技术, 也是奈米复合涂料 生产及应用的门坎。
由于层状黏土为亲水性的物质,而聚合物 (Polymer)涂料属亲油性,故两者的相溶性并不 佳, 纵使将层状黏土研磨以增加两者间的混合接触面积, 但其分散相仍不均, 所以常常会导 致两相 (Two Phase) 的相分离, 而且相混两者之间的键结几乎不复存在, 所添加的层状黏土 无法均勾且有效地分散于聚合物中, 故, 增加两者兼容性的修饰方法为关键步骤。 其中又以 化学法将层状黏土当作被修饰者较为容易, 如前所述, 由于层状黏土的硅酸盐层中夹有阳离 子, 其即是进行修饰工作最佳利用物, 故以阳离子交换反应, 将硅酸盐层中的阳离子置换出 来, 以交换进去另一种具有机性的阳离子, 则其层状黏土的有机性即会增加。 这种修饰用的 改质剂又可称为插层剂或膨润剂等界面活性剂。由于改质剂同时具备亲油性及亲水性两特性, 故可将亲水性层状黏土与亲油性聚合物连系于一起。 发明内容
本发明的目的即在于提供一种抗腐蚀奈米复合涂料, 用以覆盖于基材上, 可使基材大幅 降低其腐蚀速率。
本发明的次要目的在于提供一种抗腐蚀奈米复合涂料的制备方法, 该方法是先将端氨基 类化合物与改质层状黏土混合, 再与异氰酸酯类化合物以适当的比例混匀, 以得该抗腐蚀奈 米复合涂料。
为实现以上目的, 本发明采取了以下的技术方案: 一种抗腐蚀奈米复合涂料, 其组成包 含聚脲、 有机化的改质层状黏土及适当的添加剂, 其中该奈米复合涂料覆盖于基材上, 可使 基材大幅减缓腐蚀速度; 其中该聚脲是由端氨基类的化合物及异氰酸酯类的化合物, 经聚合 反应而合成的。
一种抗腐蚀奈米复合涂料的制备方法, 包括下列步骤:
步骤一: 取适量的端氨基类的化合物及适量的有机化的改质层状黏土, 先以机械搅拌机 搅拌均匀, 得混合物料;
步骤二: 取步骤一的混合物料, 再以三组滚轮惨混三次, 得均质物料;
步骤三: 取步骤二的均质物料, 与适当比例的异氰酸酯类化合物及适当的添加剂以反应 注射成型法(Reaction Injection Molding , 缩写 RIM) 的混成技术进行掺混程序, 待聚合 反应完成后, 可得抗腐蚀奈米复合涂料。
其中于步骤三的反应注射成型法, 先将不同物料置于不同储藏槽中, 通过髙压将不同物 料快速注入混合装置中, 快速混勾, 再以高压快速喷涂至基材上, 此过程中不同物料经混合 即立刻进行化学反应, 故需快速地混合及喷涂物料于基材表面。
其中于步骤三将适当比例的异氰酸酯类化合物与步骤二的均质物料掺混过程中, 端氨基 类的化合物与异氰酸酯类化合物迅速化合形成含脲键 (- NHC0NH-) 之聚脲。
本发明所提供的一种抗腐蚀奈米复合涂料、 其制备方法及应用, 与前述现有技术相互比 较时, 更具有下列之优点:
本发明提供的一种抗腐蚀奈米复合涂料, 该涂料的抗腐蚀效果较纯聚脲更佳, 延长基材 的使用寿命。
本发明提供的一种抗腐蚀奈米复合涂料, 该涂料的使用量较纯聚脲的使用量更少, 故, 本发明的涂料所需成本更为低廉。 附图说明
图 1为改质蒙脱土及未改质蒙脱土的 XRD分析图谱;
图 2为奈米复合涂料的 XRD分析图谱;
图 3为奈米复合涂料的 TEM型态图 (一);
图 4为奈米复合涂料的 TEM型态图 (二);
图 5为现有的聚脲聚合反应式, 其中 n为分子数; 其中 Rl、 R2可为脂肪族或芳香族等不同 种类的分子。 具体实施方式
下面结合附图和具体实施方式对本发明的内容做进一步详细说明。
本发明提供一种抗腐蚀奈米复合涂料的制备方法, 包括下列步骤:
步骤一:
取端氨基类的化合物及改质层状黏土, 先以机械搅拌机搅拌均匀, 得混合物料。
