WO2010018827A1 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
WO2010018827A1
WO2010018827A1 PCT/JP2009/064189 JP2009064189W WO2010018827A1 WO 2010018827 A1 WO2010018827 A1 WO 2010018827A1 JP 2009064189 W JP2009064189 W JP 2009064189W WO 2010018827 A1 WO2010018827 A1 WO 2010018827A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
emitting device
light emitter
fluorescent
Prior art date
Application number
PCT/JP2009/064189
Other languages
English (en)
French (fr)
Inventor
兵治 新山
翼 新山
Original Assignee
Niiyama Heiji
Niiyama Tsubasa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niiyama Heiji, Niiyama Tsubasa filed Critical Niiyama Heiji
Priority to CA2734292A priority Critical patent/CA2734292C/en
Priority to EP09806718A priority patent/EP2315264A4/en
Priority to US13/058,522 priority patent/US20110149578A1/en
Priority to CN2009801311823A priority patent/CN102119451A/zh
Priority to AU2009280606A priority patent/AU2009280606A1/en
Publication of WO2010018827A1 publication Critical patent/WO2010018827A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/10Elongate light sources, e.g. fluorescent tubes comprising a linear array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/644Heat extraction or cooling elements in intimate contact or integrated with parts of the device other than the semiconductor body

Definitions

  • the present invention relates to a light emitting device used as an alternative to a lighting fixture such as an incandescent lamp, a mercury lamp, or a fluorescent lamp.
  • an EL (Electro Luminescence) panel or a point light source LED (Light Emitting Diode) and a light guide plate are known.
  • the LED of the point light source includes an LED element housed in a cup above the mount lead, an external cap that covers the top of the blanket, and a phosphor layer that is applied to the inside of the external cap.
  • a vacuum or inert gas that improves the light resistance of a phosphor (see Patent Document 1).
  • the semiconductor light-emitting device which consists of a blue LED element, the heat insulation layer which has covered the main light emission surface side of the semiconductor light-emitting device, and the fluorescent substance layer arrange
  • a light-emitting device including a member and having a heat insulating layer formed in a reduced-pressure atmosphere has also been proposed (see Patent Document 2).
  • the EL panel has a problem that the luminance is low and the manufacturing process is complicated as compared with the LED.
  • a light emitting device using a point light source LED is relatively weak against heat, and it is difficult to achieve high luminance by flowing a large current.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a light-emitting device that is resistant to heat and capable of increasing luminance by increasing a light-emitting area.
  • a plate-like heat radiating member a substrate, a first conductive type first semiconductor layer, a light emitting layer, and a second conductive type second semiconductor layer mounted on the heat radiating member.
  • a light emitting body that emits light in a linear or planar manner, covers the light emitting body on the heat dissipation member, and is excited by light emitted from the light emitting body.
  • a light emitting device is provided that extends in the same direction as the extending direction.
  • the semiconductor stacked body since the semiconductor stacked body extends in a predetermined direction, a relatively large current can flow through the semiconductor stacked body, and the linear or planar light emitting body emits light with an arbitrary luminance. be able to.
  • the semiconductor stacked body since the semiconductor stacked body extends in a predetermined direction, the light emitting area can be made relatively large, and a substantially uniform light emitting state can be realized in the extending direction of the semiconductor stacked body.
  • Most of the heat generated in the semiconductor stack is transferred to the heat dissipation member and is insulated by the vacuum-heat-insulating layer on the light emitter side, so it hardly transfers to the fluorescent lens side and suppresses deterioration of the fluorescent lens. Can do.
  • the apparatus can be made thin. Furthermore, since the heat radiating member extends in the same direction as the extending direction of the light emitter, the heat radiating area of the heat radiating member can be increased, and a substantially uniform heat transfer state can be realized in the extending direction of the heat radiating member. The heat dissipation performance of the device can be improved.
  • the light emitter is preferably mounted at the center in the width direction of the heat radiating member.
  • the light emitter is composed of one element extending in the predetermined direction.
  • the light emitter is a single element, variations in luminance, chromaticity, etc. in the element can be visually recognized as if the light emitter is composed of a plurality of adjacent elements. There is nothing.
  • the light-emitting device includes a diffusion lens that covers the outside of the fluorescent lens and diffuses light transmitted through the fluorescent lens, and a lens-side vacuum heat insulating layer formed between the diffusion lens and the fluorescent lens. It is preferable.
  • the light emitting device since the light transmitted through the fluorescent lens is diffused by the diffusing lens, the light emitting state can be further uniformized. Further, since the lens-side vacuum heat insulating layer is formed, the heat given to the diffusing lens from the outside of the apparatus hardly transfers to the fluorescent lens, and the deterioration of the fluorescent lens can be suppressed by the heat generation factor outside the apparatus. .
  • ultraviolet light outside the device does not pass through the diffusion lens and enter the fluorescent lens, and it is possible to prevent the fluorescent lens from being deteriorated by the ultraviolet light.
  • the light emitting device preferably includes a heat insulating material provided on an outer edge side of the upper surface of the heat radiating member, and the diffusion lens is provided on the heat radiating member via the heat insulating material.
  • the diffusion lens is welded to the heat insulating material.
  • the diffusion lens and the heat insulating material can be connected without a gap, and the airtightness when the inside of the diffusion lens is evacuated can be ensured accurately.
  • the fluorescent lens is preferably provided on the heat dissipation member via the heat insulating material.
  • the fluorescent lens and the diffusing lens are preferably made of glass.
  • heat resistance, weather resistance and the like are improved as compared with a fluorescent lens and a diffusing lens made of resin.
  • the light emitting body can emit light linearly or planarly while taking the structure of the LED, so that the light emitting area can be increased to increase the brightness, and an incandescent lamp, mercury lamp, fluorescent lamp can be achieved.
  • a light emitting device suitable as a lighting fixture used as a substitute for a lighting fixture such as a lamp.
  • the deterioration of the fluorescent lens due to heat generated in the semiconductor laminate can be suppressed, it is strong against heat and a large current can be passed through the light emitter.
  • the heat dissipating member into a plate shape, the heat dissipating area can be increased and thinned.
  • FIG. 1 is an external appearance explanatory view of a light-emitting device showing a first embodiment of the present invention.
  • FIG. 2 is a schematic longitudinal sectional view of the light emitting device.
  • FIG. 3 is a plan view of the light emitting device.
  • FIG. 4 is a schematic longitudinal sectional view of a light emitting device showing a modification.
  • FIG. 5 is a schematic longitudinal sectional view of a light emitting device showing a modification.
  • FIG. 6 is a schematic longitudinal sectional view of a light-emitting device showing a second embodiment of the present invention.
  • FIG. 7 is a schematic plan view of a semiconductor wafer.
  • FIG. 8 is a schematic longitudinal sectional view of a light emitting device showing a modification.
  • FIG. 1 is an explanatory view of the appearance of a light emitting device
  • FIG. 2 is a schematic longitudinal sectional view of the light emitting device
  • FIG. 3 is a plan view of the light emitting device. is there.
  • the light emitting device 1 covers an external substrate 2 as a plate-like heat dissipation member, a light emitter 3 that is mounted on the external substrate 2 and emits light linearly, and a light emitter 3 on the external substrate 2.
  • a fluorescent lens 4 and a light emitter-side vacuum heat insulating layer 5 formed between the fluorescent lens 4 and the light emitter 3 are provided.
  • the light emitter 3 includes a growth substrate 31 and a semiconductor stacked body 32 formed on the growth substrate 31 by epitaxial growth.
  • the light emitting device 1 includes a reflector 6 that is provided on the external substrate 2 and reflects light emitted from the light emitter 3 in a predetermined direction.
  • the external substrate 2 is, for example, an interposer, made of an inorganic material, and excellent in heat dissipation.
  • the external substrate 2 functions alone as a heat radiating member, but it is also possible to connect a heat sink or the like to the external substrate 2.
  • the external substrate 2 is made of a ceramic such as AlN, and is formed in a quadrangular shape extending in a predetermined direction in plan view.
  • the light emitter 3 extends in the same direction as the external substrate 2 in a plan view, and emits light linearly on the rectangular external substrate 2.
  • the light emitter 3 is not limited to a linear shape, and may be formed in a planar shape that extends in two directions of the longitudinal direction and the width direction of the external substrate 2.
  • the light emitter 3 is a face-up type
  • the growth substrate 31 of the light emitter 3 is made of sapphire
  • the semiconductor stacked body 32 is made of a GaN-based material. As shown in FIG.
  • the semiconductor stacked body 32 includes an n-type semiconductor layer 33, a light emitting layer 34, and a p-type semiconductor layer 35 from the growth substrate 31 side, and on the n-type semiconductor layer 33 and the p-type semiconductor layer 35.
  • an n-side electrode 36 and a p-side electrode 37 are formed.
  • the n-type semiconductor layer 33 is formed by removing a part of the light emitting layer 34 and the p-type semiconductor layer 35 by etching and exposing a part of the n-type semiconductor layer 33, thereby forming the n-side electrode 36.
  • the electrodes 36 and 37 are electrically connected to the first electrode 2a and the second electrode 2b on the external substrate 2 by the first wire 3a and the second wire 3b.
  • a plurality of first wires 3 a and second wires 3 b are provided side by side in the extending direction of the light emitter 3.
  • the light emitter 3 emits blue light, and has a peak wavelength of 460 nm, for example.
