WO2010024459A1 - Method for producing carbon nanotube - Google Patents

Method for producing carbon nanotube Download PDF

Info

Publication number
WO2010024459A1
WO2010024459A1 PCT/JP2009/065379 JP2009065379W WO2010024459A1 WO 2010024459 A1 WO2010024459 A1 WO 2010024459A1 JP 2009065379 W JP2009065379 W JP 2009065379W WO 2010024459 A1 WO2010024459 A1 WO 2010024459A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
cnt
carbon
liquid
iron
Prior art date
Application number
PCT/JP2009/065379
Other languages
French (fr)
Japanese (ja)
Inventor
横井裕之
オムルザク ウル エミル
真下茂
岩崎秀治
Original Assignee
国立大学法人 熊本大学
クラレルミナス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 熊本大学, クラレルミナス株式会社 filed Critical 国立大学法人 熊本大学
Priority to JP2010526820A priority Critical patent/JP5534456B2/en
Publication of WO2010024459A1 publication Critical patent/WO2010024459A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/166Preparation in liquid phase

Definitions

  • the present invention relates to a method for producing carbon nanotubes.
  • Carbon nanotubes are substances composed of a three-dimensional structure in which graphene sheets (sheets in which carbon atoms are arranged in a hexagonal network) corresponding to one layer of graphite are rolled into a cylindrical shape. It is known that there are single-walled CNTs composed of one cylindrical graphene sheet and multi-walled CNTs in which a plurality of cylindrical graphene sheets are concentrically overlapped. In general, it has been found that the tip of the CNT immediately after synthesis is usually closed by a hemispherical graphite layer called a “cap”.
  • CNTs have a diameter on the order of nm and a length on the order of ⁇ m to cm, have an extremely large aspect ratio (a value obtained by dividing the length of CNT by the diameter of the same unit), and have a radius of curvature at the tip of several nm. It has a feature that it is extremely small, ⁇ several tens of nm.
  • CNT is physically and mechanically strong, has excellent chemical and thermal stability, and has the characteristics that it can be a metal or a semiconductor depending on the helical structure of the cylindrical portion. Therefore, CNTs are expected to be applied to electronic wiring materials for light-emitting devices, heat dissipation materials, fiber materials, electron emission sources for flat panel displays, transistor materials, electron emission sources (point light sources) for electron microscopes, etc. Yes.
  • JP 2002-201014 A Japanese Patent Laid-Open No. 10-273308 JP 2000-86217 A JP 2000-86218 A
  • CNTs obtained by the synthesis methods (1) and (2) are both in a state of being intertwined in a completely random direction. Moreover, it may contain a large amount of carbon nanocapsules, amorphous particles, and the like. In addition, high energy is required to generate arc discharge and high pulsed light, and high temperature is required, resulting in high manufacturing costs.
  • CNT can be produced by a relatively stable method, but the raw material is stored as a hazardous and explosive substance such as acetylene or carbon monoxide, or as a high-pressure gas such as methane.
  • a hazardous and explosive substance such as acetylene or carbon monoxide
  • a high-pressure gas such as methane.
  • problems such as the use of substances that require high risk of ignition.
  • ancillary equipment is large and a complicated process needs to be taken.
  • an object of the present invention is to provide a method capable of producing CNTs stably on an industrial scale.
  • CNT can be obtained by generating pulsed plasma between carbon metal electrodes in the presence of a catalyst in a liquid. It came.
  • [1] A method for producing carbon nanotubes, characterized by performing pulsed plasma discharge between carbon electrodes in the presence of a catalyst in a liquid; [2] The production method according to [1], wherein the catalyst is at least one selected from the group consisting of metals of Group 6 to Group 10 in the long-period periodic table and compounds thereof; Is provided.
  • CNT can be produced with relatively low energy (for example, low voltage) by the production method of the present invention. That is, since the diffusion of energy is suppressed and the energy efficiency is increased by carrying out in a liquid, the target product can be obtained at a higher reaction rate with a lower energy than in the prior art.
  • relatively low energy for example, low voltage
  • the method for producing carbon nanotubes of the present invention is characterized in that pulse plasma discharge is performed between carbon electrodes in a liquid in the presence of a catalyst.
  • a catalyst any carbon material such as graphite, amorphous carbon, and glassy carbon can be used.
  • the electrode may have any shape such as a rod, wire, or plate. Regarding the size of both poles, it may have a shape such that one of the sizes is different. Moreover, both poles may use the same carbon material or a different material, and may use what was shape
  • CNTs are generated in a liquid.
  • the liquid (solvent) that can be used is not particularly limited as long as it does not affect the reaction.
  • the liquid may be a mixture of two or more compounds.
  • Liquids that can be used include saturated hydrocarbons such as hexane, octane, decane, cyclohexane, cyclooctane, aromatic hydrocarbons such as benzene, toluene, xylene, and naphthalene, water, methanol, ethanol, propanol, butanol, ethylene glycol, Alcohols such as propylene glycol and 1,4-butanediol, esters such as methyl acetate, ethyl acetate, butyl acetate, methyl benzoate and dimethyl phthalate, tetrahydrofuran, tetrahydropyran, dipropyl ether, dibutyl ether, diethylene glycol, t
  • the amount of liquid used is not particularly limited as long as both electrodes are in the liquid. More preferably, it is sufficient that the liquid scatters due to the generation of plasma or the diffusibility of the liquid is not lost depending on the product concentration.
  • CNT is produced in the presence of a catalyst.
  • a catalyst metals of Group 6 to Group 10 in the long-period periodic table and compounds thereof are used.
  • a catalyst may be used individually by 1 type and may use 2 or more types simultaneously or in steps.
