WO2010029934A1 - Substrate and process for forming electroconductive pattern - Google Patents

Substrate and process for forming electroconductive pattern Download PDF

Info

Publication number
WO2010029934A1
WO2010029934A1 PCT/JP2009/065715 JP2009065715W WO2010029934A1 WO 2010029934 A1 WO2010029934 A1 WO 2010029934A1 JP 2009065715 W JP2009065715 W JP 2009065715W WO 2010029934 A1 WO2010029934 A1 WO 2010029934A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
ink
nozzle
liquid
coupling agent
Prior art date
Application number
PCT/JP2009/065715
Other languages
French (fr)
Japanese (ja)
Inventor
友香子 ▲高▼
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2010528729A priority Critical patent/JPWO2010029934A1/en
Publication of WO2010029934A1 publication Critical patent/WO2010029934A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/389Improvement of the adhesion between the insulating substrate and the metal by the use of a coupling agent, e.g. silane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0104Tools for processing; Objects used during processing for patterning or coating
    • H05K2203/013Inkjet printing, e.g. for printing insulating material or resist
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • H05K3/125Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing by ink-jet printing

Definitions

  • the present invention relates to a substrate that has good adhesiveness with a conductive ink and can continuously draw and draw thin lines with high linearity, and a method for forming a conductive pattern on the substrate.
  • a substrate used in a semiconductor process or the like is made of silicon or the like, and a flexible substrate (film or the like) is used in an electronic circuit or the like.
  • a photolithography method or the like is performed by laminating a resist layer and performing light irradiation through a photomask having a desired pattern. This is a method of removing an unnecessary resist layer after development.
  • this photolithography method requires a large number of steps, and has an environmental problem of high cost and disposal of the removed resist layer.
  • a conductive circuit pattern is formed on a substrate surface using a metal colloid-containing inkjet ink, and the conductivity is improved by improving the contact between the metal colloids through heat drying and melting.
  • a method for improving the quality for example, see Patent Document 1 has been introduced.
  • a liquid repellent compound and the above-mentioned The substrate is immersed in a solution containing a liquid repellency adjusting compound that gives a surface free energy higher than that of the liquid repellant compound on the substrate surface to form a self-assembled film on the surface, and then contains conductive fine particles.
  • a method of forming a film pattern by drawing with a liquid material using an ink jet has been introduced.
  • the adhesion between the substrate and the conductive ink is insufficient, and the linearity and fine lineability are also insufficient.
  • Patent Document 3 a pattern forming method (Patent Document 3) by forming a bank on the substrate surface has been proposed.
  • forming a bank may increase man-hours and increase costs.
  • the object of the present invention is that the adhesion between the substrate and the conductive ink is good, and the linearity is high by thinly drawing by continuous injection drawing without patterning the substrate or forming a bank. It is to obtain a substrate on which a pattern such as a circuit can be formed.
  • a conductive pattern forming method for forming a pattern such as a circuit on a substrate using an ink containing metal nanoparticles on a substrate, the surface of the substrate comprising two or more organic groups having a total carbon number of 4 or more A method for forming a conductive pattern, wherein the surface treatment is performed with a titanate coupling agent.
  • the present invention is characterized in that the adhesion between the substrate and the conductive ink is good, the linearity is high even if the substrate is continuously patterned without patterning, and a thin line can be formed. If the conductive ink is drawn by ink jet without processing the substrate, it spreads or repels. Therefore, if surface treatment is performed on the entire surface and drawing is performed continuously by ink jet, it is difficult to form a liquid pool and form a thin line with high linearity. It has been done to avoid the occurrence of stagnation. However, thinning out drawing increases the number of man-hours and requires high drawing accuracy.
  • the wettability of the substrate surface is controlled by selecting a surface treating agent, and even if continuous drawing is performed, a liquid pool does not occur and a thin line with high linearity can be formed.
  • a conductive ink with high adhesiveness could be obtained.
  • FIG. 2 is an exploded perspective view showing a schematic configuration of a multi-nozzle head 100.
  • FIG. 2 is a cross-sectional view showing an internal configuration of a multi-nozzle head 100.
  • the titanate coupling agent according to the present invention needs to contain 2 or more organic groups having a total carbon number of 4 or more, or contain a titanium oligomer compound.
  • an organic group having 4 or more carbon atoms in total is included in a group bonded to one titanium atom, as long as the group has an organic group having 4 or more carbon atoms in total
  • the organic group having a total carbon number of 4 or more does not mean only a group consisting of only a carbon chain such as a butyl group, but may be, for example, a group containing other atoms in the carbon chain, For example, it may be a group containing a heteroatom such as an ethylaminoethyl group or a dimethylaminoethyl group.
  • titanate coupling agent having two or more organic groups having 4 or more carbon atoms in one titanium atom is hydrophobic, and thus has low reactivity and is not easily subjected to reactions such as hydrolysis. It is considered that it remains on the surface without being completely decomposed after the surface treatment, and thus the surface state is considered to be a hydrophobic state.
  • Titanium has a six-coordinate structure, so the upper limit of six organic groups having a total of 4 or more carbon atoms in one titanium atom is the upper limit.
  • it is an organic group having a total number of carbon atoms of 4 or more and 15 or less.
  • the number of carbon atoms is less than 4, sufficient hydrophobicity cannot be obtained and the reactivity becomes high, so that the surface state cannot be changed. If the number of carbon atoms is more than 15 and the hydrophobicity is too high, the surface of the substrate becomes liquid repellent and a line cannot be formed even if the dot diameter is reduced. It preferably has moderate hydrophobicity.
  • the titanium oligomer compound in the present invention refers to a compound having in its molecule a multimeric structure (—Ti—O—Ti—) skeleton obtained by condensing a titanium alkoxide compound or a titanium chelate compound.
  • Ti—O—Ti— multimeric structure
  • the titanate coupling agent or titanium oligomer compound according to the present invention reacts with functional groups on the substrate surface, and maintains good adhesion to the substrate and has some hydrophobicity on the substrate surface.
  • the presence of the group prevents the ink from spreading out and makes it possible to form fine lines while maintaining adhesiveness.
  • the ink When the total number of carbons is less than 4, or even when the total number of carbons is 4 or more and 15 or less, if the number of such groups is 1 or less, the ink will spread and a thin line cannot be formed.
  • the metal nanoparticle-containing ink when the metal nanoparticle-containing ink is thickened, or when the metal is thickened by plating or the like, further adhesion is required, so it is more preferable to use a titanium oligomer compound that improves adhesion. preferable.
  • the titanate coupling agent has a hydrophobic group and a hydrophilic group in one molecule like the silane coupling agent, but a silane coupling agent having a large number of hydrophobic groups or a long hydrophobic group can be obtained. Therefore, it is difficult to obtain a desired hydrophobic surface that can form fine lines.
  • titanate coupling agent according to the present invention examples include KR-44, KR-46B, KR-41B, KR-38S, and KR-138S, which are sold by Ajinomoto Fine Techno Co. under the trade name Preneact.
  • Orgatics TC-200 is sold by Matsumoto Trading Co., Ltd.
  • titanium oligomer compounds examples include PC-600 and PC-605 from Matsumoto Kosho Co., Ltd.
  • the titanate coupling agent according to the present invention is applied to the substrate using a solution (dip, spray, etc.), and the substrate is immersed in the substrate (also heated), etc.
  • concentration of the coupling agent solution used is 0.01 to 20% by mass, more preferably 0.05 to 5% by mass. If the concentration exceeds 20% by mass, the coupling agent cannot be uniformly applied to the substrate surface. If the concentration is less than 0.01% by mass, the desired hydrophobic effect is lost and fine lines cannot be formed.
  • the solvent any solvent such as isopropanol and 1-butanol can be used.
  • the coating method include existing coating methods such as inkjet, dip, spray coating, and spin coating.
  • the thickness of the surface treatment becomes considerably thin, and in the field of electronic devices and the like, for example, it is possible to make contact even if the surface treatment is applied to an electrode or the like. This is not preferable when a resin-based primer or the like is used because it becomes impossible to make contact.
  • the static contact angle is preferably larger than the receding contact angle measured by the expansion / contraction method.
  • a higher static contact angle is preferable because the dot diameter becomes smaller, but it is difficult to form a line by continuous overlapping drawing unless the receding contact angle is 20 degrees or less, more preferably 15 or less. Was found by the present invention.
  • Metal nanoparticles are known to have a sintering temperature of 200 ° C. or lower, which is significantly lower than the melting point of the metal. In recent years, ink using the metal nanoparticles has attracted attention. The ink using the metal nanoparticles is described in each document. For example, the ink-jet fine wiring of metal nanoparticle paste, CMC Publishing (March 2006) can be referred to.
  • Examples of the metal fine particles used include silver, gold, copper, palladium, platinum, nickel, rhodium, tin, indium, and alloys thereof. Among these, silver, gold, and copper are preferable as the wiring material.
  • the physical method is generally a method of producing metal nanoparticles by pulverizing a bulk metal
  • the chemical method is a method of generating metal atoms and controlling their aggregation.
  • the chemical method is roughly classified into a wet method performed in a liquid and a dry method performed in air or in a reduced pressure atmosphere.
  • a well-known chemical reduction method as a wet method is to add a reducing agent to a metal ion solution or heat a metal salt solution containing a reducing agent to reduce metal ions and generate nanoparticles. It is a technique to do.
  • Examples of manufacturers producing metal nano inks (for example, silver ink or silver alloy ink) using a wet method include Sumitomo Electric and Nippon Paint.
  • Japanese Patent No. 3933138 discloses an ink creation method.
  • the gas evaporation method is known as a dry method.
  • the gas evaporation method is a method in which a metal is evaporated in an inert gas and cooled and aggregated by collision with the gas to generate nanoparticles. It is known that the dry method can make the particle size smaller than the wet method, and the dry method can have a particle size of about several nanometers. Examples of manufacturers that produce metal nanoparticle-containing inks using this method include Harima Kasei Co., Ltd.
  • the metal particle size in the metal nanoparticle-containing ink used in the present invention is 1 to 100 nm, preferably 1 to 50 nm.
  • metal fine particles having a particle diameter of less than 1 nm may be used, the production of such metal fine particles is extremely difficult, and the fusion of the nanoparticles easily proceeds and becomes unstable, which is not practical. Further, when metal fine particles having a particle diameter exceeding 100 nm are used, nozzle clogging or the like is likely to occur in an ink jet recording apparatus that discharges micro ink droplets as used in the present invention.
  • the concentration of the metal fine particles in the ink dispersion medium can be about 80% by mass at maximum, but can be appropriately diluted depending on the application.
  • the content of the metal fine particles in the ink is preferably 2 to 60% by mass.
  • the concentration is preferably 10% by mass or more, and more preferably 20% by mass or more.
  • a metal ink is used as the plating catalyst, it is desired to be applied as thinly as possible.
  • water-based ink in which water and a water-soluble organic solvent are used is often seen.
  • non-polar solvents such as n-tetradecane are often used as solvent-based inks.
  • ink droplets are pulled by an electrostatic force and landed on a substrate, so that a predetermined electric conductivity is required. Therefore, it is preferable to use a water-based ink having a higher electric conductivity than an oil-based ink in which a nonpolar solvent is used.
  • the electrical conductivity is preferably 0.1 ⁇ S / cm or more and 2000 ⁇ S / cm or less at 25 ° C., but more preferably 1 ⁇ S / cm or more and 1000 ⁇ S / cm or less from the viewpoint of drawability.
  • the measurement of the electrical conductivity of the ink can be easily performed according to the method described in JIS K 0130 (1995).
  • the inner diameter of the discharge port is considerably smaller than 20 ⁇ m. Therefore, it is preferable to use a solvent having a low vapor pressure and a high boiling point in order not to easily increase the viscosity or dry.
  • the boiling point of the solvent is preferably 150 ° C. or higher, more preferably 200 ° C. or higher.
  • water is preferably 40% by mass or less from the viewpoint of drying properties.
  • the viscosity of the ink containing metal nanoparticles according to the present invention is preferably 2.0 mPa ⁇ s or more and 10.0 mPa ⁇ s or less at the injection temperature, from the viewpoint of injection stability, and is 3.0 mPa ⁇ s or more and 6.5 mPa ⁇ s. The following is more preferable.
  • the viscosity of the ink referred to in the present invention can be determined using a conventionally known viscometer.
  • the injection temperature is preferably 20 to 60 ° C, more preferably 25 to 50 ° C. This is because if it is less than 20 ° C., it may be necessary to cool, and if it exceeds 60 ° C., the head and the flow path member may be burdened.
  • the surface tension is preferably 20 mN / m or more and 50 mN / m or less from the viewpoint of ejection properties and drawing properties. Furthermore, 25 mN / m or more and 45 mN / m or less are preferable.
  • the surface tension is lower than 20 mN / m, the ink wets and spreads on the water-repellent film on the nozzle surface, and when the surface tension is higher than 50 mN / m, it becomes difficult to spread when drawn and a line cannot be formed.
  • Examples of the method for firing the metal nanoparticle-containing ink after drawing on the substrate include sintering in a hot air circulating furnace (oven) and sintering in a hot plate.
  • a surface treatment titanium oxide coupling agent
  • sintering at a temperature within a range where various coupling agents are not decomposed is preferable.
  • Sintering is preferably performed at 100-150 ° C. for 10-30 minutes, followed by main sintering at 150-200 ° C. for 60-180 minutes. If the preliminary drying is not performed, the solvent remains in the fused metal and the resistance value may increase. If the temperature of the preliminary drying is less than 100 ° C., the evaporation of the solvent hardly occurs and the effect of the preliminary drying may not be obtained. If the temperature of the preliminary drying exceeds 150 ° C., the metal nanoparticles may be fused. There is no special designation for the equipment used for the preliminary drying.
  • the temperature of the main sintering is less than 150 ° C., the fused state of the metal nanoparticles is poor, and there is a possibility that the resistance value becomes high when wiring is made.
  • the surface-treated coupling agent is decomposed and reacts with the metal nanoparticles, which may increase the electrical resistance value.
  • the equipment used for the main sintering is preferably a hot plate. This is because when a hot plate is used, heat is directly transmitted to the ink, and the fusion of the metal nanoparticles is facilitated.
  • an electrical resistance value is 10 ⁇ cm or less.
  • Examples of the substrate according to the present invention include resin films such as polyimide films, polyamideimide films, polyamide films, and polyester films, glass-epoxy substrates, silicon substrates, ceramic substrates, and glass substrates.
  • the substrate may be provided with an insulating film, and when the insulating film is provided, it is preferable to perform a surface treatment using a coupling agent on the insulating film.
  • ⁇ Electric field assisted discharge method> As a method for forming a conductive pattern according to the present invention, an ink jet method using an ink jet recording apparatus is applied. According to the ink jet method, it is possible to perform continuous injection drawing without patterning the substrate and without forming a bank first, and it is possible to form a thin line with high linearity.
  • an electric field assisted discharge type ink jet apparatus in which the inner diameter of the discharge port is less than 0.1 to 20 ⁇ m is used. More preferred.
  • electro-mechanical conversion methods for example, single cavity type, double cavity type, bender type, piston type, shear mode type, shared wall type, etc.
  • electro-thermal conversion methods for example, thermal ink jet type, bubble jet type
  • an electric field assisted discharge method as a method for solving the above problems.
  • This ejection method uses a nozzle having an ejection port with an inner diameter of 0.1 to less than 20 ⁇ m, applies a voltage having an arbitrary waveform to the conductive ink, and charges the conductive ink, thereby discharging the ink droplets.
  • the substrate is discharged from the discharge port.
  • the inner diameter of the discharge port is more preferably 3 to 10 ⁇ m from the viewpoints of injection properties and fine wire properties. If it is less than 3 ⁇ m, clogging is likely to occur when the metal nanoparticle-containing ink is used, and if it exceeds 10 ⁇ m, a desired fine line may not be formed.
  • FIG. 1 is a cross-sectional view showing an embodiment of the entire configuration of an electric field assisted discharge type inkjet apparatus preferably used in the present invention.
  • the liquid discharge head 2 can be applied to various liquid discharge apparatuses such as a so-called serial method or line method.
  • the ink jet apparatus 1 has a liquid discharge head 2 in which a nozzle 10 for discharging a droplet D of a chargeable liquid L such as ink is formed, and a facing surface facing the nozzle 10 of the liquid discharge head 2 and the facing surface. And the counter electrode 3 that supports the base material K that receives the landing of the droplet D.
  • a resin nozzle plate 11 having a plurality of nozzles 10 is provided on the side of the liquid discharge head 2 facing the counter electrode 3.
  • the liquid discharge head 2 is configured as a head having a flat discharge surface in which the nozzle 10 does not protrude from the discharge surface 12 facing the counter electrode 3 of the nozzle plate 11 or the nozzle 10 protrudes only about 30 ⁇ m as described above. (For example, see FIG. 2D described later).
  • Each nozzle 10 is formed by perforating a nozzle plate 11, and each nozzle 10 has a small-diameter portion 14 having a discharge hole 13 on the discharge surface 12 of the nozzle plate 11 and a larger diameter formed behind the small-diameter portion 14.
  • a two-stage structure with the large-diameter portion 15 is adopted.
  • the small-diameter portion 14 and the large-diameter portion 15 of the nozzle 10 are each formed in a tapered shape having a circular cross-section and a smaller diameter on the counter electrode side.
  • the nozzle diameter is 10 ⁇ m
  • the internal diameter of the open end of the large diameter portion 15 farthest from the small diameter portion 14 is 75 ⁇ m.
  • the shape of the nozzle 10 is not limited to the above-described shape, and various nozzles 10 having different shapes can be used, for example, as shown in FIGS. Further, the nozzle 10 may have a polygonal cross-section, a cross-sectional star shape, or the like instead of forming a circular cross-section.
  • a charging electrode 16 made of a conductive material such as NiP, for example, for charging the liquid L in the nozzle 10 is provided in a layered manner on the surface opposite to the discharge surface 12 of the nozzle plate 11.
  • the charging electrode 16 extends to the inner peripheral surface 17 of the large-diameter portion 15 of the nozzle 10 and comes into contact with the liquid L in the nozzle.
  • the charging electrode 16 is connected to a charging voltage power source 18 as an electrostatic voltage applying means for applying an electrostatic voltage that generates an electrostatic attractive force, and the single charging electrode 16 is connected to all the nozzles 10.
  • a charging voltage power source 18 as an electrostatic voltage applying means for applying an electrostatic voltage that generates an electrostatic attractive force
  • the single charging electrode 16 is connected to all the nozzles 10.
  • a body layer 19 is provided behind the charging electrode 16. A portion of the body layer 19 facing the opening end of the large diameter portion 15 of each nozzle 10 is formed with a substantially cylindrical space having an inner diameter substantially equal to the opening end, and each space is discharged.
  • the cavity 20 is used for temporarily storing the liquid L.
  • a flexible layer 21 made of a flexible metal thin plate, silicon, or the like.
  • the flexible layer 21 defines the liquid ejection head 2 as the outside.
  • a flow path (not shown) for supplying the liquid L to the cavity 20 is formed.
  • the silicon plate as the body layer 19 is etched to provide a cavity 20, a common channel, and a channel that connects the common channel and the cavity 20.
  • a supply pipe (not shown) for supplying the liquid L from a liquid tank (not shown) is connected, and the flow path, cavity 20, nozzle 10, etc. are supplied by a supply pump (not shown) provided in the supply pipe or by a differential pressure depending on the position of the liquid tank. A predetermined supply pressure is applied to the liquid L.
  • Piezo elements 22 that are piezoelectric element actuators as pressure generating means are provided in portions corresponding to the respective cavities 20 on the outer surface of the flexible layer 21, and a drive voltage is applied to the elements.
  • a drive voltage power source 23 for deforming the element is connected.
  • the piezo element 22 is deformed by the application of a drive voltage from the drive voltage power source 23 to generate a pressure on the liquid L in the nozzle, thereby forming a meniscus of the liquid L in the discharge hole 13 of the nozzle 10.
  • an electrostatic actuator, a thermal method, or the like can be adopted as the pressure generating means.
  • the charging voltage power supply 18 for applying an electrostatic voltage to the drive voltage power supply 23 and the charging electrode 16 is connected to the operation control means 24, and is controlled by the operation control means 24, respectively.
  • the operation control means 24 is composed of a computer in which a CPU 25, a ROM 26, a RAM 27, etc. are connected by a BUS (not shown).
  • the CPU 25 is charged with a charging voltage based on a power control program stored in the ROM 26.
  • the power supply 18 and each drive voltage power supply 23 are driven to discharge the liquid L from the discharge hole 13 of the nozzle 10.
  • the liquid repellent layer 28 for suppressing the oozing of the liquid L from the discharge holes 13 is provided on the discharge surface 12 other than the discharge holes 13 on the discharge surface 12 of the nozzle plate 11 of the liquid discharge head 2. It is provided on the entire surface.
  • a material having water repellency is used if the liquid L is aqueous, and a material having oil repellency is used if the liquid L is oily.
  • Fluorine resins such as hexafluoropropylene), PTFE (polytetrafluoroethylene), fluorine siloxane, fluoroalkylsilane, and amorphous perfluoro resin are often used, and a film is formed on the discharge surface 12 by a method such as coating or vapor deposition.
  • the liquid repellent layer 28 may be formed directly on the ejection surface 12 of the nozzle plate 11 or may be formed through an intermediate layer in order to improve the adhesion of the liquid repellent layer 28. .
  • a flat counter electrode 3 that supports the substrate K is disposed in parallel to the discharge surface 12 of the liquid discharge head 2 and spaced apart by a predetermined distance.
  • the separation distance between the counter electrode 3 and the liquid ejection head 2 is appropriately set within a range of about 0.1 mm to 3 mm.
  • the counter electrode 3 is grounded and is always maintained at the ground potential. Therefore, when an electrostatic voltage is applied from the charging voltage power source 18 to the charging electrode 16, an electric field is generated between the liquid L in the ejection hole 13 of the nozzle 10 and the opposing surface of the counter electrode 3 facing the liquid ejection head 2. Has come to occur. When the charged droplet D lands on the substrate K, the counter electrode 3 releases the electric charge by grounding.
  • the counter electrode 3 or the liquid ejection head 2 is provided with positioning means (not shown) for positioning the liquid ejection head 2 and the substrate K by relatively moving them.
  • the droplets D discharged from each nozzle 10 can be landed on the surface of the substrate K at an arbitrary position.
  • liquid L to be ejected by the inkjet device 1 examples include water, COCl 2 , HBr, HNO 3 , H 3 PO 4 , H 2 SO 4 , SOCl 2 , SO 2 Cl 2 , and FSO 3 H as inorganic liquids. Is mentioned.
  • Examples of the organic liquid include methanol, n-propanol, isopropanol, n-butanol, 2-methyl-1-propanol, tert-butanol, 4-methyl-2-pentanol, benzyl alcohol, ⁇ -terpineol, ethylene glycol, Alcohols such as glycerin, diethylene glycol, triethylene glycol; phenols such as phenol, o-cresol, m-cresol, p-cresol; dioxane, furfural, ethylene glycol dimethyl ether, methyl cellosolve, ethyl cellosolve, butyl cellosolve, ethyl carbitol, Ethers such as butyl carbitol, butyl carbitol acetate, epichlorohydrin; acetone, methyl ethyl ketone, 2-methyl-4-pentanone, Ketones such as tophenone; fatty acids such as formic acid,
  • Sulfur-containing compounds hydrocarbons such as benzene, p-cymene, naphthalene, cyclohexylbenzene, cyclohexene; 1,1-dichloroethane, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,1, 2-tetrachloroethane, 1,1,2,2-tetra Chloroethane, pentachloroethane, 1,2-dichloroethylene (cis-), tetrachloroethylene, 2-chlorobutane, 1-chloro-2-methylpropane, 2-chloro-2-methylpropane, bromomethane, tribromomethane, 1-bromopropane, etc. And halogenated hydrocarbons. Two or more of the above liquids may be mixed and used.
  • an electrostatic voltage is applied from the charging voltage power source 18 to the charging electrode 16, and an electric field is generated between the liquid L in the ejection hole 13 of the nozzle 10 and the opposing surface of the counter electrode 3 facing the liquid ejection head 2.
  • a driving voltage is applied from the driving voltage power source 23 to the piezo element 22 to deform the piezo element 22, thereby forming a meniscus of the liquid L in the discharge hole 13 of the nozzle 10 with the pressure generated in the liquid L.
  • the equipotential lines in the nozzle plate 11 are substantially perpendicular to the ejection surface 12 as shown by equipotential lines by simulation in FIG. And a strong electric field is generated toward the liquid L in the small diameter portion 14 of the nozzle 10 and the meniscus portion of the liquid L.
  • the liquid discharge head 2 having a flat discharge surface also uses the nozzle plate 11 having high insulating properties to form the discharge surface 12.
  • the nozzle plate 11 having high insulating properties to form the discharge surface 12.
  • the inventors configured the electric field strength of the electric field between the electrodes to be a practical value of 1.5 kV / mm, formed the nozzle plate 11 with various insulators, the following experimental conditions, [Experimental conditions] Distance between ejection surface 12 of nozzle plate 11 and opposing surface of counter electrode 3: 1.0 mm Nozzle plate 11 thickness: 125 mm Nozzle diameter: 10 ⁇ m Electrostatic voltage: 1.5 kV Drive voltage: 20V In the experiment conducted based on the above, the electric field strength at the tip of the meniscus was calculated by simulation in the current distribution analysis mode with “PHOTO-VOLT” (trade name, manufactured by Photon Co., Ltd.), which is electric field simulation software (direct measurement) Therefore, the electric field strength at the tip of the meniscus was 3 ⁇ 10 7 V / m (30 kV / mm) or more.
  • the electric field strength at the meniscus tip is 3 ⁇ 10 7 V / m or more, and at least the volume resistivity of the nozzle plate 11 needs to be 10 15 ⁇ m or more. It is.
  • the electric field strength at the tip of the meniscus depends on the thickness of the nozzle plate 11 and the nozzle diameter, and is preferably 75 ⁇ m or more and 15 ⁇ m or less, respectively.
  • the distance between the discharge hole 13 of the nozzle 10 and the charging electrode 16 is increased, and the equipotential lines in the nozzle plate are easily arranged in a substantially vertical direction. It is considered that the electric field concentration on the meniscus is likely to occur, and when the nozzle diameter is reduced, the meniscus diameter is reduced, and the electric field is concentrated on the tip of the meniscus having a smaller diameter, thereby increasing the degree of electric field concentration. .
  • the relationship between the thickness of the nozzle plate 11 and the electric field strength at the tip of the meniscus and the relationship between the slip diameter and the electric field strength at the tip of the meniscus are the two-stage structure comprising the small diameter portion 14 and the large diameter portion 15 as in this embodiment. Similar results are obtained not only in the case of the nozzle 10 but also in the case of a single-stage structure, that is, a simple tapered nozzle, a cylindrical nozzle, or a multi-stage nozzle.
  • the electric field strength at the meniscus tip depends on the taper angle of the nozzle 10.
  • the taper angle of the nozzle 10 is preferably 30 ° or less.
  • the taper angle refers to an angle formed by the inner surface of the nozzle 10 and the normal line of the discharge surface 12 of the nozzle plate 11. When the taper angle is 0 °, the nozzle 10 corresponds to a cylindrical shape.
  • the electrostatic suction type inkjet apparatus used in the present invention has a multi-nozzle head 100 as shown in FIG.
  • the multi-nozzle head 100 includes a nozzle plate 31, a body plate 32, and a piezoelectric element 33.
  • the nozzle plate 31 is a silicon substrate or a silicon oxide substrate having a thickness of about 150 ⁇ m to 300 ⁇ m.
  • a plurality of nozzles 101 are formed on the nozzle plate 31, and the plurality of nozzles 101 are arranged in a line.
  • the body plate 32 is a silicon substrate having a thickness of about 200 ⁇ m to 500 ⁇ m.
  • an ink supply port 201 In the body plate 32, an ink supply port 201, an ink storage chamber 202, a plurality of ink supply paths 203, and a plurality of pressure chambers 204 are formed.
  • the ink supply port 201 is a circular through hole having a diameter of about 400 ⁇ m to 1500 ⁇ m.
  • the ink storage chamber 202 is a groove having a width of about 400 ⁇ m to 1000 ⁇ m and a depth of about 50 ⁇ m to 200 ⁇ m.
  • the ink supply path 203 is a groove having a width of about 50 ⁇ m to 150 ⁇ m and a depth of about 30 ⁇ m to 150 ⁇ m.
  • the pressure chamber 204 is a groove having a width of about 150 ⁇ m to 350 ⁇ m and a depth of about 50 ⁇ m to 200 ⁇ m.
  • the nozzle plate 31 and the body plate 32 are joined to each other, and in the joined state, the nozzle 101 of the nozzle plate 31 and the pressure chamber 204 of the body plate 32 correspond to each other on a one-to-one basis. .
  • each ink supply from the ink storage chamber 202 is performed.
  • Each pressure chamber 204 is supplied through a passage 203.
  • the piezoelectric element 33 is bonded to a position corresponding to the pressure chamber 204 of the body plate 32.
  • the piezoelectric element 33 is an actuator made of PZT (lead zirconium titanate), and is deformed when a voltage is applied to eject ink inside the pressure chamber 204 from the nozzle 101.
  • a borosilicate glass plate 34 (see FIG. 5) is interposed between the nozzle plate 31 and the body plate 32.
  • one nozzle 101 and one pressure chamber 204 are formed corresponding to one piezoelectric element.
  • the nozzle 101 is formed with a step, and the nozzle 101 is composed of a lower step portion 101a and an upper step portion 101b. Both the lower step portion 101a and the upper step portion 101b have a cylindrical shape, and the diameter D1 (the distance in the left-right direction in FIG. 5) of the lower step portion 101a is smaller than the diameter D2 (the distance in the left-right direction in FIG. 5) of the upper step portion 101b. It has become.
  • the lower part 101a of the nozzle 101 is a part that directly ejects ink circulated from the upper part 101b.
  • the lower step portion 101a has a diameter D1 of 1 ⁇ m to 10 ⁇ m and a length L (a distance in the vertical direction in FIG. 5) of 1.0 ⁇ m to 5.0 ⁇ m.
  • the reason why the length L of the lower step portion 101a is limited to the range of 1.0 ⁇ m to 5.0 ⁇ m is that the ink landing accuracy can be remarkably improved.
  • the upper part 101b of the nozzle 101 is a part for allowing the ink circulated from the pressure chamber 204 to circulate to the lower part 101a, and its diameter D2 is 10 ⁇ m to 60 ⁇ m.
  • the lower limit of the diameter D2 of the upper stage portion 101b is limited to 10 ⁇ m or more. If the diameter D2 is less than 10 ⁇ m, the flow path resistance of the upper stage portion 101b cannot be ignored with respect to the flow path resistance of the entire nozzle 101 (lower stage portion 101a and upper stage portion 101b). This is because the ink ejection efficiency tends to decrease.
  • a borosilicate glass plate 34 having a thickness of about several hundred ⁇ m is provided between the nozzle plate 31 and the body plate 32, and the borosilicate glass plate 34 has an opening for communicating the nozzle 101 and the pressure chamber 204.
  • a portion 34a is formed.
  • the opening 34 a is a through-hole that communicates with the pressure chamber 204 and the upper stage portion 101 b of the nozzle 101, and is a part that functions as a flow path through which ink flows from the pressure chamber 204 toward the nozzle 101.
  • the pressure chamber 204 is a portion that receives deformation of the piezoelectric element 33 and applies pressure to the ink inside the pressure chamber 204.
  • the piezoelectric element 33 when the piezoelectric element 33 is deformed, pressure is applied to the ink inside the pressure chamber 204, and the ink flows from the pressure chamber 204 through the opening 34 a of the borosilicate glass plate 34. Then, the nozzle 101 is reached and finally discharged from the lower step portion 101a of the nozzle 101.
  • a substrate electrode is provided at a position facing the nozzle plate 1 of the multi-nozzle head 100 (not shown), and between the nozzle 101 and the substrate electrode. An electrostatic field is applied.
  • the ink ejected from the nozzle 101 lands on the recording material on the substrate electrode while receiving the action of the electrostatic field.
  • the substrate and the conductive material are drawn.
  • the adhesiveness with the ink is good, the linearity is high by continuous injection drawing, and a thin line can be formed in a conductive circuit pattern or the like.
  • the following substrates 1 to 12 were prepared by changing the coupling agent used for the surface treatment.
  • Metal nanoparticle-containing ink (silver nanoparticle ink manufactured by Sumitomo Electric) using an electric field-assisted discharge type ink jet apparatus (using an apparatus according to FIG. 4) having a nozzle having an inner diameter of 10 ⁇ m on a silicon substrate.
  • AGIN-W4A average particle diameter 30 nm was injected, pre-dried at 100 ° C. for 10 minutes, and then fired at 180 ° C. for 60 minutes, and then the dot diameter was measured. Since it spreads wet and did not become circular, the dot diameter could not be measured.
  • the metal nanoparticle-containing ink was applied onto a silicon substrate by spin coating (rotation speed: 400 rpm), preliminarily dried and fired under the same conditions as described above to prepare an adhesion evaluation substrate 1.
  • ⁇ Substrate 2 (Comparison)>
  • KBM-602 manufactured by Shin-Etsu Chemical Co., Ltd .; N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane) adjusted to 0.8 mass% with pure water was applied by dip coating.
  • a metal nanoparticle-containing ink manufactured by Sumitomo Electric; AGIN-W4A was ejected by an ink jet apparatus having a nozzle having an inner diameter of a discharge port of 10 ⁇ m. The dot diameter was measured after partial firing.
  • the metal nanoparticle-containing ink was applied onto a KBM-602-treated silicon substrate by spin coating (rotation speed: 400 rpm), preliminarily dried and fired under the same conditions as above, and the adhesion evaluation substrate 2 was formed. Created.
  • KBM-602 was prepared in the same manner except that TC-750 (manufactured by Matsumoto Kosho; titanium diisopropoxybis (ethyl acetoacetate)) was diluted with isopropanol and adjusted to 2% by mass. And evaluated.
  • TC-750 manufactured by Matsumoto Kosho; titanium diisopropoxybis (ethyl acetoacetate)
  • ⁇ Substrate 4 (Invention)> In the substrate 3, except that TC-750 was changed to TC-200 (manufactured by Matsumoto Kyosho; titanium dioctyloxybis (octylene glycolate)), diluted with 1-butanol and adjusted to 2% by mass. Created and evaluated.
  • Substrate 5 (Invention)> The substrate 3 was prepared and evaluated in the same manner except that TC-750 was changed to PC-605 (manufactured by Matsumoto Kyosho; titanium oligomer compound), diluted with 1-butanol and adjusted to 2% by mass.
  • ⁇ Substrate 6 (present invention)> In the substrate 3, except that TC-750 was changed to KR44 (manufactured by Ajinomoto Fine-Techno Co., Inc .; isopropyl-tri (N-aminoethyl-aminoethyl) titanate), diluted with isopropanol and adjusted to 0.8% by mass. It created and evaluated similarly.
  • ⁇ Substrate 7 (present invention)> The substrate 3 was prepared and evaluated in the same manner except that TC-750 was changed to KR41B (manufactured by Ajinomoto Fine Techno Co., Ltd.), diluted with acetone and adjusted to 0.8% by mass.
  • TC-750 was changed to KR41B (manufactured by Ajinomoto Fine Techno Co., Ltd.), diluted with acetone and adjusted to 0.8% by mass.
  • TC-750 was changed to KR46B (manufactured by Ajinomoto Fine Techno Co., Ltd.), diluted with isopropanol and adjusted to 0.8% by mass.
  • TC-750 was changed to KR55 (manufactured by Ajinomoto Fine Techno Co., Ltd.), diluted with isopropanol and adjusted to 0.8% by mass.
  • TC-750 was changed to KR9SA (manufactured by Ajinomoto Fine Techno Co., Ltd.), diluted with acetone and adjusted to 0.8% by mass.
  • TC-750 was changed to KRTTS (manufactured by Ajinomoto Fine Techno Co.), diluted with butyl acetate and adjusted to 0.8% by mass.
  • ⁇ Substrate 12 (Comparison)> The substrate 3 was prepared and evaluated in the same manner except that TC-750 was changed to ORGATICS TPHS (manufactured by Matsumoto Kyosho; titanium acylate), diluted with toluene and adjusted to 2% by mass.
  • ORGATICS TPHS manufactured by Matsumoto Kyosho; titanium acylate
  • a line was formed by continuously drawing 60% of the dots on the substrates 1 to 12 by using an electric field assisted discharge type ink jet apparatus having a nozzle having an inner diameter of the discharge port of 10 ⁇ m, and the line width was measured. . Also, the line width cannot be measured for those that do not have linearity, so the situation is entered.
  • Adhesive evaluation> The adhesion evaluation was performed on the adhesion evaluation substrates 1 to 12 by a so-called tape peeling test (cross-cut method) shown in Japanese Industrial Standard JIS K 5600-5-6.
  • test result classification 0 no peeling
  • test result classification 1-2 small peeling
  • test result classification 3-4 having large peeling
  • the titanate coupling agent of the present invention and the surface treated with a titanium oligomer have a small dot diameter, good line linearity and a small line width.

