WO2010012243A1 - 通用多工况节能*** - Google Patents

通用多工况节能*** Download PDF

Info

Publication number
WO2010012243A1
WO2010012243A1 PCT/CN2009/073022 CN2009073022W WO2010012243A1 WO 2010012243 A1 WO2010012243 A1 WO 2010012243A1 CN 2009073022 W CN2009073022 W CN 2009073022W WO 2010012243 A1 WO2010012243 A1 WO 2010012243A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
valve
exhaust valve
control
vehicle
Prior art date
Application number
PCT/CN2009/073022
Other languages
English (en)
French (fr)
Inventor
侯贺
Original Assignee
Hou He
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hou He filed Critical Hou He
Priority to EP09802436A priority Critical patent/EP2351922A4/en
Publication of WO2010012243A1 publication Critical patent/WO2010012243A1/zh
Priority to US13/017,240 priority patent/US8087396B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/04Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation using engine as brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0005Deactivating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0242Variable control of the exhaust valves only
    • F02D13/0246Variable control of the exhaust valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/06Cutting-out cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/08Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing for rendering engine inoperative or idling

Definitions

  • the invention relates to an energy-saving technology of a vehicle engine, in particular to a general-purpose multi-condition energy-saving system. Background of the invention
  • the four strokes of the engine that is idling at the time of coasting are all negative work.
  • the compression stroke shown in Figure lb produces the largest negative work. The reason is that at the time of the compression stroke, the intake valve 101 and the exhaust valve 102 are fully closed, and the cylinder is sealed, which generates a large blocking force. It can be seen that the blocking force formed by the compression stroke is the main reason why the engine wastes kinetic energy and is not far away.
  • the third is easy to understand and omitted.
  • the present invention provides a general-purpose multi-condition energy-saving system, which can control the working state of the engine according to different working conditions, not only in the sliding state, but also eliminates the blocking force, does not waste fuel, and makes the sliding distance.
  • a universal multi-condition energy-saving system comprising a controller and an actuator
  • the actuator includes a limit device capable of restricting an exhaust valve of the vehicle engine to a non-closed state under control of the controller;
  • the controller is configured to collect vehicle operating state information and a driver command, and control the actuator to limit the exhaust valve to a non-closed state according to a running state of the vehicle and a driver command, and simultaneously control the injector to cut off the oil supply. .
  • the engine of the vehicle is a multi-red engine.
  • the engine of the vehicle is a double overhead camshaft engine
  • the actuator includes a valve stem that can control the degree of opening and closing of the exhaust valve under the jacking of the camshaft, the valve stem having a ring groove;
  • the limiting device is a slider that can extend into the ring groove at the front end;
  • the length of the ring groove is a sliding distance of the exhaust valve in a non-closed state
  • the slider may be at the controller when the camshaft raises the valve stem to a maximum lift Under control, the exhaust valve is restricted to a non-closed state by extending its front end into the annular groove.
  • the vehicle engine is a center-lower camshaft rocker type gas distribution engine
  • the actuator includes a rocker arm that can control the degree of opening and closing of the exhaust valve under the jacking of the cam, and the rocker arm has a first gear Board
  • the limiting device is a slider whose front end can protrude to contact with the baffle;
  • the slider is contactable with the baffle and restricting movement of the rocker arm under control of the controller when the camshaft lifts the valve stem to a maximum lift, thereby limiting the exhaust valve In a non-closed state.
  • the vehicle engine is an overhead camshaft rocker engine
  • the actuator includes a rocker arm that can control the degree of opening and closing of the exhaust valve under the jacking of the cam, a concentric wheel disposed on one side of the camshaft, and a movable auxiliary arm disposed on the rocker arm;
  • the radius of the wheel is larger than the cam base circle and smaller than the cam top contour, and the movable auxiliary arm can be attached to the round wheel;
  • the limiting device is a limiting pin that can limit the corner of the movable auxiliary arm; when the rocker arm opens the exhaust valve to the maximum lift, the movable auxiliary arm can be under the control of the controller, Contacting the round wheel and the limit pin to limit movement of the rocker arm to limit the exhaust valve to a non-closed state.
  • the engine of the vehicle is a double overhead camshaft engine
  • the actuator includes a bracket fixed between adjacent two cylinders of the engine, a swing arm lever hinged to the bracket, and a cam that controls the degree of opening and closing of the exhaust valve by jacking the valve stem;
  • the limiting device is a limiting movable cam disposed on one side of the non-camshaft seat of the cam, and the limiting movable cam is combined with the swing arm connecting rod and is matched with the cam shaft.
  • the limit movable cam may restrict the exhaust valve to a non-closed state by jacking the valve stem under the control of the controller.
  • the swing arm combination of the two adjacent cylinders is hinged to the bracket.
  • the limit movable cam is combined by two symmetrical members that are engaged by an axial ⁇ structure.
  • the degree of opening and closing of the exhaust valve may be preset.
  • the actuator further includes a return spring, and the return spring can release the limiting action of the limiting device on the exhaust valve under the control of the controller.
  • the actuator further includes a limiting device capable of restricting an intake valve of the vehicle to a non-closed state under the control of the controller.
  • the universal multi-condition energy-saving system of the invention only opens the cylinder to reduce the retarding force during idle idling (or the non-working cylinder when the cylinder is reduced), does not consume oil, and the engine can work intermittently in the optimal characteristic section. It does not affect the normal operation of other components, and the fuel-saving and emission-reducing effect is remarkable; and the system is small in size and low in cost, and has strong compatibility with existing vehicles, and can be used for old car modification and new car fitting; high reliability and wide application range. It is suitable for vehicles equipped with four-stroke engines of various fuels and different cylinder numbers, especially for hybrid vehicles; the most suitable for electromagnetic valve engines. BRIEF DESCRIPTION OF THE DRAWINGS
  • Figures la to Id are cycle diagrams of a conventional four-stroke engine.
  • FIG. 2 is a block diagram of a general multi-mode energy saving system of the present invention.
  • FIG. 4 is a schematic structural view of a first embodiment of the general-purpose multi-condition energy-saving system of the present invention.
  • Figure 5 is a schematic view showing the structure of a second embodiment of the universal multi-mode energy saving system of the present invention.
  • Figure 6 is a block diagram showing the structure of a third embodiment of the universal multi-mode energy saving system of the present invention.
  • Fig. 7 is a graph showing the normally half-open motion of the exhaust valve of the universal multi-condition energy-saving system of the present invention.
  • 8a and 8b are schematic views showing the structure of a fourth embodiment of the universal multi-mode energy saving system of the present invention. Mode for carrying out the invention
  • the universal multi-condition energy-saving system of the invention consists of an electronic control unit and an actuator: the electronic control unit performs information on acceleration, braking, clutching, fuel injection, crank angle, rotational speed and driver command of the vehicle. Collecting, converting, processing, and judging the working condition according to the relevant information to control the on/off of the injector; and driving the actuator to complete the operation of locking or releasing the engine exhaust valve after opening, so that the corresponding cylinder is cut off
  • the intake valve works normally.
  • the exhaust valve is normally half open or compressed, the explosion, and the exhaust stroke are often half open.
  • the open cylinder decompression eliminates the retarding force and allows the engine to idle; or the injector is normally injected, the exhaust valve Normal opening and closing, the engine is running normally. This allows the engine to work in multiple operating conditions.
  • a four-cylinder machine having a firing order of 1-3-4-2 is exemplified, but is not limited to a four-cylinder engine.
  • the term "normally half open” as used in the present invention refers to any state in which the normally open state is from the non-closed state to the fully open state, and is not normally half open.
  • the electronic control unit 200a includes an electronic control board 201 (or a single-chip microcomputer), and the signals input to the electronic control board 201 include: a crank angle sensor (Hall sensor) 202 of the peripheral device; and electrical connection through the connector
  • the fuel injection signal 203 and the low speed signal 204 of the original vehicle ECU the acceleration signal 205, the brake signal 206, and the clutch signal generated by the accelerator pedal, the brake pedal, and the stroke switch (magnetic switch or reed switch) installed under the clutch pedal 207; an input signal of three tact switches of the steering switch 208, the reduced cylinder switch 209, and the forced reduction command switch 210.
  • the signal output by the electronic control board 201 includes: a control signal for controlling six operating condition indicators (LEDs) 211 provided in the instrument panel, and an injection signal 212 for controlling the original vehicle injector.
  • the electric control board 201 and the original vehicle ECU are associated with the injector interlock control, and also with the actuator
  • the electromagnetic wide (or electromagnet) coil is electrically connected. The information acquisition, conversion, processing is completed, the injector is controlled to open and close, and the actuator 200b is driven.
