WO2010029779A1 - Scintillator panel and method for manufacturing the same - Google Patents

Scintillator panel and method for manufacturing the same Download PDF

Info

Publication number
WO2010029779A1
WO2010029779A1 PCT/JP2009/054744 JP2009054744W WO2010029779A1 WO 2010029779 A1 WO2010029779 A1 WO 2010029779A1 JP 2009054744 W JP2009054744 W JP 2009054744W WO 2010029779 A1 WO2010029779 A1 WO 2010029779A1
Authority
WO
WIPO (PCT)
Prior art keywords
scintillator
scintillator panel
resin
film
layer
Prior art date
Application number
PCT/JP2009/054744
Other languages
French (fr)
Japanese (ja)
Inventor
美香 坂井
葉子 平井
伸司 工藤
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Publication of WO2010029779A1 publication Critical patent/WO2010029779A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/626Halogenides
    • C09K11/628Halogenides with alkali or alkaline earth metals
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/06Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with a phosphor layer

Definitions

  • the present invention relates to a scintillator panel used for forming a radiographic image of a subject and a manufacturing method thereof.
  • radiographic images such as X-ray images have been widely used for diagnosis of medical conditions in the medical field.
  • radiographic images using intensifying screen-film systems have been developed throughout the world as an imaging system that combines high reliability and excellent cost performance as a result of high sensitivity and high image quality achieved over a long history. Used in medical settings.
  • these pieces of image information are so-called analog image information, and free image processing and instantaneous electric transmission cannot be performed like digital image information that has been developed in recent years.
  • digital radiographic image detection devices represented by computed radiography (CR), flat panel radiation detectors (FPD) and the like have appeared. Since digital radiographic images are directly obtained and images can be directly displayed on an image display device such as a cathode ray tube or a liquid crystal panel, image formation on a photographic film is not always necessary. As a result, these digital X-ray image detection devices reduce the need for image formation by the silver halide photography method, and greatly improve the convenience of diagnosis work in hospitals and clinics.
  • CR computed radiography
  • FPD flat panel radiation detectors
  • the flat plate X-ray detector (FPD) is smaller than the CR and is characterized by superior image quality at high doses.
  • FPD flat plate X-ray detector
  • a scintillator panel made of an X-ray phosphor having a characteristic of emitting light by radiation is used.
  • the luminous efficiency is improved. It will be necessary to use high scintillator panels.
  • the light emission efficiency of a scintillator panel is determined by the thickness of the phosphor layer and the X-ray absorption coefficient of the phosphor, but the larger the phosphor layer thickness, the more scattered the emitted light within the phosphor layer.
  • sharpness decreases. Therefore, when the sharpness necessary for the image quality is determined, the film thickness is determined.
  • CsI cesium iodide
  • cesium iodide contains an element called an activator such as thallium, sodium, or rubidium in order to improve luminous efficiency.
  • the cesium iodide crystal has deliquescence, and the columnar crystal is broken by absorbing moisture, making it impossible to obtain a light guide effect.
  • moisture resistance has been ensured for columnar crystals by film formation of polyparaxylylene resin using a CVD method or a method using an ultraviolet curable adhesive sheet as a protective layer (see, for example, Patent Document 2).
  • the water vapor barrier property is not sufficient, and the resin is buried deeply between the columnar crystals, so that the light guide effect cannot be sufficiently utilized.
  • the scintillator panel especially the crystal surface is in contact with a TFT substrate having a photodiode, becomes an X-ray imaging apparatus
  • the scintillator panel must have the same planarity as the TFT substrate, but is formed by vapor deposition.
  • the scintillator layer to be distributed has a problem in that it is difficult to ensure the flatness of the substrate that has been affected by heat during the film formation process. JP-A-63-215987 JP 2006-343277 A
  • An object of the present invention has been made in view of the above problems, and is to provide a scintillator panel excellent in moisture resistance and flatness and a method for manufacturing the scintillator panel.
  • a scintillator panel comprising a scintillator plate having a scintillator layer made of columnar crystals on a substrate and a protective film provided so as to cover the scintillator plate, is an organic film in which the protective film is laminated, and the columnar A scintillator panel characterized in that 0.01 to 30 ⁇ m of the tip of the crystal is present in the protective film.
  • Substrate 2 Scintillator layer (phosphor layer) 2a Columnar crystal 3 Insulating layer 4 Reflecting layer 5 Protective film 6 Cured resin 10 Scintillator panel 20 Vapor deposition device 21 Vacuum pump 22 Vacuum vessel 23 Resistance heating crucible 24 Rotating mechanism 25 Substrate holder
  • the present invention relates to a scintillator panel provided with a protective film so as to cover a scintillator plate having a scintillator layer made of a columnar crystal on a substrate, the scintillator side surface of the protective film is made of a cured resin, and the tip of the columnar crystal 0.01 to 30 ⁇ m is present in the protective film.
  • substrate As the substrate used in the scintillator panel of the present invention, a polymer material (resin) or a metal plate is used, but a polymer material (resin) is preferable.
  • polymer materials those that can be processed into webs are suitable as flexible sheets. From this point, cellulose acetate film, polyester film, polyethylene terephthalate film, polyethylene naphthalate film, polyamide A plastic film such as a film, a polyimide film, a triacetate film, or a polycarbonate film is preferred. Among these, a polyimide or polyethylene naphthalate film is particularly preferably used.
  • the thickness of the substrate is preferably 50 to 500 ⁇ m from the viewpoint of uniformity of image characteristics.
  • a reflective layer may be provided between the substrate and the scintillator layer.
  • the reflection layer is a layer that can reflect the electromagnetic wave radiated in the direction of the fluorescent light emitted from the scintillator layer.
  • a metal thin film is preferably used as the reflective layer.
  • the metal thin film a film made of a material containing a substance in the group consisting of Al, Ag, Cr, Cu, Ni, Ti, Mg, Rh, Pt and Au is preferably used. Further, two or more metal thin films may be formed, for example, an Au film is formed on the Cr film. Among these, an embodiment using a film containing Ag and Al is a preferable embodiment.
  • the thickness of the reflective layer is preferably 0.005 to 0.3 ⁇ m, more preferably 0.01 to 0.2 ⁇ m, from the viewpoint of emission light extraction efficiency.
  • an insulating layer may be provided between the reflective layer and the scintillator layer.
  • the insulating layer examples include polyester resins, polyacrylic acid copolymers, polyacrylamide or derivatives and partial hydrolysates thereof, vinyl polymers such as polyvinyl acetate, polyacrylonitrile, polyacrylic acid esters, and copolymers thereof.
  • layers containing resins such as natural products such as coalescence, rosin and shellac and derivatives thereof.
  • the thickness of the insulating layer is preferably 0.2 to 5.0 ⁇ m, more preferably 0.5 to 4.0 ⁇ m, and particularly preferably 0.7 to 3.5 ⁇ m.
  • the scintillator layer according to the present invention preferably absorbs the energy of incident radiation such as X-rays, and has an electromagnetic wave having a wavelength of 300 nm to 800 nm, that is, an electromagnetic wave (optical light ranging from ultraviolet light to infrared light centering on visible light). ), And is preferably a vapor-deposited columnar crystal containing cesium iodide and an activator.
  • the activator preferably used in the present invention is an element that can increase luminous efficiency by being contained in cesium iodide.
  • the activator include thallium, sodium, rubidium and the like, and thallium is particularly preferably used.
  • it can carry out by the method of heating the vapor deposition source containing a cesium iodide and a thallium compound, and vapor-depositing on the said board
  • the vapor-deposited columnar crystal preferably used in the present invention is a crystal formed by heating a vapor deposition source containing cesium iodide and a compound containing an activator and vapor-depositing on a substrate.
  • the thickness of the scintillator layer is preferably 100 to 800 ⁇ m, and more preferably 120 to 700 ⁇ m from the viewpoint of obtaining a good balance between luminance and sharpness characteristics.
  • the protective film according to the present invention is a laminated organic film, and a configuration example thereof includes a multilayer laminated material having a configuration of a protective layer (outermost layer) / a moisture-proof layer / a thermal fusion layer (innermost layer). . Furthermore, each layer can be formed in multiple layers as required.
  • the scintillator plate is preferably vacuum-sealed by the protective film according to the present invention.
  • thermoplastic resin film As the innermost thermoplastic resin film, it is preferable to use EVA, PP, LDPE, LLDPE, and LDPE, LLDPE produced by using a metallocene catalyst, or a film using a mixture of these films and HDPE films.
  • ⁇ Dampproof layer (intermediate layer)> Examples thereof include a layer having at least one inorganic film as described in JP-A-6-95302 and the vacuum handbook revised edition p132 to 134 (ULVAC Japan Vacuum Technology KK).
  • Examples of the inorganic film include a metal vapor deposition film and an inorganic oxide vapor deposition film.
  • metal vapor deposition film examples include ZrN, SiC, TiC, Si 3 N 4 , single crystal Si, ZrN, PSG, amorphous Si, W, aluminum, and the like.
  • Particularly preferable metal vapor deposition film includes, for example, aluminum. Can be mentioned.
  • inorganic deposited films examples include thin film handbooks p879-901 (Japan Society for the Promotion of Science), vacuum technology handbooks p502-509, p612, p810 (Nikkan Kogyo Shimbun), vacuum handbook revised editions p132-134 (ULVAC Japan Vacuum Technology K.K.
  • Inorganic vapor-deposited films as described in K).
  • the thermoplastic resin film used as a base material for the moisture-proof layer includes ethylene tetrafluoroethyl copolymer (ETFE), high-density polyethylene (HDPE), expanded polypropylene (OPP), polystyrene (PS), and polymethyl methacrylate (PMMA).
  • ETFE ethylene tetrafluoroethyl copolymer
  • HDPE high-density polyethylene
  • OPP expanded polypropylene
  • PS polystyrene
  • PMMA polymethyl methacrylate
  • Film materials used for general packaging films such as biaxially stretched nylon 6, polyethylene terephthalate (PET), polycarbonate (PC), polyimide, and polyether styrene (PES) can be used.
  • a method of forming a deposited film vacuum technology handbook and packaging technology Vol. 29-No. 8, for example, a resistance or high-frequency induction heating method, an electrobeam (EB) method, plasma (PCVD), or the like.
  • the thickness of the deposited film is preferably in the range of 40 to 200 nm, more preferably in the range of 50 to 180 nm.
  • the thermoplastic resin film used via the vapor-deposited film sheet is a low-density polyethylene (LDPE), HDPE, linear low-density polyethylene (LLDPE), or medium-density polyethylene that is a polymer film used as a general packaging material.
  • LDPE low-density polyethylene
  • HDPE high-density polyethylene
  • LLDPE linear low-density polyethylene
  • medium-density polyethylene that is a polymer film used as a general packaging material.
  • Unstretched polypropylene (CPP), OPP, stretched nylon (ONy), PET, cellophane, polyvinyl alcohol (PVA), stretched vinylon (OV), ethylene-vinyl acetate copolymer (EVOH), vinylidene chloride (PVDC), fluorine
  • An olefin (fluoroolefin) -containing polymer or a fluorine-containing olefin copolymer can be used.
  • thermoplastic resin film a multilayer film made by coextrusion with a different film, a multilayer film made by laminating at different stretching angles, etc. can be used as needed. Furthermore, in order to obtain the required physical properties of the packaging material, it is of course possible to combine the density and molecular weight distribution of the film used.
  • the protective layer When not using an inorganic deposition layer, it is necessary to provide the protective layer with a function as a moisture-proof layer.
  • the thermoplastic resin film used for the protective layer may be a simple substance as necessary, or two or more kinds of films may be laminated.
  • the protective film is produced using a wet lamination method, a dry lamination method, a hot melt lamination method, an extrusion lamination method, or a thermal lamination method. It is possible. Of course, the same method can be used when a film on which an inorganic material is deposited is not used, but in addition to these, depending on the material used, it can be formed by a multilayer inflation method or a coextrusion method.
  • thermoplastic resins such as various polyethylene resins and various polypropylene resins, hot melt adhesives, ethylene-propylene copolymer resins, ethylene-vinyl acetate copolymer resins, ethylene-ethyl acrylate copolymer resins, and other ethylene copolymers.
  • thermoplastic resin hot-melt adhesives such as polymer resins, ethylene-acrylic acid copolymer resins, ionomer resins, and other hot-melt rubber adhesives.
  • emulsion-type adhesives that are emulsion and latex adhesives are polyvinyl acetate resin, vinyl acetate-ethylene copolymer resin, vinyl acetate and acrylate copolymer resin, vinyl acetate and maleate ester.
  • copolymer resins acrylic acid copolymers, ethylene-acrylic acid copolymers, and the like.
  • latex adhesives include rubber latex such as natural rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), and chloroprene rubber (CR).
  • dry laminate adhesives include isocyanate adhesives, urethane adhesives, polyester adhesives, and others, paraffin wax, microcrystalline wax, ethylene-vinyl acetate copolymer resin, ethylene-ethyl acrylate.
  • Known adhesives such as hot melt laminate adhesives, pressure sensitive adhesives, heat sensitive adhesives and the like blended with copolymer resins can also be used.
  • the polyolefin-based resin adhesive for extrusion laminating includes, in addition to polymers and ethylene copolymer (EVA, EEA, etc.) resins made of polyolefin resins such as various polyethylene resins, polypropylene resins and polybutylene resins, Ionomer resin (ionic copolymer resin) such as L-LDPE resin copolymerized with ethylene and other monomer ( ⁇ -olefin), Surin from Dupot, Himiran from Mitsui Polychemical, and Mitsui Petrochemical Admer (adhesive polymer), etc.
  • EVA ethylene copolymer
  • EEA ethylene copolymer
  • UV curable adhesives have recently begun to be used.
  • LDPE resin and L-LDPE resin are preferred because they are inexpensive and have excellent laminating properties.
  • a mixed resin in which two or more of the above resins are blended to cover the defects of each resin is particularly preferable. For example, when L-LDPE resin and LDPE resin are blended, spreadability is improved and neck-in is reduced, so that the lamination speed is improved and pinholes are reduced.
  • the cured resin is disposed on the scintillator layer side of the protective film, and after being vacuum-sealed with the protective film, is cured in a pressurized state to form the protective film.
  • the curable resins include those that are thermally cured and those that are cured by ultraviolet rays. In either case, the effects of the present invention can be obtained. Since these cured resins are cured after vacuum sealing, it is possible to cover between columnar crystals that could not be covered by conventional liquid resins, and furthermore, the thickness of the crystal tip can be controlled by the thickness of the cured resin. The light guide effect can be fully utilized without filling the space more than necessary. The effect of the present invention can be obtained even with a cured resin in the form of an adhesive sheet. In this case, it can be achieved by vacuum-sealing the scintillator plate after applying the adhesive sheet-like cured resin to the innermost layer of the protective film.
  • the cured resin placed on the inner side of the protective film and the portion that contacts the scintillator layer is either coated with a gel-like resin or laminated with a curable resin sheet to produce a protective film. It is important to produce the cured resin in the same size as the scintillator plate.
  • the thickness of the resin is preferably about 0.01 to 20 ⁇ m in order to minimize the reduction in sharpness caused by the columnar crystals being embedded in the resin.
  • thermosetting resin that can be used in the present invention
  • known resins can be used. Any material may be used as long as it is a material in which a curable resin and a curing agent are mixed and which undergoes a curing reaction by heating.
  • acrylic type, silicone type, and epoxy type for example, acrylic type, silicone type, and epoxy type.
  • the ultraviolet curable resin known ones can be used. Any material may be used as long as it is a material in which an ultraviolet curable resin component and a photopolymerization initiator are mixed and which undergoes a crosslinking reaction upon irradiation with ultraviolet rays.
  • any material may be used as long as it is a material in which an ultraviolet curable resin component and a photopolymerization initiator are mixed and which undergoes a crosslinking reaction upon irradiation with ultraviolet rays.
  • rubber materials silicone materials, acrylic materials, and epoxy materials.
  • the cured resin has a transmittance of 80% or more at a wavelength of 550 nm and a refractive index of 1
  • the effect of the present invention can be obtained with any resin as long as it is .8 or less. From the viewpoints of such transmittance and refractive index, fluorine-based resins and silicone-based resins are preferably used.
  • the cured resin By filling the crystal with the cured resin as described above, the cured resin can play a role of partitioning even if the crystal is deliquescent, and deterioration of sharpness can be suppressed. That is, moisture resistance is improved. Moreover, since it can absorb the curvature
  • the scintillator panel 10 of the present invention is provided with a scintillator layer 2 on a substrate 1 as shown in FIG. 1.
  • the scintillator layer 2 When the scintillator layer 2 is irradiated with radiation, the scintillator absorbs the energy of the incident radiation, An electromagnetic wave having a wavelength of 300 nm to 800 nm, that is, an electromagnetic wave (light) ranging from ultraviolet light to infrared light centering on visible light is emitted.
  • the scintillator layer 2 is formed by a vapor deposition method.
  • the substrate 1 is set in a known vapor deposition apparatus, and after the raw material of the scintillator layer 2 containing cesium iodide and an activator is filled in the vapor deposition source, the apparatus is evacuated and at the same time an inert gas such as nitrogen. Is introduced through the introduction port to make a vacuum of about 1.333 Pa to 1.33 ⁇ 10 ⁇ 3 Pa. Next, the raw material is heated and evaporated by a resistance heating method, an electron beam method, or the like to deposit vapor-deposited columnar crystals of cesium iodide on the surface of the substrate 1, and a scintillator layer 2 is formed on the substrate 1.
  • FIG. 3 shows an enlarged view of FIG. It can be seen that the tip of the columnar crystal 2 a constituting the scintillator layer 2 is buried in the cured resin 6.
  • a vapor deposition apparatus 20 will be described as an example of a vapor deposition apparatus used when performing the vapor deposition method with reference to FIG.
  • the vapor deposition apparatus 20 includes a vacuum pump 21 and a vacuum container 22 that is evacuated by the operation of the vacuum pump 21. Inside the vacuum vessel 22, a resistance heating crucible 23 is provided as a vapor deposition source, and above the resistance heating crucible 23, a reflection layer 4 and an insulating layer 3 are provided so as to be rotatable by a rotating mechanism 24.
  • the substrate 1 is installed via the substrate holder 25. A slit for adjusting the vapor flow of the phosphor evaporating from the resistance heating crucible 23 is provided between the resistance heating crucible 23 and the substrate 1 as necessary.
  • the substrate 1 is installed on the substrate holder 25 when the vapor deposition apparatus 20 is used.
  • the temperature of the substrate 1 on which the scintillator layer is formed is preferably set to room temperature 25 to 50 ° C. at the start of vapor deposition, and preferably set to 100 to 300 ° C., more preferably 150 to 250 ° C. during vapor deposition.
  • Example 1 [Preparation of scintillator panel 1] (Scintillator plate) Tl as an additive was mixed with cesium iodide (CsI) to obtain a vapor deposition material. Tl produced a deposition material of 0.3 mol% with respect to CsI. A vapor deposition material was filled in a resistance heating crucible, and a polyimide resin substrate having a thickness of 125 ⁇ m was placed on a rotating support holder, and the distance between the substrate and the two evaporation sources was adjusted to 400 mm.
  • CsI cesium iodide
  • the inside of the vapor deposition apparatus was once evacuated, Ar gas was introduced and the degree of vacuum was adjusted to 0.1 Pa, and then the substrate temperature was maintained at 200 ° C. while rotating the substrate holder 25 at a speed of 10 rpm.
  • the resistance heating crucible containing the vapor deposition material is heated to deposit a scintillator phosphor.
  • the film thickness of the scintillator layer (phosphor layer) reached 500 ⁇ m, vapor deposition was terminated to obtain a scintillator plate.
  • thermosetting resin used is Shin-Etsu Silicone silicone resin OF-180A / B.
  • a protective film is prepared in the same manner as the scintillator panel 1, and a region in which a thermosetting resin is applied in a thickness of 30 ⁇ m to a part of the heat-sealing layer on one side is prepared.
  • the thermosetting resin used is Shin-Etsu Silicone silicone resin OF-180A / B.
  • the scintillator panel 2 was obtained in the same manner as the scintillator panel 1.
  • a protective film is prepared in the same manner as the scintillator panel 1, and a region in which a thermosetting resin is applied to a part of one side of the heat-fusible layer with a thickness of 10 ⁇ m is prepared.
  • the thermosetting resin used is Shin-Etsu Silicone silicone resin OF-180A / B.
  • the scintillator panel 3 was obtained in the same manner as the scintillator panel 1.
  • a protective film is prepared in the same manner as the scintillator panel 1, and a region in which a thermosetting resin is applied to a part of one side of the heat-fusible layer with a thickness of 0.01 ⁇ m is prepared.
  • the thermosetting resin used is Shin-Etsu Silicone silicone resin OF-180A / B.
  • the scintillator panel 4 was obtained in the same manner as the scintillator panel 1.
  • the scintillator panel 5 was obtained in the same manner as the scintillator panel 1.
  • a protective film is prepared in the same manner as the scintillator panel 1, and a region in which a UV curable resin is applied to a part of one side of the heat-sealing layer with a thickness of 30 ⁇ m is prepared.
  • the UV curable resin used is silicone resin OF-207 made of Shin-Etsu Silicone.
  • UV curing instead of thermal curing, UV curing was performed. A panel sealed on glass is placed so that the crystal face is down. Furthermore, a weight of the same size as that of the panel is placed from above, and a load of 2.94 ⁇ 10 3 Pa is applied. Irradiate ultraviolet light (400 mJ) from the glass surface. After the treatment, the panel was taken out and used as a scintillator panel 6.
  • a protective film is prepared in the same manner as the scintillator panel 1, and a region in which a UV curable resin is applied to a part of one side of the heat-fusible layer with a thickness of 10 ⁇ m is prepared.
  • the UV curable resin used is silicone resin OF-207 made of Shin-Etsu Silicone.
  • UV curing instead of thermal curing, UV curing was performed. A panel sealed on glass is placed so that the crystal face is down. Furthermore, a weight of the same size as that of the panel is placed from above, and a load of 2.94 ⁇ 10 3 Pa is applied. Irradiate ultraviolet light (400 mJ) from the glass surface. After the treatment, the panel was taken out and used as a scintillator panel 7.
  • a polyparaxylylene resin is coated to a thickness of 30 ⁇ m on the scintillator plate by a chemical vapor deposition (CVD) method in which the film is deposited on a support in a vacuum.
  • the polyparaxylylene resin used is polyparachloroxylylene (Parylene C) manufactured by Three Bond. The plate after film formation was taken out and used as a scintillator panel 8.
  • the flatness described in Table 1 is obtained by dividing a photographed image into 100 vertically and 10 horizontally and analyzing the signal noise ratio (SN ratio) of each region. If the variation in all S / N ratios was less than 10%, the flatness was evaluated as ⁇ , and when it was 10% or more, it was evaluated as x.
  • the scintillator panel produced above was set in PaxScan 2520 (Varian FPD), and the sharpness was measured by the following method.
  • the moisture resistance shown in Table 1 is calculated by calculating the MTF of the initial state and the state of storage in a thermostatic chamber at 30 ° C. and 80% for 10 days. X.
  • the scintillator panel produced above was set in PaxScan 2520 (Varian FPD), X-ray with a tube voltage of 80 kVp was irradiated to the radiation incident surface side of the FPD through a lead MTF chart, and image data was detected and recorded on a hard disk. Thereafter, the recording on the hard disk was analyzed by a computer, and the modulation transfer function MTF (MTF value at a spatial frequency of 1 cycle / mm) of the X-ray image recorded on the hard disk was used as an index of sharpness.
  • MTF modulation transfer function
  • MTF Modulation Transfer Function
  • the scintillator panel of the present invention is clearly superior to the comparative scintillator panel in the overall evaluation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Radiation (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)

Abstract

Provided are a scintillator panel having excellent humidity resistance and flatness, and a method for manufacturing such scintillator panel. The scintillator panel is composed of a scintillator plate, which has a scintillator layer composed of a column crystal, on a substrate, and a protection film arranged to cover the scintillator plate. The protection film is laminated on the organic film, and a leading edge of 0.01-30μm of the column crystal exists in the protection film.