  • the light emitter 3 is sealed with a transparent resin 7 such as an epoxy resin or silicone.
  • the transparent resin 7 does not contain a phosphor, and transmits light emitted from the light emitter 3 as it is.
  • the transparent resin 7 is preferably a resin having high heat resistance. It is possible to seal the light emitter 3 with an inorganic material such as glass.
  • the fluorescent lens 4 is made of a transparent material such as glass and contains a phosphor 8.
  • the glass used for the lens 4 is preferably a low melting point glass.
  • the fluorescent lens 4 may be formed of other transparent material such as fiber reinforced plastic (FRP (Fiber Reinforced Plastics)) instead of glass.
  • FRP Fiber Reinforced Plastics
  • the phosphor 8 emits light having a wavelength different from that of the light.
  • the illuminant 3 is a yellow phosphor that emits yellow light when excited by blue light.
  • YAG Yttrium Aluminium Garnet
  • silicate or the like is used.
  • the fluorescent lens 4 is provided via a heat insulating material 9 provided on the outer edge of the upper surface of the external substrate 2. That is, the heat insulating material 9 is formed so as to surround the inside of the external substrate 2 in plan view. By welding the fluorescent lens 4 to the heat insulating material 9, the inside and outside of the fluorescent lens 4 can be secured.
  • the material of the heat insulating material 9 is arbitrary, a phenol resin, an epoxy resin, a melamine resin, a silicone resin etc. can be used, for example.
  • the fluorescent lens 4 has a semi-elliptical cross section and extends in the same direction as the extending direction of the external substrate 2 so as to substantially coincide with the external substrate 2 in plan view.
  • the illuminant-side vacuum heat insulating layer 5 is formed by depressurizing a gas such as air from the atmospheric pressure.
  • a gas such as air from the atmospheric pressure.
  • “Vacuum” as used herein does not mean a state in which no substance is present, but a state in which the gas is depressurized to the extent that it has an adiabatic action.
  • the pressure inside the luminous body side vacuum heat insulating layer 5 is preferably 15 Torr or less, more preferably 1.0 Torr or less, and still more preferably 0.1 Torr or less.
  • the internal pressure of the light emitter-side vacuum heat insulating layer 5 can be set to 10 ⁇ 5 Torr or lower, or 10 ⁇ 9 Torr or lower.
  • the reflectors 6 are made of a heat insulating material and are provided as a pair on both sides of the light emitter 3 in the width direction.
  • the material of the reflecting plate 6 is arbitrary, a phenol resin, an epoxy resin, a melamine resin, a silicone resin etc. can be used, for example.
  • the reflection plate 6 partitions the space between the external substrate 2 and the fluorescent lens 4. It is preferable to form a metal thin film such as Al having a relatively high reflectance on the surface of the reflecting plate 6.
  • the light emitting device 1 when voltage is applied to the light emitter 3 through the first electrode 2a and the second electrode 2b of the external substrate 2, blue light is emitted from the light emitter 3, and blue light is emitted.
  • the light enters the fluorescent lens 4 directly or indirectly.
  • the blue light the light emitted in the direction of the reflecting plate 6 is reflected by the reflecting plate 6 and indirectly enters the fluorescent lens 4.
  • Part of the blue light incident on the fluorescent lens 4 is converted into yellow light by the phosphor 8, and mixed light of blue light and yellow light is emitted from the fluorescent lens 4 to the outside.
  • the mixed light is optically controlled on the surface of the fluorescent lens 4, and the mixed light is emitted in the intended direction. In this way, white light is emitted from the light emitting device 1.
  • the semiconductor stacked body 32 since the semiconductor stacked body 32 extends in a predetermined direction, a relatively large current is passed through the semiconductor stacked body 32 through the plurality of wires 3a and 3b, so that the linear light-emitting body 3 has an arbitrary luminance. Can emit light. Thereby, the brightness of the apparatus can be increased.
  • the heat radiating member is plate-shaped, it is easy to increase the heat radiating area, the heat radiating performance can be improved, and the apparatus can be made thin, which is extremely advantageous in practical use. Moreover, the light radiated
  • the heat generated from the light emitter 3 is transmitted from the center side to both end sides in the width direction of the external substrate 2.
  • the light emitter 3 is mounted on the end portion in the width direction of the external substrate 2, it is possible to dissipate heat efficiently.
  • the light emitting device 1 since the light emitter 3 is a single element, there are variations in luminance, chromaticity, and the like in the element as if the light emitter 3 is composed of a plurality of adjacent elements. It is never seen.
  • the light-emitting body 3 may be a flip chip type.
  • the emission wavelength, material, and the like of the light emitter 3 can be arbitrarily changed.
  • the light emitter 3 emits ultraviolet light
  • the fluorescent lens 4 may contain a blue phosphor, a green phosphor and a red phosphor excited by the ultraviolet light.
  • white light may be obtained by combining a plurality of types of light emitters 3 having different emission wavelengths without containing a phosphor.
  • the substrate of the light emitter 3 may be a support substrate that is bonded after the epitaxial formation, instead of the growth substrate 31.
  • a pair of reflecting plate 6 showed what divides between the fluorescent lens 4 and the external substrate 2, as shown in FIG. 4, for example, the reflector member which has a reflective surface on the external substrate 2 Of course, 16 may be installed.
  • the fluorescent lens 4 may have a two-layer structure of an inner fluorescent layer 4a and an outer diffusion layer 4b.
  • the phosphor 8 is dispersed in the inner fluorescent layer 4a, and the diffusing material 18 is dispersed in the outer diffusion layer 4b.
  • the fluorescent lens 4 may be made of glass to which ions of a predetermined element are added, and ions may be emitted by excitation light from the light emitter 3.
  • FIG. 6 is a schematic longitudinal sectional view of a light emitting device showing a second embodiment of the present invention.
  • the light-emitting device 101 covers an external substrate 102 as a plate-shaped heat dissipation member, a light-emitting body 103 that is mounted on the external substrate 102 and emits light in a linear shape, and a light-emitting body 103 on the external substrate 2.
  • a fluorescent lens 104 and a light emitter-side vacuum heat insulating layer 105 formed between the fluorescent lens 104 and the light emitter 103 are provided.
  • the light emitting device 101 also includes a diffusion lens 114 that covers the outside of the fluorescent lens 104 and diffuses light transmitted through the fluorescent lens 104, and a lens-side vacuum heat insulating layer 115 formed between the diffusion lens 114 and the fluorescent lens 104. It is equipped with.
  • the light emitter 103 includes a growth substrate 131 and a semiconductor stacked body 132 formed on the growth substrate 131 by epitaxial growth.
  • the light emitting device 101 includes a reflector 106 that is provided on the external substrate 102 and reflects light emitted from the light emitter 103 in a predetermined direction.
  • the external substrate 102 is made of ceramic such as AlN, for example, and is formed in a square shape extending in a predetermined direction in plan view.
  • the external substrate 102 is formed with a communication hole 121 that allows communication between the outside of the apparatus and the light emitter-side vacuum heat insulating layer 105, and the communication hole 121 is closed by a closing member 122.
  • the light emitter 103 extends in the same direction as the external substrate 102 in plan view, and emits light in a linear shape on the rectangular external substrate 102.
  • the semiconductor stacked body 132 includes an n-type semiconductor layer 133, a light emitting layer 134, and a p-type semiconductor layer 135 from the growth substrate 131 side.
  • a side electrode 137 is formed.
  • the light emitter 103 is not limited to a linear shape, and may be formed in a planar shape that extends in two directions of the longitudinal direction and the width direction of the external substrate 102.
  • the light emitter 103 is a flip chip type.
  • the light emitter 103 emits blue light and has a peak wavelength of 460 nm, for example.
  • the light emitter 103 is sealed with a transparent resin 107.
  • the light emitter 103 is mounted at the center in the width direction of the external substrate 2. Furthermore, the light emitter 103 is composed of one LED element extending in the same direction as the external substrate 102. That is, the light emitting device 101 of the present embodiment is completely different from the LED print head in which the light emitter is mounted on the end portion in the width direction of the external substrate and is composed of a plurality of elements.
  • the fluorescent lens 104 is made of a transparent material such as glass and contains a phosphor 108. When excited by light emitted from the light emitter 103, the phosphor 108 emits light having a wavelength different from that of the light. In the present embodiment, the light emitter 103 is a yellow phosphor that emits yellow light when excited by blue light.
  • the fluorescent lens 104 may be a glass to which ions of a predetermined element are added, and the glass itself emits fluorescence. For example, when trivalent praseodymium ions are added to glass, blue light, green light, and red light are emitted from the praseodymium ions as emission centers by excitation of blue light.
  • the diffusion lens 114 is made of a transparent material such as glass and contains a diffusion material 118.
  • the diffusion material 118 is, for example, ceramic particles such as TiO 2 and SiO 2 .
  • the diffusing lens 114 may include a diffusion layer on the surface instead of containing the diffusing material 118. Further, the diffusing lens 114 may be formed of other transparent material such as fiber reinforced plastic (FRP) instead of glass.
  • FRP fiber reinforced plastic
  • the diffusing lens 114 is configured not to transmit ultraviolet light and prevents entry of ultraviolet light from the outside.
  • ultraviolet light refers to light having a wavelength of 400 nm or less.
  • Examples of the configuration that does not transmit ultraviolet light include, for example, making the transparent material of the diffusion lens 114 a material that does not transmit ultraviolet light, and providing a diffusion layer that is opaque to ultraviolet light on the surface of the diffusion lens 114.
  • Examples of the material that does not transmit ultraviolet light include UV cut glass and UV cut resin.
  • Examples of the diffusion layer opaque to ultraviolet light include an ultraviolet absorbing film.