Abstract

Disclosed is a substrate that has good adhesion to an electroconductive ink, can form highly linear and thin lines by continuously injection drawing even without patterning the substrate or forming a bank, and is used for the formation of patterns such as circuit patterns.  The substrate is used for the formation of patterns such as circuit patterns with an ink jetting apparatus using a metallic nanoparticle-containing ink and is characterized in that the substrate has been surface treated with a titanate coupling agent containing two or more organic groups each having four or more in total of carbon atoms, or a titanium oligomer compound.

Description

基板及び導電性パターン形成方法Substrate and conductive pattern forming method
 本発明は、導電性インクとの接着性が良好で、細いラインを連続して直線性高く射出描画することができる基板及びこの基板上への導電性パターンの形成方法に関する。 The present invention relates to a substrate that has good adhesiveness with a conductive ink and can continuously draw and draw thin lines with high linearity, and a method for forming a conductive pattern on the substrate.
 半導体プロセス等で用いられる基板はシリコン等で構成され、また電子回路等においてはフレキシブルな基板(フィルム等)が使用されている。従来このような基板に集積回路等を形成する際には、スパッタ等による金属薄膜の形成とフォトリソグラフィー法によるパターニングが使用されていた。フォトリソグラフィー法等とは、例えば「薄膜ハンドブック」日本学術振興会編pp283-305に記載されているように、レジスト層を積層し、所望のパターンを有するフォトマスクを介して光照射を行って、現像した後、不要なレジスト層を除去する方法である。しかしながら、このフォトリソグラフによる方法は、多数の工程が必要であり、また高コスト及び除去したレジスト層の廃棄という環境的な問題もあった。 A substrate used in a semiconductor process or the like is made of silicon or the like, and a flexible substrate (film or the like) is used in an electronic circuit or the like. Conventionally, when forming an integrated circuit or the like on such a substrate, formation of a metal thin film by sputtering or the like and patterning by a photolithography method have been used. For example, as described in “Thin Film Handbook” edited by Japan Society for the Promotion of Science pp 283-305, a photolithography method or the like is performed by laminating a resist layer and performing light irradiation through a photomask having a desired pattern. This is a method of removing an unnecessary resist layer after development. However, this photolithography method requires a large number of steps, and has an environmental problem of high cost and disposal of the removed resist layer.
 このような問題を解決するために、例えば、金属コロイド含有インクジェットインクを用いて基材面に導電回路パターンを形成し、加熱乾燥及び溶融を経て金属コロイド間の接触を向上させることにより導電率を向上させる方法(例えば、特許文献1参照)が紹介されている。 In order to solve such a problem, for example, a conductive circuit pattern is formed on a substrate surface using a metal colloid-containing inkjet ink, and the conductivity is improved by improving the contact between the metal colloids through heat drying and melting. A method for improving the quality (for example, see Patent Document 1) has been introduced.
 しかしながら、このような金属ナノ粒子は、基材と金属ナノ粒子との接着性が悪いために、印字後金属ナノ粒子が基材から簡単に剥離してしまうという問題があった。 However, since such metal nanoparticles have poor adhesion between the substrate and the metal nanoparticles, there is a problem that the metal nanoparticles are easily peeled off from the substrate after printing.
 また、基板表面に液体材料が不必要に濡れ広がるのを防ぐことができる撥液性を与えつつ、形成された膜パターンの基板に対する密着性が高い膜パターン形成方法として、撥液性化合物と前記基板表面に該撥液性化合物より高い表面自由エネルギーを与える撥液性調節化合物とを含む溶液中に前記基板を浸漬し、表面に自己組織化膜を形成させたのち、導電性微粒子を含有する液体材料を用いてインクジェットにより描画して膜パターンを形成する方法(例えば、特許文献2参照)が紹介されている。しかしながら、上記方法では基板と導電性インクの接着性は不十分であり、直線性及び細線性も不十分であった。 Further, as a film pattern forming method having high adhesion to the substrate of the formed film pattern while providing liquid repellency that can prevent the liquid material from being unnecessarily wet and spread on the substrate surface, a liquid repellent compound and the above-mentioned The substrate is immersed in a solution containing a liquid repellency adjusting compound that gives a surface free energy higher than that of the liquid repellant compound on the substrate surface to form a self-assembled film on the surface, and then contains conductive fine particles. A method of forming a film pattern by drawing with a liquid material using an ink jet (for example, see Patent Document 2) has been introduced. However, in the above method, the adhesion between the substrate and the conductive ink is insufficient, and the linearity and fine lineability are also insufficient.
 そのため、基板表面に、先にバンクを形成することによるパターン形成方法(特許文献3)が提案されている。しかしながらバンクを形成することは工数が増えコストアップにつながるおそれがある。 For this reason, a pattern forming method (Patent Document 3) by forming a bank on the substrate surface has been proposed. However, forming a bank may increase man-hours and increase costs.
特開2004-247667号公報JP 2004-247667 A 特開2005-109184号公報JP 2005-109184 A 特許第4103830号公報Japanese Patent No. 4103830
 本発明の目的は、基板と導電性インクとの接着性が良好であり、基板のパターニングをしたりバンクを形成したりしなくても連続して射出描画することにより直線性が高く、細いラインを形成できる、回路等のパターンを形成する基板を得ることにある。 The object of the present invention is that the adhesion between the substrate and the conductive ink is good, and the linearity is high by thinly drawing by continuous injection drawing without patterning the substrate or forming a bank. It is to obtain a substrate on which a pattern such as a circuit can be formed.
 本発明の上記目的は、以下の構成により達成することができる。 The above object of the present invention can be achieved by the following configuration.
 1.金属ナノ粒子含有インクを用いてインクジェット装置で回路等のパターンを形成する基板であって、該基板が、合計炭素数が4以上の有機基を2個以上有するチタネート系カップリング剤又はチタンオリゴマー化合物で表面処理されたことを特徴とする基板。 1. A substrate on which a pattern such as a circuit is formed by an ink jet apparatus using a metal nanoparticle-containing ink, wherein the substrate has two or more organic groups having a total carbon number of 4 or more or a titanium oligomer compound A substrate characterized by being surface-treated with.
 2.前記チタネート系カップリング剤が窒素原子又はリン原子を含むことを特徴とする前記1に記載の基板。 2. 2. The substrate according to 1 above, wherein the titanate coupling agent contains a nitrogen atom or a phosphorus atom.
 3.基板上に、金属ナノ粒子含有インクを用いてインクジェット装置で回路等のパターンを形成する導電性パターン形成方法であって、該基板の表面を、合計炭素数が4以上の有機基を2個以上有するチタネート系カップリング剤で表面処理することを特徴とする導電性パターン形成方法。 3. A conductive pattern forming method for forming a pattern such as a circuit on a substrate using an ink containing metal nanoparticles on a substrate, the surface of the substrate comprising two or more organic groups having a total carbon number of 4 or more A method for forming a conductive pattern, wherein the surface treatment is performed with a titanate coupling agent.
 4.前記チタネート系カップリング剤が窒素原子又はリン原子を含むことを特徴とする前記3に記載の導電性パターン形成方法。 4. 4. The method for forming a conductive pattern as described in 3 above, wherein the titanate coupling agent contains a nitrogen atom or a phosphorus atom.
 5.前記インクジェット装置が、0.1~20μm未満の内径の吐出口を有するノズルを用いた電界アシスト吐出方式の装置であることを特徴とする前記3又は4に記載の導電性パターン形成方法。 5. 5. The method for forming a conductive pattern as described in 3 or 4 above, wherein the ink jet device is an electric field assisted discharge type device using a nozzle having a discharge port having an inner diameter of 0.1 to less than 20 μm.
 本発明は、基板と導電性インクとの接着性が良好であり、基板のパターニングをしないで連続して射出描画しても直線性が高く、細いラインを形成できることを特徴としている。基板を何も処理しないで導電性インクをインクジェットにより描画すると濡れ広がってしまったり、はじいたりしてしまう。そこで全面に表面処理をして連続的にインクジェットにより描画を行うと、液だまりができたりして直線性の高い、細いラインを形成することは難しく、射出方法として間引き描画等を行うことにより液だまりの発生を回避したりすることが行われている。しかしながら、間引き描画等をすることは工数を増やすことになり、また高い描画精度が必要になるという問題があった。そこで本発明では、表面処理剤を選択することにより基板表面の濡れ性を制御し、連続描画しても液だまりが発生することがなく直線性の高い、細いラインを形成することができ、基板と導電性インクの接着性も高いものを得ることができた。 The present invention is characterized in that the adhesion between the substrate and the conductive ink is good, the linearity is high even if the substrate is continuously patterned without patterning, and a thin line can be formed. If the conductive ink is drawn by ink jet without processing the substrate, it spreads or repels. Therefore, if surface treatment is performed on the entire surface and drawing is performed continuously by ink jet, it is difficult to form a liquid pool and form a thin line with high linearity. It has been done to avoid the occurrence of stagnation. However, thinning out drawing increases the number of man-hours and requires high drawing accuracy. Therefore, in the present invention, the wettability of the substrate surface is controlled by selecting a surface treating agent, and even if continuous drawing is performed, a liquid pool does not occur and a thin line with high linearity can be formed. In addition, a conductive ink with high adhesiveness could be obtained.
本実施形態に係る液体吐出装置の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the liquid discharge apparatus which concerns on this embodiment. 形状が異なるノズルの変形例を示す図である。It is a figure which shows the modification of the nozzle from which a shape differs. シミュレーションによるノズルの吐出孔付近の電位分布を示す模式図である。It is a schematic diagram which shows the electric potential distribution of the discharge hole vicinity of the nozzle by simulation. マルチノズルヘッド100の概略構成を示す分解斜視図である。2 is an exploded perspective view showing a schematic configuration of a multi-nozzle head 100. FIG. マルチノズルヘッド100の内部構成を示す断面図である。2 is a cross-sectional view showing an internal configuration of a multi-nozzle head 100. FIG.
 本発明を更に詳しく説明する。 The present invention will be described in more detail.
 〈チタネート系カップリング剤〉
 本発明に係るチタネート系カップリング剤としては、合計の炭素数が4以上の有機基が2個以上含まれていること、又はチタンオリゴマー化合物を含有することが必要である。
<Titanate coupling agent>
The titanate coupling agent according to the present invention needs to contain 2 or more organic groups having a total carbon number of 4 or more, or contain a titanium oligomer compound.
 ここで合計の炭素数が4以上の有機基が含まれるとは、一つのチタン原子に結合する基において、その基中に炭素原子が合計で4以上含まれる有機基を有すればよく、また、合計の炭素数が4以上の有機基とは、ブチル基等の炭素鎖のみからなる基だけをさすのではなく、例えば、炭素鎖中に他の原子を含んだ基であってもよく、例えば、エチルアミノエチル基、又、ジメチルアミノエチル基等のヘテロ原子を間に含む基でもよい。このような、一つのチタン原子に、炭素数の合計が4以上の有機基を2個以上有するチタネート系カップリング剤は疎水性となるため、反応性が低く、加水分解等の反応を受けにくく、表面処理後に完全に分解せずに、表面に残留すると考えられ、これにより表面状態を疎水性の状態にすると考えている。チタンは6配位までの構造を取るので、一つのチタン原子が有する炭素数の合計が4以上の有機基は、6個が上限である。 Here, an organic group having 4 or more carbon atoms in total is included in a group bonded to one titanium atom, as long as the group has an organic group having 4 or more carbon atoms in total, In addition, the organic group having a total carbon number of 4 or more does not mean only a group consisting of only a carbon chain such as a butyl group, but may be, for example, a group containing other atoms in the carbon chain, For example, it may be a group containing a heteroatom such as an ethylaminoethyl group or a dimethylaminoethyl group. Such a titanate coupling agent having two or more organic groups having 4 or more carbon atoms in one titanium atom is hydrophobic, and thus has low reactivity and is not easily subjected to reactions such as hydrolysis. It is considered that it remains on the surface without being completely decomposed after the surface treatment, and thus the surface state is considered to be a hydrophobic state. Titanium has a six-coordinate structure, so the upper limit of six organic groups having a total of 4 or more carbon atoms in one titanium atom is the upper limit.
 好ましくは、合計の炭素原子数が4以上、また15以下の炭素原子を有する有機基である。炭素原子数が4未満では充分な疎水性が得られず、また反応性が高くなるため、表面状態を変化させることができない。また、炭素原子数が15より多くなり疎水性が高くなりすぎると、基板表面が撥液性となりドット径が小さくなってもラインを形成することはできない。適度な疎水性をもつことが好ましい。 Preferably, it is an organic group having a total number of carbon atoms of 4 or more and 15 or less. When the number of carbon atoms is less than 4, sufficient hydrophobicity cannot be obtained and the reactivity becomes high, so that the surface state cannot be changed. If the number of carbon atoms is more than 15 and the hydrophobicity is too high, the surface of the substrate becomes liquid repellent and a line cannot be formed even if the dot diameter is reduced. It preferably has moderate hydrophobicity.
 また、本発明におけるチタンオリゴマー化合物とは、チタンアルコキシド化合物やチタンキレート化合物を縮合させた多量体構造(-Ti-O-Ti-)骨格を分子内に有する化合物をいい、例えばチタントリイソプロポキシドを加水分解・縮合させ形成したものが挙げられる。 The titanium oligomer compound in the present invention refers to a compound having in its molecule a multimeric structure (—Ti—O—Ti—) skeleton obtained by condensing a titanium alkoxide compound or a titanium chelate compound. For example, titanium triisopropoxide And formed by hydrolysis and condensation.
 本発明に係るチタネート系カップリング剤、又はチタンオリゴマー化合物を用いることで、基板表面の官能基等と反応し、良好な基板との接着性を保持すると共に、基板表面にある程度の疎水性を有する基を存在させることにより、インクが濡れ広がるのを防ぎ、接着性を保ちつつ細線を形成することを可能にしている。 By using the titanate coupling agent or titanium oligomer compound according to the present invention, it reacts with functional groups on the substrate surface, and maintains good adhesion to the substrate and has some hydrophobicity on the substrate surface. The presence of the group prevents the ink from spreading out and makes it possible to form fine lines while maintaining adhesiveness.
 合計の炭素数が4未満のとき、或いは、合計の炭素数が4以上15以下であっても、このような基が1個以下であるとインクが濡れ広がり細線を形成することができない。また、金属ナノ粒子含有インクを厚付けした場合、或いはメッキ等で金属を厚付けした場合には、更なる接着性が必要とされるため、接着性が向上するチタンオリゴマー化合物を用いることがより好ましい。更に、チタネート系カップリング剤及び/又はチタンオリゴマー化合物内に窒素原子或いはリン原子を含むと、金属ナノ粒子インクとの接着性が向上するため好ましい。 When the total number of carbons is less than 4, or even when the total number of carbons is 4 or more and 15 or less, if the number of such groups is 1 or less, the ink will spread and a thin line cannot be formed. In addition, when the metal nanoparticle-containing ink is thickened, or when the metal is thickened by plating or the like, further adhesion is required, so it is more preferable to use a titanium oligomer compound that improves adhesion. preferable. Furthermore, it is preferable to include a nitrogen atom or a phosphorus atom in the titanate coupling agent and / or the titanium oligomer compound because adhesion with the metal nanoparticle ink is improved.
 チタネート系カップリング剤は、シランカップリング剤と同様に、一分子中に疎水基と親水基を有しているが、シランカップリング剤は疎水基数の多いもの、長い疎水基を有するものが得られにくいため、細線を形成できるような所望の疎水性表面が得られにくい。 The titanate coupling agent has a hydrophobic group and a hydrophilic group in one molecule like the silane coupling agent, but a silane coupling agent having a large number of hydrophobic groups or a long hydrophobic group can be obtained. Therefore, it is difficult to obtain a desired hydrophobic surface that can form fine lines.
 一方、チタネート系カップリング剤は加水分解が速いためか、本発明者の検討結果では接着性もシランカップリング剤より強くなっている。従って、チタネート系カップリング剤を用いることで、接着性を確保しつつ細線を形成することができることがわかった。 On the other hand, because the titanate coupling agent is hydrolyzed fast, the results of studies by the present inventors indicate that the adhesion is stronger than that of the silane coupling agent. Therefore, it was found that by using a titanate coupling agent, a fine wire can be formed while ensuring adhesiveness.
 本発明に係るチタネート系カップリング剤としては、例えば、味の素ファインテクノ社がプレンアクトの商品名で販売している、KR-44、KR-46B、KR-41B、KR-38S、KR-138S等が挙げられ、また、(株)マツモト交商からはオルガチックスTC-200が販売されている。 Examples of the titanate coupling agent according to the present invention include KR-44, KR-46B, KR-41B, KR-38S, and KR-138S, which are sold by Ajinomoto Fine Techno Co. under the trade name Preneact. Orgatics TC-200 is sold by Matsumoto Trading Co., Ltd.
