WO2010026888A1 - Conductor-covered fiber assembly and process for producing the conductor-covered fiber assembly - Google Patents

Conductor-covered fiber assembly and process for producing the conductor-covered fiber assembly Download PDF

Info

Publication number
WO2010026888A1
WO2010026888A1 PCT/JP2009/064747 JP2009064747W WO2010026888A1 WO 2010026888 A1 WO2010026888 A1 WO 2010026888A1 JP 2009064747 W JP2009064747 W JP 2009064747W WO 2010026888 A1 WO2010026888 A1 WO 2010026888A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
coated
fiber assembly
fiber
polymer
Prior art date
Application number
PCT/JP2009/064747
Other languages
French (fr)
Japanese (ja)
Inventor
翼水 金
スミン 李
根炯 李
英樹 鎌田
正一 西山
ジョンチョル パク
Original Assignee
エプティ イエンイ
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エプティ イエンイ, 国立大学法人信州大学 filed Critical エプティ イエンイ
Publication of WO2010026888A1 publication Critical patent/WO2010026888A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked

Definitions

  • the present invention relates to a conductor-coated fiber assembly and a manufacturing method thereof.
  • the conductor-coated fiber assembly described in Patent Document 1 includes, for example, an elastomer nonwoven fabric made of polymer fibers formed by a melt-blown method, and a metal coating (aluminum, copper, tin, zinc, nickel, covering the surface of the elastomer nonwoven fabric). Iron, gold, silver, copper alloy, aluminum alloy, titanium alloy, and iron alloy). For this reason, the conductor-coated fiber assembly described in Patent Document 1 has a gorgeous appearance and various physical properties (conductivity, electrostatic resistance, chemical resistance, heat reflectivity, heat radiation, optical reflectivity). To have the desired flexibility, elasticity, softness and drape.
  • the conductor-coated fiber assembly described in Patent Document 2 is a conductor-coated fiber assembly in which a metal layer made of aluminum, stainless steel, copper, gold, silver, titanium, or the like is provided on a polyester fabric having air permeability by a vacuum deposition method. It consists of an aggregate. For this reason, by using the material for textiles which laminated the surface material which consists of an electric conductor covering textiles statement of patent documents 2, and the cotton-like core which has odor absorption for textile products, such as bedding and rugs, Since textile products have heat retention and bactericidal properties in addition to breathability and deodorization, they can maintain a favorable environment in terms of hygiene or health, and in particular, provide a comfortable environment for the elderly and sick. Will be able to.
  • the conductor-covered fiber assembly described in Patent Document 3 is composed of an aggregate of conductor-coated fibers having a structure in which the surface of nylon is silver-plated. For this reason, it becomes difficult to dissipate heat to the back surface side of the electric blanket by installing a fabric made of a nonwoven fabric or the like containing the conductor-coated fiber assembly described in Patent Document 3 on the back surface side of the electric bed blanket. It becomes an electric blanket with high energy-saving effect.
  • the conductor-coated fiber assembly described in Patent Document 4 is a collection of conductor-coated fibers in which a bulky raw material nonwoven fabric made of thermoplastic synthetic fibers is coated with a corrosion-resistant metal such as stainless steel, titanium, or nickel on both sides by physical vapor deposition. It consists of the body. For this reason, the conductor-coated fiber assembly described in Patent Document 4 has sufficient heat retention, can be reduced in weight, and is flexible because almost the entire surface of the fiber is covered with the deposited film. It is excellent in antibacterial properties and can be suitably used as a batting for clothes and bedding.
  • a metal such as stainless steel is coated on the surface of a polyester fiber containing a PAN-based carbon fiber by electroless plating, electroplating, vacuum deposition, sputtering, ion plating, or the like. It consists of an aggregate of conductor coated fibers. For this reason, the conductor covering fiber assembly described in Patent Document 5 has satisfactory electromagnetic shielding properties without impairing the flexibility of the nonwoven fabric.
  • the conductor-coated fiber assembly described in Patent Document 6 silver, gold, platinum, copper, nickel, tin, zinc, palladium, and alloys thereof are formed on the surface of the polyester fiber by electrolytic plating, chemical plating, vacuum deposition, or the like. It consists of an aggregate of conductor-coated fibers coated with a surface roughness of 0.01 to 1 ⁇ m. For this reason, the conductor-coated fiber assembly described in Patent Document 6 has an orange peel on the surface of the metal coating, and has excellent adhesion strength and durability. As a result, it becomes antibacterial clothing, electromagnetic shielding material, antistatic material, electrode / wire substitute material, and conductive reinforcing material of fiber reinforced plastic.
  • the present invention has been made in view of such circumstances, and provides a conductor-coated fiber assembly that has higher characteristics than conventional ones and can be suitably used in various applications, and a method for manufacturing the same. With the goal.
  • the conductor-coated fiber assembly of the present invention comprises an aggregate of conductor-coated fibers in which a conductor is coated on the surface of a polymer fiber having an average diameter of 50 nm to 800 nm, and a gap is formed between each conductor-coated fiber. Is characterized by remaining.
  • the conductor-coated fiber assembly of the present invention comprises an aggregate of conductor-coated fibers in which a conductor is coated on the surface of a polymer fiber having an average diameter of 50 nm to 800 nm, and a gap is formed between each conductor-coated fiber. Therefore, it is possible to increase the breathability, water resistance, heat retention and flexibility in a well-balanced manner, and the conductor-coated fibers have higher characteristics than conventional ones and can be suitably used in various applications. It becomes an aggregate.
  • the average diameter of the polymer fiber is set to 50 nm or more because it becomes difficult to produce the polymer fiber with high productivity when the average diameter of the polymer fiber is less than 50 nm.
  • the reason why it is set to 800 nm or less is that when the average diameter of the polymer fiber exceeds 800 nm, it is difficult to increase the air permeability, water resistance, heat retention and flexibility in a balanced manner.
  • the average diameter of the polymer fibers is more preferably 70 nm to 700 nm, and further preferably 100 nm to 600 nm.
  • the proportion of the voids remaining between the conductor-coated fibers in the unit volume is preferably in the range of 40% to 90%.
  • the ratio of the voids remaining between the conductor-coated fibers to the unit volume is 40% or more, it has higher flexibility. From this point of view, the ratio of the voids remaining between the conductor-coated fiber assemblies to the unit volume is more preferably 50% or more, and further preferably 60% or more. Further, since the ratio of the voids remaining between the conductor-coated fibers to the unit volume is 90% or less, the mechanical strength when the fibers are made can be maintained. From this point of view, the ratio of the voids remaining between the conductor-coated fiber assemblies to the unit volume is more preferably 85% or less, and further preferably 80% or less.
  • the area ratio of the surface of the polymer fiber not covered with the conductor is 20% or less.
  • the conductor-coated fiber aggregate has higher characteristics.
  • the area ratio of the portion of the surface of the polymer fiber not covered with the conductor is more preferably 10% or less, and further preferably 5% or less.
  • the conductor is preferably made of metal.
  • the conductor layer-covered fiber assembly of the present invention becomes a metal-coated fiber assembly.
  • the conductor is preferably made of carbon.
  • the conductor layer-covered fiber assembly of the present invention becomes a carbon-coated fiber assembly.
  • the heat insulating material of the present invention is composed of the conductor-coated fiber assembly of the present invention.
  • the heat insulating material of the present invention has high heat insulating properties. Further, according to the heat insulating material of the present invention, the heat insulating material further has high breathability, water resistance and flexibility, has a wide use range and is easy to use.
  • the electromagnetic wave shielding material of the present invention comprises the conductor-coated fiber assembly of the present invention.
  • the electromagnetic wave shielding material of the present invention becomes an electromagnetic wave shielding material having high electromagnetic wave shielding properties, as will be apparent from the examples described later. Moreover, according to the electromagnetic wave shielding material of the present invention, it is an electromagnetic wave shielding material that has high breathability, water resistance, heat retention and flexibility, and has a wide use range and is easy to use.
  • the electromagnetic wave absorber of the present invention comprises the conductor-coated fiber assembly of the present invention.
  • the surface area of the conductor (conductor layer) can be made extremely large, so that the electromagnetic wave absorbing material has high electromagnetic wave absorbability.
  • it is an electromagnetic wave absorbing material that has high breathability, water resistance, heat retention and flexibility, and has a wide use range and is easy to use.
  • the method for producing a conductor-coated fiber assembly according to the present invention is a method for producing a conductor-coated fiber assembly for producing the conductor-coated fiber assembly according to the present invention.
  • a flexible base material preparing step for preparing a base material, and a polymer fiber layer for forming a polymer fiber layer comprising an aggregate of polymer fibers having an average diameter of 50 nm to 800 nm on one surface of the flexible base material It includes a forming step and a conductor coating step for coating a conductor on the surface of each polymer fiber constituting the polymer fiber layer by a vapor phase method in this order.
  • the conductor-coated fiber assembly of the present invention can be manufactured.
  • a polymer that separates the polymer fiber layer from the flexible substrate between the polymer fiber layer forming step and the conductor coating step It is preferable to further include a fiber layer separation step.
  • the body can be manufactured.
  • FIG. It is a figure shown in order to demonstrate the structure of the conductor covering fiber assembly 1 which concerns on Embodiment 1.
  • FIG. It is a figure shown in order to demonstrate the manufacturing method of the conductor covering fiber assembly which concerns on Embodiment 1.
  • FIG. It is a figure which shows typically the content of the flexible base material preparation process in Embodiment 1.
  • FIG. It is a figure which shows typically the content of the polymer fiber formation process in Embodiment 1.
  • FIG. It is a figure which shows typically the content of the conductor coating
  • FIG. It is a figure shown in order to demonstrate the manufacturing method of the conductor covering fiber assembly which concerns on Embodiment 2.
  • FIG. It is a figure which shows typically the content of the polymer fiber formation process in Embodiment 2.
  • FIG. It is a figure which shows typically the content of the polymer fiber formation process in Embodiment 2.
  • FIG. 2 is an electron micrograph of a conductor-coated fiber assembly 10a according to Example 1.
  • 4 is an electron micrograph of a conductor-coated fiber assembly 10b according to Example 2.
  • It is an electron micrograph of the conductor covering fiber assembly 10c which concerns on Example 3.
  • FIG. 6 is a diagram showing evaluation results for various characteristics of conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3 and fibers 1d to 1h according to Comparative Examples 1 to 5.
  • FIG. 6 is a diagram showing evaluation results for various characteristics of conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3 and fibers 1d to 1h according to Comparative Examples 1 to 5.
  • FIG. 6 is a diagram showing evaluation results for various characteristics of conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3 and fibers 1d to 1h according to Comparative Examples 1 to 5.
  • FIG. 6 is a diagram showing evaluation results for various characteristics of conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3
  • FIG. 6 is a diagram showing evaluation results of electromagnetic wave shielding characteristics of conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3 and fibers 1d, 1g, and 1h according to Comparative Examples 1, 4, and 5; It is a figure shown in order to demonstrate the conductor coating process in the manufacturing method of the conductor covering fiber assembly which concerns on the modification 1.
  • FIG. 6 is a diagram showing evaluation results of electromagnetic wave shielding characteristics of conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3 and fibers 1d, 1g, and 1h according to Comparative Examples 1, 4, and 5; It is a figure shown in order to demonstrate the conductor coating process in the manufacturing method of the conductor covering fiber assembly which concerns on the modification 1.
  • FIG. 1 is a diagram shown for explaining the configuration of the conductor-coated fiber assembly 1 according to Embodiment 1.
  • FIG. 1A is an enlarged view showing a cross-sectional structure of a conductor-coated fiber 10 constituting the conductor-coated fiber assembly 1
  • FIG. 1B is a conductor composed of the conductor-coated fiber assembly 1. It is a figure which shows the cross-section of the conductor covering fiber assembly laminated sheet 104 provided with the covering fiber assembly layer 112.
  • FIG. 1A is an enlarged view showing a cross-sectional structure of a conductor-coated fiber 10 constituting the conductor-coated fiber assembly 1
  • FIG. 1B is a conductor composed of the conductor-coated fiber assembly 1. It is a figure which shows the cross-section of the conductor covering fiber assembly laminated sheet 104 provided with the covering fiber assembly layer 112.
  • FIG. 1A is an enlarged view showing a cross-sectional structure of a conductor-coated fiber 10 constituting the conductor-coated
  • the conductor-coated fiber assembly 1 includes a conductor-coated fiber in which a conductor (conductor layer) 30 is coated on the surface of a polymer fiber 20 having an average diameter of 50 nm to 800 nm. It consists of 10 aggregates.
  • voids remain between the conductor-coated fibers 10.
  • the proportion of the voids remaining between the conductor-coated fibers 10 in the unit volume is in the range of 40% to 90%, and the portion of the surface of the polymer fiber 20 that is not covered with the conductor 30 The area ratio is 20% or less.
  • the polymer fiber 20 is formed by an electrospinning method.
  • the conductor 30 is coated on the surface of the polymer fiber 20 by a vapor phase method (for example, sputtering method), and the average thickness of the conductor layer 30 is, for example, 10 nm to 500 nm.
  • the conductor-coated fiber assembly 1 according to Embodiment 1 can be formed as a conductor-coated fiber assembly layer 112 on a flexible substrate 100 as shown in FIG.
  • the conductor-coated fiber assembly laminated sheet 104 is formed by forming the conductor-coated fiber assembly layer 112 on the flexible substrate 100.
  • Examples of the material of the polymer fiber 20 include polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polyamide (PA), polyurethane (PUR), Various materials such as polyvinyl alcohol (PVA), polyacrylonitrile (PAN), polyetherimide (PEI), polycaprolactone (PCL), polylactic acid (PLA), and polylactic acid glycolic acid (PLGA) can be used. What is necessary is just to select an optimal thing according to a use.
  • a conductor made of metal and a conductor made of carbon can be suitably used.
  • metals include aluminum, copper, tin, zinc, nickel, chromium, titanium, silicon, lead, molybdenum, iron, gold, silver, platinum, palladium, copper alloys, aluminum alloys, titanium alloys, and iron alloys.
  • Various metals such as alloys can be used. What is necessary is just to select an optimal thing according to a use.
  • the application is a heat insulating material
  • silver, copper, aluminum, or the like can be suitably used.
  • an electromagnetic wave shielding material gold, platinum, silver, copper, nickel, or the like is preferably used.
  • an electromagnetic wave absorbing material carbon, aluminum, or the like can be preferably used.
  • FIG. 2 is a view for explaining the method for producing a conductor-coated fiber assembly according to Embodiment 1.
  • FIG. 2 (a) to 2 (c) are cross-sectional views showing how the conductor-coated fiber assembly 1 is manufactured in each step.
  • FIG. 3 is a figure which shows typically the content of the flexible base material preparation process in Embodiment 1.
  • FIG. 4 is a figure which shows typically the content of the polymer fiber formation process in Embodiment 1.
  • FIG. FIG. 5 is a diagram schematically showing the contents of the conductor covering step in the first embodiment.
  • the conductor-covered fiber assembly 1 according to Embodiment 1 can be produced by performing the following flexible base material preparation step, polymer fiber formation step, and conductor cover step in this order. .
  • the elongate flexible base material 100 is prepared.
  • the thickness of the flexible substrate 100 is, for example, 50 ⁇ m to 3 mm.
  • the flexible base material 100 consists of a nonwoven fabric of a polyester fiber, for example.
  • a polymer fiber layer 110 is formed on one surface of the flexible substrate 100 by electrospinning, and polymer fiber lamination is performed.
  • a sheet 102 is formed.
  • the thickness of the polymer fiber layer 110 is, for example, 30 ⁇ m to 500 ⁇ m.
  • the polymer fibers 20 constituting the polymer fiber layer 110 are made of polymer fibers having an average diameter of 50 nm to 800 nm, for example.
  • the polymer fiber forming process uses a roll-to-roll electrospinning apparatus 200. In FIG.
  • reference numeral 202 indicates a feeding side roll
  • reference numeral 204 indicates a feed roller
  • reference numeral 208 indicates a winding side roll
  • reference numeral 220 indicates a resin raw material tank
  • reference numeral 222 indicates a valve
  • reference numeral Reference numeral 224 indicates a nozzle
  • reference numeral 226 indicates a counter electrode
  • reference numeral 228 indicates a high voltage power source
  • reference numeral 230 indicates a locus of the polymer fiber.
  • the polymer fiber raw material is supplied to the resin raw material tank 220 in a state of being dissolved in a solvent to form a liquid. Thereafter, while moving the flexible base material 100, the polymer fiber material 110 is blown from the nozzle 224 toward the flexible base material 100 to move the polymer fiber layer 110 on one surface of the flexible base material 100. Form. At this time, the solvent evaporates in the middle of the polymer raw material from the nozzle 224 toward the flexible substrate 100.
  • the counter electrode 226 is heated by a heater (not shown), and the solvent that may remain in the polymer fiber 20 also evaporates due to heat from the heater.
  • the conductor (various) 30 is coated on the surface of each of the polymer fibers 20 constituting the.
  • the thickness of the conductor 30 is, for example, 10 nm to 500 nm.
  • a roll-to-roll sputtering apparatus 300 is used.
  • reference numeral 302 indicates a feed-out side roll
  • reference numeral 304 indicates a feed roller
  • reference numeral 306 indicates a cooling roller
  • reference numeral 308 indicates a winding-side roll
  • reference numerals 310 and 320 indicate sputter chambers.
  • Reference numerals 312 and 322 indicate sputtering units
  • reference numerals 314 and 324 indicate plasma.
  • the conductor-coated fiber assembly 1 according to Embodiment 1 can be manufactured.
