WO2010021053A1 - 燃焼排ガス中の二酸化炭素回収設備の水銀除去システム、及び燃焼排ガス中の二酸化炭素回収設備の水銀除去運転方法 - Google Patents

燃焼排ガス中の二酸化炭素回収設備の水銀除去システム、及び燃焼排ガス中の二酸化炭素回収設備の水銀除去運転方法 Download PDF

Info

Publication number
WO2010021053A1
WO2010021053A1 PCT/JP2008/064968 JP2008064968W WO2010021053A1 WO 2010021053 A1 WO2010021053 A1 WO 2010021053A1 JP 2008064968 W JP2008064968 W JP 2008064968W WO 2010021053 A1 WO2010021053 A1 WO 2010021053A1
Authority
WO
WIPO (PCT)
Prior art keywords
mercury
exhaust gas
combustion exhaust
gas
carbon dioxide
Prior art date
Application number
PCT/JP2008/064968
Other languages
English (en)
French (fr)
Inventor
久幸 折田
向出 正明
穂刈 信幸
強 柴田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2010525538A priority Critical patent/JP5253509B2/ja
Priority to PCT/JP2008/064968 priority patent/WO2010021053A1/ja
Publication of WO2010021053A1 publication Critical patent/WO2010021053A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/60Heavy metals; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/60Sorption with dry devices, e.g. beds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/15061Deep cooling or freezing of flue gas rich of CO2 to deliver CO2-free emissions, or to deliver liquid CO2