  • the electronic control unit 200a can also be composed of a single-chip microcomputer plus peripherals, and can also be realized by expanding the function of the original vehicle ECU.
  • the actuator 200b has various technical solutions.
  • the valve stem locking device (Fig. 4); 2.
  • the rocker arm is limited. Position device (Fig. 5); 3.
  • Rocker arm plus movable auxiliary arm device (Fig. 6); 4.
  • Swing arm tie rod plus limit movable cam device (Fig. 8).
  • the structure is different, the function is the same, the engine selection for different gas distribution mechanisms and the remaining space can be matched with the electronic control unit to complete the operation of locking or releasing the exhaust valve after opening and closing.
  • the common feature is that, when the exhaust valve is kept normally half-opened, the exhaust valve is allowed to move from half open to full open, and the locking or releasing operation after the exhaust valve is opened does not have to overcome the valve.
  • the spring force of the spring is mechanically locked, compatible with the original exhaust mechanism, and avoids interference with the operation of the intake valve, which is described in detail in the following embodiments.
  • a new cycle mode of the engine under b and c conditions (Fig. 3) and a new motion curve of the exhaust valve (Fig. 7) are created.
  • the new cycle mode of the general multi-mode energy-saving system will be described with reference to Fig. 3a - Fig. 3d.
  • the four-cylinder machine has a firing order of 1-3-4-2 and a crank angle of 0°-180°. b case as an example:
  • the first cylinder 301 is an intake stroke
  • the intake valve 305 is open
  • the exhaust valve 308 is half open (or fully open)
  • the piston is left
  • the intake valve 305 is inhaled through the intake manifold 306.
  • the air, exhaust valve 308 draws a small amount of air discharged from the adjacent cylinder via the exhaust manifold 309.
  • the exhaust valve can also be closed in the intake stroke, but it will inevitably lead to complicated actuators, increased costs, and no significant difference in actual results, and the cost performance is not good, and the preferred value is not large. Since the cycle mode is the same, no separate explanation will be given.
  • the second cylinder 302 is a compression stroke, in which the intake valve 305 is closed, the intake valve 308 is closed, the exhaust valve 308 is half open (or fully open), the piston is right, and the gas sucked in the previous cycle is half open (or fully open). Exhaust valve 308 is exhausted to exhaust manifold 309 for inhalation of adjacent cylinder exhaust valves, or total exhaust The tube 310 is directly discharged.
  • the third cylinder 303 is an exhaust stroke, the intake valve 305 is closed, the exhaust valve 308 is fully open, and the piston is right.
  • the gas sucked in the last cycle is exhausted from the fully open exhaust valve 308 to the exhaust manifold 309 to be adjacent.
  • the cylinder exhaust valve is drawn in, or directly discharged through the exhaust manifold 310.
  • the fourth cylinder 304 is a power stroke, in which it is in an inhaled state, the intake valve 305 is closed, the exhaust valve 308 is half open (or fully open), and the piston is left, and the air discharged from the adjacent cylinder is sucked through the exhaust manifold 309. (Note: Half opening is to prevent interference with the intake valve. If there is no interference, it can be fully opened.)
  • the cycle of the crank angles of 180°-360°, 360°-540°, 540°-720° is the same as the above-mentioned features, and the cycle process is as shown in Fig. 3b to Fig. 3d, and the effective decompression can be performed every time period. , reduce the blocking force and reduce the negative work. Because the gas exchange is only completed through the exhaust valve and the exhaust manifold, the intake valve and the intake manifold do not participate in gas exchange, and there is no gas backflow, which ensures the vacuum degree of the intake manifold, has no effect on the brake, and the engine idles. , has no effect on direction assistance.
  • the electric control unit forcibly stops the injection of the non-working cylinder, and the non-working cylinder realizes the decompression and idling according to the above cycle, and reduces the retarding force.
  • the working cylinder is running normally.
  • the specific control process is as follows: The manual start of the b condition is still taken as an example.
  • the fuel-saving condition is met (when the downhill or the higher speed is good, the taxi can be slid), the driver closes the coasting command (presses the coasting switch), and the electronic control unit automatically turns on. Control and drive the actuator power supply, and at the same time disconnect the corresponding cylinder injector power supply to stop the fuel injection.
  • the crank angle sensor sends the maximum opening of each cylinder exhaust valve to the electric control board in the order of 1-3-4-2, the electric control board turns on the electromagnetic wide coil of the actuator locking valve one by one.
  • Each cylinder electromagnetically opens the oil passage of the hydraulic valve locking device in turn, and the high pressure oil drives the slider of the corresponding valve locking device, and inserts the valve rod ring groove one by one to complete the locking when the exhaust valves of each cylinder reach the maximum lift.
  • the exhaust valve is normally open to full open, the cylinder is in an open decompression state, and the engine is idling; the intake valve is normally opened and closed, the intake manifold is in a vacuum, and the vehicle is slid without engine retardation.
  • the direction and braking are not affected, the meter displays normally, the generator generates electricity normally, and the kinetic energy is recovered. And keep it until the switching conditions.
  • the OR circuit in the electronic control unit When the electronic control unit collects any information such as braking, accelerating, clutching, low-speed ( ⁇ 20km/h) injection, the OR circuit in the electronic control unit is turned on, and immediately drives and disconnects the actuator power. The electromagnetic wide power is cut off, the oil circuit is automatically closed and the pressure is released, and the slider return spring of the hydraulic valve locking device rebounds, and the slider is reset and unlocked when the valve rod lift is maximum. At the same time, the fuel injector is normally injected, the exhaust valve is normally opened and closed, and the engine immediately resumes normal operation.
  • the accelerator pedal is stepped on, and the automatic pedal is automatically switched to the normal working condition to accelerate the driving, and when the vehicle speed is reached, the vehicle speed is reached. , and switch to b working condition unimpeded sliding, and the engine is intermittently working in the best characteristic section.
  • reduce cylinder preset value 1, 4 cylinder work, can also be set to 2, 3 cylinder work or alternate work
  • working condition is applicable when cruising and waiting for red light, when the driver issues cruise command (minus cylinder)
  • the 2nd and 3rd cylinders are cut off, and the corresponding exhaust valve is opened and decompressed; 1.
  • the 4 cylinders work normally.
  • the choice of 1, 4 cylinders is working for every 360 guarantees.
  • the working principle of 2 and 3 cylinders is the same as that of b.
  • the number of cylinders can be set arbitrarily, such as: 8-6, 8-4, 6-4, 6-2, 4-2, etc.
  • the energy-saving mode is controlled manually by the driver, and the recovery is normally automatic. It can also be set to fully automatic.
  • each actuator corresponds to at least one cylinder.
  • the electronic control unit 200a is composed of an electronic control board (or a single-chip microcomputer) and peripheral crank angle sensors (Hol sensor), a stroke switch, a tact switch, a working condition indicator and the like.
  • the electric control board is installed in the box, the electric control board is electrically connected with the connector on the box, the peripherals are electrically connected with the corresponding terminals of the connector, the box is placed on the side of the nacelle, and the crank angle sensor is mounted at one end of the exhaust camshaft,
  • the connector on the box is electrically connected.
  • Install a stroke switch (magnetic switch or reed switch) under the accelerator pedal, brake pedal and clutch pedal to electrically connect to the box connector.
  • the steering wheel is provided with three light touch switches, namely, a sliding, a reduced cylinder, and a forced reduction command switch, all of which are electrically connected to the box connector.
  • the fuel injection signal and low speed signal of the original car ECU are electrically connected to the box connector.
  • the original vehicle fuel injector power supply is interlocked with the electronic control board through the box connector.
  • the electrical control board is electrically connected to the actuator.
  • the actuator is a valve stem locking device as shown in Figure 4, which is suitable for a dual overhead camshaft engine.
  • Tubing 401 High-speed double-pass electromagnetic wide 402, should be able to meet the needs of power failure Relieve pressure and keep the oil passage full of oil to ensure the reaction speed of the locking device;
  • the valve sleeve 403 has a through hole in the radial direction at the upper end as a passage of the locking device slider;
  • the valve stem 404 having the ring groove Open a ring groove at the corresponding position in the upper part.
  • the groove depth should ensure the strength and reliable locking of the shaft.
  • the groove height should be able to meet the sliding distance between half-open and full-open. The residual oil in the groove can absorb the valve.
  • the slide 407 is fixed in the can body.
  • the T-shaped slider 408 is placed in the slide 407 for radial sliding.
  • the return spring wire 409; the upper cover 410 is sealed to the can body structure; the cam shaft 412, and the cylinder head 413.
  • the electromagnetic wide 402 oil pipe 401 is connected to the convex oil passage and the hydraulic locking device tank 406 having the oil inlet, and an electromagnetic wide driving two hydraulic locking devices. Insert the valve stem (4), attach the spring (5) and the spring seat. The electromagnetic wide 402 coil is electrically connected to the connector in the electronic control unit 200a. Replace the finished part with the cylinder. Finally, the camshaft 412 is loaded by the process.
  • the high pressure oil used by the actuator is taken from the engine camshaft lubrication system. Because the system is safe and wide, it can ensure proper and stable oil pressure. Because the stroke of the locking device is small, the leakage is also small, so the oil supply of the original lubrication system can meet the needs of the locking device.