Description

シンチレータパネルとその製造方法Scintillator panel and manufacturing method thereof
 本発明は、被写体の放射線画像を形成する際に用いられるシンチレータパネルとその製造方法に関する。 The present invention relates to a scintillator panel used for forming a radiographic image of a subject and a manufacturing method thereof.
 従来から、X線画像のような放射線画像は医療現場において病状の診断に広く用いられている。特に増感紙-フィルム系による放射線画像は、長い歴史の中で高感度化と高画質化が図られた結果、高い信頼性と優れたコストパフォーマンスを併せ持った撮像システムとして、今なお世界中の医療現場で用いられている。しかしながら、これら画像情報は所謂アナログ画像情報であって、近年発展を続けているデジタル画像情報のような、自由な画像処理や瞬時の電送ができない。 Conventionally, radiographic images such as X-ray images have been widely used for diagnosis of medical conditions in the medical field. In particular, radiographic images using intensifying screen-film systems have been developed throughout the world as an imaging system that combines high reliability and excellent cost performance as a result of high sensitivity and high image quality achieved over a long history. Used in medical settings. However, these pieces of image information are so-called analog image information, and free image processing and instantaneous electric transmission cannot be performed like digital image information that has been developed in recent years.
 そして、近年では、コンピューテッドラジオグラフィ(CR)やフラットパネル型の放射線ディテクタ(FPD)等に代表されるデジタル方式の放射線画像検出装置が登場している。これらはデジタルの放射線画像が直接得られ、陰極管や液晶パネル等の画像表示装置に画像を直接表示することが可能なので、必ずしも写真フィルム上への画像形成が必要なものではない。その結果、これらのデジタル方式のX線画像検出装置は、銀塩写真方式による画像形成の必要性を低減させ、病院や診療所での診断作業の利便性を大幅に向上させている。 In recent years, digital radiographic image detection devices represented by computed radiography (CR), flat panel radiation detectors (FPD) and the like have appeared. Since digital radiographic images are directly obtained and images can be directly displayed on an image display device such as a cathode ray tube or a liquid crystal panel, image formation on a photographic film is not always necessary. As a result, these digital X-ray image detection devices reduce the need for image formation by the silver halide photography method, and greatly improve the convenience of diagnosis work in hospitals and clinics.
 X線画像のデジタル技術の一つとして、コンピューテッド・ラジオグラフィ(CR)が現在医療現場で受け入れられている。しかしながら、鮮鋭性が十分でなく空間分解能も不充分であり、スクリーン・フィルムシステムの画質レベルには到達していない。そして、更に新たなデジタルX線画像技術として、例えば、雑誌Physics Today,1997年11月号24頁のジョン・ローランズ論文“Amorphous Semiconductor Usher in Digital X-ray Imaging”や、雑誌SPIEの1997年32巻2頁のエル・イー・アントヌクの論文“Development of a High Resolution,Active Matrix,Flat-Panel Imager with Enhanced Fill Factor”等に記載された、薄膜トランジスタ(TFT)を用いた平板X線検出装置(FPD)が開発されている。 As one of the digital technologies for X-ray images, computed radiography (CR) is currently accepted in the medical field. However, the sharpness is insufficient and the spatial resolution is insufficient, and the image quality level of the screen / film system has not been reached. As new digital X-ray imaging technologies, for example, the magazine Physics Today, November 1997, page 24, John Laurans's paper “Amorphous Semiconductor User in Digital X-ray Imaging”, magazine SPIE, Vol. 32, 1997. A thin-film transistor (TFT) detection device using a thin-film transistor (TFT) detection device (FFT) using a thin-film transistor (TFT) detection device (TFT), which is described in the L.E. Antonuk article “Development of a High Resolution, Active Matrix, Flat-Panel Imager with Enhanced Fill Factor”, etc. Has been developed.
 平板X線検出装置(FPD)はCRより装置が小型化し、高線量での画質が優れているという特徴がある。しかし、一方ではTFTや回路自体のもつ電気ノイズのため、低線量の撮影においてSN比が低下し、十分な画質レベルには至っていない。 The flat plate X-ray detector (FPD) is smaller than the CR and is characterized by superior image quality at high doses. However, on the other hand, due to the electric noise of the TFT and the circuit itself, the S / N ratio is reduced in low-dose imaging, and the image quality level is not yet sufficient.
 放射線を可視光に変換するために、放射線により発光する特性を有するX線蛍光体で作られたシンチレータパネルが使用されるが、低線量の撮影においてSN比を向上するためには、発光効率の高いシンチレータパネルを使用することが必要になってくる。一般にシンチレータパネルの発光効率は、蛍光体層の厚さ、蛍光体のX線吸収係数によって決まるが、蛍光体層の厚さは厚くすればするほど蛍光体層内での発光光の散乱が発生し、鮮鋭性は低下する。そのため、画質に必要な鮮鋭性を決めると膜厚が決定する。 In order to convert radiation into visible light, a scintillator panel made of an X-ray phosphor having a characteristic of emitting light by radiation is used. In order to improve the SN ratio in low-dose imaging, the luminous efficiency is improved. It will be necessary to use high scintillator panels. In general, the light emission efficiency of a scintillator panel is determined by the thickness of the phosphor layer and the X-ray absorption coefficient of the phosphor, but the larger the phosphor layer thickness, the more scattered the emitted light within the phosphor layer. However, sharpness decreases. Therefore, when the sharpness necessary for the image quality is determined, the film thickness is determined.
 その中でも、ヨウ化セシウム(CsI)は、X線を可視光に変換する効率が比較的高く、蒸着によって容易に蛍光体を柱状結晶構造に形成できるため、光ガイド効果により結晶内での発光光の散乱が抑えられ、蛍光体層の厚さを厚くすることが可能であった(例えば、特許文献1参照)。また、発光効率を向上させるため、タリウム、ナトリウム、ルビジウムなどの賦活剤と呼ばれる元素をヨウ化セシウムに含有させることが知られている。 Among them, cesium iodide (CsI) is relatively high in the efficiency of converting X-rays into visible light, and can easily form a phosphor into a columnar crystal structure by vapor deposition. It was possible to suppress the scattering of the phosphor layer and to increase the thickness of the phosphor layer (see, for example, Patent Document 1). In addition, it is known that cesium iodide contains an element called an activator such as thallium, sodium, or rubidium in order to improve luminous efficiency.
 上記ヨウ化セシウムの結晶は潮解性を有し、吸湿することで柱状結晶が崩れ、ライトガイド効果を得ることができなくなる。従来は、柱状結晶を、CVD法を用いたポリパラキシリレン樹脂の成膜や紫外線硬化型粘着シートを保護層に用いる手法で耐湿性を確保していた(例えば、特許文献2参照)。しかし、水蒸気バリア性が十分でない上に、柱状結晶の間にまで深く樹脂で埋めてしまうため、ライトガイド効果を十分に利用できないことが問題である。 The cesium iodide crystal has deliquescence, and the columnar crystal is broken by absorbing moisture, making it impossible to obtain a light guide effect. Conventionally, moisture resistance has been ensured for columnar crystals by film formation of polyparaxylylene resin using a CVD method or a method using an ultraviolet curable adhesive sheet as a protective layer (see, for example, Patent Document 2). However, the water vapor barrier property is not sufficient, and the resin is buried deeply between the columnar crystals, so that the light guide effect cannot be sufficiently utilized.
 更にシンチレータパネル、特に結晶表面がフォトダイオードを有するTFT基板と接する形でX線画像撮影装置となる場合は、シンチレータパネルはTFT基板と同等の平面性をもたなければならないが、蒸着にて形成されるシンチレータ層は分布ができてしまう上に、成膜過程での熱影響を受けた基板は、平面性を確保することが難しいことが問題であった。
特開昭63-215987号公報 特開2006-343277号公報
Furthermore, when the scintillator panel, especially the crystal surface is in contact with a TFT substrate having a photodiode, becomes an X-ray imaging apparatus, the scintillator panel must have the same planarity as the TFT substrate, but is formed by vapor deposition. In addition, the scintillator layer to be distributed has a problem in that it is difficult to ensure the flatness of the substrate that has been affected by heat during the film formation process.
JP-A-63-215987 JP 2006-343277 A
 本発明の目的は、上記問題に鑑みてなされたものであり、耐湿性、平面性に優れたシンチレータパネルとその製造方法を提供することにある。 An object of the present invention has been made in view of the above problems, and is to provide a scintillator panel excellent in moisture resistance and flatness and a method for manufacturing the scintillator panel.
 本発明の上記目的は、下記の構成により達成される。 The above object of the present invention is achieved by the following configuration.
 1.基板上に柱状結晶からなるシンチレータ層を有したシンチレータプレートと該シンチレータプレートを被覆するように設けられた保護フィルムとからなるシンチレータパネルにおいて、該保護フィルムが積層されている有機フィルムであり、該柱状結晶の先端の0.01~30μmが該保護フィルムに存在することを特徴とするシンチレータパネル。 1. A scintillator panel comprising a scintillator plate having a scintillator layer made of columnar crystals on a substrate and a protective film provided so as to cover the scintillator plate, is an organic film in which the protective film is laminated, and the columnar A scintillator panel characterized in that 0.01 to 30 μm of the tip of the crystal is present in the protective film.
 2.前記保護フィルムのシンチレータ層側が硬化樹脂で構成されていることを特徴とする前記1に記載のシンチレータパネル。 2. 2. The scintillator panel according to 1 above, wherein the scintillator layer side of the protective film is made of a cured resin.
 3.前記保護フィルムでシンチレータプレートが真空封止されていることを特徴とする前記1または2に記載のシンチレータパネル。 3. 3. The scintillator panel according to 1 or 2, wherein the scintillator plate is vacuum-sealed with the protective film.
 4.前記基板が樹脂基板であることを特徴とする前記1~3のいずれか1項に記載のシンチレータパネル。 4. 4. The scintillator panel according to any one of 1 to 3, wherein the substrate is a resin substrate.
 5.前記シンチレータ層がヨウ化セシウムと賦活剤を含有する蒸着柱状結晶からなることを特徴とする前記1~4のいずれか1項に記載のシンチレータパネル。 5. 5. The scintillator panel according to any one of 1 to 4, wherein the scintillator layer is made of vapor-deposited columnar crystals containing cesium iodide and an activator.
 6.前記1~5のいずれか1項に記載のシンチレータパネルの製造方法であって、前記保護フィルムで真空封止した後に、樹脂を硬化させて硬化樹脂とすることを特徴とするシンチレータパネルの製造方法。 6. 6. The method of manufacturing a scintillator panel according to any one of 1 to 5, wherein the resin is cured to form a cured resin after vacuum sealing with the protective film. .
 7.前記硬化樹脂が加圧状態で形成されることを特徴とする前記6に記載のシンチレータパネルの製造方法。 7. 7. The method of manufacturing a scintillator panel according to 6, wherein the cured resin is formed in a pressurized state.
 本発明の上記手段により、耐湿性、平面性に優れたシンチレータパネルとその製造方法を提供することにある。 It is an object of the present invention to provide a scintillator panel excellent in moisture resistance and flatness and a method for manufacturing the scintillator panel.
シンチレータパネルの断面図である。It is sectional drawing of a scintillator panel. 蒸着装置の概略構成図である。It is a schematic block diagram of a vapor deposition apparatus. 本発明のシンチレータパネルの拡大断面図である。It is an expanded sectional view of the scintillator panel of the present invention.