其中该端氨基类的化合物为末端官能基为胺基(- NH2) 的化合物, 较佳者的主成分为聚 醚胺(Polyetheramine)与链延长剂 (Chain extender)的混合物, 其中该链延长剂具有末端官 能基为胺基。 (该混合物可购于 Huntsman公司的 Jaf famine® D-2000 、 Jaf famine® T- 5000、
Uuilink® 4200与 Ethacure® 100等的端氨基类的化合物);
其中该端氨基类的化合物可由化学合成或市售可取得, 如美国 Huntsman公司、 美国 U0P 公司 、 美国 BASF公司 、 美国 Albemarle Corporate on公司;
其中有机化的改质层状黏土的重量百分比占混合物料总重量的 2- 14wt%;
其中该有机化的改质层状黏土可通过改质剂将市售的层状黏土进行改质, 于市售可取得 该有机化的改质层状黏土, 如美国 Nanocor公司、 百康奈米科技股份有限公司;
其中该层状黏土可包括硅矾石类黏土(smectite clay)、 蛭石 (vermiculite)、 管状高岭 土 (halloysite)、 絹云母(sericite)或云母 (mica); 其中该硅巩石类黍占土 (smectite clay) 可包括蒙脱土(montmori l lonite:)、 皂土(saponite)、 富铝蒙脱土(beidellite)、 硅铁石
(nontronite)或锂皂土(hectorite), 较佳者为蒙脱土;
其中该改质剂可包括铵盐类改质剂、 磷盐类改质剂, 其可使无机层状黏土具亲油性而易 分散于本发明的奈米复合涂料的成分中; 其中该铵盐类改质剂较佳者为四癸基溴化铵
(Tetrakis (decyl) ammonium bromide, [ CH3 (CH2)9] 4N(B r), CAS. No. 14937—42-9), 或甲基三垸基(庚烷-癸烷)溴化铵(Methyltrialkyl( C 8 - C 1 ()) ammoniiM chloride , CAS. No. 72749-59-8) , 或 溴 化 十 二 烷 基 二 甲 基 2- 苯 氧 基 乙 基 胺 (Dodecyldimethyl-2-phenoxyethyl) ammonium bromide, CAS. No. 538-71-6); 其中该磷盐 类改质剂较佳者为十二烷基三苯基溴化磷(Dodecyltriphenylphosphonium bromide (CH3 (CH2) 1 1 N(CH3 )2 (C H2CH2 O C6H5)Br, CAS. No. 15510-55-1) ; 上述改质剂可于 友和贸易股份有限公司购得;
步骤二:
' 取步骤一的混合物料, 再以三组滚轮掺混三次, 得均质物料; 其中该各组滚轮间隙分别 为 25~ 30 μ ιπ、 12- 13 μ m、 3- 5 μ m; 其中该各组滚轮的转速分别为 150 rpm、 250 rpm、 550 rpiBo
其中于步骤二将端氨基类的化合物与有机化的改质层状黏土混合均匀, 促使端氨基类的 化合物进一步地挤压入此有机化的改质层状黏土的层间。
步骤三:
取步骤二的均质物料, 与适当比例的异氰酸酯类的化合物及适当的添加剂以反应注射成 型法 (Reaction Injection Molding) 的混成技术进行掺混程序, 待聚合反应完成后, 即可 得抗腐蚀奈米复合涂料。
其中于步骤三的反应注射成型法, 现有技术先将不同物料置于不同储藏槽中, 通过高压 将不同物料快速注入混合装置中, 快速混匀, 再以高压快速喷涂至基材上, 此过程中不同物 料经混合即立刻进行化学反应, 故需快速地混合及喷涂物料于基材表面。