  • the Group 6 to Group 10 metals include iron group metals (that is, iron, cobalt, nickel), chromium, molybdenum, ruthenium, rhodium, iridium, palladium, and platinum.
  • the catalyst shape any of a plate shape, a linear shape, and a particle shape may be used. However, in consideration of the generation efficiency of CNT, it is preferable to use a granular shape.
  • the particle size of the granular material to be used is not particularly limited. However, since the use of fine particles leads to the improvement of CNT production, particles with a particle size of 1 nm to 100 ⁇ m are usually used, but consideration is given to avoiding aggregation and production efficiency.
  • the thickness is preferably 2 nm to 50 ⁇ m, more preferably 5 nm to 10 ⁇ m.
  • the metal compound of Group 6 to Group 10 is not particularly limited.
  • carbides such as iron carbide, nickel carbide, and cobalt carbide, chromium chloride, molybdenum chloride, iron chloride, nickel chloride, cobalt chloride, ruthenium chloride, rhodium chloride, Palladium chloride, platinum chloride, chromium bromide, molybdenum bromide, iron bromide, nickel bromide, cobalt bromide, ruthenium bromide, rhodium bromide, palladium bromide, platinum bromide, iron sulfate, nickel sulfate, cobalt sulfate Mineral acids such as iron acetate, nickel acetate, cobalt acetate, palladium acetate, iron butyrate, nickel butyrate, cobalt butyrate, iron lactate, nickel lactate, cobalt lactate, iron tartrate, nickel tartrate, cobalt tartrate Salt, chromium ace
  • the catalyst may be dispersed or dissolved in the liquid or may be dispersed in the carbon electrode. Considering the efficiency of the reaction, it is preferable that it is dispersed in the carbon electrode, but it is not particularly limited because it is affected by the type of catalyst used and the reaction conditions.
  • the amount of catalyst used is not particularly limited as long as it exists at a concentration that does not affect the generation of plasma.
  • the catalyst is dispersed or dissolved in the liquid, it is preferably in the range of 0.001 mol / L to 5 mol / L, and when mixed in the electrode, it is 0.01 wt% to 10 wt%. It is preferable to mix within a range.
  • the temperature at which the pulse plasma discharge is performed is not particularly limited and is usually in the range of room temperature to 300 ° C., although it depends on the type of liquid used. If the temperature exceeds 300 ° C., the vapor pressure of the solvent to be used increases, which may cause ignition by plasma, which is not preferable. If the temperature is lower than room temperature, the viscosity of the solvent increases and the diffusibility of the product tends to be impaired. This is not preferable.
  • the voltage for generating plasma in the present invention is not particularly limited, and is usually in the range of 50V to 500V, preferably in the range of 60V to 400V, considering the necessity of safety and special equipment, and 80V to The range of 300V is more preferable.
  • the current for generating plasma is not particularly limited, and is usually in the range of 0.1 to 20 A, and preferably in the range of 0.2 to 10 A in consideration of energy efficiency.
  • the pulse interval of the pulse plasma discharge is not particularly limited, but is preferably 5 to 100 milliseconds, and more preferably 6 to 50 milliseconds.
  • the duration per pulsed plasma discharge also varies depending on the voltage and current that generate the plasma, but is usually in the range of 1 to 50 microseconds, and in the range of 2 to 30 microseconds considering the discharge efficiency. Is preferred.
  • vibration may be applied to the electrode.
  • the method for applying vibration is not particularly limited, and either a method for applying vibration periodically or a method for applying vibration intermittently may be used.
  • an electric actuator it is more preferable to use an electric actuator as means for applying vibration, because the amplitude of vibration and the distance between electrodes can be stabilized.
  • the atmosphere for carrying out the present invention can be carried out under reduced pressure, under pressure or under normal pressure, but usually under an inert gas such as nitrogen or argon in consideration of safety and operability. It is preferable to implement.
  • the CNT produced by the method of the present invention is deposited in the liquid, it is possible to obtain the CNT by removing the liquid used in a general method, for example, a filtration operation after performing a filtration operation. it can.
  • the CNTs obtained as described above are usually in the range of 0.7 to 50 nm in tube diameter and in the range of 50 nm to 10 ⁇ m in tube length, but sizes outside these ranges can be obtained depending on conditions.
  • the aspect ratio of the CNT and the curvature of the tip can be changed by appropriately adjusting the plasma generation voltage, the plasma generation current, the discharge pulse interval, and the duration per pulse plasma discharge.
  • Example 1 the same operation as in Example 1 was performed, except that iron (III) acetate was not used as a catalyst, and graphite containing 1% by weight of iron was used as an electrode.
  • a TEM photograph of the obtained black powder is shown in FIG. 2 (magnification: 100,000 times). From the TEM photograph, it was judged that the obtained black powder was CNT having a tube diameter of about 4 nm.
  • Example 3
  • Example 1 the same operation as in Example 1 was performed except that 0.001 g of molybdenum acetylacetonate was used instead of 0.001 g of iron (III) acetate.
  • a TEM photograph (magnification: 100,000 times) of the obtained black powder is shown in FIG. From the TEM photograph, it was judged that the obtained black powder was CNT having a tube diameter of about 6 nm.
  • Example 4
  • Example 1 the same operation as in Example 1 was performed except that 200 g of ion-exchanged water was used instead of 200 g of anhydrous ethanol as a solvent.
  • a TEM photograph (magnification: 100,000 times) of the obtained black powder is shown in FIG. From the TEM photograph, it was judged that the obtained black powder was CNT having a tube diameter of about 4 nm.
  • carbon nanotubes can be produced with a low energy such as a relatively low voltage, which is highly industrially useful.