符号の説明Explanation of symbols
 1 基板
 2 シンチレータ層(蛍光体層)
 2a 柱状結晶
 3 絶縁層
 4 反射層
 5 保護フィルム
 6 硬化樹脂
 10 シンチレータパネル
 20 蒸着装置
 21 真空ポンプ
 22 真空容器
 23 抵抗加熱ルツボ
 24 回転機構
 25 基板ホルダ
1 Substrate 2 Scintillator layer (phosphor layer)
2a Columnar crystal 3 Insulating layer 4 Reflecting layer 5 Protective film 6 Cured resin 10 Scintillator panel 20 Vapor deposition device 21 Vacuum pump 22 Vacuum vessel 23 Resistance heating crucible 24 Rotating mechanism 25 Substrate holder
 本発明は、基板上に柱状結晶からなるシンチレータ層を有したシンチレータプレートを被覆するように保護フィルムが設けられたシンチレータパネルにおいて、保護フィルムのシンチレータ側表面が硬化樹脂で構成され、柱状結晶の先端の0.01~30μmが該保護フィルムに存在することを特徴とする。 The present invention relates to a scintillator panel provided with a protective film so as to cover a scintillator plate having a scintillator layer made of a columnar crystal on a substrate, the scintillator side surface of the protective film is made of a cured resin, and the tip of the columnar crystal 0.01 to 30 μm is present in the protective film.
 以下、シンチレータパネルの構成について記載する。 The following describes the configuration of the scintillator panel.
 (基板)
 本発明のシンチレータパネルにおいて用いられる基板としては、高分子材料(樹脂)や金属板が用いられるが、高分子材料(樹脂)が好ましい。
(substrate)
As the substrate used in the scintillator panel of the present invention, a polymer material (resin) or a metal plate is used, but a polymer material (resin) is preferable.
 高分子材料(樹脂)の内、可撓性のあるシートとしてはウェブに加工できるものが好適であり、この点から言えば、セルロースアセテートフィルム、ポリエステルフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリアミドフィルム、ポリイミドフィルム、トリアセテートフィルム、ポリカーボネートフィルム等のプラスチックフィルムが好ましい。これらの中でも、特にポリイミドまたはポリエチレンナフタレートフィルムが好ましく用いられる。また、基板の厚さとしては、画像特性の均一性の面から50~500μmが好ましい。 Among the polymer materials (resins), those that can be processed into webs are suitable as flexible sheets. From this point, cellulose acetate film, polyester film, polyethylene terephthalate film, polyethylene naphthalate film, polyamide A plastic film such as a film, a polyimide film, a triacetate film, or a polycarbonate film is preferred. Among these, a polyimide or polyethylene naphthalate film is particularly preferably used. The thickness of the substrate is preferably 50 to 500 μm from the viewpoint of uniformity of image characteristics.
 (反射層)
 本発明においては、基板とシンチレータ層との間に反射層を有してもよい。
(Reflective layer)
In the present invention, a reflective layer may be provided between the substrate and the scintillator layer.
 反射層は、シンチレータ層で発せられた蛍光の基板方向に放射進行する電磁波を反射し得る層である。反射層としては金属薄膜が好ましく用いられる。金属薄膜としては、Al、Ag、Cr、Cu、Ni、Ti、Mg、Rh、Pt及びAuからなる群の中の物質を含む材料からなる膜が好ましく用いられる。更にCr膜上にAu膜を形成する等、金属薄膜を2層以上形成してもよい。上記の中でも、特にAg、Alを含有する膜を用いる態様が好ましい態様である。 The reflection layer is a layer that can reflect the electromagnetic wave radiated in the direction of the fluorescent light emitted from the scintillator layer. A metal thin film is preferably used as the reflective layer. As the metal thin film, a film made of a material containing a substance in the group consisting of Al, Ag, Cr, Cu, Ni, Ti, Mg, Rh, Pt and Au is preferably used. Further, two or more metal thin films may be formed, for example, an Au film is formed on the Cr film. Among these, an embodiment using a film containing Ag and Al is a preferable embodiment.
 なお、反射層の厚さは0.005~0.3μm、より好ましくは0.01~0.2μmであることが発光光取り出し効率の観点から好ましい。 The thickness of the reflective layer is preferably 0.005 to 0.3 μm, more preferably 0.01 to 0.2 μm, from the viewpoint of emission light extraction efficiency.
 (絶縁層)
 本発明においては、反射層とシンチレータ層の間に絶縁層を有してもよい。
(Insulating layer)
In the present invention, an insulating layer may be provided between the reflective layer and the scintillator layer.
 絶縁層としては、例えば、ポリエステル樹脂、ポリアクリル酸共重合体、ポリアクリルアミドまたはこれらの誘導体及び部分加水分解物、ポリ酢酸ビニル、ポリアクリルニトリル、ポリアクリル酸エステル等のビニル重合体及びその共重合体、ロジン、シェラック等の天然物及びその誘導体などの樹脂を含有する層が挙げられる。 Examples of the insulating layer include polyester resins, polyacrylic acid copolymers, polyacrylamide or derivatives and partial hydrolysates thereof, vinyl polymers such as polyvinyl acetate, polyacrylonitrile, polyacrylic acid esters, and copolymers thereof. Examples thereof include layers containing resins such as natural products such as coalescence, rosin and shellac and derivatives thereof.
 絶縁層の厚みは0.2~5.0μmであるのが好ましく、0.5~4.0μmであるのがより好ましく、0.7~3.5μmであるのが特に好ましい。 The thickness of the insulating layer is preferably 0.2 to 5.0 μm, more preferably 0.5 to 4.0 μm, and particularly preferably 0.7 to 3.5 μm.
 (シンチレータ層)
 本発明において、シンチレータ層を構成する柱状結晶の先端の0.01~30μmが保護フィルムに存在する。
(Scintillator layer)
In the present invention, 0.01 to 30 μm at the tip of the columnar crystal constituting the scintillator layer is present in the protective film.
 本発明に係るシンチレータ層は、好ましくはX線等の入射された放射線のエネルギーを吸収して、波長が300nmから800nmの電磁波、即ち可視光線を中心に紫外光から赤外光に亘る電磁波(光)を発光する蛍光体(シンチレータ)を含有する層であり、ヨウ化セシウムと賦活剤を含有する蒸着柱状結晶からなることが好ましい。 The scintillator layer according to the present invention preferably absorbs the energy of incident radiation such as X-rays, and has an electromagnetic wave having a wavelength of 300 nm to 800 nm, that is, an electromagnetic wave (optical light ranging from ultraviolet light to infrared light centering on visible light). ), And is preferably a vapor-deposited columnar crystal containing cesium iodide and an activator.
 本発明で好ましく用いられる賦活剤とは、ヨウ化セシウム中に含有されることで発光効率を上昇し得る元素である。賦活剤としては、タリウム、ナトリウム、ルビジウム等が挙げられるが、特にタリウムが好ましく用いられる。ヨウ化セシウム中に含有させるには、例えば、ヨウ化セシウムとタリウム化合物を含む蒸着源を加熱し、上記基板上に蒸着する方法により行うことができる。 The activator preferably used in the present invention is an element that can increase luminous efficiency by being contained in cesium iodide. Examples of the activator include thallium, sodium, rubidium and the like, and thallium is particularly preferably used. In order to make it contain in a cesium iodide, it can carry out by the method of heating the vapor deposition source containing a cesium iodide and a thallium compound, and vapor-depositing on the said board | substrate, for example.
 本発明で好ましく用いられる蒸着柱状結晶とは、ヨウ化セシウムと賦活剤を含む化合物とを含有する蒸着源を加熱し、基板上に蒸着して形成された結晶である。 The vapor-deposited columnar crystal preferably used in the present invention is a crystal formed by heating a vapor deposition source containing cesium iodide and a compound containing an activator and vapor-depositing on a substrate.
 なお、シンチレータ層の厚さは100~800μmであることが好ましく、120~700μmであることが、輝度と鮮鋭性の特性をバランスよく得られる点からより好ましい。 Note that the thickness of the scintillator layer is preferably 100 to 800 μm, and more preferably 120 to 700 μm from the viewpoint of obtaining a good balance between luminance and sharpness characteristics.
 (保護フィルム)
 本発明に係る保護フィルムは積層された有機フィルムであり、その構成例としては、保護層(最外層)/防湿層/熱融着層(最内層)の構成を有した多層積層材料が挙げられる。また、更に各層は必要に応じて多層とすることも可能となっている。本発明に係る保護フィルムによって、シンチレータプレートが真空封止されていることが好ましい。
(Protective film)
The protective film according to the present invention is a laminated organic film, and a configuration example thereof includes a multilayer laminated material having a configuration of a protective layer (outermost layer) / a moisture-proof layer / a thermal fusion layer (innermost layer). . Furthermore, each layer can be formed in multiple layers as required. The scintillator plate is preferably vacuum-sealed by the protective film according to the present invention.
 〈熱融着層(最内層)〉
 最内層の熱可塑性樹脂フィルムとしては、EVA、PP、LDPE、LLDPE及びメタロセン触媒を使用して製造したLDPE、LLDPE、またこれらフィルムとHDPEフィルムの混合使用したフィルムとを使用することが好ましい。
<Heat-fusion layer (innermost layer)>
As the innermost thermoplastic resin film, it is preferable to use EVA, PP, LDPE, LLDPE, and LDPE, LLDPE produced by using a metallocene catalyst, or a film using a mixture of these films and HDPE films.
 〈防湿層(中間層)〉
 特開平6-95302号公報及び真空ハンドブック増訂版p132~134(ULVAC 日本真空技術K.K)に記載されている如き、無機膜を少なくとも一層有する層が挙げられる。無機膜としては、金属蒸着膜及び無機酸化物蒸着膜が挙げられる。
<Dampproof layer (intermediate layer)>
Examples thereof include a layer having at least one inorganic film as described in JP-A-6-95302 and the vacuum handbook revised edition p132 to 134 (ULVAC Japan Vacuum Technology KK). Examples of the inorganic film include a metal vapor deposition film and an inorganic oxide vapor deposition film.
 金属蒸着膜としては、例えば、ZrN、SiC、TiC、Si、単結晶Si、ZrN、PSG、アモルファスSi、W、アルミニウム等が挙げられ、特に好ましい金属蒸着膜としては、例えば、アルミニウムが挙げられる。 Examples of the metal vapor deposition film include ZrN, SiC, TiC, Si 3 N 4 , single crystal Si, ZrN, PSG, amorphous Si, W, aluminum, and the like. Particularly preferable metal vapor deposition film includes, for example, aluminum. Can be mentioned.
 無機物蒸着膜としては、薄膜ハンドブックp879~901(日本学術振興会)、真空技術ハンドブックp502~509、p612、p810(日刊工業新聞社)、真空ハンドブック増訂版p132~134(ULVAC 日本真空技術K.K)に記載されている如き無機物蒸着膜が挙げられる。これらの無機物蒸着膜としては、例えば、Cr、Si(x=1、y=1.5~2.0)、Ta、ZrN、SiC、TiC、PSG、Si、単結晶Si、アモルファスSi、W、AI等が用いられる。 Examples of inorganic deposited films include thin film handbooks p879-901 (Japan Society for the Promotion of Science), vacuum technology handbooks p502-509, p612, p810 (Nikkan Kogyo Shimbun), vacuum handbook revised editions p132-134 (ULVAC Japan Vacuum Technology K.K. Inorganic vapor-deposited films as described in K). As these inorganic vapor deposition films, for example, Cr 2 O 3 , Si x O y (x = 1, y = 1.5 to 2.0), Ta 2 O 3 , ZrN, SiC, TiC, PSG, Si 3 N 4 , single crystal Si, amorphous Si, W, AI 2 O 3 or the like is used.
 防湿層の基材として使用する熱可塑性樹脂フィルムとしては、エチレンテトラフルオロエチル共重合体(ETFE)、高密度ポリエチレン(HDPE)、延伸ポリプロピレン(OPP)、ポリスチレン(PS)、ポリメチルメタクリレート(PMMA)、2軸延伸ナイロン6、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリイミド、ポリエーテルスチレン(PES)など一般の包装用フィルムに使用されているフィルム材料を使用することができる。 The thermoplastic resin film used as a base material for the moisture-proof layer includes ethylene tetrafluoroethyl copolymer (ETFE), high-density polyethylene (HDPE), expanded polypropylene (OPP), polystyrene (PS), and polymethyl methacrylate (PMMA). Film materials used for general packaging films such as biaxially stretched nylon 6, polyethylene terephthalate (PET), polycarbonate (PC), polyimide, and polyether styrene (PES) can be used.