  • the diffusion lens 114 is provided via a heat insulating material 109 provided on the outer edge of the upper surface of the external substrate 102.
  • the fluorescent lens 104 is also provided via a heat insulating material 109.
  • the heat insulating material 109 is formed so as to surround the inside of the external substrate 102 in a plan view. By welding the diffusion lens 114 to the heat insulating material 109, the inside and outside of the diffusion lens 114 can be secured.
  • the material of the heat insulating material 109 is arbitrary, a phenol resin, an epoxy resin, a melamine resin, a silicone resin etc. can be used, for example.
  • the diffusion lens 114 has a semi-elliptical cross section and extends in the same direction as the extending direction of the external substrate 102, and is formed so as to substantially coincide with the external substrate 102 in plan view.
  • the fluorescent lens 104 is provided inside the diffusing lens 114 and has a cross-sectional shape similar to that of the diffusing lens 114.
  • the fluorescent lens 104 is formed shorter than the diffusing lens 114, and the inside and outside of the fluorescent lens 104 communicate with each other at both ends in the extending direction.
  • the light emitter side vacuum heat insulating layer 105 and the lens side vacuum heat insulating layer 115 are formed by depressurizing a gas such as air from the atmospheric pressure.
  • the light emitter side vacuum heat insulating layer 105 and the lens side vacuum heat insulating layer 115 communicate with each other at both ends of the fluorescent lens 104 and have the same internal pressure.
  • the internal pressure is preferably 15 Torr or less, more preferably 1.0 Torr or less, and more preferably 0.1 Torr or less. Further, the internal pressure can be 10 ⁇ 5 Torr or less, or 10 ⁇ 9 Torr or less.
  • the reflectors 106 are made of a heat insulating material and are provided as a pair on both sides of the light emitter 103 in the width direction.
  • the material of the reflecting plate 106 is arbitrary, for example, phenol resin, epoxy resin, melamine resin, silicone resin, or the like can be used.
  • the reflection plate 106 partitions a space between the external substrate 102 and the fluorescent lens 104 and a space between the external substrate 102 and the diffusion lens 114. It is preferable to form a metal thin film such as Al having a relatively high reflectance on the surface of the reflecting plate 106.
  • FIG. 7 is a schematic plan view of a semiconductor wafer.
  • the light emitter 103 is created by cutting a disk-shaped semiconductor wafer 200 in which a semiconductor stacked body 32 is formed on a growth substrate 31.
  • a long light emitter 103 is formed adjacent to the width direction thereof.
  • a substantially square light emitter 201 used for the point light source LED is formed outside each light emitter 103 in the semiconductor wafer 200.
  • an external substrate 102 is prepared separately from the light emitter 103, and a reflection plate 106 is attached to the external substrate 102. Thereafter, the light emitter 103 is flip-chip mounted on the external substrate 102 and sealed with a sealing resin 107.
  • the sealing resin 107 is formed by adhering a resin tape covering the light emitter 103 to the upper surface of the external substrate 102. Thereby, the sealing operation
  • a heat insulating material 109 to which the fluorescent lens 104 and the diffusion lens 114 are welded is provided on the external substrate 102. At this time, it is desirable that the heat insulating material 109 and the external substrate 102 are also joined by welding. Then, air is discharged through the discharge hole 121 of the external substrate 102 to make the light emitter side vacuum heat insulating layer 105 and the lens side vacuum heat insulating layer 115 in a vacuum state, and then the discharge hole 121 is closed by the closing member 122.
  • the light emitting device 101 when voltage is applied to the light emitter 103 through the first electrode 102a and the second electrode 102b of the external substrate 102, blue light is emitted from the light emitter 103, and blue light is emitted.
  • the light enters the fluorescent lens 104 directly or indirectly. Part of the blue light incident on the fluorescent lens 104 is converted into yellow light by the phosphor 108, and mixed light of blue light and yellow light is emitted from the fluorescent lens 104 toward the diffusion lens 114.
  • the mixed light radiated to the diffusing lens 114 side is diffused by the diffusing lens 114, optically controlled on the surface of the diffusing lens 114, and radiated in the intended direction. In this way, white light is emitted from the light emitting device 101.
  • the semiconductor stacked body 132 since the semiconductor stacked body 132 extends in a predetermined direction, a relatively large current can be passed through the semiconductor stacked body 132, and the linear light emitting body 103 can be made to have an arbitrary luminance. Can emit light.
  • the semiconductor stacked body 132 since the semiconductor stacked body 132 extends in a predetermined direction, the light emitting area can be made relatively large, and a substantially uniform light emitting state can be realized in the extending direction of the semiconductor stacked body 132.
  • the external substrate 102 extends in the same direction as the direction in which the light emitter 103 extends, the heat dissipation area of the external substrate 102 is increased, and a substantially uniform heat transfer state is realized in the extending direction of the external substrate 102. And the heat dissipation performance of the apparatus can be improved.
  • the heat generated in the semiconductor stacked body 132 is transmitted to the external substrate 102 side and is insulated by the light emitter-side vacuum heat insulating layer 105, and therefore hardly transmitted to the fluorescent lens 104 side. Deterioration can be suppressed. Further, since the heat generated in the semiconductor stacked body 132 hardly transfers to the fluorescent lens 104 side, the deterioration of the phosphor 108 contained in the fluorescent lens 104 is suppressed, and the color change of the luminescent color of the device over time is suppressed. Can be suppressed. Therefore, the inherent long life of the LED in the light emitter 103 can be utilized without considering the deterioration of the phosphor 108.
  • the light emitting device 101 of the present embodiment since the light transmitted through the fluorescent lens 104 is diffused by the diffusion lens 114, the light emission state can be further uniformized.
  • the lens-side vacuum heat insulating layer 115 is formed, the heat given to the diffusion lens 114 from the outside of the apparatus hardly transfers to the fluorescent lens 104, and the phosphor 108 of the fluorescent lens 104 is caused by a heat generation factor outside the apparatus. Can be prevented.
  • ultraviolet light outside the apparatus does not pass through the diffusion lens and enter the fluorescent lens, and it is possible to prevent the fluorescent lens from being deteriorated by the ultraviolet light. Accordingly, even when the light emitting device 101 is used outdoors, the fluorescent lens 104 is not deteriorated by the ultraviolet component contained in sunlight.
  • the diffusion lens 114 is provided on the external substrate 102 via the heat insulating material 109, the heat generated in the semiconductor stacked body 132 is directed to the diffusion lens 114 side. Almost no transmission occurs, and deterioration of the diffusing lens 114 can be suppressed.
  • heat is not transferred from the mounting portion of the light emitter 103 in the apparatus toward the diffusing lens 114, when the light emitter 103 is used as a lighting fixture for illuminating the room, the irradiated body, etc., the room, the irradiated body, etc. It is not heated and does not have a thermal effect caused by the light emitting device 101 on the room, the irradiated object, or the like.
  • the diffusing lens 114 and the heat insulating material 109 are welded, the diffusing lens 114 and the heat insulating material 109 can be connected without a gap, and airtightness when the inside of the diffusing lens 114 is evacuated is accurately ensured. be able to. Further, according to the light emitting device 101 of the present embodiment, since the fluorescent lens 104 and the diffusing lens 114 are made of glass, heat resistance, weather resistance, and the like are improved as compared with those made of resin.
  • the heat generated from the light emitter 103 is transmitted from the center side to both end sides in the width direction of the external substrate 102.
  • the light emitter 103 is a single element, there are variations in luminance, chromaticity, etc. in the element, as in the case where the light emitter 103 is composed of a plurality of adjacent elements. It is never seen.
  • the light emitter 103 is sealed with the sealing resin 107.
  • a sealing material such as the sealing resin 107 of the light emitter 103 is used. It is good also as a structure which abbreviate
  • a reflector member 116 made of a heat insulating material having a reflective surface is installed on the external substrate 102.
  • the reflector member 116 may be formed integrally with the external substrate 102.
  • a heat insulating material is provided on the entire contact portion between the reflector member 116 and the fluorescent lens 104 and the diffusion lens 114.
  • the diffusing lens 114 does not transmit ultraviolet light. However, even if a film that reflects ultraviolet light is formed on the surface, the penetration of ultraviolet light from the outside is prevented. can do.
  • the light emitter 103 may emit ultraviolet light
  • the fluorescent lens 104 may include a blue phosphor, a green phosphor, and a red phosphor that are excited by the ultraviolet light. In this case, it is possible to prevent the ultraviolet light from being emitted from the light emitter 103 to the outside by making the diffusing lens 114 not transmit the ultraviolet light.
  • the light emitter 103 is composed of one element.
  • the light emitter 103 is composed of a plurality of elements. Even if it exists, if the light-emitting device 101 is provided with the light-emitting body side vacuum heat insulation layer 105 and the lens side vacuum heat insulation layer 115, it cannot be overemphasized that the heat insulation effect by these can be acquired.
  • Example considered to be typical of this invention was described, this invention is not necessarily limited only to these Example structures, It can change suitably about a detailed detailed structure etc. suitably. Of course.
  • the light-emitting device of the present invention is used as an alternative to lighting fixtures such as incandescent lamps, mercury lamps, and fluorescent lamps. That is, the light-emitting device of the present invention is different from the LED print head that is not used for illumination in the technical field and does not share the functions and functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