其中于步骤三掺混过程中, 异氰酸酯类的化合物与均匀分布于改质层状黏土层间的端氨 基类的化合物,产生迅速剧烈的聚合反应 (如图 5所示)而形成聚脲,而此形成的聚脲由于其分 子链急速的增加, 其分子链即会进一步地撑开其改质黏土的硅酸盐层片, 使得其改质层状黏 土的层间距离被撑开得越大, 终成为均匀混成的奈米级的聚脲 /改质黏土混合物。
其中该异氰酸酯类的化合物为末端官能基为异氰酸酯 (-NC0) 的化合物, 较佳者的主成 分为二苯基甲烷 4, 4' -二异氰酸酯 (4, 4 ' - Methyl eneb is (phenyl isocyanate) )与 MDI-基底 预聚物(MDI- Based Prepolymer)的混合物(该混合物可购于 Huntsman公司的 Rubinate®系列的 异氰酸酯化合物);
其中该异氰酸酯类的化合物可通过化学反应合成,也可于市售取得,如美国 Dow Chemical 公司、 美国 Du Pont公司、 美国 Cytec公司、 德国 Bayer公司等;
其中该端氨基类的化合物与异氰酸酯类的化合物是以适当重量比例, 经聚合反应以形成 具脲键的聚脲,其中该适当重量比例为 1 : 1为较佳示范;其中该改质层状黏土重量百分比占抗 腐蚀奈米复合涂料总重量的 1-7 wt%;
其中适当的添加剂可包含但不限于增稠剂、 稀释剂、 分散剂、 阻燃剂、 抗静电剂、 染色 剂、 脱模剂、 防霉剂、 光稳定剂、 抗氧化剂、 防沉淀剂、 流变剂、 填充剂、 偶联剂、 催化剂、 流平剂、 消泡剂等; 其所添加之添加剂可视不同施工环境或客户端要求所需之性质而作适当 的添加。
本发明更提供一种经上述制备方法所得的抗腐蚀奈米复合涂料, 其组成包含聚脲、 有机 化的改质层状黏土及适当的添加剂。
其中该聚脲系由端氨基类的化合物及异氰酸酯类的化合物, 经聚合反应而合成。
其中该端氨基类的化合物与异氤酸酯类的化合物的重量比例为 1 : 1 ;其中该改质层状黏土 重量百分比占抗腐蚀奈米复合涂料总重量的 1-7 wt%;
本发明是以下面的实施例予以示范阐明, 但本发明不受下述较佳实施例所限制。 实施例一 :制备改质蒙脱土
公知以蒙脱土 (Montmorillonite) 层间特有的阳离子的特性, 以改质剂加以修饰,此步 骤为一种阳离子交换反应, 而选用的改质剂属于一种阳离子界面活性剂, 当阳离子交换反应 完成后, 会使得蒙脱土的层与层之间的距离得以撑的更开, 这有利于有机高分子更容易*** 其中。
改质蒙脱土可通过改质剂将市售的蒙脱土进行改质, 也可于市售取得该改质蒙脱土, 如 美国 Nanocor公司、百康奈米科技股份有限公司,本实施例是以改质剂将市售的蒙脱土改质予 以说明。
改质方法请参阅刘时州等人文献 (刘时州, 叶瑞铭, 聚苯胺 /黏土奈米复合材料的合成与 性质研究, 1991年硕士论文), 简述其下, 取蒙脱土(购于 Nanocor, Inc. USA. )置于去离子水 中, 于室温下搅拌 24小时, 可得已膨润的蒙脱土水溶液。 另外, 取改质剂四癸基溴化铵
(Tetrakis (decyl) ammonium bromide, CAS. No. 14937-42-9) , 或甲基三烷基(庚垸-癸垸) 溴化铵(Methyltrialkyl (C8-C10) ammonium chloride, CAS. No. 72749- 59- 8), 或溴化十二垸 基二甲基 2-苯氧基乙基胺 (Dodecyldimethyl-2-phenoxyethyl) ammonium bromide, CAS. No.
538-71-6) , 或十二烷基三苯基溴化磷(Dodecyltriphenylphosphonium bromide, CAS. No.