 更に、チタンオリゴマー化合物としては、(株)マツモト交商からPC-600、PC-605が挙げられる。 Furthermore, examples of titanium oligomer compounds include PC-600 and PC-605 from Matsumoto Kosho Co., Ltd.
 本発明に係るチタネート系カップリング剤は、溶液を用いてこれを基板に塗布(ディップ、スプレー等)、また基板をこれに浸積する等により(また加温等を行って)、基板の表面処理を行うが、用いられるカップリング剤溶液の濃度としては、0.01~20質量%、更に好ましくは0.05~5質量%である。濃度が20質量%を超えると基板表面に均一にカップリング剤を塗布できなくなり、濃度が0.01質量%未満になると所望の疎水性の効果がなくなり細線を形成することができなくなる。溶媒は、イソプロパノール、1-ブタノール等任意の溶媒を用いることができる。塗布方法はインクジェット、ディップ、スプレーコート、スピンコート等既存の塗布方法が挙げられる。カップリング剤を用いることにより表面処理の厚さとしてはかなり薄膜になり、電子デバイス等の分野で例えば電極等に表面処理をしてもコンタクトをとることが可能になる。これが樹脂系のプライマー等を用いた場合にはコンタクトをとることが不可能になり好ましくない。 The titanate coupling agent according to the present invention is applied to the substrate using a solution (dip, spray, etc.), and the substrate is immersed in the substrate (also heated), etc. The concentration of the coupling agent solution used is 0.01 to 20% by mass, more preferably 0.05 to 5% by mass. If the concentration exceeds 20% by mass, the coupling agent cannot be uniformly applied to the substrate surface. If the concentration is less than 0.01% by mass, the desired hydrophobic effect is lost and fine lines cannot be formed. As the solvent, any solvent such as isopropanol and 1-butanol can be used. Examples of the coating method include existing coating methods such as inkjet, dip, spray coating, and spin coating. By using a coupling agent, the thickness of the surface treatment becomes considerably thin, and in the field of electronic devices and the like, for example, it is possible to make contact even if the surface treatment is applied to an electrode or the like. This is not preferable when a resin-based primer or the like is used because it becomes impossible to make contact.
 表面処理後のインク接触角としては、静的接触角が拡張/収縮法で測定した後退接触角より大きいことが好ましい。静的接触角としてはより高い方が、ドット径が小さくなり好ましいが、後退接触角は20(度)以下、より好ましくは15以下でないと連続的な重ね描画によりラインを形成することが難しいことが本発明でわかった。 As the ink contact angle after the surface treatment, the static contact angle is preferably larger than the receding contact angle measured by the expansion / contraction method. A higher static contact angle is preferable because the dot diameter becomes smaller, but it is difficult to form a line by continuous overlapping drawing unless the receding contact angle is 20 degrees or less, more preferably 15 or less. Was found by the present invention.
 〈金属ナノ粒子含有インク〉
 金属ナノ粒子は焼結温度が200℃以下と、その金属の融点に比べて大幅に下がることが知られており、それを用いたインクについても近年注目されている。金属ナノ粒子を用いたインクについては、各文献において述べられているが、例えば、金属ナノ粒子ペーストのインクジェット微細配線、CMC出版(2006年3月)を参照することができる。
<Ink containing metal nanoparticles>
Metal nanoparticles are known to have a sintering temperature of 200 ° C. or lower, which is significantly lower than the melting point of the metal. In recent years, ink using the metal nanoparticles has attracted attention. The ink using the metal nanoparticles is described in each document. For example, the ink-jet fine wiring of metal nanoparticle paste, CMC Publishing (March 2006) can be referred to.
 用いられる金属微粒子としては、例えば、銀、金、銅、パラジウム、白金、ニッケル、ロジウム、錫、インジウム、又はこれらの合金が挙げられる。その中でも配線材料としては、銀、金、銅が好ましい。 Examples of the metal fine particles used include silver, gold, copper, palladium, platinum, nickel, rhodium, tin, indium, and alloys thereof. Among these, silver, gold, and copper are preferable as the wiring material.
 金属ナノ粒子の製造方法としては、大きく二つに分類されている。一つは物理法で、もう一つは化学法である。物理法は、一般にバルク金属を粉砕して金属ナノ粒子を製造する方法であり、化学法は金属原子を発生させてその凝集を制御して作成する方法である。 There are two major methods for producing metal nanoparticles. One is the physical method and the other is the chemical method. The physical method is generally a method of producing metal nanoparticles by pulverizing a bulk metal, and the chemical method is a method of generating metal atoms and controlling their aggregation.
 化学法は大きくは、液中で行われる湿式法と、空気中もしくは減圧雰囲気中で行われる乾式法に分類される。湿式法として、よく知られている化学還元法は、金属イオン溶液に還元剤を添加すること、もしくは、還元剤を含む金属塩溶液を加熱することで、金属イオンを還元し、ナノ粒子を生成する手法である。湿式法を用いた金属ナノインク(例えば銀インク或いは銀合金インク)を作成しているメーカーには、住友電工、日本ペイントなどが挙げられる。インクの作成方法については、特許第3933138号公報などが挙げられる。 The chemical method is roughly classified into a wet method performed in a liquid and a dry method performed in air or in a reduced pressure atmosphere. A well-known chemical reduction method as a wet method is to add a reducing agent to a metal ion solution or heat a metal salt solution containing a reducing agent to reduce metal ions and generate nanoparticles. It is a technique to do. Examples of manufacturers producing metal nano inks (for example, silver ink or silver alloy ink) using a wet method include Sumitomo Electric and Nippon Paint. For example, Japanese Patent No. 3933138 discloses an ink creation method.
 乾式法としてはガス中蒸発法が知られている。ガス中蒸発法は、不活性ガス中で金属を蒸発させ、ガスとの衝突により冷却凝集させてナノ粒子を生成する方法である。乾式法の方が湿式法よりも粒径を小さくできることが知られており、乾式法では数nm程度の粒径も可能である。この方法を用いた金属ナノ粒子含有インクを作成しているメーカーには、ハリマ化成(株)等が挙げられる。 The gas evaporation method is known as a dry method. The gas evaporation method is a method in which a metal is evaporated in an inert gas and cooled and aggregated by collision with the gas to generate nanoparticles. It is known that the dry method can make the particle size smaller than the wet method, and the dry method can have a particle size of about several nanometers. Examples of manufacturers that produce metal nanoparticle-containing inks using this method include Harima Kasei Co., Ltd.
 本発明で用いられる金属ナノ粒子含有インク中の金属の粒子径は1~100nm、好ましくは1~50nmである。粒径が1nm未満の金属微粒子を用いてもよいが、そのような金属微粒子の製造は極めて困難であり、ナノ粒子の融着も進み易くなり不安定になるので、実用的ではない。また、粒径が100nmを超える金属微粒子を用いると、本発明で用いるような微小インク液滴を吐出するインクジェット記録装置では、ノズル詰まりなどが発生しやすくなる。 The metal particle size in the metal nanoparticle-containing ink used in the present invention is 1 to 100 nm, preferably 1 to 50 nm. Although metal fine particles having a particle diameter of less than 1 nm may be used, the production of such metal fine particles is extremely difficult, and the fusion of the nanoparticles easily proceeds and becomes unstable, which is not practical. Further, when metal fine particles having a particle diameter exceeding 100 nm are used, nozzle clogging or the like is likely to occur in an ink jet recording apparatus that discharges micro ink droplets as used in the present invention.
 インクの分散媒中における金属微粒子の濃度は、最大80質量%程度にすることが可能であるが、用途に応じて適宜希釈して使用することができる。通常は、インクにおける金属微粒子の含有量は2~60質量%とすることが好ましい。また用途により、濃度を変更することが好ましい。例えば、金属配線を作成する際は、バルク金属の抵抗値により近い値が望まれるため、高濃度であることが好ましい。濃度としては、10質量%以上が好ましく、20質量%以上が更に好ましい。また、めっき触媒として、金属インクを用いる際はできるだけ薄く塗布されることが望まれるため、5質量%以下の濃度が好ましい。 The concentration of the metal fine particles in the ink dispersion medium can be about 80% by mass at maximum, but can be appropriately diluted depending on the application. Usually, the content of the metal fine particles in the ink is preferably 2 to 60% by mass. Moreover, it is preferable to change a density | concentration according to a use. For example, when creating a metal wiring, since a value closer to the resistance value of the bulk metal is desired, a high concentration is preferable. The concentration is preferably 10% by mass or more, and more preferably 20% by mass or more. In addition, when a metal ink is used as the plating catalyst, it is desired to be applied as thinly as possible.
 湿式法を用いた金属ナノ粒子含有インクには、水と水溶性有機溶媒が用いられている、いわゆる水系インクが多くみられる。一方、溶媒系インクとしては、n-テトラデカン等の無極性溶媒が用いられている場合が多い。 As the metal nanoparticle-containing ink using the wet method, so-called water-based ink in which water and a water-soluble organic solvent are used is often seen. On the other hand, non-polar solvents such as n-tetradecane are often used as solvent-based inks.
 本発明の請求項5に係る電界アシスト吐出方式を用いたインク描画方法では、静電力でインク液滴を引っ張り、基材上に着弾させるため、所定の電気伝導度が必要である。そのため、無極性溶媒が使用されている油系インクよりも、電気伝導度が高い水系インクを使用することが好ましい。電気伝導度としては、25℃において0.1μS/cm以上、2000μS/cm以下が好ましいが、描画性の観点から、1μS/cm以上、1000μS/cm以下が更に好ましい。インクの電気伝導度の測定は、JIS K 0130(1995)に記載の方法に示されるような方法に従って容易に行うことができる。 In the ink drawing method using the electric field assisted discharge method according to claim 5 of the present invention, ink droplets are pulled by an electrostatic force and landed on a substrate, so that a predetermined electric conductivity is required. Therefore, it is preferable to use a water-based ink having a higher electric conductivity than an oil-based ink in which a nonpolar solvent is used. The electrical conductivity is preferably 0.1 μS / cm or more and 2000 μS / cm or less at 25 ° C., but more preferably 1 μS / cm or more and 1000 μS / cm or less from the viewpoint of drawability. The measurement of the electrical conductivity of the ink can be easily performed according to the method described in JIS K 0130 (1995).
 本発明の請求項5に係る電界アシスト吐出方式のインクジェットヘッド(液体吐出ヘッド)は、微小液滴を形成させるため、吐出口の内径が20μm未満とかなり小さい。そのため、容易に粘度上昇したり、乾燥したりしないために、蒸気圧が低く、沸点の高い溶媒を使用することが好ましい。溶媒の沸点は150℃以上が好ましく、200℃以上が更に好ましい。水系インクに関しては、乾燥性の点から水は40質量%以下であることが好ましい。 In the electric field assisted discharge type ink jet head (liquid discharge head) according to claim 5 of the present invention, in order to form minute droplets, the inner diameter of the discharge port is considerably smaller than 20 μm. Therefore, it is preferable to use a solvent having a low vapor pressure and a high boiling point in order not to easily increase the viscosity or dry. The boiling point of the solvent is preferably 150 ° C. or higher, more preferably 200 ° C. or higher. With respect to the water-based ink, water is preferably 40% by mass or less from the viewpoint of drying properties.
 本発明に係る金属ナノ粒子含有インクの粘度は、射出温度において2.0mPa・s以上、10.0mPa・s以下が射出安定性の観点から好ましく、3.0mPa・s以上、6.5mPa・s以下がより好ましい。本発明でいうインクの粘度は、従来公知の粘度計を用いて求めることができる。射出温度については、20~60℃が好ましく、25~50℃がより好ましい。20℃未満であると冷却する必要がある場合があり、60℃を超えるとヘッド及び流路部材等に負担がかかる懼れがあるためである。 The viscosity of the ink containing metal nanoparticles according to the present invention is preferably 2.0 mPa · s or more and 10.0 mPa · s or less at the injection temperature, from the viewpoint of injection stability, and is 3.0 mPa · s or more and 6.5 mPa · s. The following is more preferable. The viscosity of the ink referred to in the present invention can be determined using a conventionally known viscometer. The injection temperature is preferably 20 to 60 ° C, more preferably 25 to 50 ° C. This is because if it is less than 20 ° C., it may be necessary to cool, and if it exceeds 60 ° C., the head and the flow path member may be burdened.
 本発明に係る金属ナノ粒子含有インクにおいては、射出性及び描画性の観点から表面張力は20mN/m以上、50mN/m以下が好ましい。更には25mN/m以上、45mN/m以下が好ましい。表面張力が20mN/mより低いと、ノズル表面の撥水膜にインクが濡れ広がり射出性が悪化し、50mN/mより高いと、描画した際に濡れ広がりにくくラインが形成できなくなるためである。本発明でいうインクの表面張力の測定方法は一般的な界面化学、コロイド化学の参考書等において述べられているが、例えば、新実験化学講座第18巻(界面とコロイド)、日本化学会編、丸善株式会社発行:P68~117を参照することができる。 In the metal nanoparticle-containing ink according to the present invention, the surface tension is preferably 20 mN / m or more and 50 mN / m or less from the viewpoint of ejection properties and drawing properties. Furthermore, 25 mN / m or more and 45 mN / m or less are preferable. When the surface tension is lower than 20 mN / m, the ink wets and spreads on the water-repellent film on the nozzle surface, and when the surface tension is higher than 50 mN / m, it becomes difficult to spread when drawn and a line cannot be formed. The method for measuring the surface tension of the ink in the present invention is described in general interface chemistry, colloid chemistry reference books, etc., for example, New Experimental Chemistry Course Vol. 18 (Interface and Colloid), edited by The Chemical Society of Japan. , Published by Maruzen Co., Ltd .: P68-117.
 基材に描画後の金属ナノ粒子含有インクの焼成方法としては、熱風循環炉(オーブン)での焼結、ホットプレートでの焼結などの方法が挙げられる。本発明では、インクの濡れ性を制御し、描画性を向上させるために、基材に表面処理(チタネート系カップリング剤)を行う。そのため、各種カップリング剤が分解しない範疇での温度においての焼結が好ましい。 Examples of the method for firing the metal nanoparticle-containing ink after drawing on the substrate include sintering in a hot air circulating furnace (oven) and sintering in a hot plate. In the present invention, a surface treatment (titanate coupling agent) is performed on the base material in order to control the wettability of the ink and improve the drawability. Therefore, sintering at a temperature within a range where various coupling agents are not decomposed is preferable.
 焼結は100~150℃で10~30分の予備乾燥後、150~200℃で60~180分の本焼結を行うことが好ましい。予備乾燥を行わないと、融着した金属内に溶媒が残り、抵抗値が上昇するおそれがある。予備乾燥の温度が100℃未満では溶媒の蒸発が殆ど起こらず、予備乾燥の効果がでないおそれがあり、150℃を超えると金属ナノ粒子が融着してしまうおそれがある。予備乾燥に用いる機器に特に指定はない。本焼結の温度が150℃未満では金属ナノ粒子の融着状態が悪く、配線作成を行った際は抵抗値が高くなるおそれがある。200℃を超えると、表面処理したカップリング剤が分解して金属ナノ粒子と反応し、電気抵抗値があがるおそれがある。本焼結に用いる機器はホットプレートが好ましい。ホットプレートを用いると、インクに直接熱が伝わり、金属ナノ粒子の融着が進みやすくなるためである。金属配線を形成する場合には、電気抵抗値として10μΩcm以下であることが好ましい。 Sintering is preferably performed at 100-150 ° C. for 10-30 minutes, followed by main sintering at 150-200 ° C. for 60-180 minutes. If the preliminary drying is not performed, the solvent remains in the fused metal and the resistance value may increase. If the temperature of the preliminary drying is less than 100 ° C., the evaporation of the solvent hardly occurs and the effect of the preliminary drying may not be obtained. If the temperature of the preliminary drying exceeds 150 ° C., the metal nanoparticles may be fused. There is no special designation for the equipment used for the preliminary drying. If the temperature of the main sintering is less than 150 ° C., the fused state of the metal nanoparticles is poor, and there is a possibility that the resistance value becomes high when wiring is made. When it exceeds 200 ° C., the surface-treated coupling agent is decomposed and reacts with the metal nanoparticles, which may increase the electrical resistance value. The equipment used for the main sintering is preferably a hot plate. This is because when a hot plate is used, heat is directly transmitted to the ink, and the fusion of the metal nanoparticles is facilitated. When forming a metal wiring, it is preferable that an electrical resistance value is 10 μΩcm or less.
 〈基板〉
 本発明に係る基板としては、ポリイミドフィルム、ポリアミドイミドフィルム、ポリアミドフィルム、ポリエステルフィルム等の樹脂フィルム、ガラス-エポキシ基板、シリコン基板、セラミックス基板、ガラス基板等が挙げられる。
<substrate>
Examples of the substrate according to the present invention include resin films such as polyimide films, polyamideimide films, polyamide films, and polyester films, glass-epoxy substrates, silicon substrates, ceramic substrates, and glass substrates.
 基板には絶縁膜が施されていてもよく、絶縁膜が施されている場合には絶縁膜上にカップリング剤を用いた表面処理を行うことが好ましい。 The substrate may be provided with an insulating film, and when the insulating film is provided, it is preferable to perform a surface treatment using a coupling agent on the insulating film.
 〈電界アシスト吐出方式〉
 本発明に係る導電性パターンの形成方法としては、インクジェット記録装置を用いたインクジェット方式を適用している。インクジェット方式によれば、基板のパターニングをしないで、また先にバンクを形成したりすることなしに、連続して射出描画することができ、直線性が高く、細いラインを形成できることができる。
<Electric field assisted discharge method>