【課題】熱に強く、発光面積を大きくして高輝度化を図ることのできる発光装置を提供する。 【解決手段】発光装置1は、板状の放熱部材2と、放熱部材2に搭載され、基板31及び基板31上に形成される半導体積層体32を有し線状あるいは面状に発光する発光体3と、放熱部材2上の発光体3を覆う蛍光レンズ4と、蛍光レンズ4と発光体3との間に形成された発光体側真空断熱層5と、を備え、発光面積を拡大しつつ放熱性能を確保した。

Description

発光装置
 本発明は、白熱灯、水銀灯、蛍光灯等の照明器具の代替として用いられる発光装置に関する。
 従来、面状の発光装置として、EL(Electro Luminescence)パネルからなるものや点光源のLED(Light Emitting Diode)及び導光板を備えたものが知られている。点光源のLEDとしては、マウントリード上部のカップ内に収納されたLED素子と、ブランケットの上部を覆う外部キャップと、外部キャップの内側に塗布された蛍光体層と、を有し、外部キャップの内部を真空又は不活性ガスとし、蛍光体の耐光性を向上させるものが提案されている(特許文献1参照)。
 また、点光源のLEDを備えたものとして、青色LED素子からなる半導体発光素子と、半導体発光素子の主発光面側を覆っている断熱層と、断熱層の上側に配置された蛍光体層と、半導体発光素子を収容しているハウジングと、半導体発光素子を搭載し、上部に電極を配したサブマウントと、サブマウントとボンディングワイヤーでおのおの電気的に接続されている2つのリードフレームと、放熱部材とを備え、断熱層を減圧雰囲気で形成した発光装置も提案されている(特許文献2参照)。
特開2004ー352928号公報 特開2007-66939号公報
 しかしながら、ELパネルはLEDと比較すると輝度が低く製造工程が複雑になるという問題点がある。また、点光源のLEDを用いた発光装置は、熱に対して比較的弱く、大電流を流して高輝度を実現することは困難である。
 本発明は、前記事情に鑑みてなされたものであり、その目的とするところは、熱に強く、発光面積を大きくして高輝度化を図ることのできる発光装置を提供することにある。
 前記目的を達成するため、本発明では、板状の放熱部材と、前記放熱部材に搭載され、基板と、第1導電型の第1半導体層、発光層及び第2導電型の第2半導体層を含み所定方向へ延びる半導体積層体と、を有し、線状あるいは面状に発光する発光体と、前記放熱部材上の前記発光体を覆い、前記発光体から発せられる光により励起されると当該光と異なる波長の光を発する蛍光体を含有する蛍光レンズと、前記蛍光レンズと前記発光体との間に形成された発光体側真空断熱層と、を備え、前記放熱部材は、前記発光体の延在方向と同方向へ延びる発光装置が提供される。
 この発光装置によれば、半導体積層体が所定方向へ延びるようにしたので、当該半導体積層体に比較的大きな電流を流すことができ、線状あるいは面状の発光体を任意の輝度で発光させることができる。また、半導体積層体が所定方向へ延びていることから、発光面積を比較的大きくするとともに、当該半導体積層体の延在方向についてほぼ均一な発光状態を実現することができる。半導体積層体にて生じた熱は、その殆どが放熱部材側へ伝達され、発光体側真空断熱層により断熱されていることから蛍光レンズ側へは殆ど伝達せず、蛍光レンズの劣化を抑制することができる。また、放熱部材が板状であるので、装置を薄型とすることができる。さらに、放熱部材が発光体の延在方向と同方向へ延びることから、放熱部材の放熱面積を大きくするとともに、当該放熱部材の延在方向についてほぼ均一な伝熱状態を実現することができ、装置の放熱性能を向上させることができる。
 上記発光装置において、前記発光体は、前記放熱部材の幅方向中央に搭載されることが好ましい。
 この発光装置によれば、発光体から発せられる熱は、放熱部材の幅方向について中央側から両端側へ伝達する。これにより、放熱部材の幅方向端部に発光体が搭載された場合と比べ、発熱を効率よく放散させることができる。
 上記発光装置において、前記発光体は、前記所定方向へ延びる1つの素子からなることが好ましい。
 この発光装置によれば、発光体が1つの素子であることから、発光体が互いに隣接する複数の素子から構成されるもののように、素子における輝度、色度等のばらつきが視認されるようなことはない。
 上記発光装置において、前記蛍光レンズの外側を覆い、前記蛍光レンズを透過した光を拡散させる拡散レンズと、前記拡散レンズと前記蛍光レンズとの間に形成されたレンズ側真空断熱層と、を備えることが好ましい。
 この発光装置によれば、蛍光レンズを透過した光が拡散レンズによって拡散されるので、発光状態のさらなる均一化を図ることができる。また、レンズ側真空断熱層が形成されているので、装置外部から拡散レンズに与えられた熱が蛍光レンズへは殆ど伝達せず、装置外部の発熱要因により蛍光レンズの劣化を抑制することができる。
 上記発光装置において、前記拡散レンズは、外部からの紫外光の侵入を阻止することが好ましい。
 この発光装置によれば、装置外部の紫外光が拡散レンズを透過して蛍光レンズへ入射することがなく、紫外光により蛍光レンズが劣化することを防止することができる。
 上記発光装置において、前記放熱部材の上面の外縁側に設けられた断熱材を備え、前記拡散レンズは、前記断熱材を介して前記放熱部材に設けられていることが好ましい。
 この発光装置によれば、半導体積層体にて生じた熱が、拡散レンズ側へ殆ど伝達しないことから、拡散レンズの劣化を抑制することができる。
 上記発光装置において、前記拡散レンズは、前記断熱材に溶着されていることが好ましい。
 この発光装置によれば、拡散レンズと断熱材を隙間なく接続することができ、拡散レンズの内側を真空としたときの気密性を的確に確保することができる。
 上記発光装置において、前記蛍光レンズは、前記断熱材を介して前記放熱部材に設けられていることが好ましい。
 この発光装置によれば、半導体積層体にて生じた熱が、蛍光レンズ側へ殆ど伝達しないことから、蛍光レンズの劣化を抑制し、装置の発光色の経時的な色変化を抑制することができる。
 上記発光装置において、前記蛍光レンズ及び前記拡散レンズは、ガラスからなることが好ましい。
 この発光装置によれば、蛍光レンズ及び拡散レンズが樹脂からなるものに比べて、耐熱性、耐候性等が向上する。
 上記発光装置において、前記発光体は、封止材により封止されていなくてもよい。
 この発光装置によれば、発光装置から放射される光が封止材の劣化によって経時的に変化することはない。また、装置の製造時に発光体の封止工程を省略することができ、発光装置の製造コストの低減を図ることもできる。
 本発明によれば、LEDの構造をとりながら、発光体を線状あるいは面状に発光させることができるので、発光面積を大きくして高輝度化を図ることができ、白熱灯、水銀灯、蛍光灯等の照明器具の代替として用いられる照明器具として好適な発光装置が提供される。また、半導体積層体にて生じた熱による蛍光レンズの劣化を抑制することができるので、熱に強く、発光体に大電流を流すことが可能となる。さらに、放熱部材を板状とすることにより、放熱面積を大きくして薄型とすることができる。
図1は、本発明の第1の実施形態を示す発光装置の外観説明図である。 図2は、発光装置の概略縦断面図である。 図3は、発光装置の平面図である。 図4は、変形例を示す発光装置の概略縦断面図である。 図5は、変形例を示す発光装置の概略縦断面図である。 図6は、本発明の第2の実施形態を示す発光装置の概略縦断面図である。 図7は、半導体ウェハの模式平面図である。 図8は、変形例を示す発光装置の概略縦断面図である。
 1  発光装置
 2  外部基板
 2a  第1電極
 2b  第2電極
 3  発光体
 3a  第1ワイヤ
 3b  第2ワイヤ
 4  蛍光レンズ
 4a  蛍光層
 4b  拡散層
 5  発光体側真空断熱層
 6  反射板
 7  封止樹脂
 8  蛍光体
 9  断熱材
 16  リフレクタ部材
 18  拡散材
 31  成長基板
 32  半導体積層体
 33  n型半導体層
 34  発光層
 35  p型半導体層
 36  n側電極
 37  p側電極
 101 発光装置
 102 外部基板
 102a 第1電極
 102b 第2電極
 103 発光体
 103a 第1ワイヤ
 103b 第2ワイヤ
 104 蛍光レンズ
 105 発光体側真空断熱層
 106 反射板
 107 封止樹脂
 108 蛍光体
 109 断熱材
 115 レンズ側真空断熱層
 116 リフレクタ部材
 118 拡散材
 121 連通孔
 122 閉塞部材
 131 成長基板
 132 半導体積層体
 133 n型半導体層
 134 発光層
 135 p型半導体層
 136 n側電極
 137 p側電極
 図1から図3は本発明の第1の実施形態を示すものであり、図1は発光装置の外観説明図、図2は発光装置の概略縦断面図、図3は発光装置の平面図である。
 図1に示すように、発光装置1は、板状の放熱部材としての外部基板2と、外部基板2に搭載され線状に発光する発光体3と、外部基板2上の発光体3を覆う蛍光レンズ4と、蛍光レンズ4と発光体3の間に形成された発光体側真空断熱層5と、を備えている。また、発光体3は、成長基板31と、成長基板31上にエピタキシャル成長により形成された半導体積層体32と、を有している。また、発光装置1は、外部基板2上に設けられ、発光体3から発せられる光を所定方向へ反射する反射板6を備えている。
 外部基板2は、例えばインターポーザであり、無機材料からなり、放熱性に優れている。図1の発光装置1では、外部基板2は単独で放熱部材として機能しているが、外部基板2にヒートシンク等を接続することも可能である。本実施形態においては、外部基板2は、例えばAlNのようなセラミックからなり、平面視にて所定方向へ延びる四角形状に形成されている。
 図3に示すように、発光体3は、平面視にて外部基板2と同方向へ延び、四角形状の外部基板2上にて線状に発光する。尚、発光体3は線状に限らず、外部基板2の長手方向と幅方向の2方向に広がる面状に形成されていてもよい。本実施形態においては、発光体3はフェイスアップタイプであり、発光体3の成長基板31はサファイアからなり、半導体積層体32はGaN系材料からなる。図2に示すように、半導体積層体32は、成長基板31側からn型半導体層33、発光層34、p型半導体層35を有し、n型半導体層33上及びp型半導体層35上にn側電極36及びp側電極37が形成されている。尚、n型半導体層33は、発光層34及びp型半導体層35の一部をエッチングにより除去して一部を露出させた後にn側電極36が形成される。各電極36,37は、外部基板2上の第1電極2a及び第2電極2bに第1ワイヤ3a及び第2ワイヤ3bにより電気的に接続されている。図3に示すように、本実施形態においては、第1ワイヤ3a及び第2ワイヤ3bが、発光体3の延在方向に並んで複数設けられている。