  • the electronic control unit After receiving the electronic control unit coasting command, the electronic control unit automatically turns on the power of the driving actuator, and simultaneously turns off the power of the corresponding cylinder injector to stop the fuel injection.
  • the crank angle sensor When the crank angle sensor is used, the electrical signals when the exhaust valves of each cylinder are opened to the maximum are transmitted to the electric control board in the order of 1-3-4-2, and the electric control boards are turned on one by one. Magnetic wide coil.
  • Each cylinder electromagnetically opens the oil passage of the hydraulic valve lock device in turn, and the high pressure oil drives the slider of the corresponding valve lock device, and inserts the valve stem ring groove one by one to complete the lock and hold.
  • the exhaust valve stem can slide axially within a limited range during locking to accommodate exhaust cam rotation.
  • the exhaust valve is often opened and decompressed, the engine is idling, the intake valve is normally opened and closed, the air intake is vacuumed, the vehicle is slipping without engine blockage, the direction and braking are not affected, and the instrument is normally displayed.
  • the generator generates electricity normally, recovers kinetic energy, and remains until the switching conditions. The specific control process has been described above and will not be repeated here.
  • the electronic control unit is the same as the first embodiment.
  • the actuator is a rocker arm returning device as shown in FIG. 5, and is used for a middle and lower camshaft rocker type gas distribution engine, including: a bracket 501, a stopper 502, an electromagnet 503, a return spring 504, and a slider. 505, a rocker arm 507 with a flapper, a rocker shaft 508, and a cam 509.
  • the stopper 502, the electromagnet 503, the return spring 504, and the slider 505 are mounted on the bracket 501, and the bracket 501 is fixed to the rocker shaft 508.
  • the purpose of oil cut, decompression and idling is extended, and the sliding distance is extended.
  • the restoration command is issued immediately, the electromagnet 503 is released, and the slider 505 is reset and unlocked by the return spring 504.
  • the exhaust valve opens and closes normally, and the fuel injection is restored. Go back to normal conditions.
  • the control process is substantially the same as in the first embodiment and will not be described in detail.
  • the electronic control unit is the same as the first embodiment.
  • the actuator is a rocker arm auxiliary arm device as shown in Fig. 6, which is used for an overhead camshaft rocker type gas distribution engine.
  • the concentric circular wheel 602, the rocker arm 603 and a lockable movable auxiliary arm 604, the movable auxiliary arm 604 is adhered to the round wheel 602 under the action of the torsion spring 607, and is mounted on the rocker arm shaft 606, and the electromagnet 608 is mounted on
  • the rocker arm 603 is used to control the limit pin, and the limit pin 605 can limit the rotation angle of the movable auxiliary arm 604, and the round wheel 602 can be used to limit the rocker stroke.
  • the same scheme has the same function, that is, after receiving the command from the electronic control unit, when the cam 601 tops the rocker arm 603 to the highest, the electronic control unit sends a signal to control the electromagnet 608 to pull in, and pulls the limit pin 605 to limit the movable auxiliary arm. 604 corners, so that the rocker arm 603 does not engage with the cam 601 when the cam tip is lowered, and cooperates with the movable auxiliary arm 604 to push the valve stem 609 to move between half open and full open, and the exhaust valve is normally half open.
  • the purpose of oil cut, decompression and idling is extended, and the sliding distance is extended.
  • the motor When the electronic control unit collects information such as braking, acceleration, shifting, etc., the motor immediately releases the command, the electromagnet is released, the limit pin 605 is pulled back by the electromagnet return spring, the movable auxiliary arm 604 is idling, and the exhaust valve is normally opened. close. Go back to normal conditions.
  • the control process is substantially the same as that of the first embodiment and will not be described in detail.
  • the electronic control unit is the same as the first embodiment. (However, the crank angle sensor can be omitted, which also satisfies the design action.)
  • the actuator is a swing arm rod and a limit movable cam device as shown in Figs. 8a and 8b, and the valve limit device is suitable for a double overhead camshaft engine.
  • the utility model comprises: a high-speed electric electromagnet 801, an armature 802, a combination bracket 803, a return spring 804, an energy storage spring 805, an auxiliary spring 806, a swing arm rod combination 807, a limit movable cam 808, a original cam 809, a valve group 810, and a valve.
  • Block 811 a high-speed electric electromagnet 801, an armature 802, a combination bracket 803, a return spring 804, an energy storage spring 805, an auxiliary spring 806, a swing arm rod combination 807, a limit movable cam 808, a original cam 809, a valve group 810, and a valve. Block 811.
  • the high-speed electric electromagnet 801 is fixed in the air between the two spark plugs, and the combined bracket 803 is fixed on the high-speed electric electromagnet 801.
  • the swing arm rod assembly 807 is hinged on the combined bracket 803 and hinged with the limit movable cam 808.
  • the limit movable cam 808 is integrally formed by two and a half high-strength metal parts with a certain axial shape and is formed on the non-camshaft seat side of the original cam 809, and is mechanically coupled with the cam shaft. Easy to install with ⁇ structure And guarantee accuracy.
  • the electromagnet 801 is energized and immediately sucked, pulling the armature 802 to move downward, compressing the energy storage spring 805 to deform and store energy, and the original cam 809 is turned to start.
  • the valve group 810 is pressed, the armature 802 continues to move downward, and the energy storage spring 805 releases the elastic force at the same time, so that the swing arm lever assembly 807 pulls the limit movable cam 808 to a certain angle and keeps until the electronic control unit receives the release command.
  • the valve group 810 has been opened by the original cam 809 and is limited by the limit movable cam 808, and cannot fall back to the closed position of the valve seat 811, and can only move between the half open position and the fully open position, maintaining the normal half.
  • the electromagnet 801 is de-energized.
  • the armature 802 Under the action of the return spring 804 assisting the spring 806 and the rotational friction of the cam shaft, the armature 802, the swing arm lever combination 807, and the limit movable cam
  • the 808 is reset, the valve group is normally released halfway and resumes normal operation.
  • the advantages of this solution are: The tolerance of the actuator is good, and the original cam 809 and the limit movable cam 808 are allowed to cooperate with the inaccurate action time, so that the crank angle sensor and the cylinder mechanism can be omitted, and the utility is more practical.
  • an electromagnet can be used to drive two sets of valves with different opening and closing phases of two adjacent cylinders, that is, one to two. It effectively solves the problem that it is difficult to add components when the idle space inside the original engine is small. There are very few changes to the original engine, which is conducive to the transformation of old cars.
  • the above four embodiments can be operated under a three conditions of a, b, c, which can meet the structural conditions of most engines.
  • the valve motion curve of Figure 7 makes the intake valve work normally, and the exhaust valve is normally half-open decompression and open-cylinder operation, and at the same time, the oil is cut off. Energy saving effect. It is also possible to lock or release the intake valve or to lock or release the intake and exhaust valves at the same time. It is also possible to use a non-saving actuator to open the cylinder and reduce the pressure. The purpose of fuel saving, but the overall effect of structural complexity, cost, and implementability is second to the above scheme, so it is not preferred. This system is not applicable to construction machinery and ships.
  • the universal multi-condition energy-saving system of the present invention realizes multi-operating operation of the engine.
  • Different working conditions correspond to different road conditions, so as to adapt to the history of vehicles Three situations.
  • a Normal working conditions The performance indicators of the original car are unchanged.
  • b idling and sliding conditions The fuel is completely broken, the exhaust valve is often half open or compressed, the explosion, the exhaust stroke is often half open, the retarding force is the smallest, and the idling is the farthest.
  • the fuel saving rate can reach 15-40%, and the emission reduction can be achieved by saving fuel, and the corresponding emission reduction is 15-40%.
  • the utility model has the beneficial effects of the universal multi-condition energy-saving system: when the idling is stopped (or the non-working cylinder when the cylinder is reduced), only the cylinder is decompressed to eliminate the retarding force, and no oil is consumed.
  • the spark plug can be cleaned without stopping the ignition.
  • the generator generates electricity normally and recovers energy. All instruments are displayed normally. Lubrication and cooling are normal. Air conditioning is normal. Direction and braking are not affected.
  • the engine can work intermittently in the best features section. The effect of saving fuel is significant. Because the engine speed corresponds to the vehicle speed during idling, the engine speed will be near the best characteristic section for most times, so it will be smoother when switching to acceleration, and the torque will be faster and faster.
  • the system scheme has both scientific control methods and reasonable execution mechanisms. It is small in size, low in cost, complete and specific, and has strong compatibility and is easy to implement. It can be used for old car renovation and new car fitting. High reliability, wide application range, suitable for vehicles equipped with four-stroke electronically controlled engines with famous fuels and different cylinder numbers, especially suitable for hybrid vehicles; the most suitable for electromagnetic valve engines, although not high-tech, But it is very economical and practical, and you will receive immediate results when you spend a small amount of investment. Because of its outstanding fuel economy, it also brings huge sales benefits to car dealers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