As a method for forming a conductive pattern according to the present invention, an ink jet method using an ink jet recording apparatus is applied. According to the ink jet method, it is possible to perform continuous injection drawing without patterning the substrate and without forming a bank first, and it is possible to form a thin line with high linearity.
 更には、電気回路等に使用される線幅が40μm以下の細線を高精度に形成できる観点から、吐出口の内径は0.1~20μm未満である電界アシスト吐出方式のインクジェット装置を用いることがより好ましい。 Furthermore, from the viewpoint of forming a thin line having a line width of 40 μm or less used in an electric circuit or the like with high accuracy, an electric field assisted discharge type ink jet apparatus in which the inner diameter of the discharge port is less than 0.1 to 20 μm is used. More preferred.
 以下、電界アシスト吐出方式を用いたインクジェット記録方法について説明する。 Hereinafter, an ink jet recording method using the electric field assisted discharge method will be described.
 一般に、電子回路等で要求されている微細な線幅のパターンを高精細に描画するには、インクジェット記録装置から射出するインク液滴をより微細化する必要がある。 Generally, in order to draw a fine line width pattern required in an electronic circuit or the like with high definition, it is necessary to further refine the ink droplets ejected from the ink jet recording apparatus.
 しかしながら、電気-機械変換方式(例えば、シングルキャビティー型、ダブルキャビティー型、ベンダー型、ピストン型、シェアーモード型、シェアードウォール型等)や電気-熱変換方式(例えば、サーマルインクジェット型、バブルジェット(登録商標)型等)のみの出力手段を用いて、極微小インク液滴を吐出した場合、ノズルから吐出したインク液滴に付与される運動エネルギーは、インク液滴の半径の3乗に比例して小さくなるため、微小液滴は空気抵抗に耐えるほどの十分な運動エネルギーを確保できず、空気対流などによる擾乱を受け、正確な着弾が困難となる。更に、インク液滴が微細になるほど、表面張力の効果が増すために、液滴の蒸気圧が高くなり蒸発量が激しくなる。このため微細液滴は、飛翔中の著しい質量の消失を招き、着弾時に液滴の形態を保つことすら難しいという問題があった。このように着弾位置の高精度化は、インク液滴の微細化と相反する課題であり、これら2つを同時に実現することに対し、障害を抱えていた。 However, electro-mechanical conversion methods (for example, single cavity type, double cavity type, bender type, piston type, shear mode type, shared wall type, etc.) and electro-thermal conversion methods (for example, thermal ink jet type, bubble jet type) When a very small ink droplet is ejected using only (registered trademark type) output means, the kinetic energy imparted to the ink droplet ejected from the nozzle is proportional to the cube of the radius of the ink droplet Therefore, the microdroplet cannot secure sufficient kinetic energy enough to withstand air resistance, and is subject to disturbance due to air convection, making accurate landing difficult. Furthermore, as the ink droplet becomes finer, the effect of surface tension increases, so the vapor pressure of the droplet increases and the amount of evaporation increases. For this reason, fine droplets cause a significant loss of mass during flight, and there is a problem that it is difficult to maintain the shape of the droplets upon landing. As described above, increasing the accuracy of the landing position is a problem that contradicts the miniaturization of ink droplets, and has an obstacle to realizing these two simultaneously.
 本発明においては、上記課題を解決する方法として、電界アシスト吐出方式を適用することが好ましい。 In the present invention, it is preferable to apply an electric field assisted discharge method as a method for solving the above problems.
 この射出方法は、0.1~20μm未満の内径の吐出口を有するノズルを用い、導電性インクに任意波形の電圧を印加して、この導電性インクを帯電させることにより、そのインク液滴を吐出口から、基板に吐出する方法である。吐出口の内径は、射出性及び細線性の観点より3~10μmであることが更に好ましい。3μm未満であると金属ナノ粒子含有インクを用いた場合目詰まりし易く、10μmを超えると所望の細線が形成できない場合がある。 This ejection method uses a nozzle having an ejection port with an inner diameter of 0.1 to less than 20 μm, applies a voltage having an arbitrary waveform to the conductive ink, and charges the conductive ink, thereby discharging the ink droplets. In this method, the substrate is discharged from the discharge port. The inner diameter of the discharge port is more preferably 3 to 10 μm from the viewpoints of injection properties and fine wire properties. If it is less than 3 μm, clogging is likely to occur when the metal nanoparticle-containing ink is used, and if it exceeds 10 μm, a desired fine line may not be formed.
 図1に、本発明に好ましく用いられる電界アシスト吐出方式のインクジェット装置の全体構成の一実施形態を断面図で示した。液体吐出ヘッド2は、いわゆるシリアル方式或いはライン方式等の各種の液体吐出装置に適用可能である。 FIG. 1 is a cross-sectional view showing an embodiment of the entire configuration of an electric field assisted discharge type inkjet apparatus preferably used in the present invention. The liquid discharge head 2 can be applied to various liquid discharge apparatuses such as a so-called serial method or line method.
 インクジェット装置1は、インク等の帯電可能な液体Lの液滴Dを吐出するノズル10が形成された液体吐出ヘッド2と、液体吐出ヘッド2のノズル10に対向する対向面を有すると共にその対向面で液滴Dの着弾を受ける基材Kを支持する対向電極3とを備えている。 The ink jet apparatus 1 has a liquid discharge head 2 in which a nozzle 10 for discharging a droplet D of a chargeable liquid L such as ink is formed, and a facing surface facing the nozzle 10 of the liquid discharge head 2 and the facing surface. And the counter electrode 3 that supports the base material K that receives the landing of the droplet D.
 液体吐出ヘッド2の対向電極3に対向する側には、複数のノズル10を有する樹脂製のノズルプレート11が設けられている。液体吐出ヘッド2は、ノズルプレート11の対向電極3に対向する吐出面12からノズル10が突出されない、或いは前述したようにノズル10が30μm程度しか突出しないフラットな吐出面を有するヘッドとして構成されている(例えば、後述する図2(D)参照)。 A resin nozzle plate 11 having a plurality of nozzles 10 is provided on the side of the liquid discharge head 2 facing the counter electrode 3. The liquid discharge head 2 is configured as a head having a flat discharge surface in which the nozzle 10 does not protrude from the discharge surface 12 facing the counter electrode 3 of the nozzle plate 11 or the nozzle 10 protrudes only about 30 μm as described above. (For example, see FIG. 2D described later).
 各ノズル10は、ノズルプレート11に穿孔されて形成されており、各ノズル10には、それぞれノズルプレート11の吐出面12に吐出孔13を有する小径部14とその背後に形成されたより大径の大径部15との2段構造とされている。本実施形態では、ノズル10の小径部14及び大径部15は、それぞれ断面円形で対向電極側がより小径とされたテーパ状に形成されており、小径部14の吐出孔13の内部直径(以下、ノズル径という。)が10μm、大径部15の小径部14から最も離れた側の開口端の内部直径が75μmとなるように構成されている。 Each nozzle 10 is formed by perforating a nozzle plate 11, and each nozzle 10 has a small-diameter portion 14 having a discharge hole 13 on the discharge surface 12 of the nozzle plate 11 and a larger diameter formed behind the small-diameter portion 14. A two-stage structure with the large-diameter portion 15 is adopted. In the present embodiment, the small-diameter portion 14 and the large-diameter portion 15 of the nozzle 10 are each formed in a tapered shape having a circular cross-section and a smaller diameter on the counter electrode side. The nozzle diameter is 10 μm, and the internal diameter of the open end of the large diameter portion 15 farthest from the small diameter portion 14 is 75 μm.
 なお、ノズル10の形状は前記の形状に限定されず、例えば、図2(A)~(E)に示すように、形状が異なる種々のノズル10を用いることが可能である。また、ノズル10は、断面円形状に形成する代わりに、断面多角形状や断面星形状等であってもよい。 Note that the shape of the nozzle 10 is not limited to the above-described shape, and various nozzles 10 having different shapes can be used, for example, as shown in FIGS. Further, the nozzle 10 may have a polygonal cross-section, a cross-sectional star shape, or the like instead of forming a circular cross-section.
 ノズルプレート11の吐出面12と反対側の面には、例えばNiP等の導電素材よりなりノズル10内の液体Lを帯電させるための帯電用電極16が層状に設けられている。本実施形態では、帯電用電極16は、ノズル10の大径部15の内周面17まで延設されており、ノズル内の液体Lに接するようになっている。 A charging electrode 16 made of a conductive material such as NiP, for example, for charging the liquid L in the nozzle 10 is provided in a layered manner on the surface opposite to the discharge surface 12 of the nozzle plate 11. In the present embodiment, the charging electrode 16 extends to the inner peripheral surface 17 of the large-diameter portion 15 of the nozzle 10 and comes into contact with the liquid L in the nozzle.
 また、帯電用電極16は、静電吸引力を生じさせる静電電圧を印加する静電電圧印加手段としての帯電電圧電源18に接続されており、単一の帯電用電極16が全てのノズル10内の液体Lに接触しているため、帯電電圧電源18から帯電用電極16に静電電圧が印加されると、全ノズル10内の液体Lが同時に帯電され、液体吐出ヘッド2と対向電極3との間、特に液体Lと基材Kとの間に静電吸引力が発生されるようになっている。 The charging electrode 16 is connected to a charging voltage power source 18 as an electrostatic voltage applying means for applying an electrostatic voltage that generates an electrostatic attractive force, and the single charging electrode 16 is connected to all the nozzles 10. When the electrostatic voltage is applied from the charging voltage power source 18 to the charging electrode 16, the liquid L in all the nozzles 10 is simultaneously charged, and the liquid ejection head 2 and the counter electrode 3 are in contact with each other. In particular, an electrostatic attraction force is generated between the liquid L and the substrate K.
 帯電用電極16の背後には、ボディ層19が設けられている。ボディ層19の前記各ノズル10の大径部15の開口端に面する部分には、それぞれ開口端に略等しい内径を有する略円筒状の空間が形成されており、各空間は、吐出される液体Lを一時貯蔵するためのキャビティ20とされている。 A body layer 19 is provided behind the charging electrode 16. A portion of the body layer 19 facing the opening end of the large diameter portion 15 of each nozzle 10 is formed with a substantially cylindrical space having an inner diameter substantially equal to the opening end, and each space is discharged. The cavity 20 is used for temporarily storing the liquid L.
 ボディ層19の背後には、可撓性を有する金属薄板やシリコン等よりなる可撓層21が設けられており、可撓層21により液体吐出ヘッド2が外界と画されている。 Behind the body layer 19 is provided a flexible layer 21 made of a flexible metal thin plate, silicon, or the like. The flexible layer 21 defines the liquid ejection head 2 as the outside.
 なお、ボディ層19には、キャビティ20に液体Lを供給するための図示しない流路が形成されている。具体的には、ボディ層19としてのシリコンプレートをエッチング加工してキャビティ20、共通流路、及び共通流路とキャビティ20とを結ぶ流路が設けられており、共通流路には、外部の図示しない液体タンクから液体Lを供給する図示しない供給管が連絡されており、供給管に設けられた図示しない供給ポンプにより或いは液体タンクの配置位置による差圧により流路やキャビティ20、ノズル10等の液体Lに所定の供給圧力が付与されるようになっている。 In the body layer 19, a flow path (not shown) for supplying the liquid L to the cavity 20 is formed. Specifically, the silicon plate as the body layer 19 is etched to provide a cavity 20, a common channel, and a channel that connects the common channel and the cavity 20. A supply pipe (not shown) for supplying the liquid L from a liquid tank (not shown) is connected, and the flow path, cavity 20, nozzle 10, etc. are supplied by a supply pump (not shown) provided in the supply pipe or by a differential pressure depending on the position of the liquid tank. A predetermined supply pressure is applied to the liquid L.
 可撓層21の外面の各キャビティ20に対応する部分には、それぞれ圧力発生手段としての圧電素子アクチュエータであるピエゾ素子22が設けられており、ピエゾ素子22には、素子に駆動電圧を印加して素子を変形させるための駆動電圧電源23が接続されている。ピエゾ素子22は、駆動電圧電源23からの駆動電圧の印加により変形して、ノズル内の液体Lに圧力を生じさせてノズル10の吐出孔13に液体Lのメニスカスを形成させるようになっている。なお、圧力発生手段は、本実施形態のような圧電素子アクチュエータのほかに、例えば、静電アクチュエータやサーマル方式等を採用することも可能である。 Piezo elements 22 that are piezoelectric element actuators as pressure generating means are provided in portions corresponding to the respective cavities 20 on the outer surface of the flexible layer 21, and a drive voltage is applied to the elements. A drive voltage power source 23 for deforming the element is connected. The piezo element 22 is deformed by the application of a drive voltage from the drive voltage power source 23 to generate a pressure on the liquid L in the nozzle, thereby forming a meniscus of the liquid L in the discharge hole 13 of the nozzle 10. . In addition to the piezoelectric element actuator as in the present embodiment, for example, an electrostatic actuator, a thermal method, or the like can be adopted as the pressure generating means.
 駆動電圧電源23及び帯電用電極16に静電電圧を印加する前記帯電電圧電源18は、それぞれ動作制御手段24に接続されており、それぞれ動作制御手段24による制御を受けるようになっている。 The charging voltage power supply 18 for applying an electrostatic voltage to the drive voltage power supply 23 and the charging electrode 16 is connected to the operation control means 24, and is controlled by the operation control means 24, respectively.
 動作制御手段24は、本実施形態では、CPU25やROM26、RAM27等が図示しないBUSにより接続されて構成されたコンピュータからなっており、CPU25は、ROM26に格納された電源制御プログラムに基づいて帯電電圧電源18及び各駆動電圧電源23を駆動させてノズル10の吐出孔13から液体Lを吐出させるようになっている。 In this embodiment, the operation control means 24 is composed of a computer in which a CPU 25, a ROM 26, a RAM 27, etc. are connected by a BUS (not shown). The CPU 25 is charged with a charging voltage based on a power control program stored in the ROM 26. The power supply 18 and each drive voltage power supply 23 are driven to discharge the liquid L from the discharge hole 13 of the nozzle 10.
 なお、本実施形態では、液体吐出ヘッド2のノズルプレート11の吐出面12には、吐出孔13からの液体Lの滲み出しを抑制するための撥液層28が吐出孔13以外の吐出面12全面に設けられている。撥液層28は、例えば、液体Lが水性であれば撥水性を有する材料が用いられ、液体Lが油性であれば撥油性を有する材料が用いられるが、一般に、FEP(四フッ化エチレン・六フッ化プロピレン)、PTFE(ポリテトラフロロエチレン)、フッ素シロキサン、フルオロアルキルシラン、アモルファスパーフルオロ樹脂等のフッ素樹脂等が用いられることが多く、塗布や蒸着等の方法で吐出面12に成膜されている。なお、撥液層28は、ノズルプレート11の吐出面12に直接成膜してもよいし、撥液層28の密着性を向上させるために中間層を介して成膜することも可能である。 In the present embodiment, the liquid repellent layer 28 for suppressing the oozing of the liquid L from the discharge holes 13 is provided on the discharge surface 12 other than the discharge holes 13 on the discharge surface 12 of the nozzle plate 11 of the liquid discharge head 2. It is provided on the entire surface. For the liquid repellent layer 28, for example, a material having water repellency is used if the liquid L is aqueous, and a material having oil repellency is used if the liquid L is oily. Fluorine resins such as hexafluoropropylene), PTFE (polytetrafluoroethylene), fluorine siloxane, fluoroalkylsilane, and amorphous perfluoro resin are often used, and a film is formed on the discharge surface 12 by a method such as coating or vapor deposition. Has been. The liquid repellent layer 28 may be formed directly on the ejection surface 12 of the nozzle plate 11 or may be formed through an intermediate layer in order to improve the adhesion of the liquid repellent layer 28. .
 液体吐出ヘッド2の下方には、基材Kを支持する平板状の対向電極3が液体吐出ヘッド2の吐出面12に平行に所定距離離間されて配置されている。対向電極3と液体吐出ヘッド2との離間距離は、0.1mm~3mm程度の範囲内で適宜設定される。 Below the liquid discharge head 2, a flat counter electrode 3 that supports the substrate K is disposed in parallel to the discharge surface 12 of the liquid discharge head 2 and spaced apart by a predetermined distance. The separation distance between the counter electrode 3 and the liquid ejection head 2 is appropriately set within a range of about 0.1 mm to 3 mm.
 本実施形態では、対向電極3は接地されており、常時接地電位に維持されている。そのため、前記帯電電圧電源18から帯電用電極16に静電電圧が印加されると、ノズル10の吐出孔13の液体Lと対向電極3の液体吐出ヘッド2に対向する対向面との間に電界が生じるようになっている。また、帯電した液滴Dが基材Kに着弾すると、対向電極3はその電荷を接地により逃がすようになっている。 In this embodiment, the counter electrode 3 is grounded and is always maintained at the ground potential. Therefore, when an electrostatic voltage is applied from the charging voltage power source 18 to the charging electrode 16, an electric field is generated between the liquid L in the ejection hole 13 of the nozzle 10 and the opposing surface of the counter electrode 3 facing the liquid ejection head 2. Has come to occur. When the charged droplet D lands on the substrate K, the counter electrode 3 releases the electric charge by grounding.