Abstract

A method for stably producing a carbon nanotube on an industrial scale. Specifically disclosed is a method for producing a carbon nanotube, wherein a pulse plasma discharge is caused between carbon electrodes in a liquid in the presence of a catalyst.  The catalyst is preferably selected from the group consisting of group 6-10 metals and compounds thereof.

Description

カーボンナノチューブの製造方法Method for producing carbon nanotube
 本発明は、カーボンナノチューブの製造方法に関する。 The present invention relates to a method for producing carbon nanotubes.
 カーボンナノチューブ(以下、CNTと略すことがある)は、黒鉛の一層に相当するグラフェンシート(炭素原子が六角網目状に配列したシート)を筒状に丸めた立体構造からなる物質である。CNTは、1枚の円筒状グラフェンシートからなる単層CNTと、複数枚の円筒状グラフェンシートが同心円状に重なった多層CNTが存在することが知られている。また、一般的に、合成直後のCNTの突端は、通常、「キャップ」と呼ばれる半球状のグラファイト層で閉じられた構造になっていることが解っている。 Carbon nanotubes (hereinafter may be abbreviated as CNT) are substances composed of a three-dimensional structure in which graphene sheets (sheets in which carbon atoms are arranged in a hexagonal network) corresponding to one layer of graphite are rolled into a cylindrical shape. It is known that there are single-walled CNTs composed of one cylindrical graphene sheet and multi-walled CNTs in which a plurality of cylindrical graphene sheets are concentrically overlapped. In general, it has been found that the tip of the CNT immediately after synthesis is usually closed by a hemispherical graphite layer called a “cap”.
 CNTは、nmオーダーの直径と、μm~cmオーダーの長さを有しており、アスペクト比(CNTの長さを同単位の直径で除した値)が極めて大きく、先端の曲率半径が数nm~数十nmと極めて小さいという特徴がある。CNTは、物理的・機械的にも強靱で、化学的・熱的安定性に優れ、円筒部のらせん構造に応じて金属にも半導体にもなるという特徴を有している。そのため、CNTは、発光デバイス用の電子配線材料、放熱材料、繊維材料、フラットパネルディスプレイ用の電子放出源、トランジスタ材料、電子顕微鏡用の電子放出源(点光源)等への応用が期待されている。 CNTs have a diameter on the order of nm and a length on the order of μm to cm, have an extremely large aspect ratio (a value obtained by dividing the length of CNT by the diameter of the same unit), and have a radius of curvature at the tip of several nm. It has a feature that it is extremely small, ~ several tens of nm. CNT is physically and mechanically strong, has excellent chemical and thermal stability, and has the characteristics that it can be a metal or a semiconductor depending on the helical structure of the cylindrical portion. Therefore, CNTs are expected to be applied to electronic wiring materials for light-emitting devices, heat dissipation materials, fiber materials, electron emission sources for flat panel displays, transistor materials, electron emission sources (point light sources) for electron microscopes, etc. Yes.
 CNTを合成する方法としては、
(1)Arやヘリウム等の気体雰囲気中において炭素棒間でアーク放電を行わせ、陰極上にCNTを堆積させるアーク法(特許文献1参照)、
(2)触媒を混ぜたグラファイトの表面にYAGレーザー等の強いパルス光を当て、これにより発生した炭素の煙を電気炉で加熱し、反応管の下流側でCNTを回収するレーザー蒸発法(特許文献2参照)
(3)触媒金属微粒子上で、例えば、メタン、アセチレン、一酸化炭素、ベンゼンなどの低沸点炭素化合物を熱分解させる化学気相成長法(特許文献3、特許文献4、非特許文献1参照)などの方法が知られている。
As a method of synthesizing CNT,
(1) An arc method in which arc discharge is performed between carbon rods in a gas atmosphere such as Ar or helium to deposit CNTs on the cathode (see Patent Document 1),
(2) A laser evaporation method (patented by applying strong pulsed light such as YAG laser to the surface of graphite mixed with catalyst, heating the generated carbon smoke in an electric furnace, and collecting CNT downstream of the reaction tube Reference 2)
(3) A chemical vapor deposition method in which low boiling point carbon compounds such as methane, acetylene, carbon monoxide, and benzene are thermally decomposed on catalytic metal fine particles (see Patent Document 3, Patent Document 4, and Non-Patent Document 1). Such a method is known.
特開2002−201014号公報JP 2002-201014 A 特開平10−273308号公報Japanese Patent Laid-Open No. 10-273308 特開2000−86217号公報JP 2000-86217 A 特開2000−86218号公報JP 2000-86218 A
 (1)及び(2)の合成法により得られるCNTは、いずれも完全にランダムな方向を向いて絡み合った状態になっている。また、多量のカーボンナノカプセルやアモルファス粒子等を含んでいる場合もある。また、アーク放電、高いパルス光を発生させるために高エネルギーが必要であったり、高温を必要とするために、製造コストが高くなるなどの問題を有している。 CNTs obtained by the synthesis methods (1) and (2) are both in a state of being intertwined in a completely random direction. Moreover, it may contain a large amount of carbon nanocapsules, amorphous particles, and the like. In addition, high energy is required to generate arc discharge and high pulsed light, and high temperature is required, resulting in high manufacturing costs.
 (3)の方法では、比較的安定な方法で、CNTを製造することが出来るが、原料がアセチレン、一酸化炭素など有害かつ爆発性など危険性質を持つ物質や、メタンなど高圧ガスとしての保存が必要かつ発火の危険性が高い物質を用いるなどの問題点がある。また、ベンゼンなどの液体原料を使用する場合には、気化させる必要があるなど、付帯設備が大きく、複雑な工程を取る必要があるなどの問題点を有している。 In the method (3), CNT can be produced by a relatively stable method, but the raw material is stored as a hazardous and explosive substance such as acetylene or carbon monoxide, or as a high-pressure gas such as methane. However, there are problems such as the use of substances that require high risk of ignition. In addition, when a liquid raw material such as benzene is used, there is a problem that ancillary equipment is large and a complicated process needs to be taken.