通用多工况节能***
技术领域
本发明涉及一种车辆发动机的节能技术, 特别涉及一种通用多工况 节能***。 发明背景
对于现有车用四沖程发动机, 在道路行驶中, 大体有三种情况, 分 别为: 1、 满负荷工作; 2、 滑行; 3、 中小负荷工作。 第 1 种情况最理 想, 但所占比例不大。 第 2种情况, 在车辆滑行不需动力时, 发动机不 但不做功反而做负功, 浪费动能。 第 3种情况效率很低, 浪费燃料。 (根 据现有车辆的安全性能, 法规严禁脱档滑行)
在第 1种最理想的情况下, 现有四沖程发动机正常工作时, 只有一 个沖程在做正功。 其他三个沖程是为做功沖程创造条件, 是做负功。
在第 2种情况下, 如图 la至图 Id所示, 滑行时断油空转的发动机 的四个沖程全是^ 负功。 尤以图 lb所示的压缩沖程产生的负功最大。 原因是在压缩沖程时, 进气门 101和排气门 102全关, 气缸密闭, 产生 了很大的阻滞力。 可见压缩沖程形成的阻滞力正是发动机浪费动能滑行 不远的主要原因。
第 3种容易理解, 省略。
通过参考, 《汽车技术》 《汽车构造》 中国专利 cz85200450u, 86209043, 932002315, cz87103742a等资料,与国内外现有技术对比参照, 现有技术大多是如何提高发动机的效率, 而很少考虑减少发动机对动能 的浪费。 如: 丰田的可变配气相位技术, 是为了使吸气更充分。 缸内直 喷是为了燃烧更完全和理想。 还有变压缩比技术等也属于这类技术。 还 有如三菱的闭缸减排量技术, 虽能提高效率却没有减少被闭缸阻滞力。 其中有关闭进、 排气门减缸, 它没有减少阻滞力。 还有进气门关闭排气 门常开、 还有进气门常开, 虽能减压但不能保证进气歧管真空度, 存在 影响原车制动或机构复杂等不足。 发明内容
为了克服上述技术的不足,本发明提供了一种通用多工况节能***, 能够根据不同工况控制发动机的工作状态, 不但在滑行状态下, 消除了 阻滞力、 不浪费燃油,使滑行距离最远; 而且在减缸运行的巡航状态下, 节省了非工作缸的燃料, 还为正常工作缸减少了负荷。
本发明解决其技术问题所采用的技术方案是:
一种通用多工况节能***, 所述通用多工况节能***包括控制器和 执行机构;
所述执行机构包括能够在所述控制器的控制下、 将所述车辆发动机 的排气门限制在非闭合状态的限位装置;
所述控制器用于采集车辆运行状态信息和驾驶员指令, 并根据车辆 运行状态和驾驶员指令、 控制所述执行机构将所 述排气门限制在非闭 合状态、 同时控制喷油器切断供油。
优选地, 所述车辆的发动机为多紅发动机。
优选地, 所述车辆的发动机为双顶置凸轮轴发动机,
所述执行机构包括可在凸轮轴的顶升下控制排气门开合程度的气 门杆, 所述气门杆具有环槽;
所述限位装置为前端可伸入所述环槽中的滑块;
所述环槽的长度为排气门处于非闭合状态的滑动距离;
在凸轮轴将气门杆顶升至最大升程时, 所述滑块可在所述控制器的 控制下, 通过将其前端伸入所述环槽中以将所述排气门限制在非闭合状 态。
优选地, 所述车辆发动机为中下置凸轮轴摇臂式配气发动机, 所述执行机构包括可在凸轮的顶升下控制排气门开合程度的摇臂, 所述摇臂具有一挡板;
所述限位装置为前端可伸出至与所述挡板接触的滑块;
在凸轮轴将气门杆顶升至最大升程时, 所述滑块可在所述控制器的 控制下、 与所述挡板接触并限制所述摇臂运动, 从而将所述排气门限制 在非闭合状态。
优选地, 所述车辆发动机为顶置凸轮轴摇臂式发动机,
所述执行机构包括可在凸轮的顶升下控制排气门开合程度的摇臂、 设置在凸轮轴一侧的同心圆轮、 以及设置在所述摇臂上的活动辅臂; 所述圆轮的半径大于凸轮基圆、 小于凸轮顶部外廓, 所述活动辅臂 可与所述圆轮贴合;
所述限位装置为可限制所述活动辅臂的转角的限位销柱; 在摇臂将排气门打开至最大升程时, 所述活动辅臂可在所述控制器 的控制下、 与所述圆轮和限位销柱接触, 以限制所述摇臂运动, 从而将 所述排气门限制在非闭合状态。
优选地, 所述车辆的发动机为双顶置凸轮轴发动机,
所述执行机构包括固装在发动机的相邻两个汽缸之间的支架、 与所 述支架铰接的摆臂拉杆组合、 以及通过顶升气门杆来控制排气门开合程 度的凸轮;
所述限位装置为套装于所述凸轮的非凸轮轴座一侧的限位活动凸 轮, 所述限位活动凸轮与所述摆臂拉杆组合铰接、 并与所述凸轮轴动配 所述限位活动凸轮可在所述控制器的控制下、 通过顶升气门杆来将 所述排气门限制在非闭合状态。
优选地, 所述相邻两个汽缸的摆臂拉杆组合均与所述支架铰接。 优选地, 所述限位活动凸轮由两个通过轴向榫卯结构啮合的对称件 组合而成。
优选地, 所述排气门开合的程度可预先设定。
优选地, 所述执行机构还包括一回位弹簧, 所述回位弹簧可在所述 控制器的控制下、 解除所述限位装置对排气门的限位作用。
优选地, 所述执行机构进一步与包括能够在所述控制器的控制下、 将所述车辆的进气门限制在非闭合状态的限位装置。
本发明的通用多工况节能***, 在空转滑行时 (或减缸时的非工作 缸)只开缸减压消除阻滞力, 不耗油, 发动机可在最佳特性区段断续工 作, 且不影响其它部件正常工作, 节油减排效果显著; 且该***体积小 成本低, 与现有车辆的兼容性强, 可用于老车改造和新车配装; 可靠性 高, 适用范围广, 适用于装配各种燃料、 不同气缸数的四沖程发动机的 车辆, 尤其适用于混合动力车; 最适合电磁气门发动机的车辆。 附图简要说明
图 la至图 Id是现有的四沖程发动机的循环模式图。
图 2是本发明的通用多工况节能***的方框图。
图 3a至图 3d是本发明的通用多工况节能***的循环模式图 图 4是本发明的通用多工况节能***的第一实施例的结构示意图。 图 5是本发明的通用多工况节能***的第二实施例的结构示意图。 图 6是本发明的通用多工况节能***的第三实施例的结构示意图。 图 7是本发明的通用多工况节能***的排气门常半开运动曲线图。 图 8a和图 8b是本发明的通用多工况节能***的第四实施例的结构 示意图。 实施本发明的方式
本发明的通用多工况节能***由电控单元和执行机构两部分组成: 由电控单元对车辆运行的加速、 制动、 离合、 喷油、 曲轴转角、 转速及 驾驶员指令等相关信息进行采集、 转换、 处理, 并根据该相关信息判断 工况, 以控制喷油器的通、 断; 并驱动执行机构完成对发动机排气门的 开启后锁止或释放的操作, 使相应气缸断油, 进气门正常工作, 排气门 常半开或压缩、 爆发、 排气沖程常半开, 开缸减压消除阻滞力让发动机 空转; 或接通喷油器正常喷油, 排气门正常开闭, 发动机正常运转。 从 而实现发动机多工况工作。
在本发明的具体实施例中以 1-3-4-2点火顺序的四缸机为例,但不限 于四缸发动机。 本发明中所称常半开是指常开从非关闭状态至全开状态 的任一状态, 非指常开一半。
图 2是本发明的通用多工况节能***的方框图。 如图 2所示, 所述 电控单元 200a包括电控板 201 (或单片机), 向电控板 201输入的信号 包括: 外设的曲轴转角传感器(霍尔传感器) 202; 通过接插件电连接 的原车 ECU的喷油信号 203及低速信号 204; 加速踏板、 制动踏板、 离 合踏板下安装的行程开关(磁敏开关或干簧管)所产生的加速信号 205、 刹车信号 206、 离合信号 207; 方向盘上滑行开关 208、 减缸开关 209、 强制还原指令开关 210三个轻触开关的输入信号。
电控板 201 输出的信号包括: 控制仪表盘所设六个工况指示灯 ( LED ) 211的控制信号、 以及控制原车喷油器的喷油信号 212。 电控板 201和原车 ECU (电控单元)对喷油器关联互锁控制, 还和执行机构的 电磁阔 (或电磁铁)线圈电连接。 完成信息采集、 转换、 处理, 控制喷 油器的通、 断, 并驱动执行机构 200b。 电控单元 200a也可以由一单片 机加外设组成, 还可以通过对原车 ECU的功能扩展来实现。
执行机构 200b有多种技术方案,在此对优选的最筒便易行对原机改 动小的四种技术方案加以介绍: 一、 气门杆锁止装置(图 4 ); 二、 摇 臂限回位装置 (图 5 ); 三、 摇臂加活动辅臂装置(图 6 ); 四、 摆臂拉 杆加限位活动凸轮装置(图 8 )。 结构不同, 功能一样, 可供不同配气机 构和剩余空间的发动机选择, 都可与电控单元配套, 完成对排气门的开 启后锁止或释放的操作。 其共同特征是, 实现排气门保持常半开的锁止 情况下, 同时允许排气门自半开到全开的运动, 且排气门开启后的锁止 或释放的操作动作不必克服气门弹簧的弹力, 为省力锁止, 与原排气机 构兼容, 并避免与进气门动作的干涉, 后面的实施例作了详细说明。