Definitions

  • the present invention relates to a mercury removal system in a carbon dioxide recovery facility in combustion exhaust gas and a mercury removal operation method of the carbon dioxide recovery facility in combustion exhaust gas.
  • the “Summary of Report on Mercury Effects Investigation Committee” in the technical literature states that when LPG is vaporized, the gas temperature becomes low, and mercury in the vaporized LPG liquefies and accumulates. It is disclosed that in order to prevent the member from corroding and further to prevent the metal member from corroding, it is necessary to manage in advance to reduce the mercury concentration in the LPG.
  • LPG As a method for reducing the mercury concentration in LPG, for example, in Japanese Patent Application Laid-Open No. 9-221684, LPG is supplied into a packed bed of mercury adsorbent, and the mercury adsorbent is used under adsorption conditions at a temperature of 20 ° C. to 200 ° C. A technique for removing mercury by bringing it into contact with water is disclosed.
  • CO 2 carbon dioxide
  • the thermal power plant is attracting attention as a CO 2 emission source, and it is desired to separate and remove CO 2 in the combustion exhaust gas discharged from the boiler of the thermal power plant with high efficiency.
  • Japanese Patent No. 3068888 discloses a technique for increasing the concentration of CO 2 by burning fuel and oxygen in a boiler.
  • Hg 0 metallic mercury
  • HgCl 2 A technique for converting to mercury chloride (hereinafter referred to as HgCl 2 ) which is easily dissolved and absorbing it in water and removing it, and a technique for removing this HgCl 2 by absorbing it in an adsorbent are disclosed.
  • Japanese Patent Laid-Open No. 9-221684 Japanese Patent No. 3068888 JP 2004-237244 A JP 2005-230810 A Summary of the Mercury Effects Investigation Committee Report (Ministry of Economy, Trade and Industry, NISA, High Pressure Gas Safety Association, March 29, 2002)
  • the total amount of HgCl 2 may be removed by dissolving in water. However, it is difficult to convert the entire amount of Hg 0 to HgCl 2 , and a part of Hg 0 remains.
  • An object of the present invention is to collect CO 2 from combustion exhaust gas and to remove Hg 0 contained in the combustion exhaust gas with high accuracy, and to remove mercury from the carbon dioxide recovery facility in the combustion exhaust gas, Another object is to provide a mercury removal operation method for carbon dioxide recovery equipment in combustion exhaust gas.
  • the mercury removal system for carbon dioxide recovery equipment in combustion exhaust gas includes a dehydrator for removing moisture in the combustion exhaust gas discharged from the source of combustion exhaust gas, and a dehydrator installed downstream of the dehydrator.
  • a plurality of mercury gas adsorption towers for adsorbing and removing mercury in combustion exhaust gas are arranged in parallel between the dehydrator and the compressor.
  • the mercury removal system for carbon dioxide recovery equipment in combustion exhaust gas is installed on the downstream side of the dehydration device for removing moisture in the combustion exhaust gas discharged from the source of combustion exhaust gas.
  • a compressor that compresses carbon dioxide in the flue gas from which moisture has been removed, and a carbon dioxide recovery facility in the flue gas that has a cooler that cools and liquefies the compressed carbon dioxide, and upstream of the dehydrator Alternatively, a plurality of mercury gas adsorption towers that adsorb and remove mercury in combustion exhaust gas are arranged in parallel between the dehydrator and the compressor, and a plurality of mercury gas adsorption towers arranged in plurality are arranged.
  • An inlet valve and an outlet valve for adjusting the flow of combustion exhaust gas are installed on the upstream side and the downstream side, respectively, and a mercury analyzer for measuring the mercury concentration in the combustion exhaust gas is installed on the downstream side of the outlet valve. Based on the concentration of mercury in the combustion exhaust gas measured by the analyzer is characterized in that in which the controllable device for controlling the opening and closing of the inlet valve and outlet valve of the mercury gas adsorption tower.
  • the mercury removal operation method of the carbon dioxide recovery equipment in the combustion exhaust gas of the present invention is a method in which the moisture in the combustion exhaust gas discharged from the source of the combustion exhaust gas is removed by the dehydrator, and the moisture is removed by this dehydrator.
  • the carbon dioxide is compressed by a compressor installed on the downstream side of the dehydrator, and the compressed carbon dioxide is cooled and liquefied by a cooler to recover the carbon dioxide from the combustion exhaust gas.
  • One mercury gas in a mercury gas adsorption tower that adsorbs and removes mercury in combustion exhaust gas arranged upstream in parallel with the dehydrator or between the dehydrator and the compressor.
  • An operation is performed to remove the mercury in the flue gas by ventilating the flue gas before flowing into the dehydrator or the flue gas after flowing down the dehydrator with respect to the adsorption tower.
  • the mercury removal operation method of the carbon dioxide recovery facility in the combustion exhaust gas of the present invention is a combustion in which moisture in the combustion exhaust gas discharged from the source of combustion exhaust gas is removed by the dehydrator, and moisture is removed by this dehydrator.
  • the mercury in the combustion exhaust gas is adsorbed and removed by a mercury gas adsorption tower provided upstream in parallel with the dehydrator or in parallel between the dehydrator and the compressor, the mercury gas adsorption Among the mercury gas adsorption towers installed in parallel based on the mercury concentration in the combustion exhaust gas flowing down the tower, the dehydration device is attached to one mercury gas adsorption tower.
  • the combustion exhaust gas before flowing into the exhaust gas, or the exhaust gas after flowing down the dehydrator is controlled so as to ventilate and the mercury in the combustion exhaust gas is removed and the combustion exhaust gas flowing down the mercury gas adsorption tower
  • the combustion exhaust gas is vented to at least one mercury gas adsorption tower in a standby state without allowing the combustion exhaust gas to pass through the mercury gas adsorption tower. In this way, the combustion exhaust gas is switched so as to be ventilated so as to remove mercury in the combustion exhaust gas.
  • a system for removing mercury from a carbon dioxide recovery facility in combustion exhaust gas which is capable of recovering CO 2 from the combustion exhaust gas and removing Hg 0 contained in the combustion exhaust gas with high accuracy, And the mercury removal operation method of the carbon dioxide recovery equipment in combustion exhaust gas is realizable.
  • FIG. 1 The schematic block diagram which shows the mercury removal system of the carbon dioxide recovery equipment in the combustion exhaust gas which is 1st Example of this invention.
  • the schematic diagram which shows an example of the arrangement
  • the schematic diagram which shows the other example of arrangement
  • FIG. 1 The schematic block diagram which shows the mercury removal system of the carbon dioxide recovery equipment in the combustion exhaust gas which is 1st Example of this invention.
  • the schematic diagram which shows an example of the arrangement
  • FIG. 3 is a structural diagram showing an example of a heating structure of a metal mercury adsorbent installed inside the metal mercury gas adsorption tower shown in FIG. 2.
  • the schematic block diagram which shows the mercury removal system of the carbon dioxide recovery equipment in the combustion exhaust gas which is 2nd Example of this invention.
  • the schematic block diagram which shows the mercury removal system of the carbon dioxide recovery equipment in the combustion exhaust gas which is 3rd Example of this invention.
  • Metal mercury gas adsorption tower used in the mercury removal system according to the first embodiment of the present invention shown in FIG. 1 A diagram showing symbols of the metal mercury gas adsorption tower, inlet valve, outlet valve and mercury analyzer of the present invention. .
  • the flowchart which initializes ventilation control of the combustion exhaust gas with respect to the metal mercury gas adsorption tower used for the mercury removal system which is 1st Example of this invention shown in FIG. The flowchart which shows an example of switching control of the combustion exhaust gas with respect to the metal mercury gas adsorption tower used for the mercury removal system which is 1st Example of this invention shown in FIG.
  • the mercury removal system for carbon dioxide recovery equipment in combustion exhaust gas according to the first embodiment of the present invention shown in FIG. 1 combusts pulverized coal of fuel together with air to generate high-temperature combustion gas, and this combustion gas Is used as a heat source to generate a high-temperature steam and supply a steam supply destination (not shown) such as a steam turbine.
  • a combustion exhaust gas treatment system for treating combustion exhaust gas discharged from a pulverized coal burning boiler 50 which is a source of combustion exhaust gas that generates combustion exhaust gas by burning fuel and air, is disposed downstream of the pulverized coal burning boiler 50, respectively.
  • the dust collector 1 removes the combustion ash and the desulfurizer 2 that is located downstream of the dust collector 1 and removes sulfur oxide (hereinafter referred to as SOx) in the combustion exhaust gas 21.
  • a dehydration device 3 for removing moisture in the combustion exhaust gas 21 and a downstream side of the dehydration device 3 are installed.
  • a compressor 4 that compresses CO 2 in the combustion exhaust gas from which moisture has been removed, and a cooler 5 ′ that cools and liquefies the CO 2 compressed by the compressor 4 are provided.
  • the water removed from the combustion exhaust gas 21 by the dehydrator 3 is discharged as water 22 from the dehydrator 3 to the outside.
  • Hg 0 contained in the combustion exhaust gas 21 discharged from the pulverized coal burning boiler 50 is stacked inside metal mercury adsorption towers 11 and 11 ′ described later installed between the dehydrator 3 and the compressor 4. It is directly removed from the combustion exhaust gas 21 by adsorbing Hg 0 in the combustion exhaust gas 21 with the metal mercury adsorbent.
  • the CO 2 in the flue gas 21 is liquefied by being cooled by the cooler 5 ′, but the Hg 0 is adsorbed and removed by the compression of the compressor 4 and the cooling of the cooler 5 ′.
  • the CO 2 becomes liquefied CO 2 23 and a non-condensable gas 24 that does not liquefy, and the liquefied CO 2 23 is supplied from the cooler 5 ′ to a storage facility (not shown) for liquefied CO 2.
  • the condensable gas 24 is configured to flow further downstream from the cooler 5 ′ and be discharged to the outside.
  • the combustion of the pulverized coal in the pulverized coal burning boiler 50 performs oxygen combustion suitable for CO 2 recovery, but a part of the combustion exhaust gas 21 discharged from the pulverized coal burning boiler 50 is burned from the downstream side of the dust collector 1. A part of the combustion exhaust gas 21 is configured to circulate to the pulverized coal burning boiler 50 so as to be supplied to the pulverized coal burning boiler 50 through the exhaust gas circulation line 25.
  • the forms of mercury in the combustion exhaust gas 21 produced and discharged by the pulverized coal burning boiler 50 include metallic mercury Hg 0 and mercury chloride HgCl 2 .
  • Hg 0 is mainly used, and Hg 0 is converted into HgCl 2 by the catalyst placed inside the denitration device 51 that reduces nitrogen oxides installed downstream of the pulverized coal burning boiler 50.
  • the converted HgCl 2 is adsorbed by the combustion ash contained in the combustion exhaust gas 21, and is collected on the downstream side of the denitration device 51. It is removed by the dust device 1. Further, the HgCl 2 can be dissolved in water and removed by a desulfurization device 2 that sprays water installed downstream of the dust collector 1.
  • Hg 0 in the combustion exhaust gas 21 has no adsorptivity to combustion ash and no solubility in water, so when nothing is treated, this Hg 0 flows down to the downstream with the combustion exhaust gas 21 from the smoke outlet. Will be released to the atmosphere.
  • the NOx concentration at the boiler outlet is in the range of 100 ppm to 200 ppm.
  • the denitration device 51 installed on the downstream side of the pulverized coal-fired boiler 50, the most of the combustion exhaust gas treatment system.
  • a chimney (not shown) installed downstream is discharged into the atmosphere.
  • the denitration device 51 installed on the downstream side of the pulverized coal burning boiler 50 becomes unnecessary, or The NOx concentration can be further reduced by the denitration device 51 and discharged from the chimney to the atmosphere.
  • Hg 0 in the combustion exhaust gas 21 discharged from the pulverized coal burning boiler 50 is HgCl. since is discharged to the downstream side without being converted into 2, it is necessary to directly remove the Hg 0 from in the combustion exhaust gas 21.
  • the metal mercury gas adsorption towers 11 and 11 ′ are arranged in parallel between the dehydrator 3 and the compressor 4 to perform combustion. Metal mercury Hg 0 was adsorbed from the exhaust gas 21 and directly removed.
  • an alloy containing nickel (hereinafter referred to as Ni) serving as a metal mercury adsorbent is laminated as a plate adsorbent.
  • the alloy containing Ni used for the metal mercury adsorbent include SUS.
  • the main elements constituting SUS are manganese, nickel, and chromium, and all are transition metals. Since the transition metal combines with Hg 0 to form an amalgam, it is effective as an adsorbent for adsorbing Hg 0 . Even if a transition metal is oxidized, it does not form an amalgam. Therefore, nickel that is preferably not easily oxidized is an effective metal mercury adsorbent.
  • the configuration of the mercury removing device in the mercury removing system of the carbon dioxide recovery facility in the combustion exhaust gas of the first embodiment will be further described.
  • Two metal mercury gas adsorption towers 11 and 11 ′ are respectively installed in the flow paths arranged in parallel, and an inlet valve 13 is arranged on the upstream side of one metal mercury gas adsorption tower 11 on the downstream side. Each is provided with an outlet valve 14. Similarly, an inlet valve 13 ′ is provided on the upstream side of the other metal mercury gas adsorption tower 11 ′, and an outlet valve 14 ′ is provided on the downstream side.
  • a control device 12 for controlling the ventilation of the combustion exhaust gas 21 to the metal mercury gas adsorption towers 11 and 11 ′ is installed, and an operation signal from the control device 12 determines the metal mercury gas adsorption towers 11 and 11 ′.
  • the combustion exhaust gas 21 can be switched to one of the metal mercury gas adsorption towers 11 and 11 ′ so as to ventilate or both. Is controlling.
  • Mercury analyzers 15 and 15 ' are installed on the downstream side of the outlet valves 14 and 14' of the metal mercury gas adsorption towers 11 and 11 ', respectively, and the metal mercury gas adsorption towers 11 and 11' are arranged.
  • a mercury analyzer 15b is also installed in the downstream merged flow channel where the parallel flow channels that have been merged join to detect the value of the mercury concentration in the combustion exhaust gas 21 flowing down the merged flow channel. .
  • the detected mercury concentration values of the flue gas 21 measured by the mercury analyzers 15, 15 ′ and 15 b are input to the control device 12, respectively.
  • An operation signal is output based on the comparison with the upper limit value of the mercury concentration set in advance by the apparatus 12, and the inlet valves 13, 13 'and outlet valves 14, 14' of the metal mercury gas adsorption towers 11, 11 'are output.
  • the opening / closing operation is performed, and the combustion exhaust gas 21 is controlled to be ventilated to one or both of the metal mercury gas adsorption towers 11 and 11 ′.
  • the control device 12 continuously monitors the detected value of the mercury concentration of the combustion exhaust gas 21 measured by the mercury analyzers 15, 15 ′, 15 b and is installed, for example, on the downstream side of the one metal mercury gas adsorption tower 11.
  • the detected mercury concentration of the flue gas 21 flowing down the one metal mercury gas adsorption tower 11 by the mercury analyzer 15 is a metal mercury that adsorbs Hg 0 stacked inside the one metal mercury gas adsorption tower 11.
  • the inlet valve 13 and the outlet of one of the metallic mercury gas adsorption towers 11 are detected by an operation signal from the controller 12
  • the valve 14 is closed to stop the operation of the one metal mercury gas adsorption tower 11, and the inlet valve 13 ′ and the outlet valve 14 ′ of the other metal mercury gas adsorption tower 11 ′ are turned on. Operation and 'vented to the other metal mercury gas adsorption tower 11' a flue gas 21 this other metal mercury gas adsorption tower 11 is switched to the operation of the.
  • the other metal mercury gas adsorption tower 11 ′ After switching to the operation of the other metal mercury gas adsorption tower 11 ′, the other metal mercury gas adsorption tower 11 ′ is performed by a mercury analyzer 15 ′ installed on the downstream side of the other metal mercury gas adsorption tower 11 ′. The mercury concentration value in the flue gas 21 flowing down is detected and monitored.
  • the upper limit value of the mercury concentration in the combustion exhaust gas 21 set in the control device 12 is a metal member used in the compressor 4 installed on the downstream side of the metal mercury gas adsorption towers 11, 11 ′. Is set based on the mercury concentration in the combustion exhaust gas 21 that can be tolerated.
  • the combustion exhaust gas 21 is changed from ventilation to one metal mercury gas adsorption tower 11 to ventilation to the other metal mercury gas adsorption tower 11 ′, so that the other metal mercury gas adsorption tower 11 ′ is operated independently. While the one metal mercury gas adsorption tower 11 is switched off, the one metal mercury gas adsorption tower 11 removes the metal mercury adsorbent with reduced adsorption performance stacked inside the adsorption tower. Replace with a new metal mercury adsorbent and put it on standby.
  • the other metal mercury gas adsorption tower 11 ′ is operated alone, and the other metal mercury gas adsorption tower 11 ′ is installed by a mercury analyzer 15 ′ installed downstream of the other metal mercury gas adsorption tower 11 ′.
  • the detection value of the mercury concentration of the combustion exhaust gas 21 flowing down the gas has a predetermined mercury concentration by reducing the adsorption performance of the metal mercury adsorbent that adsorbs Hg 0 stacked inside the other metal mercury gas adsorption tower 11 ′.
  • the inlet valve 13 and the outlet valve 14 of one of the metal mercury gas adsorption towers 11 in the standby state are opened by the operation signal from the control device 12, Combustion exhaust gas 21 is temporarily vented to both the other metal mercury gas adsorption tower 11 ′ and the one metal mercury gas adsorption tower 11 so that the other metal mercury gas adsorption tower 11 ′ and one metal mercury gas adsorption tower 11 ′ It is operated both metal mercury gas adsorption tower 11.
  • the metal mercury gas adsorption is performed by the mercury analyzer 15b installed in the downstream merge channel where the parallel channels merge.
  • Mercury concentration value in the flue gas 21 flowing down this merged flow path from both the towers 11 and 11 ′ is detected and monitored, and the mercury in the flue gas 21 is detected by both the metal mercury gas adsorption towers 11 and 11 ′.
  • the concentration is reduced to suppress an increase in the mercury concentration in the combustion exhaust gas 21 due to the operation switching between the one metal mercury gas adsorption tower 11 and the other metal mercury gas adsorption tower 11 ′.
  • the tower 11 is a mercury analyzer 15b installed in the confluence channel on the downstream side of 11 ′, and captures a sudden rise in the mercury concentration in the combustion exhaust gas 21 flowing down the confluence channel, and is applied to the metal mercury gas adsorption tower 11.
  • the parallel operation in which both the metal mercury gas adsorption towers 11 and 11 ′ are operated by aeration of the combustion exhaust gas 21 to the other metal mercury gas adsorption tower 11 ′ on standby. Then, an operation for reducing mercury in which the mercury concentration in the combustion exhaust gas 21 has rapidly increased is performed.
  • the recovery of CO 2 in the combustion exhaust gas 21 in the mercury removal system of the carbon dioxide recovery facility in the combustion exhaust gas of the present embodiment is performed by cooling the CO 2 pressurized by the compressor 4 with the cooler 5 ′ and liquefying it. and 2 23, the 'from to perform the recovery of CO 2 23, which is liquefied, non-condensable gas 24 of the combustion exhaust gas 21 which is not liquefied is the cooler 5' cooler 5 separated from the CO 2 23 liquefied by And let it flow down downstream.
  • FIG. 2 is a plate that is a metal mercury adsorbent installed in the metal mercury gas adsorption towers 11 and 11 ′ constituting the mercury removal system in the carbon dioxide recovery facility in the combustion exhaust gas of the first embodiment shown in FIG.