 したがって、本発明の目的は、工業的規模で安定的に、CNTを製造できる方法を提供することにある。 Therefore, an object of the present invention is to provide a method capable of producing CNTs stably on an industrial scale.
 本発明者らは、上記目的を達成すべく鋭意検討を重ね、液体中で、触媒存在下に炭素金属電極間にパルスプラズマを発生させることにより、CNTを得ることができることを見出し、本発明に至った。 The inventors of the present invention have made extensive studies to achieve the above object, and found that CNT can be obtained by generating pulsed plasma between carbon metal electrodes in the presence of a catalyst in a liquid. It came.
 すなわち、本発明によれば、
[1] 液体中で触媒の存在下に炭素電極間にパルスプラズマ放電させることを特徴とするカーボンナノチューブの製造方法;
[2] 該触媒が、長周期型の周期律表における6族~10族の金属、およびその化合物からなる群から選ばれる少なくとも1種である[1]記載の製造方法;
が提供される。
That is, according to the present invention,
[1] A method for producing carbon nanotubes, characterized by performing pulsed plasma discharge between carbon electrodes in the presence of a catalyst in a liquid;
[2] The production method according to [1], wherein the catalyst is at least one selected from the group consisting of metals of Group 6 to Group 10 in the long-period periodic table and compounds thereof;
Is provided.
 本発明の製造方法により、CNTを比較的低エネルギー(例えば低電圧)で製造することができる。即ち、液体中で実施することでエネルギーの拡散が抑制され、エネルギー効率が高まるので、従来技術よりも低いエネルギーで、高い反応速度で目的物を得ることができる。 CNT can be produced with relatively low energy (for example, low voltage) by the production method of the present invention. That is, since the diffusion of energy is suppressed and the energy efficiency is increased by carrying out in a liquid, the target product can be obtained at a higher reaction rate with a lower energy than in the prior art.
 一般にCNTは金属触媒上に生成するので生成物に触媒成分が付着している状態が観測されるが、本発明によれば、生成物であるCNT末端に触媒が残留しないという、従来技術からは予想外の効果も見出されている。 In general, since CNT is produced on a metal catalyst, it is observed that the catalyst component is attached to the product. However, according to the present invention, from the prior art, the catalyst does not remain at the end of the product CNT. Unexpected effects have also been found.
実施例1で得られた黒色粉末の透過型電子顕微鏡(TEM)写真である(倍率:10万倍)。It is a transmission electron microscope (TEM) photograph of the black powder obtained in Example 1 (magnification: 100,000 times). 実施例2で得られた黒色粉末のTEM写真である(倍率:10万倍)。It is a TEM photograph of the black powder obtained in Example 2 (magnification: 100,000 times). 実施例3で得られた黒色粉末のTEM写真である(倍率:10万倍)。It is a TEM photograph of the black powder obtained in Example 3 (magnification: 100,000 times). 実施例4で得られた黒色粉末のTEM写真である(倍率:10万倍)。It is a TEM photograph of the black powder obtained in Example 4 (magnification: 100,000 times).
 本発明のカーボンナノチューブの製造方法は、液体中、触媒の存在下に炭素電極間にパルスプラズマ放電させることを特徴とするものである。炭素電極としては、グラファイト、アモルファスカーボン、グラッシーカーボンなどいずれの炭素材料を使用することができる。 The method for producing carbon nanotubes of the present invention is characterized in that pulse plasma discharge is performed between carbon electrodes in a liquid in the presence of a catalyst. As the carbon electrode, any carbon material such as graphite, amorphous carbon, and glassy carbon can be used.
 電極の形態としては、棒状、針金状、板状などいずれの形態であってもかまわない。両極の大きさに関しても、どちらかの大きさが異なるなどの形状を有していても構わない。また、両極は、同一の炭素材料または異なった材料を使用しても良く、単一または複数の炭素材料で成型されたものを使用しても構わない。 The electrode may have any shape such as a rod, wire, or plate. Regarding the size of both poles, it may have a shape such that one of the sizes is different. Moreover, both poles may use the same carbon material or a different material, and may use what was shape | molded by the single or several carbon material.
 本発明では、液体中でCNTを生成させる。使用できる液体(溶媒)としては、反応に影響を与えないものであれば特に制限されない。液体は2種以上の化合物の混合物でもよい。使用できる液体としては、ヘキサン、オクタン、デカン、シクロヘキサン、シクロオクタンなどの飽和炭化水素、ベンゼン、トルエン、キシレン、ナフタレンのような芳香族炭化水素、水、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコール、1,4−ブタンジオールなどのアルコール類、酢酸メチル、酢酸エチル、酢酸ブチル、安息香酸メチル、フタル酸ジメチルなどのエステル類、テトラヒドロフラン、テトラヒドロピラン、ジプロピルエーテル、ジブチルエーテル、ジエチレングリコール、テトラエチレングリコールなどのエーテル類が挙げられる。生成する炭素生成物の分散、引火、酸化性を考慮して、飽和炭化水素、芳香族炭化水素およびアルコール類の使用が好ましく、メタノール、エタノールの使用がより好ましい。 In the present invention, CNTs are generated in a liquid. The liquid (solvent) that can be used is not particularly limited as long as it does not affect the reaction. The liquid may be a mixture of two or more compounds. Liquids that can be used include saturated hydrocarbons such as hexane, octane, decane, cyclohexane, cyclooctane, aromatic hydrocarbons such as benzene, toluene, xylene, and naphthalene, water, methanol, ethanol, propanol, butanol, ethylene glycol, Alcohols such as propylene glycol and 1,4-butanediol, esters such as methyl acetate, ethyl acetate, butyl acetate, methyl benzoate and dimethyl phthalate, tetrahydrofuran, tetrahydropyran, dipropyl ether, dibutyl ether, diethylene glycol, tetra Examples include ethers such as ethylene glycol. In consideration of dispersion, ignition, and oxidizability of the produced carbon product, use of saturated hydrocarbons, aromatic hydrocarbons, and alcohols is preferable, and use of methanol and ethanol is more preferable.