通过上述技术方案的实施创建了 b、 c工况下发动机新的循环模式 (图 3 )和排气门新的运动曲线(图 7 )。 现结合图 3a-图 3d对通用多工 况节能***的新循环模式加以说明, 以四缸机, 点火顺序为 1-3-4-2, 曲 轴转角 0°— 180°时, 断油空转的 b工况为例:
如图 3a所示, 第一缸 301为吸气沖程, 进气门 305打开, 排气门 308半开(或全开 ), 活塞左行, 进气门 305经进气歧管 306吸入大量新 空气, 排气门 308经由排气歧管 309吸入由邻缸排出的小量空气。
当然, 排气门也可以在吸气沖程关闭, 不过必然会导致执行机构复 杂, 成本提高, 且实际效果无大差别, 性价比不好, 优选价值不大。 因 循环模式相同, 不再做单独说明。
第二缸 302为压缩沖程, 在此呈排气状态, 进气门 305关闭, 排气 门 308 半开(或全开), 活塞右行, 上一循环吸入的气体由半开 (或全 开) 的排气门 308排至排气歧管 309以备邻缸排气门吸入, 或经排气总 管 310直接排出。
第三缸 303为排气沖程, 进气门 305关闭, 排气门 308全开, 活塞 右行, 上一循环吸入的气体由全开的排气门 308排至排气歧管 309以备 邻缸排气门吸入, 或经排气总管 310直接排出。
第四缸 304为做功沖程, 在此呈吸气状态, 进气门 305关闭, 排气 门 308半开 (或全开), 活塞左行, 经排气歧管 309吸入邻缸排出的空 气。 (注: 半开是防止与进气门干涉, 如无干涉可全开。)
可见: 在本时段内, 所有排气门都开。 一缸处于吸气沖程进气门也 打开, 吸入新空气, 只吸不排, 创造进气歧管真空。 排气门既吸又排, 大部分气体随着各缸的吸、 排动作在各缸之间经排气门、 排气歧管在机 内或进、 或退的互补流动, 交换。 剩余少量气体直接排出排气总管。 在 各沖程中没有了背压, 阻滞力大幅降低, 负功 4艮小。 因为气体交换只经 排气门、 排气歧管完成, 进气门与进气歧管不参与气体交换, 无气体倒 流, 保证了进气歧管的真空度。 (注: 此循环过程, 原压缩沖程是在排 气、 原做功沖程是在吸气。 这里没有了压缩和做功沖程, 实际成了二沖 程。)
在曲轴转角 180°— 360°、 360°— 540°、 540°— 720° 的时段的循环过 程同上述特征一样, 其循环过程如图 3b至图 3d所示, 每个时段都能有 效减压, 降低阻滞力, 减少负功。 因为气体交换只经排气门、 排气歧管 完成, 进气门与进气歧管不参与气体交换, 无气体倒流, 保证了进气歧 管的真空度, 对制动无影响, 发动机空转, 对方向助力亦无影响。
在 c工况, 减缸工作时, 电控单元强制停止非工作缸喷油, 非工作 缸依上述循环过程实现减压空转, 降低阻滞力。 同时, 工作缸正常运转。
在 a工况, 公知免述。
具体控制过程如下: 仍以 b工况手动启动为例, 符合节油条件时(下长坡或较高车速路 况好可滑行时), 驾驶员收油门发出滑行指令(按下滑行开关), 电控单 元自动接通控制和驱动执行机构电源, 同时断开相应缸喷油器电源停止 喷油。 待曲轴转角传感器将各缸排气门开启最大时的电信号依 1-3-4-2 的顺序传给电控板, 电控板逐个接通执行机构控制气门锁止装置的电磁 阔线圈。 各缸电磁阔依次打开液压气门锁止装置的油路, 高压油驱动相 应的气门锁止装置的滑块, 在各缸排气门达最大升程时逐一***气门杆 环槽完成锁止。 排气门处于常半开至全开, 该缸呈开放减压状态, 发动 机断油空转; 进气门正常开闭, 进气歧管呈真空, 车辆在无发动机阻滞 力下滑行。 方向、 制动不受影响, 仪表正常显示, 发电机正常发电, 回 收动能。 并保持到切换工况之前。
当电控单元采集到制动、 加速、 离合、 低速(<20km/h )喷油等任 一信息时, 电控单元中的或门电路导通, 立即驱动断开执行机构电源。 电磁阔断电, 自动关闭油路并泄压, 液压气门锁止装置的滑块复位弹簧 回弹, 待气门杆升程最大时滑块复位解锁。 同时接通喷油器正常喷油, 排气门正常开闭, 发动机立即恢复正常运转。
同理, 在符合节油条件, 车辆在无发动机阻滞力下以较高车速滑行 一段路程车速有所降低时, 踩下加速踏板, 立即自动切换到正常工况加 速行驶, 达到较高车速时, 又切换到 b工况无阻滑行, 周而复始, 发动 机在最佳特性区段断续工作。
c工况, 减缸(预设值 1、 4缸工作, 也可设为 2、 3缸工作或交替工 作)工况适用于巡航和等红灯时启用, 当驾驶员发出巡航指令(减缸), 电控单元接收到减缸指令后, 令 2、 3 缸断油、 锁止相应排气门开缸减 压; 1、 4缸正常工作。 选择 1、 4缸工作是为保证每 360。都有一个汽缸 做功, 运转平稳。 在此工况时喷油信号不参与自动切换正常工况控制, 确保发动机在 1、 4缸工作, 2、 3缸停缸的状态下稳定运转。 (2、 3缸 的工作原理与 b工况相同。 可任意设置减缸数, 如: 8-6、 8-4、 6-4 、 6-2 、 4-2等。)
上述方案即使在节能***万一失灵的情况下, 锁止机构靠弹簧力复 位解锁, 不影响发动机的正常运转。
考虑到驾驶习惯和行车安全, 节能方式靠驾驶员手动控制, 恢复正 常是自动控制。 也可设置成全自动。
以下以四缸机为例, 描述本发明的四种具体实施方式。 可根据发动 机不同配气结构和剩余空间选择其一。 其中, 每一个执行机构对应至少 一个汽缸。
实施例一、
电控单元 200a中由电控板(或单片机)和外设曲轴转角传感器(霍 尔传感器)、 行程开关、 轻触开关、 工况指示灯等元件组成。 其中电控 板装于盒内, 电控板与盒上接插件电连接, 各外设与接插件对应端子电 连接, 盒子置于机舱一侧, 曲轴转角传感器装在排气凸轮轴一端, 与盒 上接插件电连接。 加速踏板、 制动踏板、 离合踏板下各安装一个行程开 关 (磁敏开关或干簧管), 与盒子接插件电连接。 方向盘设三个轻触开 关分别为滑行、 减缸、 强制还原指令开关, 全部与盒子接插件电连接。 仪表盘下设六个指示灯(LED ), 其中二个为滑行、 减缸工况指示(用黄 色), 正常工况无指示, 另四个为气门开启指示(用绿色), 与电控单元 电连接。 原车 ECU 的喷油信号及低速信号与盒子接插件电连接。 将原 车喷油器电源经盒子接插件与电控板关联互锁联接。 电控板与执行机构 电连接。
执行机构为如图 4所示的气门杆锁止装置, 它适合双顶置凸轮轴发 动机。 包括: 油管 401 ; 高速双通电磁阔 402, 应能满足在断电时快速 泄压, 并保持油路充满油, 以保证锁止装置的反应速度; 气门套管 403 , 在上端沿径向开有通孔, 作为锁止装置滑块的通道; 有环槽的气门杆 404, 在上部相应位置开一环槽, 开槽深度应能保证杆身强度和可靠锁 止为宜, 槽高应能满足半开到全开之间的滑动距离, 槽内残存的机油能 吸收气门杆对锁止机构滑块的撞击力 (气门杆运动最大线速度 6m/s ); 气门弹簧 405 , 气门弹簧 405在保持原弹力系数下, 长度缩短 5毫米, 直径缩小 5毫米以便于安装液压锁止装置和油管 401 ; 有进油口的液压 锁止装置罐体 406, 为钢制空心园罐形液压锁止装置外壳。 滑道 407, 固装于罐体内。 T型滑块 408, 置于滑道 407中做径向滑动。 复位弹簧 钢丝 409; 上盖 410, 与罐体结构密封; 凸轮轴 412, 以及气缸盖 413。
装配时, 先卸下发动机气缸盖 413 , 卸下排气凸轮轴 412, 再卸下排 气门组备用。 其中电磁阔 402应尽量固装于对应的排气门附近; 气门套 管 403通孔向上压装在锁止装置 406的内孔, 锁止装置滑道 407须与套 管 403通孔对正, 与气门套管一起按所需工艺压装于气缸盖 413。 此时 装入 T型滑块 408, 复位弹簧钢丝 409, 上盖 410。 电磁阔 402用油管 401 连接至凸机油道和有进油口的液压锁止装置罐体 406, —个电磁阔 驱动二个液压锁止装置。 ***气门杆(4 ), 装上弹簧( 5 )和弹簧上座。 电磁阔 402线圈与电控单元 200a中接插件电连接。把完成改装的部件装 回缸体。 最后按工艺装入凸轮轴 412。