 なお、対向電極3又は液体吐出ヘッド2には、液体吐出ヘッド2と基材Kとを相対的に移動させて位置決めするための図示しない位置決め手段が取り付けられており、これにより液体吐出ヘッド2の各ノズル10から吐出された液滴Dは、基材Kの表面に任意の位置に着弾させることが可能とされている。 The counter electrode 3 or the liquid ejection head 2 is provided with positioning means (not shown) for positioning the liquid ejection head 2 and the substrate K by relatively moving them. The droplets D discharged from each nozzle 10 can be landed on the surface of the substrate K at an arbitrary position.
 インクジェット装置1による吐出を行う液体Lは、例えば、無機液体としては、水、COCl、HBr、HNO、HPO、HSO、SOCl、SOCl、FSOHなどが挙げられる。また、有機液体としては、メタノール、n-プロパノール、イソプロパノール、n-ブタノール、2-メチル-1-プロパノール、tert-ブタノール、4-メチル-2-ペンタノール、ベンジルアルコール、α-テルピネオール、エチレングリコール、グリセリン、ジエチレングリコール、トリエチレングリコールなどのアルコール類;フェノール、o-クレゾール、m-クレゾール、p-クレゾールなどのフェノール類;ジオキサン、フルフラール、エチレングリコールジメチルエーテル、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、ブチルカルビトールアセテート、エピクロロヒドリンなどのエーテル類;アセトン、メチルエチルケトン、2-メチル-4-ペンタノン、アセトフェノンなどのケトン類;ギ酸、酢酸、ジクロロ酢酸、トリクロロ酢酸などの脂肪酸類;ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸-n-ブチル、酢酸イソブチル、酢酸-3-メトキシブチル、酢酸-n-ペンチル、プロピオン酸エチル、乳酸エチル、安息香酸メチル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチル、炭酸ジエチル、炭酸エチレン、炭酸プロピレン、セロソルブアセテート、ブチルカルビトールアセテート、アセト酢酸エチル、シアノ酢酸メチル、シアノ酢酸エチルなどのエステル類;ニトロメタン、ニトロベンゼン、アセトニトリル、プロピオニトリル、スクシノニトリル、バレロニトリル、ベンゾニトリル、エチルアミン、ジエチルアミン、エチレンジアミン、アニリン、N-メチルアニリン、N,N-ジメチルアニリン、o-トルイジン、p-トルイジン、ピペリジン、ピリジン、α-ピコリン、2,6-ルチジン、キノリン、プロピレンジアミン、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N-メチルプロピオンアミド、N,N,N’,N’-テトラメチル尿素、N-メチルピロリドンなどの含窒素化合物類;ジメチルスルホキシド、スルホランなどの含硫黄化合物類;ベンゼン、p-シメン、ナフタレン、シクロヘキシルベンゼン、シクロヘキセンなどの炭化水素類;1,1-ジクロロエタン、1,2-ジクロロエタン、1,1,1-トリクロロエタン、1,1,1,2-テトラクロロエタン、1,1,2,2-テトラクロロエタン、ペンタクロロエタン、1,2-ジクロロエチレン(cis-)、テトラクロロエチレン、2-クロロブタン、1-クロロ-2-メチルプロパン、2-クロロ-2-メチルプロパン、ブロモメタン、トリブロモメタン、1-ブロモプロパンなどのハロゲン化炭化水素類などが挙げられる。また、上記各液体を二種以上混合して用いてもよい。 Examples of the liquid L to be ejected by the inkjet device 1 include water, COCl 2 , HBr, HNO 3 , H 3 PO 4 , H 2 SO 4 , SOCl 2 , SO 2 Cl 2 , and FSO 3 H as inorganic liquids. Is mentioned. Examples of the organic liquid include methanol, n-propanol, isopropanol, n-butanol, 2-methyl-1-propanol, tert-butanol, 4-methyl-2-pentanol, benzyl alcohol, α-terpineol, ethylene glycol, Alcohols such as glycerin, diethylene glycol, triethylene glycol; phenols such as phenol, o-cresol, m-cresol, p-cresol; dioxane, furfural, ethylene glycol dimethyl ether, methyl cellosolve, ethyl cellosolve, butyl cellosolve, ethyl carbitol, Ethers such as butyl carbitol, butyl carbitol acetate, epichlorohydrin; acetone, methyl ethyl ketone, 2-methyl-4-pentanone, Ketones such as tophenone; fatty acids such as formic acid, acetic acid, dichloroacetic acid, trichloroacetic acid; methyl formate, ethyl formate, methyl acetate, ethyl acetate, n-butyl acetate, isobutyl acetate, 3-methoxybutyl acetate, acetic acid n-pentyl, ethyl propionate, ethyl lactate, methyl benzoate, diethyl malonate, dimethyl phthalate, diethyl phthalate, diethyl carbonate, ethylene carbonate, propylene carbonate, cellosolve acetate, butyl carbitol acetate, ethyl acetoacetate, cyanoacetic acid Esters such as methyl and ethyl cyanoacetate; nitromethane, nitrobenzene, acetonitrile, propionitrile, succinonitrile, valeronitrile, benzonitrile, ethylamine, diethylamine, ethylenediamine, aniline, N-methylanily N, N-dimethylaniline, o-toluidine, p-toluidine, piperidine, pyridine, α-picoline, 2,6-lutidine, quinoline, propylenediamine, formamide, N-methylformamide, N, N-dimethylformamide, Nitrogen-containing compounds such as N, N-diethylformamide, acetamide, N-methylacetamide, N-methylpropionamide, N, N, N ′, N′-tetramethylurea, N-methylpyrrolidone; dimethyl sulfoxide, sulfolane, etc. Sulfur-containing compounds: hydrocarbons such as benzene, p-cymene, naphthalene, cyclohexylbenzene, cyclohexene; 1,1-dichloroethane, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,1, 2-tetrachloroethane, 1,1,2,2-tetra Chloroethane, pentachloroethane, 1,2-dichloroethylene (cis-), tetrachloroethylene, 2-chlorobutane, 1-chloro-2-methylpropane, 2-chloro-2-methylpropane, bromomethane, tribromomethane, 1-bromopropane, etc. And halogenated hydrocarbons. Two or more of the above liquids may be mixed and used.
 ここで、液体吐出ヘッド2における液体Lの吐出原理について図3を用いて説明する。 Here, the discharge principle of the liquid L in the liquid discharge head 2 will be described with reference to FIG.
 本実施形態では、帯電電圧電源18から帯電用電極16に静電電圧を印加し、ノズル10の吐出孔13の液体Lと対向電極3の液体吐出ヘッド2に対向する対向面との間に電界を生じさせる。また、駆動電圧電源23からピエゾ素子22に駆動電圧を印加してピエゾ素子22を変形させ、それにより液体Lに生じた圧力でノズル10の吐出孔13に液体Lのメニスカスを形成させる。 In the present embodiment, an electrostatic voltage is applied from the charging voltage power source 18 to the charging electrode 16, and an electric field is generated between the liquid L in the ejection hole 13 of the nozzle 10 and the opposing surface of the counter electrode 3 facing the liquid ejection head 2. Give rise to Further, a driving voltage is applied from the driving voltage power source 23 to the piezo element 22 to deform the piezo element 22, thereby forming a meniscus of the liquid L in the discharge hole 13 of the nozzle 10 with the pressure generated in the liquid L.
 本実施形態のように、ノズルプレート11の絶縁性が高くなると、図3にシミュレーションによる等電位線で示すように、ノズルプレート11の内部に、吐出面12に対して略垂直方向に等電位線が並び、ノズル10の小径部14の液体Lや液体Lのメニスカス部分に向かう強い電界が発生する。 When the insulation property of the nozzle plate 11 is increased as in the present embodiment, the equipotential lines in the nozzle plate 11 are substantially perpendicular to the ejection surface 12 as shown by equipotential lines by simulation in FIG. And a strong electric field is generated toward the liquid L in the small diameter portion 14 of the nozzle 10 and the meniscus portion of the liquid L.
 特に、図3でメニスカスの先端部では等電位線が密になっていることから分かるように、メニスカス先端部では非常に強い電界集中が生じる。そのため、電界の静電力によってメニスカスが引きちぎられてノズル内の液体Lから分離されて液滴Dとなる。更に、液滴Dは静電力により加速され、対向電極3に支持された基材Kに引き寄せられて着弾する。その際、液滴Dは、静電力の作用でより近いところに着弾しようとするため、基材Kに対する着弾の際の角度等が安定し正確に行われる。 In particular, as can be seen from the fact that the equipotential lines are dense at the tip of the meniscus in FIG. 3, a very strong electric field concentration occurs at the tip of the meniscus. Therefore, the meniscus is torn off by the electrostatic force of the electric field and separated from the liquid L in the nozzle to become a droplet D. Further, the droplet D is accelerated by the electrostatic force, and is attracted and landed on the base material K supported by the counter electrode 3. At that time, since the droplet D attempts to land closer by the action of electrostatic force, the angle at the time of landing on the substrate K is stabilized and accurately performed.
 このように、本発明の液体吐出ヘッド2における液体Lの吐出原理を利用すれば、フラットな吐出面を有する液体吐出ヘッド2においても、高い絶縁性を有するノズルプレート11を用い、吐出面12に対して垂直方向の電位差を発生させることで強い電界集中を生じさせることができ、正確で安定した液体Lの吐出状態を形成することができる。 As described above, when the principle of discharging the liquid L in the liquid discharge head 2 of the present invention is used, the liquid discharge head 2 having a flat discharge surface also uses the nozzle plate 11 having high insulating properties to form the discharge surface 12. On the other hand, by generating a potential difference in the vertical direction, strong electric field concentration can be generated, and an accurate and stable discharge state of the liquid L can be formed.
 発明者らが、電極間の電界の電界強度が実用的な値である1.5kV/mmとなるように構成し、各種の絶縁体でノズルプレート11を形成して下記の実験条件、
[実験条件]
ノズルプレート11の吐出面12と対向電極3の対向面との距離:1.0mm
ノズルプレート11の厚さ:125mm
ノズル径:10μm
静電電圧:1.5kV
駆動電圧:20V
に基づいて行った実験では、メニスカス先端部の電界強度を、電界シミュレーションソフトである「PHOTO-VOLT」(商品名、株式会社フォトン製)で電流分布解析モードによるシミュレーションにより算出したところ(直接測定することが困難であるため)、メニスカス先端部の電界強度は3×10V/m(30kV/mm)以上であった。
The inventors configured the electric field strength of the electric field between the electrodes to be a practical value of 1.5 kV / mm, formed the nozzle plate 11 with various insulators, the following experimental conditions,
[Experimental conditions]
Distance between ejection surface 12 of nozzle plate 11 and opposing surface of counter electrode 3: 1.0 mm
Nozzle plate 11 thickness: 125 mm
Nozzle diameter: 10 μm
Electrostatic voltage: 1.5 kV
Drive voltage: 20V
In the experiment conducted based on the above, the electric field strength at the tip of the meniscus was calculated by simulation in the current distribution analysis mode with “PHOTO-VOLT” (trade name, manufactured by Photon Co., Ltd.), which is electric field simulation software (direct measurement) Therefore, the electric field strength at the tip of the meniscus was 3 × 10 7 V / m (30 kV / mm) or more.
 また、前記実験条件と同様のパラメータを同ソフトに入力してメニスカス先端部の電界強度を演算した結果、電界強度はノズルプレート11に用いる絶縁体の体積抵抗率に強く依存することがわかり、ノズル10から液滴Dを安定に吐出させるためにはメニスカス先端部の電界強度が3×10V/m以上であると共に、少なくともノズルプレート11の体積抵抗率は1015Ωm以上であることが必要である。 In addition, as a result of calculating the electric field strength at the meniscus tip by inputting the same parameters as the experimental conditions to the same software, it can be seen that the electric field strength strongly depends on the volume resistivity of the insulator used for the nozzle plate 11. In order to stably discharge the droplet D from 10, the electric field strength at the tip of the meniscus is 3 × 10 7 V / m or more, and at least the volume resistivity of the nozzle plate 11 needs to be 10 15 Ωm or more. It is.
 また、メニスカス先端部の電界強度は、ノズルプレート11の厚さ及びノズル径にも依存するので、それぞれ75μm以上及び15μm以下であることが好ましい。 In addition, the electric field strength at the tip of the meniscus depends on the thickness of the nozzle plate 11 and the nozzle diameter, and is preferably 75 μm or more and 15 μm or less, respectively.
 ノズルプレート11の厚さがより厚くなることで、ノズル10の吐出孔13と帯電用電極16との距離が遠くなり、ノズルプレート内の等電位線が略垂直方向に並び易くなるためメニスカス先端部への電界集中が生じ易くなること、また、ノズル径が小径になると、メニスカスの径が小さくなり、より小径となったメニスカス先端部に電界が集中することで電界集中の度合が大きくなると考えられる。 By increasing the thickness of the nozzle plate 11, the distance between the discharge hole 13 of the nozzle 10 and the charging electrode 16 is increased, and the equipotential lines in the nozzle plate are easily arranged in a substantially vertical direction. It is considered that the electric field concentration on the meniscus is likely to occur, and when the nozzle diameter is reduced, the meniscus diameter is reduced, and the electric field is concentrated on the tip of the meniscus having a smaller diameter, thereby increasing the degree of electric field concentration. .
 ノズルプレート11の厚さとメニスカス先端部の電界強度との関係及びズル径とメニスカス先端部の電界強度との関係は、本実施形態のような小径部14及び大径部15よりなる2段構造のノズル10の場合のみならず、1段構造、すなわち、単純なテーパ状のノズルや円筒状のノズル、或いは多段構造のノズルの場合も同様の結果が得られている。 The relationship between the thickness of the nozzle plate 11 and the electric field strength at the tip of the meniscus and the relationship between the slip diameter and the electric field strength at the tip of the meniscus are the two-stage structure comprising the small diameter portion 14 and the large diameter portion 15 as in this embodiment. Similar results are obtained not only in the case of the nozzle 10 but also in the case of a single-stage structure, that is, a simple tapered nozzle, a cylindrical nozzle, or a multi-stage nozzle.
 この場合、小径部14及び大径部15の区別がないテーパ状又は円筒状の1段構造のノズル10において、メニスカス先端部の電界強度は、ノズル10のテーパ角に依存することがわかる。ノズル10のテーパ角は30°以下であることが好ましい。なお、テーパ角とはノズル10の内面とノズルプレート11の吐出面12の法線とがなす角のことをいい、テーパ角が0°の場合はノズル10が円筒形状であることに対応する。 In this case, in the tapered or cylindrical single-stage nozzle 10 in which the small diameter portion 14 and the large diameter portion 15 are not distinguished, the electric field strength at the meniscus tip depends on the taper angle of the nozzle 10. The taper angle of the nozzle 10 is preferably 30 ° or less. The taper angle refers to an angle formed by the inner surface of the nozzle 10 and the normal line of the discharge surface 12 of the nozzle plate 11. When the taper angle is 0 °, the nozzle 10 corresponds to a cylindrical shape.
 以下、本発明に好ましく用いられる静電吸引方式の液体吐出装置の好ましい一態様について図面を参照しながら説明する。但し、本発明はこれらに限定されない。 Hereinafter, a preferable aspect of the electrostatic suction type liquid discharge apparatus preferably used in the present invention will be described with reference to the drawings. However, the present invention is not limited to these.
 本発明に用いられる静電吸引方式のインクジェット装置は、図4に示すようにマルチノズルヘッド100を有している。マルチノズルヘッド100はノズルプレート31、ボディプレート32及び圧電素子33を有している。ノズルプレート31は150μm~300μm程度の厚みを有したシリコン基板また酸化シリコン基板である。ノズルプレート31には複数のノズル101が形成されており、これら複数のノズル101が1列に配列されている。 The electrostatic suction type inkjet apparatus used in the present invention has a multi-nozzle head 100 as shown in FIG. The multi-nozzle head 100 includes a nozzle plate 31, a body plate 32, and a piezoelectric element 33. The nozzle plate 31 is a silicon substrate or a silicon oxide substrate having a thickness of about 150 μm to 300 μm. A plurality of nozzles 101 are formed on the nozzle plate 31, and the plurality of nozzles 101 are arranged in a line.
 ボディプレート32は、200μm~500μm程度の厚みを有したシリコン基板である。ボディプレート32にはインク供給口201、インク貯留室202、複数のインク供給路203及び複数の圧力室204が形成されている。 The body plate 32 is a silicon substrate having a thickness of about 200 μm to 500 μm. In the body plate 32, an ink supply port 201, an ink storage chamber 202, a plurality of ink supply paths 203, and a plurality of pressure chambers 204 are formed.
 インク供給口201は直径が400μm~1500μm程度の円形状の貫通孔である。 The ink supply port 201 is a circular through hole having a diameter of about 400 μm to 1500 μm.
 インク貯留室202は幅が400μm~1000μm程度で深さが50μm~200μm程度の溝である。 The ink storage chamber 202 is a groove having a width of about 400 μm to 1000 μm and a depth of about 50 μm to 200 μm.
 インク供給路203は幅が50μm~150μm程度で深さが30μm~150μm程度の溝である。圧力室204は幅が150μm~350μm程度で深さが50μm~200μm程度の溝である。 The ink supply path 203 is a groove having a width of about 50 μm to 150 μm and a depth of about 30 μm to 150 μm. The pressure chamber 204 is a groove having a width of about 150 μm to 350 μm and a depth of about 50 μm to 200 μm.
 ノズルプレート31とボディプレート32とは互いに接合されるようになっており、接合した状態ではノズルプレート31のノズル101とボディプレート32の圧力室204とが1対1で対応するようになっている。 The nozzle plate 31 and the body plate 32 are joined to each other, and in the joined state, the nozzle 101 of the nozzle plate 31 and the pressure chamber 204 of the body plate 32 correspond to each other on a one-to-one basis. .
 ノズルプレート31とボディプレート32とが接合された状態でインク供給口201にインクが供給されると、当該インクはインク貯留室202に一時的に貯留され、その後にインク貯留室202から各インク供給路203を通じて各圧力室204に供給されるようになっている。 When ink is supplied to the ink supply port 201 in a state where the nozzle plate 31 and the body plate 32 are joined, the ink is temporarily stored in the ink storage chamber 202, and then each ink supply from the ink storage chamber 202 is performed. Each pressure chamber 204 is supplied through a passage 203.
 圧電素子33はボディプレート32の圧力室204に対応した位置に接着されるようになっている。圧電素子33はPZT(lead zirconium titanate)からなるアクチュエータであり、電圧の印加を受けると変形して圧力室204の内部のインクをノズル101から吐出させるようになっている。 The piezoelectric element 33 is bonded to a position corresponding to the pressure chamber 204 of the body plate 32. The piezoelectric element 33 is an actuator made of PZT (lead zirconium titanate), and is deformed when a voltage is applied to eject ink inside the pressure chamber 204 from the nozzle 101.