 液体の使用量は、特に制限されず、両電極が液体中にあればよい。より好ましくは、プラズマの発生により液体が飛散したり、生成物濃度によって、液の拡散性がなくならない程度であればよい。 The amount of liquid used is not particularly limited as long as both electrodes are in the liquid. More preferably, it is sufficient that the liquid scatters due to the generation of plasma or the diffusibility of the liquid is not lost depending on the product concentration.
 本発明では、CNTの製造は触媒の存在下に実施される。触媒としては、長周期型の周期律表における6族~10族の金属、およびその化合物を用いる。触媒は1種を単独で使用してもよいし、2種以上を同時に又は段階的に使用してもよい。6族~10族の金属としては、鉄族金属(即ち、鉄、コバルト、ニッケル)、クロム、モリブデン、ルテニウム、ロジウム、イリジウム、パラジウム、白金が挙げられる。触媒形状としては、板状、線状、粒子状のいずれの形状を使用してもよいが、CNTの生成効率を考慮すると、粒状のものを使用することが好ましい。使用する粒状物の粒度は、特に制限されないが、細かな粒子を用いることがCNT生成向上に繋がるため、通常、粒径1nm~100μmの粒子を使用するが、凝集の回避や、生成効率を考慮して、2nm~50μmであることが好ましく、5nm~10μmの粒子を使用することがさらに好ましい。 In the present invention, CNT is produced in the presence of a catalyst. As the catalyst, metals of Group 6 to Group 10 in the long-period periodic table and compounds thereof are used. A catalyst may be used individually by 1 type and may use 2 or more types simultaneously or in steps. Examples of the Group 6 to Group 10 metals include iron group metals (that is, iron, cobalt, nickel), chromium, molybdenum, ruthenium, rhodium, iridium, palladium, and platinum. As the catalyst shape, any of a plate shape, a linear shape, and a particle shape may be used. However, in consideration of the generation efficiency of CNT, it is preferable to use a granular shape. The particle size of the granular material to be used is not particularly limited. However, since the use of fine particles leads to the improvement of CNT production, particles with a particle size of 1 nm to 100 μm are usually used, but consideration is given to avoiding aggregation and production efficiency. Thus, the thickness is preferably 2 nm to 50 μm, more preferably 5 nm to 10 μm.
 6族~10族の金属化合物としては特に制限されず、例えば炭化鉄、炭化ニッケル、炭化コバルトのような炭化物、塩化クロム、塩化モリブデン、塩化鉄、塩化ニッケル、塩化コバルト、塩化ルテニウム、塩化ロジウム、塩化パラジウム、塩化白金、臭化クロム、臭化モリブデン、臭化鉄、臭化ニッケル、臭化コバルト、臭化ルテニウム、臭化ロジウム、臭化パラジウム、臭化白金、硫酸鉄、硫酸ニッケル、硫酸コバルトのような鉱酸塩、酢酸鉄、酢酸ニッケル、酢酸コバルト、酢酸パラジウム、酪酸鉄、酪酸ニッケル、酪酸コバルト、乳酸鉄、乳酸ニッケル、乳酸コバルト、酒石酸鉄、酒石酸ニッケル、酒石酸コバルトのような有機酸塩、クロムアセチルアセトネート、モリブデンアセチルアセトネート、鉄アセチルアセトネート、ニッケルアセチルアセトネート、コバルトアセチルアセトネート、ルテニウムアセチルアセトネート、ロジウムアセチルアセトネート、パラジウムアセチルアセトネート、白金アセチルアセトネート、ジシクロペンタジエニル鉄、ジシクロペンタジエニルニッケル、トリシクロペンタジエニルコバルト、テトラキストリフェニルホスフィンパラジウムなどの有機金属錯体、鉄ペンタカルボニル、ニッケルペンタカルボニル、コバルトペンタカルボニルなどの金属錯体などを使用することができる。 The metal compound of Group 6 to Group 10 is not particularly limited. For example, carbides such as iron carbide, nickel carbide, and cobalt carbide, chromium chloride, molybdenum chloride, iron chloride, nickel chloride, cobalt chloride, ruthenium chloride, rhodium chloride, Palladium chloride, platinum chloride, chromium bromide, molybdenum bromide, iron bromide, nickel bromide, cobalt bromide, ruthenium bromide, rhodium bromide, palladium bromide, platinum bromide, iron sulfate, nickel sulfate, cobalt sulfate Mineral acids such as iron acetate, nickel acetate, cobalt acetate, palladium acetate, iron butyrate, nickel butyrate, cobalt butyrate, iron lactate, nickel lactate, cobalt lactate, iron tartrate, nickel tartrate, cobalt tartrate Salt, chromium acetylacetonate, molybdenum acetylacetonate, iron acetylacetonate, nickele Ruacetylacetonate, cobalt acetylacetonate, ruthenium acetylacetonate, rhodium acetylacetonate, palladium acetylacetonate, platinum acetylacetonate, dicyclopentadienyl iron, dicyclopentadienyl nickel, tricyclopentadienyl cobalt An organic metal complex such as tetrakistriphenylphosphine palladium, a metal complex such as iron pentacarbonyl, nickel pentacarbonyl, cobalt pentacarbonyl, or the like can be used.
 触媒は、液体中に分散、または溶解していても、炭素電極中に分散していても構わない。反応の効率を考慮すると炭素電極中に分散している方が好ましいが、使用する触媒種、反応条件にも影響されるため、特に制限されない。 The catalyst may be dispersed or dissolved in the liquid or may be dispersed in the carbon electrode. Considering the efficiency of the reaction, it is preferable that it is dispersed in the carbon electrode, but it is not particularly limited because it is affected by the type of catalyst used and the reaction conditions.
 触媒の使用量は特に制限されず、プラズマの発生に影響を与えない濃度で存在していればよい。触媒を液体中に分散、または溶解させる場合には、0.001モル/L~5モル/Lの範囲であることが好ましく、電極中に混合する場合、0.01重量%~10重量%の範囲で混合することが好ましい。 The amount of catalyst used is not particularly limited as long as it exists at a concentration that does not affect the generation of plasma. When the catalyst is dispersed or dissolved in the liquid, it is preferably in the range of 0.001 mol / L to 5 mol / L, and when mixed in the electrode, it is 0.01 wt% to 10 wt%. It is preferable to mix within a range.