  • the conductor-coated fiber assembly 1 according to Embodiment 1 is a conductor in which a conductor 30 is coated on the surface of a polymer fiber 20 having an average diameter of 50 nm to 800 nm. Since it consists of an assembly of coated fibers 10 and voids remain between the respective conductor coated fibers 10, it is possible to increase the air permeability, water resistance, heat retention and flexibility in a balanced manner, which is higher than before. It becomes a conductor covering fiber aggregate which has a characteristic and can be used conveniently in various uses.
  • the ratio of the voids remaining between the conductor-coated fibers 10 to the unit volume is in the range of 40% to 90%. Furthermore, it becomes highly flexible, and it becomes possible to maintain the mechanical strength when it is made into a fiber.
  • the conductor covering fiber assembly 1 which concerns on Embodiment 1, since the area ratio of the part which is not coat
  • FIG. 6 is a view for explaining the method for manufacturing the conductor-coated fiber assembly according to the second embodiment.
  • FIGS. 6A to 6D are cross-sectional views showing how the conductor-coated fiber assembly 2 is manufactured in each step.
  • FIG. 7 is a figure which shows typically the content of the polymer fiber formation process in Embodiment 2.
  • FIG. 8 is a figure which shows typically the content of the conductor coating process in Embodiment 2.
  • the conductor-coated fiber assembly 2 according to the second embodiment has basically the same fiber structure as the conductor-coated fiber assembly 1 according to the first embodiment, but the layer structure of the conductor-coated fiber assembly is implemented. This is different from the case of the conductor-coated fiber assembly 1 according to the first embodiment. That is, as shown in FIG.6 (d), the conductor covering fiber assembly 2 which concerns on Embodiment 2 has a single layer structure which does not have a flexible base material.
  • the conductor-coated fiber assembly 2 according to the second embodiment is different from the conductor-coated fiber assembly 1 according to the first embodiment in the layer structure of the conductor-coated fiber assembly, but according to the first embodiment.
  • the conductor-covered fiber 10 is composed of an aggregate of conductor-coated fibers 10 in which the conductor 30 is coated on the surface of the polymer fiber 20 having an average diameter of 50 nm to 800 nm. Since voids remain, it is possible to increase the air permeability, water resistance, heat retention and flexibility in a well-balanced manner, and the conductor coating has higher characteristics than conventional ones and can be suitably used in various applications. It becomes a fiber assembly.
  • the conductor-coated fiber assembly 2 according to the second embodiment has a single-layer structure that does not have a flexible base material
  • the conductor-coated fiber assembly 2 has a laminated structure that has a flexible base material (the conductive material according to the first embodiment). It can be suitably used for various uses different from the body-coated fiber assembly 1.
  • the conductor covering fiber assembly 1 according to Embodiment 1 since the conductor covering fiber assembly 2 according to Embodiment 2 has the same fiber structure as the conductor covering fiber assembly 1 according to Embodiment 1, the conductor covering fiber assembly 1 according to Embodiment 1 is It has a corresponding effect among the effects it has.
  • the conductor-coated fiber assembly 2 according to Embodiment 2 can be produced by performing the following flexible base material preparation step, polymer fiber formation step, and conductor coating step in this order. .
  • the polymer fiber is formed on one surface of the flexible substrate 100 by electrospinning.
  • the layer 110 is formed, and the polymer fiber laminated sheet 102 is formed.
  • the polymer fiber layer 110 is separated from the flexible substrate 100.
  • the conductor-coated fiber assembly 2 according to Embodiment 2 can be manufactured.
  • FIG. 9 is a diagram schematically showing the contents of the conductor coating step in the third embodiment.
  • the conductor-coated fiber assembly 3 according to the third embodiment basically has the same fiber structure as the conductor-coated fiber assembly 2 according to the second embodiment, but the method of covering the conductor is the second embodiment. This is different from the case of the conductor-coated fiber assembly 2 according to the above. That is, as shown in FIG. 9, in the conductor-covered fiber assembly 3 according to the third embodiment, the conductor-covered fiber assembly 3 is formed on the surface of each polymer fiber 20 from both sides of the polymer fiber layer 110. Has a coated structure.
  • the conductor-coated fiber assembly 3 according to the third embodiment is different from the conductor-coated fiber assembly 2 according to the second embodiment in the manner of the conductor coating, but according to the second embodiment.
  • the conductor-coated fiber 10 is composed of an aggregate of conductor-coated fibers 10 in which the conductor 30 is coated on the surface of the polymer fiber 20 having an average diameter of 50 nm to 800 nm. Since voids remain, it is possible to increase the air permeability, water resistance, heat retention and flexibility in a well-balanced manner, and the conductor coating has higher characteristics than conventional ones and can be suitably used in various applications. It becomes a fiber assembly.
  • the conductor-covered fiber assembly 3 has a configuration in which the conductor 30 is coated on the surface of each polymer fiber 20 from both surfaces of the polymer fiber layer 110. It is possible to further reduce the area ratio of the portion that is not coated with the conductor, and the conductor-coated fiber assembly can be suitably used in various applications.
  • the conductor covering fiber assembly 3 according to Embodiment 3 has the same fiber structure as the conductor covering fiber assembly 2 according to Embodiment 2, the conductor covering fiber assembly 2 according to Embodiment 2 is It has a corresponding effect among the effects it has.
  • the conductor-covered fiber assembly 3 according to Embodiment 3 can be produced by performing the following flexible base material preparation step, polymer fiber formation step, and conductor cover step in this order. .
  • the conductor-coated fiber assembly 3 according to Embodiment 3 can be manufactured.
  • Example 1 The conductor-coated fiber assembly 1a according to Example 1 was manufactured by performing the following flexible base material preparation process, polymer fiber formation process, and conductor coating process in this order.
  • the elongate flexible base material 100 which consists of a nonwoven fabric of a polyester fiber is prepared.
  • the thickness of the flexible substrate 100 is 200 ⁇ m.
  • the weight of the flexible substrate 100 per 1 m 2 is 50 g.
  • the polymer fiber layer 110 made of polyurethane is formed on one surface of the flexible substrate 100 by the electrospinning method.
  • the thickness of the polymer fiber layer 110 is 10 ⁇ m, and the weight of the polymer fiber layer 110 per 1 m 2 is 5 g.
  • the average diameter of the polymer fibers 20 constituting the polymer fiber layer 110 is 300 nm.
  • “average diameter of polymer fiber 20” is obtained by randomly extracting 100 measurement points in a number of polymer fibers shown in an electron micrograph (see FIG. 13B), and calculating the fiber width at that point. It was calculated by measuring and averaging the measured fiber width.
  • the polymer fiber layer 110 formed on one surface of the flexible substrate 100 is formed by a vapor phase method (sputtering method) using the sputtering apparatus 300 described above.
  • a conductor 30 a made of silver is formed on the surface of each polymer fiber 20.
  • the average thickness of the conductor 30a is 50 nm.
  • the obtained conductor-coated fiber assembly 1a and flexible substrate 100 have a weight of 90 g per 1 m 2 .
  • the proportion of the voids remaining between the conductor-coated fibers in the unit volume is 60%, and the conductor 30 is coated on the surface of the polymer fiber 20.
  • the area ratio of the missing part is 5%.
  • “average thickness of the conductor 30a” is obtained by randomly extracting 10 points from the conductor-coated fiber where the cross-sectional micrograph is taken, and measuring the thickness of the conductor from the cross-sectional electron micrograph at that point. Calculated by averaging the measured thicknesses of the conductors.
  • the “ratio of the void remaining between the conductor-coated fibers in the unit volume” is the bulk density of the polymer fiber layer 110 obtained by calculating from the thickness of the polymer fiber layer 110 and the weight per 1 m 2. And the method of calculating the void volume from the specific gravity of the polymer. Further, “the area ratio of the portion of the surface of the polymer fiber 20 that is not covered with the conductor 30” is determined from the randomly selected electron micrograph (see FIG. 10B). Was calculated from these ratios.
  • Example 2 The conductor-coated fiber assembly 1b according to Example 2 was manufactured by performing the following flexible base material preparation process, polymer fiber formation process, and conductor coating process in this order. Among these, the flexible base material preparation step and the polymer fiber formation step are the same as in Example 1, and the conductor coating step is different from that in Example 1.
  • the conductor coating process is as follows.
  • the polymer fiber layer 110 formed on one surface of the flexible substrate 100 is formed by a vapor phase method (sputtering method) using the sputtering apparatus 300 described above.
  • a conductor 30 b made of copper is formed on the surface of each polymer fiber 20.
  • the average thickness of the conductor 30b is 50 nm.
  • the obtained conductor-coated fiber assembly 1b and flexible substrate 100 have a weight of 75 g per 1 m 2 .
  • the proportion of the voids remaining between the conductor-coated fibers in the unit volume is 60%, and the conductor 30 is coated on the surface of the polymer fiber 20.
  • the area ratio of the missing part is 5%.
  • Example 3 Conductor-coated fiber assembly 1c according to Example 3 was manufactured by performing the following flexible base material preparation step, polymer fiber formation step, and conductor coating step in this order. Among these, the flexible base material preparation step and the polymer fiber formation step are the same as in Example 1, and the conductor coating step is different from that in Example 1. The conductor coating process is as follows.
  • the polymer fiber layer 110 formed on one surface of the flexible substrate 100 is formed by a vapor phase method (sputtering method) using the sputtering apparatus 300 described above.
  • a conductor 30 c made of aluminum is formed on the surface of each polymer fiber 20.
  • the average thickness of the conductor 30c is 50 nm.
  • the obtained conductor-coated fiber assembly 1c and the flexible substrate 100 have a weight per 1 m 2 of 63 g.
  • the proportion of the voids remaining between the conductor-coated fibers in the unit volume is 60%, and the conductor 30 is coated on the surface of the polymer fiber 20.
  • the area ratio of the missing part is 5%.
  • Comparative Example 1 By performing the following flexible base material preparation step and polymer fiber formation step in this order, a fiber 1d according to Comparative Example 1 was produced.
  • the flexible base material preparation step and the polymer fiber formation step are the same as those in Example 1. That is, in Comparative Example 1, the polymer fiber 110 produced in the polymer fiber formation step was used as it was to obtain a fiber 1d.
  • the weight of 1d fiber per 1 m 2 is 6.7 g. Further, the weight per 1 m 2 of the fiber 1d and the flexible substrate 100 is 57 g.
  • Comparative Example 2 A commercially available polyester fiber (trade name P-800, manufactured by Kuraray Co., Ltd.) was directly used as the fiber 1e according to Comparative Example 2.
  • the weight per 1 m 2 of the fiber 1e is 129 g.
  • the average diameter of the fiber 1e is 14 ⁇ m.
  • Comparative Example 4 A commercially available conductive fiber (manufactured by Kuraray Co., Ltd., trade name Cura Carbo) was used as fiber 1h according to Comparative Example 5 as it was.
  • the weight per 1 m 2 of the fiber 1h is 135 g.
  • the average diameter of the fibers 1h is 14 ⁇ m.
  • Comparative Example 5 A commercially available metal-plated fiber (trade name Selmec, manufactured by Kuraray Co., Ltd.) was used as the conductor coated fiber assembly 1g according to Comparative Example 4 as it was.
  • the weight of 1 g of fiber per 1 m 2 is 321 g.
  • the average diameter of 1 g of fibers is 20 ⁇ m.
  • Electron micrographs Electron micrographs were taken of the conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3 and the fibers 1d according to Comparative Example 1.
  • breathability was evaluated.
  • the air permeability was evaluated according to the Frazier method. That is, after attaching each sample having a size of 20 cm ⁇ 20 cm to one end of a cylinder in the Frazier tester, the suction fan is adjusted by an adjustable resistor so that the inclined barometer exhibits a pressure of 125 Pa, and the vertical direction at that time From the pressure indicated by the barometer and the type of air hole used, the amount of air (cm 3 / cm 2 ⁇ s) passing through each sample was obtained from the table attached to the tester.
  • Electromagnetic wave shielding properties were evaluated using the conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3 and the fibers 1d, 1g, and 1h according to Comparative Examples 1, 4, and 5 as samples. . Evaluation of electromagnetic shielding properties was performed in accordance with the KEC (Kansai Electronics Industry Promotion Center) method. That is, after each sample is made 12 cm ⁇ 12 cm in size, each sample is placed between the high-frequency signal generator and the high-frequency signal intensity measurement device in the electromagnetic wave shield measurement chamber while changing the frequency (from 10 MHz to (1000 MHz) This was performed by measuring the amount of high-frequency signal passing through.
  • KEC Kansai Electronics Industry Promotion Center
  • FIG. 10 is a diagram for explaining the conductor-coated fiber assembly 1a according to the first embodiment.
  • 10A is an electron micrograph of the conductor-coated fiber assembly 1a
  • FIG. 10B is an electron microscope of the conductor-coated fiber assembly 1a taken at a higher magnification than in the case of FIG. 10A. It is a photograph.
  • FIG. 11 is a diagram for explaining the conductor-coated fiber assembly 1b according to the second embodiment.
  • FIG. 11A is an electron micrograph of the conductor-coated fiber assembly 1b
  • FIG. 11B is an electron microscope of the conductor-coated fiber assembly 1b taken at a higher magnification than in the case of FIG. 11A. It is a photograph.
  • FIG. 11A is an electron micrograph of the conductor-coated fiber assembly 1b
  • FIG. 11B is an electron microscope of the conductor-coated fiber assembly 1b taken at a higher magnification than in the case of FIG. 11A. It is a photograph.
  • FIG. 12 is a diagram for explaining the conductor-coated fiber assembly 1c according to the third embodiment.
  • 12A is an electron micrograph of the conductor-coated fiber assembly 1c
  • FIG. 12B is an electron microscope of the conductor-coated fiber assembly 1c taken at a higher magnification than in the case of FIG. 12A.
  • FIG. 13 is a diagram for explaining the fiber 1d according to the comparative example 1.
  • FIG. FIG. 13 (a) is an electron micrograph of the fiber 1d
  • FIG. 13 (b) is an electron micrograph of the fiber 1d taken at a higher magnification than in the case of FIG. 13 (a).
  • FIG. 14 is a diagram showing evaluation results for various characteristics of the conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3 and the fibers 1d to 1h according to Comparative Examples 1 to 5.
  • FIG. 15 is a diagram showing the evaluation results of the electromagnetic wave shielding characteristics of the conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3 and the fibers 1d, 1g, and 1h according to Comparative Examples 1, 4, and 5.
  • Electron micrograph As shown in FIG. 13, it has confirmed that the fiber 1d which concerns on the comparative example 1 was a polymer fiber whose average diameter is 300 nm. Therefore, also in the conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3, the average diameter of the polymer fibers is 300 nm. Further, as shown in FIGS. 10 to 12, the conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3 each have a conductor coated on each polymer fiber, and the fiber structure of the polymer fiber. Was confirmed to be maintained.
  • the voids remain between the conductor-coated fibers, and the units of voids remaining between the conductor-coated fibers. It was confirmed that the proportion of the volume was 60%, and the area proportion of the surface of the polymer fiber not covered with the conductor was 5%.
  • the conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3 are all better than the fibers 1d to 1f according to Comparative Examples 1 to 3 ( It was confirmed to have a high ASTM heat retention rate. Therefore, the conductor-coated fiber aggregates 1a to 1c according to Examples 1 to 3 can be suitably used for cold clothing.
  • (3) Breathability As shown in FIG. 14, it was confirmed that the conductor-coated fiber assembly 1c according to Example 3 had excellent breathability substantially equal to that of the fiber 1d according to Comparative Example 1. Therefore, the conductor-coated fiber assembly 1c according to Example 3 can be suitably used for ski wear and other clothes.
  • the conductor-coated fiber assemblies 1 a, 1 b, and 1 c according to Examples 1 to 3 are all higher in electromagnetic shielding than the fiber 1 d according to Comparative Example 1. It was found to have characteristics. Moreover, it turned out that the conductor covering fiber assembly 1b which concerns on Example 2 has an electromagnetic wave shielding characteristic equivalent to the fiber 1h which concerns on the comparative example 4. FIG. Moreover, although the conductor covering fiber assembly 1a which concerns on Example 1 does not reach the fiber g of the comparative example 5, it turned out that it has an electromagnetic wave shielding characteristic higher than the fiber 1h which concerns on the comparative example 4. FIG. Therefore, the conductor-coated fiber assembly 1a according to Example 1 can be suitably used as an electromagnetic shielding material.
  • the polymer fiber layer 110 is formed using the electrospinning method, but the present invention is not limited to this.
  • the polymer fiber layer 110 may be formed by a melt blown method.
  • FIG. 16 is a diagram for explaining a conductor coating step in the method for manufacturing a conductor-coated fiber assembly according to the first modification. As shown in FIG. 16, it is good also as forming the conductor 30 by a vacuum evaporation method.
  • reference numeral 402 indicates a feeding roll
  • reference numeral 404 indicates a feed roller
  • reference numeral 406 indicates a cooling roller
  • reference numeral 408 indicates a take-up roll
  • reference numeral 410 indicates a vacuum deposition chamber
  • Reference numeral 412 indicates a vacuum deposition unit
  • reference numeral 414 indicates metal vapor.
  • the polymer fiber raw material is dissolved in a solvent to form a liquid, but the present invention is not limited to this.
  • the raw material of the polymer fiber may be heated to be a liquid.
  • the conductor layer-covered fiber assembly of the present invention has been described taking heat retention, air permeability, and electromagnetic wave shielding as an example. It is not limited to.
  • the conductor layer-covered fiber assembly of the present invention has excellent electromagnetic wave absorption characteristics and other high characteristics, it can be suitably used in various applications including electromagnetic wave absorbers.
  • an electromagnetic wave absorber carbon, aluminum, etc. can be illustrated preferably as a conductor to be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