 蒸着膜を作る方法としては、真空技術ハンドブック及び包装技術Vol.29-No.8に記載されている如き一般的な方法、例えば、抵抗または高周波誘導加熱法、エレクトロビーム(EB)法、プラズマ(PCVD)等により作ることができる。蒸着膜の厚さとしては40~200nmの範囲が好ましく、より好ましくは50~180nmの範囲である。 As a method of forming a deposited film, vacuum technology handbook and packaging technology Vol. 29-No. 8, for example, a resistance or high-frequency induction heating method, an electrobeam (EB) method, plasma (PCVD), or the like. The thickness of the deposited film is preferably in the range of 40 to 200 nm, more preferably in the range of 50 to 180 nm.
 〈保護層(最外層)〉
 蒸着フィルムシートを介して用いられる熱可塑性樹脂フィルムとしては、一般の包装材料として使用されている高分子フィルムである低密度ポリエチレン(LDPE)、HDPE、線状低密度ポリエチレン(LLDPE)、中密度ポリエチレン、未延伸ポリプロピレン(CPP)、OPP、延伸ナイロン(ONy)、PET、セロハン、ポリビニルアルコール(PVA)、延伸ビニロン(OV)、エチレン-酢酸ビニル共重合体(EVOH)、塩化ビニリデン(PVDC)、フッ素を含むオレフィン(フルオロオレフィン)の重合体、またはフッ素を含むオレフィンを共重合体等が使用できる。
<Protective layer (outermost layer)>
The thermoplastic resin film used via the vapor-deposited film sheet is a low-density polyethylene (LDPE), HDPE, linear low-density polyethylene (LLDPE), or medium-density polyethylene that is a polymer film used as a general packaging material. Unstretched polypropylene (CPP), OPP, stretched nylon (ONy), PET, cellophane, polyvinyl alcohol (PVA), stretched vinylon (OV), ethylene-vinyl acetate copolymer (EVOH), vinylidene chloride (PVDC), fluorine An olefin (fluoroolefin) -containing polymer or a fluorine-containing olefin copolymer can be used.
 また、これら熱可塑性樹脂フィルムは、必要に応じて異種フィルムと共押し出しで作った多層フィルム、延伸角度を変えて張り合わせて作った多層フィルム等も当然使用できる。更に必要とする包装材料の物性を得るために、使用するフィルムの密度、分子量分布を組み合わせて作ることも当然可能である。 Also, as the thermoplastic resin film, a multilayer film made by coextrusion with a different film, a multilayer film made by laminating at different stretching angles, etc. can be used as needed. Furthermore, in order to obtain the required physical properties of the packaging material, it is of course possible to combine the density and molecular weight distribution of the film used.
 無機物蒸着層を使用しない場合は、保護層に防湿層としての機能を持たせる必要がある。この場合、保護層に使用する熱可塑性樹脂フィルムの中より必要に応じて単体でもよいし、または2種以上のフィルムを積層させて用いることができる。例えば、CPP/OPP、PET/OPP/LDPE、Ny/OPP/LDPE、CPP/OPP/EVOH、サランUB/LLDPE(ここでサランUBとは、旭化成工業株式会社製の塩化ビニリデン/アクリル酸エステル系共重合樹脂を原料とした2軸延伸フィルムを示す。)K-OP/PP、K-PET/LLDPE、K-Ny/EVA(ここでKは、塩化ビニリデン樹脂をコートしたフィルムを示す。)等が使用されている。 When not using an inorganic deposition layer, it is necessary to provide the protective layer with a function as a moisture-proof layer. In this case, the thermoplastic resin film used for the protective layer may be a simple substance as necessary, or two or more kinds of films may be laminated. For example, CPP / OPP, PET / OPP / LDPE, Ny / OPP / LDPE, CPP / OPP / EVOH, Saran UB / LLDPE (where Saran UB is a vinylidene chloride / acrylate ester co-product of Asahi Kasei Kogyo Co., Ltd.) Biaxially stretched films made of polymerized resin are shown.) K-OP / PP, K-PET / LLDPE, K-Ny / EVA (where K is a film coated with vinylidene chloride resin) and the like. in use.
 これら保護フィルムの製造方法としては、一般的に知られている各種の方法が用いられ、例えば、ウェットラミネート法、ドライラミネート法、ホットメルトラミネート法、押し出しラミネート法、熱ラミネート法を利用して作ることが可能である。無機物を蒸着したフィルムを使用しない場合も同様な方法が当然使えるが、これらの他に使用材料によっては多層インフレーション方式、共押し出し成形方式により作ることができる。 As a method for producing these protective films, various generally known methods are used. For example, the protective film is produced using a wet lamination method, a dry lamination method, a hot melt lamination method, an extrusion lamination method, or a thermal lamination method. It is possible. Of course, the same method can be used when a film on which an inorganic material is deposited is not used, but in addition to these, depending on the material used, it can be formed by a multilayer inflation method or a coextrusion method.
 積層する際に使用される接着剤としては、一般的に知られている接着剤が使用可能である。例えば、各種ポリエチレン樹脂、各種ポリプロピレン樹脂等のポリオレフィン系熱可塑性樹脂熱溶解接着剤、エチレン-プロピレン共重合体樹脂、エチレン-酢酸ビニル共重合体樹脂、エチレン-エチルアクリレート共重合体樹脂等のエチレン共重合体樹脂、エチレン-アクリル酸共重合体樹脂、アイオノマー樹脂等の熱可塑性樹脂熱溶融接着剤、その他熱溶融型ゴム系接着剤等がある。 As the adhesive used when laminating, generally known adhesives can be used. For example, polyolefin thermoplastic resins such as various polyethylene resins and various polypropylene resins, hot melt adhesives, ethylene-propylene copolymer resins, ethylene-vinyl acetate copolymer resins, ethylene-ethyl acrylate copolymer resins, and other ethylene copolymers. There are thermoplastic resin hot-melt adhesives such as polymer resins, ethylene-acrylic acid copolymer resins, ionomer resins, and other hot-melt rubber adhesives.
 エマルジョン、ラテックス状の接着剤であるエマルジョン型接着剤の代表例としては、ポリ酢酸ビニル樹脂、酢酸ビニル-エチレン共重合体樹脂、酢酸ビニルとアクリル酸エステル共重合体樹脂、酢酸ビニルとマレイン酸エステル共重合体樹脂、アクリル酸共重合物、エチレン-アクリル酸共重合物等のエマルジョンがある。 Typical examples of emulsion-type adhesives that are emulsion and latex adhesives are polyvinyl acetate resin, vinyl acetate-ethylene copolymer resin, vinyl acetate and acrylate copolymer resin, vinyl acetate and maleate ester. There are emulsions of copolymer resins, acrylic acid copolymers, ethylene-acrylic acid copolymers, and the like.
 ラテックス型接着剤の代表例としては、天然ゴム、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)等のゴムラテックスがある。また、ドライラミネート用接着剤としては、イソシアネート系接着剤、ウレタン系接着剤、ポリエステル系接着剤等があり、その他、パラフィンワックス、マイクロクリスタリンワックス、エチレン-酢酸ビニル共重合体樹脂、エチレン-エチルアクリレート共重合体樹脂等をブレンドしたホットメルトラミネート接着剤、感圧接着剤、感熱接着剤等公知の接着剤を用いることもできる。 Typical examples of latex adhesives include rubber latex such as natural rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), and chloroprene rubber (CR). Also, dry laminate adhesives include isocyanate adhesives, urethane adhesives, polyester adhesives, and others, paraffin wax, microcrystalline wax, ethylene-vinyl acetate copolymer resin, ethylene-ethyl acrylate. Known adhesives such as hot melt laminate adhesives, pressure sensitive adhesives, heat sensitive adhesives and the like blended with copolymer resins can also be used.
 エクストルージョンラミネート用ポリオレフィン系樹脂接着剤はより具体的に言えば、各種ポリエチレン樹脂、ポリプロピレン樹脂、ポリブチレン樹脂などのポリオレフィン樹脂からなる重合物及びエチレン共重合体(EVA、EEA、等)樹脂の他、L-LDPE樹脂の如く、エチレンと他のモノマー(α-オレフィン)を共重合させたもの、Dupot社のサーリン、三井ポリケミカル社のハイミラン等のアイオノマー樹脂(イオン共重合体樹脂)及び三井石油化学(株)のアドマー(接着性ポリマー)等である。 More specifically, the polyolefin-based resin adhesive for extrusion laminating includes, in addition to polymers and ethylene copolymer (EVA, EEA, etc.) resins made of polyolefin resins such as various polyethylene resins, polypropylene resins and polybutylene resins, Ionomer resin (ionic copolymer resin) such as L-LDPE resin copolymerized with ethylene and other monomer (α-olefin), Surin from Dupot, Himiran from Mitsui Polychemical, and Mitsui Petrochemical Admer (adhesive polymer), etc.
 その他、紫外線硬化型接着剤も最近使われはじめた。特にLDPE樹脂とL-LDPE樹脂が安価でラミネート適性に優れているので好ましい。また、前記樹脂を2種以上ブレンドして各樹脂の欠点をカバーした混合樹脂は特に好ましい。例えば、L-LDPE樹脂とLDPE樹脂とをブレンドすると延展性が向上し、ネックインが小さくなるのでラミネート速度が向上し、ピンホールが少なくなる。 In addition, UV curable adhesives have recently begun to be used. In particular, LDPE resin and L-LDPE resin are preferred because they are inexpensive and have excellent laminating properties. A mixed resin in which two or more of the above resins are blended to cover the defects of each resin is particularly preferable. For example, when L-LDPE resin and LDPE resin are blended, spreadability is improved and neck-in is reduced, so that the lamination speed is improved and pinholes are reduced.
 (硬化樹脂)
 硬化樹脂は保護フィルムのシンチレータ層側に配置されており、保護フィルムで真空封止された後、加圧状態で硬化され、保護フィルムを形成する。硬化樹脂には熱硬化するものと紫外線硬化するものとがあり、どちらの場合でも本発明の効果は得られる。これらの硬化樹脂を真空封止の後に硬化させるため、従来の液状樹脂では覆えなかった柱状結晶間も覆うことができ、更に硬化樹脂の厚みで結晶先端を覆う厚みを制御できるので、柱状結晶の空間を必要以上に埋めることなく、ライトガイド効果を十分に利用できる。また、粘着シート状の硬化樹脂でも本発明の効果は得られる。この場合は、保護フィルムの最内層に粘着シート状の硬化樹脂を貼り付けてからシンチレータプレートを真空封止することで達成できる。
(Cured resin)
The cured resin is disposed on the scintillator layer side of the protective film, and after being vacuum-sealed with the protective film, is cured in a pressurized state to form the protective film. The curable resins include those that are thermally cured and those that are cured by ultraviolet rays. In either case, the effects of the present invention can be obtained. Since these cured resins are cured after vacuum sealing, it is possible to cover between columnar crystals that could not be covered by conventional liquid resins, and furthermore, the thickness of the crystal tip can be controlled by the thickness of the cured resin. The light guide effect can be fully utilized without filling the space more than necessary. The effect of the present invention can be obtained even with a cured resin in the form of an adhesive sheet. In this case, it can be achieved by vacuum-sealing the scintillator plate after applying the adhesive sheet-like cured resin to the innermost layer of the protective film.
 保護フィルムの内側、シンチレータ層を接する部分に配置される硬化樹脂は、ゲル状の樹脂を塗布するか、硬化型樹脂シートを張り合わせて保護フィルムを作製する。シンチレータプレートと同等の大きさに硬化樹脂を作製することが重要である。樹脂の厚みとしては、柱状結晶が樹脂に埋まってしまうことで起こる鮮鋭性の低下を必要最低限に抑えるために、0.01~20μm程度が好ましい。 The cured resin placed on the inner side of the protective film and the portion that contacts the scintillator layer is either coated with a gel-like resin or laminated with a curable resin sheet to produce a protective film. It is important to produce the cured resin in the same size as the scintillator plate. The thickness of the resin is preferably about 0.01 to 20 μm in order to minimize the reduction in sharpness caused by the columnar crystals being embedded in the resin.
 本発明で使用できる熱硬化樹脂としては、公知のものが使用できる。硬化性樹脂、硬化剤が混合されてなる材料であって、加熱を行うことで硬化反応する材料であればいずれの材料でもよい。例えば、アクリル系、シリコーン系、エポキシ系である。 As the thermosetting resin that can be used in the present invention, known resins can be used. Any material may be used as long as it is a material in which a curable resin and a curing agent are mixed and which undergoes a curing reaction by heating. For example, acrylic type, silicone type, and epoxy type.