 なお、図4では図示しないが、ノズルプレート31とボディプレート32と間には硼珪酸ガラスプレート34(図5参照)が介在している。 Although not shown in FIG. 4, a borosilicate glass plate 34 (see FIG. 5) is interposed between the nozzle plate 31 and the body plate 32.
 図5に示す通り、1つの圧電素子に対応してノズル101と圧力室204とが1つずつ構成されている。 As shown in FIG. 5, one nozzle 101 and one pressure chamber 204 are formed corresponding to one piezoelectric element.
 ノズルプレート31においてノズル101には段が形成されており、ノズル101は下段部101aと上段部101bとで構成されている。下段部101aと上段部101bとは共に円筒形状を呈しており、下段部101aの直径D1(図5中左右方向の距離)が上段部101bの直径D2(図5中左右方向の距離)より小さくなっている。 In the nozzle plate 31, the nozzle 101 is formed with a step, and the nozzle 101 is composed of a lower step portion 101a and an upper step portion 101b. Both the lower step portion 101a and the upper step portion 101b have a cylindrical shape, and the diameter D1 (the distance in the left-right direction in FIG. 5) of the lower step portion 101a is smaller than the diameter D2 (the distance in the left-right direction in FIG. 5) of the upper step portion 101b. It has become.
 ノズル101の下段部101aは上段部101bから流通してきたインクを直接的に吐出する部位である。下段部101aは直径D1が1μm~10μmで、長さL(図5中上下方向の距離)が1.0μm~5.0μmとなっている。下段部101aの長さLを1.0μm~5.0μmの範囲に限定するのは、インクの着弾精度を飛躍的に向上させることができるからである。 The lower part 101a of the nozzle 101 is a part that directly ejects ink circulated from the upper part 101b. The lower step portion 101a has a diameter D1 of 1 μm to 10 μm and a length L (a distance in the vertical direction in FIG. 5) of 1.0 μm to 5.0 μm. The reason why the length L of the lower step portion 101a is limited to the range of 1.0 μm to 5.0 μm is that the ink landing accuracy can be remarkably improved.
 他方、ノズル101の上段部101bは圧力室204から流通してきたインクを下段部101aに流通させる部位であり、その直径D2が10μm~60μmとなっている。 On the other hand, the upper part 101b of the nozzle 101 is a part for allowing the ink circulated from the pressure chamber 204 to circulate to the lower part 101a, and its diameter D2 is 10 μm to 60 μm.
 上段部101bの直径D2の下限を10μm以上に限定するのは、10μmを下回ると、ノズル101全体(下段部101aと上段部101b)の流路抵抗に対し上段部101bの流路抵抗が無視できない値となり、インクの吐出効率が低下しやすいからである。 The lower limit of the diameter D2 of the upper stage portion 101b is limited to 10 μm or more. If the diameter D2 is less than 10 μm, the flow path resistance of the upper stage portion 101b cannot be ignored with respect to the flow path resistance of the entire nozzle 101 (lower stage portion 101a and upper stage portion 101b). This is because the ink ejection efficiency tends to decrease.
 逆に、上段部101bの直径D2の上限を60μm以下に限定するのは、上段部101bの直径D2が大きくなるほど、インクの吐出部位としての下段部101aが薄弱化して(下段部101aが面積増大して機械的強度が小さくなる。)、インクの吐出時に変形し易くなり、その結果インクの着弾精度が低下するからである。すなわち、上段部101bの直径D2の上限が60μmを上回ると、インクの吐出に伴い下段部101aの変形が非常に大きくなり、着弾精度を規定値(=0.5°)以内に抑えることができなくなる可能性があるからである。 Conversely, the upper limit of the diameter D2 of the upper step portion 101b is limited to 60 μm or less because the lower step portion 101a as the ink discharge site becomes thinner as the diameter D2 of the upper step portion 101b increases (the area of the lower step portion 101a increases). This is because the mechanical strength is reduced), and the ink is easily deformed when ejected, and as a result, the ink landing accuracy is lowered. That is, when the upper limit of the diameter D2 of the upper step portion 101b exceeds 60 μm, the deformation of the lower step portion 101a becomes very large as ink is ejected, and the landing accuracy can be suppressed within a specified value (= 0.5 °). This is because it may disappear.
 ノズルプレート31とボディプレート32との間には数百μm程度の厚みを有した硼珪酸ガラスプレート34が設けられており、硼珪酸ガラスプレート34にはノズル101と圧力室204とを連通させる開口部34aが形成されている。開口部34aは、圧力室204とノズル101の上段部101bとに通じる貫通孔であり、圧力室204からノズル101に向けてインクを流通させる流路として機能する部位である。圧力室204は、圧電素子33の変形を受けて当該圧力室204の内部のインクに圧力を与える部位である。 A borosilicate glass plate 34 having a thickness of about several hundred μm is provided between the nozzle plate 31 and the body plate 32, and the borosilicate glass plate 34 has an opening for communicating the nozzle 101 and the pressure chamber 204. A portion 34a is formed. The opening 34 a is a through-hole that communicates with the pressure chamber 204 and the upper stage portion 101 b of the nozzle 101, and is a part that functions as a flow path through which ink flows from the pressure chamber 204 toward the nozzle 101. The pressure chamber 204 is a portion that receives deformation of the piezoelectric element 33 and applies pressure to the ink inside the pressure chamber 204.
 以上の構成を具備するマルチノズルヘッド100では、圧電素子33が変形すると、圧力室204の内部のインクに圧力を与え、当該インクは圧力室204から硼珪酸ガラスプレート34の開口部34aを流通してノズル101に至り、最終的にノズル101の下段部101aから吐出されるようになっている。 In the multi-nozzle head 100 having the above configuration, when the piezoelectric element 33 is deformed, pressure is applied to the ink inside the pressure chamber 204, and the ink flows from the pressure chamber 204 through the opening 34 a of the borosilicate glass plate 34. Then, the nozzle 101 is reached and finally discharged from the lower step portion 101a of the nozzle 101.
 なお、本発明に係るインクジェット装置の一態様としては、マルチノズルヘッド100のノズルプレート1に対向する位置に基板電極が設けられており(図示略)、ノズル101と当該基板電極との間には静電界が作用するようになっている。 As an aspect of the ink jet apparatus according to the present invention, a substrate electrode is provided at a position facing the nozzle plate 1 of the multi-nozzle head 100 (not shown), and between the nozzle 101 and the substrate electrode. An electrostatic field is applied.
 そのため、ノズル101から吐出されたインクはその静電界の作用を受けながら基板電極上の被記録物に着弾するようになっている。 For this reason, the ink ejected from the nozzle 101 lands on the recording material on the substrate electrode while receiving the action of the electrostatic field.
 本発明においては、この電界アシスト吐出方式によるインクジェット装置によって、チタネート系カップリング剤及び/又はチタンオリゴマー化合物で表面処理した基板に、金属ナノ粒子含有インクを用いて描画することで、基板と導電性インクとの接着性が良好であり、連続して射出描画することで直線性が高く、導電回路パターン等において、細いラインを形成できることにある。 In the present invention, by using the ink containing the metal nanoparticles on the substrate surface-treated with the titanate coupling agent and / or the titanium oligomer compound by the electric field-assisted discharge method, the substrate and the conductive material are drawn. The adhesiveness with the ink is good, the linearity is high by continuous injection drawing, and a thin line can be formed in a conductive circuit pattern or the like.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 表面処理に用いるカップリング剤をかえて以下の基板1~12を作成した。 The following substrates 1 to 12 were prepared by changing the coupling agent used for the surface treatment.
 〈基板1(比較)〉
 シリコン基板上に、吐出口の内径が10μmであるノズルを有する電界アシスト吐出方式のインクジェット装置(図4に準じた装置を用いた)にて金属ナノ粒子含有インク(住友電工製銀ナノ粒子インキ;AGIN-W4A(平均粒子径30nm))を射出し100℃10分予備乾燥後、180℃60分焼成してからドット径を測定した。濡れ広がってしまい、円状にならなかったため、ドット径は測定できなかった。
<Substrate 1 (Comparison)>
Metal nanoparticle-containing ink (silver nanoparticle ink manufactured by Sumitomo Electric) using an electric field-assisted discharge type ink jet apparatus (using an apparatus according to FIG. 4) having a nozzle having an inner diameter of 10 μm on a silicon substrate. AGIN-W4A (average particle diameter 30 nm) was injected, pre-dried at 100 ° C. for 10 minutes, and then fired at 180 ° C. for 60 minutes, and then the dot diameter was measured. Since it spreads wet and did not become circular, the dot diameter could not be measured.
 接着性評価については上記金属ナノ粒子含有インクをシリコン基板上にスピンコート(回転数400rpm)で塗布し上記と同条件で予備乾燥及び焼成をして接着性評価用基板1を作成した。 For the adhesion evaluation, the metal nanoparticle-containing ink was applied onto a silicon substrate by spin coating (rotation speed: 400 rpm), preliminarily dried and fired under the same conditions as described above to prepare an adhesion evaluation substrate 1.
 〈基板2(比較)〉
 シリコン基板上に、0.8質量%に純水で調整したKBM-602(信越化学工業製;N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン)をディップコートにより塗布し、100℃で20分乾燥後、吐出口の内径が10μmであるノズルを有するインクジェット装置にて金属ナノ粒子含有インク(住友電工製;AGIN-W4A)を射出し100℃10分予備乾燥後、180℃60分焼成してからドット径を測定した。
<Substrate 2 (Comparison)>
On a silicon substrate, KBM-602 (manufactured by Shin-Etsu Chemical Co., Ltd .; N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane) adjusted to 0.8 mass% with pure water was applied by dip coating. After drying at 20 ° C. for 20 minutes, a metal nanoparticle-containing ink (manufactured by Sumitomo Electric; AGIN-W4A) was ejected by an ink jet apparatus having a nozzle having an inner diameter of a discharge port of 10 μm. The dot diameter was measured after partial firing.
 接着性評価についてはKBM-602処理済みシリコン基板上に上記金属ナノ粒子含有インクをスピンコート(回転数400rpm)で塗布し上記と同条件で予備乾燥及び焼成をして接着性評価用基板2を作成した。 For adhesion evaluation, the metal nanoparticle-containing ink was applied onto a KBM-602-treated silicon substrate by spin coating (rotation speed: 400 rpm), preliminarily dried and fired under the same conditions as above, and the adhesion evaluation substrate 2 was formed. Created.
 〈基板3(本発明)〉
 前記基板2において、KBM-602をTC-750(マツモト交商製;チタンジイソプロポキシビス(エチルアセトアセテート))に変更し、イソプロパノールにて希釈し2質量%に調整した以外は同様にして作成し、評価した。
<Substrate 3 (Invention)>
In the substrate 2, KBM-602 was prepared in the same manner except that TC-750 (manufactured by Matsumoto Kosho; titanium diisopropoxybis (ethyl acetoacetate)) was diluted with isopropanol and adjusted to 2% by mass. And evaluated.
 〈基板4(本発明)〉
 前記基板3において、TC-750をTC-200(マツモト交商製;チタンジオクチロキシビス(オクチレングリコレート))に変更し、1-ブタノールにて希釈し2質量%に調整した以外は同様にして作成し、評価した。
<Substrate 4 (Invention)>
In the substrate 3, except that TC-750 was changed to TC-200 (manufactured by Matsumoto Kyosho; titanium dioctyloxybis (octylene glycolate)), diluted with 1-butanol and adjusted to 2% by mass. Created and evaluated.
 〈基板5(本発明)〉
 前記基板3において、TC-750をPC-605(マツモト交商製;チタンオリゴマー化合物)に変更し、1-ブタノールにて希釈し2質量%に調整した以外は同様にして作成し、評価した。
<Substrate 5 (Invention)>
The substrate 3 was prepared and evaluated in the same manner except that TC-750 was changed to PC-605 (manufactured by Matsumoto Kyosho; titanium oligomer compound), diluted with 1-butanol and adjusted to 2% by mass.
 〈基板6(本発明)〉
 前記基板3において、TC-750をKR44(味の素ファインテクノ社製;イソプロピル-トリ(N-アミノエチルーアミノエチル)チタネート)に変更し、イソプロパノールにて希釈し0.8質量%に調整した以外は同様にして作成し、評価した。
<Substrate 6 (present invention)>
In the substrate 3, except that TC-750 was changed to KR44 (manufactured by Ajinomoto Fine-Techno Co., Inc .; isopropyl-tri (N-aminoethyl-aminoethyl) titanate), diluted with isopropanol and adjusted to 0.8% by mass. It created and evaluated similarly.
 〈基板7(本発明)〉
 前記基板3において、TC-750をKR41B(味の素ファインテクノ社製)に変更し、アセトンにて希釈し0.8質量%に調整した以外は同様にして作成し、評価した。
<Substrate 7 (present invention)>
The substrate 3 was prepared and evaluated in the same manner except that TC-750 was changed to KR41B (manufactured by Ajinomoto Fine Techno Co., Ltd.), diluted with acetone and adjusted to 0.8% by mass.
 〈基板8(本発明)〉
 前記基板3において、TC-750をKR46B(味の素ファインテクノ社製)に変更し、イソプロパノールにて希釈し0.8質量%に調整した以外は同様にして作成し、評価した。
<Substrate 8 (Invention)>
The substrate 3 was prepared and evaluated in the same manner except that TC-750 was changed to KR46B (manufactured by Ajinomoto Fine Techno Co., Ltd.), diluted with isopropanol and adjusted to 0.8% by mass.
 〈基板9(本発明)〉
 前記基板3において、TC-750をKR55(味の素ファインテクノ社製)に変更し、イソプロパノールにて希釈し0.8質量%に調整した以外は同様にして作成し、評価した。
<Substrate 9 (Invention)>
The substrate 3 was prepared and evaluated in the same manner except that TC-750 was changed to KR55 (manufactured by Ajinomoto Fine Techno Co., Ltd.), diluted with isopropanol and adjusted to 0.8% by mass.
 〈基板10(本発明)〉
 前記基板3において、TC-750をKR9SA(味の素ファインテクノ社製)に変更し、アセトンにて希釈し0.8質量%に調整した以外は同様にして作成し、評価した。
<Substrate 10 (Invention)>
The substrate 3 was prepared and evaluated in the same manner except that TC-750 was changed to KR9SA (manufactured by Ajinomoto Fine Techno Co., Ltd.), diluted with acetone and adjusted to 0.8% by mass.
 〈基板11(本発明)〉
 前記基板3において、TC-750をKRTTS(味の素ファインテクノ社製)に変更し、酢酸ブチルにて希釈し0.8質量%に調整した以外は同様にして作成し、評価した。
<Substrate 11 (Invention)>
The substrate 3 was prepared and evaluated in the same manner except that TC-750 was changed to KRTTS (manufactured by Ajinomoto Fine Techno Co.), diluted with butyl acetate and adjusted to 0.8% by mass.
 〈基板12(比較)〉
 前記基板3において、TC-750をオルガチックスTPHS(マツモト交商製;チタンアシレート)に変更し、トルエンにて希釈し2質量%に調整した以外は同様にして作成し、評価した。
<Substrate 12 (Comparison)>
The substrate 3 was prepared and evaluated in the same manner except that TC-750 was changed to ORGATICS TPHS (manufactured by Matsumoto Kyosho; titanium acylate), diluted with toluene and adjusted to 2% by mass.
 KR41B;
   (i-CO)Ti{P-(OC17OH}
 KR46B;
   (C17O)Ti{P-(OC1327OH}
KR41B;
(I-C 3 H 7 O ) 4 Ti {P- (OC 8 H 17) 2 OH} 2
KR46B;
(C 8 H 17 O) 4 Ti {P— (OC 13 H 27 ) 2 OH} 2
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 《パターン形成方法》
 吐出口の内径が10μmであるノズルを有する電界アシスト吐出方式のインクジェット装置を用いて、基板1~12にドットの60%を重ねて連続描画することによりラインを形成し、そのライン幅を計測した。また直線性がないものについてはライン幅が計測できないため、状況を記入してある。
<Pattern formation method>
A line was formed by continuously drawing 60% of the dots on the substrates 1 to 12 by using an electric field assisted discharge type ink jet apparatus having a nozzle having an inner diameter of the discharge port of 10 μm, and the line width was measured. . Also, the line width cannot be measured for those that do not have linearity, so the situation is entered.
 《接着性評価》
 接着性評価用基板1~12に対して、日本工業規格JIS K 5600-5-6に示される、所謂テープ剥離試験(クロスカット法)をもって接着性の評価を行った。
<Adhesive evaluation>
The adhesion evaluation was performed on the adhesion evaluation substrates 1 to 12 by a so-called tape peeling test (cross-cut method) shown in Japanese Industrial Standard JIS K 5600-5-6.
 この際、試験結果分類0(剥がれがない)のものを○、試験結果分類1~2(剥がれが小さい)のものを△、試験結果分類3~4(大きい剥がれをもつ)のものを×、それより大きく剥離し分類できないものを××とした。 At this time, the test result classification 0 (no peeling) is ○, the test result classification 1-2 (small peeling) is Δ, the test result classification 3-4 (having large peeling) is ×, Those that were larger than that and could not be classified were rated as XX.
 前記ドット径を測定した結果についても表1に示した。 The results of measuring the dot diameter are also shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表に示したように、本発明のチタネート系カップリング剤、又チタンオリゴマーで表面処理したものについては、ドット径が小さく、又ラインの直線性がよくライン幅も小さいことがわかる。 As shown in the table, it can be seen that the titanate coupling agent of the present invention and the surface treated with a titanium oligomer have a small dot diameter, good line linearity and a small line width.
 1 インクジェット装置
 2 液体吐出ヘッド
 3 対向電極
 10 ノズル
 11 ノズルプレート
 12 吐出面
 13 吐出孔
 18 静電電圧電源
 20 キャビティ
 22 ピエゾ素子
 23 駆動電圧電源
 24 動作制御手段
 28 撥液層
 L 液体
 100 マルチノズルヘッド
 31 ノズルプレート
 101 ノズル
 101a 下段部
 101b 上段部
 32 ボディプレート
 33 圧電素子
 34 硼珪酸ガラスプレート
DESCRIPTION OF SYMBOLS 1 Inkjet apparatus 2 Liquid discharge head 3 Counter electrode 10 Nozzle 11 Nozzle plate 12 Discharge surface 13 Discharge hole 18 Electrostatic voltage power supply 20 Cavity 22 Piezo element 23 Drive voltage power supply 24 Operation control means 28 Liquid repellent layer L Liquid 100 Multi-nozzle head 31 Nozzle plate 101 Nozzle 101a Lower stage 101b Upper stage 32 Body plate 33 Piezoelectric element 34 Borosilicate glass plate