15510-55- 1)置于去离子水中, 于室温下搅拌至溶解; 再以 IN HC1 滴定至酸碱值 3~4 (pH =
3-4) , 以酸碱值检测器 (pH meter) 监测之, 再于室温搅拌 1小时, 可得改质剂溶液。 其中上 列四种改质剂皆可达到相似的改质效果, 即可增加有机化的改质层状黏土的层间距离, 本实 施例中是以改质剂甲基三垸基(庚垸 癸烷)溴化铵(Methyltr ialkyl( C 8 - C 1 0) ammonium chloride, CAS. No. 72749- 59_8)将蒙脱土进行改质为示范说明。 再将改质剂溶液(甲基三垸 基 (庚烷-癸烷)溴化铵)加入已膨润的蒙脱土水溶液中,于室温下搅拌 24小时。当改质剂溶液 加入已膨润的蒙脱土水溶液时会有凝绸现象, 所以必须缓缓加入, 并施以强力搅拌之。之后, 以离心机离心分离之, 离心速率 9000 rpm, 30分钟, 再以 30倍体积以上的去离子水冲洗之, 重复此过程 4~5 次。 该冲洗离心步骤可去除过量剩余的改质剂及已被交换出的钠阳离子。 经 上述步骤取得的蒙脱土, 再于室温下以真空干燥 48小时, 再以粉碎研磨机研磨之, 可得到粉 末, 即为有机化的改质蒙脱土。 实施例二: 奈米复合涂料的制备方法
步骤一:
取端氨基类的化合物及实施例一所得的有机化的改质蒙脱土,先以机械搅拌机搅拌均匀, 得混合物料。
其中该端氨基类的化合物为末端官能基为胺基 (- N ) 的化合物, 较佳者的主成分为聚 醚胺(Polyetheramine)与链延长剂(Chain extender)的混合物, 其中该链延长剂亦具有末端 官能基为胺基。 (该混合物可购于 Huntsman公司的 Jaf famine® D- 2000 、 Jaf famine® T-5000, Uuilink® 4200与 Ethacure® 100等的端氨基类的化合物);
其中有机化的改质层状黏土的重量百分比占混合物料总重量的 2- 14wt%;
步骤二:
取步骤一的混合物料, 先以第一滚轮组以转速为 150 rpm、 滚轮间隙为 25~30 μ πι进行掺 混, 再以第二滚轮组以转速为 250 rpm、 滚轮间隙为 12〜: L3 μ ηι进行掺混, 最终以第三滚轮组 以转速为 550 rpm、 滚轮间隙为 3〜5 μ πι进行掺混, 可得均质物料。
步骤三:
取步骤二的均质物料, 与适当比例的异氰酸酯类的化合物及适当的添加剂以反应注射成 型法 (Reaction Injection Molding) 的混成技术进行掾混程序, 待聚合反应完成后, 即可 得奈米复合涂料。
其中该异氰酸酯类的化合物为末端官能基为异氰酸酯 (- NC0) 的化合物, 较佳者的主成 分为二苯基甲烷 4, 4,-二异氰酸酯 (4, 4 ' -Methylenebis (phenyl isocyanate) )与 MDI-基底 预聚物 (MDI- Based Prepolymer)之混合物(该混合物可购于 Huntsman公司的 Rubinate®系列的 异氰酸酯化合物); 其中该异氰酸酯类的化合物与均匀分布改质蒙脱土层间的端氨基类的化合物, 于层间进 行迅速剧烈的聚合反应, 如图 5所示, 以形成具脲键的聚脲, 故, 聚脲的高分子链于改质蒙脱 土的层间进行成长, 进而可撑大改质蒙脱土层间距离。
其中该适当比例的异氰酸酯类的化合物与步骤一所用的端氨基类的化合物为 1: 1的重量 比例。
其中适当的添加剂可包含但不限于增稠剂、 稀释剂、 分散剂、 阻燃剂、 抗静电剂、 染色 剂、 脱模剂、 防霉剂、 光稳定剂、抗氧化剂、 防沉淀剂、 流变剂、 填充剂、 偶联剂、 催化剂、 流平剂、 消泡剂等; 其所添加的添加剂可视不同施工环境或客户端要求所需的性质而作适当 的添加。
经上述步骤而得的奈米复合涂料, 其组成包含聚脲、 改质蒙脱土及适当的添加剂。 其中 该改质蒙脱土的重量百分比占奈米复合涂料总重量的 1-7 vrtD/。为较佳实施例, 下以包含 3 wt % 的改质蒙脱土的奈米复合涂料为示范说明。 实施例三: 奈米复合涂料的鉴定
如上述实施例二所得的奈米复合涂料, 首先, 于本实施利中以 X-ray 绕射仪 (X- ray
Diffraction instrument, XRD)鉴定该改质蒙脱土及奈米复合涂料为奈米层级, 再以穿透式 电子显微镜 (Transmission Electron Microscopy, TEM)鉴定该奈米复合涂料为奈米层级, 且 其所含的改质蒙脱土均匀分散于聚脲中。下列 XRD及 TEM鉴定方法请参阅刘时州等人文献 (刘时 州, 叶瑞铭, 聚苯胺 /黏土奈米复合材料之合成与性质研究, 1991年硕士论文), 简述其下: 1、 改质蒙脱土及奈米复合涂料的 X- ray绕射仪 (XRD)鉴定分析
首先, 将粉末状的样品以玛瑙研钵充分研磨至更细的微粉状, 此步骤将利于粉末状的样 品更易着附于载皿上且平坦。 再将着附有样品的载皿置入 X- ray 绕射仪(XRD, Rigaku
D/Max- 3C0D- 2988N, 为 Wide- angle XRD)内。 XRD测量中的实验条件为: 工作电压 35 KV, 工 作电流 25 mA; 以 2° I min 的扫瞄速率作 2° - 10° 的扫瞄, 每 0. 05° 取一讯号点 (铜靶, λ = 1. 54 Α)。 通过分析 X- ray绕射 (XRD)的图谱, 再依布拉格定律 (Bragg' s Law)计算待测 样品的层间距离 (d- spacing)。