 パルスプラズマ放電させる温度は、特に制限されず、使用する液体の種類にも依存するが、通常、室温~300℃の範囲である。300℃を超える温度では、使用する溶媒の蒸気圧が上がり、プラズマにより引火する恐れがあるため好ましくなく、室温よりも低い温度では、溶媒の粘度が上がり、生成物の拡散性が損なわれる傾向があるため好ましくない。 The temperature at which the pulse plasma discharge is performed is not particularly limited and is usually in the range of room temperature to 300 ° C., although it depends on the type of liquid used. If the temperature exceeds 300 ° C., the vapor pressure of the solvent to be used increases, which may cause ignition by plasma, which is not preferable. If the temperature is lower than room temperature, the viscosity of the solvent increases and the diffusibility of the product tends to be impaired. This is not preferable.
 本発明でプラズマを発生させる電圧としては、特に制限されず、通常、50V~500Vの範囲であり、安全性、特殊な装置の必要性を考慮して、60V~400Vの範囲が好ましく、80V~300Vの範囲がより好ましい。 The voltage for generating plasma in the present invention is not particularly limited, and is usually in the range of 50V to 500V, preferably in the range of 60V to 400V, considering the necessity of safety and special equipment, and 80V to The range of 300V is more preferable.
 また、プラズマを発生させる電流は、特に制限されず、通常0.1~20Aの範囲であり、エネルギー効率を考慮して、0.2~10Aの範囲であるのが好ましい。 Further, the current for generating plasma is not particularly limited, and is usually in the range of 0.1 to 20 A, and preferably in the range of 0.2 to 10 A in consideration of energy efficiency.
 パルスプラズマ放電のパルス間隔に関しては、特に制限されるものではないが、5~100ミリ秒が好ましく、6~50ミリ秒のサイクルがより好ましい。 The pulse interval of the pulse plasma discharge is not particularly limited, but is preferably 5 to 100 milliseconds, and more preferably 6 to 50 milliseconds.
 パルスプラズマ放電1回あたりの持続時間も、プラズマを発生させる電圧および電流によって異なるが、通常1~50マイクロ秒の範囲であり、放電の効率を考慮すると、2~30マイクロ秒の範囲であることが好ましい。 The duration per pulsed plasma discharge also varies depending on the voltage and current that generate the plasma, but is usually in the range of 1 to 50 microseconds, and in the range of 2 to 30 microseconds considering the discharge efficiency. Is preferred.
 本発明では、電極に振動を与えてもよい。電極に振動を与えることで、電極間に析出する炭素化合物の滞留もなく、放電が効率的に行われるため好ましい。振動を与える方法は、特に限定されず、定期的に振動を与える方法や、間欠的に振動を与える方法のいずれでも構わない。例えば振動を与える手段として電動アクチュエータを用いると振動の振幅および電極間距離を安定化できるので、より好ましい。 In the present invention, vibration may be applied to the electrode. By giving vibration to the electrodes, there is no stagnation of the carbon compound deposited between the electrodes, and discharge is performed efficiently, which is preferable. The method for applying vibration is not particularly limited, and either a method for applying vibration periodically or a method for applying vibration intermittently may be used. For example, it is more preferable to use an electric actuator as means for applying vibration, because the amplitude of vibration and the distance between electrodes can be stabilized.
 本発明を実施する雰囲気は、減圧下、加圧下、常圧下いずれの状態でも実施することができるが、通常、安全性及び、操作性を考慮して、窒素、アルゴンなどの不活性ガス下で実施することが好ましい。 The atmosphere for carrying out the present invention can be carried out under reduced pressure, under pressure or under normal pressure, but usually under an inert gas such as nitrogen or argon in consideration of safety and operability. It is preferable to implement.
 本発明の方法で生成するCNTは、液体中に堆積するので、一般的な方法、例えば、ろ過操作を行ったのち、減圧等の操作で使用した液体を除去することにより、CNTを得ることができる。 Since the CNT produced by the method of the present invention is deposited in the liquid, it is possible to obtain the CNT by removing the liquid used in a general method, for example, a filtration operation after performing a filtration operation. it can.
 以上のようにして得られるCNTは、通常、チューブ径で0.7~50nmの範囲、チューブ長で50nm~10μmの範囲のものであるが、条件によりこれら範囲外の寸法のものも得られる。 The CNTs obtained as described above are usually in the range of 0.7 to 50 nm in tube diameter and in the range of 50 nm to 10 μm in tube length, but sizes outside these ranges can be obtained depending on conditions.
 CNTのアスペクト比、先端の曲率は、プラズマ発生電圧、プラズマ発生電流、放電のパルス間隔、パルスプラズマ放電1回あたりの持続時間を適宜調整することによって変化させることができる。 The aspect ratio of the CNT and the curvature of the tip can be changed by appropriately adjusting the plasma generation voltage, the plasma generation current, the discharge pulse interval, and the duration per pulse plasma discharge.
実施例1 Example 1
 容量300mlのビーカーに無水エタノール200gと酢酸鉄(III)0.001gを秤量し、超音波分散を15分間実施した。得られた溶液に、直径6mm、長さ100mmの円柱状のグラファイト電極(純度99%以上)を挿入し、電極間を1mmに固定し、電動アクチュエータを用いて電極に振動を与えた。各電極を交流電源に接続し、200V、2Aでパルスプラズマ放電した。パルス間隔は20ミリ秒、パルスプラズマ放電1回あたりの持続時間は10マイクロ秒で行った。放電開始と同時に、黒色の粉体が液中に分散して、反応が起こったことが観測された。30分間反応を継続し、反応後、エタノールを留去し、残渣に硝酸20gを添加し、アモルファス分を酸化分解した。イオン交換水200gを用いて、酸化分解物を洗浄除去し、100℃で減圧乾燥した結果、3.14gの黒色粉末を得た。 In a beaker having a capacity of 300 ml, 200 g of absolute ethanol and 0.001 g of iron (III) acetate were weighed and subjected to ultrasonic dispersion for 15 minutes. A cylindrical graphite electrode (purity 99% or more) having a diameter of 6 mm and a length of 100 mm was inserted into the obtained solution, the distance between the electrodes was fixed to 1 mm, and the electrodes were vibrated using an electric actuator. Each electrode was connected to an AC power source, and pulsed plasma discharge was performed at 200V and 2A. The pulse interval was 20 milliseconds, and the duration per pulse plasma discharge was 10 microseconds. Simultaneously with the start of discharge, it was observed that the black powder was dispersed in the liquid and the reaction occurred. The reaction was continued for 30 minutes. After the reaction, ethanol was distilled off, and 20 g of nitric acid was added to the residue to oxidatively decompose the amorphous content. As a result of washing and removing the oxidative decomposition product using 200 g of ion-exchanged water and drying under reduced pressure at 100 ° C., 3.14 g of black powder was obtained.