Claims (5)

  1. 金属ナノ粒子含有インクを用いてインクジェット装置で回路等のパターンを形成する基板であって、該基板が、合計炭素数が4以上の有機基を2個以上有するチタネート系カップリング剤又はチタンオリゴマー化合物で表面処理されたことを特徴とする基板。 A substrate on which a pattern such as a circuit is formed by an ink jet apparatus using a metal nanoparticle-containing ink, wherein the substrate has two or more organic groups having a total carbon number of 4 or more or a titanium oligomer compound A substrate characterized by being surface-treated with.
  2. 前記チタネート系カップリング剤が窒素原子又はリン原子を含むことを特徴とする請求項1に記載の基板。 The substrate according to claim 1, wherein the titanate coupling agent contains a nitrogen atom or a phosphorus atom.
  3. 基板上に、金属ナノ粒子含有インクを用いてインクジェット装置で回路等のパターンを形成する導電性パターン形成方法であって、該基板の表面を、合計炭素数が4以上の有機基を2個以上有するチタネート系カップリング剤で表面処理することを特徴とする導電性パターン形成方法。 A conductive pattern forming method for forming a pattern such as a circuit on a substrate using an ink containing metal nanoparticles on a substrate, the surface of the substrate comprising two or more organic groups having a total carbon number of 4 or more A method for forming a conductive pattern, wherein the surface treatment is performed with a titanate coupling agent.
  4. 前記チタネート系カップリング剤が窒素原子又はリン原子を含むことを特徴とする請求項3に記載の導電性パターン形成方法。 The conductive pattern forming method according to claim 3, wherein the titanate coupling agent contains a nitrogen atom or a phosphorus atom.
  5. 前記インクジェット装置が、0.1~20μm未満の内径の吐出口を有するノズルを用いた電界アシスト吐出方式の装置であることを特徴とする請求項3又は4に記載の導電性パターン形成方法。 5. The method for forming a conductive pattern according to claim 3, wherein the ink jet apparatus is an electric field assisted discharge type apparatus using a nozzle having a discharge port having an inner diameter of 0.1 to less than 20 μm.
PCT/JP2009/065715 2008-09-12 2009-09-09 Substrate and process for forming electroconductive pattern WO2010029934A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010528729A JPWO2010029934A1 (en) 2008-09-12 2009-09-09 Substrate and conductive pattern forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-234474 2008-09-12
JP2008234474 2008-09-12