Disclosed is a conductor-covered fiber assembly (1) comprising an assembly of conductor-covered fibers (10).  The conductor-covered fiber (10) comprises a polymer fiber (20) having an average diameter of 50 to 800 nm and a conductor (30) covering the surface of the polymer fiber (20), and spaces are present among the conductor-covered fibers (10).  In the conductor-covered fiber assembly (1), 40 to 90% of the unit volume of the conductor-covered fiber assembly (1) is accounted for by the spaces present among the conductor-covered fibers (10), and the percentage area of portions not covered with the conductor (30) in the surface of the polymer fiber (20) is not more than 20%.  The conductor-covered fiber assembly (1) is suitable for use in various applications such as heat insulating materials, electromagnetic wave shielding materials, and electromagnetic wave absorbing materials.

Description

導電体被覆繊維集合体及びその製造方法Conductor-coated fiber assembly and manufacturing method thereof
 本発明は、導電体被覆繊維集合体及びその製造方法に関する。 The present invention relates to a conductor-coated fiber assembly and a manufacturing method thereof.
 従来、ポリマー繊維の表面に導電体が被覆された導電体被覆繊維の集合体からなる導電体被覆繊維集合体が知られている(例えば、特許文献1~6参照。)。 Conventionally, there has been known a conductor-coated fiber assembly composed of an aggregate of conductor-coated fibers in which the surface of a polymer fiber is coated with a conductor (see, for example, Patent Documents 1 to 6).
 特許文献1に記載の導電体被覆繊維集合体は、例えばメルトブロウン法により形成されたポリマー繊維からなるエラストマー不織布と、当該エラストマー不織布の表面を覆う金属コーティング(アルミニウム、銅、すず、亜鉛、ニッケル、鉄、金、銀、銅系合金、アルミニウム系合金、チタニウム系合金及び鉄系合金)を備える導電体被覆繊維の集合体からなるものである。このため、特許文献1に記載の導電体被覆繊維集合体は、豪華な外観、各種の物理的性質(導電性、静電抵抗、化学的抵抗、熱反射性、熱放射性、光学的反射性)、望ましい柔軟性、弾性、柔らかさ及びドレープを有するようになる。 The conductor-coated fiber assembly described in Patent Document 1 includes, for example, an elastomer nonwoven fabric made of polymer fibers formed by a melt-blown method, and a metal coating (aluminum, copper, tin, zinc, nickel, covering the surface of the elastomer nonwoven fabric). Iron, gold, silver, copper alloy, aluminum alloy, titanium alloy, and iron alloy). For this reason, the conductor-coated fiber assembly described in Patent Document 1 has a gorgeous appearance and various physical properties (conductivity, electrostatic resistance, chemical resistance, heat reflectivity, heat radiation, optical reflectivity). To have the desired flexibility, elasticity, softness and drape.
 特許文献2に記載の導電体被覆繊維集合体は、通気性を有するポリエステル製生地に真空蒸着法によりアルミニウム、ステンレス、銅、金、銀、チタン等からなる金属層を設けた導電体被覆繊維の集合体からなるものである。このため、特許文献2に記載の導電体被覆繊維集合体からなる表地と、吸臭性を有する綿状の芯とを積層した繊維製品用素材を寝装品、敷物等の繊維製品に用いることにより、当該繊維製品は、通気性、脱臭性に加えて保温性、殺菌性を備えることとなるので、衛生上又は健康上好ましい環境を保つことができ、特に、老人や病人等に快適な環境を与えることができるようになる。 The conductor-coated fiber assembly described in Patent Document 2 is a conductor-coated fiber assembly in which a metal layer made of aluminum, stainless steel, copper, gold, silver, titanium, or the like is provided on a polyester fabric having air permeability by a vacuum deposition method. It consists of an aggregate. For this reason, by using the material for textiles which laminated the surface material which consists of an electric conductor covering textiles statement of patent documents 2, and the cotton-like core which has odor absorption for textile products, such as bedding and rugs, Since textile products have heat retention and bactericidal properties in addition to breathability and deodorization, they can maintain a favorable environment in terms of hygiene or health, and in particular, provide a comfortable environment for the elderly and sick. Will be able to.
 特許文献3に記載の導電体被覆繊維集合体は、ナイロンの表面に銀めっきした構造を有する導電体被覆繊維の集合体からなるものである。このため、特許文献3に記載の導電体被覆繊維集合体を含有する不織布等からなる布帛を電気敷毛布の裏面側に設置することにより、電気敷毛布の裏面側に熱が逸散し難くなり、高い省エネルギー効果をもった電気敷毛布となる。 The conductor-covered fiber assembly described in Patent Document 3 is composed of an aggregate of conductor-coated fibers having a structure in which the surface of nylon is silver-plated. For this reason, it becomes difficult to dissipate heat to the back surface side of the electric blanket by installing a fabric made of a nonwoven fabric or the like containing the conductor-coated fiber assembly described in Patent Document 3 on the back surface side of the electric bed blanket. It becomes an electric blanket with high energy-saving effect.
 特許文献4に記載の導電体被覆繊維集合体は、熱可塑性合成繊維からなる嵩高な原料不織布にステンレス、チタン、ニッケルなどの耐食性金属が、物理蒸着により両面から被覆された導電体被覆繊維の集合体からなるものである。このため、特許文献4に記載の導電体被覆繊維集合体は、繊維のほぼ全面が蒸着膜で被覆されることとなるため、十分な保温性を有し、軽量化可能であり、柔軟性に優れ、抗菌性に優れ、衣服や布団の中綿として好適に用いることができるようになる。 The conductor-coated fiber assembly described in Patent Document 4 is a collection of conductor-coated fibers in which a bulky raw material nonwoven fabric made of thermoplastic synthetic fibers is coated with a corrosion-resistant metal such as stainless steel, titanium, or nickel on both sides by physical vapor deposition. It consists of the body. For this reason, the conductor-coated fiber assembly described in Patent Document 4 has sufficient heat retention, can be reduced in weight, and is flexible because almost the entire surface of the fiber is covered with the deposited film. It is excellent in antibacterial properties and can be suitably used as a batting for clothes and bedding.
 特許文献5に記載の導電体被覆繊維集合体は、PAN系炭素繊維を含むポリエステル繊維の表面にステンレスなどの金属が、無電解めっき、電気めっき、真空蒸着、スパッタリング、イオンプレーティングなどにより被覆された導電体被覆繊維の集合体からなるものである。このため、特許文献5に記載の導電体被覆繊維集合体は、不織布の柔軟性を損なわず、満足しうる電磁波シールド性を有するようになる。 In the conductor-coated fiber assembly described in Patent Document 5, a metal such as stainless steel is coated on the surface of a polyester fiber containing a PAN-based carbon fiber by electroless plating, electroplating, vacuum deposition, sputtering, ion plating, or the like. It consists of an aggregate of conductor coated fibers. For this reason, the conductor covering fiber assembly described in Patent Document 5 has satisfactory electromagnetic shielding properties without impairing the flexibility of the nonwoven fabric.
 特許文献6に記載の導電体被覆繊維集合体は、ポリエステル繊維の表面に銀、金、白金、銅、ニッケル、スズ、亜鉛、パラジウム、これらの合金などが電解めっき、化学めっき、真空蒸着などにより表面粗さ0.01~1μmで被覆された導電体被覆繊維の集合体からなるものである。このため、特許文献6に記載の導電体被覆繊維集合体は、金属被膜の表面がオレンジピールを呈するようになり、優れた密着強度を有し耐久性に優れたものとなる。その結果、抗菌衣料、電磁波シールド材、静電防止材、電極・電線の代替材料、繊維強化プラスチックの導電性補強材となる。 In the conductor-coated fiber assembly described in Patent Document 6, silver, gold, platinum, copper, nickel, tin, zinc, palladium, and alloys thereof are formed on the surface of the polyester fiber by electrolytic plating, chemical plating, vacuum deposition, or the like. It consists of an aggregate of conductor-coated fibers coated with a surface roughness of 0.01 to 1 μm. For this reason, the conductor-coated fiber assembly described in Patent Document 6 has an orange peel on the surface of the metal coating, and has excellent adhesion strength and durability. As a result, it becomes antibacterial clothing, electromagnetic shielding material, antistatic material, electrode / wire substitute material, and conductive reinforcing material of fiber reinforced plastic.
特開平6-10262号公報Japanese Patent Laid-Open No. 6-10262 特開平7-126976号公報Japanese Patent Laid-Open No. 7-126976 特開2000-336546号公報JP 2000-336546 A 実用新案登録第3120571号公報Utility Model Registration No. 3120571 特開平6-294093号公報JP-A-6-294093 特開2001-234468号公報JP 2001-234468 A
 ところで、繊維業界においては、従来よりも高い特性を有し様々な用途において好適に用いることのできる繊維が常に求められており、導電体被覆繊維集合体においても例外ではない。 By the way, in the textile industry, there is always a demand for fibers that have higher characteristics than conventional ones and that can be suitably used in various applications, and the conductor-coated fiber assembly is no exception.
 そこで、本発明は、そのような事情に鑑みてなされたもので、従来よりも高い特性を有し様々な用途において好適に用いることのできる導電体被覆繊維集合体及びその製造方法を提供することを目的とする。 Therefore, the present invention has been made in view of such circumstances, and provides a conductor-coated fiber assembly that has higher characteristics than conventional ones and can be suitably used in various applications, and a method for manufacturing the same. With the goal.
(1)本発明の導電体被覆繊維集合体は、平均直径が50nm~800nmのポリマー繊維の表面に導電体が被覆された導電体被覆繊維の集合体からなり、各導電体被覆繊維間に空隙が残存していることを特徴とする。 (1) The conductor-coated fiber assembly of the present invention comprises an aggregate of conductor-coated fibers in which a conductor is coated on the surface of a polymer fiber having an average diameter of 50 nm to 800 nm, and a gap is formed between each conductor-coated fiber. Is characterized by remaining.
 このため、本発明の導電体被覆繊維集合体は、平均直径が50nm~800nmのポリマー繊維の表面に導電体が被覆された導電体被覆繊維の集合体からなり、各導電体被覆繊維間に空隙が残存しているため、通気性、耐水性、保温性及び柔軟性をバランスよく高くすることが可能となり、従来よりも高い特性を有し様々な用途において好適に用いることのできる導電体被覆繊維集合体となる。 For this reason, the conductor-coated fiber assembly of the present invention comprises an aggregate of conductor-coated fibers in which a conductor is coated on the surface of a polymer fiber having an average diameter of 50 nm to 800 nm, and a gap is formed between each conductor-coated fiber. Therefore, it is possible to increase the breathability, water resistance, heat retention and flexibility in a well-balanced manner, and the conductor-coated fibers have higher characteristics than conventional ones and can be suitably used in various applications. It becomes an aggregate.
 ここで、ポリマー繊維の平均直径を50nm以上としたのは、ポリマー繊維の平均直径が50nm未満となるとポリマー繊維を高い生産性で製造することが困難となるからであり、ポリマー繊維の平均直径を800nm以下としたのは、ポリマー繊維の平均直径が800nmを超えると、通気性、耐水性、保温性及び柔軟性をバランスよく高くすることが困難となるからである。これらの観点から言えば、ポリマー繊維の平均直径は、70nm~700nmであることがより好ましく、100nm~600nmであることがさらに好ましい。 Here, the average diameter of the polymer fiber is set to 50 nm or more because it becomes difficult to produce the polymer fiber with high productivity when the average diameter of the polymer fiber is less than 50 nm. The reason why it is set to 800 nm or less is that when the average diameter of the polymer fiber exceeds 800 nm, it is difficult to increase the air permeability, water resistance, heat retention and flexibility in a balanced manner. From these viewpoints, the average diameter of the polymer fibers is more preferably 70 nm to 700 nm, and further preferably 100 nm to 600 nm.
(2)本発明の導電体被覆繊維集合体においては、各導電体被覆繊維間に残存している空隙の単位体積に占める割合が40%~90%の範囲内にあることが好ましい。 (2) In the conductor-coated fiber assembly of the present invention, the proportion of the voids remaining between the conductor-coated fibers in the unit volume is preferably in the range of 40% to 90%.
 このように、各導電体被覆繊維間に残存している空隙の単位体積に占める割合が40%以上であることにより、さらに高い柔軟性を有するようになる。この観点から言えば、各導電体被覆繊維集合体間に残存している空隙の単位体積に占める割合が50%以上であることがより好ましく、60%以上であることがさらに好ましい。また、各導電体被覆繊維間に残存している空隙の単位体積に占める割合が90%以下であることにより、繊維にしたときの機械的強度を維持することが可能となる。この観点から言えば、各導電体被覆繊維集合体間に残存している空隙の単位体積に占める割合が85%以下であることがより好ましく、80%以下であることがさらに好ましい。 As described above, when the ratio of the voids remaining between the conductor-coated fibers to the unit volume is 40% or more, it has higher flexibility. From this point of view, the ratio of the voids remaining between the conductor-coated fiber assemblies to the unit volume is more preferably 50% or more, and further preferably 60% or more. Further, since the ratio of the voids remaining between the conductor-coated fibers to the unit volume is 90% or less, the mechanical strength when the fibers are made can be maintained. From this point of view, the ratio of the voids remaining between the conductor-coated fiber assemblies to the unit volume is more preferably 85% or less, and further preferably 80% or less.
(3)本発明の導電体被覆繊維集合体においては、前記ポリマー繊維の表面のうち前記導電体に被覆されていない部分の面積割合が20%以下であることが好ましい。 (3) In the conductor-coated fiber assembly of the present invention, it is preferable that the area ratio of the surface of the polymer fiber not covered with the conductor is 20% or less.
 このように、ポリマー繊維の表面のうち前記導電体に被覆されていない部分の面積割合が20%以下であることにより、導電体被覆繊維集合体としてさらに高い特性を有するようになる。この観点から言えば、前記ポリマー繊維の表面のうち前記導電体に被覆されていない部分の面積割合が10%以下であることがより好ましく、5%以下であることがさらに好ましい。 Thus, when the area ratio of the portion of the surface of the polymer fiber not covered with the conductor is 20% or less, the conductor-coated fiber aggregate has higher characteristics. From this viewpoint, the area ratio of the portion of the surface of the polymer fiber not covered with the conductor is more preferably 10% or less, and further preferably 5% or less.
(4)本発明の導電体被覆繊維集合体においては、前記導電体は、金属からなることが好ましい。 (4) In the conductor-coated fiber assembly of the present invention, the conductor is preferably made of metal.
 このような構成とすることにより、本発明の導電体層被覆繊維集合体は、金属被覆繊維集合体となる。 By adopting such a configuration, the conductor layer-covered fiber assembly of the present invention becomes a metal-coated fiber assembly.
(5)本発明の導電体被覆繊維集合体においては、前記導電体は、カーボンからなることが好ましい。 (5) In the conductor-coated fiber assembly of the present invention, the conductor is preferably made of carbon.
 このような構成とすることにより、本発明の導電体層被覆繊維集合体は、カーボン被覆繊維集合体となる。 By adopting such a configuration, the conductor layer-covered fiber assembly of the present invention becomes a carbon-coated fiber assembly.
(6)本発明の保温材は、本発明の導電体被覆繊維集合体からなるものである。 (6) The heat insulating material of the present invention is composed of the conductor-coated fiber assembly of the present invention.
 本発明の保温材によれば、後述する実施例からも明らかなように、高い保温性を備える保温材となる。また、本発明の保温材によれば、高い通気性、耐水性及び柔軟性をさらに兼ね備え、使用範囲が広く使い勝手のよい保温材となる。 According to the heat insulating material of the present invention, as will be apparent from the examples described later, the heat insulating material has high heat insulating properties. Further, according to the heat insulating material of the present invention, the heat insulating material further has high breathability, water resistance and flexibility, has a wide use range and is easy to use.
(7)本発明の電磁波シールド材は、本発明の導電体被覆繊維集合体からなるものである。 (7) The electromagnetic wave shielding material of the present invention comprises the conductor-coated fiber assembly of the present invention.
 本発明の電磁波シールド材によれば、後述する実施例からも明らかなように、高い電磁波シールド性を備える電磁波シールド材となる。また、本発明の電磁波シールド材によれば、高い通気性、耐水性、保温性及び柔軟性をさらに兼ね備え、使用範囲が広く使い勝手のよい電磁波シールド材となる。 According to the electromagnetic wave shielding material of the present invention, it becomes an electromagnetic wave shielding material having high electromagnetic wave shielding properties, as will be apparent from the examples described later. Moreover, according to the electromagnetic wave shielding material of the present invention, it is an electromagnetic wave shielding material that has high breathability, water resistance, heat retention and flexibility, and has a wide use range and is easy to use.
(8)本発明の電磁波吸収材は、本発明の導電体被覆繊維集合体からなるものである。 (8) The electromagnetic wave absorber of the present invention comprises the conductor-coated fiber assembly of the present invention.
 本発明の電磁波吸収材によれば、導電体(導電体層)の表面積を極めて大きくすることが可能となるため、高い電磁波吸収性を備える電磁波吸収材となる。また、本発明の電磁波吸収材によれば、高い通気性、耐水性、保温性及び柔軟性をさらに兼ね備え、使用範囲が広く使い勝手のよい電磁波吸収材となる。 According to the electromagnetic wave absorbing material of the present invention, the surface area of the conductor (conductor layer) can be made extremely large, so that the electromagnetic wave absorbing material has high electromagnetic wave absorbability. Moreover, according to the electromagnetic wave absorbing material of the present invention, it is an electromagnetic wave absorbing material that has high breathability, water resistance, heat retention and flexibility, and has a wide use range and is easy to use.
(9)本発明の導電体被覆繊維集合体の製造方法は、本発明の導電体被覆繊維集合体を製造するための導電体被覆繊維集合体の製造方法であって、長尺の可撓性基材を準備する可撓性基材準備工程と、前記可撓性基材における一方の面上に、平均直径が50nm~800nmのポリマー繊維の集合体からなるポリマー繊維層を形成するポリマー繊維層形成工程と、気相法によって前記ポリマー繊維層を構成する各ポリマー繊維の表面に導電体を被覆する導電体被覆工程とをこの順序で含むことを特徴とする。 (9) The method for producing a conductor-coated fiber assembly according to the present invention is a method for producing a conductor-coated fiber assembly for producing the conductor-coated fiber assembly according to the present invention. A flexible base material preparing step for preparing a base material, and a polymer fiber layer for forming a polymer fiber layer comprising an aggregate of polymer fibers having an average diameter of 50 nm to 800 nm on one surface of the flexible base material It includes a forming step and a conductor coating step for coating a conductor on the surface of each polymer fiber constituting the polymer fiber layer by a vapor phase method in this order.
 このため、本発明の導電体被覆繊維集合体の製造方法によれば、本発明の導電体被覆繊維集合体を製造することができる。 Therefore, according to the method for producing a conductor-coated fiber assembly of the present invention, the conductor-coated fiber assembly of the present invention can be manufactured.