执行机构所用高压油取自发动机凸轮轴润滑***。 因该***有安全 阔, 固可保证适当和稳定的油压, 因锁止装置行程 ^艮小, 泄漏也 ^艮小, 所以原润滑***的供油可满足锁止装置的需要。
当接到电控单元滑行指令后,电控单元自动接通驱动执行机构电源, 同时断开相应缸喷油器电源停止喷油。 待曲轴转角传感器将各缸排气门 开启最大时的电信号依 1-3-4-2 的顺序传给电控板, 电控板逐个接通电 磁阔线圈。 各缸电磁阔依次打开液压气门锁止装置的油路, 高压油驱动 相应的气门锁止装置的滑块, 逐一***气门杆环槽完成锁止并保持。 锁 止期间排气门杆可在有限范围内轴向滑动以适应排气凸轮转动。 排气门 常半开减压, 发动机断油空转, 进气门正常开闭, 进气崎管呈真空, 车 辆在无发动机阻滞力下滑行, 方向、 制动不受影响, 仪表正常显示, 发 电机正常发电, 回收动能, 并保持到切换工况之前。 具体控制过程以上 已经描述, 这里不再重复。
实施例二、
电控单元同实施例一。
执行机构为如图 5所示的摇臂限回位装置, 用于中下置凸轮轴摇臂 式配气发动机, 包括: 支架 501、 挡块 502、 电磁铁 503、 回位弹簧 504、 滑块 505、 带挡板的摇臂 507、 摇臂轴 508、 凸轮 509。
挡块 502、 电磁铁 503、 回位弹簧 504、滑块 505安装在支架 501上, 支架 501固装在摇臂轴 508上。 同实施例一的作用相同, 即接到电控单 元指令后, 待凸轮 509顶升摇臂 507将气门打开到最大升程时, 电磁铁 503吸合, 推动滑块 505挡住摇臂挡板 507 , 限制摇臂 507回位, 达到 锁止为常半开的目的。 实现了断油, 减压空转, 延长滑行距离的目的。 当电控单元采集到制动、 加速、 离合、 低速(<20km/h )、 喷油、 换档等 信息时立即发出还原指令, 电磁铁 503释放, 滑块 505靠回位弹簧 504 复位解锁, 排气门正常开闭, 恢复喷油。 回到正常工况。 控制过程与实 施例一基本相同不再详述。
实施例三、
电控单元同实施例一。
执行机构为如图 6所示的摇臂活动辅臂装置, 用于顶置凸轮轴摇臂 式配气发动机。 在凸轮 601—侧增加大于凸轮基圆小于凸轮顶部外廓的 同心圆轮 602, 摇臂 603加一可锁止活动辅臂 604, 活动辅臂 604在扭 簧 607的作用下与圆轮 602保持贴合, 装在摇臂轴 606上, 电磁铁 608 装在摇臂 603上用于控制限位销柱, 限位销柱 605可限制活动辅臂 604 转角, 配合圆轮 602限制摇臂行程。 同一方案的作用相同, 即接到电控 单元指令后, 待凸轮 601将摇臂 603顶至最高时, 电控单元发来信号控 制电磁铁 608吸合, 拉动限位销柱 605限制活动辅臂 604转角, 使摇臂 603在凸轮顶端下降时不与凸轮 601帖合, 与活动辅臂 604联合推动气 门杆 609在半开与全开之间运动, 达到排气门常半开的动作。 实现了断 油, 减压空转, 延长滑行距离的目的。 当电控单元采集到制动、 加速、 换档等信息时立即发出指令, 电磁铁释放, 限位销柱 605靠电磁铁回位 弹簧拉回, 活动辅臂 604空摆, 排气门正常开闭。 回到正常工况。 控制 过程与实施例一基本相同不再详述。
实施例四
电控单元同实施例一。 (但可省掉曲轴转角传感器, 同样能满足设 计动作。 )
执行机构为如图 8a和图 8b所示的摆臂拉杆加限位活动凸轮装置, 气门限位装置适用于双顶置凸轮轴发动机。 包括: 高速强力电磁铁 801、 衔铁 802、 组合支架 803、 回位弹簧 804、 储能弹簧 805、 辅助弹簧 806、 摆臂拉杆组合 807、 限位活动凸轮 808、 原凸轮 809、 气门组 810、 气门 座 811。
其中高速强力电磁铁 801固装于两火花塞之间的空当里, 组合支架 803固装于高速强力电磁铁 801上, 摆臂拉杆组合 807铰接于组合支架 803上, 并与限位活动凸轮 808铰接; 限位活动凸轮 808由两半个带有 轴向榫卯结构的并具一定形状的高强金属部件楔合而成一整体, 套装于 原凸轮 809非凸轮轴座一侧, 与凸轮轴动配合。 采用榫卯结构便于安装 和保证精度。 与实施例一的作用相同, 即电控单元接到减压指令后, 电 磁铁 801通电立即吸合, 拉动衔铁 802向下运动, 压迫储能弹簧 805变 形储能, 待原凸轮 809转到开始顶压气门组 810时衔铁 802继续向下运 动, 储能弹簧 805同时释放弹力使摆臂拉杆组合 807拉动限位活动凸轮 808 回转一定角度并保持到电控单元接到释放指令时止。 此时的气门组 810已被原凸轮 809顶开并被限位活动凸轮 808限位, 不能回落到气门 座 811的密闭位置,只能在半开位置到全开位置之间运动,保持常半开; 当电控单元接到释放指令时令电磁铁 801断电, 在回位弹簧 804辅助弹 簧 806与凸轮轴的旋转摩擦力的共同作用下, 衔铁 802、 摆臂拉杆组合 807、 限位活动凸轮 808复位, 气门组解除常半开, 恢复正常工作。
本方案的好处是: 执行机构的宽容度好, 允许原凸轮 809与限位活 动凸轮 808配合动作时间的不准确, 因此可以省掉曲轴转角传感器, 筒 化机构, 实用性更强。 尤其是可以用一个电磁铁驱动两个相邻汽缸的开 闭相位不同的两组气门, 即一拖二。 有效地解决了原发动机内部闲置空 间少难以添加部件的问题。 对原发动机改动极少, 有利于旧车改造。
同理, 以上四个实施例都可以在 a、 b、 c三工况下运行, 能满足大 多数发动机的结构条件。 总之不管用何种机构只要能实现图 3的循环模 式, 图 7的气门运动曲线, 使进气门正常工作, 排气门常半开减压开缸 运转, 同时断油, 就能达到所述的节能效果。 也可以对进气门进行锁止 或释放的操作或同时对进、 排气门进行锁止或释放的操作, 还可以采用 非省力执行机构, 开缸减压, 也能达到多工况工作实现节油的目的, 但 结构复杂程度, 成本、 可实施性等总体效果都次于前述方案, 故不做首 选。 本***不适用工程机械、 船舶。
从以上实施方式可知, 本发明的通用多工况节能***实现了发动机 的多工况工作。 不同工况对应不同的路况, 以适应车辆行马史时出现最多 的三种情况。 a正常工况: 原车各项性能指标不变。 b空转滑行工况: 燃 料全断, 排气门常半开或压缩、 爆发、 排气沖程常半开, 阻滞力最小, 空转滑行最远。 c 中小负荷时减缸工况: 非工作缸断油, 排气门常半开 降低阻滞力,不但节省了非工作缸的燃料,还为正常工作缸减少了负荷。 实现了在 b工况不燃油延长滑行距离, 在 c工况减少燃油和消除阻滞力 的目的。 它既克服了四沖程机的先天缺陷, 也不影响进气歧管的真空, 保证了行车安全。 几种工况之间可据实际路况自动或手动切换。 使发动 机燃油就做有用功, 否则不燃油, 不做或少做负功, 从减少动能浪费的 角度解决问题, 克服了前述技术只重视提高效率而忽略减少浪费的片面 性,达到理想的节油减排效果。根据不同驾驶习惯,节油率可达 15-40% , 通过节油实现减排, 相应减排 15-40%。
本发明的通用多工况节能***的有益效果是: 空转滑行时(或减缸 时的非工作缸)只开缸减压消除阻滞力, 不耗油。 不停止点火可清洗火 花塞。 发电机正常发电, 回收能量。 一切仪表正常显示。 润滑、 冷却正 常。 空调正常。 方向、 制动不受影响。 发动机可在最佳特性区段断续工 作。 节油减排效果显著。 因为空转滑行时发动机转速对应车速, 所以多 数时候发动机转速会处在最佳特性区段附近, 故切换到加速时会更加平 滑, 且扭力大加速快。 ***方案既有科学控制方法又有合理执行机构, 体积小成本低, 完整具体, 兼容性强, 极易实施。 可用于老车改造和新 车配装。 可靠性高, 适用范围广, 适用于装配名种燃料、 不同气缸数的 的四沖程电控发动机的车辆, 尤其适用于混合动力车; 最适合电磁气门 发动机的车辆, 虽不算高尖技术, 但非常经济实用, 花很小投入就会收 到立杆见影的效果。 因其具有突出的燃油经济性, 还会给车商带来巨大 的销售利益。