 紫外線硬化樹脂としては公知のものが使用できる。紫外線硬化樹脂成分、光重合開始材が混合されてなる材料であって、紫外線照射によって架橋反応する材料であればいずれの材料でもよい。例えば、ゴム系、シリコーン系、アクリル系、エポキシ系の材料である。 As the ultraviolet curable resin, known ones can be used. Any material may be used as long as it is a material in which an ultraviolet curable resin component and a photopolymerization initiator are mixed and which undergoes a crosslinking reaction upon irradiation with ultraviolet rays. For example, rubber materials, silicone materials, acrylic materials, and epoxy materials.
 また、柱状結晶のライトガイド効果を有効に利用するためには共に透明性が高く、屈折率が低いものが好ましく、硬化後の樹脂の透過率が550nmの波長で80%以上、屈折率が1.8以下であれば、どのような樹脂でも本発明の効果が得られる。このような透過率、屈折率の観点よりフッ素系樹脂、シリコーン系樹脂が好ましく用いられる。 Further, in order to effectively use the light guide effect of the columnar crystals, those having both high transparency and low refractive index are preferable, and the cured resin has a transmittance of 80% or more at a wavelength of 550 nm and a refractive index of 1 The effect of the present invention can be obtained with any resin as long as it is .8 or less. From the viewpoints of such transmittance and refractive index, fluorine-based resins and silicone-based resins are preferably used.
 上記のような硬化樹脂を用いて結晶間埋めることで、結晶が潮解しても硬化樹脂が区画化の役割を果たし、鮮鋭性の劣化を抑えることができる。即ち、耐湿性が向上する。また、平面性のよいガラス板などに接している状態で硬化させることで、蒸着時のプレートのそりを吸収することができるため、シンチレータパネルの平面性が向上する。 By filling the crystal with the cured resin as described above, the cured resin can play a role of partitioning even if the crystal is deliquescent, and deterioration of sharpness can be suppressed. That is, moisture resistance is improved. Moreover, since it can absorb the curvature | strain of the plate at the time of vapor deposition by making it harden | cure in the state which is in contact with the glass plate with good flatness, the flatness of a scintillator panel improves.
 (シンチレータパネル)
 本発明のシンチレータパネルについて図1を参照して説明する。
(Scintillator panel)
The scintillator panel of the present invention will be described with reference to FIG.
 本発明のシンチレータパネル10は、図1に示すように基板1上にシンチレータ層2を備えるものであり、シンチレータ層2に放射線が照射されると、シンチレータは入射した放射線のエネルギーを吸収して、波長が300nmから800nmの電磁波、即ち可視光線を中心に紫外光から赤外光に亘る電磁波(光)を発光する。 The scintillator panel 10 of the present invention is provided with a scintillator layer 2 on a substrate 1 as shown in FIG. 1. When the scintillator layer 2 is irradiated with radiation, the scintillator absorbs the energy of the incident radiation, An electromagnetic wave having a wavelength of 300 nm to 800 nm, that is, an electromagnetic wave (light) ranging from ultraviolet light to infrared light centering on visible light is emitted.
 以下、基板1上にシンチレータ層2を形成させる方法について説明する。 Hereinafter, a method for forming the scintillator layer 2 on the substrate 1 will be described.
 シンチレータ層2は、蒸着法により形成される。蒸着法は基板1を公知の蒸着装置内に設置すると共に、蒸着源にヨウ化セシウム及び賦活剤を含むシンチレータ層2の原材料を充填した後、装置内を排気すると同時に窒素等の不活性なガスを導入口から導入して1.333Pa~1.33×10-3Pa程度の真空とする。次いで、原材料を抵抗加熱法、エレクトロンビーム法などの方法で加熱蒸発させて、基板1表面にヨウ化セシウムの蒸着柱状結晶を堆積させ、基板1上にシンチレータ層2が形成される。 The scintillator layer 2 is formed by a vapor deposition method. In the vapor deposition method, the substrate 1 is set in a known vapor deposition apparatus, and after the raw material of the scintillator layer 2 containing cesium iodide and an activator is filled in the vapor deposition source, the apparatus is evacuated and at the same time an inert gas such as nitrogen. Is introduced through the introduction port to make a vacuum of about 1.333 Pa to 1.33 × 10 −3 Pa. Next, the raw material is heated and evaporated by a resistance heating method, an electron beam method, or the like to deposit vapor-deposited columnar crystals of cesium iodide on the surface of the substrate 1, and a scintillator layer 2 is formed on the substrate 1.
 なお、図3に図1の拡大図を示す。シンチレータ層2を構成する柱状結晶2aの先端部が硬化樹脂6に埋まっていることがわかる。 FIG. 3 shows an enlarged view of FIG. It can be seen that the tip of the columnar crystal 2 a constituting the scintillator layer 2 is buried in the cured resin 6.
 次に、図2を参照して、蒸着法を行う際に使用する蒸着装置の一例として、蒸着装置20について説明する。 Next, a vapor deposition apparatus 20 will be described as an example of a vapor deposition apparatus used when performing the vapor deposition method with reference to FIG.
 蒸着装置20には、真空ポンプ21と、真空ポンプ21の作動により内部が真空となる真空容器22とが備えられている。真空容器22の内部には、蒸着源として抵抗加熱ルツボ23が備えられており、この抵抗加熱ルツボ23の上方には回転機構24により回転可能に構成された、反射層4、絶縁層3を備えた基板1が基板ホルダ25を介して設置されている。また、抵抗加熱ルツボ23と基板1との間には、必要に応じて抵抗加熱ルツボ23から蒸発する蛍光体の蒸気流を調節するためのスリットが設けられている。なお、基板1は、蒸着装置20を使用する際に基板ホルダ25に設置して使用するようになっている。 The vapor deposition apparatus 20 includes a vacuum pump 21 and a vacuum container 22 that is evacuated by the operation of the vacuum pump 21. Inside the vacuum vessel 22, a resistance heating crucible 23 is provided as a vapor deposition source, and above the resistance heating crucible 23, a reflection layer 4 and an insulating layer 3 are provided so as to be rotatable by a rotating mechanism 24. The substrate 1 is installed via the substrate holder 25. A slit for adjusting the vapor flow of the phosphor evaporating from the resistance heating crucible 23 is provided between the resistance heating crucible 23 and the substrate 1 as necessary. The substrate 1 is installed on the substrate holder 25 when the vapor deposition apparatus 20 is used.
 シンチレータ層が形成される基板1の温度は、蒸着開始時は室温25~50℃に設定することが好ましく、蒸着中は100~300℃、より好ましくは150~250℃に設定することが好ましい。 The temperature of the substrate 1 on which the scintillator layer is formed is preferably set to room temperature 25 to 50 ° C. at the start of vapor deposition, and preferably set to 100 to 300 ° C., more preferably 150 to 250 ° C. during vapor deposition.
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.
 実施例1
 〔シンチレータパネル1の作製〕
 (シンチレータプレート)
 ヨウ化セシウム(CsI)に添加剤としてTlを混合し、蒸着材料を得た。TlはCsIに対して0.3mol%の蒸着材料を作製した。蒸着材料を抵抗加熱ルツボに充填し、また回転する支持体ホルダに厚さ125μmのポリイミド樹脂基板を設置し、基板と2個の蒸発源との間隔を400mmに調節した。
Example 1
[Preparation of scintillator panel 1]
(Scintillator plate)
Tl as an additive was mixed with cesium iodide (CsI) to obtain a vapor deposition material. Tl produced a deposition material of 0.3 mol% with respect to CsI. A vapor deposition material was filled in a resistance heating crucible, and a polyimide resin substrate having a thickness of 125 μm was placed on a rotating support holder, and the distance between the substrate and the two evaporation sources was adjusted to 400 mm.
 続いて、蒸着装置内を一旦排気した後に、Arガスを導入して0.1Paに真空度を調整した後、10rpmの速度で基板ホルダ25を回転しながら基板の温度を200℃に保持した。次いで、蒸着材料が入っている抵抗加熱ルツボを加熱して、シンチレータ用蛍光体を蒸着する。シンチレータ層(蛍光体層)の膜厚が500μmになったところで、蒸着を終了させシンチレータプレートを得た。 Subsequently, after the inside of the vapor deposition apparatus was once evacuated, Ar gas was introduced and the degree of vacuum was adjusted to 0.1 Pa, and then the substrate temperature was maintained at 200 ° C. while rotating the substrate holder 25 at a speed of 10 rpm. Next, the resistance heating crucible containing the vapor deposition material is heated to deposit a scintillator phosphor. When the film thickness of the scintillator layer (phosphor layer) reached 500 μm, vapor deposition was terminated to obtain a scintillator plate.
 (保護フィルム)
 保護層としてPETフィルム25μm、防湿層として無機物蒸着層、熱融着層としてCPPフィルム40μを張り合わせた保護フィルムを用いて、熱融着層同士が接するように合わせ、3辺をシールした袋を作製する。このとき、片側の熱融着層の一部に熱硬化樹脂を30μmの厚みで塗布した領域を作製しておく。使用した熱硬化樹脂は、信越シリコーン製のシリコーン樹脂OF-180A/Bである。
(Protective film)
Using a protective film with 25 μm of PET film as the protective layer, an inorganic vapor deposition layer as the moisture-proof layer, and 40 μm of the CPP film as the heat-sealing layer, the heat-sealing layers are in contact with each other and a three-side sealed bag is produced. To do. At this time, a region in which a thermosetting resin is applied in a thickness of 30 μm to a part of the heat-sealing layer on one side is prepared. The thermosetting resin used is Shin-Etsu Silicone silicone resin OF-180A / B.
 (封止)
 蒸着終了後のシンチレータプレートを保護フィルム内に挿入し、結晶表面が硬化樹脂と接するように配置し、-95kPaの減圧下で4辺目をシールする。
(Sealing)
The scintillator plate after vapor deposition is inserted into the protective film, arranged so that the crystal surface is in contact with the cured resin, and the fourth side is sealed under a reduced pressure of −95 kPa.
 (熱硬化)
 ホットプレート上にAl板(0.5mm厚)を配置し、その上に封止されたパネルを結晶面が下になるように設置する。更にその上からパネルと同サイズの重りを置き、2.94×10Paの荷重を与えた状態で150℃30分加熱する。処理後、常温へ戻ったパネルを取り出し、シンチレータパネル1とした。
(Thermosetting)
An Al plate (0.5 mm thick) is placed on a hot plate, and a panel sealed thereon is placed so that the crystal plane is on the bottom. Further, a weight of the same size as that of the panel is placed thereon and heated at 150 ° C. for 30 minutes with a load of 2.94 × 10 3 Pa applied. After the treatment, the panel returned to room temperature was taken out, and a scintillator panel 1 was obtained.
 〔シンチレータパネル2の作製〕
 (シンチレータプレート)
 シンチレータパネル1と同様に作製した。
[Production of scintillator panel 2]
(Scintillator plate)
It was produced in the same manner as the scintillator panel 1.
 (保護フィルム)
 シンチレータパネル1と同様に保護フィルムを作製し、片側の熱融着層の一部に熱硬化樹脂を30μmの厚みで塗布した領域を作製しておく。使用した熱硬化樹脂は、信越シリコーン製のシリコーン樹脂OF-180A/Bである。
(Protective film)
A protective film is prepared in the same manner as the scintillator panel 1, and a region in which a thermosetting resin is applied in a thickness of 30 μm to a part of the heat-sealing layer on one side is prepared. The thermosetting resin used is Shin-Etsu Silicone silicone resin OF-180A / B.
 (封止)
 シンチレータパネル1と同様に行った。
(Sealing)
It carried out similarly to the scintillator panel 1.
 (熱硬化)
 シンチレータパネル1と同様に行い、シンチレータパネル2とした。
(Thermosetting)
The scintillator panel 2 was obtained in the same manner as the scintillator panel 1.
 〔シンチレータパネル3の作製〕
 (シンチレータプレート)
 シンチレータパネル1と同様に作製した。
[Preparation of scintillator panel 3]
(Scintillator plate)
It was produced in the same manner as the scintillator panel 1.