  • a specific example of the adsorbent 31 is shown.
  • the plate-like adsorbent 31 constituting the metal mercury adsorbent that adsorbs Hg 0 in the combustion exhaust gas 21 is along the flow direction of the combustion exhaust gas 21 flowing into the metal mercury gas adsorption towers 11, 11 ′.
  • a plurality of layers are stacked so as to form a flow path 21a through which the flue gas 21 flows down between adjacent plate-like adsorbents 31.
  • the metal mercury adsorbent may be used as particles, and the particles may be filled in the metal mercury gas adsorption towers 11 and 11 '. A 31-layer structure was adopted.
  • the plate-shaped adsorbent 31 is replaced by removing the upper surfaces of the metal mercury adsorption towers 11 and 11 ′ or the side surface where the combustion exhaust gas 21 flows out, and replacing the plate-shaped adsorbent 31 with reduced adsorption performance one by one.
  • the plate-like adsorbent 31 may be exchanged, or the plate-like adsorbent 31 may be installed in a mold that can be stacked and replaced with a new plate-like adsorbent 31 together with the mold.
  • FIG. 3 is a plate that is a metal mercury adsorbent installed inside the metal mercury gas adsorption towers 11 and 11 ′ constituting the mercury removal system of the carbon dioxide recovery facility in the combustion exhaust gas of the first embodiment shown in FIG. Another specific example of the adsorbent 31 is shown.
  • the honeycomb adsorbent 32 constituting the metal mercury adsorbent that adsorbs Hg 0 in the combustion exhaust gas 21 has a large number of holes 21b for flowing the combustion exhaust gas 21 along the flow direction of the combustion exhaust gas. It has a formed structure.
  • the honeycomb cam structure can make the adsorption area for adsorbing Hg 0 wider than the laminated structure of the plate-like adsorbent.
  • the reaction between nickel and metal mercury used in the metal mercury adsorbent that is, the reaction that generates amalgam has a higher reaction rate as the temperature is higher. However, if the temperature is too high, the amalgam decomposes and releases metal mercury.
  • the metal mercury adsorbent that adsorbs Hg 0 in the combustion exhaust gas 21 has a temperature range suitable for adsorbing metal mercury.
  • good results were obtained when the temperature of the SUS tube ranged from 170 ° C to 370 ° C.
  • the adsorbent is desirably used in a temperature range of 170 ° C to 370 ° C.
  • adsorbent 31 is provided with heating means.
  • a plate-like adsorbent 31 constituting a metal mercury adsorbent that adsorbs Hg 0 in the combustion exhaust gas 21 has a structure in which a heater 33 is sandwiched between the plate-like adsorbents 31.
  • the heater 33 is preferably made of a material containing nickel such as nichrome wire.
  • the space formed in the plate-like adsorbent 31 in which the heater 33 is installed does not need to be sealed, and the manufacture is simplified.
  • Plate adsorbent 31 adsorb performance is metallic mercury adsorbent reduction of Hg 0 in the combustion exhaust gas 21 used for a long time, the heating in a separate location from the mercury removal system of the combustion exhaust gas of the present embodiment It can be reused as a metal mercury adsorbent by reprocessing.
  • the mercury removal system for carbon dioxide recovery equipment in the combustion exhaust gas of the second embodiment shown in FIG. 5 has the same basic configuration as the mercury removal system in the combustion exhaust gas of the previous embodiment shown in FIG. Therefore, the description of the configuration common to both is omitted, and only the different configuration will be described below.
  • the desulfurization device 2 for removing SOx in the combustion exhaust gas 21 discharged from the pulverized coal burning boiler 50 Between the dehydrator 3 for removing moisture in the combustion exhaust gas 21, metal mercury adsorption towers 11, 11 ′ in which a metal mercury adsorbent that adsorbs and removes Hg 0 in the combustion exhaust gas 21 is laminated are arranged in parallel.
  • the compressor 4 compresses CO 2 in the combustion exhaust gas 21 on the downstream side of the dehydrator 3 that is the downstream of these metal mercury adsorption towers 11, 11 ′. the compressed CO 2 is liquefied by cooling, the cooler 5 'is in the installed configuration for recovering CO 2 23 liquefied.
  • the compressor 4 pressurized CO 2 is liquefied by cooling by the cooler 5 'in the CO 2
  • the non-condensable gas 24 of the combustion exhaust gas 21 that is not liquefied is separated from the CO 2 23 that has been liquefied by the cooler 5 ′ and is caused to flow downstream.
  • the metal mercury adsorption towers 11 and 11 ′ are arranged in parallel in the high temperature region on the upstream side of the dehydration apparatus 3, and therefore flow into the metal mercury adsorption towers 11 and 11 ′.
  • the temperature of the combustion exhaust gas 21 becomes high, and Hg 0 in the combustion exhaust gas 21 can be adsorbed on the metal mercury adsorbent of the metal mercury adsorption towers 11 and 11 ′ to easily form an amalgam.
  • the mercury removal system of the carbon dioxide recovery facility in the combustion exhaust gas of the third embodiment shown in FIG. 6 has the same basic configuration as the mercury removal system in the combustion exhaust gas of the previous embodiment shown in FIG. Therefore, the description of the configuration common to both is omitted, and only the different configuration will be described below.
  • a compressor 4 to liquefy by compressing 2 has become the compressor CO 2 compressed in the 4 and liquefied by cooling, liquefied CO 2 23 is cooler 5 'to recover the installed configuration .
  • the CO 2 recovery in the combustion exhaust gas 21 is performed by liquefying CO 2 pressurized by the compressor 4 by cooling it with the cooler 5 ′. 2 , the non-condensable gas 24 of the combustion exhaust gas 21 that is not liquefied is separated from the CO 2 23 liquefied by the cooler 5 ′ and is caused to flow downstream.
  • the metal mercury adsorption towers 11 and 11 ′ are arranged in parallel in a region where the temperature on the upstream side of the desulfurization apparatus 2 is higher, and therefore flow into the metal mercury adsorption towers 11 and 11 ′.
  • the temperature of the combustion exhaust gas 21 to be further increased, and Hg 0 in the combustion exhaust gas 21 can be adsorbed to the metal mercury adsorbent of the metal mercury adsorption towers 11 and 11 ′ to further easily form the amalgam.
  • the mercury removal system for carbon dioxide recovery equipment in the combustion exhaust gas of the fourth embodiment shown in FIG. 7 has the same basic configuration as the mercury removal system in the combustion exhaust gas of the previous embodiment shown in FIG. Therefore, the description of the configuration common to both is omitted, and only the different configuration will be described below.
  • the dehydrator 3 for removing the moisture in the combustion exhaust gas 21 discharged from the pulverized coal burning boiler 50, CO 2 in the combustion exhaust gas 21 is placed between the metal mercury adsorption towers 11 and 11 ′ arranged in parallel with a metal mercury adsorbent that adsorbs and removes Hg 0 in the combustion exhaust gas 21.
  • a compressor 4 for compression is installed.
  • a cooler 5 for cooling the combustion exhaust gas 21 flowing down the metal mercury adsorption towers 11 and 11 ′ is provided on the downstream side of the metal mercury adsorption towers 11 and 11 ′ arranged in parallel. 5 'and, the second compressor 4' second compressor 4 on the downstream side of compressing CO 2 in the combustion exhaust gas 21 of liquefying CO 2 compressed in cooled, liquefied CO 2
  • the cooler 5 ′ for recovering 23 is installed.
  • a mercury removal system is configured in a carbon dioxide recovery facility in combustion exhaust gas in which a compressor is provided in two stages of a front stage compressor 4 and a rear stage compressor 4 '.
  • the metal mercury adsorption towers 11 and 11 ′ arranged in parallel for adsorbing and removing Hg 0 in the combustion exhaust gas 21 include the cooler 5 and the second compressor 4 ′ at the subsequent stage. You may make it the structure arrange
  • the optimum installation position of the metal mercury adsorption towers 11 and 11 ′ can be determined from the temperature of the combustion exhaust gas 21.
  • the metal mercury adsorbent that adsorbs and removes Hg 0 stacked inside the metal mercury adsorption towers 11 and 11 ′ improves the adsorption performance of Hg 0 as the temperature of the combustion exhaust gas 21 increases. This is because the adsorption performance is lowered when the temperature becomes higher than the decomposition temperature of the amalgam.
  • the temperature of the combustion exhaust gas 21 flowing down between the cooler 5 and the second compressor 4 ′ in the subsequent stage is lower than the temperature of the combustion exhaust gas 21 flowing down between the compressor 4 in the previous stage and the cooler 5. Therefore, if the temperature of the combustion exhaust gas 21 flowing between the front compressor 4 and the cooler 5 is higher than the decomposition temperature of the amalgam, the cooler 5 and the second compressor 4 ′ of the rear stage.
  • the metal mercury adsorption towers 11 and 11 'arranged in parallel may be provided between the two.
  • the CO 2 in the combustion exhaust gas 21 in the mercury removal system of the carbon dioxide recovery facility in the combustion exhaust gas of the present embodiment is recovered by cooling the CO 2 pressurized by the second compressor 4 ′ at the subsequent stage with the cooler 5 ′. Then, the liquefied CO 2 is recovered from the cooler 5 ′, and the non-condensable gas 24 of the combustion exhaust gas 21 that is not liquefied is separated from the CO 2 23 liquefied by the cooler 5 ′ and is caused to flow downstream.
  • the metal mercury adsorption towers 11 and 11 ′ are arranged in parallel in a region where the temperature is increased by pressurization by the compressor 4 in the previous stage.
  • the temperature of the combustion exhaust gas 21 flowing into 'becomes high, and Hg 0 in the combustion exhaust gas 21 can be adsorbed to the metal mercury adsorbent of the metal mercury adsorption towers 11 and 11' to further easily form the amalgam.
  • adsorbs Hg 0 in the combustion exhaust gas 21 are stacked inside the metallic mercury adsorption tower 11, 11 '
  • the formation of amalgam formed by combining transition metals such as Ni constituting the metal mercury adsorbent with Hg 0 is close to saturation, and the adsorption performance of Hg 0 is improved. It will be necessary to replace the metal mercury adsorbent regularly.
  • the metal mercury gas adsorption tower 11 having the metal mercury adsorbent having reduced adsorption performance for adsorbing Hg 0 in the combustion exhaust gas 21,
  • the exhaust gas 21 is ventilated by switching from one of the 11 'to a new metal mercury adsorbent and switching to the other of the other metal mercury gas adsorption towers 11 and 11' waiting.
  • the metal mercury in the inside can be continuously removed with high removal efficiency.
  • the concentration of metallic mercury in the combustion exhaust gas 21 to be treated becomes high, and the processing ability to remove metallic mercury is possible only with the metallic mercury adsorbent provided in the metallic mercury gas adsorption towers 11 and 11 'arranged in parallel. If there is a shortage, in order to increase the treatment capacity to remove metallic mercury, in addition to the working metallic mercury gas adsorption tower, there should be two or more standby metallic mercury gas adsorption towers in advance. If three or more metal mercury gas adsorption towers are provided in the mercury removal system in the carbon dioxide recovery facility for combustion exhaust gas according to this embodiment, the metal mercury concentration in the combustion exhaust gas 21 is arranged in parallel. In addition, it becomes easy to cope with a sudden increase beyond the processing capacity of the two metal mercury gas adsorption towers.
  • FIG. 8 schematically shows a metal mercury gas adsorption tower 11 arranged in parallel in the above-described embodiment of the present invention, and a plurality of metal mercury gases installed in parallel through which the combustion exhaust gas 21 is vented.
  • the adsorption tower 11, the inlet valve 13, the outlet valve 14, and the mercury analyzer 15 are schematically shown as symbols.
  • metal mercury gas adsorption towers 11 are arranged in parallel, and these metal mercury gas adsorption towers 11 are denoted by B 1 to B n .
  • the inlet valve 13 installed on the upstream side is connected to VI 1 to VI n and the outlet valve 14 installed on the downstream side is connected to VO 1.
  • the mercury analyzer 15 located downstream of the outlet valve 14 is denoted by S 1 to S n as VO n . Further, denoted mercury analyzer 15b located in the flow path which is merged with the downstream side of the outlet valve 14 in S e.
  • FIG. 9 is a flowchart showing a method for initializing the state of a metal mercury gas adsorption tower having a configuration in which, for example, three units are installed in parallel in the mercury removal system for carbon dioxide recovery equipment in combustion exhaust gas according to the above-described embodiment of the present invention. It is.
  • the metal mercury gas adsorption tower 11 is opened and the metal mercury adsorbent is exchanged.
  • each metal mercury gas adsorption tower 11 is divided into three types of ventilation, standby and adsorbent exchange, and the operation state of each metal mercury gas adsorption tower 11 divided into these three types is displayed on the monitor. It is desirable to provide the control device 12 with a function that can be visually confirmed by the control device. By providing the control device 12 with these functions, a plurality of metal mercury gas adsorption towers 11 arranged in parallel can be operated systematically. Can be operated.
  • each metal mercury gas adsorption tower 11 controls the opening and closing of the inlet valve 13 and outlet valve 14 corresponding to each metal mercury gas adsorption tower 11 in the controller 12.
  • the “metal mercury gas adsorption tower 11” is set in “setting of the valve open / close state”.
  • the controller 12 As described above, the function of automatically controlling the opening and closing of the inlet valve 13 and the outlet valve 14 of the metal mercury gas adsorption tower 11 in accordance with the operating state of each metal mercury gas adsorption tower 11 or the function of confirming control, It is desirable that the controller 12 be provided.
  • FIG. 10 is a flowchart showing a method for switching and controlling the operation of the metal mercury gas adsorption tower 11 arranged in parallel in the mercury removal system of the carbon dioxide recovery facility in the combustion exhaust gas according to this embodiment.
  • the upper limit value Cr Hg of the mercury concentration in the combustion exhaust gas 21 preset by the control device 12 for each metal mercury gas adsorption tower 11 is set.
  • the mercury concentration C Hg, i in the combustion exhaust gas 21 flowing down the metal mercury gas adsorption tower 11 is measured by a total 15.
  • the measured value C Hg, i of the mercury concentration in the combustion exhaust gas 21 measured by the total 15 is compared with the upper limit value Cr Hg of the mercury concentration set in step 101 for setting the mercury concentration.
  • the searched metal mercury gas adsorption tower 11 continues to operate. However, since there is no problem, the operation of the metal mercury gas adsorption tower 11 is continued.
  • any one of them is controlled by the control device 12.
  • the adsorption tower 11 may be manually selected.
  • the mercury adsorption tower 11 is vented.
  • the mercury concentration measurement value C Hg, i ⁇ the upper limit value Cr Hg in the mercury concentration comparison in the mercury concentration comparison step 104 which depends on the metal mercury adsorbent.
  • the operation proceeds to the next operation state re-change and valve operation step 107, and the control device 12 performs the metal mercury adsorption.
  • the function of comparing the upper limit value Cr Hg of the mercury concentration in the combustion exhaust gas 21 flowing down each metal mercury adsorption tower 11 with the measured value C Hg, i measured by the mercury analyzer 15, the metal mercury adsorbent It is desirable to provide the control device 12 with a function of notifying that the performance has deteriorated and a function of searching for the metal mercury gas adsorption tower 11 whose metal mercury adsorbent should be replaced.
  • FIG. 11 is a flowchart showing a method for additionally controlling the operation of a plurality of metal mercury gas adsorption towers 11 arranged in parallel to the mercury removal system in the carbon dioxide recovery facility for combustion exhaust gas according to this embodiment.
  • a plurality of mercury concentrations are set in the flow path assembly portion of the combustion exhaust gas 21 on the downstream side of the metallic mercury gas adsorption tower 11 installed by the control device 12.
  • An upper limit value Cr Hg, e of the mercury concentration in the combustion exhaust gas 21 set in advance for the combustion exhaust gas 21 as the whole of the metal mercury gas adsorption tower 11 installed in the base is set.
  • step 203 for measuring the mercury concentration with respect to the plurality of metal mercury gas adsorption towers 11 installed, and a plurality of mercury mercury analyzers 15b provided at the flow path assembly on the downstream side of the plurality of metal mercury gas adsorption towers 11 are used.
  • the mercury concentration C Hg, e in the combustion exhaust gas 21 flowing down the metal mercury gas adsorption tower 11 installed in the base is measured.
  • the process proceeds to the next step 204 for comparing the mercury concentration, and the flow rate collection portion of the metal mercury gas adsorption tower 11 is measured.
  • the measurement value of mercury concentration in combustion exhaust gas 21 measured by the mercury analyzer 15b, C Hg, e, is compared with the upper limit value Cr Hg, e of the mercury concentration set in step 201 for setting the mercury concentration upper limit value. .
  • the mercury concentration comparison step 204 if the relationship of the measured value C Hg, e ⁇ the upper limit value Cr Hg, e of the mercury concentration, a plurality of metal mercury gas adsorption towers 11 installed. Since the measured value C Hg, e of the mercury concentration of the combustion exhaust gas 21 as a whole is within the limit range of the upper limit value Cr Hg, e , the current operation state of the plurality of these metal mercury gas adsorption towers 11 installed is determined. Let it continue.
  • the process returns to the step 203 for measuring the mercury concentration related to the plurality of metal mercury gas adsorption towers 11 installed downstream of the metal mercury gas adsorption tower 11.
  • the measurement of the mercury concentration C Hg, e in the combustion exhaust gas 21 flowing down the metal mercury gas adsorption tower 11 installed in a plurality by the mercury analyzer 15b at the flow path collecting portion on the side is continued.
  • the metal mercury gas flowing through the combustion exhaust gas 21 is used.
  • step 205 in which the operating state is searched for waiting, and a plurality of units are installed by the control device 12.
  • the metal mercury gas adsorption tower 11 in which the set value B j of the operation state is replaced with a new metal mercury adsorbent and is on standby (B j 1) is searched from the metal mercury gas adsorption tower 11.
  • any one of them is controlled by the control device 12.
  • the adsorption tower 11 may be selected manually.
  • the mercury concentration in the combustion exhaust gas 21 as a whole is measured by the mercury analyzer 15b provided in the flow passage assembly on the downstream side of the metal mercury gas adsorption tower 11 installed in plural in this way, thereby the metal mercury gas adsorption.
  • Combustion exhaust gas by adding an operating number of metal mercury gas adsorption towers 11 for adsorbing and removing metal mercury in the combustion exhaust gas 21 according to the mercury concentration as a whole measured at the flow path gathering portion on the downstream side of the tower 11 It is possible to perform an operation of venting 21.
  • CO 2 is recovered from the combustion exhaust gas, and Hg 0 contained in the combustion exhaust gas can be removed with high accuracy.
  • a mercury removal system for carbon recovery equipment and a mercury removal operation method for carbon dioxide recovery equipment in combustion exhaust gas can be realized.
  • the metal mercury in the combustion exhaust gas can be removed with high accuracy, so that the member constituting the compressor that liquefies carbon dioxide in the combustion exhaust gas can be operated for a long time without corrosion. Can do.
  • the present invention is applicable to a mercury removal system in a carbon dioxide recovery facility in combustion exhaust gas and a mercury removal operation method of the carbon dioxide recovery facility in combustion exhaust gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 本発明の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムは、燃焼排ガスの発生源から排出された燃焼排ガス中の水分を除去する脱水装置(3)と、この脱水装置の下流側に設置されて水分を除去した該燃焼排ガス中の二酸化炭素を圧縮する圧縮機(4)及び圧縮された二酸化炭素を冷却して液化する冷却器(5’)を有する燃焼排ガス中の二酸化炭素回収設備とを備え、前記脱水装置(3)の上流側、あるいは前記脱水装置(3)と前記圧縮機(4)との間に燃焼排ガス中の金属水銀を吸着して除去する金属水銀ガス吸着塔(11、11’)を並列に複数基配設して構成した。