布拉格定律: 2dsin e =n A , 其中 λ为 X- ray的波长(λ =1. 54, 铜靶); 其中 Θ为入射角; 其中 η为 2、 3、 4等整数值; 其中 d为层间距离(d- spacing)。
改质蒙脱土的 XRD鉴定结果- 请参阅图 1, 待测样品为改质蒙脱土及未改质蒙脱土, 其中未改质蒙脱土的 2 Θ为 7, 其层 间距离 (d)为 12. 6 A, 即约 1. 26奈米; 其中改质蒙脱土的 2 Θ为 3. 8, 其层间距离 (d)为 23. 2 A, 即 约 2. 32奈 米 。 证 实 经 改 质剂 甲 基三垸 基 ( 庚垸 -癸烷 ) 溴 化铵 (Methyltrialkyl(C 8 - C! 0 ) ammonium chloride, CAS. No. 72749- 59-8)改质的蒙脱土的层间 距离确实因改质剂而增大,其增大的层间距离可使得步骤 3所添加的异氰酸酯类的化合物更易 进入此改质蒙脱土层间之中。
奈米复合涂料的 XRD鉴定结果:
请参阅图 2, 待测样品为实施例二所得的聚脲 /改质蒙脱土奈米复合涂料、纯聚脲。经 XRD 鉴定分析, 该二组待测样品于 2 Θ角的 1~ 10度皆无讯号, 由于纯聚脲未含有改质蒙脱土, 所 以并无讯号可产生; 而聚脲 /改质蒙脱土奈米复合涂料于 2 Θ角的 1〜 10度皆无讯号产生, 显示 其黏土层间的 2 Θ角小于等于 1, 而, 当 n为 1时, 其层间距离(d)约为 88 A, 即约 8. 8奈米; 故 当该 2 Θ小于等于 1时,该二组的最小层间距离皆大于等于 8. 8奈米,证实该二组涂料皆属奈米 层级。
2、 奈米复合涂料的穿透式电子显微镜 (TEM) 鉴定分析
于 TEM鉴定前, 须先将待测样品, 以市售专用包埋剂或商用环氧树脂 (Epoxy resin)或
PMMA进行包埋, 即可得待切物, 以利切片机 (Microtome)切片。在切片时, 以厚度控制器将切 片厚度控制在 60〜90 nm 的范围, 在作反复切割后可得呈白金色或黄金色光芒反射的薄片, 再以铜网将其捞起, 即可进行 TEM测试。 TEM (TEM, JEOL JEM1200EX II )操作条件为: 120 KV 的穿透电子束, 放大倍率 50000倍, 取得适当影像再调整焦距, 即可摄取得其映像。
奈米复合涂料的 TEM鉴定结果
请参阅图 3为放大 50000倍的 TEM型态图, 待测样品系为实施例二所得的聚脲 /改质蒙脱土 奈米复合涂料, 其中图 3及图 4为不同位置的奈米复合涂料 (含有机化的改质蒙脱土 3 wt°/。)的 TEM型态, 其中黑色线条部分为改质蒙脱土、其它非黑色条状物的浅色区域均为聚脲, 故, 如 图 3及图 4所示, 改质蒙脱土已均勾分散于聚脲中, 其改质蒙脱土同时以脱层型分散形式 (Exfoliation)与插层型分散形式 (Intercalation)两种分散程度分散于聚脲中; 其中黏土的 硅酸盐层的晶形迭堆结构仍然存在者, 称为插层型分散形式; 而其黏土的硅酸盐层已不具晶 形迭堆结构者, 属混乱散布存在者, 称脱层型分散形式。 实施例四:奈米复合涂料的抗腐蚀效果评估
由于聚脲系具有抗腐蚀的优异特性, 故于本实施例中, 是以循环伏安仪(Cyclic 64
Voltammetry/CV, 厂牌为 Radiometer Copenhagen, 型号为 Voltalab 21及 VoltaLab 40)测试 于实施例二所得的奈米复合涂料是否有抗腐蚀特性。
腐蚀测试方法请参阅刘时州等人文献 (刘时州, 叶瑞铭, 聚苯胺 /黏土奈米复合材料之合 成与性质研究, 1991年硕士论文), 简述其下, 是以冷轧钢片(Cold- rolled steel , CRS)为测 试基材; 取适量的待测涂料, 涂覆冷轧钢片, 即可得涂覆涂料的冷轧钢膜片。 再将冷轧钢膜 片未包覆 (Coating)的一侧以导电银胶黏附于工作电极上, 再以市售的环氧树脂 (Epoxy resin) 封住其外缘,待环氧树脂 (Epoxy resin)干硬后,再将其置入 5 wt% 的 NaCl 溶液 (电解液) 中, 以甘汞电极为标准参考电极、 碳棒为辅助电极, 进行 30分钟的腐蚀测试; 再以循环伏安仪程 序取腐蚀测试完毕后的电位为 Free Potential , 以 500 mV/min进行范围 ±250 mV的腐蚀电 流扫瞄, 取得 Cyclic Voltammetry Curve, 经数据计算即可得到塔伏曲线图(Taf el Curve) 、 量测样品的腐烛电位 (corrosion potential , Ecorr)、腐烛电流 (corrosion current, icorr)、 极化电阻(polarization resistance Rp)、 腐蚀速率(Rcorr, MPY)之数据; 其中 MPY表示每一 年腐蚀一毫英吋(mill i- inch I year)。
奈米复合涂料的抗腐蚀功效分析结果
如表一所示, 其中控制组为无涂覆涂料的裸露冷轧钢片、 待测样品组为聚脲涂覆的冷轧 钢片、及实施例二所得的奈米复合涂料涂覆的冷轧钢片进行腐蚀测试。其中控制组 (无涂覆涂 料的裸露冷轧钢片)的腐蚀速率为 0. 18 MPY、涂覆纯聚脲 12Mm的冷轧钢片其腐蚀速率为 0. 1226 MPY、 涂覆奈米复合涂料 Ιθμιη的冷轧钢片其腐蚀速率为 0. 056 ΜΡΥ。 故, 相较于涂覆较厚的纯 聚脲, 涂覆较薄的奈米复合涂料的冷轧钢片其腐蚀速率较慢, 降低腐蚀速率约 2. 2倍, 因此, 本发明的奈米复合涂料其具备的抗腐蚀特性不仅更优于纯聚脲, 且所需涂覆厚度亦更少。
表一涂料涂覆于基材上的抗腐蚀功效分析
控制组 纯聚脲 奈米复合涂料