 (保護フィルム)
 シンチレータパネル1と同様に保護フィルムを作製し、片側の熱融着層の一部に熱硬化樹脂を10μmの厚みで塗布した領域を作製しておく。使用した熱硬化樹脂は、信越シリコーン製のシリコーン樹脂OF-180A/Bである。
(Protective film)
A protective film is prepared in the same manner as the scintillator panel 1, and a region in which a thermosetting resin is applied to a part of one side of the heat-fusible layer with a thickness of 10 μm is prepared. The thermosetting resin used is Shin-Etsu Silicone silicone resin OF-180A / B.
 (封止)
 シンチレータパネル1と同様に行った。
(Sealing)
It carried out similarly to the scintillator panel 1.
 (熱硬化)
 シンチレータパネル1と同様に行い、シンチレータパネル3とした。
(Thermosetting)
The scintillator panel 3 was obtained in the same manner as the scintillator panel 1.
 〔シンチレータパネル4の作製〕
 (シンチレータプレート)
 シンチレータパネル1と同様に作製した。
[Preparation of scintillator panel 4]
(Scintillator plate)
It was produced in the same manner as the scintillator panel 1.
 (保護フィルム)
 シンチレータパネル1と同様に保護フィルムを作製し、片側の熱融着層の一部に熱硬化樹脂を0.01μmの厚みで塗布した領域を作製しておく。使用した熱硬化樹脂は、信越シリコーン製のシリコーン樹脂OF-180A/Bである。
(Protective film)
A protective film is prepared in the same manner as the scintillator panel 1, and a region in which a thermosetting resin is applied to a part of one side of the heat-fusible layer with a thickness of 0.01 μm is prepared. The thermosetting resin used is Shin-Etsu Silicone silicone resin OF-180A / B.
 (封止)
 シンチレータパネル1と同様に行った。
(Sealing)
It carried out similarly to the scintillator panel 1.
 (熱硬化)
 シンチレータパネル1と同様に行い、シンチレータパネル4とした。
(Thermosetting)
The scintillator panel 4 was obtained in the same manner as the scintillator panel 1.
 〔シンチレータパネル5の作製〕
 (シンチレータプレート)
 シンチレータパネル1と同様に作製した。
[Production of scintillator panel 5]
(Scintillator plate)
It was produced in the same manner as the scintillator panel 1.
 (保護フィルム)
 保護層としてPETフィルム12μm、防湿層として無機物蒸着層、熱融着層としてCPPフィルム20μを張り合わせた保護フィルムを用いて、熱融着層同士が接するように合わせ、3辺をシールした袋を作製する。このとき、熱融着層には硬化樹脂の塗布は行っていない。
(Protective film)
Using a protective film with 12 μm of PET film as the protective layer, an inorganic deposition layer as the moisture-proof layer, and 20 μm of the CPP film as the heat-sealing layer, the heat-sealing layers are in contact with each other, and a three-side sealed bag is produced. To do. At this time, the cured resin is not applied to the heat-sealing layer.
 (封止)
 シンチレータパネル1と同様に行い、シンチレータパネル5とした。
(Sealing)
The scintillator panel 5 was obtained in the same manner as the scintillator panel 1.
 〔シンチレータパネル6の作製〕
 (シンチレータプレート)
 シンチレータパネル1と同様に作製した。
[Production of scintillator panel 6]
(Scintillator plate)
It was produced in the same manner as the scintillator panel 1.
 (保護フィルム)
 シンチレータパネル1と同様に保護フィルムを作製し、片側の熱融着層の一部にUV硬化樹脂を30μmの厚みで塗布した領域を作製しておく。使用したUV硬化樹脂は、信越シリコーン製のシリコーン樹脂OF-207である。
(Protective film)
A protective film is prepared in the same manner as the scintillator panel 1, and a region in which a UV curable resin is applied to a part of one side of the heat-sealing layer with a thickness of 30 μm is prepared. The UV curable resin used is silicone resin OF-207 made of Shin-Etsu Silicone.
 (封止)
 シンチレータパネル1と同様に行った。
(Sealing)
It carried out similarly to the scintillator panel 1.
 (UV硬化)
 熱硬化に代えてUV硬化を行った。ガラス上に封止されたパネルを結晶面が下になるように設置する。更にその上からパネルと同サイズの重りを置き、2.94×10Paの荷重を与える。ガラス面から紫外光(400mJ)を照射する。処理後、パネルを取り出し、シンチレータパネル6とした。
(UV curing)
Instead of thermal curing, UV curing was performed. A panel sealed on glass is placed so that the crystal face is down. Furthermore, a weight of the same size as that of the panel is placed from above, and a load of 2.94 × 10 3 Pa is applied. Irradiate ultraviolet light (400 mJ) from the glass surface. After the treatment, the panel was taken out and used as a scintillator panel 6.
 〔シンチレータパネル7の作製〕
 (シンチレータプレート)
 シンチレータパネル1と同様に作製した。
[Preparation of scintillator panel 7]
(Scintillator plate)
It was produced in the same manner as the scintillator panel 1.
 (保護フィルム)
 シンチレータパネル1と同様に保護フィルムを作製し、片側の熱融着層の一部にUV硬化樹脂を10μmの厚みで塗布した領域を作製しておく。使用したUV硬化樹脂は、信越シリコーン製のシリコーン樹脂OF-207である。
(Protective film)
A protective film is prepared in the same manner as the scintillator panel 1, and a region in which a UV curable resin is applied to a part of one side of the heat-fusible layer with a thickness of 10 μm is prepared. The UV curable resin used is silicone resin OF-207 made of Shin-Etsu Silicone.
 (封止)
 シンチレータパネル1と同様に行った。
(Sealing)
It carried out similarly to the scintillator panel 1.
 (UV硬化)
 熱硬化に代えてUV硬化を行った。ガラス上に封止されたパネルを結晶面が下になるように設置する。更にその上からパネルと同サイズの重りを置き、2.94×10Paの荷重を与える。ガラス面から紫外光(400mJ)を照射する。処理後、パネルを取り出し、シンチレータパネル7とした。
(UV curing)
Instead of thermal curing, UV curing was performed. A panel sealed on glass is placed so that the crystal face is down. Furthermore, a weight of the same size as that of the panel is placed from above, and a load of 2.94 × 10 3 Pa is applied. Irradiate ultraviolet light (400 mJ) from the glass surface. After the treatment, the panel was taken out and used as a scintillator panel 7.
 〔シンチレータパネル8の作製〕
 (シンチレータプレート)
 シンチレータパネル1と同様に作製した。
[Production of scintillator panel 8]
(Scintillator plate)
It was produced in the same manner as the scintillator panel 1.
 (保護フィルム)
 真空中で支持体の上に蒸着する化学的蒸着(CVD)法によって、シンチレータプレートにポリパラキシリレン樹脂を30μmの厚みでコーティングする。使用したポリパラキシリレン樹脂は、スリーボンド製、ポリパラクロロキシリレン(パリレンC)である。成膜後のプレートを取り出し、シンチレータパネル8とした。
(Protective film)
A polyparaxylylene resin is coated to a thickness of 30 μm on the scintillator plate by a chemical vapor deposition (CVD) method in which the film is deposited on a support in a vacuum. The polyparaxylylene resin used is polyparachloroxylylene (Parylene C) manufactured by Three Bond. The plate after film formation was taken out and used as a scintillator panel 8.
 〔評価〕
 (蛍光体(柱状結晶)が樹脂内に埋まっている深さ)
 SEM画像にてプレートの断面図が得られ、蛍光体が樹脂に埋まっている深さを測定することができる。作製したシンチレータパネルをカッタでプレートに対して垂直に切断し、保護層(フィルム+樹脂)の部分をサンプリングする。サンプリングしたものを観察用のホルダにセットし、イオンスパッタにてPt-Pdを数十nm程度コーティングする。コーティングしたサンプルをSEM(HITACHI製 S-800型 走査電子顕微鏡)のチャンバーにセットし、所望の倍率で観察する。得られた断面図より、樹脂に埋まっている蛍光体の深さを測定する。
[Evaluation]
(Depth at which the phosphor (columnar crystal) is embedded in the resin)
A cross-sectional view of the plate is obtained from the SEM image, and the depth at which the phosphor is embedded in the resin can be measured. The manufactured scintillator panel is cut perpendicularly to the plate with a cutter, and the protective layer (film + resin) portion is sampled. The sampled sample is set in an observation holder, and Pt—Pd is coated with several tens of nm by ion sputtering. The coated sample is set in a SEM (HITACHI S-800 scanning electron microscope) chamber and observed at a desired magnification. From the obtained cross-sectional view, the depth of the phosphor embedded in the resin is measured.
 (平面性)
 平面性が悪いと受光素子との密着不良となり、画像にボケ部分が発生する。これはSN比の局所的な上昇にて評価することができるため、面内を分割してSN比を評価することで平面性の評価とした。まず、上記で作製したシンチレータパネルをPaxScan2520(Varian製FPD)にセットし、プレート輝度ムラや暗電流のばらつきを補整する。後にX線を3mR照射し、画像を取得する。
(Flatness)
If the flatness is poor, the contact with the light receiving element is poor, and a blurred portion is generated in the image. Since this can be evaluated by a local increase in the SN ratio, the planarity was evaluated by dividing the in-plane and evaluating the SN ratio. First, the scintillator panel produced as described above is set in PaxScan2520 (Varian FPD) to compensate for uneven plate brightness and dark current. Later, 3 mR of X-rays are irradiated to acquire an image.
 表1記載の平面性は、撮影画像を縦10、横10に100分割し、それぞれの領域のシグナルノイズ比(SN比)を解析する。全てのSN比のばらつきが10%未満であれば平面性は○、10%以上であれば×とした。 The flatness described in Table 1 is obtained by dividing a photographed image into 100 vertically and 10 horizontally and analyzing the signal noise ratio (SN ratio) of each region. If the variation in all S / N ratios was less than 10%, the flatness was evaluated as ◯, and when it was 10% or more, it was evaluated as x.
 (耐湿性)
 上記で作製したシンチレータパネルをPaxScan2520(Varian製FPD)にセットし、鮮鋭性を下記の方法で測定した。表1記載の耐湿性は、初期状態と、30℃80%の恒温恒室槽に10日間保管した状態のMTFを算出し、劣化率が15%未満のものを○、15%以上のものを×とした。
(Moisture resistance)
The scintillator panel produced above was set in PaxScan 2520 (Varian FPD), and the sharpness was measured by the following method. The moisture resistance shown in Table 1 is calculated by calculating the MTF of the initial state and the state of storage in a thermostatic chamber at 30 ° C. and 80% for 10 days. X.
 (鮮鋭性)
 上記で作製したシンチレータパネルをPaxScan2520(Varian製FPD)にセットし、鉛製のMTFチャートを通して管電圧80kVpのX線をFPDの放射線入射面側に照射し、画像データを検出しハードディスクに記録した。その後、ハードディスク上の記録をコンピュータで分析して、当該ハードディスクに記録されたX線像の変調伝達関数MTF(空間周波数1サイクル/mmにおけるMTF値)を鮮鋭性の指標とした。(MTFはModulation Transfer Functionの略号を示す。)
 表1記載の鮮鋭性はシンチレータパネルの保護フィルムがない状態に対して、保護フィルムを作製した状態でのMTF低下率が10%未満であれば○、10%以上20%未満であれば△、20%以上であれば×とした。
(Sharpness)
The scintillator panel produced above was set in PaxScan 2520 (Varian FPD), X-ray with a tube voltage of 80 kVp was irradiated to the radiation incident surface side of the FPD through a lead MTF chart, and image data was detected and recorded on a hard disk. Thereafter, the recording on the hard disk was analyzed by a computer, and the modulation transfer function MTF (MTF value at a spatial frequency of 1 cycle / mm) of the X-ray image recorded on the hard disk was used as an index of sharpness. (MTF is an abbreviation for Modulation Transfer Function.)
The sharpness described in Table 1 indicates that the MTF reduction rate in the state in which the protective film is produced is less than 10% with respect to the state without the protective film of the scintillator panel. When it was 20% or more, it was set as x.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明のシンチレータパネルは、上記評価の総合において比較のシンチレータパネルに対して明らかに優れている。 From Table 1, the scintillator panel of the present invention is clearly superior to the comparative scintillator panel in the overall evaluation.