Description

燃焼排ガス中の二酸化炭素回収設備の水銀除去システム、及び燃焼排ガス中の二酸化炭素回収設備の水銀除去運転方法
 本発明は、燃焼排ガス中の二酸化炭素回収設備における水銀除去システム、及び燃焼排ガス中の二酸化炭素回収設備の水銀除去運転方法に関する。
 LPG中に含まれる水銀は、LPGを燃料として使用する内燃機関にLPGを供給する気化器を構成する部材を腐食させるので、気化器の腐食が進行すればこの気化器からLPGが漏洩することになる。
 例えば、技術文献の「水銀影響調査委員会報告書の概要」には、LPGの気化の際にガス温度が低くなり、気化したLPG内の水銀が液化、蓄積し、さらに水分の存在下で金属部材が腐食すること、さらに、金属部材の腐食を防ぐために、LPG中の水銀濃度を予め削減する管理が必要であることが開示されている。
 LPG内の水銀濃度を削減する方法として、例えば、特開平9-221684号公報には、水銀吸着剤の充填層内にLPGを供給し、温度20℃~200℃の吸着条件下で水銀吸着剤と接触させ、水銀を除去する技術が開示されている。
 近年、地球温暖化が地球規模の環境問題として取り上げられ、大気中の二酸化炭素(以下、COと記載)濃度の増加が地球温暖化の主要因であることが明らかにされている。
 ところで火力発電所はCOの排出源として注目されており、火力発電所のボイラから排出される燃焼排ガス中のCOを高効率で分離、除去することが望まれている。
 燃焼排ガス中のCOを高効率で分離、除去するためには、燃焼排ガス中のCOを高濃度にする必要があるが、ボイラで空気燃焼させた燃焼排ガスは、空気中の約80vol%を占める窒素によりCOの高濃度化が抑制される。
 例えば、特許第3068888号公報には、ボイラで燃料と酸素とを燃焼させることにより、COを高濃度化する技術が開示されている。
 また、環境問題としてCOだけでなく、ボイラから排出される燃焼排ガス中の水銀除去が取り上げられている。この燃焼排ガス中の水銀除去の方法として、例えば特開2004-237244号公報、および特開2005-230810号公報には、燃焼排ガス中の金属水銀(以下Hgと表記)を脱硝装置で水に溶解しやすい塩化水銀(以下HgClと表記)に変換して水に吸収させて除去する技術、及びこのHgClを吸着剤に吸収させて除去する技術が開示されている。
特開平9-221684号公報 特許第3068888号公報 特開2004-237244号公報 特開2005-230810号公報 水銀影響調査委員会報告書の概要(経済産業省、原子力安全・保安院、高圧ガス保安協会、平成14年3月29日)
 燃焼排ガス中のHgの全量を全てHgClに変換できれば、HgClの全量を水に溶解させて除去すればよい。しかしながら、Hgの全量を全てHgClに変換することは難しく、一部Hgが残存する。
 また、燃焼排ガス中からCOを回収するには、燃焼排ガスを圧縮機で圧縮し、冷却器で圧縮されたCOを冷却してこのCOを液化する必要がある。その際に、燃焼排ガス中に含まれているHgも液化することになるので、前記圧縮機を長時間稼動させているとHgが圧縮機内に蓄積し、圧縮機を構成する金属部材を腐食させることになる。
 そこで、燃焼排ガス中からCOを回収する場合に、長時間稼動する圧縮機に供給される燃焼排ガス中のHgを高精度に除去することが課題となる。
 本発明の目的は、燃焼排ガス中からCOを回収すると共に、燃焼排ガス中に含まれたHgを高精度で除去することを可能にした燃焼排ガス中の二酸化炭素回収設備の水銀除去システム、及び燃焼排ガス中の二酸化炭素回収設備の水銀除去運転方法を提供することにある。
 本発明の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムは、燃焼排ガスの発生源から排出された燃焼排ガス中の水分を除去する脱水装置と、この脱水装置の下流側に設置されて水分を除去した該燃焼排ガス中の二酸化炭素を圧縮する圧縮機及び圧縮された二酸化炭素を冷却して液化する冷却器を有する燃焼排ガス中の二酸化炭素回収設備とを備え、前記脱水装置の上流側、あるいは前記脱水装置と前記圧縮機との間に燃焼排ガス中の水銀を吸着して除去する水銀ガス吸着塔を並列に複数基配設したことを特徴とする。
 また、本発明の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムは、燃焼排ガスの発生源から排出された燃焼排ガス中の水分を除去する脱水装置と、この脱水装置の下流側に設置されて水分を除去した該燃焼排ガス中の二酸化炭素を圧縮する圧縮機及び圧縮された二酸化炭素を冷却して液化する冷却器を有する燃焼排ガス中の二酸化炭素回収設備とを備え、前記脱水装置の上流側、あるいは前記脱水装置と前記圧縮機との間に燃焼排ガス中の水銀を吸着して除去する水銀ガス吸着塔を並列に複数基配設し、複数基設配設された各水銀ガス吸着塔の上流側及び下流側に燃焼排ガスの流通を調節する入口バルブ及び出口バルブをそれぞれ設置し、前記出口バルブの下流側に燃焼排ガス中の水銀濃度を計測する水銀分析計を設置し、前記水銀分析計で計測した燃焼排ガス中の水銀濃度に基づいて前記水銀ガス吸着塔の入口バルブ及び出口バルブの開閉を制御する制御装置を設置したことを特徴とする。
 本発明の燃焼排ガス中の二酸化炭素回収設備の水銀除去運転方法は、燃焼排ガスの発生源から排出された燃焼排ガス中の水分を脱水装置によって除去し、この脱水装置で水分を除去した燃焼排ガス中の二酸化炭素を該脱水装置の下流側に設置された圧縮機によって圧縮し、圧縮された二酸化炭素を冷却器によって冷却して液化させることによって前記燃焼排ガスからこの二酸化炭素を回収する運転を行い、前記脱水装置の上流側、あるいは前記脱水装置と前記圧縮機との間に並列に複数基配設された燃焼排ガス中の水銀を吸着して除去する水銀ガス吸着塔のうち、一基の水銀ガス吸着搭に対して該脱水装置に流入する前の燃焼排ガス、あるいは該脱水装置を流下した後の燃焼排ガスを通気して前記燃焼排ガス中の水銀を除去する運転を行うと共に、前記水銀ガス吸着塔のうち、少なくとも他の1基の水銀ガス吸着搭に対して前記燃焼排ガスを通気させずに待機状態にしておくことを特徴とする。
 また、本発明の燃焼排ガス中の二酸化炭素回収設備の水銀除去運転方法は、燃焼排ガスの発生源から排出された燃焼排ガス中の水分を脱水装置によって除去し、この脱水装置で水分を除去した燃焼排ガス中の二酸化炭素を該脱水装置の下流側に設置された圧縮機によって圧縮し、圧縮された二酸化炭素を冷却器によって冷却して液化させることによって前記燃焼排ガスからこの二酸化炭素を回収する運転を行い、前記脱水装置の上流側、あるいは前記脱水装置と前記圧縮機との間に並列に複数基設けた水銀ガス吸着塔によって燃焼排ガス中の水銀を吸着させて除去する際に、前記水銀ガス吸着塔を流下した燃焼排ガス中の水銀濃度に基づいてこれらの並列に複数基設設された水銀ガス吸着塔のうち、1基の水銀ガス吸着搭に対して該脱水装置に流入する前の燃焼排ガス、あるいは該脱水装置を流下した後の燃焼排ガスを通気するように制御して前記燃焼排ガス中の水銀を除去する運転を行い、前記水銀ガス吸着塔を流下した燃焼排ガス中の水銀濃度が所定値に達した場合には、前記水銀ガス吸着塔のうち、燃焼排ガスを通気させずに待機状態にある少なくとも1基の水銀ガス吸着搭に対して前記燃焼排ガスを通気させるように燃焼排ガスを切り替えて通気するように制御して前記燃焼排ガス中の水銀を除去する運転を行うことを特徴とする。
 本発明によれば、燃焼排ガス中からCOを回収すると共に、燃焼排ガス中に含まれたHgを高精度で除去することを可能にした燃焼排ガス中の二酸化炭素回収設備の水銀除去システム、及び燃焼排ガス中の二酸化炭素回収設備の水銀除去運転方法が実現できる。
本発明の第1実施例である燃焼排ガス中の二酸化炭素回収設備の水銀除去システムを示す概略構成図。 図1に示した本発明の第1実施例である水銀除去システムに用いられた金属水銀ガス吸着塔の内部に設置される金属水銀吸着剤の配設構造の一例を示す模式図。 図1に示した本発明の第1実施例である水銀除去システムに用いられた金属水銀ガス吸着塔の内部に設置される金属水銀吸着剤の配設構造の他の例を示す模式図。 図2に示した金属水銀ガス吸着塔の内部に設置される金属水銀吸着剤の加熱構造の一例を示す構造図。 本発明の第2実施例である燃焼排ガス中の二酸化炭素回収設備の水銀除去システムを示す概略構成図。 本発明の第3実施例である燃焼排ガス中の二酸化炭素回収設備の水銀除去システムを示す概略構成図。 本発明の第4実施例である燃焼排ガス中の二酸化炭素回収設備の水銀除去システムを示す概略構成図。 図1に示した本発明の第1実施例である水銀除去システムに用いられた金属水銀ガス吸着塔本発明の金属水銀ガス吸着塔、入口バルブ、出口バルブおよび水銀分析計の記号表記を示す図。 図1に示した本発明の第1実施例である水銀除去システムに用いられた金属水銀ガス吸着塔に対する燃焼排ガスの通気制御を初期設定するフローチャート。 図1に示した本発明の第1実施例である水銀除去システムに用いられた金属水銀ガス吸着塔に対する燃焼排ガスの切り替え制御の一例を示すフローチャート。 図1に示した本発明の第1実施例である水銀除去システムに用いられた追加制御される金属水銀ガス吸着塔に対する燃焼排ガスの切り替え制御の一例を示すフローチャート。
符号の説明
 1:集塵装置、2:脱硫装置、3:脱水装置、4、4’:圧縮機、5、5’:冷却器、11:金属水銀ガス吸着搭、12:制御装置、13:入口バルブ、14:出口バルブ、15、15b:水銀分析計、21:燃焼排ガス、22:水(液)、23:CO(液)、24:非凝縮性ガス、25:燃焼排ガス循環ライン、31:板状吸着剤、32:ハニカム状吸着剤、33:ヒータ、50:微粉炭焚きボイラ、51:脱硝装置。
 本発明の実施例である燃焼排ガス中の二酸化炭素回収設備の水銀除去システム、及び燃焼排ガス中の二酸化炭素回収設備の水銀除去運動について図面を用いて説明する。
 図1を用いて本発明の第1実施例である燃焼排ガス中の二酸化炭素回収の水銀除去システム、及び燃焼排ガス中の二酸化炭素回収設備の水銀除去運転方法について説明する。
 図1に示された本発明の第1実施例である燃焼排ガス中の二酸化炭素回収設備の水銀除去システムは、燃料の微粉炭を空気と共に燃焼させて高温の燃焼ガスを生成し、この燃焼ガスを熱源として熱交換して高温の蒸気を生成して蒸気タービン等の蒸気供給先(図示せず)に供給する微粉炭焚きボイラ50を備えている。
 燃料と空気とを燃焼させて燃焼排ガスを発生させる燃焼排ガスの発生源である微粉炭焚きボイラ50から排出された燃焼排ガスを処理する燃焼排ガス処理システムは、微粉炭焚きボイラ50の下流側にそれぞれ設置されており、該微粉炭焚きボイラ50から流下する燃焼排ガス21中の窒素酸化物(以下NOxと称する)を低減する脱硝装置51と、脱硝装置51の下流側に位置して燃焼排ガス21中の燃焼灰を除去する集塵装置1と、集塵装置1の下流側に位置して燃焼排ガス21中の硫黄酸化物(以下SOxと称する)を除去する脱硫装置2とから構成されている。
 脱硫装置2の下流側には、燃焼排ガス21中のCOを回収する二酸化炭素回収設備として、燃焼排ガス21中の水分を除去する脱水装置3と、この脱水装置3の下流側に設置されて水分を除去した燃焼排ガス中のCOを圧縮する圧縮機4と、この圧縮機4で圧縮されたCOを冷却して液化する冷却器5’が備えられている。
 この脱水装置3で燃焼排ガス21中から除去された水分は水22として脱水装置3から外部に排出される。
 そして微粉炭焚きボイラ50から排出された燃焼排ガス21に含まれたHgは、脱水装置3と圧縮機4との間に設置された後述する金属水銀吸着塔11及び11’の内部に積層された金属水銀吸着剤によって燃焼排ガス21中のHgを吸着させることによって燃焼排ガス21から直接除去される。
 前記金属水銀吸着塔11及び11’を流下することによって燃焼排ガス21に含まれたHgが吸着除去された燃焼排ガス21は、その下流側に設置された圧縮機4に流入して圧縮され、冷却器5’で冷却されて前記燃焼排ガス21中のCOは液化することになるが、前記圧縮機4の圧縮と冷却器5’の冷却によってHgが吸着除去された燃焼排ガス21中のCOは液化されたCO23と、液化しない非凝縮性ガス24になり、液化されたCO23は前記冷却器5’から液化COの貯蔵設備(図示せず)に供給され、非凝縮性ガス24は前記冷却器5’から更に下流側に流下して外部に排出されるように構成されている。
 前記微粉炭焚きボイラ50における微粉炭の燃焼は、CO回収に適した酸素燃焼を行うが、微粉炭焚きボイラ50から排出された燃焼排ガス21の一部を集塵装置1の下流側から燃焼排ガス循環ライン25を通じて微粉炭焚きボイラ50に供給するようにして、燃焼排ガス21の一部が微粉炭焚きボイラ50に循環するように構成する。
 微粉炭焚きボイラ50で生成して排出される燃焼排ガス21中の水銀の形態には、金属水銀Hgと塩化水銀HgClがある。微粉炭焚きボイラ50ではHgが主であり、微粉炭焚きボイラ50の下流に設置された窒素酸化物を低減する脱硝装置51の内部に載置された触媒によってHgがHgClに変換される。
 脱硝装置51の触媒でHgがHgClに変換されることにより、変換されたこのHgClは燃焼排ガス21中に含まれた燃焼灰に吸着し、脱硝装置51の下流側に設置された集塵装置1によって除去される。さらに、集塵装置1の下流側に設置された水を噴霧する脱硫装置2によって前記HgClは水に溶解させて除去することができる。
 一方、燃焼排ガス21中のHgは燃焼灰への吸着性、水への溶解性がないため、何も処理しない場合にはこのHgは燃焼排ガス21と共に後流まで流下して煙突出口から大気に放出されることになる。
 微粉炭焚きボイラ50では、ボイラ出口のNOx濃度は100ppmから200ppmの範囲であり、微粉炭焚きボイラ50の下流側に設置した脱硝装置51によって約30ppmまで低減させた後に、燃焼排ガス処理システムの最下流に設置された煙突(図示せず)から大気に排出させている。
 尚、ボイラ内脱硝技術の技術開発が進み、微粉炭焚きボイラ50のボイラ出口でのNOx濃度が30ppmに低減できれば微粉炭焚きボイラ50の下流側に設置する脱硝装置51が不要となるか、或いは脱硝装置51によってNOx濃度を更に低減させて煙突から大気に排出させることが可能となる。
 また、微粉炭焚きボイラ50における酸素燃焼?ではガス中の窒素分がなくなることからNOx濃度が低く、脱硝装置51を設置することが不要になる可能性もある。
 仮に触媒によってHgをHgClに変換する脱硝装置51が微粉炭焚きボイラ50の下流に設置されていない場合を想定すると、微粉炭焚きボイラ50から排出された燃焼排ガス21中のHgはHgClに変換されずに下流側に排出されることになるので、Hgをこの燃焼排ガス21中から直接除去することが必要になる。
 そこで、本実施例である燃焼排ガス中の二酸化炭素回収設備の水銀除去システムにおいては、金属水銀ガス吸着塔11及び11’を脱水装置3と圧縮機4の間に並列に配設して、燃焼排ガス21中から金属水銀Hgを吸着して直接除去するようにした。
 前記金属水銀吸着塔11及び11’の内部には金属水銀吸着剤となるニッケル(以下Niと称する)を含む合金を板状吸着剤にして積層している。この金属水銀吸着剤に使用されるNiを含む合金としては、例えば、SUSが挙げられる。
 SUSを構成する主元素はマンガン、ニッケル、クロムであり、いずれも遷移金属である。遷移金属はHgと結合してアマルガムを形成するため、Hgを吸着する吸着剤として有効である。遷移金属であっても酸化されるとアマルガムを形成しなくなるため、望ましくは酸化されにくいニッケルが効果的な金属水銀吸着剤となる。
 図1を用いて、第1実施例の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムにおいて、水銀除去装置の構成を更に説明する。
 並列に配設された流路には2基の金属水銀ガス吸着搭11、11’がそれぞれ設置されており、一方の金属水銀ガス吸着搭11の上流側には入口バルブ13が、下流側には出口バルブ14がそれぞれ設けられ、同様に他方の金属水銀ガス吸着搭11’の上流側には入口バルブ13’が、下流側には出口バルブ14’がそれぞれ設けている。
 更に金属水銀ガス吸着搭11、11’への燃焼排ガス21の通気の制御を行う制御装置12が設置されており、この制御装置12からの操作信号によって前記金属水銀ガス吸着搭11、11’の各入口バルブ13、13’、各出口バルブ14、14’の開閉を操作して、燃焼排ガス21を金属水銀ガス吸着搭11、11’の何れか一方に切り替えて通気、又は双方に通気できるように制御している。
 前記金属水銀ガス吸着搭11及び11’の各出口バルブ14及び14’の後流側には水銀分析計15、15’が夫々設置されており、この金属水銀ガス吸着搭11及び11’を配設した並列の流路が合流した下流側の合流流路にも更に水銀分析計15bが設置されて、合流流路を流下する燃焼排ガス21中の水銀濃度の値を検出するようになっている。