腐蚀电位(mv) - 671. 5 -527. 4 -465. 1
极化电阻 Ο^ Ω χ cm2) 131. 2 237. 1 323
腐蚀电流 A/cm2) 0. 3858 0. 2627 0. 1199
腐蚀速率 (MPY) 0. 1802 0. 1226 0. 056
涂覆厚度(Wn) - 12 10 上列详细说明是针对本发明可行实施例的具体说明, 该实施例并非用以限制本发明的专 利范围, 凡未脱离本发明所为的等效实施或变更, 均应包含于本案的专利范围中。

Claims

权利 要求
1、 一种抗腐蚀奈米复合涂料的制备方法, 其特征在于, 包括下列步骤:
步骤一: 将端氨基类的化合物及有机化的改质层状黏土, 先以机械搅拌机搅拌均匀, 得 混合物料;
步骤二:取步骤一的混合物料,先以第一滚轮组以转速为 150 rpm、滚轮间隙为 25~30 μ m 进行掺混, 再以第二滚轮组以转速为 250 rpm、滚轮间隙为 12〜13 μ m进行掺混, 最终以第三滚轮组以转速为 550 rpm、 滚轮间隙为 3〜5 μ m进行掺混, 可得均质 物料;
步骤三:取步骤二的均质物料, 与适当比例的异氰酸酯类的化合物及适当的添加剂以反 应注射成型法的混成技术进行掺混程序, 即可得抗腐烛奈米复合涂料。
2、 如权利要求 1所述的制备方法, 其特征在于: 所述步骤一的有机化的改质层状黏土的重量 百分比占混合物料总重量的 2-14wt%。
3、 如权利要求 1所述的制备方法, 其特征在于: 所述步骤一的有机化的改质层状黏土是经改 质剂改质的层状黏土。
4、如权利要求 3所述的制备方法,其特征在于:所述改质剂为四癸基溴化铵,或甲基三烷基 (庚 烷-癸烷)溴化铵, 或溴化十二烷基二甲基 2-苯氧基乙基胺, 或十二烷基三苯基溴化磷。
5、 如权利要求 3所述的制备方法, 其特征在于: 所述层状黏土包含有硅矾石类黏土、 蛭石、 管状高岭土、 绢云母或云母。
6、 如权利要求 5所述的制备方法, 其特征在于: 所述硅矾石类黏土包含有蒙脱土、 皂土、 富 铝蒙脱土、 硅铁石或锂皂土。
7、 如权利要求 1所述的制备方法, 其特征在于: 所述步骤一有机化的改质层状黏土为改质蒙 脱土。
8、 如权利要求 1所述的制备方法, 其特征在于: 所述端氨基类的化合物为聚醚胺与链延长剂 的混合物。
9、如权利要求 1所述的制备方法, 其特征在于: 所述异氰酸酯类的化合物为二苯基甲垸 4, 4' - 二异氰酸酯与 MDI-基底预聚物的混合物。
10、如权利要求 1所述的制备方法, 其特征在于: 所述步骤三适当比例的异氰酸酯类的化合物 是与步骤一的端氨基类的化合物以 1: 1的重量比例掺混, 进行聚合反应以形成聚脲。
11、如权利要求 1所述的制备方法, 其特征在于: 所述有机化的改质层状黏土重量百分比占抗 腐蚀奈米复合涂料总重量的 1-7 rt%。 、如权利要求 1所述的制备方法,其特征在于:所述添加剂包含有增稠剂、稀释剂、分散剂、 阻燃剂、抗静电剂、染色剂、脱模剂、 防霉剂、光稳定剂、抗氧化剂、 防沉淀剂、流变剂、 填充剂、 偶联剂、 催化剂、 流平剂或消泡剂。 .
、一种如权利要求 1所述的制备方法而得的抗腐蚀奈米复合涂料,其特征在于:包含有聚脲、 有机化的改质层状黏土及适当的添加剂。
、 如权利要求 13所述的抗腐蚀奈米复合涂料, 其特征在于: 所述聚脲是由端氨基类的化合 物及异氰酸酯类的化合物, 经聚合反应而合成。
、 如权利要求 14所述的抗腐蚀奈米复合涂料, 其特征在于: 所述端氨基类的化合物与异氰 酸酯类的化合物的重量比例为 1 : 1。
、 如权利要求 14所述的抗腐蚀奈米复合涂料, 其特征在于: 所述端氨基类的化合物为聚醚 胺与链延长剂的混合物。
、 如权利要求 14述的抗腐蚀奈米复合涂料, 其特征在于: 所述异氰酸酯类的化合物为二苯 基甲烷 4, 4' -二异氰酸酯与 MDI-基底预聚物的混合物。
、 如权利要求 13所述的抗腐蚀奈米复合涂料, 其特征在于: 所述有机化的改质层状黏土为 改质蒙脱土。
、 如权利要求 13所述的抗腐蚀奈米复合涂料, 其特征在于: 所述有机化的改质层状黏土重 量百分比占抗腐蚀奈米复合涂料总重量之 1-7 wt%。
、 如权利要求 13所述的抗腐蚀奈米复合涂料, 其特征在于: 所述抗腐蚀奈米复合涂料的最 小层间距离大于 8. 8奈米。
、 如权利要求 13所述的抗腐蚀奈米复合涂料, 其特征在于: 所述改质层状黏土其分散程度 同时包含脱层型分散形式与插层型分散形式的分散型态。
PCT/CN2008/001664 2008-09-27 2008-09-27 一种抗腐蚀奈米复合涂料及其制备方法 WO2010034137A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/001664 WO2010034137A1 (zh) 2008-09-27 2008-09-27 一种抗腐蚀奈米复合涂料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/001664 WO2010034137A1 (zh) 2008-09-27 2008-09-27 一种抗腐蚀奈米复合涂料及其制备方法

Publications (1)

Publication Number Publication Date
WO2010034137A1 true WO2010034137A1 (zh) 2010-04-01

Family