Publications (1)

Publication Number Publication Date
WO2010029934A1 true WO2010029934A1 (en) 2010-03-18

Family

ID=42005187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065715 WO2010029934A1 (en) 2008-09-12 2009-09-09 Substrate and process for forming electroconductive pattern

Country Status (2)

Country Link
JP (1) JPWO2010029934A1 (en)
WO (1) WO2010029934A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065680A (en) * 2011-09-16 2013-04-11 Canon Inc Manufacturing method of electronic circuit and electronic circuit board
WO2020044404A1 (en) 2018-08-27 2020-03-05 コニカミノルタ株式会社 Method for forming conductive thin wire, method for producing transparent conductor, method for producing device, and set of conductive ink and base material
TWI717086B (en) * 2019-02-22 2021-01-21 日商斯庫林集團股份有限公司 Pattern forming apparatus, pattern forming method and ejection data generation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319758A (en) * 2001-04-20 2002-10-31 Murata Mfg Co Ltd Ceramic circuit board and its producing method
JP2005254106A (en) * 2004-03-10 2005-09-22 Kobe Steel Ltd Method for rustproofing end face of surface-treated steel plate and end face rustproofing liquid
JP2006253482A (en) * 2005-03-11 2006-09-21 Konica Minolta Holdings Inc Substrate for electrostatic suction ink jet, forming method of pattern and substrate with pattern
JP2007088382A (en) * 2005-09-26 2007-04-05 Ricoh Co Ltd Film pattern and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319758A (en) * 2001-04-20 2002-10-31 Murata Mfg Co Ltd Ceramic circuit board and its producing method
JP2005254106A (en) * 2004-03-10 2005-09-22 Kobe Steel Ltd Method for rustproofing end face of surface-treated steel plate and end face rustproofing liquid
JP2006253482A (en) * 2005-03-11 2006-09-21 Konica Minolta Holdings Inc Substrate for electrostatic suction ink jet, forming method of pattern and substrate with pattern
JP2007088382A (en) * 2005-09-26 2007-04-05 Ricoh Co Ltd Film pattern and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065680A (en) * 2011-09-16 2013-04-11 Canon Inc Manufacturing method of electronic circuit and electronic circuit board
WO2020044404A1 (en) 2018-08-27 2020-03-05 コニカミノルタ株式会社 Method for forming conductive thin wire, method for producing transparent conductor, method for producing device, and set of conductive ink and base material
TWI717086B (en) * 2019-02-22 2021-01-21 日商斯庫林集團股份有限公司 Pattern forming apparatus, pattern forming method and ejection data generation method

Also Published As

Publication number Publication date
JPWO2010029934A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
WO2006067966A1 (en) Liquid ejection head, liquid ejection device, and liquid ejection method
JP4100385B2 (en) Multilayer structure forming method, wiring board manufacturing method, and electronic device manufacturing method
JP2009049124A (en) Conductive pattern and forming method thereof
JP4893823B2 (en) Liquid discharge head and liquid discharge apparatus
JP4545785B2 (en) Fine wiring formation method
JP2006253482A (en) Substrate for electrostatic suction ink jet, forming method of pattern and substrate with pattern
WO2010029934A1 (en) Substrate and process for forming electroconductive pattern
JP5453924B2 (en) Conductive film pattern and method of forming conductive film pattern
JP2010265420A (en) Inkjet ink and method for forming electroconductive pattern
JPWO2006068036A1 (en) Liquid ejection device
JP2006315232A (en) Liquid ejector
Lall et al. Print-consistency and process-interaction for inkjet-printed copper on flexible substrate
CN1400106A (en) Ink jet printing method for preparing metal film
Nguyen et al. Fabrication of nanoscale nozzle for electrohydrodynamic (EHD) inkjet head and high precision patterning by drop-on-demand operation
JP4807060B2 (en) Nozzle plate, nozzle plate manufacturing method, and liquid discharge head
JP4218948B2 (en) Liquid ejection device
JP4830299B2 (en) Liquid ejection device
JP4715214B2 (en) Liquid discharge head and liquid discharge apparatus
Felba et al. Materials and technology for conductive microstructures
JP2010103203A (en) Thin-film transistor and method of manufacturing the same
WO2010134536A1 (en) Electroconductive film pattern and method for forming an electroconductive film pattern
JP2007216461A (en) Liquid delivering apparatus and liquid delivering method
JP2010182776A (en) Conductive film pattern and method of forming the same
JP2007152871A (en) Nozzle plate, manufacturing method for nozzle plate and liquid delivering head
JP4335612B2 (en) Liquid ejection method and wiring pattern forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09813080

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010528729

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09813080

Country of ref document: EP

Kind code of ref document: A1