 また、発光体3は、青色光を発し、例えばピーク波長が460nmである。また、発光体3は、エポキシ樹脂、シリコーン等の透明樹脂7により封止されている。この透明樹脂7には、蛍光体が含有されておらず、発光体3から発せられた光をそのまま透過する。透明樹脂7は、耐熱性が高い樹脂が好ましい。尚、発光体3をガラス等の無機材料により封止することも可能である。
 また、発光体3は、外部基板2の幅方向中央に搭載される。さらに、発光体3は、外部基板2と同方向へ延びる1つのLEDの素子からなる。すなわち、本実施形態の発光装置1は、発光体が外部基板の幅方向端部に搭載され複数の素子から構成されるLEDプリントヘッドの形態とは、全く異なっている。
 図2に示すように、蛍光レンズ4は、例えばガラス等の透明材からなり、蛍光体8を含有している。レンズ4に用いるガラスとしては、低融点のガラスが好ましい。尚、蛍光レンズ4をガラスでなく、繊維強化プラスチック(FRP(Fiber Reinforced Plastics))等の他の透明材により形成することもできる。蛍光体8は、発光体3から発せられる光により励起されると、当該光と異なる波長の光を発する。本実施形態においては、発光体3は、青色光により励起されると黄色光を発する黄色蛍光体であり、例えばYAG(Yttrium Aluminium Garnet)、ケイ酸塩系等が用いられる。また、蛍光レンズ4は、外部基板2の上面の外縁に設けられた断熱材9を介して設けられている。すなわち、断熱材9は、平面視にて、外部基板2の内側を包囲するよう形成されている。蛍光レンズ4を断熱材9に溶着することにより、蛍光レンズ4内外の気密を確保することができる。断熱材9の材質は任意であるが、例えば、フェノール樹脂、エポキシ樹脂、メラミン樹脂、シリコーン樹脂等を用いることができる。蛍光レンズ4は、断面が半楕円形で外部基板2の延在方向と同方向へ延び、平面視にて外部基板2と略一致するよう形成されている。
 発光体側真空断熱層5は、空気等の気体を大気圧より減圧することにより形成される。ここでいう「真空」とは、完全に物質が存在しない状態を言うのではなく、断熱作用を有する程度に気体が減圧された状態をいう。発光体側真空断熱層5の内部の圧力は、15Torr以下が好ましく、1.0Torr以下がさらに好ましく、より好ましくは0.1Torr以下である。また、発光体側真空断熱層5の内部の圧力を、10-5Torr以下としたり、10-9Torr以下とすることも可能である。
 反射板6は、断熱材からなり、発光体3の幅方向両側に一対に設けられる。反射板6の材質は任意であるが、例えば、フェノール樹脂、エポキシ樹脂、メラミン樹脂、シリコーン樹脂等を用いることができる。図2に示すように、反射板6は、外部基板2及び蛍光レンズ4の間の空間を仕切っている。反射板6の表面には、反射率の比較的高いAl等の金属薄膜を形成することが好ましい。
 以上のように構成された発光装置1によれば、外部基板2の第1電極2a及び第2電極2bを通じて発光体3に電圧を印加すると、発光体3から青色光が発せられ、青色光が直接的又は間接的に蛍光レンズ4へ入射する。青色光のうち、反射板6方向へ出射したものは、反射板6により反射されて蛍光レンズ4へ間接的に入射する。蛍光レンズ4へ入射した青色光の一部は蛍光体8により黄色光に変換され、蛍光レンズ4から外部へは青色光と黄色光の混合光が放射される。このとき、蛍光レンズ4の表面にて混合光が光学制御され、所期の方向へ混合光が放射される。このようにして、発光装置1から白色光が放射される。
 本実施形態では、半導体積層体32が所定方向へ延びるようにしたので、複数のワイヤ3a,3bを通じて半導体積層体32に比較的大きな電流を流して、線状の発光体3を任意の輝度で発光させることができる。これにより、装置の高輝度化を図ることができる。
 また、発光体3の発光時に発光体3にて生じた熱は、その殆どが外部基板2側へ伝達され、発光体側真空断熱層5により断熱されていることから蛍光レンズ4側へは殆ど伝達せず、蛍光レンズ4に含有された蛍光体8の劣化を抑制することができる。また、装置における発光体3の搭載部から蛍光レンズ4方向へ熱が伝達しないことから、発光体3を室内、被照射体等を照らす照明器具として用いた場合に、室内、被照射体等が加熱されることはなく、室内、被照射体等に発光装置1に起因する熱的な影響を及ぼすことはない。さらに、半導体積層体32にて生じた熱が、蛍光レンズ4側へ殆ど伝達しないことから、蛍光レンズ4に含有される蛍光体8の劣化を抑制し、装置の発光色の経時的な色変化を抑制することができる。従って、蛍光体8の劣化を考慮せずに、発光体3におけるLEDの本来の長寿命を活かすことができる。
 また、放熱部材が板状であるので、放熱面積を大きくすることが容易であり、放熱性能を向上させることができるし、装置を薄型とすることができ、実用に際して極めて有利である。また、反射板6を設けたことにより、発光体3から放射される光を効率良く取り出すことができる。
 また、本実施形態の発光装置1によれば、発光体3から発せられる熱は、外部基板2の幅方向について中央側から両端側へ伝達する。これにより、外部基板2の幅方向端部に発光体3が搭載された場合と比べ、発熱を効率よく放散させることができる。さらに、この発光装置1によれば、発光体3が1つの素子であることから、発光体3が互いに隣接する複数の素子から構成されるもののように、素子における輝度、色度等のばらつきが視認されるようなことはない。
 尚、前記実施形態においては、発光体3がフェイスアップタイプであるものを示したが、例えば図4に示すように、発光体3がフリップチップタイプであってもよい。また、発光体3の発光波長、材質等も任意に変更することができる。例えば、発光体3が紫外光を発するものとし、蛍光レンズ4に紫外光により励起される青色蛍光体、緑色蛍光体及び赤色蛍光体を含有させたものであってもよい。また、蛍光体を含有させずに、互いに異なる発光波長を有する複数種類の発光体3の組合せにより白色光を得るものであってもよい。また、例えば、発光体3の基板を成長基板31でなく、エピタキシャル形成後に貼り合わせられる支持基板としてもよい。
 また、前記実施形態においては、一対の反射板6が蛍光レンズ4と外部基板2の間を仕切るものを示したが、例えば図4に示すように、外部基板2上に反射面を有するリフレクタ部材16を設置してもよいことは勿論である。
 また、前記実施形態においては、発光体3を封止樹脂7により封止するものを示したが、発光体3をガラスにより封止することで、装置の耐熱性能をさらに向上させることができる。
 また、例えば図5に示すように、蛍光レンズ4を、内側の蛍光層4aと外側の拡散層4bの2層構造としてもよい。内側の蛍光層4aには蛍光体8が分散され、外側の拡散層4bには拡散材18が分散される。さらには、蛍光レンズ4を所定の元素のイオンが添加されたガラスとし、発光体3からの励起光によりイオンが発光するものとしてもよい。
 図6は本発明の第2の実施形態を示す発光装置の概略縦断面図である。
 図6に示すように、発光装置101は、板状の放熱部材としての外部基板102と、外部基板102に搭載され線状に発光する発光体103と、外部基板2上の発光体103を覆う蛍光レンズ104と、蛍光レンズ104と発光体103の間に形成された発光体側真空断熱層105と、を備えている。また、発光装置101は、蛍光レンズ104の外側を覆い蛍光レンズ104を透過した光を拡散させる拡散レンズ114と、拡散レンズ114と蛍光レンズ104との間に形成されたレンズ側真空断熱層115と、を備えている。また、発光体103は、成長基板131と、成長基板131上にエピタキシャル成長により形成された半導体積層体132と、を有している。また、発光装置101は、外部基板102上に設けられ、発光体103から発せられる光を所定方向へ反射する反射板106を備えている。
 外部基板102は、例えばAlNのようなセラミックからなり、平面視にて所定方向へ延びる四角形状に形成されている。外部基板102には装置外部と発光体側真空断熱層105とを連通する連通孔121が形成され、連通孔121は、閉塞部材122により閉塞されている。
 発光体103は、平面視にて外部基板102と同方向へ延び、四角形状の外部基板102上にて線状に発光する。半導体積層体132は、成長基板131側からn型半導体層133、発光層134、p型半導体層135を有し、n型半導体層133上及びp型半導体層135上にn側電極136及びp側電極137が形成されている。尚、発光体103は線状に限らず、外部基板102の長手方向と幅方向の2方向に広がる面状に形成されていてもよい。本実施形態においては、発光体103はフリップチップタイプである。また、発光体103は、青色光を発し、例えばピーク波長が460nmである。発光体103は、透明樹脂107により封止されている。
 また、発光体103は、外部基板2の幅方向中央に搭載される。さらに、発光体103は、外部基板102と同方向へ延びる1つのLEDの素子からなる。すなわち、本実施形態の発光装置101は、発光体が外部基板の幅方向端部に搭載され複数の素子から構成されるLEDプリントヘッドの形態とは、全く異なっている。
 蛍光レンズ104は、例えばガラス等の透明材からなり、蛍光体108を含有している。蛍光体108は、発光体103から発せられる光により励起されると、当該光と異なる波長の光を発する。本実施形態においては、発光体103は、青色光により励起されると黄色光を発する黄色蛍光体である。尚、蛍光レンズ104を、所定の元素のイオンが添加されたガラスとし、ガラス自体が蛍光を発するものであってもよい。例えば、ガラスに3価のプラセオジムイオンを添加すると、青色光の励起により、発光中心としてのプラセオジムイオンから、青色光、緑色光及び赤色光が発せられる。
 拡散レンズ114は、例えばガラス等の透明材からなり、拡散材118を含有している。本実施形態においては、拡散材118は、例えばTiO,SiO等のセラミックの粒子である。尚、拡散レンズ114は、拡散材118を含有させるのではなく、表面に拡散層を設けたものであってもよい。また、拡散レンズ114をガラスでなく、繊維強化プラスチック(FRP(Fiber Reinforced Plastics))等の他の透明材により形成することもできる。