Claims

权利要求书
1、 一种通用多工况节能***, 其特征在于, 所述通用多工况节能 ***包括控制器和执行机构;
所述执行机构用于控制所述车辆发动机的气门的开合, 所述执行机 构包括能够在所述控制器的控制下、 将所述车辆发动机的气门限制在非 闭合状态的限位装置;
所述控制器用于采集车辆运行状态信息和驾驶员指令, 并根据车辆 运行状态和驾驶员指令、 控制所述执行机构将所述气门开启并限制在非 闭合状态、 同时控制喷油器切断供油。
2、 根据权利要求 1 所述的通用多工况节能***, 其特征在于, 所 述执行机构用于控制所述车辆发动机的排气门的开合, 所述执行机构包 括能够在所述控制器的控制下、 将所述车辆发动机的排气门限制在非闭 合状态的限位装置;
所述控制器用于采集车辆运行状态信息和驾驶员指令, 并根据车辆 运行状态和驾驶员指令、 控制所述执行机构将所述排气门开启并限制在 非闭合状态、 同时控制喷油器切断供油, 所述进气门工作在正常状态。
3、 根据权利要求 2所述的通用多工况节能***, 其特征在于, 所 述车辆的发动机为多缸发动机。
4、 根据权利要求 3所述的通用多工况节能***, 其特征在于, 所述车辆的发动机为双顶置凸轮轴发动机,
所述执行机构包括可在凸轮轴的顶升下控制排气门开合程度的气 门杆, 所述气门杆具有环槽;
所述限位装置为前端可伸入所述环槽中的滑块;
所述环槽的长度为排气门处于非闭合状态的滑动距离;
在凸轮轴将气门杆顶升至最大升程时, 所述滑块可在所述控制器的 控制下, 通过将其前端伸入所述环槽中以将所述排气门限制在非闭合状 态。
5、 根据权利要求 3所述的通用多工况节能***, 其特征在于, 所述车辆发动机为中下置凸轮轴摇臂式配气发动机,
所述执行机构包括可在凸轮的顶升下控制排气门开合程度的摇臂, 所述摇臂具有一挡板;
所述限位装置为前端可伸出至与所述挡板接触的滑块;
在凸轮轴将气门杆顶升至最大升程时, 所述滑块可在所述控制器的 控制下、 与所述挡板接触并限制所述摇臂运动, 从而将所述排气门限制 在非闭合状态。
6、 根据权利要求 3所述的通用多工况节能***, 其特征在于, 所述车辆发动机为顶置凸轮轴摇臂式发动机,
所述执行机构包括可在凸轮的顶升下控制排气门开合程度的摇臂、 设置在凸轮轴一侧的同心圆轮、 以及设置在所述摇臂上的活动辅臂; 所述圆轮的半径大于凸轮基圆、 小于凸轮顶部外廓, 所述活动辅臂 可与所述圆轮贴合;
所述限位装置为可限制所述活动辅臂的转角的限位销柱; 在摇臂将排气门打开至最大升程时, 所述活动辅臂可在所述控制器 的控制下、 与所述圆轮和限位销柱接触, 以限制所述摇臂运动, 从而将 所述排气门限制在非闭合状态。
7、 根据权利要求 3所述的通用多工况节能***, 其特征在于, 所述车辆的发动机为双顶置凸轮轴发动机,
所述执行机构包括固装在发动机的相邻两个汽缸之间的支架、 与所 述支架铰接的摆臂拉杆组合、 以及通过顶升气门杆来控制排气门开合程 度的凸轮; 所述限位装置为套装于所述凸轮的非凸轮轴座一侧的限位活动凸 轮, 所述限位活动凸轮与所述摆臂拉杆组合铰接、 并与所述凸轮轴动配 合;
所述限位活动凸轮可在所述控制器的控制下、 通过顶升气门杆来将 所述排气门限制在非闭合状态。
8、 根据权利要求 7 所述的通用多工况节能***, 其特征在于, 所 述相邻两个汽缸的摆臂拉杆组合均与所述支架铰接。
9、 根据权利要求 7 所述的通用多工况节能***, 其特征在于, 所
10、 根据权利要求 4至 9中任一权利要求所述的通用多工况节能系 统, 其特征在于, 所述排气门开合的程度可预先设定。
11、 根据权利要求 4至 9中任一权利要求所述的通用多工况节能系 统, 其特征在于, 所述执行机构还包括一回位弹簧, 所述回位弹簧可在 所述控制器的控制下、 解除所述限位装置对排气门的限位作用。
12、 根据权利要求 1所述的通用多工况节能***, 其特征在于, 所 述执行机构用于控制所述车辆发动机的进气门的开合, 所述执行机构包 括能够在所述控制器的控制下、 将所述车辆发动机的进气门限制在非闭 合状态的限位装置;
所述控制器用于采集车辆运行状态信息和驾驶员指令, 并根据车辆 运行状态和驾驶员指令、 控制所述执行机构将所述进气门开启并限制在 非闭合状态、 同时控制喷油器切断供油。
PCT/CN2009/073022 2008-07-31 2009-07-31 通用多工况节能*** WO2010012243A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09802436A EP2351922A4 (en) 2008-07-31 2009-07-31 UNIVERSAL ENERGY SAVING SYSTEM
US13/017,240 US8087396B2 (en) 2008-07-31 2011-01-31 Universal energy-saving system for multiple working conditions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810134810.0 2008-07-31
CN2008101348100A CN101571075B (zh) 2008-07-31 2008-07-31 通用多工况节能***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/017,240 Continuation US8087396B2 (en) 2008-07-31 2011-01-31 Universal energy-saving system for multiple working conditions