ID=42059258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001664 WO2010034137A1 (zh) 2008-09-27 2008-09-27 一种抗腐蚀奈米复合涂料及其制备方法

Country Status (1)

Country Link
WO (1) WO2010034137A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017632A (en) * 1996-06-17 2000-01-25 Claytec, Inc. Hybrid organic-inorganic nanocomposites and methods of preparation
CN1362450A (zh) * 2001-01-05 2002-08-07 中国科学技术大学 聚氨酯有机粘土纳米复合材料及其制备方法
CN1552766A (zh) * 2003-06-05 2004-12-08 浙江工业大学 原位聚合聚氨酯与蒙脱土纳米复合物及制备方法
WO2008082687A2 (en) * 2006-07-27 2008-07-10 Ppg Industries Ohio, Inc. Coating compositions comprising polyurea or polyurea and polyurethane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017632A (en) * 1996-06-17 2000-01-25 Claytec, Inc. Hybrid organic-inorganic nanocomposites and methods of preparation
CN1362450A (zh) * 2001-01-05 2002-08-07 中国科学技术大学 聚氨酯有机粘土纳米复合材料及其制备方法
CN1552766A (zh) * 2003-06-05 2004-12-08 浙江工业大学 原位聚合聚氨酯与蒙脱土纳米复合物及制备方法
WO2008082687A2 (en) * 2006-07-27 2008-07-10 Ppg Industries Ohio, Inc. Coating compositions comprising polyurea or polyurea and polyurethane

Similar Documents

Publication Publication Date Title
Yeh et al. Preparation, characterization and electrochemical corrosion studies on environmentally friendly waterborne polyurethane/Na+-MMT clay nanocomposite coatings
Yan et al. Dual-functional graphene oxide-based nanomaterial for enhancing the passive and active corrosion protection of epoxy coating
Yeh et al. Enhancement of corrosion protection effect of poly (o-ethoxyaniline) via the formation of poly (o-ethoxyaniline)–clay nanocomposite materials
Sari et al. Fabricating an epoxy composite coating with enhanced corrosion resistance through impregnation of functionalized graphene oxide-co-montmorillonite Nanoplatelet
Yeh et al. Enhancement of corrosion protection effect in polyaniline via the formation of polyaniline− clay nanocomposite materials
US20100305235A1 (en) Anticorrosive Nanocomposite Coating Material, and a Preparation Process Thereof
Yeh et al. Siloxane-modified epoxy resin–clay nanocomposite coatings with advanced anticorrosive properties prepared by a solution dispersion approach
Zaarei et al. Structure, properties and corrosion resistivity of polymeric nanocomposite coatings based on layered silicates
Olad et al. Preparation, characterization and anticorrosive properties of a novel polyaniline/clinoptilolite nanocomposite