 また、拡散レンズ114は、紫外光を透過しないよう構成され、外部からの紫外光の侵入を阻止する。ここで、紫外光とは波長が400nm以下の光をいうものとする。紫外光を透過しない構成としては、例えば、拡散レンズ114の透明材を紫外光を透過しない材質とすること、拡散レンズ114の表面に紫外光に対して不透明な拡散層を設けること等が挙げられる。紫外光を透過しない材質としては、例えばUVカットガラス、UVカット樹脂等が挙げられる。紫外光に対して不透明な拡散層としては、紫外線吸収フィルム等が挙げられる。
 また、拡散レンズ114は、外部基板102の上面の外縁に設けられた断熱材109を介して設けられている。また、蛍光レンズ104も、断熱材109を介して設けられている。断熱材109は、平面視にて、外部基板102の内側を包囲するよう形成されている。拡散レンズ114を断熱材109に溶着することにより、拡散レンズ114内外の気密を確保することができる。断熱材109の材質は任意であるが、例えば、フェノール樹脂、エポキシ樹脂、メラミン樹脂、シリコーン樹脂等を用いることができる。拡散レンズ114は、断面が半楕円形で外部基板102の延在方向と同方向へ延び、平面視にて外部基板102と略一致するよう形成されている。
 また、蛍光レンズ104は、拡散レンズ114の内側に設けられ、断面形状が拡散レンズ114と相似している。蛍光レンズ104は、拡散レンズ114よりも短尺に形成されており、延在方向両端で蛍光レンズ104の内外が連通している。
 発光体側真空断熱層105及びレンズ側真空断熱層115は、空気等の気体を大気圧より減圧することにより形成される。本実施形態においては、発光体側真空断熱層105及びレンズ側真空断熱層115は、蛍光レンズ104の両端にて互いに連通しており、同じ内部圧力となっている。内部の圧力は、15Torr以下が好ましく、1.0Torr以下がさらに好ましく、より好ましくは0.1Torr以下である。また、内部の圧力を、10-5Torr以下としたり、10-9Torr以下とすることも可能である。
 反射板106は、断熱材からなり、発光体103の幅方向両側に一対に設けられる。反射板106の材質は任意であるが、例えば、フェノール樹脂、エポキシ樹脂、メラミン樹脂、シリコーン樹脂等を用いることができる。図2に示すように、反射板106は、外部基板102及び蛍光レンズ104の間の空間と、外部基板102及び拡散レンズ114の間の空間を仕切っている。反射板106の表面には、反射率の比較的高いAl等の金属薄膜を形成することが好ましい。
 以上のように構成された発光装置1は、次のように製造される。図7は、半導体ウェハの模式平面図である。
 図7に示すように、発光体103は、成長基板31上に半導体積層体32が形成された円板状の半導体ウェハ200をカットすることにより作成される。半導体ウェハ200の中央側には、長尺な発光体103がその幅方向に隣接して形成される。そして、半導体ウェハ200における各発光体103の外側には、点光源LEDに用いられる略正方形の発光体201が形成される。
 また、発光体103とは別に外部基板102を用意し、外部基板102に反射板106を取り付ける。この後、発光体103を、外部基板102にフリップチップ実装し、封止樹脂107で封止する。本実施形態においては、封止樹脂107は、発光体103を覆う樹脂テープを外部基板102の上面に接着させることにより形成される。これにより、発光体103の封止作業を簡単容易に行うことができる。
 次いで、蛍光レンズ104及び拡散レンズ114が溶着された断熱材109を外部基板102に設ける。このとき、断熱材109と外部基板102も溶着により接合することが望ましい。
 そして、外部基板102の排出孔121を通じて空気を排出し、発光体側真空断熱層105及びレンズ側真空断熱層115を真空状態とした後、排出孔121を閉塞部材122により塞ぐ。
 以上のように構成された発光装置101によれば、外部基板102の第1電極102a及び第2電極102bを通じて発光体103に電圧を印加すると、発光体103から青色光が発せられ、青色光が直接的又は間接的に蛍光レンズ104へ入射する。蛍光レンズ104へ入射した青色光の一部は蛍光体108により黄色光に変換され、蛍光レンズ104から拡散レンズ114側へは青色光と黄色光の混合光が放射される。拡散レンズ114側へ放射された混合光は、拡散レンズ114にて拡散された後、拡散レンズ114の表面にて光学制御され、所期の方向へ放射される。このようにして、発光装置101から白色光が放射される。
 また、この発光装置101によれば、半導体積層体132が所定方向へ延びるようにしたので、半導体積層体132に比較的大きな電流を流すことができ、線状の発光体103を任意の輝度で発光させることができる。また、半導体積層体132が所定方向へ延びていることから、発光面積を比較的大きくするとともに、半導体積層体132の延在方向についてほぼ均一な発光状態を実現することができる。さらに、外部基板102が発光体103の延在方向と同方向へ延びることから、外部基板102の放熱面積を大きくするとともに、外部基板102の延在方向についてほぼ均一な伝熱状態を実現することができ、装置の放熱性能を向上させることができる。
 半導体積層体132にて生じた熱は、その殆どが外部基板102側へ伝達され、発光体側真空断熱層105により断熱されていることから蛍光レンズ104側へは殆ど伝達せず、蛍光レンズ104の劣化を抑制することができる。また、半導体積層体132にて生じた熱が、蛍光レンズ104側へ殆ど伝達しないことから、蛍光レンズ104に含有される蛍光体108の劣化を抑制し、装置の発光色の経時的な色変化を抑制することができる。従って、蛍光体108の劣化を考慮せずに、発光体103におけるLEDの本来の長寿命を活かすことができる。
 また、本実施形態の発光装置101によれば、蛍光レンズ104を透過した光が拡散レンズ114によって拡散されるので、発光状態のさらなる均一化を図ることができる。また、レンズ側真空断熱層115が形成されているので、装置外部から拡散レンズ114に与えられた熱が蛍光レンズ104へは殆ど伝達せず、装置外部の発熱要因により蛍光レンズ104の蛍光体108の劣化を抑制することができる。さらに、装置外部の紫外光が拡散レンズを透過して蛍光レンズへ入射することがなく、紫外光により蛍光レンズが劣化することを防止することができる。従って、発光装置101が屋外にて使用された場合であっても、太陽光に含まれる紫外成分により蛍光レンズ104が劣化することはない。
 また、本実施形態の発光装置101によれば、拡散レンズ114が断熱材109を介して外部基板102に設けられていることから、半導体積層体132にて生じた熱が、拡散レンズ114側へ殆ど伝達せず、拡散レンズ114の劣化を抑制することができる。また、装置における発光体103の搭載部から拡散レンズ114方向へ熱が伝達しないことから、発光体103を室内、被照射体等を照らす照明器具として用いた場合に、室内、被照射体等が加熱されることはなく、室内、被照射体等に発光装置101に起因する熱的な影響を及ぼすことはない。
 さらに、拡散レンズ114と断熱材109が溶着されているので、拡散レンズ114と断熱材109を隙間なく接続することができ、拡散レンズ114の内側を真空としたときの気密性を的確に確保することができる。
 また、本実施形態の発光装置101によれば、蛍光レンズ104及び拡散レンズ114がガラスであるので、樹脂からなるものに比べて、耐熱性、耐候性等が向上する。
 また、本実施形態の発光装置101によれば、発光体103から発せられる熱は、外部基板102の幅方向について中央側から両端側へ伝達する。これにより、外部基板102の幅方向端部に発光体3が搭載された場合と比べ、発熱を効率よく放散させることができる。さらに、この発光装置101によれば、発光体103が1つの素子であることから、発光体103が互いに隣接する複数の素子から構成されるもののように、素子における輝度、色度等のばらつきが視認されるようなことはない。
 尚、第2の実施形態においては、発光体103を封止樹脂107により封止するものを示したが、例えば図8に示すように、発光体103の封止樹脂107等の封止材を省略して発光体103が封止材により封止されていない構成としてもよい。これにより、発光装置101から放射される光が封止材の劣化によって経時的に変化することはない。また、装置の製造時に発光体103の封止工程を省略することができ、発光装置101の製造コストの低減を図ることもできる。
 図8の発光装置101では、発光体103は、フェイスアップタイプであり、発光体103は図示しない両面テープにより外部基板102と接合され、第1ワイヤ103a及び第2ワイヤ103bにより第1電極102a及び第2電極102bと電気的に接続されている。このように封止樹脂107を省略したとしても、発光体103が拡散レンズ114、外部基板102等により密封されているから、ワイヤ103a,103bに付加が加わって断線したり、発光体103に塵埃等が付着することはない。さらに、装置内部が真空状態であることから発光体103及びワイヤ103a,103bが雰囲気気体と化学反応を起こすようなこともない。
 図8の発光装置101では、外部基板102上に反射面を有する断熱材料からなるリフレクタ部材116が設置されている。ここで、リフレクタ部材116を外部基板102と一体的に形成してもよい。この場合、リフレクタ部材116と蛍光レンズ104及び拡散レンズ114の接触部分には全面的に断熱材を設けることが好ましい。
 また、第2の実施形態においては、拡散レンズ114が紫外光を透過しないものを示したが、表面に紫外光を反射する被膜を形成するなどしても、外部からの紫外光の侵入を阻止することができる。
 また、発光体103を紫外光を発するものとし、蛍光レンズ104に紫外光により励起される青色蛍光体、緑色蛍光体及び赤色蛍光体を含有させたものであってもよい。この場合、拡散レンズ114が紫外光を透過しないものとすることで、発光体103から紫外光が外部へ放出することを防止することができる。
 また、第2の実施形態においては、発光体103が1つの素子から構成されるものを示したが、例えば発光体103が複数の素子により構成されるなど、発光体103がどのような構成であったとしても、発光装置101が発光体側真空断熱層105及びレンズ側真空断熱層115を備えていれば、これらによる断熱効果を得ることができることは言うまでもない。
 以上、本発明の代表的と思われる実施例について説明したが、本発明は必ずしもこれらの実施例構造のみに限定されるものではなく、具体的な細部構造等について適宜に変更可能であることは勿論である。
 本発明の発光装置は、白熱灯、水銀灯、蛍光灯等の照明器具の代替として用いられる。すなわち、本発明の発光装置は、照明に用いられないLEDプリントヘッドとは、技術分野が異なるとともに作用・機能が共通していない。