 そして前記各水銀分析計15、15’、15bによって計測された燃焼排ガス21の水銀濃度の検出値はそれぞれ前記制御装置12に入力され、この制御装置12にて各水銀濃度の検出値と該制御装置12で予め設定した水銀濃度の上限値との比較に基づいて操作信号を出力して前記金属水銀ガス吸着搭11、11’の各入口バルブ13、13’、各出口バルブ14、14’の開閉を操作し、燃焼排ガス21が金属水銀ガス吸着搭11、11’の何れか一方に通気、又は双方に通気するように制御する。
 例えば、一方の金属水銀ガス吸着搭11に燃焼排ガス21を通気して単独で運転させ、他方の金属水銀ガス吸着搭11’には燃焼排ガス21を通気しないで待機させるように制御することも可能である。
 そして前記制御装置12では各水銀分析計15、15’、15bで計測した燃焼排ガス21の水銀濃度の検出値を連続して監視し、例えば前記一方の金属水銀ガス吸着搭11の下流側に設置した水銀分析計15によって該一方の金属水銀ガス吸着搭11を流下した燃焼排ガス21の水銀濃度の検出値が該一方の金属水銀ガス吸着搭11の内部に積層されたHgを吸着する金属水銀吸着剤の吸着性能の低下によって予め設定した水銀濃度の上限値にまで達したことを検出した場合には、制御装置12からの操作信号によって一方の金属水銀ガス吸着搭11の入口バルブ13及び出口バルブ14を閉操作して前記一方の金属水銀ガス吸着搭11の運転を停止すると共に、他方の金属水銀ガス吸着塔11’の入口バルブ13’及び出口バルブ14’を開操作して燃焼排ガス21をこの他方の金属水銀ガス吸着塔11’に通気して前記他方の金属水銀ガス吸着塔11’の運転に切り替える。
 前記他方の金属水銀ガス吸着塔11’の運転に切り替えた後は、この他方の金属水銀ガス吸着塔11’の下流側に設置した水銀分析計15’によって前記他方の金属水銀ガス吸着塔11’を流下した燃焼排ガス21中の水銀濃度の値を検出して監視を行う。
 ここで、前記制御装置12に設定されている燃焼排ガス21中の水銀濃度の上限値は、前記金属水銀ガス吸着搭11、11’の下流側に設置した圧縮機4に用いられている金属部材が許容できる燃焼排ガス21中の水銀濃度に基づいて設定される。
 前記したように燃焼排ガス21を一方の金属水銀ガス吸着塔11への通気から他方の金属水銀ガス吸着塔11’への通気に変更して前記他方の金属水銀ガス吸着塔11’の単独運転に切り替え、前記一方の金属水銀ガス吸着塔11が運転を停止させている間にこの一方の金属水銀ガス吸着搭11では、吸着塔の内部に積層されている吸着性能の低下した金属水銀吸着剤を新しい金属水銀吸着剤に入れ替えて待機状態にする。
 その後、前記他方の金属水銀ガス吸着搭11’を単独で運転させ、この他方の金属水銀ガス吸着搭11’の下流側に設置した水銀分析計15’によって該他方の金属水銀ガス吸着搭11’を流下した燃焼排ガス21の水銀濃度の検出値がこの他方の金属水銀ガス吸着搭11’の内部に積層されたHgを吸着する金属水銀吸着剤の吸着性能も低下によって予め設定した水銀濃度の上限値にまで達したことを検出した場合には、前記制御装置12からの操作信号によって待機状態にあった一方の金属水銀ガス吸着搭11の入口バルブ13及び出口バルブ14を開操作し、前記他方の金属水銀ガス吸着搭11’及び前記一方の金属水銀ガス吸着搭11の両方に燃焼排ガス21を一時的に通気させるようにして、前記他方の金属水銀ガス吸着搭11’及び一方の金属水銀ガス吸着搭11の双方を運転させる。
 この金属水銀ガス吸着搭11及び11’の双方を一時的に運転させる場合には、前記並列の流路が合流した下流側の合流流路に設置された水銀分析計15bによって前記金属水銀ガス吸着搭11及び11’の双方からこの合流流路を流下する燃焼排ガス21中の水銀濃度の値を検出して監視し、前記金属水銀ガス吸着搭11及び11’の双方によって燃焼排ガス21中の水銀濃度を低減させて、一方の金属水銀ガス吸着搭11と他方の金属水銀ガス吸着搭11’との運転の切り替えに伴なう燃焼排ガス21中の水銀濃度の増加を抑制させている。
 ところで、一時的に燃焼排ガス21を通気中の一方の前記金属水銀ガス吸着搭11又は11’を流下する燃焼排ガス21中の水銀濃度の値が突発的に急上昇した場合は、前記金属水銀ガス吸着搭11、は11’の下流側の合流流路に設置した水銀分析計15bでこの合流流路を流下する燃焼排ガス21中の水銀濃度の急上昇を捉えて、前記金属水銀ガス吸着搭11への燃焼排ガス21の通気だけでなく、待機中の他方の前記金属水銀ガス吸着搭11’にも燃焼排ガス21を通気させて前記金属水銀ガス吸着搭11及び11’の双方を運転する並列運転にして、燃焼排ガス21中の水銀濃度が急上昇した水銀を低減させる運転を行う。
 本実施例の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムにおける燃焼排ガス21中のCOの回収は、圧縮機4で加圧したCOを冷却器5’で冷却して液化させたCO23にして、前記冷却器5’からこの液化させたCO23の回収を行うようにし、液化しない燃焼排ガス21の非凝縮性ガス24は前記冷却器5’で液化したCO23と分離させて下流側に流下させる。
 燃焼排ガス21中のCOの回収率を更に高くするためには、後述する図7の実施例に示したように圧縮機を複数個設置して、前段の圧縮機による圧縮で温度上昇させた燃焼排ガス21を、後段の圧縮機で更に圧縮する多段圧縮を行い、この多段圧縮された燃焼排ガス21中のCOを冷却器で冷却して液化させることが必要になる。
 図2は図1に示した第1実施例の燃焼排ガス中の二酸化炭素回収設備における水銀除去システムを構成する金属水銀ガス吸着塔11、11’の内部に設置される金属水銀吸着剤である板状吸着剤31の一具体例を示している。
 図2において、燃焼排ガス21中のHgを吸着する金属水銀吸着剤を構成する板状吸着剤31は、金属水銀ガス吸着塔11、11’の内部に流入する燃焼排ガス21の流れ方向に沿って幅方向に離間させて配置され、隣接した板状吸着剤31との間に燃焼排ガス21が流下する流路21aを形成するように複数枚積層した構造となっている。
 また、金属水銀吸着剤を粒子として、金属水銀ガス吸着塔11、11’内にこの粒子を充填してもよいが、燃焼排ガス21の通気性が悪くなるため、通気性のよい板状吸着剤31の積層構造を採用した。
 前記板状吸着剤31の交換は、金属水銀吸着塔11、11’の上面、あるいは燃焼排ガス21の流出入口がある側面を取り外し、吸着性能が低下した板状吸着剤31を1枚ずつ新しい板状吸着剤31と交換するか、あるいは、板状吸着剤31を積層できる型枠に設置して型枠ごと新しい板状吸着剤31と交換すればよい。
 図3は図1に示した第1実施例の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムを構成する金属水銀ガス吸着塔11、11’の内部に設置される金属水銀吸着剤である板状吸着剤31の他の具体例を示す。
 図3において、燃焼排ガス21中のHgを吸着する金属水銀吸着剤を構成するハニカム状吸着剤32は、燃焼排ガス21を流下させる多数の空孔21bが燃焼排ガスの流れの方向に沿うように形成された構造となっている。
 金属水銀吸着剤を多数の空孔21bを形成したハニカム状吸着剤32の構成にすることによって、金属水銀吸着塔11、11’を流下する燃焼排ガス21の圧力損失を小さくできる。また、ハニカムカム構造は、板状吸着剤の積層構造よりもHgを吸着する吸着面積を広くすることができる。
 また、金属水銀吸着剤に使用されるニッケルと金属水銀との反応、すなわちアマルガムを生成する反応は、高温ほど反応速度は高いが、高温過ぎるとアマルガムが分解し、金属水銀を放出する。
 燃焼排ガス21中のHgを吸着する金属水銀吸着剤には金属水銀を吸着するのに適した温度範囲が存在する。金属水銀吸着剤に使用されるNiを含む合金としてSUSへの水銀吸着性能を評価した試験では、SUS管の温度が170℃から370℃の範囲で良好な結果が得られており、よって金属水銀吸着剤は170℃から370℃の温度範囲で使用されることが望ましい。
 尚、燃焼排ガス21の温度が、この温度範囲よりも低い場合には、金属水銀吸着剤を上記の温度範囲にまで加熱する手段を備えることが望ましい。
 図4は図1に示した第1実施例の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムを構成する金属水銀ガス吸着塔11、11’の内部に設置される金属水銀吸着剤である板状吸着剤31に加熱手段を備えた更に他の具体例を示す。
 図4において、燃焼排ガス21中のHgを吸着する金属水銀吸着剤を構成する板状吸着剤31は、ヒータ33をこの板状吸着剤31で挟み込む構造となっている。ヒータ33はニクロム線のようなニッケルを含む材料が望ましい。
 板状吸着剤31のヒータ33が燃焼排ガス21に接触しても、ヒータ33による加熱温度がアマルガムの分解温度以上になるとHgは板状吸着剤31に吸着しなくなる。
 また、ヒータ33の表面にアマルガムを生成したとしても、ヒータ33をアマルガムの分解温度以上に加熱すれば、Hgを放出して再生することができる。
 したがって、ヒータ33を設置する板状吸着剤31に形成された空間は密閉の必要はなく、製作が簡単になる。
 長時間の使用によって燃焼排ガス21中のHgの吸着性能が低下した金属水銀吸着剤である板状吸着剤31は、本実施例の燃焼排ガス中の水銀除去システムとは別の場所にて加熱再生処理することによって金属水銀吸着剤として再使用することが可能である。
 次に本発明の第2実施例である燃焼排ガス中の二酸化炭素回収設備の水銀除去システムについて図5を用いて説明する。
 図5に示した第2実施例の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムは、図1に示した先の実施例の燃焼排ガス中の水銀除去システムと基本的な構成は同じであるので、両者に共通した構成の説明は省略し、相違した構成についてのみ以下に説明する。
 本実施例の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムにおいては、図5に示したのように、微粉炭焚きボイラ50から排出された燃焼排ガス21中のSOxを除去する脱硫装置2と、燃焼排ガス21中の水分を除去する脱水装置3との間に、燃焼排ガス21中のHgを吸着して除去する金属水銀吸着剤を内部に積層した金属水銀吸着塔11、11’が並列に配設されており、これらの金属水銀吸着塔11、11’の後流となる前記脱水装置3の下流側に燃焼排ガス21中のCOを圧縮する圧縮機4と、この圧縮機4で圧縮されたCOを冷却して液化し、液化したCO23を回収する冷却器5’が設置された構成となっている。
 本実施例の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムにおける燃焼排ガス21中のCOの回収は、圧縮機4で加圧したCOを冷却器5’で冷却して液化したCOとしてこの冷却器5’から回収を行い、液化しない燃焼排ガス21の非凝縮性ガス24は前記冷却器5’で液化したCO23と分離させて下流側に流下させる。
 燃焼排ガス21中のCOの回収率を更に高くするためには、後述する図7の実施例に示したように圧縮機を複数個設置して、前段の圧縮機による圧縮で温度上昇させた燃焼排ガス21を、後段の圧縮機で更に圧縮する多段圧縮を行い、この多段圧縮された燃焼排ガス21中のCOを冷却器で冷却して液化させることが必要になる。
 本実施例によれば、前記金属水銀吸着塔11、11’を脱水装置3の上流側の温度の高い領域に並列に配設させた構成なので、この金属水銀吸着塔11、11’に流入する燃焼排ガス21の温度が高くなり、燃焼排ガス21中のHgを金属水銀吸着塔11、11’の金属水銀吸着剤に吸着させてアマルガムを形成し易くできる。
 次に本発明の第3実施例である燃焼排ガス中の二酸化炭素回収設備の水銀除去システムについて図6を用いて説明する。
 図6に示した第3実施例の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムは、図1に示した先の実施例の燃焼排ガス中の水銀除去システムと基本的な構成は同じであるので、両者に共通した構成の説明は省略し、相違した構成についてのみ以下に説明する。
 本実施例の燃焼排ガス中の二酸化炭素回収設備における水銀除去システムにおいては、図6に示したのように、微粉炭焚きボイラ50から排出された燃焼排ガス21中の燃焼灰を除去する集塵装置1と、燃焼排ガス21中のSOxを除去する脱硫装置2との間に、燃焼排ガス21中のHgを吸着して除去する金属水銀吸着剤を内部に積層した金属水銀吸着塔11、11’が並列に配設されており、これらの金属水銀吸着塔11、11’の後流の前記脱硫装置2の下流側に燃焼排ガス21中の水分を除去する脱水装置3と、燃焼排ガス中のCOを圧縮して液化する圧縮機4と、この圧縮機4で圧縮されたCOを冷却して液化し、液化したCO23を回収する冷却器5’が設置された構成となっている。
 本実施例の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムでは、燃焼排ガス21中のCOの回収は、圧縮機4で加圧したCOを冷却器5’で冷却して液化したCOとしてこの冷却器5’から回収を行い、液化しない燃焼排ガス21の非凝縮性ガス24は前記冷却器5’で液化したCO23と分離させて下流側に流下させる。
 燃焼排ガス21中のCOの回収率を更に高くするためには、後述する図7の実施例に示したように圧縮機を複数個設置して、前段の圧縮機による圧縮で温度上昇させた燃焼排ガス21を、後段の圧縮機で更に圧縮する多段圧縮を行い、この多段圧縮された燃焼排ガス21中のCOを冷却器で冷却して液化させることが必要になる。
 本実施例によれば、前記金属水銀吸着塔11、11’を脱硫装置2の上流側の温度が更に高い領域に並列に配設させた構成なので、この金属水銀吸着塔11、11’に流入する燃焼排ガス21の温度が更に高くなり、燃焼排ガス21中のHgを金属水銀吸着塔11、11’の金属水銀吸着剤に吸着させてアマルガムを更に形成し易くできる。
 次に本発明の第4実施例である燃焼排ガス中の二酸化炭素回収設備の水銀除去システムについて図7を用いて説明する。
 図7に示した第4実施例の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムは、図1に示した先の実施例の燃焼排ガス中の水銀除去システムと基本的な構成は同じであるので、両者に共通した構成の説明は省略し、相違した構成についてのみ以下に説明する。
 本実施例の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムにおいては、図7に示したのように、微粉炭焚きボイラ50から排出された燃焼排ガス21中の水分を除去する脱水装置3と、燃焼排ガス21中のHgを吸着して除去する金属水銀吸着剤を内部に積層した並列に配設された金属水銀吸着塔11、11’との間に、燃焼排ガス21中のCOを圧縮する圧縮機4が設置されている。
 更に、並列に配設された金属水銀吸着塔11、11’の下流側には前記金属水銀吸着塔11及び11’を流下した燃焼排ガス21を冷却する冷却器5が設けてあり、前記冷却器5の下流側には燃焼排ガス21中のCOを圧縮する第2の圧縮機4’と、この第2の圧縮機4’で圧縮されたCOを冷却して液化し、液化したCO23を回収する冷却器5’が設置された構成となっている。
 本実施例では圧縮機を前段の圧縮機4と後段の圧縮機4’との二段に設けた燃焼排ガス中の二酸化炭素回収設備における水銀除去システムを構成している。
 また本実施例においては、燃焼排ガス21中のHgを吸着して除去する並列に配設された金属水銀吸着塔11及び11’は、冷却器5と後段の第2の圧縮機4’との間に配設した構成にしても良い。
 前記金属水銀吸着塔11及び11’の最適な設置位置は、燃焼排ガス21の温度から決めることができる。金属水銀吸着塔11及び11’の内部に積層されるHgを吸着して除去する金属水銀吸着剤は、燃焼排ガス21の温度が高温なほどHgの吸着性能が良くなるが、燃焼排ガス21の温度がアマルガムの分解温度以上にまで高温になると逆に吸着性能が低下するためである。
 前記冷却器5と後段の第2の圧縮機4’との間を流下する燃焼排ガス21の温度は、前段の圧縮機4と冷却器5との間を流下する燃焼排ガス21の温度よりも低くなるので、前段の圧縮機4と冷却器5の間を流下する前記燃焼排ガス21の温度がアマルガムの分解温度以上の高温になるのであれば、冷却器5と後段の第2の圧縮機4’との間に上記したように並列に配設された金属水銀吸着塔11及び11’を設ければ良い。