Lin et al. A robust and eco-friendly waterborne anti-corrosion composite coating with multiple synergistic corrosion protections
Huang et al. Advanced anticorrosive materials prepared from amine-capped aniline trimer-based electroactive polyimide-clay nanocomposite materials with synergistic effects of redox catalytic capability and gas barrier properties
Sheng et al. Waterborne epoxy resin/polydopamine modified zirconium phosphate nanocomposite for anticorrosive coating
Li et al. Waterborne polyurethane coating based on tannic acid functionalized Ce-MMT nanocomposites for the corrosion protection of carbon steel
Chang et al. Comparatively electrochemical studies at different operational temperatures for the effect of nanoclay platelets on the anticorrosion efficiency of DBSA-doped polyaniline/Na+–MMT clay nanocomposite coatings
KR100872833B1 (ko) 유기점토를 포함하는 부식방지용 코팅제 조성물 및 이의제조 제법
Fazli-Shokouhi et al. Epoxy-matrix polyaniline/p-phenylenediamine-functionalised graphene oxide coatings with dual anti-corrosion and anti-fouling performance
Li et al. Large CeO2 nanoflakes modified by graphene as barriers in waterborne acrylic coatings and the improved anticorrosion performance
Eduok et al. Fabricating protective epoxy-silica/CeO2 films for steel: Correlating physical barrier properties with material content
Mohammadzadeh et al. Preparation and comparative study of anticorrosion nanocomposites of polyaniline/graphene oxide/clay coating
Li et al. Single-step exfoliation, acidification and covalent functionalization of α-zirconium phosphate for enhanced anticorrosion of waterborne epoxy coatings
Yeh et al. Enhanced corrosion prevention effect of polysulfone–clay nanocomposite materials prepared by solution dispersion
US7888416B2 (en) Method for production of organic-inorganic complex, organic-inorganic complex, and polymeric composite material
Situ et al. Polyaniline encapsulated α-zirconium phosphate nanosheet for enforcing anticorrosion performance of epoxy coating
Wang et al. Investigation on the effects of polyaniline/lignin composites on the performance of waterborne polyurethane coating for protecting cement-based materials
Siva et al. Bipolar properties of coatings to enhance the corrosion protection performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08800655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08800655

Country of ref document: EP

Kind code of ref document: A1