Claims (6)

  1.  板状の放熱部材と、
     前記放熱部材に搭載され、基板と、第1導電型の第1半導体層、発光層及び第2導電型の第2半導体層を含み所定方向へ延びる半導体積層体と、を有し、線状あるいは面状に発光する発光体と、
     前記放熱部材上の前記発光体を覆い、前記発光体から発せられる光により励起されると当該光と異なる波長の光を発する蛍光レンズと、
     前記蛍光レンズと前記発光体との間に形成された発光体側真空断熱層と、
     前記蛍光レンズの外側を覆い、前記蛍光レンズを透過した光を拡散させる拡散レンズと、
     前記拡散レンズと前記蛍光レンズとの間に形成されたレンズ側真空断熱層と、を備え、
     前記放熱部材は、前記発光体の延在方向と同方向へ延びる発光装置。
  2.  前記拡散レンズは、外部からの紫外光の侵入を阻止する請求項1に記載の発光装置。
  3.  前記放熱部材の上面の外縁側に設けられた断熱材を備え、
     前記拡散レンズは、前記断熱材を介して前記放熱部材に設けられている請求項1または2に記載の発光装置。
  4.  前記拡散レンズは、前記断熱材に溶着されている請求項3に記載の発光装置。
  5.  前記蛍光レンズは、前記断熱材を介して前記放熱部材に設けられている請求項4に記載の発光装置。
  6.  前記蛍光レンズ及び前記拡散レンズは、ガラスからなる請求項3から5のいずれか1項に記載の発光装置。
PCT/JP2009/064189 2008-08-12 2009-08-11 発光装置 WO2010018827A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2734292A CA2734292C (en) 2008-08-12 2009-08-11 Light-emitting device
EP09806718A EP2315264A4 (en) 2008-08-12 2009-08-11 LIGHT EMITTING DEVICE
US13/058,522 US20110149578A1 (en) 2008-08-12 2009-08-11 Light-emitting device
CN2009801311823A CN102119451A (zh) 2008-08-12 2009-08-11 发光装置
AU2009280606A AU2009280606A1 (en) 2008-08-12 2009-08-11 Light-emitting device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-229048 2008-08-12
JP2008229048 2008-08-12
JP2009-008916 2009-01-19
JP2009008916A JP4338768B1 (ja) 2008-08-12 2009-01-19 発光装置
JP2009-125428 2009-05-25
JP2009125428A JP2010067948A (ja) 2008-08-12 2009-05-25 発光装置

Publications (1)

Publication Number Publication Date
WO2010018827A1 true WO2010018827A1 (ja) 2010-02-18

Family

ID=41253433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064189 WO2010018827A1 (ja) 2008-08-12 2009-08-11 発光装置

Country Status (9)