 得られた黒色粉末のTEM写真(倍率:10万倍)を図1に示す。TEM写真から、得られた黒色粉末が、チューブ径約3nmのCNTであると判断した。電極の重量減量分が100%反応によって消費されたとして計算するとCNTの収率は48%であった。
実施例2
A TEM photograph (magnification: 100,000 times) of the obtained black powder is shown in FIG. From the TEM photograph, it was judged that the obtained black powder was CNT having a tube diameter of about 3 nm. Calculating that the weight loss of the electrode was consumed by 100% reaction, the yield of CNT was 48%.
Example 2
 実施例1において、酢酸鉄(III)を触媒として用いず、1重量%の鉄を含有するグラファイトを電極として用いた以外は、実施例1と同様の操作を行った。得られた黒色粉末のTEM写真を図2(倍率:10万倍)に示す。TEM写真から、得られた黒色粉末が、チューブ径約4nmのCNTであると判断した。
実施例3
In Example 1, the same operation as in Example 1 was performed, except that iron (III) acetate was not used as a catalyst, and graphite containing 1% by weight of iron was used as an electrode. A TEM photograph of the obtained black powder is shown in FIG. 2 (magnification: 100,000 times). From the TEM photograph, it was judged that the obtained black powder was CNT having a tube diameter of about 4 nm.
Example 3
 実施例1において、酢酸鉄(III)0.001gに換えてモリブデンアセチルアセトネート0.001gを使用した以外は、実施例1と同様の操作を行った。得られた黒色粉末のTEM写真(倍率:10万倍)を図3に示す。TEM写真から、得られた黒色粉末が、チューブ径約6nmのCNTであると判断した。
実施例4
In Example 1, the same operation as in Example 1 was performed except that 0.001 g of molybdenum acetylacetonate was used instead of 0.001 g of iron (III) acetate. A TEM photograph (magnification: 100,000 times) of the obtained black powder is shown in FIG. From the TEM photograph, it was judged that the obtained black powder was CNT having a tube diameter of about 6 nm.
Example 4
 実施例1において、溶媒の無水エタノール200gに換えて、イオン交換水200gを使用した以外は、実施例1と同様の操作を行った。得られた黒色粉末のTEM写真(倍率:10万倍)を図4に示す。TEM写真から、得られた黒色粉末が、チューブ径約4nmのCNTであると判断した。 In Example 1, the same operation as in Example 1 was performed except that 200 g of ion-exchanged water was used instead of 200 g of anhydrous ethanol as a solvent. A TEM photograph (magnification: 100,000 times) of the obtained black powder is shown in FIG. From the TEM photograph, it was judged that the obtained black powder was CNT having a tube diameter of about 4 nm.
 TEM−EDX(透過型電子顕微鏡−エネルギー分散型X線分光法)の観察結果 TEM-EDX (transmission electron microscope-energy dispersive X-ray spectroscopy) observation results
 上記実施例1~4で得られたCNTをTEM−EDX(TEM:日本電子製JEOL JEM−3000F、EDX:NORAN社製 System SIX)で観測したところ金属元素が観測されなかった。このことから生成物に触媒金属が付着していないことがわかった。
比較例1
When the CNTs obtained in Examples 1 to 4 were observed with TEM-EDX (TEM: JEOL JEM-3000F manufactured by JEOL Ltd., EDX: System SIX manufactured by NORAN), no metal element was observed. From this, it was found that no catalytic metal adhered to the product.
Comparative Example 1
 300mlビーカーに無水エタノール200gと酢酸鉄(III)0.001gを秤量し、超音波分散を15分間実施した。得られた溶液に、直径6mm、長さ100mmの円柱状のグラファイト電極(純度99%以上)を挿入し、電極間を1mmに固定し、電動アクチュエータを用いて電極に振動を与えた。各電極を直流電源に接続し、200V、2Aで連続放電した。放電開始と同時に、黒色の粉体が液中に分散して、反応が起こったことが観測された。30分間反応を継続し、溶液を遠心分離、無水エタノールを適量加えて、洗浄と分離を行った。実施例と同様、アモルファス分を分解し、イオン交換水で酸化分解物を洗浄除去したところ、黒色粉末は残らず、CNTが生成していないと判断した。 In a 300 ml beaker, 200 g of absolute ethanol and 0.001 g of iron (III) acetate were weighed and subjected to ultrasonic dispersion for 15 minutes. A cylindrical graphite electrode (purity 99% or more) having a diameter of 6 mm and a length of 100 mm was inserted into the obtained solution, the distance between the electrodes was fixed to 1 mm, and the electrodes were vibrated using an electric actuator. Each electrode was connected to a DC power source and continuously discharged at 200V and 2A. Simultaneously with the start of discharge, it was observed that the black powder was dispersed in the liquid and the reaction occurred. The reaction was continued for 30 minutes, the solution was centrifuged, and an appropriate amount of absolute ethanol was added for washing and separation. As in the example, the amorphous component was decomposed and the oxidative decomposition product was washed and removed with ion-exchanged water. As a result, it was determined that no black powder remained and CNT was not generated.
 本発明の製造方法によれば、カーボンナノチューブを比較的低電圧などの低エネルギーで製造することができ、産業上の有用性が大きい。 According to the production method of the present invention, carbon nanotubes can be produced with a low energy such as a relatively low voltage, which is highly industrially useful.