(10)本発明の導電体被覆繊維集合体の製造方法においては、前記ポリマー繊維層形成工程と前記導電体被覆工程との間に、前記可撓性基材から前記ポリマー繊維層を分離するポリマー繊維層分離工程をさらに含むことが好ましい。 (10) In the method for producing a conductor-coated fiber assembly of the present invention, a polymer that separates the polymer fiber layer from the flexible substrate between the polymer fiber layer forming step and the conductor coating step. It is preferable to further include a fiber layer separation step.
 このような方法とすることにより、可撓性基材を有しない単体としての導電体被覆繊維集合体を製造することが可能となり、可撓性基材を有する積層体としての導電体被覆繊維集合体の場合とは異なる様々な用途に好適に用いることが可能となる。 By adopting such a method, it becomes possible to produce a conductor-coated fiber assembly as a single body having no flexible substrate, and a conductor-coated fiber assembly as a laminate having a flexible substrate. It can be suitably used for various uses different from the case of the body.
(11)本発明の導電体被覆繊維集合体の製造方法において、前記導電体被覆工程においては、前記ポリマー繊維層の両面から各ポリマー繊維の表面に導電体を被覆することが好ましい。 (11) In the method for producing a conductor-coated fiber assembly of the present invention, in the conductor coating step, it is preferable to coat the surface of each polymer fiber from both sides of the polymer fiber layer.
 このような方法とすることにより、ポリマー繊維の表面のうち導電体に被覆されていない部分の面積割合をさらに低くすることが可能となり、様々な用途において好適に用いることのできる導電体被覆繊維集合体を製造することが可能となる。 By adopting such a method, it becomes possible to further reduce the area ratio of the portion of the polymer fiber surface that is not coated with the conductor, and the conductor-coated fiber assembly that can be suitably used in various applications. The body can be manufactured.
(12)本発明の導電体被覆繊維集合体の製造方法において、ポリマー繊維層形成工程においては、エレクトロスピニング法又はメルトブロウン法によってポリマー繊維層を形成することが好ましい。 (12) In the method for producing a conductor-coated fiber assembly of the present invention, in the polymer fiber layer forming step, it is preferable to form the polymer fiber layer by an electrospinning method or a melt blown method.
 このような方法とすることにより、平均直径が50nm~800nmのポリマー繊維の集合体からなるポリマー繊維層を高い生産性で製造することが可能となる。 By adopting such a method, it becomes possible to produce a polymer fiber layer composed of an aggregate of polymer fibers having an average diameter of 50 nm to 800 nm with high productivity.
実施形態1に係る導電体被覆繊維集合体1の構成を説明するために示す図である。It is a figure shown in order to demonstrate the structure of the conductor covering fiber assembly 1 which concerns on Embodiment 1. FIG. 実施形態1に係る導電体被覆繊維集合体の製造方法を説明するために示す図である。It is a figure shown in order to demonstrate the manufacturing method of the conductor covering fiber assembly which concerns on Embodiment 1. FIG. 実施形態1における可撓性基材準備工程の内容を模式的に示す図である。It is a figure which shows typically the content of the flexible base material preparation process in Embodiment 1. FIG. 実施形態1におけるポリマー繊維形成工程の内容を模式的に示す図である。It is a figure which shows typically the content of the polymer fiber formation process in Embodiment 1. FIG. 実施形態1における導電体被覆工程の内容を模式的に示す図である。It is a figure which shows typically the content of the conductor coating | coated process in Embodiment 1. FIG. 実施形態2に係る導電体被覆繊維集合体の製造方法を説明するために示す図である。It is a figure shown in order to demonstrate the manufacturing method of the conductor covering fiber assembly which concerns on Embodiment 2. FIG. 実施形態2におけるポリマー繊維形成工程の内容を模式的に示す図である。It is a figure which shows typically the content of the polymer fiber formation process in Embodiment 2. FIG. 実施形態2における導電体被覆工程の内容を模式的に示す図である。It is a figure which shows typically the content of the conductor coating process in Embodiment 2. FIG. 実施形態3における導電体被覆工程の内容を模式的に示す図である。It is a figure which shows typically the content of the conductor coating process in Embodiment 3. FIG. 実施例1に係る導電体被覆繊維集合体10aの電子顕微鏡写真である。2 is an electron micrograph of a conductor-coated fiber assembly 10a according to Example 1. 実施例2に係る導電体被覆繊維集合体10bの電子顕微鏡写真である。4 is an electron micrograph of a conductor-coated fiber assembly 10b according to Example 2. 実施例3に係る導電体被覆繊維集合体10cの電子顕微鏡写真である。It is an electron micrograph of the conductor covering fiber assembly 10c which concerns on Example 3. FIG. 比較例1に係る繊維10dの電子顕微鏡写真写真である。It is an electron micrograph photograph of fiber 10d concerning comparative example 1. 実施例1~3に係る導電体被覆繊維集合体1a~1c及び比較例1~5に係る繊維1d~1hの各種特性についての評価結果を示す図である。FIG. 6 is a diagram showing evaluation results for various characteristics of conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3 and fibers 1d to 1h according to Comparative Examples 1 to 5. 実施例1~3に係る導電体被覆繊維集合体1a~1c及び比較例1,4,5に係る繊維1d,1g,1hの電磁波シールド特性についての評価結果を示す図である。FIG. 6 is a diagram showing evaluation results of electromagnetic wave shielding characteristics of conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3 and fibers 1d, 1g, and 1h according to Comparative Examples 1, 4, and 5; 変形例1に係る導電体被覆繊維集合体の製造方法における導電体被覆工程を説明するために示す図である。It is a figure shown in order to demonstrate the conductor coating process in the manufacturing method of the conductor covering fiber assembly which concerns on the modification 1. FIG.
 以下、本発明の導電体層被覆繊維集合体及びその製造方法について、図に示す実施の形態に基づいて説明する。 Hereinafter, the conductor layer-covered fiber assembly of the present invention and the manufacturing method thereof will be described based on the embodiments shown in the drawings.
[実施形態1]
1.実施形態1に係る導電体被覆繊維集合体1の構成
 図1は、実施形態1に係る導電体被覆繊維集合体1の構成を説明するために示す図である。図1(a)は導電体被覆繊維集合体1を構成する導電体被覆繊維10の断面構造を拡大して示す図であり、図1(b)は導電体被覆繊維集合体1からなる導電体被覆繊維集合体層112を備える導電体被覆繊維集合体積層シート104の断面構造を示す図である。
[Embodiment 1]
1. Configuration of Conductor-Coated Fiber Assembly 1 According to Embodiment 1 FIG. 1 is a diagram shown for explaining the configuration of the conductor-coated fiber assembly 1 according to Embodiment 1. FIG. FIG. 1A is an enlarged view showing a cross-sectional structure of a conductor-coated fiber 10 constituting the conductor-coated fiber assembly 1, and FIG. 1B is a conductor composed of the conductor-coated fiber assembly 1. It is a figure which shows the cross-section of the conductor covering fiber assembly laminated sheet 104 provided with the covering fiber assembly layer 112. FIG.
 実施形態1に係る導電体被覆繊維集合体1は、図1に示すように、平均直径が50nm~800nmのポリマー繊維20の表面に導電体(導電体層)30が被覆された導電体被覆繊維10の集合体からなるものである。実施形態1に係る導電体被覆繊維集合体1においては、後述する図10~図13からも明らかなように、各導電体被覆繊維10間に空隙が残存している。そして、各導電体被覆繊維10間に残存している空隙の単位体積に占める割合は40%~90%の範囲内にあり、ポリマー繊維20の表面のうち導電体30に被覆されていない部分の面積割合は20%以下である。 As shown in FIG. 1, the conductor-coated fiber assembly 1 according to the first embodiment includes a conductor-coated fiber in which a conductor (conductor layer) 30 is coated on the surface of a polymer fiber 20 having an average diameter of 50 nm to 800 nm. It consists of 10 aggregates. In the conductor-coated fiber assembly 1 according to the first embodiment, as apparent from FIGS. 10 to 13 described later, voids remain between the conductor-coated fibers 10. The proportion of the voids remaining between the conductor-coated fibers 10 in the unit volume is in the range of 40% to 90%, and the portion of the surface of the polymer fiber 20 that is not covered with the conductor 30 The area ratio is 20% or less.
 ポリマー繊維20は、エレクトロスピニング法によって形成されたものである。導電体30は、気相法(例えばスパッタリング法)によってポリマー繊維20の表面に被覆されたものであり、導電体層30の平均厚さは、例えば10nm~500nmである。 The polymer fiber 20 is formed by an electrospinning method. The conductor 30 is coated on the surface of the polymer fiber 20 by a vapor phase method (for example, sputtering method), and the average thickness of the conductor layer 30 is, for example, 10 nm to 500 nm.
 実施形態1に係る導電体被覆繊維集合体1は、図1(b)に示すように、可撓性基材100上に導電体被覆繊維集合体層112として形成することができる。この明細書においては、可撓性基材100上に導電体被覆繊維集合体層112が形成されたものを導電体被覆繊維集合体積層シート104ということとする。 The conductor-coated fiber assembly 1 according to Embodiment 1 can be formed as a conductor-coated fiber assembly layer 112 on a flexible substrate 100 as shown in FIG. In this specification, the conductor-coated fiber assembly laminated sheet 104 is formed by forming the conductor-coated fiber assembly layer 112 on the flexible substrate 100.
 ポリマー繊維20の材料としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリアミド(PA)、ポリウレタン(PUR)、ポリビニルアルコール(PVA)、ポリアクリロニトリル(PAN)、ポリエーテルイミド(PEI)、ポリカプロラクトン(PCL)、ポリ乳酸(PLA)、ポリ乳酸グリコール酸(PLGA)など各種の材料を用いることができる。用途に応じて最適なものを選択すればよい。 Examples of the material of the polymer fiber 20 include polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polyamide (PA), polyurethane (PUR), Various materials such as polyvinyl alcohol (PVA), polyacrylonitrile (PAN), polyetherimide (PEI), polycaprolactone (PCL), polylactic acid (PLA), and polylactic acid glycolic acid (PLGA) can be used. What is necessary is just to select an optimal thing according to a use.
 導電体30としては、金属からなる導電体及びカーボンからなる導電体を好適に用いることができる。金属としては、例えば、アルミニウム、銅、すず、亜鉛、ニッケル、クロム、チタン、シリコン、鉛、モリブデン、鉄、金、銀、白金、パラジウム、銅系合金、アルミニウム系合金、チタニウム系合金及び鉄系合金など各種の金属を用いることができる。用途に応じて最適なものを選択すればよい。例えば、用途が保温材の場合には、銀、銅、アルミニウムなどを好適に用いることができ、用途が電磁波吸収シールド材の場合には、金、白金、銀、銅、ニッケルなどを好適に用いることができ、用途が電磁波吸収材の場合には、カーボン、アルミニウムなどを好適に用いることができる。 As the conductor 30, a conductor made of metal and a conductor made of carbon can be suitably used. Examples of metals include aluminum, copper, tin, zinc, nickel, chromium, titanium, silicon, lead, molybdenum, iron, gold, silver, platinum, palladium, copper alloys, aluminum alloys, titanium alloys, and iron alloys. Various metals such as alloys can be used. What is necessary is just to select an optimal thing according to a use. For example, when the application is a heat insulating material, silver, copper, aluminum, or the like can be suitably used. When the application is an electromagnetic wave shielding material, gold, platinum, silver, copper, nickel, or the like is preferably used. When the application is an electromagnetic wave absorbing material, carbon, aluminum, or the like can be preferably used.
2.実施形態1に係る導電体被覆繊維集合体の製造方法
 図2は、実施形態1に係る導電体被覆繊維集合体の製造方法を説明するために示す図である。図2(a)~図2(c)は各工程において導電体被覆繊維集合体1が製造されていく様子を示す断面図である。また、図3は、実施形態1における可撓性基材準備工程の内容を模式的に示す図である。また、図4は、実施形態1におけるポリマー繊維形成工程の内容を模式的に示す図である。また、図5は、実施形態1における導電体被覆工程の内容を模式的に示す図である。
2. Method for Producing Conductor-Coated Fiber Assembly According to Embodiment 1 FIG. 2 is a view for explaining the method for producing a conductor-coated fiber assembly according to Embodiment 1. FIG. 2 (a) to 2 (c) are cross-sectional views showing how the conductor-coated fiber assembly 1 is manufactured in each step. Moreover, FIG. 3 is a figure which shows typically the content of the flexible base material preparation process in Embodiment 1. FIG. Moreover, FIG. 4 is a figure which shows typically the content of the polymer fiber formation process in Embodiment 1. FIG. FIG. 5 is a diagram schematically showing the contents of the conductor covering step in the first embodiment.
 実施形態1に係る導電体被覆繊維集合体1は、以下の、可撓性基材準備工程と、ポリマー繊維形成工程と、導電体被覆工程とをこの順序で実施することにより作製することができる。 The conductor-covered fiber assembly 1 according to Embodiment 1 can be produced by performing the following flexible base material preparation step, polymer fiber formation step, and conductor cover step in this order. .
(1)可撓性基材準備工程
 まず、図2(a)及び図3に示すように、長尺の可撓性基材100を準備する。可撓性基材100の厚さは、例えば50μm~3mmである。また、可撓性基材100は、例えば、ポリエステル繊維の不織布からなる。
(1) Flexible base material preparatory process First, as shown to Fig.2 (a) and FIG. 3, the elongate flexible base material 100 is prepared. The thickness of the flexible substrate 100 is, for example, 50 μm to 3 mm. Moreover, the flexible base material 100 consists of a nonwoven fabric of a polyester fiber, for example.
(2)ポリマー繊維形成工程
 次に、図2(b)及び図4に示すように、エレクトロスピニング法によって可撓性基材100における一方の面上にポリマー繊維層110を形成し、ポリマー繊維積層シート102を形成する。ポリマー繊維層110の厚さは、例えば、30μm~500μmである。ポリマー繊維層110を構成するポリマー繊維20は、例えば、平均直径が50nm~800nmのポリマー繊維からなる。ポリマー繊維形成工程は、ロールツーロール方式のエレクトロスピニング装置200を用いる。なお、図4において、符号202は繰り出し側ロールを示し、符号204は送りローラを示し、符号208は巻き取り側ロールを示し、符号220は樹脂原料タンクを示し、符号222はバルブを示し、符号224はノズルを示し、符号226は対向電極を示し、符号228は高圧電源を示し、符号230はポリマー繊維の軌跡を示す。
(2) Polymer Fiber Formation Step Next, as shown in FIGS. 2B and 4, a polymer fiber layer 110 is formed on one surface of the flexible substrate 100 by electrospinning, and polymer fiber lamination is performed. A sheet 102 is formed. The thickness of the polymer fiber layer 110 is, for example, 30 μm to 500 μm. The polymer fibers 20 constituting the polymer fiber layer 110 are made of polymer fibers having an average diameter of 50 nm to 800 nm, for example. The polymer fiber forming process uses a roll-to-roll electrospinning apparatus 200. In FIG. 4, reference numeral 202 indicates a feeding side roll, reference numeral 204 indicates a feed roller, reference numeral 208 indicates a winding side roll, reference numeral 220 indicates a resin raw material tank, reference numeral 222 indicates a valve, reference numeral Reference numeral 224 indicates a nozzle, reference numeral 226 indicates a counter electrode, reference numeral 228 indicates a high voltage power source, and reference numeral 230 indicates a locus of the polymer fiber.
 ポリマー繊維形成工程においては、まず、ポリマー繊維の原料を、溶媒に溶解して液体とした状態で樹脂原料タンク220に供給する。その後、可撓性基材100を移動させながら、ポリマー繊維の原料をノズル224から可撓性基材100に向けて飛ばすことにより、可撓性基材100における一方の面上にポリマー繊維層110を形成する。このとき、溶媒は、ポリマー原料がノズル224から可撓性基材100に向かう途中で蒸発する。なお、対向電極226は、図示しないヒータにより加熱されており、ポリマー繊維20中に残存することがある溶媒も、ヒータからの熱によって蒸発する。 In the polymer fiber forming step, first, the polymer fiber raw material is supplied to the resin raw material tank 220 in a state of being dissolved in a solvent to form a liquid. Thereafter, while moving the flexible base material 100, the polymer fiber material 110 is blown from the nozzle 224 toward the flexible base material 100 to move the polymer fiber layer 110 on one surface of the flexible base material 100. Form. At this time, the solvent evaporates in the middle of the polymer raw material from the nozzle 224 toward the flexible substrate 100. The counter electrode 226 is heated by a heater (not shown), and the solvent that may remain in the polymer fiber 20 also evaporates due to heat from the heater.
(3)導電体被覆工程
 次に、図2(c)及び図5に示すように、気相法(スパッタリング法)によって可撓性基材100における一方の面上に形成されたポリマー繊維層110を構成する各ポリマー繊維20の表面に導電体(各種)30を被覆する。導電体30の厚さは、例えば、10nm~500nmである。導電体被覆工程は、ロールツーロール方式のスパッタリング装置300を用いる。なお、図5において、符号302は繰り出し側ロールを示し、符号304は送りローラを示し、符号306は冷却ローラを示し、符号308は巻き取り側ロールを示し、符号310,320はスパッタ室を示し、符号312,322はスパッタリングユニットを示し、符号314,324はプラズマを示す。
(3) Conductor coating step Next, as shown in FIGS. 2C and 5, the polymer fiber layer 110 formed on one surface of the flexible substrate 100 by a vapor phase method (sputtering method). The conductor (various) 30 is coated on the surface of each of the polymer fibers 20 constituting the. The thickness of the conductor 30 is, for example, 10 nm to 500 nm. In the conductor coating process, a roll-to-roll sputtering apparatus 300 is used. In FIG. 5, reference numeral 302 indicates a feed-out side roll, reference numeral 304 indicates a feed roller, reference numeral 306 indicates a cooling roller, reference numeral 308 indicates a winding-side roll, and reference numerals 310 and 320 indicate sputter chambers. Reference numerals 312 and 322 indicate sputtering units, and reference numerals 314 and 324 indicate plasma.
 以上の工程を行うことにより、実施形態1に係る導電体被覆繊維集合体1を製造することができる。 By performing the above steps, the conductor-coated fiber assembly 1 according to Embodiment 1 can be manufactured.
3.実施形態1に係る導電体被覆繊維集合体1の効果
 実施形態1に係る導電体被覆繊維集合体1は、平均直径が50nm~800nmのポリマー繊維20の表面に導電体30が被覆された導電体被覆繊維10の集合体からなり、各導電体被覆繊維10間に空隙が残存しているため、通気性、耐水性、保温性及び柔軟性をバランスよく高くすることが可能となり、従来よりも高い特性を有し様々な用途において好適に用いることのできる導電体被覆繊維集合体となる。
3. Effect of Conductor-Coated Fiber Assembly 1 According to Embodiment 1 The conductor-coated fiber assembly 1 according to Embodiment 1 is a conductor in which a conductor 30 is coated on the surface of a polymer fiber 20 having an average diameter of 50 nm to 800 nm. Since it consists of an assembly of coated fibers 10 and voids remain between the respective conductor coated fibers 10, it is possible to increase the air permeability, water resistance, heat retention and flexibility in a balanced manner, which is higher than before. It becomes a conductor covering fiber aggregate which has a characteristic and can be used conveniently in various uses.
 また、実施形態1に係る導電体被覆繊維集合体1によれば、各導電体被覆繊維10間に残存している空隙の単位体積に占める割合が40%~90%の範囲内にあるため、さらに高い柔軟性を有するようになり、また、繊維にしたときの機械的強度を維持することが可能となる。 Further, according to the conductor-coated fiber assembly 1 according to Embodiment 1, the ratio of the voids remaining between the conductor-coated fibers 10 to the unit volume is in the range of 40% to 90%. Furthermore, it becomes highly flexible, and it becomes possible to maintain the mechanical strength when it is made into a fiber.
 また、実施形態1に係る導電体被覆繊維集合体1によれば、ポリマー繊維20の表面のうち導電体30に被覆されていない部分の面積割合が20%以下であるため、導電体被覆繊維としてさらに高い特性を有するようになる。 Moreover, according to the conductor covering fiber assembly 1 which concerns on Embodiment 1, since the area ratio of the part which is not coat | covered with the conductor 30 among the surfaces of the polymer fiber 20 is 20% or less, as conductor covering fiber, Further, it has higher characteristics.