 本実施例の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムにおける燃焼排ガス21中のCOの回収は、後段の第2の圧縮機4’で加圧したCOを冷却器5’で冷却して液化したCOとしてこの冷却器5’から回収を行い、液化しない燃焼排ガス21の非凝縮性ガス24は前記冷却器5’で液化したCO23と分離させて下流側に流下させる。
 本実施例によれば、前記金属水銀吸着塔11、11’を前段の圧縮機4による加圧によって温度が高くなった領域に並列に配設させた構成なので、この金属水銀吸着塔11、11’に流入する燃焼排ガス21の温度が高くなり、燃焼排ガス21中のHgを金属水銀吸着塔11、11’の金属水銀吸着剤に吸着させてアマルガムを更に形成し易くできる。
 ところで、上記した本発明の各実施例である燃焼排ガス中の二酸化炭素回収設備の水銀除去システムでは、前記金属水銀吸着塔11、11’の内部に積層されて燃焼排ガス21中のHgを吸着して除去する金属水銀吸着剤を長時間使用すると、金属水銀吸着剤を構成するNi等の遷移金属がHgと結合して形成されるアマルガムの生成が飽和に近づいてHgの吸着性能が低下するので、定期的な金属水銀吸着剤の交換が必要になる。
 図1、図5~図7の各実施例で燃焼排ガス中の二酸化炭素回収設備の水銀除去システムに示したように、金属水銀ガス吸着塔11、11は複数個並列に設置することが望ましい。
 前記したように金属水銀吸着塔11、11’を並列に配設することにより、燃焼排ガス21中のHgを吸着する吸着性能が低下した金属水銀吸着剤を備えた金属水銀ガス吸着塔11、11’の内の一方から、新しい金属水銀吸着剤に交換して待機中の他方の金属水銀ガス吸着塔11、11’の内の他方に切り替えて燃焼排ガス21を通気することで、燃焼排ガス21中の金属水銀の除去を高い除去効率で継続して行うことができる。
 また、処理すべき燃焼排ガス21中の金属水銀の濃度が高くなり、並列に配設させた金属水銀ガス吸着塔11、11’に備えた金属水銀吸着剤だけでは金属水銀を除去する処理能力が不足する場合には、金属水銀を除去する処理能力を増加させるために運転中の金属水銀ガス吸着塔に加えて待機中の金属水銀ガス吸着塔が2基以上となるように予め設置しておき、3基以上の金属水銀ガス吸着塔を本実施例である燃焼排ガス中の二酸化炭素回収設備における水銀除去システムに備えた構成にすれば、燃焼排ガス21中の金属水銀濃度が並列に配設させた2基の金属水銀ガス吸着塔の処理能力を越えて急に増加したとしても対応することが容易となる。
 次に図1、図5~図7に示した各実施例である燃焼排ガス中の二酸化炭素回収設備の水銀除去システムの運転方法について説明する。
 上記各実施例の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムに設置された制御装置12で制御される並列に配設した各金属水銀ガス吸着塔11の運転方法について説明する。
 図8は本発明の上記した実施例に並列に配設された金属水銀ガス吸着塔11を模式的に示したものであり、燃焼排ガス21が通気される並列に複数個設置された金属水銀ガス吸着塔11と、入口バルブ13と、出口バルブ14、及び水銀分析計15を記号表記して模式的に示したものである。
 図8において、金属水銀ガス吸着塔11はn個(n≧3)並列に設置されており、これらの金属水銀ガス吸着塔11をBからBで表記する。
 BからBで表記した金属水銀ガス吸着塔11に対応させて、その上流側に設置された入口バルブ13をVIからVIで、下流側に設置された出口バルブ14をVOからVOで、出口バルブ14の下流側に位置する水銀分析計15をSからSで表記する。また、出口バルブ14の後流側で合流した流路に位置する水銀分析計15bをSで表記する。
 図9は本発明の上記実施例である燃焼排ガス中の二酸化炭素回収設備の水銀除去システムに、例えば並列に3基設置された構成の金属水銀ガス吸着塔の状態を初期設定する方法を示すフローチャートである。
 図9において、「金属水銀ガス吸着塔の設定」では、その設定値Bの初期設定値として3基の各金属水銀ガス吸着塔11について各運転状態に合わせて、手動入力で前記設定値Bをそれぞれ設定する。
 例えば、1基の金属水銀ガス吸着塔11が燃焼排ガス21を通気中であれば、「金属水銀ガス吸着塔の設定」にて初期設定として通気中の設定値B=2を設定し、他の1基の金属水銀ガス吸着塔11が燃焼排ガス21を通気せずに待機中であれば、初期設定として待機中の設定値B=1を設定し、残りの1基の金属水銀ガス吸着塔11が燃焼排ガス21を通気せず且つ内部に積層した金属水銀吸着剤を新しい金属水銀吸着剤に交換中であれば、初期設定として交換中の設定値B=0を設定する。
 ここで、初期設定した設定値B=0は、金属水銀吸着剤を交換中の金属水銀ガス吸着塔11に該当することから、図9の右側に示したように、「バルブの開閉状態の設定」にて、必然的に当該金属水銀ガス吸着塔11の入口バルブ13と出口バルブ14とがそれぞれ閉のVI=0、VO=0となるように制御する機能が、前記制御装置12に備えられている。
 例えば、金属水銀吸着剤の交換では、金属水銀ガス吸着塔11を開放して前記金属水銀吸着剤を交換することから、金属水銀ガス吸着塔11の開放中は、当該金属水銀ガス吸着塔11の入口バルブ13と出口バルブ14とがVI=0,VO=0の状態から変更できないようにインターロック機能を前記制御装置12に持たせるようにしている。
 そこで前記各金属水銀ガス吸着塔11の運転状態を、通気中、待機中、吸着剤交換中の3種類に分け、これらの3種類に分けた各金属水銀ガス吸着塔11の運転状態をモニタ表示によって目視確認できる機能を前記制御装置12に備えさせることが望ましく、これらの機能を制御装置12に備えさせることによって、並列に配設された複数の金属水銀ガス吸着塔11を稼動させながら計画的に運用することができる。
 そして前記した各金属水銀ガス吸着塔11の設定値Bに合わせて、制御装置12で各金属水銀ガス吸着塔11に対応した入口バルブ13及び出口バルブ14の開閉を制御する。
 即ち、図9の右側に示したように、「金属水銀ガス吸着塔の設定」が設定値B=2の金属水銀ガス吸着塔11であれば、「バルブの開閉状態の設定」にて当該金属水銀ガス吸着塔11の入口バルブ13及び出口バルブ14はVI=1、VO=1となるように制御装置12で開制御する。
 また、「金属水銀ガス吸着塔の設定」が設定値B=0、あるいは設定値B=1の金属水銀ガス吸着塔11であれば、「バルブの開閉状態の設定」にて当該金属水銀ガス吸着塔11の入口バルブ13及び出口バルブ14はVI=0、VO=0となるように制御装置12で閉制御を行う。
 上記したように、各金属水銀ガス吸着塔11の運転状態に合わせて当該金属水銀ガス吸着塔11の入口バルブ13及び出口バルブ14の開閉を自動的に制御する機能、あるいは確認制御する機能を、制御装置12に備えておくことが望ましい。
 次に図1、図5~図7に示した各実施例である燃焼排ガス中の二酸化炭素回収設備の水銀除去システムにおける運転方法について、図10のフローチャートを用いて説明する。
 図10は上記した本実施例である燃焼排ガス中の二酸化炭素回収設備の水銀除去システムにおいて、並列に配設された金属水銀ガス吸着塔11の運転を切り替えて制御する方法を示すフローチャートである。
 図10において、このフローチャートにおける上限値の水銀濃度設定のステップ101では、制御装置12によって各金属水銀ガス吸着塔11に対して予め設定しておく燃焼排ガス21中の水銀濃度の上限値CrHgを設定する。
 次に金属水銀ガス吸着塔11の運転状態設定のステップ102では、本実施例の水銀除去システムに設置された前記金属水銀ガス吸着塔11の基数i(i=1~n)について、複数基設置された金属水銀ガス吸着塔11の中から燃焼排ガス21が通気中(B=2)に該当する金属水銀ガス吸着塔11を探索し、探索した当該金属水銀ガス吸着塔11の運転状態の設定値Bを通気中(B=2)に設定する。
 次に運転状態Bを通気中(B=2)に設定した当該金属水銀ガス吸着塔11に関して水銀濃度計測のステップ103に進み、当該金属水銀ガス吸着塔11の下流側に設置した水銀分析計15によって該金属水銀ガス吸着塔11を流下した燃焼排ガス21中の水銀濃度CHg,iを計測する。
 水銀分析計15によって燃焼排ガス21中の水銀濃度CHg,iを計測すると、次に水銀濃度の比較のステップ104に進み、通気中(B=2)の金属水銀ガス吸着塔11に関して水銀分析計15で計測された燃焼排ガス21中の水銀濃度の計測値CHg,iと、水銀濃度設定のステップ101で設定した水銀濃度の上限値CrHgとの比較を行う。
 この水銀濃度設定のステップ101での水銀濃度の比較において、水銀濃度の計測値CHg,i < 上限値CrHgの関係であれば、探索された当該金属水銀ガス吸着塔11は運転を継続しても問題が無いので、当該金属水銀ガス吸着塔11の運転を継続する。
 そして、再度、金属水銀ガス吸着塔11の運転状態設定のステップ102に戻って、複数基設置された金属水銀ガス吸着塔11の中から当該金属水銀ガス吸着塔11以外で燃焼排ガス21が通気中(B=2)に該当する運転状態の設定値Bの金属水銀ガス吸着塔11の探索を行って上述したものと同様の運転を行うことを繰り返す。
 一方、この水銀濃度の比較のステップ104における水銀濃度の比較において、水銀濃度の計測値CHg,i ≧ 上限値CrHgの関係になっていれば当該金属水銀ガス吸着塔11は運転を継続すると問題があることを示しているので、次に、運転状態が待機中を探索するステップ105に進み、制御装置12によって複数基設置された金属水銀ガス吸着塔11の中から運転状態の設定値Bが、新しい金属水銀吸着剤に入れ替えて待機中(B=1)に該当する金属水銀ガス吸着塔11を探索する。
 ここで、運転状態Bが待機中(B=1)の金属水銀ガス吸着塔11が複数基待機しているのであれば、制御装置12によってこれらの中から何れか1基の金属水銀ガス吸着塔11を手動選択しても良い。
 そして運転状態が待機中を探索するステップ105にて探索した待機中(B=1)の金属水銀吸着塔11に対して燃焼排ガス21の通気を行うように、次の運転状態変更及びバルブ操作のステップ106に進み、制御装置12によって当該金属水銀吸着塔11の運転状態Bを待機中(B=1)から通気中(B=2)に変更し、通気中(B=2)の運転状態に変更されたこの金属水銀吸着塔11の入口バルブ13及び出口バルブ14とをそれぞれ開のVI=1、VO=1となるように制御して、燃焼排ガス21をこの金属水銀吸着塔11に通気させる。
 また、複数基設置された金属水銀ガス吸着塔11のうち、水銀濃度の比較のステップ104における水銀濃度の比較において水銀濃度の計測値CHg,i ≧ 上限値CrHgとなり、金属水銀吸着剤によるHgの吸着性能が低下して金属水銀の吸着状態が悪くなった金属水銀ガス吸着塔11に関しては、次の運転状態再変更及びバルブ操作のステップ107に進み、制御装置12によって当該金属水銀吸着塔11の運転状態の設定値Bを通気中(B=2)から交換中(B=0)に変更し、当該金属水銀ガス吸着塔11の入口バルブ13及び出口バルブ14がそれぞれ閉のVI=0、VO=0となるように制御して、当該金属水銀吸着塔11への燃焼排ガス21の通気を遮断する。
 そして燃焼排ガス21の通気を遮断後に、当該金属水銀吸着塔11における金属水銀吸着剤を新しい金属水銀吸着剤に入れ替え、当該金属水銀吸着塔11が燃焼排ガス21の通気の待機状態になった場合に、再度、運転状態が待機中を探索するステップ105に戻って、制御装置12によってこの待機状態の金属水銀ガス吸着塔11の運転状態の設定Bを、交換中(B=0)から待機中(B=1)に修正すればよい。
 このように、各金属水銀吸着塔11を流下した燃焼排ガス21中の水銀濃度の上限値CrHgと水銀分析計15で計測された計測値CHg,iとを比較する機能、金属水銀吸着剤が性能低下したことを知らせる機能、金属水銀吸着剤を交換すべき金属水銀ガス吸着塔11を探索する機能を、制御装置12に備えておくことが望ましい。
 図11は本実施例である燃焼排ガス中の二酸化炭素回収設備における水銀除去システムに並列に配設された複数基の金属水銀ガス吸着塔11の運転を追加制御する方法を示すフローチャートである。
 図11において、このフローチャートにおける水銀濃度上限値設定のステップ201では、制御装置12によって複数基設置された金属水銀ガス吸着塔11の下流側の燃焼排ガス21の流路集合部における水銀濃度として、複数基設置された金属水銀ガス吸着塔11の全体としての燃焼排ガス21に対して予め設定する燃焼排ガス21中の水銀濃度の上限値CrHg,eを設定する。
 次に複数基設置された金属水銀ガス吸着塔11に関して水銀濃度計測のステップ203に進み、これら複数基の金属水銀ガス吸着塔11の下流側の流路集合部に設けた水銀分析計15bによって複数基設置された金属水銀ガス吸着塔11を流下した燃焼排ガス21中の水銀濃度CHg,eを計測する。
 水銀分析計15bによって流路集合部での燃焼排ガス21中の水銀濃度CHg,eを計測すると、次に水銀濃度の比較のステップ204に進み、金属水銀ガス吸着塔11に関して流路集合部の水銀分析計15bで計測された燃焼排ガス21中の水銀濃度の計測値、CHg,eと、水銀濃度上限値設定のステップ201で設定した水銀濃度の上限値CrHg,eとの比較を行う。
 この水銀濃度の比較のステップ204での水銀濃度の比較において、水銀濃度の計測値CHg,e < 上限値CrHg,eの関係であれば、複数基設置された金属水銀ガス吸着塔11の全体としての燃焼排ガス21の水銀濃度の計測値CHg,eが上限値CrHg,eの制限範囲内であるので、複数基設置されたこれらの金属水銀ガス吸着塔11の現状の運転状態を継続させる。
 そして、前記金属水銀ガス吸着塔11の現状の運転状態の継続中に再度、複数基設置された金属水銀ガス吸着塔11に関する水銀濃度計測のステップ203に戻って、金属水銀ガス吸着塔11の下流側の流路集合部での水銀分析計15bによって複数基設置された金属水銀ガス吸着塔11を流下した燃焼排ガス21中の水銀濃度CHg,eの計測を継続する。
 一方、この水銀濃度の比較のステップ204における水銀濃度の比較において、水銀濃度の計測値CHg,e≧ CrHg,eの関係になっていれば、燃焼排ガス21を通気している金属水銀ガス吸着塔11を含んだ複数基設置された金属水銀ガス吸着塔11の中に運転を継続すると問題がある別の金属水銀ガス吸着塔11が存在していることを示している。
 よって、新たに燃焼排ガス21を追加して通気すべき金属水銀ガス吸着塔11を選定するために、次に、運転状態が待機中を探索するステップ205に進み、制御装置12によって複数基設置された金属水銀ガス吸着塔11の中から運転状態の設定値Bが、新しい金属水銀吸着剤に入れ替えて待機中(B=1)である金属水銀ガス吸着塔11を探索する。
 ここで、運転状態Bが待機中(B=1)の金属水銀ガス吸着塔11が複数基待機しているのであれば、制御装置12によってこれらの中から何れか1基の金属水銀ガス吸着塔11を手動で選択しても良い。
 そして運転状態が待機中を探索するステップ205にて探索した待機中(B=1)の当該金属水銀吸着塔11に対して燃焼排ガス21の通気を追加して行うことができるように、次の運転状態変更及びバルブ操作のステップ206に進み、制御装置12によって当該金属水銀吸着塔11の運転状態Bを待機中(B=1)から通気中(B=2)に変更し、通気中(B=2)の運転状態に変更された当該金属水銀吸着塔11の入口バルブ13及び出口バルブ14とをそれぞれ開のVI=1、VO=1となるように制御して、燃焼排ガス21をこの追加させた当該金属水銀吸着塔11に通気させる。
 このように複数基設置された金属水銀ガス吸着塔11の下流側の流路集合部に設けた水銀分析計15bによって全体としての燃焼排ガス21中の水銀濃度を計測することにより、金属水銀ガス吸着塔11の下流側の流路集合部で計測された全体としての水銀濃度に応じて燃焼排ガス21中の金属水銀を吸着して除去する金属水銀ガス吸着塔11の運転台数を追加して燃焼排ガス21を通気させる運転を行うことが可能となる。
 上記したように本発明の各実施例によれば、燃焼排ガス中からCOを回収すると共に、燃焼排ガス中に含まれたHgを高精度で除去することを可能にした燃焼排ガス中の二酸化炭素回収設備の水銀除去システム、及び燃焼排ガス中の二酸化炭素回収設備の水銀除去運転方法が実現できる。
 また、本発明の実施例では、金属水銀吸着剤を内部に設置した金属水銀ガス吸着塔を並列に複数基配設したことにより、燃焼排ガス中から二酸化炭素を回収するために該燃焼排ガス中の二酸化炭素を液化する圧縮機に供給される燃焼排ガス中から金属水銀を高精度で除去することが可能となる。
 この結果、本実施例では燃焼排ガス中の金属水銀を高精度で除去できるので、燃焼排ガス中の二酸化炭素を液化する圧縮機を構成する部材が腐食することなく、圧縮機を長時間稼動することができる。
 本発明は、燃焼排ガス中の二酸化炭素回収設備における水銀除去システム、及び燃焼排ガス中の二酸化炭素回収設備の水銀除去運転方法に適用可能である。