Publications (1)

Publication Number Publication Date
WO2010012243A1 true WO2010012243A1 (zh) 2010-02-04

Family

ID=41230524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073022 WO2010012243A1 (zh) 2008-07-31 2009-07-31 通用多工况节能***

Country Status (4)

Country Link
US (1) US8087396B2 (zh)
EP (1) EP2351922A4 (zh)
CN (1) CN101571075B (zh)
WO (1) WO2010012243A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009056026B4 (de) * 2009-11-27 2018-01-11 Audi Ag Verfahren zum Betreiben einer Brennkraftmaschine eines Kraftfahrzeugs
CN102322366A (zh) * 2011-07-05 2012-01-18 广东轻工职业技术学院 一种摩托车发动机电喷点火调试装置及其控制方法
CN102536488A (zh) * 2012-03-15 2012-07-04 长安大学 电喷发动机节油控制***及控制方法
US9102334B2 (en) 2012-10-29 2015-08-11 Deere & Company Methods and apparatus to control motors
DE102014204447B4 (de) * 2013-07-23 2019-03-07 Ford Global Technologies, Llc Motorbetriebsverfahren und Kraftfahrzeug
DE102013114270A1 (de) * 2013-09-16 2015-03-19 Hyundai Motor Company Leerlaufabschaltungsbedingungsermittlungsverfahren eines Verbrennungsmotors
JP6044613B2 (ja) * 2014-10-09 2016-12-14 トヨタ自動車株式会社 内燃機関の制御装置
DE102015212070A1 (de) 2015-06-29 2016-12-29 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Antriebsvorrichtung, Antriebsvorrichtung, Kraftfahrzeug
CN110375905B (zh) * 2018-04-11 2021-02-19 上海汽车集团股份有限公司 一种发动机气门弹簧力测量设备、方法及装置
US11008952B2 (en) * 2018-07-16 2021-05-18 Cummins Inc. Vacuum and compression release braking in spark-ignited engines
CN109630293B (zh) * 2018-12-18 2021-07-20 安徽江淮汽车集团股份有限公司 一种停缸测试控制***

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87103742A (zh) * 1987-06-01 1988-12-21 成都汽车制造厂 车用汽油发动机的闭缸节油装置
CN2156291Y (zh) * 1993-01-11 1994-02-16 刘庆国 汽油发动机
JPH0953478A (ja) * 1995-08-15 1997-02-25 Shinsuke Suzuki 4サイクルレシプロエンジンの燃費向上方法
CN2665379Y (zh) * 2003-11-28 2004-12-22 方五三 多缸汽车发动机控缸节油装置
JP2006037857A (ja) * 2004-07-28 2006-02-09 Hino Motors Ltd 排気浄化装置
CN1800611A (zh) * 2006-01-13 2006-07-12 伍永亮 多缸柴油机半数缸作工装置
CN2813901Y (zh) * 2005-06-29 2006-09-06 张俊德 具有节油功能的v型柴油发动机
WO2007032712A1 (en) * 2005-09-12 2007-03-22 Volvo Lastvagnar Ab Method for operating an internal combustion engine
CN1963169A (zh) * 2006-11-10 2007-05-16 陈庆云 减压闭缸节油发动机
CN201121543Y (zh) * 2007-11-29 2008-09-24 田少龙 一种发动机节油装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4565167A (en) * 1981-12-08 1986-01-21 Bryant Clyde C Internal combustion engine
CN85200450U (zh) 1985-04-01 1985-09-10 北京市汽车工业技术开发中心 492型汽油机偏心摇臂轴式停缸节油装置
CN86209043U (zh) 1986-11-14 1987-12-12 赖志勤 通用可变摇臂式停缸节油装置
US4741307A (en) * 1987-02-17 1988-05-03 Pacific Diesel Brave Co. Apparatus and method for compression release retarding of an engine
US4932372A (en) * 1988-05-02 1990-06-12 Pacific Diesel Brake Co. Apparatus and method for retarding a turbocharged engine
EP1803913B1 (en) * 2002-12-23 2010-08-11 Jacobs Vehicle Systems, Inc. Engine braking methods and apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87103742A (zh) * 1987-06-01 1988-12-21 成都汽车制造厂 车用汽油发动机的闭缸节油装置
CN2156291Y (zh) * 1993-01-11 1994-02-16 刘庆国 汽油发动机
JPH0953478A (ja) * 1995-08-15 1997-02-25 Shinsuke Suzuki 4サイクルレシプロエンジンの燃費向上方法
CN2665379Y (zh) * 2003-11-28 2004-12-22 方五三 多缸汽车发动机控缸节油装置
JP2006037857A (ja) * 2004-07-28 2006-02-09 Hino Motors Ltd 排気浄化装置
CN2813901Y (zh) * 2005-06-29 2006-09-06 张俊德 具有节油功能的v型柴油发动机
WO2007032712A1 (en) * 2005-09-12 2007-03-22 Volvo Lastvagnar Ab Method for operating an internal combustion engine
CN1800611A (zh) * 2006-01-13 2006-07-12 伍永亮 多缸柴油机半数缸作工装置
CN1963169A (zh) * 2006-11-10 2007-05-16 陈庆云 减压闭缸节油发动机
CN201121543Y (zh) * 2007-11-29 2008-09-24 田少龙 一种发动机节油装置

Also Published As

Publication number Publication date
US20110120422A1 (en) 2011-05-26
CN101571075B (zh) 2010-12-08
EP2351922A1 (en) 2011-08-03
CN101571075A (zh) 2009-11-04
EP2351922A4 (en) 2012-11-07
US8087396B2 (en) 2012-01-03

Similar Documents

Publication Publication Date Title
WO2010012243A1 (zh) 通用多工况节能***
CN102452387B (zh) 车辆启动的预测和调整
CN2906199Y (zh) 一种串联式混合动力辅助动力单元用自动离合器
Dönitz et al. Realizing a concept for high efficiency and excellent driveability: the downsized and supercharged hybrid pneumatic engine
US11370443B2 (en) Method for controlling a powertrain system during upshifting
WO2008074250A1 (fr) Moteur à combustion secondaire à circulation interne
CN201015988Y (zh) 带离合器的汽车能量再生装置
CN104590012B (zh) 车辆滑行控制***及其离合机构
CN201317352Y (zh) 气动式刹车回能装置
WO2014193349A1 (en) Engine braking
CN101392668B (zh) 一种车辆发动机用的节油装置
CN203130261U (zh) 汽车发动机排气制动限速器
CN202429197U (zh) 一种用于小排量后驱发动机上的节能减排装置
CN205225453U (zh) 变容增压式高效发动机
CN2781001Y (zh) 一种机动车节油装置
CN201778896U (zh) 新型汽车排气制动装置
CN210564844U (zh) 一种增效节能减排的气动控制装置及其应用
CN100572776C (zh) 一种机动车节能的方法
CN101182885A (zh) 内燃机汽车动力智能控制***及其控制方法
CN2455541Y (zh) 一种车辆刹车液压节油装置
CN101881199B (zh) 一种机动车的气缸减压机构
CN105156167B (zh) 汽车发动机压缩式制动缓速***
CN211598846U (zh) 一种发动机辅助排气制动***
CN211008803U (zh) 三气门顶置双凸轮轴发动机配气***
CN210013777U (zh) 一种汽油机总成

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009802436

Country of ref document: EP