Country Link
US (1) US20110149578A1 (ja)
EP (1) EP2315264A4 (ja)
JP (2) JP4338768B1 (ja)
KR (1) KR20110003586A (ja)
CN (1) CN102119451A (ja)
AU (1) AU2009280606A1 (ja)
CA (1) CA2734292C (ja)
RU (1) RU2011109198A (ja)
WO (1) WO2010018827A1 (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9412926B2 (en) 2005-06-10 2016-08-09 Cree, Inc. High power solid-state lamp
US20080151143A1 (en) * 2006-10-19 2008-06-26 Intematix Corporation Light emitting diode based backlighting for color liquid crystal displays
JP2010135746A (ja) * 2008-10-29 2010-06-17 Panasonic Electric Works Co Ltd 半導体発光素子およびその製造方法、発光装置
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
US9625105B2 (en) 2010-03-03 2017-04-18 Cree, Inc. LED lamp with active cooling element
US8632196B2 (en) 2010-03-03 2014-01-21 Cree, Inc. LED lamp incorporating remote phosphor and diffuser with heat dissipation features
US9500325B2 (en) 2010-03-03 2016-11-22 Cree, Inc. LED lamp incorporating remote phosphor with heat dissipation features
US9316361B2 (en) 2010-03-03 2016-04-19 Cree, Inc. LED lamp with remote phosphor and diffuser configuration
US10359151B2 (en) 2010-03-03 2019-07-23 Ideal Industries Lighting Llc Solid state lamp with thermal spreading elements and light directing optics
JP4792531B2 (ja) * 2010-03-15 2011-10-12 兵治 新山 発光装置
US10451251B2 (en) 2010-08-02 2019-10-22 Ideal Industries Lighting, LLC Solid state lamp with light directing optics and diffuser
CN101950788A (zh) * 2010-08-13 2011-01-19 重庆大学 一种基于荧光透镜的功率型白光led
JP2013546184A (ja) * 2010-11-10 2013-12-26 ▲セン▼國光 カバーの作製方法及びパッケージ化発光ダイオードの作製方法
US11251164B2 (en) * 2011-02-16 2022-02-15 Creeled, Inc. Multi-layer conversion material for down conversion in solid state lighting
JP2012190744A (ja) * 2011-03-14 2012-10-04 Koito Mfg Co Ltd 蛍光灯型led灯具
WO2013014732A1 (ja) * 2011-07-24 2013-01-31 Niiyama Heiji 発光装置
CN202484631U (zh) * 2011-09-27 2012-10-10 东莞健达照明有限公司 具有双层灯罩的led灯具
US9115868B2 (en) * 2011-10-13 2015-08-25 Intematix Corporation Wavelength conversion component with improved protective characteristics for remote wavelength conversion
US20130094179A1 (en) * 2011-10-13 2013-04-18 Intematix Corporation Solid-state light emitting devices with multiple remote wavelength conversion components
TW201324877A (zh) * 2011-12-07 2013-06-16 Metal Ind Res & Dev Ct 發光二極體封裝結構及其螢光透鏡裝置
CN103225751A (zh) * 2012-01-31 2013-07-31 欧司朗股份有限公司 具有远程荧光粉结构的led照明器
WO2013123128A1 (en) * 2012-02-17 2013-08-22 Intematix Corporation Solid-state lamps with improved emission efficiency and photoluminescence wavelength conversion components therefor
TWM443813U (en) * 2012-03-06 2012-12-21 Winsky Technology Ltd Illumination device
US9488359B2 (en) 2012-03-26 2016-11-08 Cree, Inc. Passive phase change radiators for LED lamps and fixtures
JP6055607B2 (ja) * 2012-03-26 2016-12-27 東芝ライテック株式会社 照明ユニット及び照明装置
EP3240052A1 (en) 2012-04-26 2017-11-01 Intematix Corporation Methods and apparatus for implementing color consistency in remote wavelength conversion
US20140313711A1 (en) * 2013-04-17 2014-10-23 GEM Weltronics TWN Corporation Light emitting diode (led) light tube
KR102251613B1 (ko) * 2013-08-19 2021-05-14 엘지전자 주식회사 조명장치
CN105900251A (zh) * 2013-11-13 2016-08-24 纳米技术有限公司 包含量子点荧光体的led盖
KR102200629B1 (ko) * 2013-12-30 2021-01-13 삼성디스플레이 주식회사 발광 유닛 및 이를 포함하는 표시 장치
US9360188B2 (en) 2014-02-20 2016-06-07 Cree, Inc. Remote phosphor element filled with transparent material and method for forming multisection optical elements
JP2016038947A (ja) * 2014-08-05 2016-03-22 三菱電機株式会社 光拡散ユニット、ランプ及び照明装置
CN104141917A (zh) * 2014-08-15 2014-11-12 上海祥羚光电科技发展有限公司 一种具有二次光转换结构的汽车大灯
WO2019210486A1 (en) * 2018-05-03 2019-11-07 Xi' An Raysees Technology Co. Ltd Cob led and method for packaging cob led
JP7504571B2 (ja) * 2019-09-20 2024-06-24 林テレンプ株式会社 車両室内照明装置
JPWO2023002929A1 (ja) * 2021-07-21 2023-01-26

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352928A (ja) 1989-07-12 1991-03-07 Soc Atochem 熱互変性半脂肪族コポリエステルアミド及びその製造方法
JP2001156338A (ja) * 1999-11-24 2001-06-08 Koha Co Ltd 可視光線発光装置
JP2004352928A (ja) * 2003-05-30 2004-12-16 Mitsubishi Chemicals Corp 発光装置及び照明装置
JP2007066939A (ja) 2005-08-29 2007-03-15 Matsushita Electric Ind Co Ltd 半導体発光装置
JP2007080872A (ja) * 2005-09-09 2007-03-29 Matsushita Electric Works Ltd 発光装置
JP2007243055A (ja) * 2006-03-10 2007-09-20 Matsushita Electric Works Ltd 発光装置
JP2007243054A (ja) * 2006-03-10 2007-09-20 Matsushita Electric Works Ltd 発光装置
JP2007250817A (ja) * 2006-03-16 2007-09-27 Stanley Electric Co Ltd Led
JP2007266631A (ja) * 2005-09-20 2007-10-11 Matsushita Electric Works Ltd 発光装置
JP2008112867A (ja) * 2006-10-30 2008-05-15 Matsushita Electric Works Ltd 発光装置
WO2008105428A1 (ja) * 2007-02-27 2008-09-04 Kyocera Corporation 発光装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7527669B2 (en) * 2003-12-10 2009-05-05 Babcock & Wilcox Technical Services Y-12, Llc Displacement method and apparatus for reducing passivated metal powders and metal oxides
TWI257184B (en) * 2004-03-24 2006-06-21 Toshiba Lighting & Technology Lighting apparatus
CN100550445C (zh) * 2005-04-01 2009-10-14 松下电器产业株式会社 表面安装型光半导体器件及其制造方法
JP2007081234A (ja) * 2005-09-15 2007-03-29 Toyoda Gosei Co Ltd 照明装置
JP4953841B2 (ja) * 2006-03-31 2012-06-13 京セラ株式会社 熱電モジュール
US7722224B1 (en) * 2006-12-15 2010-05-25 Fusion Optix, Inc. Illuminating device incorporating a high clarity scattering layer
US7918596B2 (en) * 2007-04-20 2011-04-05 Federal Signal Corporation Warning light

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352928A (ja) 1989-07-12 1991-03-07 Soc Atochem 熱互変性半脂肪族コポリエステルアミド及びその製造方法
JP2001156338A (ja) * 1999-11-24 2001-06-08 Koha Co Ltd 可視光線発光装置
JP2004352928A (ja) * 2003-05-30 2004-12-16 Mitsubishi Chemicals Corp 発光装置及び照明装置
JP2007066939A (ja) 2005-08-29 2007-03-15 Matsushita Electric Ind Co Ltd 半導体発光装置
JP2007080872A (ja) * 2005-09-09 2007-03-29 Matsushita Electric Works Ltd 発光装置
JP2007266631A (ja) * 2005-09-20 2007-10-11 Matsushita Electric Works Ltd 発光装置
JP2007243055A (ja) * 2006-03-10 2007-09-20 Matsushita Electric Works Ltd 発光装置
JP2007243054A (ja) * 2006-03-10 2007-09-20 Matsushita Electric Works Ltd 発光装置
JP2007250817A (ja) * 2006-03-16 2007-09-27 Stanley Electric Co Ltd Led
JP2008112867A (ja) * 2006-10-30 2008-05-15 Matsushita Electric Works Ltd 発光装置
WO2008105428A1 (ja) * 2007-02-27 2008-09-04 Kyocera Corporation 発光装置

Also Published As

Publication number Publication date
CA2734292A1 (en) 2010-02-18
JP4338768B1 (ja) 2009-10-07
CN102119451A (zh) 2011-07-06
JP2010067948A (ja) 2010-03-25
AU2009280606A1 (en) 2010-02-18
CA2734292C (en) 2012-06-19
KR20110003586A (ko) 2011-01-12
RU2011109198A (ru) 2012-09-20
US20110149578A1 (en) 2011-06-23
EP2315264A1 (en) 2011-04-27
JP2010067939A (ja) 2010-03-25
EP2315264A4 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP4338768B1 (ja) 発光装置
US7935978B2 (en) Light emitting device and method for manufacturing the same
JP5273486B2 (ja) 照明装置
JP3979424B2 (ja) 発光装置
JP6401435B2 (ja) 発光パッケージ
US9420642B2 (en) Light emitting apparatus and lighting apparatus
JP4678391B2 (ja) 照明装置
TWI523273B (zh) 具有對比面之發光二極體封裝體
JP4808550B2 (ja) 発光ダイオード光源装置、照明装置、表示装置及び交通信号機
WO2010123052A1 (ja) 発光装置
JP2014158024A (ja) 発光素子パッケージ及びその製造方法
JP4604819B2 (ja) 発光装置
JP4792531B2 (ja) 発光装置
US20190103522A1 (en) Lighting apparatus and light emitting apparatus
US8461609B2 (en) Light emitting device package
JP5484544B2 (ja) 発光装置
JP2007035882A (ja) Led照明装置
US11894499B2 (en) Lens arrangements for light-emitting diode packages
WO2010123051A1 (ja) 発光装置
JP4936169B2 (ja) 発光装置
JP2008294378A (ja) 発光装置
JP2007088085A (ja) 発光装置
JP2007088083A (ja) 発光装置
JP2015109391A (ja) 発光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980131182.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107027899

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009280606

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2009806718

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13058522

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2734292

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1027/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009280606

Country of ref document: AU

Date of ref document: 20090811

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011109198

Country of ref document: RU