Claims (15)

  1.  燃焼排ガスの発生源から排出された燃焼排ガス中の水分を除去する脱水装置と、この脱水装置の下流側に設置されて水分を除去した該燃焼排ガス中の二酸化炭素を圧縮する圧縮機及び圧縮された二酸化炭素を冷却して液化する冷却器を有する燃焼排ガス中の二酸化炭素回収設備とを備え、前記脱水装置の上流側、あるいは前記脱水装置と前記圧縮機との間に燃焼排ガス中の水銀を吸着して除去する水銀ガス吸着塔を並列に複数基配設したことを特徴とする燃焼排ガス中の二酸化炭素回収設備の水銀除去システム。
  2.  燃焼排ガスの発生源から排出された燃焼排ガス中の水分を除去する脱水装置と、この脱水装置の下流側に設置されて水分を除去した該燃焼排ガス中の二酸化炭素を圧縮する圧縮機及び圧縮された二酸化炭素を冷却して液化する冷却器を有する燃焼排ガス中の二酸化炭素回収設備とを備え、前記脱水装置の上流側、あるいは前記脱水装置と前記圧縮機との間に燃焼排ガス中の水銀を吸着して除去する水銀ガス吸着塔を並列に複数基配設し、複数基設配設された各水銀ガス吸着塔の上流側及び下流側に燃焼排ガスの流通を調節する入口バルブ及び出口バルブをそれぞれ設置し、前記出口バルブの下流側に燃焼排ガス中の水銀濃度を計測する水銀分析計を設置し、前記水銀分析計で計測した燃焼排ガス中の水銀濃度に基づいて前記水銀ガス吸着塔の入口バルブ及び出口バルブの開閉を制御する制御装置を設置したことを特徴とする燃焼排ガス中の二酸化炭素回収の水銀除去システム。
  3.  請求項1又は請求項2に記載の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムにおいて、
     前記脱水装置を流下した燃焼排ガスを前記圧縮機に導く燃焼ガス流路は並列に複数配設させており、これらの並列に配設された燃焼ガス流路に前記金属水銀ガス吸着塔がそれぞれ設置されていることを特徴とする燃焼排ガス中の二酸化炭素回収設備の水銀除去システム。
  4.  請求項1又は請求項2に記載の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムにおいて、
     燃焼排ガスを前記脱水装置に導く燃焼ガス流路は並列に複数配設させており、これらの並列に配設された燃焼ガス流路に前記水銀ガス吸着塔がそれぞれ設置され、前記水銀ガス吸着塔を流下した燃焼排ガスは前記脱水装置を経由してから前記圧縮機に導かれるように構成されていることを特徴とする燃焼排ガス中の二酸化炭素回収設備の水銀除去システム。
  5.  請求項1又は請求項2に記載の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムにおいて、
     前記圧縮機は上流側に設置した第1の圧縮機と、下流側に設置した第2の圧縮機から構成され、前記冷却器は第2の圧縮機の下流側に設置されており、前記脱水装置及び第1の圧縮機を順次流下した燃焼排ガスを前記第2の圧縮機に導く燃焼ガス流路は並列に配設させており、これらの並列に配設された燃焼ガス流路に前記水銀ガス吸着塔がそれぞれ設置されていることを特徴とする燃焼排ガス中の二酸化炭素回収設備の水銀除去システム。
  6.  請求項5に記載の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムにおいて、
     前記並列に配設された燃焼ガス流路にそれぞれ設置された前記水銀ガス吸着塔を流下した燃焼排ガスを合流させて前記第2の圧縮機に導く前記第2の圧縮機の上流側に燃焼排ガスを冷却する第2の冷却器を設置したことを特徴とする燃焼排ガス中の二酸化炭素回収設備の水銀除去システム。
  7.  請求項1乃至請求項5の何れか1項に記載の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムにおいて、
     前記水銀ガス吸着塔の内部には燃焼排ガス中の水銀を吸着する水銀吸着剤が設置され、この水銀吸着剤はニッケルを含有する合金から形成されていることを特徴とする燃焼排ガス中の二酸化炭素回収設備の水銀除去システム。
  8.  請求項7に記載の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムにおいて、
     前記水銀ガス吸着剤は、板状吸着剤として複数枚配設されると共に、隣接した板状吸着剤の間に燃焼排ガスを流下する流路を形成させていることを特徴とする燃焼排ガス中の二酸化炭素回収設備の水銀除去システム。
  9.  請求項7に記載の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムにおいて、
     前記水銀ガス吸着剤は、ハニカム状吸着剤として燃焼排ガスを流下させる多数の空孔が形成されて配設されていることを特徴とする燃焼排ガス中の二酸化炭素回収設備の水銀除去システム。
  10.  請求項8に記載の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムにおいて、
     前記水銀ガス吸着剤は、通電により板状吸着剤を加熱するヒータを備えていることを特徴とする燃焼排ガス中の二酸化炭素回収設備の水銀除去システム。
  11.  請求項1乃至請求項7の何れか1項に記載の燃焼排ガス中の二酸化炭素回収設備の水銀除去システムにおいて、
     前記燃焼排ガス中の水銀は金属水銀であり、前記水銀ガス吸着塔は燃焼排ガス中の金属水銀を吸着して除去する金属水銀ガス吸着塔であることを特徴とする燃焼排ガス中の二酸化炭素回収設備の水銀除去システム。
  12.  燃焼排ガスの発生源から排出された燃焼排ガス中の水分を脱水装置によって除去し、この脱水装置で水分を除去した燃焼排ガス中の二酸化炭素を該脱水装置の下流側に設置された圧縮機によって圧縮し、圧縮された二酸化炭素を冷却器によって冷却して液化させることによって前記燃焼排ガスからこの二酸化炭素を回収する運転を行い、
     前記脱水装置の上流側、あるいは前記脱水装置と前記圧縮機との間に並列に複数基配設された燃焼排ガス中の水銀を吸着して除去する水銀ガス吸着塔のうち、一基の水銀ガス吸着搭に対して該脱水装置に流入する前の燃焼排ガス、あるいは該脱水装置を流下した後の燃焼排ガスを通気して前記燃焼排ガス中の水銀を除去する運転を行うと共に、前記水銀ガス吸着塔のうち、少なくとも他の1基の水銀ガス吸着搭に対して前記燃焼排ガスを通気させずに待機状態にしておくことを特徴とする燃焼排ガス中の二酸化炭素回収設備の水銀除去運転方法。
  13.  燃焼排ガスの発生源から排出された燃焼排ガス中の水分を脱水装置によって除去し、この脱水装置で水分を除去した燃焼排ガス中の二酸化炭素を該脱水装置の下流側に設置された圧縮機によって圧縮し、圧縮された二酸化炭素を冷却器によって冷却して液化させることによって前記燃焼排ガスからこの二酸化炭素を回収する運転を行い、
     前記脱水装置の上流側、あるいは前記脱水装置と前記圧縮機との間に並列に複数基設けた水銀ガス吸着塔によって燃焼排ガス中の水銀を吸着させて除去する際に、前記水銀ガス吸着塔を流下した燃焼排ガス中の水銀濃度に基づいてこれらの並列に複数基設設された水銀ガス吸着塔のうち、1基の水銀ガス吸着搭に対して該脱水装置に流入する前の燃焼排ガス、あるいは該脱水装置を流下した後の燃焼排ガスを通気するように制御して前記燃焼排ガス中の水銀を除去する運転を行い、
     前記水銀ガス吸着塔を流下した燃焼排ガス中の水銀濃度が所定値に達した場合には、前記水銀ガス吸着塔のうち、燃焼排ガスを通気させずに待機状態にある少なくとも1基の水銀ガス吸着搭に対して前記燃焼排ガスを通気させるように燃焼排ガスを切り替えて通気するように制御して前記燃焼排ガス中の水銀を除去する運転を行うことを特徴とする燃焼排ガス中の二酸化炭素回収の水銀除去運転方法。
  14.  請求項12又は請求項13項に記載の燃焼排ガス中の二酸化炭素回収の水銀除去運転方法において、
     並列に複数基設配設された各水銀ガス吸着塔に対する燃焼排ガスの通気、あるいは通気の待機状態の制御は、前記水銀ガス吸着塔を流下した燃焼排ガス中の水銀濃度の計測値と設定値との比較に基づいてこの水銀ガス吸着塔の上流側及び下流側にそれぞれ設置した入口バルブ及び出口バルブの開閉操作を行うことによって行うことを特徴とする燃焼排ガス中の二酸化炭素回収の水銀除去運転方法。
  15.  請求項12又は請求項13に記載の燃焼排ガス中の二酸化炭素回収設備の水銀除去運転方法において、
     前記燃焼排ガス中の水銀は金属水銀であり、前記水銀ガス吸着塔は燃焼排ガス中の金属水銀を吸着して除去する金属水銀ガス吸着塔であることを特徴とする燃焼排ガス中の二酸化炭素回収設備の水銀除去運転方法。
PCT/JP2008/064968 2008-08-22 2008-08-22 燃焼排ガス中の二酸化炭素回収設備の水銀除去システム、及び燃焼排ガス中の二酸化炭素回収設備の水銀除去運転方法 WO2010021053A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010525538A JP5253509B2 (ja) 2008-08-22 2008-08-22 燃焼排ガス中の二酸化炭素回収設備の水銀除去システム、及び燃焼排ガス中の二酸化炭素回収設備の水銀除去運転方法
PCT/JP2008/064968 WO2010021053A1 (ja) 2008-08-22 2008-08-22 燃焼排ガス中の二酸化炭素回収設備の水銀除去システム、及び燃焼排ガス中の二酸化炭素回収設備の水銀除去運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/064968 WO2010021053A1 (ja) 2008-08-22 2008-08-22 燃焼排ガス中の二酸化炭素回収設備の水銀除去システム、及び燃焼排ガス中の二酸化炭素回収設備の水銀除去運転方法