[実施形態2]
  図6は、実施形態2に係る導電体被覆繊維集合体の製造方法を説明するために示す図である。図6(a)~図6(d)は各工程において導電体被覆繊維集合体2が製造されていく様子を示す断面図である。また、図7は、実施形態2におけるポリマー繊維形成工程の内容を模式的に示す図である。また、図8は、実施形態2における導電体被覆工程の内容を模式的に示す図である。
[Embodiment 2]
FIG. 6 is a view for explaining the method for manufacturing the conductor-coated fiber assembly according to the second embodiment. FIGS. 6A to 6D are cross-sectional views showing how the conductor-coated fiber assembly 2 is manufactured in each step. Moreover, FIG. 7 is a figure which shows typically the content of the polymer fiber formation process in Embodiment 2. FIG. Moreover, FIG. 8 is a figure which shows typically the content of the conductor coating process in Embodiment 2. FIG.
 実施形態2に係る導電体被覆繊維集合体2は、基本的には実施形態1に係る導電体被覆繊維集合体1と同様の繊維構造を有するが、導電体被覆繊維集合体の層構造が実施形態1に係る導電体被覆繊維集合体1の場合とは異なる。すなわち、図6(d)に示すように、実施形態2に係る導電体被覆繊維集合体2は、可撓性基材を有しない単層構造を有する。 The conductor-coated fiber assembly 2 according to the second embodiment has basically the same fiber structure as the conductor-coated fiber assembly 1 according to the first embodiment, but the layer structure of the conductor-coated fiber assembly is implemented. This is different from the case of the conductor-coated fiber assembly 1 according to the first embodiment. That is, as shown in FIG.6 (d), the conductor covering fiber assembly 2 which concerns on Embodiment 2 has a single layer structure which does not have a flexible base material.
 このように、実施形態2に係る導電体被覆繊維集合体2は、導電体被覆繊維集合体の層構造が実施形態1に係る導電体被覆繊維集合体1とは異なるが、実施形態1に係る導電体被覆繊維集合体1と同様に、平均直径が50nm~800nmのポリマー繊維20の表面に導電体30が被覆された導電体被覆繊維10の集合体からなり、各導電体被覆繊維10間に空隙が残存しているため、通気性、耐水性、保温性及び柔軟性をバランスよく高くすることが可能となり、従来よりも高い特性を有し様々な用途において好適に用いることのできる導電体被覆繊維集合体となる。 As described above, the conductor-coated fiber assembly 2 according to the second embodiment is different from the conductor-coated fiber assembly 1 according to the first embodiment in the layer structure of the conductor-coated fiber assembly, but according to the first embodiment. Similar to the conductor-covered fiber assembly 1, the conductor-covered fiber 10 is composed of an aggregate of conductor-coated fibers 10 in which the conductor 30 is coated on the surface of the polymer fiber 20 having an average diameter of 50 nm to 800 nm. Since voids remain, it is possible to increase the air permeability, water resistance, heat retention and flexibility in a well-balanced manner, and the conductor coating has higher characteristics than conventional ones and can be suitably used in various applications. It becomes a fiber assembly.
 また、実施形態2に係る導電体被覆繊維集合体2は、可撓性基材を有しない単層構造を有するため、可撓性基材を有する積層構造を有する場合(実施形態1に係る導電体被覆繊維集合体1参照。)とは異なる様々な用途に好適に用いることが可能となる。 In addition, since the conductor-coated fiber assembly 2 according to the second embodiment has a single-layer structure that does not have a flexible base material, the conductor-coated fiber assembly 2 has a laminated structure that has a flexible base material (the conductive material according to the first embodiment). It can be suitably used for various uses different from the body-coated fiber assembly 1.
 なお、実施形態2に係る導電体被覆繊維集合体2は、実施形態1に係る導電体被覆繊維集合体1と同様の繊維構造を有するため、実施形態1に係る導電体被覆繊維集合体1が有する効果のうち該当する効果を有する。 In addition, since the conductor covering fiber assembly 2 according to Embodiment 2 has the same fiber structure as the conductor covering fiber assembly 1 according to Embodiment 1, the conductor covering fiber assembly 1 according to Embodiment 1 is It has a corresponding effect among the effects it has.
 実施形態2に係る導電体被覆繊維集合体2は、以下の、可撓性基材準備工程と、ポリマー繊維形成工程と、導電体被覆工程とをこの順序で実施することにより作製することができる。 The conductor-coated fiber assembly 2 according to Embodiment 2 can be produced by performing the following flexible base material preparation step, polymer fiber formation step, and conductor coating step in this order. .
(1)可撓性基材準備工程
 まず、図6(a)に示すように、実施形態1の場合と同様に、長尺の可撓性基材100を準備する。
(1) Flexible base material preparation step First, as shown in FIG. 6A, a long flexible base material 100 is prepared as in the case of the first embodiment.
(2)ポリマー繊維形成工程
 次に、図6(b)及び図7に示すように、実施形態1の場合と同様に、エレクトロスピニング法によって可撓性基材100における一方の面上にポリマー繊維層110を形成し、ポリマー繊維積層シート102を形成する。その後、図6(c)及び図7に示すように、実施形態1の場合とは異なり、可撓性基材100からポリマー繊維層110を分離する。
(2) Polymer Fiber Formation Step Next, as shown in FIGS. 6B and 7, as in the case of the first embodiment, the polymer fiber is formed on one surface of the flexible substrate 100 by electrospinning. The layer 110 is formed, and the polymer fiber laminated sheet 102 is formed. Thereafter, as shown in FIGS. 6C and 7, unlike the case of the first embodiment, the polymer fiber layer 110 is separated from the flexible substrate 100.
(3)導電体被覆工程
 次に、図6(d)及び図8に示すように、可撓性基材100を有しない単体としてのポリマー繊維層110を用い、気相法(スパッタリング法)によってポリマー繊維層110を構成する各ポリマー繊維20の表面に導電体層30を被覆する。
(3) Conductor coating step Next, as shown in FIG. 6 (d) and FIG. 8, a polymer fiber layer 110 as a single body without the flexible substrate 100 is used, and a vapor phase method (sputtering method) is used. The conductor layer 30 is coated on the surface of each polymer fiber 20 constituting the polymer fiber layer 110.
 以上の工程を行うことにより、実施形態2に係る導電体被覆繊維集合体2を製造することができる。 By performing the above steps, the conductor-coated fiber assembly 2 according to Embodiment 2 can be manufactured.
[実施形態3]
  図9は、実施形態3における導電体被覆工程の内容を模式的に示す図である。
[Embodiment 3]
FIG. 9 is a diagram schematically showing the contents of the conductor coating step in the third embodiment.
 実施形態3に係る導電体被覆繊維集合体3は、基本的には実施形態2に係る導電体被覆繊維集合体2と同様の繊維構造を有するが、導電体の被覆のされ方が実施形態2に係る導電体被覆繊維集合体2の場合と異なる。すなわち、図9に示すように、実施形態3に係る導電体被覆繊維集合体3においては、導電体被覆繊維集合体3は、ポリマー繊維層110の両面から各ポリマー繊維20の表面に導電体30が被覆された構成を有する。 The conductor-coated fiber assembly 3 according to the third embodiment basically has the same fiber structure as the conductor-coated fiber assembly 2 according to the second embodiment, but the method of covering the conductor is the second embodiment. This is different from the case of the conductor-coated fiber assembly 2 according to the above. That is, as shown in FIG. 9, in the conductor-covered fiber assembly 3 according to the third embodiment, the conductor-covered fiber assembly 3 is formed on the surface of each polymer fiber 20 from both sides of the polymer fiber layer 110. Has a coated structure.
 このように、実施形態3に係る導電体被覆繊維集合体3は、導電体の被覆のされ方が実施形態2に係る導電体被覆繊維集合体2の場合とは異なるが、実施形態2に係る導電体被覆繊維集合体2と同様に、平均直径が50nm~800nmのポリマー繊維20の表面に導電体30が被覆された導電体被覆繊維10の集合体からなり、各導電体被覆繊維10間に空隙が残存しているため、通気性、耐水性、保温性及び柔軟性をバランスよく高くすることが可能となり、従来よりも高い特性を有し様々な用途において好適に用いることのできる導電体被覆繊維集合体となる。 As described above, the conductor-coated fiber assembly 3 according to the third embodiment is different from the conductor-coated fiber assembly 2 according to the second embodiment in the manner of the conductor coating, but according to the second embodiment. Similar to the conductor-coated fiber assembly 2, the conductor-coated fiber 10 is composed of an aggregate of conductor-coated fibers 10 in which the conductor 30 is coated on the surface of the polymer fiber 20 having an average diameter of 50 nm to 800 nm. Since voids remain, it is possible to increase the air permeability, water resistance, heat retention and flexibility in a well-balanced manner, and the conductor coating has higher characteristics than conventional ones and can be suitably used in various applications. It becomes a fiber assembly.
 また、実施形態3に係る導電体被覆繊維集合体3は、ポリマー繊維層110の両面から各ポリマー繊維20の表面に導電体30が被覆された構成を有するため、ポリマー繊維の表面のうち導電体に被覆されていない部分の面積割合をさらに低くすることが可能となり、様々な用途において好適に用いることのできる導電体被覆繊維集合体となる。 In addition, the conductor-covered fiber assembly 3 according to the third embodiment has a configuration in which the conductor 30 is coated on the surface of each polymer fiber 20 from both surfaces of the polymer fiber layer 110. It is possible to further reduce the area ratio of the portion that is not coated with the conductor, and the conductor-coated fiber assembly can be suitably used in various applications.
 なお、実施形態3に係る導電体被覆繊維集合体3は、実施形態2に係る導電体被覆繊維集合体2と同様の繊維構造を有するため、実施形態2に係る導電体被覆繊維集合体2が有する効果のうち該当する効果を有する。 In addition, since the conductor covering fiber assembly 3 according to Embodiment 3 has the same fiber structure as the conductor covering fiber assembly 2 according to Embodiment 2, the conductor covering fiber assembly 2 according to Embodiment 2 is It has a corresponding effect among the effects it has.
 実施形態3に係る導電体被覆繊維集合体3は、以下の、可撓性基材準備工程と、ポリマー繊維形成工程と、導電体被覆工程とをこの順序で実施することにより作製することができる。 The conductor-covered fiber assembly 3 according to Embodiment 3 can be produced by performing the following flexible base material preparation step, polymer fiber formation step, and conductor cover step in this order. .
(1)可撓性基材準備工程
 まず、実施形態1の場合と同様に、長尺の可撓性基材100を準備する。
(1) Flexible base material preparation step First, as in the case of the first embodiment, a long flexible base material 100 is prepared.
(2)ポリマー繊維形成工程
 次に、実施形態2の場合と同様に、ポリマー繊維層110を形成する。
(2) Polymer fiber formation process Next, the polymer fiber layer 110 is formed similarly to the case of Embodiment 2. FIG.
(3)導電体被覆工程
 次に、図9に示すように、気相法(スパッタリング法)によってポリマー繊維層110の両面から各ポリマー繊維20の表面に導電体を被覆する。
(3) Conductor coating step Next, as shown in FIG. 9, a conductor is coated on the surface of each polymer fiber 20 from both surfaces of the polymer fiber layer 110 by a vapor phase method (sputtering method).
 以上の工程を行うことにより、実施形態3に係る導電体被覆繊維集合体3を製造することができる。 By performing the above steps, the conductor-coated fiber assembly 3 according to Embodiment 3 can be manufactured.
 以下、実施例を参照しながら、本発明の導電体被覆繊維集合体の効果を説明する。 Hereinafter, the effects of the conductor-coated fiber assembly of the present invention will be described with reference to examples.
1.試料の調整
[実施例1]
 以下の可撓性基材準備工程と、ポリマー繊維形成工程と、導電体被覆工程とをこの順序で実施することにより、実施例1に係る導電体被覆繊維集合体1aを作製した。
1. Preparation of sample [Example 1]
The conductor-coated fiber assembly 1a according to Example 1 was manufactured by performing the following flexible base material preparation process, polymer fiber formation process, and conductor coating process in this order.
(1)可撓性基材準備工程
 ポリエステル繊維の不織布からなる長尺の可撓性基材100を準備する。可撓性基材100の厚さは200μmである。可撓性基材100の1m当たりの重量は50gである。
(1) Flexible base material preparation process The elongate flexible base material 100 which consists of a nonwoven fabric of a polyester fiber is prepared. The thickness of the flexible substrate 100 is 200 μm. The weight of the flexible substrate 100 per 1 m 2 is 50 g.
(2)ポリマーナノ繊維形成工程
 次に、上記したエレクトロスピニング装置200を用いて、エレクトロスピニング法によって可撓性基材100における一方の面上にポリウレタンからなるポリマー繊維層110を形成する。ポリマー繊維層110の厚さは10μmであり、ポリマー繊維層110の1m当たりの重量は5gである。また、ポリマー繊維層110を構成するポリマー繊維20の平均直径は300nmである。なお、「ポリマー繊維20の平均直径」は、電子顕微鏡写真(図13(b)参照。)に写っている多数のポリマー繊維における測定箇所を無作為に100点抽出し、その箇所における繊維幅を測定し、測定された繊維幅を平均することよって算出した。
(2) Polymer nanofiber formation process Next, using the electrospinning apparatus 200 described above, the polymer fiber layer 110 made of polyurethane is formed on one surface of the flexible substrate 100 by the electrospinning method. The thickness of the polymer fiber layer 110 is 10 μm, and the weight of the polymer fiber layer 110 per 1 m 2 is 5 g. Further, the average diameter of the polymer fibers 20 constituting the polymer fiber layer 110 is 300 nm. In addition, “average diameter of polymer fiber 20” is obtained by randomly extracting 100 measurement points in a number of polymer fibers shown in an electron micrograph (see FIG. 13B), and calculating the fiber width at that point. It was calculated by measuring and averaging the measured fiber width.
(3)導電体被覆工程
 次に、上記したスパッタリング装置300を用いて、気相法(スパッタリング法)によって、可撓性基材100における一方の面上に形成されたポリマー繊維層110を構成する各ポリマー繊維20の表面に銀からなる導電体30aを形成する。導電体30aの平均厚さは50nmである。得られた導電体被覆繊維集合体1a及び可撓性基材100の1m当たりの重量は90gである。なお、導電体被覆繊維集合体1aにおいては、各導電体被覆繊維間に残存している空隙の単位体積に占める割合は60%であり、ポリマー繊維20の表面のうち導電体30に被覆されていない部分の面積割合は5%である。
(3) Conductor coating step Next, the polymer fiber layer 110 formed on one surface of the flexible substrate 100 is formed by a vapor phase method (sputtering method) using the sputtering apparatus 300 described above. A conductor 30 a made of silver is formed on the surface of each polymer fiber 20. The average thickness of the conductor 30a is 50 nm. The obtained conductor-coated fiber assembly 1a and flexible substrate 100 have a weight of 90 g per 1 m 2 . In the conductor-coated fiber assembly 1a, the proportion of the voids remaining between the conductor-coated fibers in the unit volume is 60%, and the conductor 30 is coated on the surface of the polymer fiber 20. The area ratio of the missing part is 5%.
 なお、「導電体30aの平均厚さ」は、断面顕微鏡写真を撮影する箇所を導電体被覆繊維から無作為に10点抽出し、その箇所における断面電子顕微鏡写真から導電体の厚さを測定し、測定された導電体の厚さを平均することによって算出した。
 また、「各導電体被覆繊維間に残存している空隙の単位体積に占める割合」は、ポリマー繊維層110の厚さ及び1m当たりの重量から計算して得られるポリマー繊維層110の嵩密度と、ポリマーの比重とから空隙の体積を算出する方法で算出した。
 また、「ポリマー繊維20の表面のうち導電体30に被覆されていない部分の面積割合」は、無作為に選んだ電子顕微鏡写真(図10(b)参照。)から、被覆部及び未被覆部の面積を測定し、これらの比率から算出した。
In addition, “average thickness of the conductor 30a” is obtained by randomly extracting 10 points from the conductor-coated fiber where the cross-sectional micrograph is taken, and measuring the thickness of the conductor from the cross-sectional electron micrograph at that point. Calculated by averaging the measured thicknesses of the conductors.
The “ratio of the void remaining between the conductor-coated fibers in the unit volume” is the bulk density of the polymer fiber layer 110 obtained by calculating from the thickness of the polymer fiber layer 110 and the weight per 1 m 2. And the method of calculating the void volume from the specific gravity of the polymer.
Further, “the area ratio of the portion of the surface of the polymer fiber 20 that is not covered with the conductor 30” is determined from the randomly selected electron micrograph (see FIG. 10B). Was calculated from these ratios.
[実施例2]
 以下の可撓性基材準備工程と、ポリマー繊維形成工程と、導電体被覆工程とをこの順序で実施することにより、実施例2に係る導電体被覆繊維集合体1bを作製した。このうち、可撓性基材準備工程及びポリマー繊維形成工程は、実施例1と同じであり、導電体被覆工程は、実施例1とは異なる。導電体被覆工程は以下のとおりである。
[Example 2]
The conductor-coated fiber assembly 1b according to Example 2 was manufactured by performing the following flexible base material preparation process, polymer fiber formation process, and conductor coating process in this order. Among these, the flexible base material preparation step and the polymer fiber formation step are the same as in Example 1, and the conductor coating step is different from that in Example 1. The conductor coating process is as follows.
(3)導電体被覆工程
 次に、上記したスパッタリング装置300を用いて、気相法(スパッタリング法)によって、可撓性基材100における一方の面上に形成されたポリマー繊維層110を構成する各ポリマー繊維20の表面に銅からなる導電体30bを形成する。導電体30bの平均厚さは50nmである。得られた導電体被覆繊維集合体1b及び可撓性基材100の1m当たりの重量は75gである。なお、導電体被覆繊維集合体1bにおいては、各導電体被覆繊維間に残存している空隙の単位体積に占める割合は60%であり、ポリマー繊維20の表面のうち導電体30に被覆されていない部分の面積割合は5%である。
(3) Conductor coating step Next, the polymer fiber layer 110 formed on one surface of the flexible substrate 100 is formed by a vapor phase method (sputtering method) using the sputtering apparatus 300 described above. A conductor 30 b made of copper is formed on the surface of each polymer fiber 20. The average thickness of the conductor 30b is 50 nm. The obtained conductor-coated fiber assembly 1b and flexible substrate 100 have a weight of 75 g per 1 m 2 . In the conductor-coated fiber assembly 1b, the proportion of the voids remaining between the conductor-coated fibers in the unit volume is 60%, and the conductor 30 is coated on the surface of the polymer fiber 20. The area ratio of the missing part is 5%.
[実施例3]
 以下の可撓性基材準備工程と、ポリマー繊維形成工程と、導電体被覆工程とをこの順序で実施することにより、実施例3に係る導電体被覆繊維集合体1cを作製した。このうち、可撓性基材準備工程及びポリマー繊維形成工程は、実施例1と同じであり、導電体被覆工程は、実施例1とは異なる。導電体被覆工程は以下のとおりである。
[Example 3]
Conductor-coated fiber assembly 1c according to Example 3 was manufactured by performing the following flexible base material preparation step, polymer fiber formation step, and conductor coating step in this order. Among these, the flexible base material preparation step and the polymer fiber formation step are the same as in Example 1, and the conductor coating step is different from that in Example 1. The conductor coating process is as follows.
(3)導電体被覆工程
 次に、上記したスパッタリング装置300を用いて、気相法(スパッタリング法)によって、可撓性基材100における一方の面上に形成されたポリマー繊維層110を構成する各ポリマー繊維20の表面にアルミニウムからなる導電体30cを形成する。導電体30cの平均厚さは50nmである。得られた導電体被覆繊維集合体1c及び可撓性基材100の1m当たりの重量は63gである。なお、導電体被覆繊維集合体1cにおいては、各導電体被覆繊維間に残存している空隙の単位体積に占める割合は60%であり、ポリマー繊維20の表面のうち導電体30に被覆されていない部分の面積割合は5%である。