Claims (7)

  1. 基板上に柱状結晶からなるシンチレータ層を有したシンチレータプレートと該シンチレータプレートを被覆するように設けられた保護フィルムとからなるシンチレータパネルにおいて、該保護フィルムが積層されている有機フィルムであり、該柱状結晶の先端の0.01~30μmが該保護フィルムに存在することを特徴とするシンチレータパネル。 A scintillator panel comprising a scintillator plate having a scintillator layer made of columnar crystals on a substrate and a protective film provided so as to cover the scintillator plate, is an organic film in which the protective film is laminated, and the columnar A scintillator panel characterized in that 0.01 to 30 μm of the tip of the crystal is present in the protective film.
  2. 前記保護フィルムのシンチレータ層側が硬化樹脂で構成されていることを特徴とする請求の範囲第1項に記載のシンチレータパネル。 The scintillator panel according to claim 1, wherein the scintillator layer side of the protective film is made of a cured resin.
  3. 前記保護フィルムでシンチレータプレートが真空封止されていることを特徴とする請求の範囲第1項または第2項に記載のシンチレータパネル。 The scintillator panel according to claim 1 or 2, wherein a scintillator plate is vacuum-sealed with the protective film.
  4. 前記基板が樹脂基板であることを特徴とする請求の範囲第1項~第3項のいずれか1項に記載のシンチレータパネル。 The scintillator panel according to any one of claims 1 to 3, wherein the substrate is a resin substrate.
  5. 前記シンチレータ層がヨウ化セシウムと賦活剤を含有する蒸着柱状結晶からなることを特徴とする請求の範囲第1項~第4項のいずれか1項に記載のシンチレータパネル。 The scintillator panel according to any one of claims 1 to 4, wherein the scintillator layer is made of vapor-deposited columnar crystals containing cesium iodide and an activator.
  6. 請求の範囲第1項~第5項のいずれか1項に記載のシンチレータパネルの製造方法であって、前記保護フィルムで真空封止した後に、樹脂を硬化させて硬化樹脂とすることを特徴とするシンチレータパネルの製造方法。 The scintillator panel manufacturing method according to any one of claims 1 to 5, characterized in that after vacuum sealing with the protective film, the resin is cured to obtain a cured resin. A method for manufacturing a scintillator panel.
  7. 前記硬化樹脂が加圧状態で形成されることを特徴とする請求の範囲第6項に記載のシンチレータパネルの製造方法。 The scintillator panel manufacturing method according to claim 6, wherein the cured resin is formed in a pressurized state.
PCT/JP2009/054744 2008-09-12 2009-03-12 Scintillator panel and method for manufacturing the same WO2010029779A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008234475 2008-09-12
JP2008-234475 2008-09-12