Publications (1)

Publication Number Publication Date
WO2010021053A1 true WO2010021053A1 (ja) 2010-02-25

Family

ID=41706949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/064968 WO2010021053A1 (ja) 2008-08-22 2008-08-22 燃焼排ガス中の二酸化炭素回収設備の水銀除去システム、及び燃焼排ガス中の二酸化炭素回収設備の水銀除去運転方法

Country Status (2)

Country Link
JP (1) JP5253509B2 (ja)
WO (1) WO2010021053A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2476475A1 (en) 2011-01-14 2012-07-18 Alstom Technology Ltd A method of cleaning a carbon dioxide containing gas, and a carbon dioxide purification system
US20130064746A1 (en) * 2011-09-12 2013-03-14 Hitachi, Ltd. CO2 Sorbent
JP2013095726A (ja) * 2011-11-03 2013-05-20 Toho Gas Co Ltd バイオガスのメタン濃縮方法及びメタン濃縮装置
JP2013095727A (ja) * 2011-11-03 2013-05-20 Toho Gas Co Ltd バイオガスのメタン濃縮方法及びメタン濃縮装置
WO2015041102A1 (ja) * 2013-09-17 2015-03-26 株式会社Ihi 排ガスの処理システム及び処理方法
US9333456B2 (en) 2013-05-03 2016-05-10 Fluor Technologies Corporation Systems and methods for multi-celled gas processing
JP2018132276A (ja) * 2017-02-17 2018-08-23 メタウォーター株式会社 排ガスからの水銀除去方法及びこの方法を用いた廃棄物処理装置
JP2018199128A (ja) * 2017-05-26 2018-12-20 ケミカル アンド メタル テクノロジーズ リミテッド ライアビリティ カンパニーChemical And Metal Technologies Llc 汚染排出物吸着剤化合物の広スペクトルマトリックス及び使用方法
US11534734B2 (en) 2014-07-25 2022-12-27 Chemical and Metal Technologies LLC CZTS sorbent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016014981A1 (en) * 2014-07-25 2016-01-28 Chemical and Metal Technologies LLC Emissions contaminant capture and collection device and method of use

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136458A (ja) * 1993-11-16 1995-05-30 Sumitomo Metal Mining Co Ltd 酸性排ガス中の水銀の除去方法
JP2005283094A (ja) * 2004-03-02 2005-10-13 Chugoku Electric Power Co Inc:The 排ガスの処理方法及びシステム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136458A (ja) * 1993-11-16 1995-05-30 Sumitomo Metal Mining Co Ltd 酸性排ガス中の水銀の除去方法
JP2005283094A (ja) * 2004-03-02 2005-10-13 Chugoku Electric Power Co Inc:The 排ガスの処理方法及びシステム

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103429315B (zh) * 2011-01-14 2017-02-15 通用电器技术有限公司 净化含二氧化碳的气体的方法和二氧化碳纯化***
WO2012095735A1 (en) 2011-01-14 2012-07-19 Alstom Technology Ltd A method of cleaning a carbon dioxide containing gas, and a carbon dioxide purification system
CN103429315A (zh) * 2011-01-14 2013-12-04 阿尔斯通技术有限公司 净化含二氧化碳的气体的方法和二氧化碳纯化***
EP2476475A1 (en) 2011-01-14 2012-07-18 Alstom Technology Ltd A method of cleaning a carbon dioxide containing gas, and a carbon dioxide purification system
US9132376B2 (en) 2011-01-14 2015-09-15 Alstom Technology Ltd Method of cleaning a carbon dioxide containing gas, and a carbon dioxide purification system
US20130064746A1 (en) * 2011-09-12 2013-03-14 Hitachi, Ltd. CO2 Sorbent
JP2013095726A (ja) * 2011-11-03 2013-05-20 Toho Gas Co Ltd バイオガスのメタン濃縮方法及びメタン濃縮装置
JP2013095727A (ja) * 2011-11-03 2013-05-20 Toho Gas Co Ltd バイオガスのメタン濃縮方法及びメタン濃縮装置
US9975083B2 (en) 2013-05-03 2018-05-22 Fluor Technologies Corporation Systems and methods for multi-celled gas processing
US9333456B2 (en) 2013-05-03 2016-05-10 Fluor Technologies Corporation Systems and methods for multi-celled gas processing
JP6070851B2 (ja) * 2013-09-17 2017-02-01 株式会社Ihi 排ガスの処理システム及び処理方法
CN105228728A (zh) * 2013-09-17 2016-01-06 株式会社Ihi 废气的处理***以及处理方法
WO2015041102A1 (ja) * 2013-09-17 2015-03-26 株式会社Ihi 排ガスの処理システム及び処理方法
US10532312B2 (en) 2013-09-17 2020-01-14 Ihi Corporation Exhaust gas processing system and processing method
US11534734B2 (en) 2014-07-25 2022-12-27 Chemical and Metal Technologies LLC CZTS sorbent
JP2018132276A (ja) * 2017-02-17 2018-08-23 メタウォーター株式会社 排ガスからの水銀除去方法及びこの方法を用いた廃棄物処理装置
JP7074425B2 (ja) 2017-02-17 2022-05-24 メタウォーター株式会社 排ガスからの水銀除去方法及びこの方法を用いた廃棄物処理装置
JP2018199128A (ja) * 2017-05-26 2018-12-20 ケミカル アンド メタル テクノロジーズ リミテッド ライアビリティ カンパニーChemical And Metal Technologies Llc 汚染排出物吸着剤化合物の広スペクトルマトリックス及び使用方法
JP7281251B2 (ja) 2017-05-26 2023-05-25 ケミカル アンド メタル テクノロジーズ リミテッド ライアビリティ カンパニー 汚染排出物吸着剤化合物の広スペクトルマトリックス及び使用方法

Also Published As

Publication number Publication date
JP5253509B2 (ja) 2013-07-31
JPWO2010021053A1 (ja) 2012-01-26

Similar Documents

Publication Publication Date Title
JP5253509B2 (ja) 燃焼排ガス中の二酸化炭素回収設備の水銀除去システム、及び燃焼排ガス中の二酸化炭素回収設備の水銀除去運転方法
JP7083783B2 (ja) 燃焼ガス流の少なくとも一部を分離する為の集積吸着ガス分離システム
US7927568B2 (en) Method of and apparatus for CO2 capture in oxy-combustion
US9132376B2 (en) Method of cleaning a carbon dioxide containing gas, and a carbon dioxide purification system
CA2830701C (en) A method of treating a carbon dioxide rich flue gas and a flue gas treatment system
US8752385B2 (en) Heat recovery system of the boiler with CO2 capture system
US20060248921A1 (en) Landfill gas purification and liquefaction process
US20190178574A1 (en) Carbon dioxide recovery method and recovery apparatus
JP2010069371A (ja) 火力発電プラントにおける石炭ボイラ排ガス中の二酸化炭素回収装置、及び二酸化炭素回収方法
CN108744866A (zh) 一种组合式油气净化装置及净化工艺
JP2014042904A (ja) 飛散アミン処理装置を備えたco2回収システムおよびその制御方法
US8702845B2 (en) System and method for low NOx emitting regeneration of desiccants
JP6642590B2 (ja) 二酸化炭素分離回収装置、これを用いた燃焼システム及び火力発電システム並びに二酸化炭素の分離回収方法
JP2021074657A (ja) 二酸化炭素回収装置、炭化水素生成装置、炭素循環システム、および、二酸化炭素回収方法
EP2540377A1 (en) A method of cleaning a carbon dioxide rich flue gas
JP5579630B2 (ja) 二酸化炭素回収システム
JP7359991B1 (ja) 二酸化炭素回収システム
JP2005164205A (ja) 燃焼設備の燃焼方法とその設備
CN114854464A (zh) 一种沼气净化回收装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08792639

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010525538

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08792639

Country of ref document: EP

Kind code of ref document: A1