(3) Conductor coating step Next, the polymer fiber layer 110 formed on one surface of the flexible substrate 100 is formed by a vapor phase method (sputtering method) using the sputtering apparatus 300 described above. A conductor 30 c made of aluminum is formed on the surface of each polymer fiber 20. The average thickness of the conductor 30c is 50 nm. The obtained conductor-coated fiber assembly 1c and the flexible substrate 100 have a weight per 1 m 2 of 63 g. In the conductor-coated fiber assembly 1c, the proportion of the voids remaining between the conductor-coated fibers in the unit volume is 60%, and the conductor 30 is coated on the surface of the polymer fiber 20. The area ratio of the missing part is 5%.
[比較例1]
 以下の可撓性基材準備工程と、ポリマー繊維形成工程とをこの順序で実施することにより、比較例1に係る繊維1dを作製した。なお、可撓性基材準備工程及びポリマー繊維形成工程は、実施例1と同じである。すなわち、比較例1においては、ポリマー繊維形成工程で作製されたポリマー繊維110をそのまま用いて繊維1dとした。繊維1dの1m当たりの重量は6.7gである。また、繊維1d及び可撓性基材100の1m当たりの重量は57gである。
[Comparative Example 1]
By performing the following flexible base material preparation step and polymer fiber formation step in this order, a fiber 1d according to Comparative Example 1 was produced. The flexible base material preparation step and the polymer fiber formation step are the same as those in Example 1. That is, in Comparative Example 1, the polymer fiber 110 produced in the polymer fiber formation step was used as it was to obtain a fiber 1d. The weight of 1d fiber per 1 m 2 is 6.7 g. Further, the weight per 1 m 2 of the fiber 1d and the flexible substrate 100 is 57 g.
[比較例2]
 市販のポリエステル繊維(株式会社クラレ製、商品名P-800)をそのまま比較例2に係る繊維1eとした。繊維1eの1m当たりの重量は129gである。なお、繊維1eの平均直径は14μmである。
[Comparative Example 2]
A commercially available polyester fiber (trade name P-800, manufactured by Kuraray Co., Ltd.) was directly used as the fiber 1e according to Comparative Example 2. The weight per 1 m 2 of the fiber 1e is 129 g. The average diameter of the fiber 1e is 14 μm.
[比較例3]
 天然の綿をそのまま比較例3に係る繊維1fとした。繊維1fの1m当たりの重量は155gである。なお、繊維1fの平均直径は18μmである。
[Comparative Example 3]
Natural cotton was directly used as the fiber 1f according to Comparative Example 3. The weight per 1 m 2 of the fiber 1f is 155 g. The average diameter of the fiber 1f is 18 μm.
[比較例4]
 市販の導電性ファイバ(株式会社クラレ製、商品名クラカーボ)をそのまま比較例5に係る繊維1hとした。繊維1hの1m当たりの重量は135gである。なお、繊維1hの平均直径は14μmである。
[Comparative Example 4]
A commercially available conductive fiber (manufactured by Kuraray Co., Ltd., trade name Cura Carbo) was used as fiber 1h according to Comparative Example 5 as it was. The weight per 1 m 2 of the fiber 1h is 135 g. The average diameter of the fibers 1h is 14 μm.
[比較例5]
 市販の金属メッキファイバ(株式会社クラレ製、商品名セルメック)をそのまま比較例4に係る導電体被覆繊維集合体1gとした。繊維1gの1m当たりの重量は321gである。なお、繊維1gの平均直径は20μmである。
[Comparative Example 5]
A commercially available metal-plated fiber (trade name Selmec, manufactured by Kuraray Co., Ltd.) was used as the conductor coated fiber assembly 1g according to Comparative Example 4 as it was. The weight of 1 g of fiber per 1 m 2 is 321 g. In addition, the average diameter of 1 g of fibers is 20 μm.
2.試料の評価方法 2. Sample evaluation method
(1)電子顕微鏡写真
 実施例1~3に係る導電体被覆繊維集合体1a~1c及び比較例1に係る繊維1dについて、電子顕微鏡写真を撮影した。
(1) Electron micrographs Electron micrographs were taken of the conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3 and the fibers 1d according to Comparative Example 1.
(2)保温性
 実施例1~3に係る導電体被覆繊維集合体1a~1c及び比較例1~3に係る繊維1d~1fを試料として用いて、保温性を評価した。保温性の評価は、JIS-L1096(恒温法)に準拠して行った。すなわち、各試料を30cm×30cmの大きさにした後、各試料の導電体蒸着側の面を空気に向けた状態で各試料を、表面温度を36℃とした恒温発熱体に取り付け、2時間後の消費電力をブランク(試料のない裸状態)での消費電力と比較することにより行った。
(2) Thermal insulation The thermal insulation was evaluated using the conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3 and the fibers 1d to 1f according to Comparative Examples 1 to 3 as samples. Evaluation of heat retention was performed according to JIS-L1096 (constant temperature method). That is, after each sample was 30 cm × 30 cm in size, each sample was mounted on a constant temperature heating element with a surface temperature of 36 ° C. with the surface on the conductor deposition side of each sample facing air, for 2 hours. This was done by comparing the subsequent power consumption with the power consumption in the blank (bare state without sample).
(3)通気性
 実施例1~3に係る導電体被覆繊維集合体1a~1c及び比較例1に係る繊維1dを試料として用いて、通気性を評価した。通気性の評価は、フラジール法に準拠して行った。すなわち、フラジール試験機における円筒の一端に20cm×20cmの大きさの各試料を取り付けた後、加減抵抗器によって傾斜形気圧計が125Paの圧力を示すように吸い込みファンを調整し、そのときの垂直形気圧計の示す圧力と、使用した空気孔の種類とから、試験機に付属の表によって各試料を通過する空気量(cm/cm・s)を求めることにより行った。
(3) Breathability Using the conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3 and the fiber 1d according to Comparative Example 1 as samples, breathability was evaluated. The air permeability was evaluated according to the Frazier method. That is, after attaching each sample having a size of 20 cm × 20 cm to one end of a cylinder in the Frazier tester, the suction fan is adjusted by an adjustable resistor so that the inclined barometer exhibits a pressure of 125 Pa, and the vertical direction at that time From the pressure indicated by the barometer and the type of air hole used, the amount of air (cm 3 / cm 2 · s) passing through each sample was obtained from the table attached to the tester.
(4)電磁波シールド性
 実施例1~3に係る導電体被覆繊維集合体1a~1c及び比較例1,4,5に係る繊維1d,1g,1hを試料として用いて、電磁波シールド性を評価した。電磁波シールド性の評価は、KEC(関西電子工業振興センター)法に準拠して行った。すなわち、各試料を12cm×12cmの大きさにした後、電磁波シールド測定室の高周波信号発生器と高周波信号強度測定器との間に各試料を配置した状態で、周波数を変化させながら(10MHz~1000MHz)高周波信号の通過量を測定することにより行った。
(4) Electromagnetic wave shielding properties The electromagnetic wave shielding properties were evaluated using the conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3 and the fibers 1d, 1g, and 1h according to Comparative Examples 1, 4, and 5 as samples. . Evaluation of electromagnetic shielding properties was performed in accordance with the KEC (Kansai Electronics Industry Promotion Center) method. That is, after each sample is made 12 cm × 12 cm in size, each sample is placed between the high-frequency signal generator and the high-frequency signal intensity measurement device in the electromagnetic wave shield measurement chamber while changing the frequency (from 10 MHz to (1000 MHz) This was performed by measuring the amount of high-frequency signal passing through.
3.試料の評価結果
 図10は、実施例1に係る導電体被覆繊維集合体1aを説明するために示す図である。図10(a)は導電体被覆繊維集合体1aの電子顕微鏡写真であり、図10(b)は図10(a)の場合よりも高倍率で撮影した導電体被覆繊維集合体1aの電子顕微鏡写真である。
 図11は、実施例2に係る導電体被覆繊維集合体1bを説明するために示す図である。図11(a)は導電体被覆繊維集合体1bの電子顕微鏡写真であり、図11(b)は図11(a)の場合よりも高倍率で撮影した導電体被覆繊維集合体1bの電子顕微鏡写真である。
 図12は、実施例3に係る導電体被覆繊維集合体1cを説明するために示す図である。図12(a)は導電体被覆繊維集合体1cの電子顕微鏡写真であり、図12(b)は図12(a)の場合よりも高倍率で撮影した導電体被覆繊維集合体1cの電子顕微鏡写真である。
 図13は、比較例1に係る繊維1dを説明するために示す図である。図13(a)は繊維1dの電子顕微鏡写真であり、図13(b)は図13(a)の場合よりも高倍率で撮影した繊維1dの電子顕微鏡写真である。
3. Sample Evaluation Results FIG. 10 is a diagram for explaining the conductor-coated fiber assembly 1a according to the first embodiment. 10A is an electron micrograph of the conductor-coated fiber assembly 1a, and FIG. 10B is an electron microscope of the conductor-coated fiber assembly 1a taken at a higher magnification than in the case of FIG. 10A. It is a photograph.
FIG. 11 is a diagram for explaining the conductor-coated fiber assembly 1b according to the second embodiment. FIG. 11A is an electron micrograph of the conductor-coated fiber assembly 1b, and FIG. 11B is an electron microscope of the conductor-coated fiber assembly 1b taken at a higher magnification than in the case of FIG. 11A. It is a photograph.
FIG. 12 is a diagram for explaining the conductor-coated fiber assembly 1c according to the third embodiment. 12A is an electron micrograph of the conductor-coated fiber assembly 1c, and FIG. 12B is an electron microscope of the conductor-coated fiber assembly 1c taken at a higher magnification than in the case of FIG. 12A. It is a photograph.
FIG. 13 is a diagram for explaining the fiber 1d according to the comparative example 1. FIG. FIG. 13 (a) is an electron micrograph of the fiber 1d, and FIG. 13 (b) is an electron micrograph of the fiber 1d taken at a higher magnification than in the case of FIG. 13 (a).
 図14は、実施例1~3に係る導電体被覆繊維集合体1a~1c及び比較例1~5に係る繊維1d~1hの各種特性についての評価結果を示す図である。
 図15は、実施例1~3に係る導電体被覆繊維集合体1a~1c及び比較例1,4,5に係る繊維1d,1g,1hの電磁波シールド特性についての評価結果を示す図である。
FIG. 14 is a diagram showing evaluation results for various characteristics of the conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3 and the fibers 1d to 1h according to Comparative Examples 1 to 5.
FIG. 15 is a diagram showing the evaluation results of the electromagnetic wave shielding characteristics of the conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3 and the fibers 1d, 1g, and 1h according to Comparative Examples 1, 4, and 5.
(1)電子顕微鏡写真
 図13に示すように、比較例1に係る繊維1dは平均直径が300nmのポリマー繊維であることが確認できた。従って、実施例1~3に係る導電体被覆繊維集合体1a~1cにおいても、ポリマー繊維の平均直径は300nmとなる。また、図10~図12に示すように、実施例1~3に係る導電体被覆繊維集合体1a~1cは、ポリマー繊維1本1本に導電体が被覆されており、ポリマー繊維の繊維構造が維持されてていることが確認できた。また、実施例1~3に係る導電体被覆繊維集合体1a~1cにおいては、各導電体被覆繊維間に空隙が残存していること、各導電体被覆繊維間に残存している空隙の単位体積に占める割合が60%であること、そしてポリマー繊維の表面のうち導電体に被覆されていない部分の面積割合が5%であることが確認できた。
(1) Electron micrograph As shown in FIG. 13, it has confirmed that the fiber 1d which concerns on the comparative example 1 was a polymer fiber whose average diameter is 300 nm. Therefore, also in the conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3, the average diameter of the polymer fibers is 300 nm. Further, as shown in FIGS. 10 to 12, the conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3 each have a conductor coated on each polymer fiber, and the fiber structure of the polymer fiber. Was confirmed to be maintained. In the conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3, the voids remain between the conductor-coated fibers, and the units of voids remaining between the conductor-coated fibers. It was confirmed that the proportion of the volume was 60%, and the area proportion of the surface of the polymer fiber not covered with the conductor was 5%.
(2)保温性
 図14に示すように、実施例1~3に係る導電体被覆繊維集合体1a~1cはいずれも、比較例1~3に係る繊維1d~1fよりも優れた保温特性(高いASTM保温率)を有することが確認できた。従って、実施例1~3に係る導電体被覆繊維集合体1a~1cは、防寒衣服の用途に好適に用いることができる。
(3)通気性
 図14に示すように、実施例3に係る導電体被覆繊維集合体1cは、比較例1に係る繊維1dとほぼ同等の優れた通気性を有することが確認できた。従って、実施例3に係る導電体被覆繊維集合体1cは、スキーウェアその他の衣服の用途に好適に用いることができる。
(2) Heat retention properties As shown in FIG. 14, the conductor-coated fiber assemblies 1a to 1c according to Examples 1 to 3 are all better than the fibers 1d to 1f according to Comparative Examples 1 to 3 ( It was confirmed to have a high ASTM heat retention rate. Therefore, the conductor-coated fiber aggregates 1a to 1c according to Examples 1 to 3 can be suitably used for cold clothing.
(3) Breathability As shown in FIG. 14, it was confirmed that the conductor-coated fiber assembly 1c according to Example 3 had excellent breathability substantially equal to that of the fiber 1d according to Comparative Example 1. Therefore, the conductor-coated fiber assembly 1c according to Example 3 can be suitably used for ski wear and other clothes.
(4)電磁波シールド性
 図14及び図15に示すように、実施例1~3に係る導電体被覆繊維集合体1a,1b,1cはいずれも、比較例1に係る繊維1dよりも高い電磁波シールド特性を有することがわかった。また、実施例2に係る導電体被覆繊維集合体1bは、比較例4に係る繊維1hと同等の電磁波シールド特性を有することがわかった。また、実施例1に係る導電体被覆繊維集合体1aは、比較例5の繊維gには及ばないものの比較例4に係る繊維1hよりも高い電磁波シールド特性を有することがわかった。従って、実施例1に係る導電体被覆繊維集合体1aは、電磁波シールド材として好適に用いることができる。
(4) Electromagnetic Shielding Properties As shown in FIGS. 14 and 15, the conductor-coated fiber assemblies 1 a, 1 b, and 1 c according to Examples 1 to 3 are all higher in electromagnetic shielding than the fiber 1 d according to Comparative Example 1. It was found to have characteristics. Moreover, it turned out that the conductor covering fiber assembly 1b which concerns on Example 2 has an electromagnetic wave shielding characteristic equivalent to the fiber 1h which concerns on the comparative example 4. FIG. Moreover, although the conductor covering fiber assembly 1a which concerns on Example 1 does not reach the fiber g of the comparative example 5, it turned out that it has an electromagnetic wave shielding characteristic higher than the fiber 1h which concerns on the comparative example 4. FIG. Therefore, the conductor-coated fiber assembly 1a according to Example 1 can be suitably used as an electromagnetic shielding material.
 以上、本発明の導電体被覆繊維集合体を上記の実施形態に基づいて説明したが、本発明は、これに限定されるものではなく、その要旨を逸脱しない範囲において実施することが可能であり、例えば、次のような変形も可能である。 As mentioned above, although the conductor covering fiber assembly of this invention was demonstrated based on said embodiment, this invention is not limited to this, It is possible to implement in the range which does not deviate from the summary. For example, the following modifications are possible.
(1)上記各実施形態においては、エレクトロスピニング法を用いてポリマー繊維層110を形成することとしているが、本発明はこれに限定されるものではない。例えば、メルトブロウン法によってポリマー繊維層110を形成することとしてもよい。 (1) In each of the above embodiments, the polymer fiber layer 110 is formed using the electrospinning method, but the present invention is not limited to this. For example, the polymer fiber layer 110 may be formed by a melt blown method.
(2)上記各実施形態においては、スパッタリング法を用いて導電体30を形成することとしているが、本発明はこれに限定されるものではない。図16は、変形例1に係る導電体被覆繊維集合体の製造方法における導電体被覆工程を説明するために示す図である。図16に示すように、真空蒸着法によって導電体30を形成することとしてもよい。なお、図16において、符号402は繰り出し側ロールを示し、符号404は送りローラを示し、符号406は冷却ローラを示し、符号408は巻き取り側ロールを示し、符号410は真空蒸着室を示し、符号412は真空蒸着ユニットを示し、符号414は金属蒸気を示す。 (2) In each of the above embodiments, the conductor 30 is formed by using the sputtering method, but the present invention is not limited to this. FIG. 16 is a diagram for explaining a conductor coating step in the method for manufacturing a conductor-coated fiber assembly according to the first modification. As shown in FIG. 16, it is good also as forming the conductor 30 by a vacuum evaporation method. In FIG. 16, reference numeral 402 indicates a feeding roll, reference numeral 404 indicates a feed roller, reference numeral 406 indicates a cooling roller, reference numeral 408 indicates a take-up roll, reference numeral 410 indicates a vacuum deposition chamber, Reference numeral 412 indicates a vacuum deposition unit, and reference numeral 414 indicates metal vapor.
(3)上記各実施形態においては、ポリマー繊維の原料を溶媒に溶解して液体としているが、本発明はこれに限定されるものではない。例えば、ポリマー繊維の原料を加熱して液体としてもよい。 (3) In each of the above embodiments, the polymer fiber raw material is dissolved in a solvent to form a liquid, but the present invention is not limited to this. For example, the raw material of the polymer fiber may be heated to be a liquid.
(4)上記各実施例においては、保温性、通気性、電磁波シールド性を例にとって本発明の導電体層被覆繊維集合体を説明したが、本発明の導電体層被覆繊維集合体は、これに限定されるものではない。例えば、本発明の導電体層被覆繊維集合体は、優れた電磁波吸収特性その他の高い特性を有するため、電磁波吸収材はじめ様々な用途において好適に用いることができる。
 なお、電磁波吸収材を製造する場合には、用いる導電体としては、カーボン、アルミニウムなどを好ましく例示することができる。
(4) In each of the above examples, the conductor layer-covered fiber assembly of the present invention has been described taking heat retention, air permeability, and electromagnetic wave shielding as an example. It is not limited to. For example, since the conductor layer-covered fiber assembly of the present invention has excellent electromagnetic wave absorption characteristics and other high characteristics, it can be suitably used in various applications including electromagnetic wave absorbers.
In addition, when manufacturing an electromagnetic wave absorber, carbon, aluminum, etc. can be illustrated preferably as a conductor to be used.
1,1a,1b,1c,1d,1e,1f,1g,1h,2,3,4…導電体被覆繊維集合体、10…導電体被覆繊維、20…ポリマー繊維、30…導電体、100…可撓性基材、102…ポリマー繊維積層シート、104…導電体被覆繊維集合体積層シート、110…ポリマー繊維層、112…導電体被覆繊維集合体層、200,200a…エレクトロスピニング装置、202,302,402…繰り出し側ロール、204,304,404…送りローラ、306,306a,306b,406…冷却ローラ、208,208a,208b,308,408…巻き取り側ロール、220…樹脂原料、222…バルブ、224…ノズル、226…対向電極、228…高圧電源、230…ポリマー繊維の軌跡、300,300a…スパッタリング装置、310,310a,320,320a…スパッタ室、312,312a,322,322a…スパッタリングユニット、314,314a,324,324a…プラズマ、400…真空蒸着装置、410…真空蒸着室、412…真空蒸着ユニット、414…金属蒸気 1, 1a, 1b, 1c, 1d, 1e, 1f, 1g, 1h, 2, 3, 4... Conductor coated fiber assembly, 10... Conductor coated fiber, 20. Flexible substrate, 102 ... polymer fiber laminated sheet, 104 ... conductor coated fiber assembly laminated sheet, 110 ... polymer fiber layer, 112 ... conductor coated fiber assembly layer, 200, 200a ... electrospinning device, 202, 302, 402 ... rolling side roll, 204,304,404 ... feed roller, 306,306a, 306b, 406 ... cooling roller, 208,208a, 208b, 308,408 ... winding side roll, 220 ... resin raw material, 222 ... Valve, 224 ... Nozzle, 226 ... Counter electrode, 228 ... High voltage power supply, 230 ... Polymer fiber trajectory, 300, 300a ... Spatterin Apparatus, 310, 310a, 320, 320a ... Sputtering chamber, 312, 312a, 322, 322a ... Sputtering unit, 314, 314a, 324, 324a ... Plasma, 400 ... Vacuum deposition apparatus, 410 ... Vacuum deposition chamber, 412 ... Vacuum deposition Unit, 414 ... metal vapor