Publications (1)

Publication Number Publication Date
WO2010029779A1 true WO2010029779A1 (en) 2010-03-18

Family

ID=42005042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054744 WO2010029779A1 (en) 2008-09-12 2009-03-12 Scintillator panel and method for manufacturing the same

Country Status (1)

Country Link
WO (1) WO2010029779A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152194A1 (en) * 2010-06-04 2011-12-08 浜松ホトニクス株式会社 Scintillator panel and radiation image sensor
JP2012127735A (en) * 2010-12-14 2012-07-05 Fujifilm Corp Radiation detector and manufacturing method of scintillator panel
CN102655160A (en) * 2011-03-01 2012-09-05 佳能株式会社 Radiation detection apparatus, scintillator panel, method for manufacturing same and radiation detection system
JP2012230063A (en) * 2011-04-27 2012-11-22 Fujifilm Corp Radiation image conversion panel and method for manufacturing radiation image conversion panel, and radiation image detector
JP2012242355A (en) * 2011-05-24 2012-12-10 Fujifilm Corp Radiation detection device
JP2013019796A (en) * 2011-07-12 2013-01-31 Canon Inc Radiation detector
CN102969322A (en) * 2011-08-30 2013-03-13 富士胶片株式会社 Radiological image detection apparatus
JP2013246078A (en) * 2012-05-28 2013-12-09 Fujifilm Corp Radiation image detection device
JP2015184205A (en) * 2014-03-25 2015-10-22 富士フイルム株式会社 Radiation detection apparatus and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004037448A (en) * 2002-03-08 2004-02-05 Agfa Gevaert Nv Storage phosphor screen free from binding agent on support
JP2008209195A (en) * 2007-02-26 2008-09-11 Konica Minolta Medical & Graphic Inc Scintillator panel and flat panel radiation detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004037448A (en) * 2002-03-08 2004-02-05 Agfa Gevaert Nv Storage phosphor screen free from binding agent on support
JP2008209195A (en) * 2007-02-26 2008-09-11 Konica Minolta Medical & Graphic Inc Scintillator panel and flat panel radiation detector

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257142A (en) * 2010-06-04 2011-12-22 Hamamatsu Photonics Kk Scintillator panel and radiation image sensor
CN102934173A (en) * 2010-06-04 2013-02-13 浜松光子学株式会社 Scintillator panel and radiation image sensor
WO2011152194A1 (en) * 2010-06-04 2011-12-08 浜松ホトニクス株式会社 Scintillator panel and radiation image sensor
JP2012127735A (en) * 2010-12-14 2012-07-05 Fujifilm Corp Radiation detector and manufacturing method of scintillator panel
CN102655160A (en) * 2011-03-01 2012-09-05 佳能株式会社 Radiation detection apparatus, scintillator panel, method for manufacturing same and radiation detection system
US8653468B2 (en) 2011-04-27 2014-02-18 Fujifilm Corporation Radiological image conversion panel, method of manufacturing radiological conversion panel and radiological image detection apparatus
JP2012230063A (en) * 2011-04-27 2012-11-22 Fujifilm Corp Radiation image conversion panel and method for manufacturing radiation image conversion panel, and radiation image detector
JP2012242355A (en) * 2011-05-24 2012-12-10 Fujifilm Corp Radiation detection device
US8884232B2 (en) 2011-05-24 2014-11-11 Fujifilm Corporation Radiation detection device
JP2013019796A (en) * 2011-07-12 2013-01-31 Canon Inc Radiation detector
CN102969322A (en) * 2011-08-30 2013-03-13 富士胶片株式会社 Radiological image detection apparatus
US9255997B2 (en) 2011-08-30 2016-02-09 Fujifilm Corporation Radiological image detection apparatus
CN102969322B (en) * 2011-08-30 2017-04-26 富士胶片株式会社 Radiological image detection apparatus
JP2013246078A (en) * 2012-05-28 2013-12-09 Fujifilm Corp Radiation image detection device
US9006662B2 (en) 2012-05-28 2015-04-14 Fujifilm Corporation Radiological image detection device
JP2015184205A (en) * 2014-03-25 2015-10-22 富士フイルム株式会社 Radiation detection apparatus and method of manufacturing the same

Similar Documents

Publication Publication Date Title
WO2010029779A1 (en) Scintillator panel and method for manufacturing the same
JP4670955B2 (en) Flat panel detector
JP5195424B2 (en) Scintillator panel
US8735854B2 (en) Scintillator panel
JP5239866B2 (en) Radiation flat panel detector
US7663110B2 (en) Scintillator panel and flat-panel radiation detector
JP5369979B2 (en) Radiation image detection device
WO2010103917A1 (en) Radiation detector
JPWO2008111379A1 (en) Scintillator panel and radiation flat panel detector
US9418768B2 (en) Radiographic image conversion panel and radiographic image detector
JPWO2008126757A1 (en) Scintillator panel
JPWO2008090796A1 (en) Scintillator panel and radiation flat panel detector
JP2009068888A (en) Flat panel detector
JP2008232782A (en) Scintillator panel
JPWO2011065302A1 (en) Roll scintillator panel support, scintillator panel, manufacturing method thereof, and radiation image detector
JP2011022068A (en) Scintillator panel
JP2009002776A (en) Scintillator panel and radiation flat panel detector
JP2008111698A (en) Scintillator plate, scintillator panel, and radiation flat-panel detector using them
JP2009300148A (en) Scintillator plate
JP4983911B2 (en) Manufacturing method of scintillator panel and lower limit setting method of substrate thickness for scintillator panel
JP2009300213A (en) Scintillator panel and radiation flat panel detector
JP2010060414A (en) Scintillator plate
JP2009002775A (en) Scintillator panel and radiation flat panel detector
JP5326200B2 (en) Scintillator plate, scintillator panel, and radiation flat panel detector using them
WO2010010728A1 (en) Radiation image conversion panel and radiographic apparatus using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09812928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09812928

Country of ref document: EP

Kind code of ref document: A1