Claims (2)

  1.  液体中で触媒の存在下に炭素電極間にパルスプラズマ放電させることを特徴とするカーボンナノチューブの製造方法。 A method for producing carbon nanotubes, characterized in that pulse plasma discharge is performed between carbon electrodes in the presence of a catalyst in a liquid.
  2.  該触媒が、長周期型の周期律表における6族~10族の金属、およびその化合物からなる群から選ばれる少なくとも1種である請求項1記載の製造方法。 The method according to claim 1, wherein the catalyst is at least one selected from the group consisting of metals of Group 6 to Group 10 in the long-period type periodic table and compounds thereof.
PCT/JP2009/065379 2008-08-28 2009-08-27 Method for producing carbon nanotube WO2010024459A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010526820A JP5534456B2 (en) 2008-08-28 2009-08-27 Method for producing carbon nanotube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008219565 2008-08-28
JP2008-219565 2008-08-28

Publications (1)

Publication Number Publication Date
WO2010024459A1 true WO2010024459A1 (en) 2010-03-04

Family

ID=41721612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065379 WO2010024459A1 (en) 2008-08-28 2009-08-27 Method for producing carbon nanotube

Country Status (3)

Country Link
JP (1) JP5534456B2 (en)
TW (1) TW201012747A (en)
WO (1) WO2010024459A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032258A (en) * 2011-06-30 2013-02-14 Ulvac Japan Ltd Method of producing graphene
JP2014040352A (en) * 2012-08-23 2014-03-06 Chube Univ Method for manufacturing graphene
JP2014152095A (en) * 2013-02-13 2014-08-25 Nagoya Univ Method for producing graphene
JP2014533973A (en) * 2011-09-23 2014-12-18 パルティ、ヨーラム Gas exchange device comprising a nanotube and an artificial lung
JP2017222538A (en) * 2016-06-15 2017-12-21 国立大学法人 熊本大学 Method for producing graphene and chemically modified graphene
CN113233443A (en) * 2021-04-22 2021-08-10 电子科技大学 Preparation method of fluorinated spiral carbon nanotube and application of fluorinated spiral carbon nanotube in lithium primary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504944A (en) * 2003-09-10 2007-03-08 パランスキ ナフム Method for producing nanoparticles and microparticles
JP2007169159A (en) * 2001-09-06 2007-07-05 Rosseter Holdings Ltd Apparatus and method for forming nanoparticle and nanotube, and use therefor for gas storage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169159A (en) * 2001-09-06 2007-07-05 Rosseter Holdings Ltd Apparatus and method for forming nanoparticle and nanotube, and use therefor for gas storage
JP2007504944A (en) * 2003-09-10 2007-03-08 パランスキ ナフム Method for producing nanoparticles and microparticles

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
E. OMURZAK ET AL.: "Synthesis Method of Nanomaterials by Pulsed Plasma in Liquid", JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, vol. 7, no. 9, September 2007 (2007-09-01), pages 3157 - 3159 *
HITOHARU KAWASAKI ET AL.: "Ekichu Pulsed Arc Hoden Plasma o Mochiita Nano Kozo Busshitsu no Shisaku", KENKYUKAI SHIRYO, PLASMA KENKYUKAI, vol. 69, 21 October 2004 (2004-10-21), pages 33 - 36 *
J. SUEHIRO ET AL.: "Production of Carbon Nanoparticles Using Pulsed Arc Discharge Triggered by Dielectric Breakdown in Water", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 42, no. 12A, 1 December 2003 (2003-12-01), pages L1483 - L1485 *
N. PARKANSKY ET AL.: "Magnetic properties of carbon nano-particles produced by a pulsed arc submerged in ethanol", CARBON, vol. 46, no. 2, February 2008 (2008-02-01), pages 215 - 219 *
NORIAKI SANO ET AL.: "Ekichu Arc Plasma o Mochiita Carbon Nano Kozotai no Gosei", MATERIAL INTEGRATION, vol. 20, no. 04, 25 March 2007 (2007-03-25), pages 58 - 63 *
YUTAKA OSHIRO ET AL.: "Suichu Pulsed Arc Hoden o Mochiita Carbon Nano Ryushi no Gosei", KENKYUKAI SHIRYO, HODEN, YUDEN-ZETSUEN ZAIRYO, KODEN'ATSU GODO KENKYUKAI, vol. 43, 23 January 2004 (2004-01-23), pages 25 - 30 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032258A (en) * 2011-06-30 2013-02-14 Ulvac Japan Ltd Method of producing graphene
JP2014533973A (en) * 2011-09-23 2014-12-18 パルティ、ヨーラム Gas exchange device comprising a nanotube and an artificial lung
JP2014040352A (en) * 2012-08-23 2014-03-06 Chube Univ Method for manufacturing graphene
JP2014152095A (en) * 2013-02-13 2014-08-25 Nagoya Univ Method for producing graphene
JP2017222538A (en) * 2016-06-15 2017-12-21 国立大学法人 熊本大学 Method for producing graphene and chemically modified graphene
CN113233443A (en) * 2021-04-22 2021-08-10 电子科技大学 Preparation method of fluorinated spiral carbon nanotube and application of fluorinated spiral carbon nanotube in lithium primary battery

Also Published As

Publication number Publication date
TW201012747A (en) 2010-04-01
JPWO2010024459A1 (en) 2012-01-26
JP5534456B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
KR102290472B1 (en) Seedless particles with carbon allotropes
Sridhar et al. Field emission with ultralow turn on voltage from metal decorated carbon nanotubes
Rafique et al. Production of carbon nanotubes by different routes-a review
JP2001348215A (en) Manufacturing method of carbon nanotube and/or fullerene and manufacturing device therefor
JP5534456B2 (en) Method for producing carbon nanotube
JP5698982B2 (en) Illumination lamp, nanocarbon material composite substrate, and manufacturing method thereof
US20120237435A1 (en) Mass Production of Carbon Nanostructures
JP5649186B2 (en) Onion-like carbon and method for producing the same
JP2007169159A (en) Apparatus and method for forming nanoparticle and nanotube, and use therefor for gas storage
JP2006335604A (en) Sheet of coaxial carbon nanotubes and method for manufacturing the same
WO2015066428A2 (en) Induction-coupled plasma synthesis of boron nitride nanotubes
JP4443423B2 (en) Single-walled carbon nanotube manufacturing method and manufacturing apparatus
Abdullah et al. Hydrocarbon sources for the carbon nanotubes production by chemical vapour deposition: a review
US11932541B2 (en) Process and apparatus for synthesizing multiwall carbon nanotubes from high molecular polymeric wastes
Sridhar et al. Direct growth of carbon nanofiber forest on nickel foam without any external catalyst
Mansoor et al. Optimization of ethanol flow rate for improved catalytic activity of Ni particles to synthesize MWCNTs using a CVD reactor
Dubey et al. High-Quality Thin-Multiwalled Carbon Nanotubes Synthesized by Fe-Mo/MgO Catalyst Based on a Sol–Gel Technique: Synthesis, Characterization, and Field Emission
Bodnar et al. Synthesis of graphene-related carbon nanoparticles from a liquid isopropanol precursor by a one-step atmospheric plasma process
JP6847412B2 (en) Catalytic base material for manufacturing carbon nanotube aggregates and method for manufacturing carbon nanotube aggregates
Yardimci et al. Synthesis methods of carbon nanotubes
Karthikeyan et al. Carbon nanotubes from unconventional resources: Part A: Entangled multi-walled carbon nanotubes and Part B: Vertically-aligned carbon nanotubes
Kia et al. Using hydrocarbon as a carbon source for synthesis of carbon nanotube by electric field induced needle-pulsed plasma
EP2743231A1 (en) Method for producing carbon nanotubes in the absence of metal catalysts
Chen et al. A primary understanding of field emission from superhigh specific surface area activated carbon with interconnection structure
JP6185956B2 (en) Method for producing long-fiber single-walled carbon nanotubes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09810100

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010526820

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09810100

Country of ref document: EP

Kind code of ref document: A1