Claims (12)

  1.  平均直径が50nm~800nmのポリマー繊維の表面に導電体が被覆された導電体被覆繊維の集合体からなり、各導電体被覆繊維間に空隙が残存していることを特徴とする導電体被覆繊維集合体。 A conductor-coated fiber comprising an assembly of conductor-coated fibers in which a conductor is coated on the surface of a polymer fiber having an average diameter of 50 nm to 800 nm, and voids remain between the conductor-coated fibers. Aggregation.
  2.  請求項1に記載の導電体被覆繊維集合体において、
     各導電体被覆繊維間に残存している空隙の単位体積に占める割合が40%~90%の範囲内にあることを特徴とする導電体被覆繊維集合体。
    The conductor-coated fiber assembly according to claim 1,
    A conductor-coated fiber assembly, wherein a ratio of a void remaining between each conductor-coated fiber to a unit volume is in a range of 40% to 90%.
  3.  請求項1又は2に記載の導電体被覆繊維集合体において、
     前記ポリマー繊維の表面のうち前記導電体に被覆されていない部分の面積割合が20%以下であることを特徴とする導電体被覆繊維集合体。
    In the conductor covering fiber assembly according to claim 1 or 2,
    A conductor-coated fiber assembly, wherein an area ratio of a portion of the surface of the polymer fiber that is not coated with the conductor is 20% or less.
  4.  請求項1~3のいずれかに記載の導電体被覆繊維集合体において、
     前記導電体は、金属からなることを特徴とする導電体被覆繊維集合体。
    The conductor-coated fiber assembly according to any one of claims 1 to 3,
    The conductor-coated fiber assembly, wherein the conductor is made of metal.
  5.  請求項1~3のいずれかに記載の導電体被覆繊維集合体において、
     前記導電体は、カーボンからなることを特徴とする導電体被覆繊維集合体。
    The conductor-coated fiber assembly according to any one of claims 1 to 3,
    The conductor-coated fiber assembly, wherein the conductor is made of carbon.
  6.  請求項1に記載の導電体被覆繊維集合体からなることを特徴とする保温材。 A heat insulating material comprising the conductor-coated fiber assembly according to claim 1.
  7.  請求項1に記載の導電体被覆繊維集合体からなることを特徴とする電磁波シールド材。 An electromagnetic wave shielding material comprising the conductor-coated fiber assembly according to claim 1.
  8.  請求項1に記載の導電体被覆繊維集合体からなることを特徴とする電磁波吸収材。 An electromagnetic wave absorbing material comprising the conductor-coated fiber assembly according to claim 1.
  9.  請求項1に記載の導電体被覆繊維集合体を製造するための導電体被覆繊維集合体の製造方法であって、
     長尺の可撓性基材を準備する可撓性基材準備工程と、
     前記可撓性基材における一方の面上に、平均直径が50nm~800nmのポリマー繊維の集合体からなるポリマー繊維層を形成するポリマー繊維層形成工程と、
     気相法によって前記ポリマー繊維層を構成する各ポリマー繊維の表面に導電体を被覆する導電体被覆工程とをこの順序で含むことを特徴とする導電体被覆繊維集合体の製造方法。
    A method for producing a conductor-coated fiber assembly for producing the conductor-coated fiber assembly according to claim 1,
    A flexible substrate preparation step of preparing a long flexible substrate;
    A polymer fiber layer forming step of forming a polymer fiber layer comprising an aggregate of polymer fibers having an average diameter of 50 nm to 800 nm on one surface of the flexible substrate;
    A method for producing a conductor-covered fiber assembly comprising a conductor coating step of coating a conductor on the surface of each polymer fiber constituting the polymer fiber layer by a vapor phase method in this order.
  10.  請求項9に記載の導電体被覆繊維集合体の製造方法において、
     前記ポリマー繊維層形成工程と前記導電体被覆工程との間に、前記可撓性基材から前記ポリマー繊維層を分離するポリマー繊維層分離工程をさらに含むことを特徴とする導電体被覆繊維集合体の製造方法。
    In the manufacturing method of the conductor covering fiber assembly according to claim 9,
    The conductor coated fiber assembly further comprising a polymer fiber layer separating step for separating the polymer fiber layer from the flexible substrate between the polymer fiber layer forming step and the conductor covering step. Manufacturing method.
  11.  請求項10に記載の導電体被覆繊維集合体の製造方法において、
     前記導電体被覆工程においては、前記ポリマー繊維層の両面から各ポリマー繊維の表面に導電体を被覆することを特徴とする導電体被覆繊維集合体の製造方法。
    In the manufacturing method of the conductor covering fiber assembly according to claim 10,
    In the conductor covering step, a conductor is coated on the surface of each polymer fiber from both sides of the polymer fiber layer.
  12.  請求項9~11のいずれかに記載の導電体被覆繊維集合体の製造方法において、
     ポリマー繊維層形成工程においては、エレクトロスピニング法又はメルトブロウン法によってポリマー繊維層を形成することを特徴とする導電体被覆繊維集合体の製造方法。
    The method for producing a conductor-coated fiber assembly according to any one of claims 9 to 11,
    In the polymer fiber layer forming step, a polymer fiber layer is formed by an electrospinning method or a melt-blown method.
PCT/JP2009/064747 2008-09-08 2009-08-25 Conductor-covered fiber assembly and process for producing the conductor-covered fiber assembly WO2010026888A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-230359 2008-09-08
JP2008230359A JP2010065327A (en) 2008-09-08 2008-09-08 Conductor-coated fiber assembly and method for producing the same

Publications (1)

Publication Number Publication Date
WO2010026888A1 true WO2010026888A1 (en) 2010-03-11

Family

ID=41797058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064747 WO2010026888A1 (en) 2008-09-08 2009-08-25 Conductor-covered fiber assembly and process for producing the conductor-covered fiber assembly

Country Status (2)

Country Link
JP (1) JP2010065327A (en)
WO (1) WO2010026888A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5483919B2 (en) * 2009-04-14 2014-05-07 国立大学法人信州大学 Conductor coating equipment
WO2011010697A1 (en) 2009-07-24 2011-01-27 旭化成せんい株式会社 Electromagnetic shielding sheet
JP5509432B2 (en) * 2010-05-07 2014-06-04 国立大学法人信州大学 Manufacturing method of fiber conductor and fiber conductor obtained by the method
JP6054640B2 (en) * 2012-05-30 2016-12-27 国立大学法人信州大学 Separator manufacturing method, separator manufacturing apparatus, and separator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100662A (en) * 1983-09-30 1985-06-04 シ−メンス、アクチエンゲゼルシヤフト Manufacture of carbon-containing layer
JPH0610262A (en) * 1992-03-12 1994-01-18 Kimberly Clark Corp Metallized elastomer base material and its preparation
JP2007518891A (en) * 2004-02-02 2007-07-12 キム,ハグ−ヨン Method for producing continuous filament made of nanofiber
JP2008223189A (en) * 2007-03-15 2008-09-25 Kuraray Co Ltd Conductive nonwoven fabric excellent in heat resistance
JP2009127150A (en) * 2007-11-26 2009-06-11 Teijin Techno Products Ltd Electrospinning apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316837A (en) * 1993-03-09 1994-05-31 Kimberly-Clark Corporation Stretchable metallized nonwoven web of non-elastomeric thermoplastic polymer fibers and process to make the same
JP2005186380A (en) * 2003-12-25 2005-07-14 Kuraray Living Kk Warm-touch sheet and its use
JP4602141B2 (en) * 2005-03-31 2010-12-22 日本バイリーン株式会社 Surface treated nonwoven fabric and method for producing the same
JP4979407B2 (en) * 2006-02-20 2012-07-18 日本バイリーン株式会社 Multilayer sheet and manufacturing method thereof
JP2009267230A (en) * 2008-04-28 2009-11-12 Shinshu Univ Electromagnetic wave shielding material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100662A (en) * 1983-09-30 1985-06-04 シ−メンス、アクチエンゲゼルシヤフト Manufacture of carbon-containing layer
JPH0610262A (en) * 1992-03-12 1994-01-18 Kimberly Clark Corp Metallized elastomer base material and its preparation
JP2007518891A (en) * 2004-02-02 2007-07-12 キム,ハグ−ヨン Method for producing continuous filament made of nanofiber
JP2008223189A (en) * 2007-03-15 2008-09-25 Kuraray Co Ltd Conductive nonwoven fabric excellent in heat resistance
JP2009127150A (en) * 2007-11-26 2009-06-11 Teijin Techno Products Ltd Electrospinning apparatus

Also Published As

Publication number Publication date
JP2010065327A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
KR101254908B1 (en) Electromagnetic shielding sheet
Dias Electronic textiles: Smart fabrics and wearable technology
KR101247368B1 (en) Metal-deposited Nano Fiber Complex and Method of Manufacturing the Same
Mei et al. Preparation of flexible carbon fiber fabrics with adjustable surface wettability for high-efficiency electromagnetic interference shielding
AU662206B2 (en) An elastomeric metallized fabric and process to make the same
JP4892910B2 (en) Conductive fiber and fiber product using the same
CN110438799B (en) Fabric material and preparation method thereof
WO2010026888A1 (en) Conductor-covered fiber assembly and process for producing the conductor-covered fiber assembly
JPH06299457A (en) Stretchable metal-clad non-woven web consisting of non-elastic thermoplastic polymer fiber and preparation thereof
JP2013191551A (en) Planar heating element, manufacturing method therefor, and electrode for planar heating element
TWI343426B (en) Textiles flaechengebilde, verfahren zur herstellung und verwendung
Chen et al. Flexible cotton fabric with stable conductive coatings for piezoresistive sensors
Mihut et al. Fabrication and characterization of silver-and copper-coated Nylon 6 forcespun nanofibers by thermal evaporation
US20070148399A1 (en) Method of fabricating a conductive textile
CN108909057B (en) Carbon nanotube conductive cloth and preparation method thereof
US20120148739A1 (en) Method for manufacturing metal nanostructure and metal nanostructure manufactured by the method
JP6216944B2 (en) Conductive fabric, method for producing the same, and fuel cell separator using the same
KR102308519B1 (en) Method for manufacturing antibacterial or antiviral functional fabric and fabric produced thereby
JPH03237799A (en) Conductive woven cloth and manufacture thereof
JP2000208984A (en) Electromagnetic wave shielding material and manufacture thereof
JP5483919B2 (en) Conductor coating equipment
JP2014096240A (en) Cloth for planar heating element, planar heating element and manufacturing method thereof
JP5703966B2 (en) Water repellent fiber sheet
Shi et al. Flexible MXene decorative nonwovens with patterned structures for integrated joule heating and strain sensing
JP2021190500A (en) Wiring-equipped fiber member and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09811415

Country of ref document: EP

Kind code of ref document: A1